USDA-ARS?s Scientific Manuscript database
Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...
Lorenz, Kim; Cohen, Barak A.
2012-01-01
Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125
Genomic Quantitative Genetics to Study Evolution in the Wild.
Gienapp, Phillip; Fior, Simone; Guillaume, Frédéric; Lasky, Jesse R; Sork, Victoria L; Csilléry, Katalin
2017-12-01
Quantitative genetic theory provides a means of estimating the evolutionary potential of natural populations. However, this approach was previously only feasible in systems where the genetic relatedness between individuals could be inferred from pedigrees or experimental crosses. The genomic revolution opened up the possibility of obtaining the realized proportion of genome shared among individuals in natural populations of virtually any species, which could promise (more) accurate estimates of quantitative genetic parameters in virtually any species. Such a 'genomic' quantitative genetics approach relies on fewer assumptions, offers a greater methodological flexibility, and is thus expected to greatly enhance our understanding of evolution in natural populations, for example, in the context of adaptation to environmental change, eco-evolutionary dynamics, and biodiversity conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds
USDA-ARS?s Scientific Manuscript database
The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identi...
Quantitative genetic versions of Hamilton's rule with empirical applications
McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.
2014-01-01
Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930
Hlusko, Leslea J; Schmitt, Christopher A; Monson, Tesla A; Brasil, Marianne F; Mahaney, Michael C
2016-08-16
Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.
ERIC Educational Resources Information Center
Rutledge, Michael L.; Mathis, Philip M.; Seipelt, Rebecca L.
2005-01-01
As students apply their knowledge of scientific concepts and of science as a method of inquiry, learning becomes relevant. This laboratory exercise is designed to foster students' understanding of the genetics of quantitative traits and of the nature of science as a method of inquiry by engaging them in a real-world business scenario. During the…
Systems genetics approaches to understand complex traits
Civelek, Mete; Lusis, Aldons J.
2014-01-01
Systems genetics is an approach to understand the flow of biological information that underlies complex traits. It uses a range of experimental and statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein or metabolite levels, in populations that vary for traits of interest. Systems genetics studies have provided the first global view of the molecular architecture of complex traits and are useful for the identification of genes, pathways and networks that underlie common human diseases. Given the urgent need to understand how the thousands of loci that have been identified in genome-wide association studies contribute to disease susceptibility, systems genetics is likely to become an increasingly important approach to understanding both biology and disease. PMID:24296534
Genetic interactions contribute less than additive effects to quantitative trait variation in yeast
Bloom, Joshua S.; Kotenko, Iulia; Sadhu, Meru J.; Treusch, Sebastian; Albert, Frank W.; Kruglyak, Leonid
2015-01-01
Genetic mapping studies of quantitative traits typically focus on detecting loci that contribute additively to trait variation. Genetic interactions are often proposed as a contributing factor to trait variation, but the relative contribution of interactions to trait variation is a subject of debate. Here we use a very large cross between two yeast strains to accurately estimate the fraction of phenotypic variance due to pairwise QTL–QTL interactions for 20 quantitative traits. We find that this fraction is 9% on average, substantially less than the contribution of additive QTL (43%). Statistically significant QTL–QTL pairs typically have small individual effect sizes, but collectively explain 40% of the pairwise interaction variance. We show that pairwise interaction variance is largely explained by pairs of loci at least one of which has a significant additive effect. These results refine our understanding of the genetic architecture of quantitative traits and help guide future mapping studies. PMID:26537231
Joosen, Ronny Viktor Louis; Arends, Danny; Li, Yang; Willems, Leo A.J.; Keurentjes, Joost J.B.; Ligterink, Wilco; Jansen, Ritsert C.; Hilhorst, Henk W.M.
2013-01-01
A complex phenotype such as seed germination is the result of several genetic and environmental cues and requires the concerted action of many genes. The use of well-structured recombinant inbred lines in combination with “omics” analysis can help to disentangle the genetic basis of such quantitative traits. This so-called genetical genomics approach can effectively capture both genetic and epistatic interactions. However, to understand how the environment interacts with genomic-encoded information, a better understanding of the perception and processing of environmental signals is needed. In a classical genetical genomics setup, this requires replication of the whole experiment in different environmental conditions. A novel generalized setup overcomes this limitation and includes environmental perturbation within a single experimental design. We developed a dedicated quantitative trait loci mapping procedure to implement this approach and used existing phenotypical data to demonstrate its power. In addition, we studied the genetic regulation of primary metabolism in dry and imbibed Arabidopsis (Arabidopsis thaliana) seeds. In the metabolome, many changes were observed that were under both environmental and genetic controls and their interaction. This concept offers unique reduction of experimental load with minimal compromise of statistical power and is of great potential in the field of systems genetics, which requires a broad understanding of both plasticity and dynamic regulation. PMID:23606598
Quantitative Resistance: More Than Just Perception of a Pathogen
2017-01-01
Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. PMID:28302676
ERIC Educational Resources Information Center
Wagner, Richard K.
2005-01-01
The transition from first-generation to second-generation studies of genetic and environmental influences on the development of reading is underway. The first generation of quantitative genetic studies yielded an extraordinary conclusion: Fifty percent or more of the variance in most constructs, including reading, is attributable to genetic…
Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy.
Nearly every cancer patient is treated with chemotherapy yet our understanding of factors that dictate response and resistance to such agents remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells that charts the impact of knockdown of 625 cancer and DNA repair related genes on sensitivity to 29 drugs, covering all classes of cancer chemotherapeutics.
Quantitative Resistance: More Than Just Perception of a Pathogen.
Corwin, Jason A; Kliebenstein, Daniel J
2017-04-01
Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance. © 2017 American Society of Plant Biologists. All rights reserved.
Lane, J E; Kruuk, L E B; Charmantier, A; Murie, J O; Coltman, D W; Buoro, M; Raveh, S; Dobson, F S
2011-09-01
The life history schedules of wild organisms have long attracted scientific interest, and, in light of ongoing climate change, an understanding of their genetic and environmental underpinnings is increasingly becoming of applied concern. We used a multi-generation pedigree and detailed phenotypic records, spanning 18 years, to estimate the quantitative genetic influences on the timing of hibernation emergence in a wild population of Columbian ground squirrels (Urocitellus columbianus). Emergence date was significantly heritable [h(2) = 0.22 ± 0.05 (in females) and 0.34 ± 0.14 (in males)], and there was a positive genetic correlation (r(G) = 0.76 ± 0.22) between male and female emergence dates. In adult females, the heritabilities of body mass at emergence and oestrous date were h(2) = 0.23 ± 0.09 and h(2) = 0.18 ± 0.12, respectively. The date of hibernation emergence has been hypothesized to have evolved so as to synchronize subsequent reproduction with upcoming peaks in vegetation abundance. In support of this hypothesis, although levels of phenotypic variance in emergence date were higher than oestrous date, there was a highly significant genetic correlation between the two (r(G) = 0.98 ± 0.01). Hibernation is a prominent feature in the annual cycle of many small mammals, but our understanding of its influences lags behind that for phenological traits in many other taxa. Our results provide the first insight into its quantitative genetic influences and thus help contribute to a more general understanding of its evolutionary significance. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I
2013-09-01
In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.
Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.
Santure, Anna W; Spencer, Hamish G
2006-08-01
The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemblance between offspring of the same mother. We demonstrate that two standard quantitative genetic models for deriving breeding values, population variances and covariances between relatives, are not equivalent when maternal genetic effects and imprinting are acting. Maternal and imprinting effects introduce both sex-dependent and generation-dependent effects that result in differences in the way additive and dominance effects are defined for the two approaches. We use a simple example to demonstrate that both imprinting and maternal genetic effects add extra terms to covariances between relatives and that model misspecification may over- or underestimate true covariances or lead to extremely variable parameter estimation. Thus, an understanding of various forms of parental effects is essential in correctly estimating quantitative genetic variance components.
Genes, Environment, and Race: Quantitative Genetic Approaches
ERIC Educational Resources Information Center
Whitfield, Keith E.; McClearn, Gerald
2005-01-01
Understanding the origins of racial health disparities is currently a central focus of health-oriented funding agencies and the health policy community. In particular, the role of genetics in the origin of racial health disparities is receiving growing attention and has been susceptible to considerable misinterpretation. In this article, the…
In-Silico Genomic Approaches To Understanding Lactation, Mammary Development, And Breast Cancer
USDA-ARS?s Scientific Manuscript database
Lactation-related traits are influenced by genetics. From a quantitative standpoint, these traits have been well studied in dairy species, but there has also been work on the genetics of lactation in humans and mice. In addition, there is evidence to support the notion that other mammary gland trait...
Roff, Derek A; Fairbairn, Daphne J
2007-01-01
Predicting evolutionary change is the central goal of evolutionary biology because it is the primary means by which we can test evolutionary hypotheses. In this article, we analyze the pattern of evolutionary change in a laboratory population of the wing-dimorphic sand cricket Gryllus firmus resulting from relaxation of selection favoring the migratory (long-winged) morph. Based on a well-characterized trade-off between fecundity and flight capability, we predict that evolution in the laboratory environment should result in a reduction in the proportion of long-winged morphs. We also predict increased fecundity and reduced functionality and weight of the major flight muscles in long-winged females but little change in short-winged (flightless) females. Based on quantitative genetic theory, we predict that the regression equation describing the trade-off between ovary weight and weight of the major flight muscles will show a change in its intercept but not in its slope. Comparisons across generations verify all of these predictions. Further, using values of genetic parameters estimated from previous studies, we show that a quantitative genetic simulation model can account for not only the qualitative changes but also the evolutionary trajectory. These results demonstrate the power of combining quantitative genetic and physiological approaches for understanding the evolution of complex traits.
Leve, Leslie D.; Harold, Gordon T.; Ge, Xiaojia; Neiderhiser, Jenae M.; Patterson, Gerald
2010-01-01
The results from a large body of family-based research studies indicate that modifying the environment (specifically dimensions of the social environment) through intervention is an effective mechanism for achieving positive outcomes. Parallel to this work is a growing body of evidence from genetically informed studies indicating that social environmental factors are central to enhancing or offsetting genetic influences. Increased precision in the understanding of the role of the social environment in offsetting genetic risk might provide new information about environmental mechanisms that could be applied to prevention science. However, at present, the multifaceted conceptualization of the environment in prevention science is mismatched with the more limited measurement of the environment in many genetically informed studies. A framework for translating quantitative behavioral genetic research to inform the development of preventive interventions is presented in this article. The measurement of environmental indices amenable to modification is discussed within the context of quantitative behavioral genetic studies. In particular, emphasis is placed on the necessary elements that lead to benefits in prevention science, specifically the development of evidence-based interventions. An example from an ongoing prospective adoption study is provided to illustrate the potential of this translational process to inform the selection of preventive intervention targets. PMID:21188273
USDA-ARS?s Scientific Manuscript database
Wheat quality is defined by culinary end-uses and processing characteristics. Wheat breeders are interested to identify quantitative trait loci for grain, milling, and end-use quality traits because it is imperative to understand the genetic complexity underlying quantitatively inherited traits to ...
APOE Genotyping, Cardiovascular Disease
... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... tests are most often done as part of research protocols to help understand the role of genetic ...
Modelling the co-evolution of indirect genetic effects and inherited variability.
Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter
2018-03-28
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.
NASA Technical Reports Server (NTRS)
Norga, Koenraad K.; Gurganus, Marjorie C.; Dilda, Christy L.; Yamamoto, Akihiko; Lyman, Richard F.; Patel, Prajal H.; Rubin, Gerald M.; Hoskins, Roger A.; Mackay, Trudy F.; Bellen, Hugo J.
2003-01-01
BACKGROUND: The identification of the function of all genes that contribute to specific biological processes and complex traits is one of the major challenges in the postgenomic era. One approach is to employ forward genetic screens in genetically tractable model organisms. In Drosophila melanogaster, P element-mediated insertional mutagenesis is a versatile tool for the dissection of molecular pathways, and there is an ongoing effort to tag every gene with a P element insertion. However, the vast majority of P element insertion lines are viable and fertile as homozygotes and do not exhibit obvious phenotypic defects, perhaps because of the tendency for P elements to insert 5' of transcription units. Quantitative genetic analysis of subtle effects of P element mutations that have been induced in an isogenic background may be a highly efficient method for functional genome annotation. RESULTS: Here, we have tested the efficacy of this strategy by assessing the extent to which screening for quantitative effects of P elements on sensory bristle number can identify genes affecting neural development. We find that such quantitative screens uncover an unusually large number of genes that are known to function in neural development, as well as genes with yet uncharacterized effects on neural development, and novel loci. CONCLUSIONS: Our findings establish the use of quantitative trait analysis for functional genome annotation through forward genetics. Similar analyses of quantitative effects of P element insertions will facilitate our understanding of the genes affecting many other complex traits in Drosophila.
A strategy to apply quantitative epistasis analysis on developmental traits.
Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei
2017-05-15
Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.
Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.
Xue, Angli; Wang, Hongcheng; Zhu, Jun
2017-09-28
Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.
Delmore, Kira E; Liedvogel, Miriam
2016-01-01
The amazing accuracy of migratory orientation performance across the animal kingdom is facilitated by the use of magnetic and celestial compass systems that provide individuals with both directional and positional information. Quantitative genetics analyses in several animal systems suggests that migratory orientation has a strong genetic component. Nevertheless, the exact identity of genes controlling orientation remains largely unknown, making it difficult to obtain an accurate understanding of this fascinating behavior on the molecular level. Here, we provide an overview of molecular genetic techniques employed thus far, highlight the pros and cons of various approaches, generalize results from species-specific studies whenever possible, and evaluate how far the field has come since early quantitative genetics studies. We emphasize the importance of examining different levels of molecular control, and outline how future studies can take advantage of high-resolution tracking and sequencing techniques to characterize the genomic architecture of migratory orientation.
Behavioral and molecular studies of quantitative differences in hygienic behavior in honeybees.
Gempe, Tanja; Stach, Silke; Bienefeld, Kaspar; Otte, Marianne; Beye, Martin
2016-10-21
Hygienic behavior (HB) enables honeybees to tolerate parasites, including infection with the parasitic mite Varroa destructor, and it is a well-known example of a quantitative genetic trait. The understanding of the molecular processes underpinning the quantitative differences in this behavior remains limited. We performed gene expression studies in worker bees that displayed quantitative genetic differences in HB. We established a high and low genetic source of HB performance and studied the engagements into HB of single worker bees under the same environmental conditions. We found that the percentage of worker bees that engaged in a hygienic behavioral task tripled in the high versus low HB sources, thus suggesting that genetic differences may mediate differences in stimulated states to perform HB. We found 501 differently expressed genes (DEGs) in the brains of hygienic and non-hygienic performing workers in the high HB source bees, and 342 DEGs in the brains of hygienic performing worker bees, relative to the gene expression in non-hygienic worker bees from the low HB source group. "Cell surface receptor ligand signal transduction" in the high and "negative regulation of cell communication" in the low HB source were overrepresented molecular processes, suggesting that these molecular processes in the brain may play a role in the regulation of quantitative differences in HB. Moreover, only 21 HB-associated DEGs were common between the high and low HB sources. The better HB colony performance is primarily achieved by a high number of bees engaging in the hygienic tasks that associate with distinct molecular processes in the brain. We propose that different gene products and pathways may mediate the quantitative genetic differences of HB.
Genomic atlas of the human plasma proteome.
Sun, Benjamin B; Maranville, Joseph C; Peters, James E; Stacey, David; Staley, James R; Blackshaw, James; Burgess, Stephen; Jiang, Tao; Paige, Ellie; Surendran, Praveen; Oliver-Williams, Clare; Kamat, Mihir A; Prins, Bram P; Wilcox, Sheri K; Zimmerman, Erik S; Chi, An; Bansal, Narinder; Spain, Sarah L; Wood, Angela M; Morrell, Nicholas W; Bradley, John R; Janjic, Nebojsa; Roberts, David J; Ouwehand, Willem H; Todd, John A; Soranzo, Nicole; Suhre, Karsten; Paul, Dirk S; Fox, Caroline S; Plenge, Robert M; Danesh, John; Runz, Heiko; Butterworth, Adam S
2018-06-01
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development.
Hill, William G
2014-01-01
Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives' performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher's infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with "genomic selection" is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas.
Smeal, Steven W; Schmitt, Margaret A; Pereira, Ronnie Rodrigues; Prasad, Ashok; Fisk, John D
2017-01-01
To expand the quantitative, systems level understanding and foster the expansion of the biotechnological applications of the filamentous bacteriophage M13, we have unified the accumulated quantitative information on M13 biology into a genetically-structured, experimentally-based computational simulation of the entire phage life cycle. The deterministic chemical kinetic simulation explicitly includes the molecular details of DNA replication, mRNA transcription, protein translation and particle assembly, as well as the competing protein-protein and protein-nucleic acid interactions that control the timing and extent of phage production. The simulation reproduces the holistic behavior of M13, closely matching experimentally reported values of the intracellular levels of phage species and the timing of events in the M13 life cycle. The computational model provides a quantitative description of phage biology, highlights gaps in the present understanding of M13, and offers a framework for exploring alternative mechanisms of regulation in the context of the complete M13 life cycle. Copyright © 2016 Elsevier Inc. All rights reserved.
An, Li; Lin, Yingxiang; Yang, Ting; Hua, Lin
2016-05-18
Currently, the majority of genetic association studies on chronic obstructive pulmonary disease (COPD) risk focused on identifying the individual effects of single nucleotide polymorphisms (SNPs) as well as their interaction effects on the disease. However, conventional genetic studies often use binary disease status as the primary phenotype, but for COPD, many quantitative traits have the potential correlation with the disease status and closely reflect pathological changes. Here, we genotyped 44 SNPs from four genes (EPHX1, GSTP1, SERPINE2, and TGFB1) in 310 patients and 203 controls which belonged to the Chinese Han population to test the two-way and three-way genetic interactions with COPD-related quantitative traits using recently developed generalized multifactor dimensionality reduction (GMDR) and quantitative multifactor dimensionality reduction (QMDR) algorithms. Based on the 310 patients and the whole samples of 513 subjects, the best gene-gene interactions models were detected for four lung-function-related quantitative traits. For the forced expiratory volume in 1 s (FEV1), the best interaction was seen from EPHX1, SERPINE2, and GSTP1. For FEV1%pre, the forced vital capacity (FVC), and FEV1/FVC, the best interactions were seen from SERPINE2 and TGFB1. The results of this study provide further evidence for the genotype combinations at risk of developing COPD in Chinese Han population and improve the understanding on the genetic etiology of COPD and COPD-related quantitative traits.
Dorey, Narimane; Garfield, David A.; Stumpp, Meike; Dupont, Sam; Wray, Gregory A.
2016-01-01
Abstract Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change. PMID:28082601
Quantitative genetic-interaction mapping in mammalian cells
Roguev, Assen; Talbot, Dale; Negri, Gian Luca; Shales, Michael; Cagney, Gerard; Bandyopadhyay, Sourav; Panning, Barbara; Krogan, Nevan J
2013-01-01
Mapping genetic interactions (GIs) by simultaneously perturbing pairs of genes is a powerful tool for understanding complex biological phenomena. Here we describe an experimental platform for generating quantitative GI maps in mammalian cells using a combinatorial RNA interference strategy. We performed ~11,000 pairwise knockdowns in mouse fibroblasts, focusing on 130 factors involved in chromatin regulation to create a GI map. Comparison of the GI and protein-protein interaction (PPI) data revealed that pairs of genes exhibiting positive GIs and/or similar genetic profiles were predictive of the corresponding proteins being physically associated. The mammalian GI map identified pathways and complexes but also resolved functionally distinct submodules within larger protein complexes. By integrating GI and PPI data, we created a functional map of chromatin complexes in mouse fibroblasts, revealing that the PAF complex is a central player in the mammalian chromatin landscape. PMID:23407553
Yu, Hui; Aleman-Meza, Boanerges; Gharib, Shahla; Labocha, Marta K; Cronin, Christopher J; Sternberg, Paul W; Zhong, Weiwei
2013-07-16
Genetic screens have been widely applied to uncover genetic mechanisms of movement disorders. However, most screens rely on human observations of qualitative differences. Here we demonstrate the application of an automatic imaging system to conduct a quantitative screen for genes regulating the locomotive behavior in Caenorhabditis elegans. Two hundred twenty-seven neuronal signaling genes with viable homozygous mutants were selected for this study. We tracked and recorded each animal for 4 min and analyzed over 4,400 animals of 239 genotypes to obtain a quantitative, 10-parameter behavioral profile for each genotype. We discovered 87 genes whose inactivation causes movement defects, including 50 genes that had never been associated with locomotive defects. Computational analysis of the high-content behavioral profiles predicted 370 genetic interactions among these genes. Network partition revealed several functional modules regulating locomotive behaviors, including sensory genes that detect environmental conditions, genes that function in multiple types of excitable cells, and genes in the signaling pathway of the G protein Gαq, a protein that is essential for animal life and behavior. We developed quantitative epistasis analysis methods to analyze the locomotive profiles and validated the prediction of the γ isoform of phospholipase C as a component in the Gαq pathway. These results provided a system-level understanding of how neuronal signaling genes coordinate locomotive behaviors. This study also demonstrated the power of quantitative approaches in genetic studies.
A quantitative framework for the forward design of synthetic miRNA circuits.
Bloom, Ryan J; Winkler, Sally M; Smolke, Christina D
2014-11-01
Synthetic genetic circuits incorporating regulatory components based on RNA interference (RNAi) have been used in a variety of systems. A comprehensive understanding of the parameters that determine the relationship between microRNA (miRNA) and target expression levels is lacking. We describe a quantitative framework supporting the forward engineering of gene circuits that incorporate RNAi-based regulatory components in mammalian cells. We developed a model that captures the quantitative relationship between miRNA and target gene expression levels as a function of parameters, including mRNA half-life and miRNA target-site number. We extended the model to synthetic circuits that incorporate protein-responsive miRNA switches and designed an optimized miRNA-based protein concentration detector circuit that noninvasively measures small changes in the nuclear concentration of β-catenin owing to induction of the Wnt signaling pathway. Our results highlight the importance of methods for guiding the quantitative design of genetic circuits to achieve robust, reliable and predictable behaviors in mammalian cells.
Jeffares, Daniel C.; Jolly, Clemency; Hoti, Mimoza; Speed, Doug; Shaw, Liam; Rallis, Charalampos; Balloux, Francois; Dessimoz, Christophe; Bähler, Jürg; Sedlazeck, Fritz J.
2017-01-01
Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases. PMID:28117401
Hill, William G.
2014-01-01
Although animal breeding was practiced long before the science of genetics and the relevant disciplines of population and quantitative genetics were known, breeding programs have mainly relied on simply selecting and mating the best individuals on their own or relatives’ performance. This is based on sound quantitative genetic principles, developed and expounded by Lush, who attributed much of his understanding to Wright, and formalized in Fisher’s infinitesimal model. Analysis at the level of individual loci and gene frequency distributions has had relatively little impact. Now with access to genomic data, a revolution in which molecular information is being used to enhance response with “genomic selection” is occurring. The predictions of breeding value still utilize multiple loci throughout the genome and, indeed, are largely compatible with additive and specifically infinitesimal model assumptions. I discuss some of the history and genetic issues as applied to the science of livestock improvement, which has had and continues to have major spin-offs into ideas and applications in other areas. PMID:24395822
Identifying the genes underlying quantitative traits: a rationale for the QTN programme.
Lee, Young Wha; Gould, Billie A; Stinchcombe, John R
2014-01-01
The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the 'QTN programme' and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution.
Identifying the genes underlying quantitative traits: a rationale for the QTN programme
Lee, Young Wha; Gould, Billie A.; Stinchcombe, John R.
2014-01-01
The goal of identifying the genes or even nucleotides underlying quantitative and adaptive traits has been characterized as the ‘QTN programme’ and has recently come under severe criticism. Part of the reason for this criticism is that much of the QTN programme has asserted that finding the genes and nucleotides for adaptive and quantitative traits is a fundamental goal, without explaining why it is such a hallowed goal. Here we outline motivations for the QTN programme that offer general insight, regardless of whether QTNs are of large or small effect, and that aid our understanding of the mechanistic dynamics of adaptive evolution. We focus on five areas: (i) vertical integration of insight across different levels of biological organization, (ii) genetic parallelism and the role of pleiotropy in shaping evolutionary dynamics, (iii) understanding the forces maintaining genetic variation in populations, (iv) distinguishing between adaptation from standing variation and new mutation, and (v) the role of genomic architecture in facilitating adaptation. We argue that rather than abandoning the QTN programme, we should refocus our efforts on topics where molecular data will be the most effective for testing hypotheses about phenotypic evolution. PMID:24790125
Electrophysiological Endophenotypes for Schizophrenia
Owens, Emily; Bachman, Peter; Glahn, David C; Bearden, Carrie E
2016-01-01
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABA-ergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating datasets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype. PMID:26954597
History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science
NASA Astrophysics Data System (ADS)
Kim, Sun Young; Irving, Karen E.
2010-02-01
This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in genetics instruction; and (3) suggests a modified concept mapping assessment tool for both NOS and GCK. A quasi-experimental control group research design was utilized with pretests, posttests, and delayed posttests, combining qualitative data and quantitative data. The experimental group was taught with historical curricular lessons, while the control group was taught with non-historical curricular lessons. The results indicated that students in the experimental group developed better understanding in targeted aspects of NOS immediately after the intervention and retained their learning 2 months after the intervention. Both groups developed similar genetics knowledge in the posttest, and revealed a slight decay in their understanding in the delayed posttest.
Runcie, Daniel E; Dorey, Narimane; Garfield, David A; Stumpp, Meike; Dupont, Sam; Wray, Gregory A
2016-12-01
Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms' health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.
Routtu, J; Ebert, D
2015-02-01
Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.
Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites
Routtu, J; Ebert, D
2015-01-01
Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558
Sibling recurrence and the genetic epidemiology of autism
Constantino, John N.; Zhang, Yi; Frazier, Thomas; Abbacchi, Anna M.; Law, Paul
2010-01-01
Objective Although the symptoms of autism exhibit quantitative distributions in nature, estimates of recurrence risk in families have never previously considered or incorporated quantitative characterization of the autistic phenotype among siblings. Method We report the results of quantitative characterization of 2,920 children from 1,235 families participating in a national volunteer register who met the criteria of having at least one child clinically-affected by an autism spectrum disorder (ASD) and at least one full biological sibling. Results The occurrence of a traditionally-defined ASD in an additional child occurred in 10.9% of the families. An additional 20% of non-ASD-affected siblings had a history of language delay, half of whom had exhibited autistic qualities of speech. Quantitative characterization using the Social Responsiveness Scale (SRS) supported previously-reported aggregation of a wide range of subclinical (quantitative) autistic traits among otherwise unaffected children in multiple-incidence families, and a relative absence of quantitative autistic traits among siblings in single-incidence autism families. Girls whose standardized severity ratings fell above a first percentile severity threshold (relative to the general population distribution) were significantly less likely to have elicited community diagnoses than their male counterparts. Conclusions These data suggest that, depending on how it is defined, sibling recurrence in ASD may exceed previously-published estimates, and varies as a function of family type. The results support differences in mechanisms of genetic transmission between simplex and multiplex autism, and advance current understanding of the genetic epidemiology of autism. PMID:20889652
NASA Astrophysics Data System (ADS)
Aurah, Catherine Muhonja
Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.
Gong, Wen-Bing; Li, Lei; Zhou, Yan; Bian, Yin-Bing; Kwan, Hoi-Shan; Cheung, Man-Kit; Xiao, Yang
2016-06-01
To provide a better understanding of the genetic architecture of fruiting body formation of Lentinula edodes, quantitative trait loci (QTLs) mapping was employed to uncover the loci underlying seven fruiting body-related traits (FBRTs). An improved L. edodes genetic linkage map, comprising 572 markers on 12 linkage groups with a total map length of 983.7 cM, was constructed by integrating 82 genomic sequence-based insertion-deletion (InDel) markers into a previously published map. We then detected a total of 62 QTLs for seven target traits across two segregating testcross populations, with individual QTLs contributing 5.5 %-30.2 % of the phenotypic variation. Fifty-three out of the 62 QTLs were clustered in six QTL hotspots, suggesting the existence of main genomic regions regulating the morphological characteristics of fruiting bodies in L. edodes. A stable QTL hotspot on MLG2, containing QTLs for all investigated traits, was identified in both testcross populations. QTLs for related traits were frequently co-located on the linkage groups, demonstrating the genetic basis for phenotypic correlation of traits. Meta-QTL (mQTL) analysis was performed and identified 16 mQTLs with refined positions and narrow confidence intervals (CIs). Nine genes, including those encoding MAP kinase, blue-light photoreceptor, riboflavin-aldehyde-forming enzyme and cyclopropane-fatty-acyl-phospholipid synthase, and cytochrome P450s, were likely to be candidate genes controlling the shape of fruiting bodies. The study has improved our understanding of the genetic architecture of fruiting body formation in L. edodes. To our knowledge, this is the first genome-wide QTL detection of FBRTs in L. edodes. The improved genetic map, InDel markers and QTL hotspot regions revealed here will assist considerably in the conduct of future genetic and breeding studies of L. edodes.
Genetic approaches in comparative and evolutionary physiology
Bridgham, Jamie T.; Kelly, Scott A.; Garland, Theodore
2015-01-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. PMID:26041111
Genetic approaches in comparative and evolutionary physiology.
Storz, Jay F; Bridgham, Jamie T; Kelly, Scott A; Garland, Theodore
2015-08-01
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology. Copyright © 2015 the American Physiological Society.
Knoll, A T; Jiang, K; Levitt, P
2018-06-01
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability. © 2017 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Assessing the evidence for shared genetic risks across psychiatric disorders and traits.
Martin, Joanna; Taylor, Mark J; Lichtenstein, Paul
2017-12-04
Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.
Genetics instruction with history of science: Nature of science learning
NASA Astrophysics Data System (ADS)
Kim, Sun Young
2007-12-01
This study explored the effect of history of genetics in teaching genetics and learning the nature of science (NOS). A quasi-experimental control group research design with pretests, posttests, and delayed posttests was used, combining qualitative data and quantitative data. Two classes which consisted of tenth grade biology students participated in this study. The present study involved two instructional interventions, Best Practice Instruction with History of Genetics (BPIw/HG) and Best Practice Instruction (BPI). The experimental group received BPIw/HG utilizing various historical materials from the history of genetics, while the control group was not introduced to historical materials. Scientific Attitude Inventory II, Genetics Terms' Definitions with Concept Mapping (GTDCM), NOS Terms' Definitions with Concept Mapping (NTDCM), and View of Nature of Science (VNOS-C) were used to investigate students' scientific attitude inventory, and their understanding of genetics as well as the NOS. The results showed that students' scientific attitude inventory, and their understanding of genetics and the NOS were not statistically significantly different in the pretest (p>.05). After the intervention, the experimental group of students who received BPIw/HG demonstrated better understanding of the NOS. NTDCM results showed that the experimental group was better in defining the NOS terms and constructing a concept map ( p<.01). In addition, the experimental group retained their understanding of the NOS two-months after the completion of the intervention, showing no statistically significant difference between the posttest and the delayed posttest of NTDCM (p>.05). Further, VNOS-C data indicated that a greater percentage of the experimental group than the control group improved their understanding of the NOS. However, the two groups' understanding of genetics concepts did not show any statistically significant difference in the pretest, the posttest, and the delayed posttest (p>.05). This result implicated that allocating classroom time in introducing history of science neither helped nor hindered learning science content.
Shotgun label-free quantitative proteomics of developing peanut (Arachis hypogaea L.) seed
USDA-ARS?s Scientific Manuscript database
Legume seeds and peanuts, in particular, are an inexpensive source of plant proteins and edible oil. Owing to their importance in global food security, it is necessary to understand the genetic, biochemical, and physiological mechanisms controlling seed quality and nutritive attributes. A comprehens...
Genomic Studies in Soybean: Toward Understanding Seed Oil and Protein Production
USDA-ARS?s Scientific Manuscript database
The molecular mechanisms that influence soybean seed composition are not well understood. Insight into the genetic controls involved in these traits is important for future soybean improvement. In this study, we identified candidate genes at the major soybean protein quantitative trait locus at Link...
Statistics for Learning Genetics
NASA Astrophysics Data System (ADS)
Charles, Abigail Sheena
This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing statistically-based genetics problems. This issue is at the emerging edge of modern college-level genetics instruction, and this study attempts to identify key theoretical components for creating a specialized biological statistics curriculum. The goal of this curriculum will be to prepare biology students with the skills for assimilating quantitatively-based genetic processes, increasingly at the forefront of modern genetics. To fulfill this, two college level classes at two universities were surveyed. One university was located in the northeastern US and the other in the West Indies. There was a sample size of 42 students and a supplementary interview was administered to a select 9 students. Interviews were also administered to professors in the field in order to gain insight into the teaching of statistics in genetics. Key findings indicated that students had very little to no background in statistics (55%). Although students did perform well on exams with 60% of the population receiving an A or B grade, 77% of them did not offer good explanations on a probability question associated with the normal distribution provided in the survey. The scope and presentation of the applicable statistics/mathematics in some of the most used textbooks in genetics teaching, as well as genetics syllabi used by instructors do not help the issue. It was found that the text books, often times, either did not give effective explanations for students, or completely left out certain topics. The omission of certain statistical/mathematical oriented topics was seen to be also true with the genetics syllabi reviewed for this study. Nonetheless, although the necessity for infusing these quantitative subjects with genetics and, overall, the biological sciences is growing (topics including synthetic biology, molecular systems biology and phylogenetics) there remains little time in the semester to be dedicated to the consolidation of learning and understanding.
Introduction to focus issue: quantitative approaches to genetic networks.
Albert, Réka; Collins, James J; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Introduction to Focus Issue: Quantitative Approaches to Genetic Networks
NASA Astrophysics Data System (ADS)
Albert, Réka; Collins, James J.; Glass, Leon
2013-06-01
All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.
Urban runoff can carry a variety of pollutants into recreational beaches, often including bacterial pathogens and indicators of fecal contamination. To develop complete recreational criteria and risk assessments, it is necessary to understand conditions under which human contamin...
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-06-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a 'seascape genetics' approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.
Álvarez, María F.; Angarita, Myrian; Delgado, María C.; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa
2017-01-01
The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein (StTL15A) and a stem 28 kDa glycoprotein (StGP28). Key message: A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight. PMID:28674545
Álvarez, María F; Angarita, Myrian; Delgado, María C; García, Celsa; Jiménez-Gomez, José; Gebhardt, Christiane; Mosquera, Teresa
2017-01-01
The genetic basis of quantitative disease resistance has been studied in crops for several decades as an alternative to R gene mediated resistance. The most important disease in the potato crop is late blight, caused by the oomycete Phytophthora infestans. Quantitative disease resistance (QDR), as any other quantitative trait in plants, can be genetically mapped to understand the genetic architecture. Association mapping using DNA-based markers has been implemented in many crops to dissect quantitative traits. We used an association mapping approach with candidate genes to identify the first genes associated with quantitative resistance to late blight in Solanum tuberosum Group Phureja. Twenty-nine candidate genes were selected from a set of genes that were differentially expressed during the resistance response to late blight in tetraploid European potato cultivars. The 29 genes were amplified and sequenced in 104 accessions of S. tuberosum Group Phureja from Latin America. We identified 238 SNPs in the selected genes and tested them for association with resistance to late blight. The phenotypic data were obtained under field conditions by determining the area under disease progress curve (AUDPC) in two seasons and in two locations. Two genes were associated with QDR to late blight, a potato homolog of thylakoid lumen 15 kDa protein ( StTL15A ) and a stem 28 kDa glycoprotein ( StGP28 ). Key message : A first association mapping experiment was conducted in Solanum tuberosum Group Phureja germplasm, which identified among 29 candidates two genes associated with quantitative resistance to late blight.
Green, Elizabeth A.; Davies, Sarah W.; Matz, Mikhail V.
2014-01-01
The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%–10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations. PMID:24883247
Green, Elizabeth A; Davies, Sarah W; Matz, Mikhail V; Medina, Mónica
2014-01-01
The genetic composition of the resident Symbiodinium endosymbionts can strongly modulate the physiological performance of reef-building corals. Here, we used quantitative metabarcoding to investigate Symbiodinium genetic diversity in two species of mountainous star corals, Orbicella franksi and Orbicella faveolata, from two reefs separated by 19 km of deep water. We aimed to determine if the frequency of different symbiont genotypes varied with respect to coral host species or geographic location. Our results demonstrate that across the two reefs both coral species contained seven haplotypes of Symbiodinium, all identifiable as clade B and most closely related to type B1. Five of these haplotypes have not been previously described and may be endemic to the Flower Garden Banks. No significant differences in symbiont composition were detected between the two coral species. However, significant quantitative differences were detected between the east and west banks for three background haplotypes comprising 0.1%-10% of the total. The quantitative metabarcoding approach described here can help to sensitively characterize cryptic genetic diversity of Symbiodinium and potentially contribute to the understanding of physiological variations among coral populations.
Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island.
Wang, Richard J; Payseur, Bret A
2017-08-01
Recombination rate is a heritable quantitative trait that evolves despite the fundamentally conserved role that recombination plays in meiosis. Differences in recombination rate can alter the landscape of the genome and the genetic diversity of populations. Yet our understanding of the genetic basis of recombination rate evolution in nature remains limited. We used wild house mice ( Mus musculus domesticus ) from Gough Island (GI), which diverged recently from their mainland counterparts, to characterize the genetics of recombination rate evolution. We quantified genome-wide autosomal recombination rates by immunofluorescence cytology in spermatocytes from 240 F 2 males generated from intercrosses between GI-derived mice and the wild-derived inbred strain WSB/EiJ. We identified four quantitative trait loci (QTL) responsible for inter-F 2 variation in this trait, the strongest of which had effects that opposed the direction of the parental trait differences. Candidate genes and mutations for these QTL were identified by overlapping the detected intervals with whole-genome sequencing data and publicly available transcriptomic profiles from spermatocytes. Combined with existing studies, our findings suggest that genome-wide recombination rate divergence is not directional and its evolution within and between subspecies proceeds from distinct genetic loci. Copyright © 2017 by the Genetics Society of America.
Miller, Brett; McCardle, Peggy
2011-01-01
Continued progress in language and learning disabilities (LDs) research requires a renewed focused on issues of etiology. Genetics research forms a central tenet of such an agenda and is critical in clarifying relationships among oral language development, acquisition of literacy and mathematics, executive function skills, and comorbid conditions. For progress to be made, diversified efforts must continue to emphasize molecular and behavioral genetics (including quantitative genetics) approaches, in concert with multi-disciplinary and multi-modal projects, to provide an integrated understanding of the behavioral and biological manifestations of language and learning disabilities. Critically, increased efforts to include ethnic, socio-economic, and linguistically diverse participant samples across a range of developmental stages is required to meet the public health needs of learners in the US and across the world. Taken together, this body of work will continue to enhance our understanding of LDs and help us move toward a truly prevention based approach to language and learning disabilities.
Recent genetic discoveries in osteoporosis, sarcopenia and obesity.
Urano, Tomohiko; Inoue, Satoshi
2015-01-01
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.
Assessing non-additive effects in GBLUP model.
Vieira, I C; Dos Santos, J P R; Pires, L P M; Lima, B M; Gonçalves, F M A; Balestre, M
2017-05-10
Understanding non-additive effects in the expression of quantitative traits is very important in genotype selection, especially in species where the commercial products are clones or hybrids. The use of molecular markers has allowed the study of non-additive genetic effects on a genomic level, in addition to a better understanding of its importance in quantitative traits. Thus, the purpose of this study was to evaluate the behavior of the GBLUP model in different genetic models and relationship matrices and their influence on the estimates of genetic parameters. We used real data of the circumference at breast height in Eucalyptus spp and simulated data from a population of F 2 . Three commonly reported kinship structures in the literature were adopted. The simulation results showed that the inclusion of epistatic kinship improved prediction estimates of genomic breeding values. However, the non-additive effects were not accurately recovered. The Fisher information matrix for real dataset showed high collinearity in estimates of additive, dominant, and epistatic variance, causing no gain in the prediction of the unobserved data and convergence problems. Estimates presented differences of genetic parameters and correlations considering the different kinship structures. Our results show that the inclusion of non-additive effects can improve the predictive ability or even the prediction of additive effects. However, the high distortions observed in the variance estimates when the Hardy-Weinberg equilibrium assumption is violated due to the presence of selection or inbreeding can converge at zero gains in models that consider epistasis in genomic kinship.
Mapping complex traits as a dynamic system
Sun, Lidan; Wu, Rongling
2017-01-01
Despite increasing emphasis on the genetic study of quantitative traits, we are still far from being able to chart a clear picture of their genetic architecture, given an inherent complexity involved in trait formation. A competing theory for studying such complex traits has emerged by viewing their phenotypic formation as a “system” in which a high-dimensional group of interconnected components act and interact across different levels of biological organization from molecules through cells to whole organisms. This system is initiated by a machinery of DNA sequences that regulate a cascade of biochemical pathways to synthesize endophenotypes and further assemble these endophenotypes toward the end-point phenotype in virtue of various developmental changes. This review focuses on a conceptual framework for genetic mapping of complex traits by which to delineate the underlying components, interactions and mechanisms that govern the system according to biological principles and understand how these components function synergistically under the control of quantitative trait loci (QTLs) to comprise a unified whole. This framework is built by a system of differential equations that quantifies how alterations of different components lead to the global change of trait development and function, and provides a quantitative and testable platform for assessing the multiscale interplay between QTLs and development. The method will enable geneticists to shed light on the genetic complexity of any biological system and predict, alter or engineer its physiological and pathological states. PMID:25772476
The Quantitative Nature of Autistic Social Impairment
Constantino, John N.
2011-01-01
Autism, like intellectual disability, represents the severe end of a continuous distribution of developmental impairments that occur in nature, that are highly inherited, and that are orthogonally related to other parameters of development. A paradigm shift in understanding the core social abnormality of autism as a quantitative trait rather than as a categorically-defined condition has key implications for diagnostic classification, the measurement of change over time, the search for underlying genetic and neurobiologic mechanisms, and public health efforts to identify and support affected children. Here a recent body of research in genetics and epidemiology is presented to examine a dimensional reconceptualization of autistic social impairment—as manifested in clinical autistic syndromes, the broader autism phenotype, and normal variation in the general population. It illustrates how traditional categorical approaches to diagnosis may lead to misclassification of subjects (especially girls and mildly affected boys in multiple-incidence autism families), which can be particularly damaging to biological studies, and proposes continued efforts to derive a standardized quantitative system by which to characterize this family of conditions. PMID:21289537
Hu, Hsien-Ming; Zhao, Xin; Kaushik, Swati; Robillard, Lilliane; Barthelet, Antoine; Lin, Kevin K; Shah, Khyati N; Simmons, Andy D; Raponi, Mitch; Harding, Thomas C; Bandyopadhyay, Sourav
2018-04-17
Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy. This quantitative map is predictive of interactions maintained in other cell lines, identifies DNA-repair factors, predicts cancer cell line responses to therapy, and prioritizes synergistic drug combinations. We identify that ARID1A loss confers resistance to PARP inhibitors in cells and ovarian cancer patients and that loss of GPBP1 causes resistance to cisplatin and PARP inhibitors through the regulation of genes involved in homologous recombination. This map helps navigate patient genomic data and optimize chemotherapeutic regimens by delineating factors involved in the response to specific types of DNA damage. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Bridge, Julia A
2017-01-01
The introduction of molecular testing into cytopathology laboratory practice has expanded the types of samples considered feasible for identifying genetic alterations that play an essential role in cancer diagnosis and treatment. Reverse transcription-polymerase chain reaction (RT-PCR), a sensitive and specific technical approach for amplifying a defined segment of RNA after it has been reverse-transcribed into its DNA complement, is commonly used in clinical practice for the identification of recurrent or tumor-specific fusion gene events. Real-time RT-PCR (quantitative RT-PCR), a technical variation, also permits the quantitation of products generated during each cycle of the polymerase chain reaction process. This review addresses qualitative and quantitative pre-analytic and analytic considerations of RT-PCR as they relate to various cytologic specimens. An understanding of these aspects of genetic testing is central to attaining optimal results in the face of the challenges that cytology specimens may present. Cancer Cytopathol 2017;125:11-19. © 2016 American Cancer Society. © 2016 American Cancer Society.
Systematic exploration of essential yeast gene function with temperature-sensitive mutants
Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles
2012-01-01
Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928
Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics.
Shaw, Ruth G; Etterson, Julie R
2012-09-01
Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
Candille, Sophie I.; Absher, Devin M.; Beleza, Sandra; Bauchet, Marc; McEvoy, Brian; Garrison, Nanibaa’ A.; Li, Jun Z.; Myers, Richard M.; Barsh, Gregory S.; Tang, Hua; Shriver, Mark D.
2012-01-01
Pigmentation of the skin, hair, and eyes varies both within and between human populations. Identifying the genes and alleles underlying this variation has been the goal of many candidate gene and several genome-wide association studies (GWAS). Most GWAS for pigmentary traits to date have been based on subjective phenotypes using categorical scales. But skin, hair, and eye pigmentation vary continuously. Here, we seek to characterize quantitative variation in these traits objectively and accurately and to determine their genetic basis. Objective and quantitative measures of skin, hair, and eye color were made using reflectance or digital spectroscopy in Europeans from Ireland, Poland, Italy, and Portugal. A GWAS was conducted for the three quantitative pigmentation phenotypes in 176 women across 313,763 SNP loci, and replication of the most significant associations was attempted in a sample of 294 European men and women from the same countries. We find that the pigmentation phenotypes are highly stratified along axes of European genetic differentiation. The country of sampling explains approximately 35% of the variation in skin pigmentation, 31% of the variation in hair pigmentation, and 40% of the variation in eye pigmentation. All three quantitative phenotypes are correlated with each other. In our two-stage association study, we reproduce the association of rs1667394 at the OCA2/HERC2 locus with eye color but we do not identify new genetic determinants of skin and hair pigmentation supporting the lack of major genes affecting skin and hair color variation within Europe and suggesting that not only careful phenotyping but also larger cohorts are required to understand the genetic architecture of these complex quantitative traits. Interestingly, we also see that in each of these four populations, men are more lightly pigmented in the unexposed skin of the inner arm than women, a fact that is underappreciated and may vary across the world. PMID:23118974
Bonnet, Timothée; Wandeler, Peter; Camenisch, Glauco; Postma, Erik
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called "stasis paradox" highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change.
Wandeler, Peter; Camenisch, Glauco
2017-01-01
In natural populations, quantitative trait dynamics often do not appear to follow evolutionary predictions. Despite abundant examples of natural selection acting on heritable traits, conclusive evidence for contemporary adaptive evolution remains rare for wild vertebrate populations, and phenotypic stasis seems to be the norm. This so-called “stasis paradox” highlights our inability to predict evolutionary change, which is especially concerning within the context of rapid anthropogenic environmental change. While the causes underlying the stasis paradox are hotly debated, comprehensive attempts aiming at a resolution are lacking. Here, we apply a quantitative genetic framework to individual-based long-term data for a wild rodent population and show that despite a positive association between body mass and fitness, there has been a genetic change towards lower body mass. The latter represents an adaptive response to viability selection favouring juveniles growing up to become relatively small adults, i.e., with a low potential adult mass, which presumably complete their development earlier. This selection is particularly strong towards the end of the snow-free season, and it has intensified in recent years, coinciding which a change in snowfall patterns. Importantly, neither the negative evolutionary change, nor the selective pressures that drive it, are apparent on the phenotypic level, where they are masked by phenotypic plasticity and a non causal (i.e., non genetic) positive association between body mass and fitness, respectively. Estimating selection at the genetic level enabled us to uncover adaptive evolution in action and to identify the corresponding phenotypic selective pressure. We thereby demonstrate that natural populations can show a rapid and adaptive evolutionary response to a novel selective pressure, and that explicitly (quantitative) genetic models are able to provide us with an understanding of the causes and consequences of selection that is superior to purely phenotypic estimates of selection and evolutionary change. PMID:28125583
Willis, T A; Potrata, B; Ahmed, M; Hewison, J; Gale, R; Downey, L; McKibbin, M
2013-09-01
The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing. Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations. Questionnaires were completed with 200 participants. Responses indicated that participants' perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences). Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning.
Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim
2017-07-05
Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Applying Quantitative Genetic Methods to Primate Social Behavior
Brent, Lauren J. N.
2013-01-01
Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839
USDA-ARS?s Scientific Manuscript database
All plants must optimize their growth with finite resources. Water use efficiency (WUE) measures the relationship between biomass acquisition and transpired water. In the present study, we performed two experiments to understand the genetic basis of WUE and other parameters of plant-water interact...
Advances in Genetical Genomics of Plants
Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.
2009-01-01
Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differences is of major importance. By combining genetics with large scale expression profiling (i.e. genetical genomics), resulting in expression QTLs (eQTLs), great progress can be made in connecting phenotypic variation to genotypic diversity. In this review we discuss examples from human, mouse, Drosophila, yeast and plant research to illustrate the advances in genetical genomics, with a focus on understanding the regulatory mechanisms underlying natural variation. With their tolerance to inbreeding, short generation time and ease to generate large families, plants are ideal subjects to test new concepts in genetics. The comprehensive resources which are available for Arabidopsis make it a favorite model plant but genetical genomics also found its way to important crop species like rice, barley and wheat. We discuss eQTL profiling with respect to cis and trans regulation and show how combined studies with other ‘omics’ technologies, such as metabolomics and proteomics may further augment current information on transcriptional, translational and metabolomic signaling pathways and enable reconstruction of detailed regulatory networks. The fast developments in the ‘omics’ area will offer great potential for genetical genomics to elucidate the genotype-phenotype relationships for both fundamental and applied research. PMID:20514216
Qiu, Jiajia; Guan, Jiaqin; Yang, Xiaochen; Wu, Jiong; Liu, Guangyu; Di, Genhong; Chen, Canming; Hou, Yifeng; Han, Qixia; Shen, Zhenzhou; Shao, Zhimin; Hu, Zhen
2016-01-01
Background This study aims to understand the quality of life (QOL) and psychological state (PS) of Chinese breast cancer patients who received BRCA1/2 genetic testing; to examine the psychological changes between BRCA1/2 mutation carriers and non-carriers; and to further explore the psychological experience of BRCA1/2 mutation carriers. Methods This study was combined with quantitative and qualitative designs. First, we performed a quantitative investigation using FACT-B (Chinese version) and Irritability, Depression and Anxiety scale (IDA) to assess the QOL and PS in breast cancer patients who received BRCA1/2 genetic testing. Then semi-structured in-depth qualitative interviews among 13 mutation carriers were conducted in hospital. Results Results from the quantitative study showed QOL scores were relatively high and the IDA scores were relatively low among the patients, and there was no significant difference in the QOL or IDA scores between non-carriers and carriers. Based on the qualitative analysis, four main themes emerged: (1) Finding the reason for having breast cancer; (2) Negative emotions; (3) Behavioral changes; (4) Lack of information. Conclusions The present study showed that QOL and PS are good among the breast cancer patients who received genetic testing. Genetic testing itself does not cause long psychosocial effects. BRCA1/2 mutation carriers may have certain negative emotions at the first stage they knew the testing results and may initiate behavioral and lifestyle changes. The patients with a BRCA1/2 mutation desire knowledge with regard to genetic aspects in mainland China. Professional information and advice can be provided to relieve the patients’ negative emotions when they were informed of gene defect. PMID:27428375
Xu, Zhenzhen; Zhang, Chaojun; Ge, Xiaoyang; Wang, Ni; Zhou, Kehai; Yang, Xiaojie; Wu, Zhixia; Zhang, Xueyan; Liu, Chuanliang; Yang, Zuoren; Li, Changfeng; Liu, Kun; Yang, Zhaoen; Qian, Yuyuan; Li, Fuguang
2015-07-01
The first high-density linkage map was constructed to identify quantitative trait loci (QTLs) for somatic embryogenesis (SE) in cotton ( Gossypium hirsutum L.) using leaf petioles as explants. Cotton transformation is highly limited by only a few regenerable genotypes and the lack of understanding of the genetic and molecular basis of somatic embryogenesis (SE) in cotton (Gossypium hirsutum L.). To construct a more saturated linkage map and further identify quantitative trait loci (QTLs) for SE using leaf petioles as explants, a high embryogenesis frequency line (W10) from the commercial Chinese cotton cultivar CRI24 was crossed with TM-1, a genetic standard upland cotton with no embryogenesis frequency. The genetic map spanned 2300.41 cM in genetic distance and contained 411 polymorphic simple sequence repeat (SSR) loci. Of the 411 mapped loci, 25 were developed from unigenes identified for SE in our previous study. Six QTLs for SE were detected by composite interval mapping method, each explaining 6.88-37.07% of the phenotypic variance. Single marker analysis was also performed to verify the reliability of QTLs detection, and the SSR markers NAU3325 and DPL0209 were detected by the two methods. Further studies on the relatively stable and anchoring QTLs/markers for SE in an advanced population of W10 × TM-1 and other cross combinations with different SE abilities may shed light on the genetic and molecular mechanism of SE in cotton.
Quantitative trait loci and metabolic pathways
McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.
1998-01-01
The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823
Turner, Thomas L.; Stewart, Andrew D.; Fields, Andrew T.; Rice, William R.; Tarone, Aaron M.
2011-01-01
Body size is a classic quantitative trait with evolutionarily significant variation within many species. Locating the alleles responsible for this variation would help understand the maintenance of variation in body size in particular, as well as quantitative traits in general. However, successful genome-wide association of genotype and phenotype may require very large sample sizes if alleles have low population frequencies or modest effects. As a complementary approach, we propose that population-based resequencing of experimentally evolved populations allows for considerable power to map functional variation. Here, we use this technique to investigate the genetic basis of natural variation in body size in Drosophila melanogaster. Significant differentiation of hundreds of loci in replicate selection populations supports the hypothesis that the genetic basis of body size variation is very polygenic in D. melanogaster. Significantly differentiated variants are limited to single genes at some loci, allowing precise hypotheses to be formed regarding causal polymorphisms, while other significant regions are large and contain many genes. By using significantly associated polymorphisms as a priori candidates in follow-up studies, these data are expected to provide considerable power to determine the genetic basis of natural variation in body size. PMID:21437274
USDA-ARS?s Scientific Manuscript database
Zinc transporter 7 (Znt7, Slc30a7) knockout (KO) mice display abnormalities in body weight gain and body adiposity. Regulation of body weight and fatness is complex, involving multiple genetic and environmental factors. To understand how zinc homeostasis influences body weight gain and fat deposit a...
USDA-ARS?s Scientific Manuscript database
Partial resistances, often controlled by QTL (Quantitative Trait Loci), are considered to be more durable than monogenic resistances. Prior to develop efficient breeding programs for polygenic resistance to pathogens, a higher understanding of genetic diversity and stability of resistance QTL in pla...
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites.
Mohsin, Mohd; Ahmad, Altaf; Iqbal, Muhammad
2015-10-01
Neighboring cells in the same tissue can exist in different states of dynamic activities. After genomics, proteomics and metabolomics, fluxomics is now equally important for generating accurate quantitative information on the cellular and sub-cellular dynamics of ions and metabolite, which is critical for functional understanding of organisms. Various spectrometry techniques are used for monitoring ions and metabolites, although their temporal and spatial resolutions are limited. Discovery of the fluorescent proteins and their variants has revolutionized cell biology. Therefore, novel tools and methods targeting sub-cellular compartments need to be deployed in specific cells and targeted to sub-cellular compartments in order to quantify the target-molecule dynamics directly. We require tools that can measure cellular activities and protein dynamics with sub-cellular resolution. Biosensors based on fluorescence resonance energy transfer (FRET) are genetically encoded and hence can specifically target sub-cellular organelles by fusion to proteins or targetted sequences. Since last decade, FRET-based genetically encoded sensors for molecules involved in energy production, reactive oxygen species and secondary messengers have helped to unravel key aspects of cellular physiology. This review, describing the design and principles of sensors, presents a database of sensors for different analytes/processes, and illustrate examples of application in quantitative live cell imaging.
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
Petelle, M B; Martin, J G A; Blumstein, D T
2015-10-01
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open-field and mirror image simulation experiments) in a wild population of yellow-bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open-field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Genetics of common forms of heart failure: challenges and potential solutions.
Rau, Christoph D; Lusis, Aldons J; Wang, Yibin
2015-05-01
In contrast to many other human diseases, the use of genome-wide association studies (GWAS) to identify genes for heart failure (HF) has had limited success. We will discuss the underlying challenges as well as potential new approaches to understanding the genetics of common forms of HF. Recent research using intermediate phenotypes, more detailed and quantitative stratification of HF symptoms, founder populations and novel animal models has begun to allow researchers to make headway toward explaining the genetics underlying HF using GWAS techniques. By expanding analyses of HF to improved clinical traits, additional HF classifications and innovative model systems, the intractability of human HF GWAS should be ameliorated significantly.
Genetically Modified Foods and Consumer Perspective.
Boccia, Flavio; Sarnacchiaro, Pasquale
2015-01-01
Genetically modified food is able to oppose the world's hunger and preserve the environment, even if the patents in this matter are symptomatic of several doubts. And also, transgenic consumption causes problems and skepticism among consumers in several European countries, but above all in Italy, where there is a strong opposition over recent years. So, the present study conducted a research to study the consumption of genetically modified food products by Italian young generation. This research presented the following purposes: firstly, to analyze genetically modified products' consumption among a particular category of consumers; secondly, to implement a quantitative model to understand behaviour about this particular kind of consumption and identify the factors that determine their purchase. The proposed model shows that transgenic consumption is especially linked to knowledge and impact on environment and mankind's health.
Willis, T A; Potrata, B; Ahmed, M; Hewison, J; Gale, R; Downey, L; McKibbin, M
2013-01-01
Background/aims The views of people with inherited retinal disease are important to help develop health policy and plan services. This study aimed to record levels of understanding of and attitudes to genetic testing for inherited retinal disease, and views on the availability of testing. Methods Telephone questionnaires comprising quantitative and qualitative items were completed with adults with inherited retinal disease. Participants were recruited via postal invitation (response rate 48%), approach at clinic or newsletters of relevant charitable organisations. Results Questionnaires were completed with 200 participants. Responses indicated that participants’ perceived understanding of genetic testing for inherited retinal disease was variable. The majority (90%) considered testing to be good/very good and would be likely to undergo genetic testing (90%) if offered. Most supported the provision of diagnostic (97%) and predictive (92%) testing, but support was less strong for testing as part of reproductive planning. Most (87%) agreed with the statement that testing should be offered only after the individual has received genetic counselling from a professional. Subgroup analyses revealed differences associated with participant age, gender, education level and ethnicity (p<0.02). Participants reported a range of perceived benefits (eg, family planning, access to treatment) and risks (eg, impact upon family relationships, emotional consequences). Conclusions Adults with inherited retinal disease strongly support the provision of publicly funded genetic testing. Support was stronger for diagnostic and predictive testing than for testing as part of reproductive planning. PMID:23813418
Genetic dissection of the maize (Zea mays L.) MAMP response.
Zhang, Xinye; Valdés-López, Oswaldo; Arellano, Consuelo; Stacey, Gary; Balint-Kurti, Peter
2017-06-01
Loci associated with variation in maize responses to two microbe-associated molecular patterns (MAMPs) were identified. MAMP responses were correlated. No relationship between MAMP responses and quantitative disease resistance was identified. Microbe-associated molecular patterns (MAMPs) are highly conserved molecules commonly found in microbes which can be recognized by plant pattern recognition receptors. Recognition triggers a suite of responses including production of reactive oxygen species (ROS) and nitric oxide (NO) and expression changes of defense-related genes. In this study, we used two well-studied MAMPs (flg22 and chitooctaose) to challenge different maize lines to determine whether there was variation in the level of responses to these MAMPs, to dissect the genetic basis underlying that variation and to understand the relationship between MAMP response and quantitative disease resistance (QDR). Naturally occurring quantitative variation in ROS, NO production, and defense genes expression levels triggered by MAMPs was observed. A major quantitative traits locus (QTL) associated with variation in the ROS production response to both flg22 and chitooctaose was identified on chromosome 2 in a recombinant inbred line (RIL) population derived from the maize inbred lines B73 and CML228. Minor QTL associated with variation in the flg22 ROS response was identified on chromosomes 1 and 4. Comparison of these results with data previously obtained for variation in QDR and the defense response in the same RIL population did not provide any evidence for a common genetic basis controlling variation in these traits.
Functional Regression Models for Epistasis Analysis of Multiple Quantitative Traits.
Zhang, Futao; Xie, Dan; Liang, Meimei; Xiong, Momiao
2016-04-01
To date, most genetic analyses of phenotypes have focused on analyzing single traits or analyzing each phenotype independently. However, joint epistasis analysis of multiple complementary traits will increase statistical power and improve our understanding of the complicated genetic structure of the complex diseases. Despite their importance in uncovering the genetic structure of complex traits, the statistical methods for identifying epistasis in multiple phenotypes remains fundamentally unexplored. To fill this gap, we formulate a test for interaction between two genes in multiple quantitative trait analysis as a multiple functional regression (MFRG) in which the genotype functions (genetic variant profiles) are defined as a function of the genomic position of the genetic variants. We use large-scale simulations to calculate Type I error rates for testing interaction between two genes with multiple phenotypes and to compare the power with multivariate pairwise interaction analysis and single trait interaction analysis by a single variate functional regression model. To further evaluate performance, the MFRG for epistasis analysis is applied to five phenotypes of exome sequence data from the NHLBI's Exome Sequencing Project (ESP) to detect pleiotropic epistasis. A total of 267 pairs of genes that formed a genetic interaction network showed significant evidence of epistasis influencing five traits. The results demonstrate that the joint interaction analysis of multiple phenotypes has a much higher power to detect interaction than the interaction analysis of a single trait and may open a new direction to fully uncovering the genetic structure of multiple phenotypes.
Unraveling additive from nonadditive effects using genomic relationship matrices.
Muñoz, Patricio R; Resende, Marcio F R; Gezan, Salvador A; Resende, Marcos Deon Vilela; de Los Campos, Gustavo; Kirst, Matias; Huber, Dudley; Peter, Gary F
2014-12-01
The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures. However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of a quantitative trait and should be considered when developing breeding strategies. Copyright © 2014 by the Genetics Society of America.
Nonclassical Kinetics of Clonal yet Heterogeneous Enzymes.
Park, Seong Jun; Song, Sanggeun; Jeong, In-Chun; Koh, Hye Ran; Kim, Ji-Hyun; Sung, Jaeyoung
2017-07-06
Enzyme-to-enzyme variation in the catalytic rate is ubiquitous among single enzymes created from the same genetic information, which persists over the lifetimes of living cells. Despite advances in single-enzyme technologies, the lack of an enzyme reaction model accounting for the heterogeneous activity of single enzymes has hindered a quantitative understanding of the nonclassical stochastic outcome of single enzyme systems. Here we present a new statistical kinetics and exactly solvable models for clonal yet heterogeneous enzymes with possibly nonergodic state dynamics and state-dependent reactivity, which enable a quantitative understanding of modern single-enzyme experimental results for the mean and fluctuation in the number of product molecules created by single enzymes. We also propose a new experimental measure of the heterogeneity and nonergodicity for a system of enzymes.
USDA-ARS?s Scientific Manuscript database
The majority of economically important traits targeted for cotton improvement are quantitatively inherited. In this chapter, the current state of cotton quantitative genetics is described and separated into four components. These components include: 1) traditional quantitative inheritance analysis, ...
Studies of threespine stickleback developmental evolution: progress and promise.
Cresko, William A; McGuigan, Katrina L; Phillips, Patrick C; Postlethwait, John H
2007-01-01
A promising route for understanding the origin and diversification of organismal form is through studies at the intersection of evolution and development (evo-devo). While much has been learned over the last two decades concerning macroevolutionary patterns of developmental change, a fundamental gap in the evo-devo synthesis is the integration of mathematical population and quantitative genetics with studies of how genetic variation in natural populations affects developmental processes. This micro-evo-devo synthesis requires model organisms with which to ask empirical questions. Threespine stickleback fish (Gasterosteus aculeatus), long a model for studying behavior, ecology and evolution, is emerging as a prominent model micro-evo-devo system. Research on stickleback over the last decade has begun to address the genetic basis of morphological variation and sex determination, and much of this work has important implications for understanding the genetics of speciation. In this paper we review recent threespine stickleback micro-evo-devo results, and outline the resources that have been developed to make this synthesis possible. The prospects for stickleback research to speed the micro-(and macro-) evo-devo syntheses are great, and this workhorse model system is well situated to continue contributing to our understanding of the generation of diversity in organismal form for many more decades.
Young, Emma F; Belchier, Mark; Hauser, Lorenz; Horsburgh, Gavin J; Meredith, Michael P; Murphy, Eugene J; Pascoal, Sonia; Rock, Jennifer; Tysklind, Niklas; Carvalho, Gary R
2015-01-01
Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long-distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. PMID:26029262
Joganic, Jessica L; Willmore, Katherine E; Richtsmeier, Joan T; Weiss, Kenneth M; Mahaney, Michael C; Rogers, Jeffrey; Cheverud, James M
2018-02-01
Determining the genetic architecture of quantitative traits and genetic correlations among them is important for understanding morphological evolution patterns. We address two questions regarding papionin evolution: (1) what effect do body and cranial size, age, and sex have on phenotypic (V P ) and additive genetic (V A ) variation in baboon crania, and (2) how might additive genetic correlations between craniofacial traits and body mass affect morphological evolution? We use a large captive pedigreed baboon sample to estimate quantitative genetic parameters for craniofacial dimensions (EIDs). Our models include nested combinations of the covariates listed above. We also simulate the correlated response of a given EID due to selection on body mass alone. Covariates account for 1.2-91% of craniofacial V P . EID V A decreases across models as more covariates are included. The median genetic correlation estimate between each EID and body mass is 0.33. Analysis of the multivariate response to selection reveals that observed patterns of craniofacial variation in extant baboons cannot be attributed solely to correlated response to selection on body mass, particularly in males. Because a relatively large proportion of EID V A is shared with body mass variation, different methods of correcting for allometry by statistically controlling for size can alter residual V P patterns. This may conflate direct selection effects on craniofacial variation with those resulting from a correlated response to body mass selection. This shared genetic variation may partially explain how selection for increased body mass in two different papionin lineages produced remarkably similar craniofacial phenotypes. © 2017 Wiley Periodicals, Inc.
QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep
Poissant, J; Davis, C S; Malenfant, R M; Hogg, J T; Coltman, D W
2012-01-01
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male–male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. PMID:21847139
Hart, Sara A; Petrill, Stephen A; Willcutt, Erik; Thompson, Lee A; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E
2010-11-01
Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance.
An integrated approach to characterize genetic interaction networks in yeast metabolism
Szappanos, Balázs; Kovács, Károly; Szamecz, Béla; Honti, Frantisek; Costanzo, Michael; Baryshnikova, Anastasia; Gelius-Dietrich, Gabriel; Lercher, Martin J.; Jelasity, Márk; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Oliver, Stephen G.; Pál, Csaba; Papp, Balázs
2011-01-01
Intense experimental and theoretical efforts have been made to globally map genetic interactions, yet we still do not understand how gene-gene interactions arise from the operation of biomolecular networks. To bridge the gap between empirical and computational studies, we: i) quantitatively measure genetic interactions between ~185,000 metabolic gene pairs in Saccharomyces cerevisiae, ii) superpose the data on a detailed systems biology model of metabolism, and iii) introduce a machine-learning method to reconcile empirical interaction data with model predictions. We systematically investigate the relative impacts of functional modularity and metabolic flux coupling on the distribution of negative and positive genetic interactions. We also provide a mechanistic explanation for the link between the degree of genetic interaction, pleiotropy, and gene dispensability. Last, we demonstrate the feasibility of automated metabolic model refinement by correcting misannotations in NAD biosynthesis and confirming them by in vivo experiments. PMID:21623372
KRN4 Controls Quantitative Variation in Maize Kernel Row Number
Liu, Lei; Du, Yanfang; Shen, Xiaomeng; Li, Manfei; Sun, Wei; Huang, Juan; Liu, Zhijie; Tao, Yongsheng; Zheng, Yonglian; Yan, Jianbing; Zhang, Zuxin
2015-01-01
Kernel row number (KRN) is an important component of yield during the domestication and improvement of maize and controlled by quantitative trait loci (QTL). Here, we fine-mapped a major KRN QTL, KRN4, which can enhance grain productivity by increasing KRN per ear. We found that a ~3-Kb intergenic region about 60 Kb downstream from the SBP-box gene Unbranched3 (UB3) was responsible for quantitative variation in KRN by regulating the level of UB3 expression. Within the 3-Kb region, the 1.2-Kb Presence-Absence variant was found to be strongly associated with quantitative variation in KRN in diverse maize inbred lines, and our results suggest that this 1.2-Kb transposon-containing insertion is likely responsible for increased KRN. A previously identified A/G SNP (S35, also known as Ser220Asn) in UB3 was also found to be significantly associated with KRN in our association-mapping panel. Although no visible genetic effect of S35 alone could be detected in our linkage mapping population, it was found to genetically interact with the 1.2-Kb PAV to modulate KRN. The KRN4 was under strong selection during maize domestication and the favorable allele for the 1.2-Kb PAV and S35 has been significantly enriched in modern maize improvement process. The favorable haplotype (Hap1) of 1.2-Kb-PAV-S35 was selected during temperate maize improvement, but is still rare in tropical and subtropical maize germplasm. The dissection of the KRN4 locus improves our understanding of the genetic basis of quantitative variation in complex traits in maize. PMID:26575831
Green, J W M; Snoek, L B; Kammenga, J E; Harvey, S C
2013-10-01
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.
Thinking positively: The genetics of high intelligence
Shakeshaft, Nicholas G.; Trzaskowski, Maciej; McMillan, Andrew; Krapohl, Eva; Simpson, Michael A.; Reichenberg, Avi; Cederlöf, Martin; Larsson, Henrik; Lichtenstein, Paul; Plomin, Robert
2015-01-01
High intelligence (general cognitive ability) is fundamental to the human capital that drives societies in the information age. Understanding the origins of this intellectual capital is important for government policy, for neuroscience, and for genetics. For genetics, a key question is whether the genetic causes of high intelligence are qualitatively or quantitatively different from the normal distribution of intelligence. We report results from a sibling and twin study of high intelligence and its links with the normal distribution. We identified 360,000 sibling pairs and 9000 twin pairs from 3 million 18-year-old males with cognitive assessments administered as part of conscription to military service in Sweden between 1968 and 2010. We found that high intelligence is familial, heritable, and caused by the same genetic and environmental factors responsible for the normal distribution of intelligence. High intelligence is a good candidate for “positive genetics” — going beyond the negative effects of DNA sequence variation on disease and disorders to consider the positive end of the distribution of genetic effects. PMID:25593376
Mapping Quantitative Field Resistance Against Apple Scab in a 'Fiesta' x 'Discovery' Progeny.
Liebhard, R; Koller, B; Patocchi, A; Kellerhals, M; Pfammatter, W; Jermini, M; Gessler, C
2003-04-01
ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to the resistance of a genotype. Such a genetic linkage map was constructed, based on a segregating population of the cross between apple cvs. Fiesta (syn. Red Pippin) and Discovery. The progeny was observed for 3 years at three different sites in Switzerland and field resistance against apple scab (Venturia inaequalis) was assessed. Only a weak correlation was detected between leaf scab and fruit scab. A QTL analysis was performed, based on the genetic linkage map consisting of 804 molecular markers and covering all 17 chromosomes of apple. With the maximum likelihood-based interval mapping method, eight genomic regions were identified, six conferring resistance against leaf scab and two conferring fruit scab resistance. Although cv. Discovery showed a much stronger resistance against scab in the field, most QTL identified were attributed to the more susceptible parent 'Fiesta'. This indicated a high degree of homozygosity at the scab resistance loci in 'Discovery', preventing their detection in the progeny due to the lack of segregation.
Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.
Imprialou, Martha; Kahles, André; Steffen, Joshua G; Osborne, Edward J; Gan, Xiangchao; Lempe, Janne; Bhomra, Amarjit; Belfield, Eric; Visscher, Anne; Greenhalgh, Robert; Harberd, Nicholas P; Goram, Richard; Hein, Jotun; Robert-Seilaniantz, Alexandre; Jones, Jonathan; Stegle, Oliver; Kover, Paula; Tsiantis, Miltos; Nordborg, Magnus; Rätsch, Gunnar; Clark, Richard M; Mott, Richard
2017-04-01
To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii , isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions. Copyright © 2017 by the Genetics Society of America.
Michael J. Firko; Jane Leslie Hayes
1990-01-01
Quantitative genetic studies of resistance can provide estimates of genetic parameters not available with other types of genetic analyses. Three methods are discussed for estimating the amount of additive genetic variation in resistance to individual insecticides and subsequent estimation of heritability (h2) of resistance. Sibling analysis and...
Du, Xiongming; Liu, Shouye; Sun, Junling; Zhang, Gengyun; Jia, Yinhua; Pan, Zhaoe; Xiang, Haitao; He, Shoupu; Xia, Qiuju; Xiao, Songhua; Shi, Weijun; Quan, Zhiwu; Liu, Jianguang; Ma, Jun; Pang, Baoyin; Wang, Liru; Sun, Gaofei; Gong, Wenfang; Jenkins, Johnie N; Lou, Xiangyang; Zhu, Jun; Xu, Haiming
2018-06-13
Cottonseed is one of the most important raw materials for plant protein, oil and alternative biofuel for diesel engines. Understanding the complex genetic basis of cottonseed traits is requisite for achieving efficient genetic improvement of the traits. However, it is not yet clear about their genetic architecture in genomic level. GWAS has been an effective way to explore genetic basis of quantitative traits in human and many crops. This study aims to dissect genetic mechanism seven cottonseed traits by a GWAS for genetic improvement. A genome-wide association study (GWAS) based on a full gene model with gene effects as fixed and gene-environment interaction as random, was conducted for protein, oil and 5 fatty acids using 316 accessions and ~ 390 K SNPs. Totally, 124 significant quantitative trait SNPs (QTSs), consisting of 16, 21, 87 for protein, oil and fatty acids (palmitic, linoleic, oleic, myristic, stearic), respectively, were identified and the broad-sense heritability was estimated from 71.62 to 93.43%; no QTS-environment interaction was detected for the protein, the palmitic and the oleic contents; the protein content was predominantly controlled by epistatic effects accounting for 65.18% of the total variation, but the oil content and the fatty acids except the palmitic were mainly determined by gene main effects and no epistasis was detected for the myristic and the stearic. Prediction of superior pure line and hybrid revealed the potential of the QTSs in the improvement of cottonseed traits, and the hybrid could achieve higher or lower genetic values compared with pure lines. This study revealed complex genetic architecture of seven cottonseed traits at whole genome-wide by mixed linear model approach; the identified genetic variants and estimated genetic component effects of gene, gene-gene and gene-environment interaction provide cotton geneticist or breeders new knowledge on the genetic mechanism of the traits and the potential molecular breeding design strategy.
The chicken genome: some good news and some bad news.
Dodgson, J B
2007-07-01
The sequencing of the chicken genome has generated a wealth of good news for poultry science. It allows the chicken to be a major player in 21st century biology by providing an entrée into an arsenal of new technologies that can be used to explore virtually any chicken phenotype of interest. The initial technological onslaught has been described in this symposium. The wealth of data available now or soon to be available cannot be explained by simplistic models and will force us to treat the inherent complexity of the chicken in ways that are more realistic but at the same time more difficult to comprehend. Initial single nucleotide polymorphism analyses suggest that broilers retain a remarkable amount of the genetic diversity of predomesticated Jungle Fowl, whereas commercial layer genomes display less diversity and broader linkage disequilibrium. Thus, intensive commercial selection has not fixed a genome rich in wide selective sweeps, at least within the broiler population. Rather, a complex assortment of combinations of ancient allelic diversity survives. Low levels of linkage disequilibrium will make association analysis in broilers more difficult. The wider disequilibrium observed in layers should facilitate the mapping of quantitative trait loci, and at the same time make it more difficult to identify the causative nucleotide change(s). In addition, many quantitative traits may be specific to the genetic background in which they arose and not readily transferable to, or detectable in, other line backgrounds. Despite the obstacles it presents, the genetic complexity of the chicken may also be viewed as good news because it insures that long-term genetic progress will continue via breeding using quantitative genetics, and it surely will keep poultry scientists busy for decades to come. It is now time to move from an emphasis on obtaining "THE" chicken genome sequence to obtaining multiple sequences, especially of foundation stocks, and a broader understanding of the full genetic and phenotypic diversity of the domesticated chicken.
Zhang, Hengyou; Song, Qijian; Griffin, Joshua D; Song, Bao-Hua
2017-12-01
The soybean cyst nematode (SCN) is one of the most destructive pathogens of soybean plants worldwide. Host-plant resistance is an environmentally friendly method to mitigate SCN damage. To date, the resistant soybean cultivars harbor limited genetic variation, and some are losing resistance. Thus, a better understanding of the genetic mechanisms of the SCN resistance, as well as developing diverse resistant soybean cultivars, is urgently needed. In this study, a genome-wide association study (GWAS) was conducted using 1032 wild soybean (Glycine soja) accessions with over 42,000 single-nucleotide polymorphisms (SNPs) to understand the genetic architecture of G. soja resistance to SCN race 1. Ten SNPs were significantly associated with the response to race 1. Three SNPs on chromosome 18 were localized within the previously identified quantitative trait loci (QTLs), and two of which were localized within a strong linkage disequilibrium block encompassing a nucleotide-binding (NB)-ARC disease resistance gene (Glyma.18G102600). Genes encoding methyltransferases, the calcium-dependent signaling protein, the leucine-rich repeat kinase family protein, and the NB-ARC disease resistance protein, were identified as promising candidate genes. The identified SNPs and candidate genes can not only shed light on the molecular mechanisms underlying SCN resistance, but also can facilitate soybean improvement employing wild genetic resources.
Genetics Home Reference: prostate cancer
... prostate cancer Genetic Testing Registry: Prostate cancer aggressiveness quantitative trait locus on chromosome 19 Genetic Testing Registry: ... OMIM (25 links) PROSTATE CANCER PROSTATE CANCER AGGRESSIVENESS QUANTITATIVE TRAIT LOCUS ON CHROMOSOME 19 PROSTATE CANCER ANTIGEN ...
Genetics and child psychiatry: I Advances in quantitative and molecular genetics.
Rutter, M; Silberg, J; O'Connor, T; Simonoff, E
1999-01-01
Advances in quantitative psychiatric genetics as a whole are reviewed with respect to conceptual and methodological issues in relation to statistical model fitting, new genetic designs, twin and adoptee studies, definition of the phenotype, pervasiveness of genetic influences, pervasiveness of environmental influences, shared and nonshared environmental effects, and nature-nurture interplay. Advances in molecular genetics are discussed in relation to the shifts in research strategies to investigate multifactorial disorders (affected relative linkage designs, association strategies, and quantitative trait loci studies); new techniques and identified genetic mechanisms (expansion of trinucleotide repeats, genomic imprinting, mitochondrial DNA, fluorescent in-situ hybridisation, behavioural phenotypes, and animal models); and the successful localisation of genes.
Zas, R; Sampedro, L
2015-01-01
Quantitative seed provisioning is an important life-history trait with strong effects on offspring phenotype and fitness. As for any other trait, heritability estimates are vital for understanding its evolutionary dynamics. However, being a trait in between two generations, estimating additive genetic variation of seed provisioning requires complex quantitative genetic approaches for distinguishing between true genetic and environmental maternal effects. Here, using Maritime pine as a long-lived plant model, we quantified additive genetic variation of cone and seed weight (SW) mean and SW within-individual variation. We used a powerful approach combining both half-sib analysis and parent–offspring regression using several common garden tests established in contrasting environments to separate G, E and G × E effects. Both cone weight and SW mean showed significant genetic variation but were also influenced by the maternal environment. Most of the large variation in SW mean was attributable to additive genetic effects (h2=0.55–0.74). SW showed no apparent G × E interaction, particularly when accounting for cone weight covariation, suggesting that the maternal genotypes actively control the SW mean irrespective of the amount of resources allocated to cones. Within-individual variation in SW was low (12%) relative to between-individual variation (88%), and showed no genetic variation but was largely affected by the maternal environment, with greater variation in the less favourable sites for pine growth. In summary, results were very consistent between the parental and the offspring common garden tests, and clearly indicated heritable genetic variation for SW mean but not for within-individual variation in SW. PMID:25160045
The population genetics of mutations: good, bad and indifferent
Loewe, Laurence; Hill, William G.
2010-01-01
Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090
NASA Astrophysics Data System (ADS)
Dyer, Brian Jay
This study documented the changes in understanding a class of eighth grade high school-level biology students experienced through a biology unit introducing genetics. Learning profiles for 55 students were created using concept maps and interviews as qualitative and quantitative instruments. The study provides additional support to the theory of learning progressions called for by experts in the field. The students' learning profiles were assessed to determine the alignment with a researcher-developed learning profile. The researcher-developed learning profile incorporated the learning progressions published in the Next Generation Science Standards, as well as current research in learning progressions for 5-10th grade students studying genetics. Students were found to obtain understanding of the content in a manner that was nonlinear, even circuitous. This opposes the prevailing interpretation of learning progressions, that knowledge is ascertained in escalating levels of complexity. Learning progressions have implications in teaching sequence, assessment, education research, and policy. Tracking student understanding of other populations of students would augment the body of research and enhance generalizability.
Mapping X-Disease Phytoplasma Resistance in Prunus virginiana.
Lenz, Ryan R; Dai, Wenhao
2017-01-01
Phytoplasmas such as " Candidatus Phytoplasma pruni," the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry ( Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map "Cho" was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species.
The Genotype and Phenotype (GaP) registry: a living biobank for the analysis of quantitative traits.
Gregersen, Peter K; Klein, Gila; Keogh, Mary; Kern, Marlena; DeFranco, Margaret; Simpfendorfer, Kim R; Kim, Sun Jung; Diamond, Betty
2015-12-01
We describe the development of the Genotype and Phenotype (GaP) Registry, a living biobank of normal volunteers who are genotyped for genetic markers related to human disease. Participants in the GaP can be recalled for hypothesis driven study of disease associated genetic variants. The GaP has facilitated functional studies of several autoimmune disease associated loci including Csk, Blk, PDRM1 (Blimp-1) and PTPN22. It is likely that expansion of such living biobank registries will play an important role in studying and understanding the function of disease associated alleles in complex disease.
Using Movies to Analyse Gene Circuit Dynamics in Single Cells
Locke, James CW; Elowitz, Michael B
2010-01-01
Preface Many bacterial systems rely on dynamic genetic circuits to control critical processes. A major goal of systems biology is to understand these behaviours in terms of individual genes and their interactions. However, traditional techniques based on population averages wash out critical dynamics that are either unsynchronized between cells or driven by fluctuations, or ‘noise,’ in cellular components. Recently, the combination of time-lapse microscopy, quantitative image analysis, and fluorescent protein reporters has enabled direct observation of multiple cellular components over time in individual cells. In conjunction with mathematical modelling, these techniques are now providing powerful insights into genetic circuit behaviour in diverse microbial systems. PMID:19369953
Lee, Dong-Yup; Yun, Hongsoek; Park, Sunwon; Lee, Sang Yup
2003-11-01
MetaFluxNet is a program package for managing information on the metabolic reaction network and for quantitatively analyzing metabolic fluxes in an interactive and customized way. It allows users to interpret and examine metabolic behavior in response to genetic and/or environmental modifications. As a result, quantitative in silico simulations of metabolic pathways can be carried out to understand the metabolic status and to design the metabolic engineering strategies. The main features of the program include a well-developed model construction environment, user-friendly interface for metabolic flux analysis (MFA), comparative MFA of strains having different genotypes under various environmental conditions, and automated pathway layout creation. http://mbel.kaist.ac.kr/ A manual for MetaFluxNet is available as PDF file.
Statistical genetics and evolution of quantitative traits
NASA Astrophysics Data System (ADS)
Neher, Richard A.; Shraiman, Boris I.
2011-10-01
The distribution and heritability of many traits depends on numerous loci in the genome. In general, the astronomical number of possible genotypes makes the system with large numbers of loci difficult to describe. Multilocus evolution, however, greatly simplifies in the limit of weak selection and frequent recombination. In this limit, populations rapidly reach quasilinkage equilibrium (QLE) in which the dynamics of the full genotype distribution, including correlations between alleles at different loci, can be parametrized by the allele frequencies. This review provides a simplified exposition of the concept and mathematics of QLE which is central to the statistical description of genotypes in sexual populations. Key results of quantitative genetics such as the generalized Fisher’s “fundamental theorem,” along with Wright’s adaptive landscape, are shown to emerge within QLE from the dynamics of the genotype distribution. This is followed by a discussion under what circumstances QLE is applicable, and what the breakdown of QLE implies for the population structure and the dynamics of selection. Understanding the fundamental aspects of multilocus evolution obtained through simplified models may be helpful in providing conceptual and computational tools to address the challenges arising in the studies of complex quantitative phenotypes of practical interest.
Lewis, G J; Plomin, R
2015-07-01
Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.
Hart, Sara A.; Petrill, Stephen A.; Willcutt, Erik; Thompson, Lee A.; Schatschneider, Christopher; Deater-Deckard, Kirby; Cutting, Laurie E.
2013-01-01
Children with attention-deficit/hyperactivity disorder (ADHD) tend to perform more poorly on tests of reading and mathematical performance than their typical peers. Quantitative genetic analyses allow for a better understanding of the etiology of ADHD and reading and mathematics outcomes, by examining their common and unique genetic and environmental influences. Analyses were conducted on a sample 271 pairs of 10-year-old monozygotic and dizygotic twins drawn from the Western Reserve Reading and Mathematics Project. In general, the results suggested that the associations among ADHD symptoms, reading outcomes, and math outcomes were influenced by both general genetic and general shared-environment factors. The analyses also suggested significant independent genetic effects for ADHD symptoms. The results imply that differing etiological factors underlie the relationships among ADHD and reading and mathematics performance. It appears that both genetic and common family or school environments link ADHD with academic performance. PMID:20966487
Growth-rate dependent global effects on gene expression in bacteria
Klumpp, Stefan; Zhang, Zhongge; Hwa, Terence
2010-01-01
Summary Bacterial gene expression depends not only on specific regulations but also directly on bacterial growth, because important global parameters such as the abundance of RNA polymerases and ribosomes are all growth-rate dependent. Understanding these global effects is necessary for a quantitative understanding of gene regulation and for the robust design of synthetic genetic circuits. The observed growth-rate dependence of constitutive gene expression can be explained by a simple model using the measured growth-rate dependence of the relevant cellular parameters. More complex growth dependences for genetic circuits involving activators, repressors and feedback control were analyzed, and salient features were verified experimentally using synthetic circuits. The results suggest a novel feedback mechanism mediated by general growth-dependent effects and not requiring explicit gene regulation, if the expressed protein affects cell growth. This mechanism can lead to growth bistability and promote the acquisition of important physiological functions such as antibiotic resistance and tolerance (persistence). PMID:20064380
Easy calculations of lod scores and genetic risks on small computers.
Lathrop, G M; Lalouel, J M
1984-01-01
A computer program that calculates lod scores and genetic risks for a wide variety of both qualitative and quantitative genetic traits is discussed. An illustration is given of the joint use of a genetic marker, affection status, and quantitative information in counseling situations regarding Duchenne muscular dystrophy. PMID:6585139
ERIC Educational Resources Information Center
Haworth, Claire M. A.; Plomin, Robert
2010-01-01
Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…
Opportunities to integrate new approaches in genetic toxicology: an ILSI-HESI workshop report.
Zeiger, Errol; Gollapudi, Bhaskar; Aardema, Marilyn J; Auerbach, Scott; Boverhof, Darrell; Custer, Laura; Dedon, Peter; Honma, Masamitsu; Ishida, Seiichi; Kasinski, Andrea L; Kim, James H; Manjanatha, Mugimane G; Marlowe, Jennifer; Pfuhler, Stefan; Pogribny, Igor; Slikker, William; Stankowski, Leon F; Tanir, Jennifer Y; Tice, Raymond; van Benthem, Jan; White, Paul; Witt, Kristine L; Thybaud, Véronique
2015-04-01
Genetic toxicity tests currently used to identify and characterize potential human mutagens and carcinogens rely on measurements of primary DNA damage, gene mutation, and chromosome damage in vitro and in rodents. The International Life Sciences Institute Health and Environmental Sciences Institute (ILSI-HESI) Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity Testing held an April 2012 Workshop in Washington, DC, to consider the impact of new understanding of biology and new technologies on the identification and characterization of genotoxic substances, and to identify new approaches to inform more accurate human risk assessment for genetic and carcinogenic effects. Workshop organizers and speakers were from industry, academe, and government. The Workshop focused on biological effects and technologies that would potentially yield the most useful information for evaluating human risk of genetic damage. Also addressed was the impact that improved understanding of biology and availability of new techniques might have on genetic toxicology practices. Workshop topics included (1) alternative experimental models to improve genetic toxicity testing, (2) Biomarkers of epigenetic changes and their applicability to genetic toxicology, and (3) new technologies and approaches. The ability of these new tests and technologies to be developed into tests to identify and characterize genotoxic agents; to serve as a bridge between in vitro and in vivo rodent, or preferably human, data; or to be used to provide dose response information for quantitative risk assessment was also addressed. A summary of the workshop and links to the scientific presentations are provided. © 2014 Wiley Periodicals, Inc.
Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R
2015-02-13
The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.
Blackiston, Douglas; Shomrat, Tal; Nicolas, Cindy L.; Granata, Christopher; Levin, Michael
2010-01-01
A deep understanding of cognitive processes requires functional, quantitative analyses of the steps leading from genetics and the development of nervous system structure to behavior. Molecularly-tractable model systems such as Xenopus laevis and planaria offer an unprecedented opportunity to dissect the mechanisms determining the complex structure of the brain and CNS. A standardized platform that facilitated quantitative analysis of behavior would make a significant impact on evolutionary ethology, neuropharmacology, and cognitive science. While some animal tracking systems exist, the available systems do not allow automated training (feedback to individual subjects in real time, which is necessary for operant conditioning assays). The lack of standardization in the field, and the numerous technical challenges that face the development of a versatile system with the necessary capabilities, comprise a significant barrier keeping molecular developmental biology labs from integrating behavior analysis endpoints into their pharmacological and genetic perturbations. Here we report the development of a second-generation system that is a highly flexible, powerful machine vision and environmental control platform. In order to enable multidisciplinary studies aimed at understanding the roles of genes in brain function and behavior, and aid other laboratories that do not have the facilities to undergo complex engineering development, we describe the device and the problems that it overcomes. We also present sample data using frog tadpoles and flatworms to illustrate its use. Having solved significant engineering challenges in its construction, the resulting design is a relatively inexpensive instrument of wide relevance for several fields, and will accelerate interdisciplinary discovery in pharmacology, neurobiology, regenerative medicine, and cognitive science. PMID:21179424
Cobb, Joshua N; Declerck, Genevieve; Greenberg, Anthony; Clark, Randy; McCouch, Susan
2013-04-01
More accurate and precise phenotyping strategies are necessary to empower high-resolution linkage mapping and genome-wide association studies and for training genomic selection models in plant improvement. Within this framework, the objective of modern phenotyping is to increase the accuracy, precision and throughput of phenotypic estimation at all levels of biological organization while reducing costs and minimizing labor through automation, remote sensing, improved data integration and experimental design. Much like the efforts to optimize genotyping during the 1980s and 1990s, designing effective phenotyping initiatives today requires multi-faceted collaborations between biologists, computer scientists, statisticians and engineers. Robust phenotyping systems are needed to characterize the full suite of genetic factors that contribute to quantitative phenotypic variation across cells, organs and tissues, developmental stages, years, environments, species and research programs. Next-generation phenotyping generates significantly more data than previously and requires novel data management, access and storage systems, increased use of ontologies to facilitate data integration, and new statistical tools for enhancing experimental design and extracting biologically meaningful signal from environmental and experimental noise. To ensure relevance, the implementation of efficient and informative phenotyping experiments also requires familiarity with diverse germplasm resources, population structures, and target populations of environments. Today, phenotyping is quickly emerging as the major operational bottleneck limiting the power of genetic analysis and genomic prediction. The challenge for the next generation of quantitative geneticists and plant breeders is not only to understand the genetic basis of complex trait variation, but also to use that knowledge to efficiently synthesize twenty-first century crop varieties.
Hadfield, J D; Nakagawa, S
2010-03-01
Although many of the statistical techniques used in comparative biology were originally developed in quantitative genetics, subsequent development of comparative techniques has progressed in relative isolation. Consequently, many of the new and planned developments in comparative analysis already have well-tested solutions in quantitative genetics. In this paper, we take three recent publications that develop phylogenetic meta-analysis, either implicitly or explicitly, and show how they can be considered as quantitative genetic models. We highlight some of the difficulties with the proposed solutions, and demonstrate that standard quantitative genetic theory and software offer solutions. We also show how results from Bayesian quantitative genetics can be used to create efficient Markov chain Monte Carlo algorithms for phylogenetic mixed models, thereby extending their generality to non-Gaussian data. Of particular utility is the development of multinomial models for analysing the evolution of discrete traits, and the development of multi-trait models in which traits can follow different distributions. Meta-analyses often include a nonrandom collection of species for which the full phylogenetic tree has only been partly resolved. Using missing data theory, we show how the presented models can be used to correct for nonrandom sampling and show how taxonomies and phylogenies can be combined to give a flexible framework with which to model dependence.
Feltus, F Alex
2014-06-01
Understanding the control of any trait optimally requires the detection of causal genes, gene interaction, and mechanism of action to discover and model the biochemical pathways underlying the expressed phenotype. Functional genomics techniques, including RNA expression profiling via microarray and high-throughput DNA sequencing, allow for the precise genome localization of biological information. Powerful genetic approaches, including quantitative trait locus (QTL) and genome-wide association study mapping, link phenotype with genome positions, yet genetics is less precise in localizing the relevant mechanistic information encoded in DNA. The coupling of salient functional genomic signals with genetically mapped positions is an appealing approach to discover meaningful gene-phenotype relationships. Techniques used to define this genetic-genomic convergence comprise the field of systems genetics. This short review will address an application of systems genetics where RNA profiles are associated with genetically mapped genome positions of individual genes (eQTL mapping) or as gene sets (co-expression network modules). Both approaches can be applied for knowledge independent selection of candidate genes (and possible control mechanisms) underlying complex traits where multiple, likely unlinked, genomic regions might control specific complex traits. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Li, Hongjian; Yang, Qingsong; Fan, Nannan; Zhang, Ming; Zhai, Huijie; Ni, Zhongfu; Zhang, Yirong
2017-04-17
Plant height (PH) and ear height (EH) are two important agronomic traits in maize selection breeding. F 1 hybrid exhibit significant heterosis for PH and EH as compared to their parental inbred lines. To understand the genetic basis of heterosis controlling PH and EH, we conducted quantitative trait locus (QTL) analysis using a recombinant inbreed line (RIL) based design III population derived from the elite maize hybrid Zhengdan 958 in five environments. A total of 14 environmentally stable QTLs were identified, and the number of QTLs for Z 1 and Z 2 populations was six and eight, respectively. Notably, all the eight environmentally stable QTLs for Z 2 were characterized by overdominance effect (OD), suggesting that overdominant QTLs were the most important contributors to heterosis for PH and EH. Furthermore, 14 environmentally stable QTLs were anchored on six genomic regions, among which four are trait-specific QTLs, suggesting that the genetic basis for PH and EH is partially different. Additionally, qPH.A-1.3, modifying about 10 centimeters of PH, was further validated in backcross populations. The genetic basis for PH and EH is partially different, and overdominant QTLs are important factors for heterosis of PH and EH. A major QTL qPH.A-1.3 may be a desired target for genetic improvement of maize plant height.
Walisch, Tania J.; Colling, Guy; Bodenseh, Melanie; Matthies, Diethart
2015-01-01
Background and Aims The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. Methods Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. Key Results In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. Conclusions The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats. PMID:25862244
Pepin, K.M.; Spackman, E.; Brown, J.D.; Pabilonia, K.L.; Garber, L.P.; Weaver, J.T.; Kennedy, D.A.; Patyk, K.A.; Huyvaert, K.P.; Miller, R.S.; Franklin, A.B.; Pedersen, K.; Bogich, T.L.; Rohani, P.; Shriner, S.A.; Webb, C.T.; Riley, S.
2014-01-01
Wild birds are the primary source of genetic diversity for influenza A viruses that eventually emerge in poultry and humans. Much progress has been made in the descriptive ecology of avian influenza viruses (AIVs), but contributions are less evident from quantitative studies (e.g., those including disease dynamic models). Transmission between host species, individuals and flocks has not been measured with sufficient accuracy to allow robust quantitative evaluation of alternate control protocols. We focused on the United States of America (USA) as a case study for determining the state of our quantitative knowledge of potential AIV emergence processes from wild hosts to poultry. We identified priorities for quantitative research that would build on existing tools for responding to AIV in poultry and concluded that the following knowledge gaps can be addressed with current empirical data: (1) quantification of the spatio-temporal relationships between AIV prevalence in wild hosts and poultry populations, (2) understanding how the structure of different poultry sectors impacts within-flock transmission, (3) determining mechanisms and rates of between-farm spread, and (4) validating current policy-decision tools with data. The modeling studies we recommend will improve our mechanistic understanding of potential AIV transmission patterns in USA poultry, leading to improved measures of accuracy and reduced uncertainty when evaluating alternative control strategies. PMID:24462191
White, Paul A; Johnson, George E
2016-05-01
Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the relationships between genetic damage and disease, and the concomitant ability to use genetic toxicity results per se. © Her Majesty the Queen in Right of Canada 2016. Reproduced with the permission of the Minister of Health.
Lu, Jiangjie; Liu, Yuyang; Xu, Jing; Mei, Ziwei; Shi, Yujun; Liu, Pengli; He, Jianbo; Wang, Xiaotong; Meng, Yijun; Feng, Shangguo; Shen, Chenjia; Wang, Huizhong
2018-01-01
Plants of the Dendrobium genus are orchids with not only ornamental value but also high medicinal value. To understand the genetic basis of variations in active ingredients of the stem total polysaccharide contents (STPCs) among different Dendrobium species, it is of paramount importance to understand the mechanism of STPC formation and identify genes affecting its process at the whole genome level. Here, we report the first high-density single-nucleotide polymorphism (SNP) integrated genetic map with a good genome coverage of Dendrobium. The specific-locus amplified fragment sequencing (SLAF-seq) technology led to identification of 7,013,400 SNPs from 1,503,626 high-quality SLAF markers from two parents (Dendrobium moniliforme ♀ × Dendrobium officinale ♂) and their interspecific F1 hybrid population. The final genetic map contained 8, 573 SLAF markers, covering 19 linkage groups (LGs). This genetic map spanned a length of 2,737.49 cM, where the average distance between markers is 0.32 cM. In total, 5 quantitative trait loci (QTL) related to STPC were identified, 3 of which have candidate genes within the confidence intervals of these stable QTLs based on the D. officinale genome sequence. This study will build a foundation up for the mapping of other medicinal-related traits and provide an important reference for the molecular breeding of these Chinese herb. PMID:29636767
A population genetic interpretation of GWAS findings for human quantitative traits
Bullaughey, Kevin; Hudson, Richard R.; Sella, Guy
2018-01-01
Human genome-wide association studies (GWASs) are revealing the genetic architecture of anthropomorphic and biomedical traits, i.e., the frequencies and effect sizes of variants that contribute to heritable variation in a trait. To interpret these findings, we need to understand how genetic architecture is shaped by basic population genetics processes—notably, by mutation, natural selection, and genetic drift. Because many quantitative traits are subject to stabilizing selection and because genetic variation that affects one trait often affects many others, we model the genetic architecture of a focal trait that arises under stabilizing selection in a multidimensional trait space. We solve the model for the phenotypic distribution and allelic dynamics at steady state and derive robust, closed-form solutions for summary statistics of the genetic architecture. Our results provide a simple interpretation for missing heritability and why it varies among traits. They predict that the distribution of variances contributed by loci identified in GWASs is well approximated by a simple functional form that depends on a single parameter: the expected contribution to genetic variance of a strongly selected site affecting the trait. We test this prediction against the results of GWASs for height and body mass index (BMI) and find that it fits the data well, allowing us to make inferences about the degree of pleiotropy and mutational target size for these traits. Our findings help to explain why the GWAS for height explains more of the heritable variance than the similarly sized GWAS for BMI and to predict the increase in explained heritability with study sample size. Considering the demographic history of European populations, in which these GWASs were performed, we further find that most of the associations they identified likely involve mutations that arose shortly before or during the Out-of-Africa bottleneck at sites with selection coefficients around s = 10−3. PMID:29547617
Mammalian synthetic biology for studying the cell
Mathur, Melina; Xiang, Joy S.
2017-01-01
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. PMID:27932576
Lindén, Rolf O; Eronen, Ville-Pekka; Aittokallio, Tero
2011-03-24
High-throughput genetic screening approaches have enabled systematic means to study how interactions among gene mutations contribute to quantitative fitness phenotypes, with the aim of providing insights into the functional wiring diagrams of genetic interaction networks on a global scale. However, it is poorly known how well these quantitative interaction measurements agree across the screening approaches, which hinders their integrated use toward improving the coverage and quality of the genetic interaction maps in yeast and other organisms. Using large-scale data matrices from epistatic miniarray profiling (E-MAP), genetic interaction mapping (GIM), and synthetic genetic array (SGA) approaches, we carried out here a systematic comparative evaluation among these quantitative maps of genetic interactions in yeast. The relatively low association between the original interaction measurements or their customized scores could be improved using a matrix-based modelling framework, which enables the use of single- and double-mutant fitness estimates and measurements, respectively, when scoring genetic interactions. Toward an integrative analysis, we show how the detections from the different screening approaches can be combined to suggest novel positive and negative interactions which are complementary to those obtained using any single screening approach alone. The matrix approximation procedure has been made available to support the design and analysis of the future screening studies. We have shown here that even if the correlation between the currently available quantitative genetic interaction maps in yeast is relatively low, their comparability can be improved by means of our computational matrix approximation procedure, which will enable integrative analysis and detection of a wider spectrum of genetic interactions using data from the complementary screening approaches.
Reinventing the ames test as a quantitative lab that connects classical and molecular genetics.
Goodson-Gregg, Nathan; De Stasio, Elizabeth A
2009-01-01
While many institutions use a version of the Ames test in the undergraduate genetics laboratory, students typically are not exposed to techniques or procedures beyond qualitative analysis of phenotypic reversion, thereby seriously limiting the scope of learning. We have extended the Ames test to include both quantitative analysis of reversion frequency and molecular analysis of revertant gene sequences. By giving students a role in designing their quantitative methods and analyses, students practice and apply quantitative skills. To help students connect classical and molecular genetic concepts and techniques, we report here procedures for characterizing the molecular lesions that confer a revertant phenotype. We suggest undertaking reversion of both missense and frameshift mutants to allow a more sophisticated molecular genetic analysis. These modifications and additions broaden the educational content of the traditional Ames test teaching laboratory, while simultaneously enhancing students' skills in experimental design, quantitative analysis, and data interpretation.
Ehinger, Martine O; Croll, Daniel; Koch, Alexander M; Sanders, Ian R
2012-11-01
Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.
QUANTITATIVE GENETIC ACTIVITY GRAPHICAL PROFILES FOR USE IN CHEMICAL EVALUATION
A graphic approach termed a Genetic Activity Profile (GAP) has been developed to display a matrix of data on the genetic and related effects of selected chemical agents. he profiles provide a visual overview of the quantitative (doses) and qualitative (test results) data for each...
Breeding and quantitative genetics advances in sunflower Sclerotinia research
USDA-ARS?s Scientific Manuscript database
Genetic research of the sunflower research unit, USDA-ARS, in Fargo, ND, was discussed in a presentation to a group of producers, industry representatives, and scientists. The need for sunflower quantitative genetics research to find and capture Sclerotinia resistance is increasing with every year t...
Mechanical regulation of cardiac development
Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.
2014-01-01
Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277
Multiple capacitors for natural genetic variation in Drosophila melanogaster.
Takahashi, Kazuo H
2013-03-01
Cryptic genetic variation (CGV) or a standing genetic variation that is not ordinarily expressed as a phenotype is released when the robustness of organisms is impaired under environmental or genetic perturbations. Evolutionary capacitors modulate the amount of genetic variation exposed to natural selection and hidden cryptically; they have a fundamental effect on the evolvability of traits on evolutionary timescales. In this study, I have demonstrated the effects of multiple genomic regions of Drosophila melanogaster on CGV in wing shape. I examined the effects of 61 genomic deficiencies on quantitative and qualitative natural genetic variation in the wing shape of D. melanogaster. I have identified 10 genomic deficiencies that do not encompass a known candidate evolutionary capacitor, Hsp90, exposing natural CGV differently depending on the location of the deficiencies in the genome. Furthermore, five genomic deficiencies uncovered qualitative CGV in wing morphology. These findings suggest that CGV in wing shape of wild-type D. melanogaster is regulated by multiple capacitors with divergent functions. Future analysis of genes encompassed by these genomic regions would help elucidate novel capacitor genes and better understand the general features of capacitors regarding natural genetic variation. © 2012 Blackwell Publishing Ltd.
A Genome Wide Survey of SNP Variation Reveals the Genetic Structure of Sheep Breeds
Kijas, James W.; Townley, David; Dalrymple, Brian P.; Heaton, Michael P.; Maddox, Jillian F.; McGrath, Annette; Wilson, Peter; Ingersoll, Roxann G.; McCulloch, Russell; McWilliam, Sean; Tang, Dave; McEwan, John; Cockett, Noelle; Oddy, V. Hutton; Nicholas, Frank W.; Raadsma, Herman
2009-01-01
The genetic structure of sheep reflects their domestication and subsequent formation into discrete breeds. Understanding genetic structure is essential for achieving genetic improvement through genome-wide association studies, genomic selection and the dissection of quantitative traits. After identifying the first genome-wide set of SNP for sheep, we report on levels of genetic variability both within and between a diverse sample of ovine populations. Then, using cluster analysis and the partitioning of genetic variation, we demonstrate sheep are characterised by weak phylogeographic structure, overlapping genetic similarity and generally low differentiation which is consistent with their short evolutionary history. The degree of population substructure was, however, sufficient to cluster individuals based on geographic origin and known breed history. Specifically, African and Asian populations clustered separately from breeds of European origin sampled from Australia, New Zealand, Europe and North America. Furthermore, we demonstrate the presence of stratification within some, but not all, ovine breeds. The results emphasize that careful documentation of genetic structure will be an essential prerequisite when mapping the genetic basis of complex traits. Furthermore, the identification of a subset of SNP able to assign individuals into broad groupings demonstrates even a small panel of markers may be suitable for applications such as traceability. PMID:19270757
Spanagel, Rainer
2013-01-01
Convergent functional genomics (CFG) is a translational methodology that integrates in a Bayesian fashion multiple lines of evidence from studies in human and animal models to get a better understanding of the genetics of a disease or pathological behavior. Here the integration of data sets that derive from forward genetics in animals and genetic association studies including genome wide association studies (GWAS) in humans is described for addictive behavior. The aim of forward genetics in animals and association studies in humans is to identify mutations (e.g. SNPs) that produce a certain phenotype; i.e. "from phenotype to genotype". Most powerful in terms of forward genetics is combined quantitative trait loci (QTL) analysis and gene expression profiling in recombinant inbreed rodent lines or genetically selected animals for a specific phenotype, e.g. high vs. low drug consumption. By Bayesian scoring genomic information from forward genetics in animals is then combined with human GWAS data on a similar addiction-relevant phenotype. This integrative approach generates a robust candidate gene list that has to be functionally validated by means of reverse genetics in animals; i.e. "from genotype to phenotype". It is proposed that studying addiction relevant phenotypes and endophenotypes by this CFG approach will allow a better determination of the genetics of addictive behavior.
Genetic research: who is at risk for alcoholism.
Foroud, Tatiana; Edenberg, Howard J; Crabbe, John C
2010-01-01
The National Institute on Alcohol Abuse and Alcoholism (NIAAA) was founded 40 years ago to help elucidate the biological underpinnings of alcohol dependence, including the potential contribution of genetic factors. Twin, adoption, and family studies conclusively demonstrated that genetic factors account for 50 to 60 percent of the variance in risk for developing alcoholism. Case-control studies and linkage analyses have helped identify DNA variants that contribute to increased risk, and the NIAAA-sponsored Collaborative Studies on Genetics of Alcoholism (COGA) has the expressed goal of identifying contributing genes using state-of-the-art genetic technologies. These efforts have ascertained several genes that may contribute to an increased risk of alcoholism, including certain variants encoding alcohol-metabolizing enzymes and neurotransmitter receptors. Genome-wide association studies allowing the analysis of millions of genetic markers located throughout the genome will enable discovery of further candidate genes. In addition to these human studies, genetic animal models of alcohol's effects and alcohol use have greatly advanced our understanding of the genetic basis of alcoholism, resulting in the identification of quantitative trait loci and allowing for targeted manipulation of candidate genes. Novel research approaches-for example, into epigenetic mechanisms of gene regulation-also are under way and undoubtedly will further clarify the genetic basis of alcoholism.
Roux, F; Bergelson, J
2016-01-01
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity. © 2016 Elsevier Inc. All rights reserved.
DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits.
Karhunen, M; Merilä, J; Leinonen, T; Cano, J M; Ovaskainen, O
2013-07-01
Approaches and tools to differentiate between natural selection and genetic drift as causes of population differentiation are of frequent demand in evolutionary biology. Based on the approach of Ovaskainen et al. (2011), we have developed an R package (DRIFTSEL) that can be used to differentiate between stabilizing selection, diversifying selection and random genetic drift as causes of population differentiation in quantitative traits when neutral marker and quantitative genetic data are available. Apart from illustrating the use of this method and the interpretation of results using simulated data, we apply the package on data from three-spined sticklebacks (Gasterosteus aculeatus) to highlight its virtues. DRIFTSEL can also be used to perform usual quantitative genetic analyses in common-garden study designs. © 2013 John Wiley & Sons Ltd.
Wang, Xiaohua; Chen, Yanling; Thomas, Catherine L; Ding, Guangda; Xu, Ping; Shi, Dexu; Grandke, Fabian; Jin, Kemo; Cai, Hongmei; Xu, Fangsen; Yi, Bin; Broadley, Martin R; Shi, Lei
2017-08-01
Breeding crops with ideal root system architecture for efficient absorption of phosphorus is an important strategy to reduce the use of phosphate fertilizers. To investigate genetic variants leading to changes in root system architecture, 405 oilseed rape cultivars were genotyped with a 60K Brassica Infinium SNP array in low and high P environments. A total of 285 single-nucleotide polymorphisms were associated with root system architecture traits at varying phosphorus levels. Nine single-nucleotide polymorphisms corroborate a previous linkage analysis of root system architecture quantitative trait loci in the BnaTNDH population. One peak single-nucleotide polymorphism region on A3 was associated with all root system architecture traits and co-localized with a quantitative trait locus for primary root length at low phosphorus. Two more single-nucleotide polymorphism peaks on A5 for root dry weight at low phosphorus were detected in both growth systems and co-localized with a quantitative trait locus for the same trait. The candidate genes identified on A3 form a haplotype 'BnA3Hap', that will be important for understanding the phosphorus/root system interaction and for the incorporation into Brassica napus breeding programs. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Dobata, Shigeto
2012-12-01
Policing against selfishness is now regarded as the main force maintaining cooperation, by reducing costly conflict in complex social systems. Although policing has been studied extensively in social insect colonies, its coevolution against selfishness has not been fully captured by previous theories. In this study, I developed a two-trait quantitative genetic model of the conflict between selfish immature females (usually larvae) and policing workers in eusocial Hymenoptera over the immatures' propensity to develop into new queens. This model allows for the analysis of coevolution between genomes expressed in immatures and workers that collectively determine the immatures' queen caste fate. The main prediction of the model is that a higher level of polyandry leads to a smaller fraction of queens produced among new females through caste fate policing. The other main prediction of the present model is that, as a result of arms race, caste fate policing by workers coevolves with exaggerated selfishness of the immatures achieving maximum potential to develop into queens. Moreover, the model can incorporate genetic correlation between traits, which has been largely unexplored in social evolution theory. This study highlights the importance of understanding social traits as influenced by the coevolution of conflicting genomes. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.
The genetic architecture of Drosophila sensory bristle number.
Dilda, Christy L; Mackay, Trudy F C
2002-01-01
We have mapped quantitative trait loci (QTL) for Drosophila mechanosensory bristle number in six recombinant isogenic line (RIL) mapping populations, each of which was derived from an isogenic chromosome extracted from a line selected for high or low, sternopleural or abdominal bristle number and an isogenic wild-type chromosome. All RILs were evaluated as male and female F(1) progeny of crosses to both the selected and the wild-type parental chromosomes at three developmental temperatures (18 degrees, 25 degrees, and 28 degrees ). QTL for bristle number were mapped separately for each chromosome, trait, and environment by linkage to roo transposable element marker loci, using composite interval mapping. A total of 53 QTL were detected, of which 33 affected sternopleural bristle number, 31 affected abdominal bristle number, and 11 affected both traits. The effects of most QTL were conditional on sex (27%), temperature (14%), or both sex and temperature (30%). Epistatic interactions between QTL were also common. While many QTL mapped to the same location as candidate bristle development loci, several QTL regions did not encompass obvious candidate genes. These features are germane to evolutionary models for the maintenance of genetic variation for quantitative traits, but complicate efforts to understand the molecular genetic basis of variation for complex traits. PMID:12524340
Quantitative genetic analysis of brain copper and zinc in BXD recombinant inbred mice.
Jones, Leslie C; McCarthy, Kristin A; Beard, John L; Keen, Carl L; Jones, Byron C
2006-01-01
Copper and zinc are trace nutrients essential for normal brain function, yet an excess of these elements can be toxic. It is important therefore that these metals be closely regulated. We recently conducted a quantitative trait loci (QTL) analysis to identify chromosomal regions in the mouse containing possible regulatory genes. The animals came from 15 strains of the BXD/Ty recombinant inbred (RI) strain panel and the brain regions analyzed were frontal cortex, caudate-putamen, nucleus accumbens and ventral midbrain. Several QTL were identified for copper and/or zinc, most notably on chromosomes 1, 8, 16 and 17. Genetic correlational analysis also revealed associations between these metals and dopamine, cocaine responses, saccharine preference, immune response and seizure susceptibility. Notably, the QTL on chromosome 17 is also associated with seizure susceptibility and contains the histocompatibility H2 complex. This work shows that regulation of zinc and copper is under polygenic influence and is intimately related to CNS function. Future work will reveal genes underlying the QTL and how they interact with other genes and the environment. More importantly, revelation of the genetic underpinnings of copper and zinc brain homeostasis will aid our understanding of neurological diseases that are related to copper and zinc imbalance.
NASA Astrophysics Data System (ADS)
Adur, J.; Ferreira, A. E.; D'Souza-Li, L.; Pelegati, V. B.; de Thomaz, A. A.; Almeida, D. B.; Baratti, M. O.; Carvalho, H. F.; Cesar, C. L.
2012-03-01
Osteogenesis Imperfecta (OI) is a genetic disorder that leads to bone fractures due to mutations in the Col1A1 or Col1A2 genes that affect the primary structure of the collagen I chain with the ultimate outcome in collagen I fibrils that are either reduced in quantity or abnormally organized in the whole body. A quick test screening of the patients would largely reduce the sample number to be studied by the time consuming molecular genetics techniques. For this reason an assessment of the human skin collagen structure by Second Harmonic Generation (SHG) can be used as a screening technique to speed up the correlation of genetics/phenotype/OI types understanding. In the present work we have used quantitative second harmonic generation (SHG) imaging microscopy to investigate the collagen matrix organization of the OI human skin samples comparing with normal control patients. By comparing fibril collagen distribution and spatial organization, we calculated the anisotropy and texture patterns of this structural protein. The analysis of the anisotropy was performed by means of the two-dimensional Discrete Fourier Transform and image pattern analysis with Gray-Level Co-occurrence Matrix (GLCM). From these results, we show that statistically different results are obtained for the normal and disease states of OI.
Mapping X-Disease Phytoplasma Resistance in Prunus virginiana
Lenz, Ryan R.; Dai, Wenhao
2017-01-01
Phytoplasmas such as “Candidatus Phytoplasma pruni,” the causal agent of X-disease of stone fruits, lack detailed biological analysis. This has limited the understanding of plant resistance mechanisms. Chokecherry (Prunus virginiana L.) is a promising model to be used for the plant-phytoplasma interaction due to its documented ability to resist X-disease infection. A consensus chokecherry genetic map “Cho” was developed with JoinMap 4.0 by joining two parental maps. The new map contains a complete set of 16 linkage groups, spanning a genetic distance of 2,172 cM with an average marker density of 3.97 cM. Three significant quantitative trait loci (QTL) associated with X-disease resistance were identified contributing to a total of 45.9% of the phenotypic variation. This updated genetic linkage map and the identified QTL will provide the framework needed to facilitate molecular genetics, genomics, breeding, and biotechnology research concerning X-disease in chokecherry and other Prunus species. PMID:29238359
The genetic architecture of gene expression levels in wild baboons.
Tung, Jenny; Zhou, Xiang; Alberts, Susan C; Stephens, Matthew; Gilad, Yoav
2015-02-25
Primate evolution has been argued to result, in part, from changes in how genes are regulated. However, we still know little about gene regulation in natural primate populations. We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied wild population. We performed complementary expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses, discovering substantial evidence for, and surprising power to detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly overlapped between baboons and a comparable human eQTL data set. Our results suggest that genes vary in their tolerance of genetic perturbation, and that this property may be conserved across species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and represent an important step towards understanding the genetic architecture of gene expression in primates.
The genetic architecture of gene expression levels in wild baboons
Tung, Jenny; Zhou, Xiang; Alberts, Susan C; Stephens, Matthew; Gilad, Yoav
2015-01-01
Primate evolution has been argued to result, in part, from changes in how genes are regulated. However, we still know little about gene regulation in natural primate populations. We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied wild population. We performed complementary expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses, discovering substantial evidence for, and surprising power to detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly overlapped between baboons and a comparable human eQTL data set. Our results suggest that genes vary in their tolerance of genetic perturbation, and that this property may be conserved across species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and represent an important step towards understanding the genetic architecture of gene expression in primates. DOI: http://dx.doi.org/10.7554/eLife.04729.001 PMID:25714927
Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst
2016-09-01
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.
Influence of early life exposure, host genetics and diet on the mouse gut microbiome and metabolome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urano, Tomohiko; Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655
Highlights: • Single-nucleotide polymorphisms (SNPs) associated with osteoporosis were identified. • SNPs mapped close to or within VDR and ESR1 are associated with bone mineral density. • WNT signaling pathway plays a pivotal role in regulating bone mineral density. • Genetic studies will be useful for identification of new therapeutic targets. - Abstract: Osteoporosis is a skeletal disease characterized by low bone mineral density (BMD) and microarchitectural deterioration of bone tissue, which increases susceptibility to fractures. BMD is a complex quantitative trait with normal distribution and seems to be genetically controlled (in 50–90% of the cases), according to studies onmore » twins and families. Over the last 20 years, candidate gene approach and genome-wide association studies (GWAS) have identified single-nucleotide polymorphisms (SNPs) that are associated with low BMD, osteoporosis, and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding nuclear receptors and WNT-β-catenin signaling proteins. Understanding the genetics of osteoporosis will help identify novel candidates for diagnostic and therapeutic targets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasin-Brumshtein, Yehudit; Khan, Arshad H.; Hormozdiari, Farhad
2016-09-13
Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals bothlocalandtransexpression Quantitative Trait Loci (eQTLs) demonstrating 2transeQTL 'hotspots' associated with expression of hundreds of genes. We alsomore » report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.« less
Han, Lide; Yang, Jian; Zhu, Jun
2007-06-01
A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.
Genetics of Human Sexual Behavior: Where We Are, Where We Are Going.
Jannini, Emmanuele A; Burri, Andrea; Jern, Patrick; Novelli, Giuseppe
2015-04-01
One of the never-ending debates in the developing field of sexual medicine is the extent to which genetics and experiences (i.e., "nature and nurture") contribute to sexuality. The debate continues despite the fact that these two sides have different abilities to create a scientific environment to support their cause. Contemporary genetics has produced plenty of recent evidence, however, not always confirmed or sufficiently robust. On the other hand, the more traditional social theorists, frequently without direct evidence confirming their positions, criticize, sometimes with good arguments, the methods and results of the other side. The aim of this article is to critically evaluate existent evidence that used genetic approaches to understand human sexuality. An expert in sexual medicine (E.A.J.), an expert in medical genetics (G.N.), and two experts in genetic epidemiology and quantitative genetics, with particular scientific experience in female sexual dysfunction (A.B.) and in premature ejaculation (P.J.), contributed to this review. Expert opinion supported by critical review of the currently available literature. The existing literature on human sexuality provides evidence that many sexuality-related behaviors previously considered to be the result of cultural influences (such as mating strategies, attractiveness and sex appeal, propensity to fidelity or infidelity, and sexual orientation) or dysfunctions (such as premature ejaculation or female sexual dysfunction) seem to have a genetic component. Current evidence from genetic epidemiologic studies underlines the existence of biological and congenital factors regulating male and female sexuality. However, these relatively recent findings ask for replication in methodologically more elaborated studies. Clearly, increased research efforts are needed to further improve understanding the genetics of human sexuality. Jannini EA, Burri A, Jern P, and Novelli G. Genetics of human sexual behavior: Where we are, where we are going. Sex Med Rev 2015;3:65-77. Copyright © 2015 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Perry, G M L; Audet, C; Bernatchez, L
2005-09-01
The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic architecture by age category and the sex of the parent used in estimation.
Tools for Genetic Studies in Experimental Populations of Polyploids.
Bourke, Peter M; Voorrips, Roeland E; Visser, Richard G F; Maliepaard, Chris
2018-01-01
Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies also offer the promise of understanding polyploid genomes at a level which hitherto has remained elusive.
Tools for Genetic Studies in Experimental Populations of Polyploids
Bourke, Peter M.; Voorrips, Roeland E.; Visser, Richard G. F.; Maliepaard, Chris
2018-01-01
Polyploid organisms carry more than two copies of each chromosome, a condition rarely tolerated in animals but which occurs relatively frequently in the plant kingdom. One of the principal challenges faced by polyploid organisms is to evolve stable meiotic mechanisms to faithfully transmit genetic information to the next generation upon which the study of inheritance is based. In this review we look at the tools available to the research community to better understand polyploid inheritance, many of which have only recently been developed. Most of these tools are intended for experimental populations (rather than natural populations), facilitating genomics-assisted crop improvement and plant breeding. This is hardly surprising given that a large proportion of domesticated plant species are polyploid. We focus on three main areas: (1) polyploid genotyping; (2) genetic and physical mapping; and (3) quantitative trait analysis and genomic selection. We also briefly review some miscellaneous topics such as the mode of inheritance and the availability of polyploid simulation software. The current polyploid analytic toolbox includes software for assigning marker genotypes (and in particular, estimating the dosage of marker alleles in the heterozygous condition), establishing chromosome-scale linkage phase among marker alleles, constructing (short-range) haplotypes, generating linkage maps, performing genome-wide association studies (GWAS) and quantitative trait locus (QTL) analyses, and simulating polyploid populations. These tools can also help elucidate the mode of inheritance (disomic, polysomic or a mixture of both as in segmental allopolyploids) or reveal whether double reduction and multivalent chromosomal pairing occur. An increasing number of polyploids (or associated diploids) are being sequenced, leading to publicly available reference genome assemblies. Much work remains in order to keep pace with developments in genomic technologies. However, such technologies also offer the promise of understanding polyploid genomes at a level which hitherto has remained elusive. PMID:29720992
Proteomics approaches advance our understanding of plant self-incompatibility response.
Sankaranarayanan, Subramanian; Jamshed, Muhammad; Samuel, Marcus A
2013-11-01
Self-incompatibility (SI) in plants is a genetic mechanism that prevents self-fertilization and promotes out-crossing needed to maintain genetic diversity. SI has been classified into two broad categories: the gametophytic self-incompatibility (GSI) and the sporophytic self-incompatibility (SSI) based on the genetic mechanisms involved in 'self' pollen rejection. Recent proteomic approaches to identify potential candidates involved in SI have shed light onto a number of previously unidentified mechanisms required for SI response. SI proteome research has progressed from the use of isoelectric focusing in early days to the latest third-generation technique of comparative isobaric tag for relative and absolute quantitation (iTRAQ) used in recent times. We will focus on the proteome-based approaches used to study self-incompatibility (GSI and SSI), recent developments in the field of incompatibility research with emphasis on SSI and future prospects of using proteomic approaches to study self-incompatibility.
Mammalian synthetic biology for studying the cell.
Mathur, Melina; Xiang, Joy S; Smolke, Christina D
2017-01-02
Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snijders, Antoine M.; Langley, Sasha A.; Kim, Young-Mo
Although the gut microbiome plays important roles in host physiology, health and disease1, we lack understanding of the complex interplay between host genetics and early life environment on the microbial and metabolic composition of the gut.We used the genetically diverse Collaborative Cross mouse system2 to discover that early life history impacts themicrobiome composition, whereas dietary changes have only a moderate effect. By contrast, the gut metabolome was shaped mostly by diet, with specific non-dietary metabolites explained by microbial metabolism. Quantitative trait analysis identified mouse genetic trait loci (QTL) that impact the abundances of specific microbes. Human orthologues of genes inmore » the mouse QTL are implicated in gastrointestinal cancer. Additionally, genes located in mouse QTL for Lactobacillales abundance are implicated in arthritis, rheumatic disease and diabetes. Furthermore, Lactobacillales abundance was predictive of higher host T-helper cell counts, suggesting an important link between Lactobacillales and host adaptive immunity.« less
Gene–environment interaction in tobacco-related cancers
Taioli, Emanuela
2008-01-01
This review summarizes the carcinogenic effects of tobacco smoke and the basis for interaction between tobacco smoke and genetic factors. Examples of published papers on gene–tobacco interaction and cancer risk are presented. The assessment of gene–environment interaction in tobacco-related cancers has been more complex than originally expected for several reasons, including the multiplicity of genes involved in tobacco metabolism, the numerous substrates metabolized by the relevant genes and the interaction of smoking with other metabolic pathways. Future studies on gene–environment interaction and cancer risk should include biomarkers of smoking dose, along with markers of quantitative historical exposure to tobacco. Epigenetic studies should be added to classic genetic analyses, in order to better understand gene–environmental interaction and individual susceptibility. Other metabolic pathways in competition with tobacco genetic metabolism/repair should be incorporated in epidemiological studies to generate a more complete picture of individual cancer risk associated with environmental exposure to carcinogens. PMID:18550573
A molecular mechanism of adaptation in an estuarine copepod
NASA Astrophysics Data System (ADS)
Bradley, Brian P.; Lane, Maxine A.; Gonzalez, Carole M.
The estuarine copepod Eurytemora affinis (Poppe) has been shown to adapt better at the individual (physiological) and population (genetic) level to rapidly cycling environments than to slowly cycling temperatures. In addition, female copepods are physiologically more flexible than males. Three questions arise from these observations. Why is the geographical and seasonal distribution of Eurytemora in estuaries so limited? Why is the genetic variance so high in an organism which is so physiologically flexible? And does the difference between sexes help to explain the maintenance of genetic variance? A mechanism of adaptation which may allow further examination of these questions is the increased synthesis of stress proteins, first identified as heat shock proteins (HSP). The HSPs in the copepod Eurytemora affinis are quantitatively and qualitatively related to stress. Temperature and osmotic stress, for example, induce different sets of proteins. Thus, better understanding the phenomenon may be useful in marine ecology.
"Genetically Engineered" Nanoelectronics
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Salazar-Lazaro, Carlos H.; Stoica, Adrian; Cwik, Thomas
2000-01-01
The quantum mechanical functionality of nanoelectronic devices such as resonant tunneling diodes (RTDs), quantum well infrared-photodetectors (QWIPs), quantum well lasers, and heterostructure field effect transistors (HFETs) is enabled by material variations on an atomic scale. The design and optimization of such devices requires a fundamental understanding of electron transport in such dimensions. The Nanoelectronic Modeling Tool (NEMO) is a general-purpose quantum device design and analysis tool based on a fundamental non-equilibrium electron transport theory. NEW was combined with a parallelized genetic algorithm package (PGAPACK) to evolve structural and material parameters to match a desired set of experimental data. A numerical experiment that evolves structural variations such as layer widths and doping concentrations is performed to analyze an experimental current voltage characteristic. The genetic algorithm is found to drive the NEMO simulation parameters close to the experimentally prescribed layer thicknesses and doping profiles. With such a quantitative agreement between theory and experiment design synthesis can be performed.
Mõttus, René; Marioni, Riccardo; Deary, Ian J
2017-02-01
Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities. © 2015 The Authors. Journal of Personality published by Wiley Periodicals, Inc.
Environmental quality and evolutionary potential: lessons from wild populations
Charmantier, Anne; Garant, Dany
2005-01-01
An essential requirement to determine a population's potential for evolutionary change is to quantify the amount of genetic variability expressed for traits under selection. Early investigations in laboratory conditions showed that the magnitude of the genetic and environmental components of phenotypic variation can change with environmental conditions. However, there is no consensus as to how the expression of genetic variation is sensitive to different environmental conditions. Recently, the study of quantitative genetics in the wild has been revitalized by new pedigree analyses based on restricted maximum likelihood, resulting in a number of studies investigating these questions in wild populations. Experimental manipulation of environmental quality in the wild, as well as the use of naturally occurring favourable or stressful environments, has broadened the treatment of different taxa and traits. Here, we conduct a meta-analysis on recent studies comparing heritability in favourable versus unfavourable conditions in non-domestic and non-laboratory animals. The results provide evidence for increased heritability in more favourable conditions, significantly so for morphometric traits but not for traits more closely related to fitness. We discuss how these results are explained by underlying changes in variance components, and how they represent a major step in our understanding of evolutionary processes in wild populations. We also show how these trends contrast with the prevailing view resulting mainly from laboratory experiments on Drosophila. Finally, we underline the importance of taking into account the environmental variation in models predicting quantitative trait evolution. PMID:16011915
Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian
2017-09-29
Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .
Study books on ADHD genetics: balanced or biased?
Te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans
2017-06-01
Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master's programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics' outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them.
2012-01-01
Background Drug resistance in the malaria parasite Plasmodium falciparum severely compromises the treatment and control of malaria. A knowledge of the critical mutations conferring resistance to particular drugs is important in understanding modes of drug action and mechanisms of resistances. They are required to design better therapies and limit drug resistance. A mutation in the gene (pfcrt) encoding a membrane transporter has been identified as a principal determinant of chloroquine resistance in P. falciparum, but we lack a full account of higher level chloroquine resistance. Furthermore, the determinants of resistance in the other major human malaria parasite, P. vivax, are not known. To address these questions, we investigated the genetic basis of chloroquine resistance in an isogenic lineage of rodent malaria parasite P. chabaudi in which high level resistance to chloroquine has been progressively selected under laboratory conditions. Results Loci containing the critical genes were mapped by Linkage Group Selection, using a genetic cross between the high-level chloroquine-resistant mutant and a genetically distinct sensitive strain. A novel high-resolution quantitative whole-genome re-sequencing approach was used to reveal three regions of selection on chr11, chr03 and chr02 that appear progressively at increasing drug doses on three chromosomes. Whole-genome sequencing of the chloroquine-resistant parent identified just four point mutations in different genes on these chromosomes. Three mutations are located at the foci of the selection valleys and are therefore predicted to confer different levels of chloroquine resistance. The critical mutation conferring the first level of chloroquine resistance is found in aat1, a putative aminoacid transporter. Conclusions Quantitative trait loci conferring selectable phenotypes, such as drug resistance, can be mapped directly using progressive genome-wide linkage group selection. Quantitative genome-wide short-read genome resequencing can be used to reveal these signatures of drug selection at high resolution. The identities of three genes (and mutations within them) conferring different levels of chloroquine resistance generate insights regarding the genetic architecture and mechanisms of resistance to chloroquine and other drugs. Importantly, their orthologues may now be evaluated for critical or accessory roles in chloroquine resistance in human malarias P. vivax and P. falciparum. PMID:22435897
Lubitz, Rebecca Jean; Komaromy, Miriam; Crawford, Beth; Beattie, Mary; Lee, Robin; Luce, Judith; Ziegler, John
2007-01-01
Genetic counseling for BRCA1 and BRCA2 mutations involves teaching about hereditary cancer, genetics and risk, subjects that are difficult to grasp and are routinely misunderstood. Supported by a grant from the Avon Foundation, the UCSF Cancer Risk Program started the first genetic testing and counseling service for a population of traditionally underserved women of varied ethnic and social backgrounds at the San Francisco General Hospital (SFGH). Informed by educational theory and clinical experience, we devised and piloted two simplified explanations of heredity and genetic risk, with the aim of uncovering how to best communicate genetics and risk to this underserved population. A "conventional" version comprised pictures of genes, pedigrees, and quantitative representations of risk. A "colloquial" pictorial version used an analogy of the "information book" of genes, family stories and vignettes, and visual representations of risk, without using scientific words such as genes or chromosomes. A verbal narrative accompanied each picture. We presented these modules to four focus groups of five to eight women recruited from the SFGH Family Practice Clinic. Overall, women preferred a picture-based approach and commented that additional text would have been distracting. The majority of women preferred the colloquial version because it was easier to understand and better conveyed a sense of comfort and hope. We conclude that simplicity, analogies, and familiarity support comprehension while vignettes, family stories, and photos of real people provide comfort and hope. These elements may promote understanding of complex scientific topics in healthcare, particularly when communicating with patients who come from disadvantaged backgrounds.
Heritability of Boldness and Hypoxia Avoidance in European Seabass, Dicentrarchus labrax.
Ferrari, Sébastien; Horri, Khaled; Allal, François; Vergnet, Alain; Benhaim, David; Vandeputte, Marc; Chatain, Béatrice; Bégout, Marie-Laure
2016-01-01
To understand the genetic basis of coping style in European seabass, fish from a full factorial mating (10 females x 50 males) were reared in common garden and individually tagged. Individuals coping style was characterized through behavior tests at four different ages, categorizing fish into proactive or reactive: a hypoxia avoidance test (at 255 days post hatching, dph) and 3 risk-taking tests (at 276, 286 and 304 dph). We observed significant heritability of the coping style, higher for the average of risk-taking scores (h2 = 0.45 ± 0.14) than for the hypoxia avoidance test (h2 = 0.19 ± 0.10). The genetic correlations between the three risk-taking scores were very high (rA = 0.96-0.99) showing that although their repeatability was moderately high (rP = 0.64-0.72), successive risk-taking tests evaluated the same genetic variation. A mild genetic correlation between the results of the hypoxia avoidance test and the average of risk-taking scores (0.45 ± 0.27) suggested that hypoxia avoidance and risk-taking tests do not address exactly the same behavioral and physiological responses. Genetic correlations between weight and risk taking traits showed negative values whatever the test used in our population i.e. reactive individual weights were larger. The results of this quantitative genetic analysis suggest a potential for the development of selection programs based on coping styles that could increase seabass welfare without altering growth performances. Overall, it also contributes to a better understanding of the origin and the significance of individual behavioral differences.
Pepin, K M; Spackman, E; Brown, J D; Pabilonia, K L; Garber, L P; Weaver, J T; Kennedy, D A; Patyk, K A; Huyvaert, K P; Miller, R S; Franklin, A B; Pedersen, K; Bogich, T L; Rohani, P; Shriner, S A; Webb, C T; Riley, S
2014-03-01
Wild birds are the primary source of genetic diversity for influenza A viruses that eventually emerge in poultry and humans. Much progress has been made in the descriptive ecology of avian influenza viruses (AIVs), but contributions are less evident from quantitative studies (e.g., those including disease dynamic models). Transmission between host species, individuals and flocks has not been measured with sufficient accuracy to allow robust quantitative evaluation of alternate control protocols. We focused on the United States of America (USA) as a case study for determining the state of our quantitative knowledge of potential AIV emergence processes from wild hosts to poultry. We identified priorities for quantitative research that would build on existing tools for responding to AIV in poultry and concluded that the following knowledge gaps can be addressed with current empirical data: (1) quantification of the spatio-temporal relationships between AIV prevalence in wild hosts and poultry populations, (2) understanding how the structure of different poultry sectors impacts within-flock transmission, (3) determining mechanisms and rates of between-farm spread, and (4) validating current policy-decision tools with data. The modeling studies we recommend will improve our mechanistic understanding of potential AIV transmission patterns in USA poultry, leading to improved measures of accuracy and reduced uncertainty when evaluating alternative control strategies. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea.
Lan, T H; Paterson, A H
2000-08-01
The enlarged inflorescence (curd) of cauliflower and broccoli provide not only a popular vegetable for human consumption, but also a unique opportunity for scientists who seek to understand the genetic basis of plant growth and development. By the comparison of quantitative trait loci (QTL) maps constructed from three different F(2) populations, we identified a total of 86 QTL that control eight curd-related traits in Brassica oleracea. The 86 QTL may reflect allelic variation in as few as 67 different genetic loci and 54 ancestral genes. Although the locations of QTL affecting a trait occasionally corresponded between different populations or between different homeologous Brassica chromosomes, our data supported other molecular and morphological data in suggesting that the Brassica genus is rapidly evolving. Comparative data enabled us to identify a number of candidate genes from Arabidopsis that warrant further investigation to determine if some of them might account for Brassica QTL. The Arabidopsis/Brassica system is an important example of both the challenges and opportunities associated with extrapolation of genomic information from facile models to large-genome taxa including major crops.
EvolQG - An R package for evolutionary quantitative genetics
Melo, Diogo; Garcia, Guilherme; Hubbe, Alex; Assis, Ana Paula; Marroig, Gabriel
2016-01-01
We present an open source package for performing evolutionary quantitative genetics analyses in the R environment for statistical computing. Evolutionary theory shows that evolution depends critically on the available variation in a given population. When dealing with many quantitative traits this variation is expressed in the form of a covariance matrix, particularly the additive genetic covariance matrix or sometimes the phenotypic matrix, when the genetic matrix is unavailable and there is evidence the phenotypic matrix is sufficiently similar to the genetic matrix. Given this mathematical representation of available variation, the \\textbf{EvolQG} package provides functions for calculation of relevant evolutionary statistics; estimation of sampling error; corrections for this error; matrix comparison via correlations, distances and matrix decomposition; analysis of modularity patterns; and functions for testing evolutionary hypotheses on taxa diversification. PMID:27785352
Design of microarray experiments for genetical genomics studies.
Bueno Filho, Júlio S S; Gilmour, Steven G; Rosa, Guilherme J M
2006-10-01
Microarray experiments have been used recently in genetical genomics studies, as an additional tool to understand the genetic mechanisms governing variation in complex traits, such as for estimating heritabilities of mRNA transcript abundances, for mapping expression quantitative trait loci, and for inferring regulatory networks controlling gene expression. Several articles on the design of microarray experiments discuss situations in which treatment effects are assumed fixed and without any structure. In the case of two-color microarray platforms, several authors have studied reference and circular designs. Here, we discuss the optimal design of microarray experiments whose goals refer to specific genetic questions. Some examples are used to illustrate the choice of a design for comparing fixed, structured treatments, such as genotypic groups. Experiments targeting single genes or chromosomic regions (such as with transgene research) or multiple epistatic loci (such as within a selective phenotyping context) are discussed. In addition, microarray experiments in which treatments refer to families or to subjects (within family structures or complex pedigrees) are presented. In these cases treatments are more appropriately considered to be random effects, with specific covariance structures, in which the genetic goals relate to the estimation of genetic variances and the heritability of transcriptional abundances.
Pacheco-Villalobos, David; Hardtke, Christian S
2012-06-05
Root system architecture is a trait that displays considerable plasticity because of its sensitivity to environmental stimuli. Nevertheless, to a significant degree it is genetically constrained as suggested by surveys of its natural genetic variation. A few regulators of root system architecture have been isolated as quantitative trait loci through the natural variation approach in the dicotyledon model, Arabidopsis. This provides proof of principle that allelic variation for root system architecture traits exists, is genetically tractable, and might be exploited for crop breeding. Beyond Arabidopsis, Brachypodium could serve as both a credible and experimentally accessible model for root system architecture variation in monocotyledons, as suggested by first glimpses of the different root morphologies of Brachypodium accessions. Whether a direct knowledge transfer gained from molecular model system studies will work in practice remains unclear however, because of a lack of comprehensive understanding of root system physiology in the native context. For instance, apart from a few notable exceptions, the adaptive value of genetic variation in root system modulators is unknown. Future studies should thus aim at comprehensive characterization of the role of genetic players in root system architecture variation by taking into account the native environmental conditions, in particular soil characteristics.
Savage, Jeanne E; Jansen, Philip R; Stringer, Sven; Watanabe, Kyoko; Bryois, Julien; de Leeuw, Christiaan A; Nagel, Mats; Awasthi, Swapnil; Barr, Peter B; Coleman, Jonathan R I; Grasby, Katrina L; Hammerschlag, Anke R; Kaminski, Jakob A; Karlsson, Robert; Krapohl, Eva; Lam, Max; Nygaard, Marianne; Reynolds, Chandra A; Trampush, Joey W; Young, Hannah; Zabaneh, Delilah; Hägg, Sara; Hansell, Narelle K; Karlsson, Ida K; Linnarsson, Sten; Montgomery, Grant W; Muñoz-Manchado, Ana B; Quinlan, Erin B; Schumann, Gunter; Skene, Nathan G; Webb, Bradley T; White, Tonya; Arking, Dan E; Avramopoulos, Dimitrios; Bilder, Robert M; Bitsios, Panos; Burdick, Katherine E; Cannon, Tyrone D; Chiba-Falek, Ornit; Christoforou, Andrea; Cirulli, Elizabeth T; Congdon, Eliza; Corvin, Aiden; Davies, Gail; Deary, Ian J; DeRosse, Pamela; Dickinson, Dwight; Djurovic, Srdjan; Donohoe, Gary; Conley, Emily Drabant; Eriksson, Johan G; Espeseth, Thomas; Freimer, Nelson A; Giakoumaki, Stella; Giegling, Ina; Gill, Michael; Glahn, David C; Hariri, Ahmad R; Hatzimanolis, Alex; Keller, Matthew C; Knowles, Emma; Koltai, Deborah; Konte, Bettina; Lahti, Jari; Le Hellard, Stephanie; Lencz, Todd; Liewald, David C; London, Edythe; Lundervold, Astri J; Malhotra, Anil K; Melle, Ingrid; Morris, Derek; Need, Anna C; Ollier, William; Palotie, Aarno; Payton, Antony; Pendleton, Neil; Poldrack, Russell A; Räikkönen, Katri; Reinvang, Ivar; Roussos, Panos; Rujescu, Dan; Sabb, Fred W; Scult, Matthew A; Smeland, Olav B; Smyrnis, Nikolaos; Starr, John M; Steen, Vidar M; Stefanis, Nikos C; Straub, Richard E; Sundet, Kjetil; Tiemeier, Henning; Voineskos, Aristotle N; Weinberger, Daniel R; Widen, Elisabeth; Yu, Jin; Abecasis, Goncalo; Andreassen, Ole A; Breen, Gerome; Christiansen, Lene; Debrabant, Birgit; Dick, Danielle M; Heinz, Andreas; Hjerling-Leffler, Jens; Ikram, M Arfan; Kendler, Kenneth S; Martin, Nicholas G; Medland, Sarah E; Pedersen, Nancy L; Plomin, Robert; Polderman, Tinca J C; Ripke, Stephan; van der Sluis, Sophie; Sullivan, Patrick F; Vrieze, Scott I; Wright, Margaret J; Posthuma, Danielle
2018-06-25
Intelligence is highly heritable 1 and a major determinant of human health and well-being 2 . Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence 3-7 , but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
Halberg, Richard B.; Chen, Xiaodi; Amos-Landgraf, James M.; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C.; Dove, William F.
2008-01-01
Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes. PMID:18723878
Halberg, Richard B; Chen, Xiaodi; Amos-Landgraf, James M; White, Alanna; Rasmussen, Kristin; Clipson, Linda; Pasch, Cheri; Sullivan, Ruth; Pitot, Henry C; Dove, William F
2008-09-01
Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.
Model-Based Linkage Analysis of a Quantitative Trait.
Song, Yeunjoo E; Song, Sunah; Schnell, Audrey H
2017-01-01
Linkage Analysis is a family-based method of analysis to examine whether any typed genetic markers cosegregate with a given trait, in this case a quantitative trait. If linkage exists, this is taken as evidence in support of a genetic basis for the trait. Historically, linkage analysis was performed using a binary disease trait, but has been extended to include quantitative disease measures. Quantitative traits are desirable as they provide more information than binary traits. Linkage analysis can be performed using single-marker methods (one marker at a time) or multipoint (using multiple markers simultaneously). In model-based linkage analysis the genetic model for the trait of interest is specified. There are many software options for performing linkage analysis. Here, we use the program package Statistical Analysis for Genetic Epidemiology (S.A.G.E.). S.A.G.E. was chosen because it also includes programs to perform data cleaning procedures and to generate and test genetic models for a quantitative trait, in addition to performing linkage analysis. We demonstrate in detail the process of running the program LODLINK to perform single-marker analysis, and MLOD to perform multipoint analysis using output from SEGREG, where SEGREG was used to determine the best fitting statistical model for the trait.
Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir
Nicholas C. Wheeler; Kathleen D. Jermstad; Konstantin V. Krutovsky; Sally N. Aitken; Glenn T. Howe; Jodie Krakowski; David B. Neale
2005-01-01
Quantitative trait locus (QTL) analyses are used by geneticists to characterize the genetic architecture of quantitative traits, provide a foundation for marker-aided-selection (MAS), and provide a framework for positional selection of candidate genes. The most useful QTL for breeding applications are those that have been verified in time, space, and/or genetic...
The phylogeny of swimming kinematics: The environment controls flagellar waveforms in sperm motility
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Burton, Lisa; Zimmer, Richard; Hosoi, Anette; Stocker, Roman
2013-11-01
In recent years, phylogenetic and molecular analyses have dominated the study of ecology and evolution. However, physical interactions between organisms and their environment, a fundamental determinant of organism ecology and evolution, are mediated by organism form and function, highlighting the need to understand the mechanics of basic survival strategies, including locomotion. Focusing on spermatozoa, we combined high-speed video microscopy and singular value decomposition analysis to quantitatively compare the flagellar waveforms of eight species, ranging from marine invertebrates to humans. We found striking similarities in sperm swimming kinematics between genetically dissimilar organisms, which could not be uncovered by phylogenetic analysis. The emergence of dominant waveform patterns across species are suggestive of biological optimization for flagellar locomotion and point toward environmental cues as drivers of this convergence. These results reinforce the power of quantitative kinematic analysis to understand the physical drivers of evolution and as an approach to uncover new solutions for engineering applications, such as micro-robotics.
Wang, Hai-yan
2015-08-01
The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.
Remais, Justin V; Xiao, Ning; Akullian, Adam; Qiu, Dongchuan; Blair, David
2011-04-01
For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease.
1999-06-18
and 1.54 microns and to compute the spectral extinction coefficient. 3. Near IR (1.54 um) Laser rangefinders measure the time-of-flight of a short...quantitative understanding n n Research ( long term) n Encourage research in adaptive systems : evolutionary programming, genetic algorithms, neural nets... measures , such as false alarm rate , are not measurable in field applications. Other measures such as Incremental Fault Resolution, Operational Isolation
vonHoldt, Bridgett M; Shuldiner, Emily; Koch, Ilana Janowitz; Kartzinel, Rebecca Y; Hogan, Andrew; Brubaker, Lauren; Wanser, Shelby; Stahler, Daniel; Wynne, Clive D L; Ostrander, Elaine A; Sinsheimer, Janet S; Udell, Monique A R
2017-07-01
Although considerable progress has been made in understanding the genetic basis of morphologic traits (for example, body size and coat color) in dogs and wolves, the genetic basis of their behavioral divergence is poorly understood. An integrative approach using both behavioral and genetic data is required to understand the molecular underpinnings of the various behavioral characteristics associated with domestication. We analyze a 5-Mb genomic region on chromosome 6 previously found to be under positive selection in domestic dog breeds. Deletion of this region in humans is linked to Williams-Beuren syndrome (WBS), a multisystem congenital disorder characterized by hypersocial behavior. We associate quantitative data on behavioral phenotypes symptomatic of WBS in humans with structural changes in the WBS locus in dogs. We find that hypersociability, a central feature of WBS, is also a core element of domestication that distinguishes dogs from wolves. We provide evidence that structural variants in GTF2I and GTF2IRD1 , genes previously implicated in the behavioral phenotype of patients with WBS and contained within the WBS locus, contribute to extreme sociability in dogs. This finding suggests that there are commonalities in the genetic architecture of WBS and canine tameness and that directional selection may have targeted a unique set of linked behavioral genes of large phenotypic effect, allowing for rapid behavioral divergence of dogs and wolves, facilitating coexistence with humans.
Learning abilities and disabilities: generalist genes in early adolescence.
Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert
2009-01-01
The new view of cognitive neuropsychology that considers not just case studies of rare severe disorders but also common disorders, as well as normal variation and quantitative traits, is more amenable to recent advances in molecular genetics, such as genome-wide association studies, and advances in quantitative genetics, such as multivariate genetic analysis. A surprising finding emerging from multivariate quantitative genetic studies across diverse learning abilities is that most genetic influences are shared: they are "generalist", rather than "specialist". We exploited widespread access to inexpensive and fast Internet connections in the United Kingdom to assess over 5000 pairs of 12-year-old twins from the Twins Early Development Study (TEDS) on four distinct batteries: reading, mathematics, general cognitive ability (g) and, for the first time, language. Genetic correlations remain high among all of the measured abilities, with language as highly correlated genetically with g as reading and mathematics. Despite developmental upheaval, generalist genes remain important into early adolescence, suggesting optimal strategies for molecular genetic studies seeking to identify the genes of small effect that influence learning abilities and disabilities.
Study books on ADHD genetics: balanced or biased?
te Meerman, Sanne; Batstra, Laura; Hoekstra, Rink; Grietens, Hans
2017-01-01
ABSTRACT Academic study books are essential assets for disseminating knowledge about ADHD to future healthcare professionals. This study examined if they are balanced with regard to genetics. We selected and analyzed study books (N=43) used in (pre) master’s programmes at 10 universities in the Netherlands. Because the mere behaviourally informed quantitative genetics give a much higher effect size of the genetic involvement in ADHD, it is important that study books contrast these findings with molecular genetics’ outcomes. The latter studies use real genetic data, and their low effect sizes expose the potential weaknesses of quantitative genetics, like underestimating the involvement of the environment. Only a quarter of books mention both effect sizes and contrast these findings, while another quarter does not discuss any effect size. Most importantly, however, roughly half of the books in our sample mention only the effect sizes from quantitative genetic studies without addressing the low explained variance of molecular genetic studies. This may confuse readers by suggesting that the weakly associated genes support the quite spectacular, but potentially flawed estimates of twin, family and adoption studies, while they actually contradict them. PMID:28532325
Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I
2016-01-01
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.
Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V
2017-01-01
ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.
Inheritance of bacterial spot resistance in Capsicum annuum var. annuum.
Silva, L R A; Rodrigues, R; Pimenta, S; Correa, J W S; Araújo, M S B; Bento, C S; Sudré, C P
2017-04-20
Since 2008, Brazil is the largest consumer of agrochemicals, which increases production costs and risks of agricultural products, environment, and farmers' contamination. Sweet pepper, which is one of the main consumed vegetables in the country, is on top of the list of the most sprayed crops. The bacterial spot, caused by Xanthomonas spp, is one of the most damaging diseases of pepper crops. Genetic resistant consists of a suitable way of disease control, but development of durable resistant cultivars as well as understanding of plant-bacterium interaction is being a challenge for plant breeders and pathologists worldwide. Inheritance of disease resistance is often variable, depending on genetic background of the parents. The knowledge of the genetic base controlling such resistance is the first step in a breeding program aiming to develop new genotypes, bringing together resistance and other superior agronomic traits. This study reports the genetic basis of bacterial spot resistance in Capsicum annuum var. annuum using mean generation analysis from crosses between accessions UENF 2285 (susceptible) and UENF 1381 (resistant). The plants of each generation were grown in a greenhouse and leaflets were inoculated with bacterial strain ENA 4135 at 10 5 CFU/mL in 1.0 cm 2 of the mesophyll. Evaluations were performed using a scoring scale whose grades ranged from 1.0 (resistant) to 5.0 (susceptible), depending on symptom manifestation. Genetic control of bacterial spot has a quantitative aspect, with higher additive effect. The quantitative analysis showed that five genes were the minimum number controlling bacterial spot resistance. Additive effect was higher (6.06) than dominant (3.31) and explained 86.36% of total variation.
An integrative model of evolutionary covariance: a symposium on body shape in fishes.
Walker, Jeffrey A
2010-12-01
A major direction of current and future biological research is to understand how multiple, interacting functional systems coordinate in producing a body that works. This understanding is complicated by the fact that organisms need to work well in multiple environments, with both predictable and unpredictable environmental perturbations. Furthermore, organismal design reflects a history of past environments and not a plan for future environments. How complex, interacting functional systems evolve, then, is a truly grand challenge. In accepting the challenge, an integrative model of evolutionary covariance is developed. The model combines quantitative genetics, functional morphology/physiology, and functional ecology. The model is used to convene scientists ranging from geneticists, to physiologists, to ecologists, to engineers to facilitate the emergence of body shape in fishes as a model system for understanding how complex, interacting functional systems develop and evolve. Body shape of fish is a complex morphology that (1) results from many developmental paths and (2) functions in many different behaviors. Understanding the coordination and evolution of the many paths from genes to body shape, body shape to function, and function to a working fish body in a dynamic environment is now possible given new technologies from genetics to engineering and new theoretical models that integrate the different levels of biological organization (from genes to ecology).
Corwin, Jason A.; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J.
2016-01-01
The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes. PMID:26866607
Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Subedy, Anushriya; Eshbaugh, Robert; Palmer, Christine; Maloof, Julin; Kliebenstein, Daniel J
2016-02-01
The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs) and nucleotide-binding site leucine-rich repeat proteins (NLRs), were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60%) when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen genotypes.
Wang, Haiqin; Liu, Wenlong; He, Fuyuan; Chen, Zuohong; Zhang, Xili; Xie, Xianggui; Zeng, Jiaoli; Duan, Xiaopeng
2012-02-01
To explore the once sampling quantitation of Houttuynia cordata through its DNA polymorphic bands that carried information entropy, from other form that the expression of traditional Chinese medicine polymorphism, genetic polymorphism, of traditional Chinese medicine. The technique of inter simple sequence repeat (ISSR) was applied to analyze genetic polymorphism of H. cordata samples from the same GAP producing area, the DNA genetic bands were transformed its into the information entropy, and the minimum once sampling quantitation with the mathematical mode was measured. One hundred and thirty-four DNA bands were obtained by using 9 screened ISSR primers to amplify from 46 strains DNA samples of H. cordata from the same GAP, the information entropy was H=0.365 6-0.978 6, and RSD was 14.75%. The once sampling quantitation was W=11.22 kg (863 strains). The "once minimum sampling quantitation" were calculated from the angle of the genetic polymorphism of H. cordata, and a great differences between this volume and the amount from the angle of fingerprint were found.
Quantitative genetic methods depending on the nature of the phenotypic trait.
de Villemereuil, Pierre
2018-01-24
A consequence of the assumptions of the infinitesimal model, one of the most important theoretical foundations of quantitative genetics, is that phenotypic traits are predicted to be most often normally distributed (so-called Gaussian traits). But phenotypic traits, especially those interesting for evolutionary biology, might be shaped according to very diverse distributions. Here, I show how quantitative genetics tools have been extended to account for a wider diversity of phenotypic traits using first the threshold model and then more recently using generalized linear mixed models. I explore the assumptions behind these models and how they can be used to study the genetics of non-Gaussian complex traits. I also comment on three recent methodological advances in quantitative genetics that widen our ability to study new kinds of traits: the use of "modular" hierarchical modeling (e.g., to study survival in the context of capture-recapture approaches for wild populations); the use of aster models to study a set of traits with conditional relationships (e.g., life-history traits); and, finally, the study of high-dimensional traits, such as gene expression. © 2018 New York Academy of Sciences.
Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.
2014-01-01
Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784
Human Facial Shape and Size Heritability and Genetic Correlations.
Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A
2017-02-01
The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.
ERIC Educational Resources Information Center
Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…
Genetic analysis of dyslexia candidate genes in the European cross-linguistic NeuroDys cohort.
Becker, Jessica; Czamara, Darina; Scerri, Tom S; Ramus, Franck; Csépe, Valéria; Talcott, Joel B; Stein, John; Morris, Andrew; Ludwig, Kerstin U; Hoffmann, Per; Honbolygó, Ferenc; Tóth, Dénes; Fauchereau, Fabien; Bogliotti, Caroline; Iannuzzi, Stéphanie; Chaix, Yves; Valdois, Sylviane; Billard, Catherine; George, Florence; Soares-Boucaud, Isabelle; Gérard, Christophe-Loïc; van der Mark, Sanne; Schulz, Enrico; Vaessen, Anniek; Maurer, Urs; Lohvansuu, Kaisa; Lyytinen, Heikki; Zucchelli, Marco; Brandeis, Daniel; Blomert, Leo; Leppänen, Paavo H T; Bruder, Jennifer; Monaco, Anthony P; Müller-Myhsok, Bertram; Kere, Juha; Landerl, Karin; Nöthen, Markus M; Schulte-Körne, Gerd; Paracchini, Silvia; Peyrard-Janvid, Myriam; Schumacher, Johannes
2014-05-01
Dyslexia is one of the most common childhood disorders with a prevalence of around 5-10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a European cross-linguistic sample of school-age children - the NeuroDys cohort - that includes more than 900 individuals with dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls. Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both case-control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated. Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was significantly associated with either case-control status or quantitative measurements of word-reading or spelling in the meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger sample sizes to validate possibly weak genetic effects.
Universality and predictability in molecular quantitative genetics.
Nourmohammad, Armita; Held, Torsten; Lässig, Michael
2013-12-01
Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.
Takahashi, Kazuo H
2017-02-01
Drosophila wings have been a model system to study the effect of HSP90 on quantitative trait variation. The effect of HSP90 inhibition on environmental buffering of wing morphology varies among studies while the genetic buffering effect of it was examined in only one study and was not detected. Variable results so far might show that the genetic background influences the environmental and genetic buffering effect of HSP90. In the previous studies, the number of the genetic backgrounds used is limited. To examine the effect of HSP90 inhibition with a larger number of genetic backgrounds than the previous studies, 20 wild-type strains of Drosophila melanogaster were used in this study. Here I investigated the effect of HSP90 inhibition on the environmental buffering of wing shape and size by assessing within-individual and among-individual variations, and as a result, I found little or very weak effects on environmental and genetic buffering. The current results suggest that the role of HSP90 as a global regulator of environmental and genetic buffering is limited at least in quantitative traits.
Bourret, A; Garant, D
2017-03-01
Quantitative genetics approaches, and particularly animal models, are widely used to assess the genetic (co)variance of key fitness related traits and infer adaptive potential of wild populations. Despite the importance of precision and accuracy of genetic variance estimates and their potential sensitivity to various ecological and population specific factors, their reliability is rarely tested explicitly. Here, we used simulations and empirical data collected from an 11-year study on tree swallow (Tachycineta bicolor), a species showing a high rate of extra-pair paternity and a low recruitment rate, to assess the importance of identity errors, structure and size of the pedigree on quantitative genetic estimates in our dataset. Our simulations revealed an important lack of precision in heritability and genetic-correlation estimates for most traits, a low power to detect significant effects and important identifiability problems. We also observed a large bias in heritability estimates when using the social pedigree instead of the genetic one (deflated heritabilities) or when not accounting for an important cause of resemblance among individuals (for example, permanent environment or brood effect) in model parameterizations for some traits (inflated heritabilities). We discuss the causes underlying the low reliability observed here and why they are also likely to occur in other study systems. Altogether, our results re-emphasize the difficulties of generalizing quantitative genetic estimates reliably from one study system to another and the importance of reporting simulation analyses to evaluate these important issues.
Advances in Quantitative Proteomics of Microbes and Microbial Communities
NASA Astrophysics Data System (ADS)
Waldbauer, J.; Zhang, L.; Rizzo, A. I.
2015-12-01
Quantitative measurements of gene expression are key to developing a mechanistic, predictive understanding of how microbial metabolism drives many biogeochemical fluxes and responds to environmental change. High-throughput RNA-sequencing can afford a wealth of information about transcript-level expression patterns, but it is becoming clear that expression dynamics are often very different at the protein level where biochemistry actually occurs. These divergent dynamics between levels of biological organization necessitate quantitative proteomic measurements to address many biogeochemical questions. The protein-level expression changes that underlie shifts in the magnitude, or even the direction, of metabolic and biogeochemical fluxes can be quite subtle and test the limits of current quantitative proteomics techniques. Here we describe methodologies for high-precision, whole-proteome quantification that are applicable to both model organisms of biogeochemical interest that may not be genetically tractable, and to complex community samples from natural environments. Employing chemical derivatization of peptides with multiple isotopically-coded tags, this strategy is rapid and inexpensive, can be implemented on a wide range of mass spectrometric instrumentation, and is relatively insensitive to chromatographic variability. We demonstrate the utility of this quantitative proteomics approach in application to both isolates and natural communities of sulfur-metabolizing and photosynthetic microbes.
Biel, Nikolett M; Santostefano, Katherine E; DiVita, Bayli B; El Rouby, Nihal; Carrasquilla, Santiago D; Simmons, Chelsey; Nakanishi, Mahito; Cooper-DeHoff, Rhonda M; Johnson, Julie A; Terada, Naohiro
2015-12-01
Studies in hypertension (HTN) pharmacogenomics seek to identify genetic sources of variable antihypertensive drug response. Genetic association studies have detected single-nucleotide polymorphisms (SNPs) that link to drug responses; however, to understand mechanisms underlying how genetic traits alter drug responses, a biological interface is needed. Patient-derived induced pluripotent stem cells (iPSCs) provide a potential source for studying otherwise inaccessible tissues that may be important to antihypertensive drug response. The present study established multiple iPSC lines from an HTN pharmacogenomics cohort. We demonstrated that established HTN iPSCs can robustly and reproducibly differentiate into functional vascular smooth muscle cells (VSMCs), a cell type most relevant to vasculature tone control. Moreover, a sensitive traction force microscopy assay demonstrated that iPSC-derived VSMCs show a quantitative contractile response on physiological stimulus of endothelin-1. Furthermore, the inflammatory chemokine tumor necrosis factor α induced a typical VSMC response in iPSC-derived VSMCs. These studies pave the way for a large research initiative to decode biological significance of identified SNPs in hypertension pharmacogenomics. Treatment of hypertension remains suboptimal, and a pharmacogenomics approach seeks to identify genetic biomarkers that could be used to guide treatment decisions; however, it is important to understand the biological underpinnings of genetic associations. Mouse models do not accurately recapitulate individual patient responses based on their genetics, and hypertension-relevant cells are difficult to obtain from patients. Induced pluripotent stem cell (iPSC) technology provides a great interface to bring patient cells with their genomic data into the laboratory and to study hypertensive responses. As an initial step, the present study established an iPSC bank from patients with primary hypertension and demonstrated an effective and reproducible method of generating functional vascular smooth muscle cells. ©AlphaMed Press.
Genetic interaction networks: better understand to better predict
Boucher, Benjamin; Jenna, Sarah
2013-01-01
A genetic interaction (GI) between two genes generally indicates that the phenotype of a double mutant differs from what is expected from each individual mutant. In the last decade, genome scale studies of quantitative GIs were completed using mainly synthetic genetic array technology and RNA interference in yeast and Caenorhabditis elegans. These studies raised questions regarding the functional interpretation of GIs, the relationship of genetic and molecular interaction networks, the usefulness of GI networks to infer gene function and co-functionality, the evolutionary conservation of GI, etc. While GIs have been used for decades to dissect signaling pathways in genetic models, their functional interpretations are still not trivial. The existence of a GI between two genes does not necessarily imply that these two genes code for interacting proteins or that the two genes are even expressed in the same cell. In fact, a GI only implies that the two genes share a functional relationship. These two genes may be involved in the same biological process or pathway; or they may also be involved in compensatory pathways with unrelated apparent function. Considering the powerful opportunity to better understand gene function, genetic relationship, robustness and evolution, provided by a genome-wide mapping of GIs, several in silico approaches have been employed to predict GIs in unicellular and multicellular organisms. Most of these methods used weighted data integration. In this article, we will review the later knowledge acquired on GI networks in metazoans by looking more closely into their relationship with pathways, biological processes and molecular complexes but also into their modularity and organization. We will also review the different in silico methods developed to predict GIs and will discuss how the knowledge acquired on GI networks can be used to design predictive tools with higher performances. PMID:24381582
Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain
2011-01-01
Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST
Coalescence and genetic diversity in sexual populations under selection.
Neher, Richard A; Kessinger, Taylor A; Shraiman, Boris I
2013-09-24
In sexual populations, selection operates neither on the whole genome, which is repeatedly taken apart and reassembled by recombination, nor on individual alleles that are tightly linked to the chromosomal neighborhood. The resulting interference between linked alleles reduces the efficiency of selection and distorts patterns of genetic diversity. Inference of evolutionary history from diversity shaped by linked selection requires an understanding of these patterns. Here, we present a simple but powerful scaling analysis identifying the unit of selection as the genomic "linkage block" with a characteristic length, , determined in a self-consistent manner by the condition that the rate of recombination within the block is comparable to the fitness differences between different alleles of the block. We find that an asexual model with the strength of selection tuned to that of the linkage block provides an excellent description of genetic diversity and the site frequency spectra compared with computer simulations. This linkage block approximation is accurate for the entire spectrum of strength of selection and is particularly powerful in scenarios with many weakly selected loci. The latter limit allows us to characterize coalescence, genetic diversity, and the speed of adaptation in the infinitesimal model of quantitative genetics.
Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing.
Garcia-Ojalvo, Jordi; Elowitz, Michael B; Strogatz, Steven H
2004-07-27
Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.
Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing
NASA Astrophysics Data System (ADS)
Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.
2004-07-01
Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators.
Biophysical Aspects of Spindle Evolution
NASA Astrophysics Data System (ADS)
Farhadifar, Reza; Baer, Charlie; Needleman, Daniel
2011-03-01
The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.
Translational research impacting on crop productivity in drought-prone environments.
Reynolds, Matthew; Tuberosa, Roberto
2008-04-01
Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.
Xie, Weilong; Yu, Kangfu; Pauls, K Peter; Navabi, Alireza
2012-04-01
The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.
Detecting Genetic Interactions for Quantitative Traits Using m-Spacing Entropy Measure
Yee, Jaeyong; Kwon, Min-Seok; Park, Taesung; Park, Mira
2015-01-01
A number of statistical methods for detecting gene-gene interactions have been developed in genetic association studies with binary traits. However, many phenotype measures are intrinsically quantitative and categorizing continuous traits may not always be straightforward and meaningful. Association of gene-gene interactions with an observed distribution of such phenotypes needs to be investigated directly without categorization. Information gain based on entropy measure has previously been successful in identifying genetic associations with binary traits. We extend the usefulness of this information gain by proposing a nonparametric evaluation method of conditional entropy of a quantitative phenotype associated with a given genotype. Hence, the information gain can be obtained for any phenotype distribution. Because any functional form, such as Gaussian, is not assumed for the entire distribution of a trait or a given genotype, this method is expected to be robust enough to be applied to any phenotypic association data. Here, we show its use to successfully identify the main effect, as well as the genetic interactions, associated with a quantitative trait. PMID:26339620
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, Elizabeth R.; Lowry, David B.; Juenger, Thomas E.
2016-01-01
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mapping population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes. PMID:27613751
Joseph, Bindu; Corwin, Jason A; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A; Kliebenstein, Daniel J
2013-06-01
To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis.
nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics.
Goodall-Copestake, William Paul
2018-05-12
Identifying genetic cues of functional relevance is key to understanding the drivers of evolution and increasingly important for the conservation of biodiversity. This study introduces nuclear ribosomal DNA (nrDNA) to mitochondrial DNA (mtDNA) copy number ratios as a metric with which to screen for this functional genetic variation prior to more extensive omics analyses. To illustrate the metric, quantitative PCR was used to estimate nrDNA (18S) to mtDNA (16S) copy number ratios in muscle tissue from samples of two zooplankton species: Salpa thompsoni caught near Elephant Island (Southern Ocean) and S. fusiformis sampled off Gough Island (South Atlantic). Average 18S:16S ratios in these samples were 9:1 and 3:1, respectively. nrDNA 45S arrays and mitochondrial genomes were then deep sequenced to uncover the sources of intra-individual genetic variation underlying these 18S:16S copy number differences. The deep sequencing profiles obtained were consistent with genetic changes resulting from adaptive processes, including an expansion of nrDNA and damage to mtDNA in S. thompsoni, potentially in response to the polar environment. Beyond this example from zooplankton, nrDNA:mtDNA copy number ratios offer a promising metric to help identify genetic variation of functional relevance in animals more broadly.
Joseph, Bindu; Corwin, Jason A.; Züst, Tobias; Li, Baohua; Iravani, Majid; Schaepman-Strub, Gabriela; Turnbull, Lindsay A.; Kliebenstein, Daniel J.
2013-01-01
To understand how genetic architecture translates between phenotypic levels, we mapped the genetic architecture of growth and defense within the Arabidopsis thaliana Kas × Tsu recombinant inbred line population. We measured plant growth using traditional size measurements and size-corrected growth rates. This population contains genetic variation in both the nuclear and cytoplasmic genomes, allowing us to separate their contributions. The cytoplasmic genome regulated a significant variance in growth but not defense, which was due to cytonuclear epistasis. Furthermore, growth adhered to an infinitesimal model of genetic architecture, while defense metabolism was more of a moderate-effect model. We found a lack of concordance between quantitative trait loci (QTL) regulating defense and those regulating growth. Given the published evidence proving the link between glucosinolates and growth, this is likely a false negative result caused by the limited population size. This size limitation creates an inability to test the entire potential genetic landscape possible between these two parents. We uncovered a significant effect of glucosinolates on growth once we accounted for allelic differences in growth QTLs. Therefore, other growth QTLs can mask the effects of defense upon growth. Investigating direct links across phenotypic hierarchies is fraught with difficulty; we identify issues complicating this analysis. PMID:23749847
Quantitative trait loci associated with anthracnose resistance in sorghum
USDA-ARS?s Scientific Manuscript database
With an aim to develop a durable resistance to the fungal disease anthracnose, two unique genetic sources of resistance were selected to create genetic mapping populations to identify regions of the sorghum genome that encode anthracnose resistance. A series of quantitative trait loci were identifi...
Quantitative PCR for Detection and Enumeration of Genetic Markers of Bovine Fecal Pollution
Accurate assessment of health risks associated with bovine (cattle) fecal pollution requires a reliable host-specific genetic marker and a rapid quantification method. We report the development of quantitative PCR assays for the detection of two recently described cow feces-spec...
Quantitative trait nucleotide analysis using Bayesian model selection.
Blangero, John; Goring, Harald H H; Kent, Jack W; Williams, Jeff T; Peterson, Charles P; Almasy, Laura; Dyer, Thomas D
2005-10-01
Although much attention has been given to statistical genetic methods for the initial localization and fine mapping of quantitative trait loci (QTLs), little methodological work has been done to date on the problem of statistically identifying the most likely functional polymorphisms using sequence data. In this paper we provide a general statistical genetic framework, called Bayesian quantitative trait nucleotide (BQTN) analysis, for assessing the likely functional status of genetic variants. The approach requires the initial enumeration of all genetic variants in a set of resequenced individuals. These polymorphisms are then typed in a large number of individuals (potentially in families), and marker variation is related to quantitative phenotypic variation using Bayesian model selection and averaging. For each sequence variant a posterior probability of effect is obtained and can be used to prioritize additional molecular functional experiments. An example of this quantitative nucleotide analysis is provided using the GAW12 simulated data. The results show that the BQTN method may be useful for choosing the most likely functional variants within a gene (or set of genes). We also include instructions on how to use our computer program, SOLAR, for association analysis and BQTN analysis.
A quantitative test of population genetics using spatiogenetic patterns in bacterial colonies.
Korolev, Kirill S; Xavier, João B; Nelson, David R; Foster, Kevin R
2011-10-01
It is widely accepted that population-genetics theory is the cornerstone of evolutionary analyses. Empirical tests of the theory, however, are challenging because of the complex relationships between space, dispersal, and evolution. Critically, we lack quantitative validation of the spatial models of population genetics. Here we combine analytics, on- and off-lattice simulations, and experiments with bacteria to perform quantitative tests of the theory. We study two bacterial species, the gut microbe Escherichia coli and the opportunistic pathogen Pseudomonas aeruginosa, and show that spatiogenetic patterns in colony biofilms of both species are accurately described by an extension of the one-dimensional stepping-stone model. We use one empirical measure, genetic diversity at the colony periphery, to parameterize our models and show that we can then accurately predict another key variable: the degree of short-range cell migration along an edge. Moreover, the model allows us to estimate other key parameters, including effective population size (density) at the expansion frontier. While our experimental system is a simplification of natural microbial community, we argue that it constitutes proof of principle that the spatial models of population genetics can quantitatively capture organismal evolution.
Characterization and Amplification of Gene-Based Simple Sequence Repeat (SSR) Markers in Date Palm.
Zhao, Yongli; Keremane, Manjunath; Prakash, Channapatna S; He, Guohao
2017-01-01
The paucity of molecular markers limits the application of genetic and genomic research in date palm (Phoenix dactylifera L.). Availability of expressed sequence tag (EST) sequences in date palm may provide a good resource for developing gene-based markers. This study characterizes a substantial fraction of transcriptome sequences containing simple sequence repeats (SSRs) from the EST sequences in date palm. The EST sequences studied are mainly homologous to those of Elaeis guineensis and Musa acuminata. A total of 911 gene-based SSR markers, characterized with functional annotations, have provided a useful basis not only for discovering candidate genes and understanding genetic basis of traits of interest but also for developing genetic and genomic tools for molecular research in date palm, such as diversity study, quantitative trait locus (QTL) mapping, and molecular breeding. The procedures of DNA extraction, polymerase chain reaction (PCR) amplification of these gene-based SSR markers, and gel electrophoresis of PCR products are described in this chapter.
Characterizing the Pyrenophora teres f. maculata–Barley Interaction Using Pathogen Genetics
Carlsen, Steven A.; Neupane, Anjan; Wyatt, Nathan A.; Richards, Jonathan K.; Faris, Justin D.; Xu, Steven S.; Brueggeman, Robert S.; Friesen, Timothy L.
2017-01-01
Pyrenophora teres f. maculata is the cause of the foliar disease spot form net blotch (SFNB) on barley. To evaluate pathogen genetics underlying the P. teres f. maculata–barley interaction, we developed a 105-progeny population by crossing two globally diverse isolates, one from North Dakota and the other from Western Australia. Progeny were phenotyped on a set of four barley genotypes showing a differential reaction to the parental isolates, then genotyped using a restriction site-associated-genotype-by-sequencing (RAD-GBS) approach. Genetic maps were developed for use in quantitative trait locus (QTL) analysis to identify virulence-associated QTL. Six QTL were identified on five different linkage groups and individually accounted for 20–37% of the disease variation, with the number of significant QTL ranging from two to four for the barley genotypes evaluated. The data presented demonstrate the complexity of virulence involved in the P. teres f. maculata–barley pathosystem and begins to lay the foundation for understanding this important interaction. PMID:28659291
Class, Barbara; Brommer, Jon E.
2015-01-01
In animal populations, as in humans, behavioural differences between individuals that are consistent over time and across contexts are considered to reflect personality, and suites of correlated behaviours expressed by individuals are known as behavioural syndromes. Lifelong stability of behavioural syndromes is often assumed, either implicitly or explicitly. Here, we use a quantitative genetic approach to study the developmental stability of a behavioural syndrome in a wild population of blue tits. We find that a behavioural syndrome formed by a strong genetic correlation of two personality traits in nestlings disappears in adults, and we demonstrate that genotype–age interaction is the likely mechanism underlying this change during development. A behavioural syndrome may hence change during organismal development, even when personality traits seem to be strongly physiologically or functionally linked in one age group. We outline how such developmental plasticity has important ramifications for understanding the mechanistic basis as well as the evolutionary consequences of behavioural syndromes. PMID:26041348
[Evolutionary process unveiled by the maximum genetic diversity hypothesis].
Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi
2013-05-01
As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.
Brodersen, Jakob; Seehausen, Ole
2014-01-01
While ecological monitoring and biodiversity assessment programs are widely implemented and relatively well developed to survey and monitor the structure and dynamics of populations and communities in many ecosystems, quantitative assessment and monitoring of genetic and phenotypic diversity that is important to understand evolutionary dynamics is only rarely integrated. As a consequence, monitoring programs often fail to detect changes in these key components of biodiversity until after major loss of diversity has occurred. The extensive efforts in ecological monitoring have generated large data sets of unique value to macro-scale and long-term ecological research, but the insights gained from such data sets could be multiplied by the inclusion of evolutionary biological approaches. We argue that the lack of process-based evolutionary thinking in ecological monitoring means a significant loss of opportunity for research and conservation. Assessment of genetic and phenotypic variation within and between species needs to be fully integrated to safeguard biodiversity and the ecological and evolutionary dynamics in natural ecosystems. We illustrate our case with examples from fishes and conclude with examples of ongoing monitoring programs and provide suggestions on how to improve future quantitative diversity surveys. PMID:25553061
Modeling Tumor Clonal Evolution for Drug Combinations Design.
Zhao, Boyang; Hemann, Michael T; Lauffenburger, Douglas A
2016-03-01
Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs.
The Molecular Basis of β-Thalassemia
Thein, Swee Lay
2013-01-01
The β-thalassemias are characterized by a quantitative deficiency of β-globin chains underlaid by a striking heterogeneity of molecular defects. Although most of the molecular lesions involve the structural β gene directly, some down-regulate the gene through distal cis effects, and rare trans-acting mutations have also been identified. Most β-thalassemias are inherited in a Mendelian recessive fashion but there is a subgroup of β-thalassemia alleles that behave as dominant negatives. Unraveling the molecular basis of β-thalassemia has provided a paradigm for understanding of much of human genetics. PMID:23637309
Pursuing Darwin’s curious parallel: Prospects for a science of cultural evolution
2017-01-01
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities. PMID:28739929
Pursuing Darwin's curious parallel: Prospects for a science of cultural evolution.
Mesoudi, Alex
2017-07-24
In the past few decades, scholars from several disciplines have pursued the curious parallel noted by Darwin between the genetic evolution of species and the cultural evolution of beliefs, skills, knowledge, languages, institutions, and other forms of socially transmitted information. Here, I review current progress in the pursuit of an evolutionary science of culture that is grounded in both biological and evolutionary theory, but also treats culture as more than a proximate mechanism that is directly controlled by genes. Both genetic and cultural evolution can be described as systems of inherited variation that change over time in response to processes such as selection, migration, and drift. Appropriate differences between genetic and cultural change are taken seriously, such as the possibility in the latter of nonrandomly guided variation or transformation, blending inheritance, and one-to-many transmission. The foundation of cultural evolution was laid in the late 20th century with population-genetic style models of cultural microevolution, and the use of phylogenetic methods to reconstruct cultural macroevolution. Since then, there have been major efforts to understand the sociocognitive mechanisms underlying cumulative cultural evolution, the consequences of demography on cultural evolution, the empirical validity of assumed social learning biases, the relative role of transformative and selective processes, and the use of quantitative phylogenetic and multilevel selection models to understand past and present dynamics of society-level change. I conclude by highlighting the interdisciplinary challenges of studying cultural evolution, including its relation to the traditional social sciences and humanities.
Holliday, Jason A; Aitken, Sally N; Cooke, Janice E K; Fady, Bruno; González-Martínez, Santiago C; Heuertz, Myriam; Jaramillo-Correa, Juan-Pablo; Lexer, Christian; Staton, Margaret; Whetten, Ross W; Plomion, Christophe
2017-02-01
Forest trees are an unparalleled group of organisms in their combined ecological, economic and societal importance. With widespread distributions, predominantly random mating systems and large population sizes, most tree species harbour extensive genetic variation both within and among populations. At the same time, demographic processes associated with Pleistocene climate oscillations and land-use change have affected contemporary range-wide diversity and may impinge on the potential for future adaptation. Understanding how these adaptive and neutral processes have shaped the genomes of trees species is therefore central to their management and conservation. As for many other taxa, the advent of high-throughput sequencing methods is expected to yield an understanding of the interplay between the genome and environment at a level of detail and depth not possible only a few years ago. An international conference entitled 'Genomics and Forest Tree Genetics' was held in May 2016, in Arcachon (France), and brought together forest geneticists with a wide range of research interests to disseminate recent efforts that leverage contemporary genomic tools to probe the population, quantitative and evolutionary genomics of trees. An important goal of the conference was to discuss how such data can be applied to both genome-enabled breeding and the conservation of forest genetic resources under land use and climate change. Here, we report discoveries presented at the meeting and discuss how the ecological genomic toolkit can be used to address both basic and applied questions in tree biology. © 2016 John Wiley & Sons Ltd.
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria (FIB), and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manure-amended agricultural soils. Known concentrations of transformed green...
USDA-ARS?s Scientific Manuscript database
The genomics revolution provides vital tools to address global food security. Yet to be incorporated into livestock breeding, molecular techniques need to be integrated into a quantitative genetics framework. Within the U.S., with shrinking faculty numbers with the requisite skills, the capacity to ...
This study examined persistence and decay of bacterial pathogens, fecal indicator bacteria, and emerging real-time quantitative PCR (qPCR) genetic markers for rapid detection of fecal pollution in manre-amended agricultural soils. Known concentrations of transformed green fluore...
Andrew D. Bower; Bryce A. Richardson; Valerie Hipkins; Regina Rochefort; Carol Aubry
2011-01-01
Analysis of "neutral" molecular markers and "adaptive" quantitative traits are common methods of assessing genetic diversity and population structure. Molecular markers typically reflect the effects of demographic and stochastic processes but are generally assumed to not reflect natural selection. Conversely, quantitative (or "adaptive")...
Classification of cassava genotypes based on qualitative and quantitative data.
Oliveira, E J; Oliveira Filho, O S; Santos, V S
2015-02-02
We evaluated the genetic variation of cassava accessions based on qualitative (binomial and multicategorical) and quantitative traits (continuous). We characterized 95 accessions obtained from the Cassava Germplasm Bank of Embrapa Mandioca e Fruticultura; we evaluated these accessions for 13 continuous, 10 binary, and 25 multicategorical traits. First, we analyzed the accessions based only on quantitative traits; next, we conducted joint analysis (qualitative and quantitative traits) based on the Ward-MLM method, which performs clustering in two stages. According to the pseudo-F, pseudo-t2, and maximum likelihood criteria, we identified five and four groups based on quantitative trait and joint analysis, respectively. The smaller number of groups identified based on joint analysis may be related to the nature of the data. On the other hand, quantitative data are more subject to environmental effects in the phenotype expression; this results in the absence of genetic differences, thereby contributing to greater differentiation among accessions. For most of the accessions, the maximum probability of classification was >0.90, independent of the trait analyzed, indicating a good fit of the clustering method. Differences in clustering according to the type of data implied that analysis of quantitative and qualitative traits in cassava germplasm might explore different genomic regions. On the other hand, when joint analysis was used, the means and ranges of genetic distances were high, indicating that the Ward-MLM method is very useful for clustering genotypes when there are several phenotypic traits, such as in the case of genetic resources and breeding programs.
Interdependence of cell growth and gene expression: origins and consequences.
Scott, Matthew; Gunderson, Carl W; Mateescu, Eduard M; Zhang, Zhongge; Hwa, Terence
2010-11-19
In bacteria, the rate of cell proliferation and the level of gene expression are intimately intertwined. Elucidating these relations is important both for understanding the physiological functions of endogenous genetic circuits and for designing robust synthetic systems. We describe a phenomenological study that reveals intrinsic constraints governing the allocation of resources toward protein synthesis and other aspects of cell growth. A theory incorporating these constraints can accurately predict how cell proliferation and gene expression affect one another, quantitatively accounting for the effect of translation-inhibiting antibiotics on gene expression and the effect of gratuitous protein expression on cell growth. The use of such empirical relations, analogous to phenomenological laws, may facilitate our understanding and manipulation of complex biological systems before underlying regulatory circuits are elucidated.
Plant Genome Size Research: A Field In Focus
BENNETT, M. D.; LEITCH, I. J.
2005-01-01
This Special Issue contains 18 papers arising from presentations at the Second Plant Genome Size Workshop and Discussion Meeting (hosted by the Royal Botanic Gardens, Kew, 8–12 September, 2003). This preface provides an overview of these papers, setting their key contents in the broad framework of this highly active field. It also highlights a few overarching issues with wide biological impact or interest, including (1) the need to unify terminology relating to C-value and genome size, (2) the ongoing quest for accurate gold standards for accurate plant genome size estimation, (3) how knowledge of species' DNA amounts has increased in recent years, (4) the existence, causes and significance of intraspecific variation, (5) recent progress in understanding the mechanisms and evolutionary patterns of genome size change, and (6) the impact of genome size knowledge on related biological activities such as genetic fingerprinting and quantitative genetics. The paper offers a vision of how increased knowledge and understanding of genome size will contribute to holisitic genomic studies in both plants and animals in the next decade. PMID:15596455
QTL mapping of selenium content using a RIL population in wheat
Wang, Pei; Wang, Huinan; Liu, Qing; Tian, Xia; Shi, Yanxi
2017-01-01
Selenium (Se) is an essential trace element that plays various roles in human health. Understanding the genetic control of Se content and quantitative trait loci (QTL) mapping provide a basis for Se biofortification of wheat to enhance grain Se content. In the present study, a set of recombinant inbred lines (RILs) derived from two Chinese winter wheat varieties (Tainong18 and Linmai6) was used to detect QTLs for Se content in hydroponic and field trials. In total, 16 QTLs for six Se content-related traits were detected on eight chromosomes, 1B, 2B, 4B, 5A, 5B, 5D, 6A, and 7D. Of these, seven QTLs were detected at the seedling stage and nine at the adult stage. The contribution of each QTL to Se content ranged from 7.37% to 20.22%. QSsece-7D.2, located between marker loci D-3033829 and D-1668160, had the highest contribution (20.22%). This study helps in understanding the genetic basis for Se contents and will provide a basis for gene mapping of Se content in wheat. PMID:28880898
Bone Cell Bioenergetics and Skeletal Energy Homeostasis
Riddle, Ryan C.; Clemens, Thomas L.
2017-01-01
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease. PMID:28202599
Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre
2002-01-01
Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.
Quenouille, J; Paulhiac, E; Moury, B; Palloix, A
2014-06-01
The combination of major resistance genes with quantitative resistance factors is hypothesized as a promising breeding strategy to preserve the durability of resistant cultivar, as recently observed in different pathosystems. Using the pepper (Capsicum annuum)/Potato virus Y (PVY, genus Potyvirus) pathosystem, we aimed at identifying plant genetic factors directly affecting the frequency of virus adaptation to the major resistance gene pvr2(3) and at comparing them with genetic factors affecting quantitative resistance. The resistance breakdown frequency was a highly heritable trait (h(2)=0.87). Four loci including additive quantitative trait loci (QTLs) and epistatic interactions explained together 70% of the variance of pvr2(3) breakdown frequency. Three of the four QTLs controlling pvr2(3) breakdown frequency were also involved in quantitative resistance, strongly suggesting that QTLs controlling quantitative resistance have a pleiotropic effect on the durability of the major resistance gene. With the first mapping of QTLs directly affecting resistance durability, this study provides a rationale for sustainable resistance breeding. Surprisingly, a genetic trade-off was observed between the durability of PVY resistance controlled by pvr2(3) and the spectrum of the resistance against different potyviruses. This trade-off seemed to have been resolved by the combination of minor-effect durability QTLs under long-term farmer selection.
On the reconciliation of missing heritability for genome-wide association studies
Chen, Guo-Bo
2016-01-01
The definition of heritability has been unique and clear, but its estimation and estimates vary across studies. Linear mixed model (LMM) and Haseman–Elston (HE) regression analyses are commonly used for estimating heritability from genome-wide association data. This study provides an analytical resolution that can be used to reconcile the differences between LMM and HE in the estimation of heritability given the genetic architecture, which is responsible for these differences. The genetic architecture was classified into three forms via thought experiments: (i) coupling genetic architecture that the quantitative trait loci (QTLs) in the linkage disequilibrium (LD) had a positive covariance; (ii) repulsion genetic architecture that the QTLs in the LD had a negative covariance; (iii) and neutral genetic architecture that the QTLs in the LD had a covariance with a summation of zero. The neutral genetic architecture is so far most embraced, whereas the coupling and the repulsion genetic architecture have not been well investigated. For a quantitative trait under the coupling genetic architecture, HE overestimated the heritability and LMM underestimated the heritability; under the repulsion genetic architecture, HE underestimated but LMM overestimated the heritability for a quantitative trait. These two methods gave identical results under the neutral genetic architecture. A general analytical result for the statistic estimated under HE is given regardless of genetic architecture. In contrast, the performance of LMM remained elusive, such as further depended on the ratio between the sample size and the number of markers, but LMM converged to HE with increased sample size. PMID:27436266
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L.; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-01-01
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae. In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. PMID:28325812
Usaj, Matej; Tan, Yizhao; Wang, Wen; VanderSluis, Benjamin; Zou, Albert; Myers, Chad L; Costanzo, Michael; Andrews, Brenda; Boone, Charles
2017-05-05
Providing access to quantitative genomic data is key to ensure large-scale data validation and promote new discoveries. TheCellMap.org serves as a central repository for storing and analyzing quantitative genetic interaction data produced by genome-scale Synthetic Genetic Array (SGA) experiments with the budding yeast Saccharomyces cerevisiae In particular, TheCellMap.org allows users to easily access, visualize, explore, and functionally annotate genetic interactions, or to extract and reorganize subnetworks, using data-driven network layouts in an intuitive and interactive manner. Copyright © 2017 Usaj et al.
The historical role of species from the Solanaceae plant family in genetic research.
Gebhardt, Christiane
2016-12-01
This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype.
Coneva, Viktoriya; Chitwood, Daniel H
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype
Coneva, Viktoriya; Chitwood, Daniel H.
2018-01-01
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait. PMID:29593772
The genetics of insomnia--evidence for epigenetic mechanisms?
Palagini, Laura; Biber, Knut; Riemann, Dieter
2014-06-01
Sleep is a complex physiological process and still remains one of the great mysteries of science. Over the past 10 y, genetic research has provided a new avenue to address the regulation and function of sleep. Gene loci that contribute quantitatively to sleep characteristics and variability have already been identified. However, up to now, a genetic basis has been established only for a few sleep disorders. Little is yet known about the genetic background of insomnia, one of the most common sleep disorders. According to the conceptualisation of the 3P model of insomnia, predisposing, precipitating and perpetuating factors contribute to the development and maintenance of insomnia. Growing evidence from studies of predisposing factors suggests a certain degree of heritability for insomnia and for a reactivity of sleep patterns to stressful events, explaining the emergence of insomnia in response to stressful life events. While a genetic susceptibility may modulate the impact of stress on the brain, this finding does not provide us with a complete understanding of the capacity of stress to produce long-lasting perturbations of brain and behaviour. Epigenetic gene-environment interactions have been identified just recently and may provide a more complex understanding of the genetic control of sleep and its disorders. It was recently hypothesised that stress-response-related brain plasticity might be epigenetically controlled and, moreover, several epigenetic mechanisms have been assumed to be involved in the regulation of sleep. Hence, it might be postulated that insomnia may be influenced by an epigenetic control process of both sleep mechanisms and stress-response-related gene-environment interactions having an impact on brain plasticity. This paper reviews the evidence for the genetic basis of insomnia and recent theories about epigenetic mechanisms involved in both sleep regulation and brain-stress response, leading to the hypothesis of an involvement of epigenetic mechanisms in the development and maintenance of insomnia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing
Garcia-Ojalvo, Jordi; Elowitz, Michael B.; Strogatz, Steven H.
2004-01-01
Diverse biochemical rhythms are generated by thousands of cellular oscillators that somehow manage to operate synchronously. In fields ranging from circadian biology to endocrinology, it remains an exciting challenge to understand how collective rhythms emerge in multicellular structures. Using mathematical and computational modeling, we study the effect of coupling through intercell signaling in a population of Escherichia coli cells expressing a synthetic biological clock. Our results predict that a diverse and noisy community of such genetic oscillators interacting through a quorum-sensing mechanism should self-synchronize in a robust way, leading to a substantially improved global rhythmicity in the system. As such, the particular system of coupled genetic oscillators considered here might be a good candidate to provide the first quantitative example of a synchronization transition in a population of biological oscillators. PMID:15256602
Identifying public expectations of genetic biobanks.
Critchley, Christine; Nicol, Dianne; McWhirter, Rebekah
2017-08-01
Understanding public priorities for biobanks is vital for maximising utility and efficiency of genetic research and maintaining respect for donors. This research directly assessed the relative importance the public place on different expectations of biobanks. Quantitative and qualitative results from a national sample of 800 Australians revealed that the majority attributed more importance to protecting privacy and ethical conduct than maximising new healthcare benefits, which was in turn viewed as more important than obtaining specific consent, benefit sharing, collaborating and sharing data. A latent class analysis identified two distinct classes displaying different patterns of expectations. One placed higher priority on behaviours that respect the donor ( n = 623), the other on accelerating science ( n = 278). Additional expectations derived from qualitative data included the need for biobanks to be transparent and to prioritise their research focus, educate the public and address commercialisation.
USDA-ARS?s Scientific Manuscript database
Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single et...
Taylor, Mark J.; Charman, Tony; Robinson, Elise B.; Hayiou-Thomas, Marianna E.; Happé, Francesca; Dale, Philip S.; Ronald, Angelica
2015-01-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = −0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. PMID:25088445
Taylor, Mark J; Charman, Tony; Robinson, Elise B; Hayiou-Thomas, Marianna E; Happé, Francesca; Dale, Philip S; Ronald, Angelica
2014-10-01
Language difficulties have historically been viewed as integral to autism spectrum conditions (ASC), leading molecular genetic studies to consider whether ASC and language difficulties have overlapping genetic bases. The extent of genetic, and also environmental, overlap between ASC and language is, however, unclear. We hence conducted a twin study of the concurrent association between autistic traits and receptive language abilities. Internet-based language tests were completed by ~3,000 pairs of twins, while autistic traits were assessed via parent ratings. Twin model fitting explored the association between these measures in the full sample, while DeFries-Fulker analysis tested these associations at the extremes of the sample. Phenotypic associations between language ability and autistic traits were modest and negative. The degree of genetic overlap was also negative, indicating that genetic influences on autistic traits lowered language scores in the full sample (mean genetic correlation = -0.13). Genetic overlap was also low at the extremes of the sample (mean genetic correlation = 0.14), indicating that genetic influences on quantitatively defined language difficulties were largely distinct from those on extreme autistic traits. Variation in language ability and autistic traits were also associated with largely different nonshared environmental influences. Language and autistic traits are influenced by largely distinct etiological factors. This has implications for molecular genetic studies of ASC and understanding the etiology of ASC. Additionally, these findings lend support to forthcoming DSM-5 changes to ASC diagnostic criteria that will see language difficulties separated from the core ASC communication symptoms, and instead listed as a clinical specifier. © 2014 Wiley Periodicals, Inc.
Technical note: quantitative measures of iris color using high resolution photographs.
Edwards, Melissa; Gozdzik, Agnes; Ross, Kendra; Miles, Jon; Parra, Esteban J
2012-01-01
Our understanding of the genetic architecture of iris color is still limited. This is partly related to difficulties associated with obtaining quantitative measurements of eye color. Here we introduce a new automated method for measuring iris color using high resolution photographs. This method extracts color measurements in the CIE 1976 L*a*b* (CIELAB) color space from a 256 by 256 pixel square sampled from the 9:00 meridian of the iris. Color is defined across three dimensions: L* (the lightness coordinate), a* (the red-green coordinate), and b* (the blue-yellow coordinate). We applied this method to a sample of individuals of diverse ancestry (East Asian, European and South Asian) that was genotyped for the HERC2 rs12913832 polymorphism, which is strongly associated with blue eye color. We identified substantial variation in the CIELAB color space, not only in the European sample, but also in the East Asian and South Asian samples. As expected, rs12913832 was significantly associated with quantitative iris color measurements in subjects of European ancestry. However, this SNP was also strongly associated with iris color in the South Asian sample, although there were no participants with blue irides in this sample. The usefulness of this method is not restricted only to the study of iris pigmentation. High-resolution pictures of the iris will also make it possible to study the genetic variation involved in iris textural patterns, which show substantial heritability in human populations. Copyright © 2011 Wiley Periodicals, Inc.
Tomás, Gonzalo; Hernández, Martín; Marandino, Ana; Techera, Claudia; Grecco, Sofia; Hernández, Diego; Banda, Alejandro; Panzera, Yanina; Pérez, Ruben
2017-04-01
The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 10 3 and 10 8 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.
Verta, Jukka-Pekka; Landry, Christian R; MacKay, John
2016-07-01
Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the case of conifer trees. We developed an RNA sequencing (RNA-seq)-based approach for both expression-quantitative trait locus (eQTL) mapping and the detection of cis-acting (allele-specific) vs trans-acting (non-allele-specific) eQTLs. This method can be potentially applied to many conifers. We used haploid and diploid meiotic seed tissues of a single self-fertilized white spruce (Picea glauca) individual to dissect eQTLs according to linkage and allele specificity. The genetic architecture of local eQTLs linked to the expressed genes was particularly complex, consisting of cis-acting, trans-acting and, surprisingly, compensatory cis-trans effects. These compensatory effects influence expression in opposite directions and are neutral when combined in homozygotes. Nearly half of local eQTLs were under compensation, indicating that close linkage between compensatory cis-trans factors is common in spruce. Compensated genes were overrepresented in developmental and cell organization functions. Our haploid-diploid eQTL analysis in spruce revealed that compensatory cis-trans eQTLs segregate within populations and evolve in close genetic linkage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Kraus, William E; Muoio, Deborah M; Stevens, Robert; Craig, Damian; Bain, James R; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R; Gregory, Simon G; Newgard, Christopher B; Shah, Svati H
2015-11-01
Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6-2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk.
A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder.
Zhang, JieXu; Chen, YanBo; Zhang, KeRang; Yang, Hong; Sun, Yan; Fang, Yue; Shen, Yan; Xu, Qi
2010-11-01
The genetic basis of major depressive disorder (MDD) has been explored extensively, but the mode of transmission of the disease has yet to be established. To better understand the mechanism by which the monoamine oxidase A (MAOA) gene may play a role in developing MDD, the present work examined the cis-phase interaction between genetic variants within the MAOA gene for the pathogenesis of MDD. A variable number tandem repeat (VNTR) and 19 single nucleotide polymorphisms (SNPs) within the gene were genotyped in 512 unrelated patients with MDD and 567 unrelated control subjects among a Chinese population. Quantitative real-time polymerase chain reaction analysis was applied to test the effect of genetic variants on expression of the MAOA gene in MDD. Neither the VNTR polymorphism nor seven informative SNPs showed allelic association with MDD, but the cis-acting interactions between the VNTR polymorphism and four individual SNPs were strongly associated with MDD risk, of which the VNTR-rs1465107 combination showed the strongest association (p = .000011). Quantitative real-time polymerase chain reaction analysis showed that overall relative quantity of MAOA messenger RNA was significantly higher in patients with MDD than in control subjects (fold change = 5.28, p = 1.7 × 10⁻⁷) and that in the male subjects carrying the VNTR-L, rs1465107-A, rs6323-G, rs2072743-A, or rs1137070-T alleles, expression of MAOA messenger RNA was significantly higher in the patient group than in the control group. The cis-phase interaction between the VNTR polymorphism and functional SNPs may contribute to the etiology of MDD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Kraus, William E.; Muoio, Deborah M.; Stevens, Robert; Craig, Damian; Bain, James R.; Grass, Elizabeth; Haynes, Carol; Kwee, Lydia; Qin, Xuejun; Slentz, Dorothy H.; Krupp, Deidre; Muehlbauer, Michael; Hauser, Elizabeth R.; Gregory, Simon G.; Newgard, Christopher B.; Shah, Svati H.
2015-01-01
Levels of certain circulating short-chain dicarboxylacylcarnitine (SCDA), long-chain dicarboxylacylcarnitine (LCDA) and medium chain acylcarnitine (MCA) metabolites are heritable and predict cardiovascular disease (CVD) events. Little is known about the biological pathways that influence levels of most of these metabolites. Here, we analyzed genetics, epigenetics, and transcriptomics with metabolomics in samples from a large CVD cohort to identify novel genetic markers for CVD and to better understand the role of metabolites in CVD pathogenesis. Using genomewide association in the CATHGEN cohort (N = 1490), we observed associations of several metabolites with genetic loci. Our strongest findings were for SCDA metabolite levels with variants in genes that regulate components of endoplasmic reticulum (ER) stress (USP3, HERC1, STIM1, SEL1L, FBXO25, SUGT1) These findings were validated in a second cohort of CATHGEN subjects (N = 2022, combined p = 8.4x10-6–2.3x10-10). Importantly, variants in these genes independently predicted CVD events. Association of genomewide methylation profiles with SCDA metabolites identified two ER stress genes as differentially methylated (BRSK2 and HOOK2). Expression quantitative trait loci (eQTL) pathway analyses driven by gene variants and SCDA metabolites corroborated perturbations in ER stress and highlighted the ubiquitin proteasome system (UPS) arm. Moreover, culture of human kidney cells in the presence of levels of fatty acids found in individuals with cardiometabolic disease, induced accumulation of SCDA metabolites in parallel with increases in the ER stress marker BiP. Thus, our integrative strategy implicates the UPS arm of the ER stress pathway in CVD pathogenesis, and identifies novel genetic loci associated with CVD event risk. PMID:26540294
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Quantitative genetics of disease traits.
Wray, N R; Visscher, P M
2015-04-01
John James authored two key papers on the theory of risk to relatives for binary disease traits and the relationship between parameters on the observed binary scale and an unobserved scale of liability (James Annals of Human Genetics, 1971; 35: 47; Reich, James and Morris Annals of Human Genetics, 1972; 36: 163). These two papers are John James' most cited papers (198 and 328 citations, November 2014). They have been influential in human genetics and have recently gained renewed popularity because of their relevance to the estimation of quantitative genetics parameters for disease traits using SNP data. In this review, we summarize the two early papers and put them into context. We show recent extensions of the theory for ascertained case-control data and review recent applications in human genetics. © 2015 Blackwell Verlag GmbH.
Distribution of lod scores in oligogenic linkage analysis.
Williams, J T; North, K E; Martin, L J; Comuzzie, A G; Göring, H H; Blangero, J
2001-01-01
In variance component oligogenic linkage analysis it can happen that the residual additive genetic variance bounds to zero when estimating the effect of the ith quantitative trait locus. Using quantitative trait Q1 from the Genetic Analysis Workshop 12 simulated general population data, we compare the observed lod scores from oligogenic linkage analysis with the empirical lod score distribution under a null model of no linkage. We find that zero residual additive genetic variance in the null model alters the usual distribution of the likelihood-ratio statistic.
Smeland, Olav B; Frei, Oleksandr; Kauppi, Karolina; Hill, W David; Li, Wen; Wang, Yunpeng; Krull, Florian; Bettella, Francesco; Eriksen, Jon A; Witoelar, Aree; Davies, Gail; Fan, Chun C; Thompson, Wesley K; Lam, Max; Lencz, Todd; Chen, Chi-Hua; Ueland, Torill; Jönsson, Erik G; Djurovic, Srdjan; Deary, Ian J; Dale, Anders M; Andreassen, Ole A
2017-10-01
Schizophrenia is associated with widespread cognitive impairments. Although cognitive deficits are one of the factors most strongly associated with functional outcome in schizophrenia, current treatment strategies largely fail to ameliorate these impairments. To develop more efficient treatment strategies in patients with schizophrenia, a better understanding of the pathogenesis of these cognitive deficits is needed. Accumulating evidence indicates that genetic risk of schizophrenia may contribute to cognitive dysfunction. To identify genomic regions jointly influencing schizophrenia and the cognitive domains of reaction time and verbal-numerical reasoning, as well as general cognitive function, a phenotype that captures the shared variation in performance across cognitive domains. Combining data from genome-wide association studies from multiple phenotypes using conditional false discovery rate analysis provides increased power to discover genetic variants and could elucidate shared molecular genetic mechanisms. Data from the following genome-wide association studies, published from July 24, 2014, to January 17, 2017, were combined: schizophrenia in the Psychiatric Genomics Consortium cohort (n = 79 757 [cases, 34 486; controls, 45 271]); verbal-numerical reasoning (n = 36 035) and reaction time (n = 111 483) in the UK Biobank cohort; and general cognitive function in CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) (n = 53 949) and COGENT (Cognitive Genomics Consortium) (n = 27 888). Genetic loci identified by conditional false discovery rate analysis. Brain messenger RNA expression and brain expression quantitative trait locus functionality were determined. Among the participants in the genome-wide association studies, 21 loci jointly influencing schizophrenia and cognitive traits were identified: 2 loci shared between schizophrenia and verbal-numerical reasoning, 6 loci shared between schizophrenia and reaction time, and 14 loci shared between schizophrenia and general cognitive function. One locus was shared between schizophrenia and 2 cognitive traits and represented the strongest shared signal detected (nearest gene TCF20; chromosome 22q13.2), and was shared between schizophrenia (z score, 5.01; P = 5.53 × 10-7), general cognitive function (z score, -4.43; P = 9.42 × 10-6), and verbal-numerical reasoning (z score, -5.43; P = 5.64 × 10-8). For 18 loci, schizophrenia risk alleles were associated with poorer cognitive performance. The implicated genes are expressed in the developmental and adult human brain. Replicable expression quantitative trait locus functionality was identified for 4 loci in the adult human brain. The discovered loci improve the understanding of the common genetic basis underlying schizophrenia and cognitive function, suggesting novel molecular genetic mechanisms.
Yang, Xiaohui; Wei, Zunzheng; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Quan, Mingyang; Song, Yuepeng; Xie, Jianbo; Zhang, Deqiang
2015-11-09
Transcription factors (TFs) regulate gene expression and can strongly affect phenotypes. However, few studies have examined TF variants and TF interactions with their targets in plants. Here, we used genetic association in 435 unrelated individuals of Populus tomentosa to explore the variants in Pto-Wuschela and its targets to decipher the genetic regulatory network of Pto-Wuschela. Our bioinformatics and co-expression analysis identified 53 genes with the motif TCACGTGA as putative targets of Pto-Wuschela. Single-marker association analysis showed that Pto-Wuschela was associated with wood properties, which is in agreement with the observation that it has higher expression in stem vascular tissues in Populus. Also, SNPs in the 53 targets were associated with growth or wood properties under additive or dominance effects, suggesting these genes and Pto-Wuschela may act in the same genetic pathways that affect variation in these quantitative traits. Epistasis analysis indicated that 75.5% of these genes directly or indirectly interacted Pto-Wuschela, revealing the coordinated genetic regulatory network formed by Pto-Wuschela and its targets. Thus, our study provides an alternative method for dissection of the interactions between a TF and its targets, which will strength our understanding of the regulatory roles of TFs in complex traits in plants.
Gene networks associated with conditional fear in mice identified using a systems genetics approach
2011-01-01
Background Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution. Results A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes. Conclusion Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior. PMID:21410935
Fears, Scott C.; Service, Susan K.; Kremeyer, Barbara; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Ramirez, Margarita; Castrillón, Gabriel; Gomez-Franco, Juliana; Lopez, Maria C.; Montoya, Gabriel; Montoya, Patricia; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Ericson, Marissa; Jalbrzikowski, Maria; Luykx, Jurjen J.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier; Glahn, David C.; Ospina-Duque, Jorge; Risch, Neil; Ruiz-Linares, Andrés; Thompson, Paul M.; Cantor, Rita M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Freimer, Nelson B.; Bearden, Carrie E.
2014-01-01
IMPORTANCE Genetic factors contribute to risk for bipolar disorder (BP), yet its pathogenesis remains poorly understood. A focus on measuring multi-system quantitative traits that may be components of BP psychopathology may enable genetic dissection of this complex disorder, and investigation of extended pedigrees from genetically isolated populations may facilitate the detection of specific genetic variants that impact on BP as well as its component phenotypes. OBJECTIVE To identify quantitative neurocognitive, temperament-related, and neuroanatomic phenotypes that appear heritable and associated with severe bipolar disorder (BP-I), and therefore suitable for genetic linkage and association studies aimed at identifying variants contributing to BP-I risk. DESIGN Multi-generational pedigree study in two closely related, genetically isolated populations: the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (ANT). PARTICIPANTS 738 individuals, all from CVCR and ANT pedigrees, of whom 181 are affected with BP-I. MAIN OUTCOME MEASURE Familial aggregation (heritability) and association with BP-I of 169 quantitative neurocognitive, temperament, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) phenotypes. RESULTS Seventy-five percent (126) of the phenotypes investigated were significantly heritable, and 31% (53) were associated with BP-I. About 1/4 of the phenotypes, including measures from each phenotype domain, were both heritable and associated with BP-I. Neuroimaging phenotypes, particularly cortical thickness in prefrontal and temporal regions, and volume and microstructural integrity of the corpus callosum, represented the most promising candidate traits for genetic mapping related to BP based on strong heritability and association with disease. Analyses of phenotypic and genetic covariation identified substantial correlations among the traits, at least some of which share a common underlying genetic architecture. CONCLUSIONS AND RELEVANCE This is the most extensive investigation of BP-relevant component phenotypes to date. Our results identify brain and behavioral quantitative traits that appear to be genetically influenced and show a pattern of BP-I-association within families that is consistent with expectations from case-control studies. Together these phenotypes provide a basis for identifying loci contributing to BP-I risk and for genetic dissection of the disorder. PMID:24522887
The IQ Quantitative Trait Loci Project: A Critique.
ERIC Educational Resources Information Center
King, David
1998-01-01
Describes the IQ Quantitative Trait Loci (QTL) project, an attempt to identify genes underlying IQ score variations using maps from the Human Genome Project. The essay argues against funding the IQ QTL project because it will end the debates about the genetic basis of intelligence and may lead directly to eugenic programs of genetic testing. (SLD)
Palmer, Nicholette D; Goodarzi, Mark O; Langefeld, Carl D; Wang, Nan; Guo, Xiuqing; Taylor, Kent D; Fingerlin, Tasha E; Norris, Jill M; Buchanan, Thomas A; Xiang, Anny H; Haritunians, Talin; Ziegler, Julie T; Williams, Adrienne H; Stefanovski, Darko; Cui, Jinrui; Mackay, Adrienne W; Henkin, Leora F; Bergman, Richard N; Gao, Xiaoyi; Gauderman, James; Varma, Rohit; Hanis, Craig L; Cox, Nancy J; Highland, Heather M; Below, Jennifer E; Williams, Amy L; Burtt, Noel P; Aguilar-Salinas, Carlos A; Huerta-Chagoya, Alicia; Gonzalez-Villalpando, Clicerio; Orozco, Lorena; Haiman, Christopher A; Tsai, Michael Y; Johnson, W Craig; Yao, Jie; Rasmussen-Torvik, Laura; Pankow, James; Snively, Beverly; Jackson, Rebecca D; Liu, Simin; Nadler, Jerry L; Kandeel, Fouad; Chen, Yii-Der I; Bowden, Donald W; Rich, Stephen S; Raffel, Leslie J; Rotter, Jerome I; Watanabe, Richard M; Wagenknecht, Lynne E
2015-05-01
Insulin sensitivity, insulin secretion, insulin clearance, and glucose effectiveness exhibit strong genetic components, although few studies have examined their genetic architecture or influence on type 2 diabetes (T2D) risk. We hypothesized that loci affecting variation in these quantitative traits influence T2D. We completed a multicohort genome-wide association study to search for loci influencing T2D-related quantitative traits in 4,176 Mexican Americans. Quantitative traits were measured by the frequently sampled intravenous glucose tolerance test (four cohorts) or euglycemic clamp (three cohorts), and random-effects models were used to test the association between loci and quantitative traits, adjusting for age, sex, and admixture proportions (Discovery). Analysis revealed a significant (P < 5.00 × 10(-8)) association at 11q14.3 (MTNR1B) with acute insulin response. Loci with P < 0.0001 among the quantitative traits were examined for translation to T2D risk in 6,463 T2D case and 9,232 control subjects of Mexican ancestry (Translation). Nonparametric meta-analysis of the Discovery and Translation cohorts identified significant associations at 6p24 (SLC35B3/TFAP2A) with glucose effectiveness/T2D, 11p15 (KCNQ1) with disposition index/T2D, and 6p22 (CDKAL1) and 11q14 (MTNR1B) with acute insulin response/T2D. These results suggest that T2D and insulin secretion and sensitivity have both shared and distinct genetic factors, potentially delineating genomic components of these quantitative traits that drive the risk for T2D. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Zhang, Zhen; Shang, Haihong; Shi, Yuzhen; Huang, Long; Li, Junwen; Ge, Qun; Gong, Juwu; Liu, Aiying; Chen, Tingting; Wang, Dan; Wang, Yanling; Palanga, Koffi Kibalou; Muhammad, Jamshed; Li, Weijie; Lu, Quanwei; Deng, Xiaoying; Tan, Yunna; Song, Weiwu; Cai, Juan; Li, Pengtao; Rashid, Harun or; Gong, Wankui; Yuan, Youlu
2016-04-11
Upland Cotton (Gossypium hirsutum) is one of the most important worldwide crops it provides natural high-quality fiber for the industrial production and everyday use. Next-generation sequencing is a powerful method to identify single nucleotide polymorphism markers on a large scale for the construction of a high-density genetic map for quantitative trait loci mapping. In this research, a recombinant inbred lines population developed from two upland cotton cultivars 0-153 and sGK9708 was used to construct a high-density genetic map through the specific locus amplified fragment sequencing method. The high-density genetic map harbored 5521 single nucleotide polymorphism markers which covered a total distance of 3259.37 cM with an average marker interval of 0.78 cM without gaps larger than 10 cM. In total 18 quantitative trait loci of boll weight were identified as stable quantitative trait loci and were detected in at least three out of 11 environments and explained 4.15-16.70 % of the observed phenotypic variation. In total, 344 candidate genes were identified within the confidence intervals of these stable quantitative trait loci based on the cotton genome sequence. These genes were categorized based on their function through gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis and eukaryotic orthologous groups analysis. This research reported the first high-density genetic map for Upland Cotton (Gossypium hirsutum) with a recombinant inbred line population using single nucleotide polymorphism markers developed by specific locus amplified fragment sequencing. We also identified quantitative trait loci of boll weight across 11 environments and identified candidate genes within the quantitative trait loci confidence intervals. The results of this research would provide useful information for the next-step work including fine mapping, gene functional analysis, pyramiding breeding of functional genes as well as marker-assisted selection.
Cultural evolutionary theory: How culture evolves and why it matters
Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W.
2017-01-01
Human cultural traits—behaviors, ideas, and technologies that can be learned from other individuals—can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene–culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment. PMID:28739941
Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria
Farasat, Iman; Kushwaha, Manish; Collens, Jason; Easterbrook, Michael; Guido, Matthew; Salis, Howard M
2014-01-01
Developing predictive models of multi-protein genetic systems to understand and optimize their behavior remains a combinatorial challenge, particularly when measurement throughput is limited. We developed a computational approach to build predictive models and identify optimal sequences and expression levels, while circumventing combinatorial explosion. Maximally informative genetic system variants were first designed by the RBS Library Calculator, an algorithm to design sequences for efficiently searching a multi-protein expression space across a > 10,000-fold range with tailored search parameters and well-predicted translation rates. We validated the algorithm's predictions by characterizing 646 genetic system variants, encoded in plasmids and genomes, expressed in six gram-positive and gram-negative bacterial hosts. We then combined the search algorithm with system-level kinetic modeling, requiring the construction and characterization of 73 variants to build a sequence-expression-activity map (SEAMAP) for a biosynthesis pathway. Using model predictions, we designed and characterized 47 additional pathway variants to navigate its activity space, find optimal expression regions with desired activity response curves, and relieve rate-limiting steps in metabolism. Creating sequence-expression-activity maps accelerates the optimization of many protein systems and allows previous measurements to quantitatively inform future designs. PMID:24952589
Genetic and physiological bases for phenological responses to current and predicted climates
Wilczek, A. M.; Burghardt, L. T.; Cobb, A. R.; Cooper, M. D.; Welch, S. M.; Schmitt, J.
2010-01-01
We are now reaching the stage at which specific genetic factors with known physiological effects can be tied directly and quantitatively to variation in phenology. With such a mechanistic understanding, scientists can better predict phenological responses to novel seasonal climates. Using the widespread model species Arabidopsis thaliana, we explore how variation in different genetic pathways can be linked to phenology and life-history variation across geographical regions and seasons. We show that the expression of phenological traits including flowering depends critically on the growth season, and we outline an integrated life-history approach to phenology in which the timing of later life-history events can be contingent on the environmental cues regulating earlier life stages. As flowering time in many plants is determined by the integration of multiple environmentally sensitive gene pathways, the novel combinations of important seasonal cues in projected future climates will alter how phenology responds to variation in the flowering time gene network with important consequences for plant life history. We discuss how phenology models in other systems—both natural and agricultural—could employ a similar framework to explore the potential contribution of genetic variation to the physiological integration of cues determining phenology. PMID:20819808
Cultural evolutionary theory: How culture evolves and why it matters.
Creanza, Nicole; Kolodny, Oren; Feldman, Marcus W
2017-07-24
Human cultural traits-behaviors, ideas, and technologies that can be learned from other individuals-can exhibit complex patterns of transmission and evolution, and researchers have developed theoretical models, both verbal and mathematical, to facilitate our understanding of these patterns. Many of the first quantitative models of cultural evolution were modified from existing concepts in theoretical population genetics because cultural evolution has many parallels with, as well as clear differences from, genetic evolution. Furthermore, cultural and genetic evolution can interact with one another and influence both transmission and selection. This interaction requires theoretical treatments of gene-culture coevolution and dual inheritance, in addition to purely cultural evolution. In addition, cultural evolutionary theory is a natural component of studies in demography, human ecology, and many other disciplines. Here, we review the core concepts in cultural evolutionary theory as they pertain to the extension of biology through culture, focusing on cultural evolutionary applications in population genetics, ecology, and demography. For each of these disciplines, we review the theoretical literature and highlight relevant empirical studies. We also discuss the societal implications of the study of cultural evolution and of the interactions of humans with one another and with their environment.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
2016-09-09
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Powell, Joseph E.; Henders, Anjali K.; McRae, Allan F.; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G.; Dermitzakis, Emmanouil T.; Gibson, Greg
2013-01-01
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted—in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects. PMID:23696747
Powell, Joseph E; Henders, Anjali K; McRae, Allan F; Kim, Jinhee; Hemani, Gibran; Martin, Nicholas G; Dermitzakis, Emmanouil T; Gibson, Greg; Montgomery, Grant W; Visscher, Peter M
2013-05-01
There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.
Behnke, Michael S; Khan, Asis; Sibley, L David
2015-02-01
Quantitative trait locus (QTL) mapping studies have been integral in identifying and understanding virulence mechanisms in the parasite Toxoplasma gondii. In this study, we interrogated a different phenotype by mapping sinefungin (SNF) resistance in the genetic cross between type 2 ME49-FUDR(r) and type 10 VAND-SNF(r). The genetic map of this cross was generated by whole-genome sequencing of the progeny and subsequent identification of single nucleotide polymorphisms (SNPs) inherited from the parents. Based on this high-density genetic map, we were able to pinpoint the sinefungin resistance phenotype to one significant locus on chromosome IX. Within this locus, a single nonsynonymous SNP (nsSNP) resulting in an early stop codon in the TGVAND_290860 gene was identified, occurring only in the sinefungin-resistant progeny. Using CRISPR/CAS9, we were able to confirm that targeted disruption of TGVAND_290860 renders parasites sinefungin resistant. Because disruption of the SNR1 gene confers resistance, we also show that it can be used as a negative selectable marker to insert either a positive drug selection cassette or a heterologous reporter. These data demonstrate the power of combining classical genetic mapping, whole-genome sequencing, and CRISPR-mediated gene disruption for combined forward and reverse genetic strategies in T. gondii. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
The Genetic Basis of Upland/Lowland Ecotype Divergence in Switchgrass (Panicum virgatum)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, E. R.; Lowry, D. B.; Juenger, T. E.
The evolution of locally adapted ecotypes is a common phenomenon that generates diversity within plant species. However, we know surprisingly little about the genetic mechanisms underlying the locally adapted traits involved in ecotype formation. The genetic architecture underlying locally adapted traits dictates how an organism will respond to environmental selection pressures, and has major implications for evolutionary ecology, conservation, and crop breeding. To understand the genetic architecture underlying the divergence of switchgrass (Panicum virgatum) ecotypes, we constructed a genetic mapping population through a four-way outbred cross between two northern upland and two southern lowland accessions. Trait segregation in this mappingmore » population was largely consistent with multiple independent loci controlling the suite of traits that characterizes ecotype divergence. We assembled a joint linkage map using ddRADseq, and mapped quantitative trait loci (QTL) for traits that are divergent between ecotypes, including flowering time, plant size, physiological processes, and disease resistance. Overall, we found that most QTL had small to intermediate effects. While we identified colocalizing QTL for multiple traits, we did not find any large-effect QTL that clearly controlled multiple traits through pleiotropy or tight physical linkage. These results indicate that ecologically important traits in switchgrass have a complex genetic basis, and that similar loci may underlie divergence across the geographic range of the ecotypes.« less
Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.
Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C
2015-05-06
Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.
Current and future developments in patents for quantitative trait loci in dairy cattle.
Weller, Joel I
2007-01-01
Many studies have proposed that rates of genetic gain in dairy cattle can be increased by direct selection on the individual quantitative loci responsible for the genetic variation in these traits, or selection on linked genetic markers. The development of DNA-level genetic markers has made detection of QTL nearly routine in all major livestock species. The studies that attempted to detect genes affecting quantitative traits can be divided into two categories: analysis of candidate genes, and genome scans based on within-family genetic linkage. To date, 12 patent cooperative treaty (PCT) and US patents have been registered for DNA sequences claimed to be associated with effects on economic traits in dairy cattle. All claim effects on milk production, but other traits are also included in some of the claims. Most of the sequences found by the candidate gene approach are of dubious validity, and have been repeated in only very few independent studies. The two missense mutations on chromosomes 6 and 14 affecting milk concentration derived from genome scans are more solidly based, but the claims are also disputed. A few PCT in dairy cattle are commercialized as genetic tests where commercial dairy farmers are the target market.
Bangham, Jenny; Knott, Sara A; Kim, Kang-Wook; Young, Robert S; Jiggins, Francis M
2008-09-01
In natural populations, genetic variation affects resistance to disease. Whether that genetic variation comprises lots of small-effect polymorphisms or a small number of large-effect polymorphisms has implications for adaptation, selection and how genetic variation is maintained in populations. Furthermore, how much genetic variation there is, and the genes that underlie this variation, affects models of co-evolution between parasites and their hosts. We are studying the genetic variation that affects the resistance of Drosophila melanogaster to its natural pathogen--the vertically transmitted sigma virus. We have carried out three separate quantitative trait locus mapping analyses to map gene variants on the second chromosome that cause variation in the rate at which males transmit the infection to their offspring. All three crosses identified a locus in a similar chromosomal location that causes a large drop in the rate at which the virus is transmitted. We also found evidence for an additional smaller-effect quantitative trait locus elsewhere on the chromosome. Our data, together with previous experiments on the sigma virus and parasitoid wasps, indicate that the resistance of D. melanogaster to co-evolved pathogens is controlled by a limited number of major-effect polymorphisms.
Quantitative genetics of immunity and life history under different photoperiods.
Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J
2012-05-01
Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormond, Kelly E
2005-01-20
Genetic databases are generally created with the long-term goal of establishing genotype-phenotype correlations, and are explicitly NOT intended for participant benefit through the personal receipt of genetic information. In fact, most well-known genetic databases are set up to preclude the recontact of participants, both to protect confidentiality and because any genetic discoveries will likely have unclear implications in the near future. Issues of recontact and sample use raise significant issues around the informed consent process for such genetic databases. The NUgene study is a longitudinal genetic database at Northwestern University created to assess the genetic components of common diseases. Inmore » summer 2001, prior to the start of NUgene recruitment, a planning committee met for over one year to discuss the project's format, including ethical aspects. The project's advisory committee felt strongly that recontact of study participants was not warranted. However, because of the broad and longitudinal nature of the project, the IRB requested a modified consent process for recontacting subjects. This consent allowed participants to opt for recontact under either of the following circumstances: (1) if more information was required for a future study or to participate in future research and (2) if ''clinically significant results'' were discovered through research examination. During the first year of the study, 808 participants were enrolled in NUgene. 92% opted for recontact regarding more information or future research and 96% opted for recontact for ''medically significant'' findings. The current DOE funded study of NUgene participants examined informed consent, including recontact options. In November 2002, the NUgene project began recruiting for a large, longitudinal genetic database; concurrent with NUgene enrollment, we solicited 200 participants for interviews to address attitudes about participation in NUgene in both a quantitative and qualitative manner. Demographic data on these subjects was representative of the participants in the overall NUgene project. 200 subjects underwent the quantitative measure QuIC to measure the knowledge and understanding of participants using a previously validated measure. The summary knowledge score was 69.3 (on a scale of 0-100, being the highest possible score) and the summary self-assessment score was 89.6. The best understood domains included: the nature of the study (100), benefit to future patients (99.8), and the voluntary nature of participation (93.2). Domains with the lowest knowledge scores included: potential risks and discomforts (17.5), experimental nature of the research (24.0), procedures in the event of study-related injury (35.7), and confidentiality issues (42.9).In addition to this quantitative data, 109 semi-structured interviews were transcribed and analyzed. Themes focused on reasons for participation, beliefs regarding the risks and benefits of the study, expectations regarding results and ways in which participants would prefer to be recontacted if future studies or results become available. Most enrolled in NUgene in order to help mankind or the ''general population'' in some manner (>75%), to help find disease genes, treatments or cures, and/or to contribute to the overall medical knowledge. Many participants ({approx}30%) clearly expressed a hope for personal benefit and often named specific disorders or family members. Confidentiality protections of the study were described as good by most (>50%), and almost half specifically described one or more of the privacy protections. While many were able to articulate the general privacy concerns, and several cited concerns with employer (12%) or insurance discrimination (25%), most considered the risks to privacy low (25%) or none ({approx}60%). Only 10% of participants explicitly stated they had no expectation for personal benefit, and when asked whether they expected to be contacted with study results, respondents were split between having no expectation (39%), being hopeful for results (37%) and expecting to be contacted with results (12%). Over 75% of study participants felt that if a genetic test became available for their family they would wish to undertake it, and few caveats were mentioned. Overall, our study demonstrated that participants had a good understanding of the purposes of the study and that the benefit was for future patients; however, participants had difficulty understanding the potential risks and discomforts and confidentiality issues. The data show that participants in population-based studies may be less likely to harbor the ''therapeutic misconception'', often reported in clinical studies, but further study is needed to assess whether patients perceive personal benefits not revealed by this measure. These findings are informative to those providing informed consent and to the IRBs reviewing such studies.« less
Metabolomics and Diabetes: Analytical and Computational Approaches
Sas, Kelli M.; Karnovsky, Alla; Michailidis, George
2015-01-01
Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field. PMID:25713200
Heritability of body size in the polar bears of Western Hudson Bay.
Malenfant, René M; Davis, Corey S; Richardson, Evan S; Lunn, Nicholas J; Coltman, David W
2018-04-18
Among polar bears (Ursus maritimus), fitness is dependent on body size through males' abilities to win mates, females' abilities to provide for their young and all bears' abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449-individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h 2 ) among polar bears handled between 1966 and 2011, obtaining h 2 estimates of 0.34-0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker-trait association and combined p-values over genetic pathways using gene-set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene-set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change. © 2018 John Wiley & Sons Ltd.
Luo, Y; Widmer, A; Karrenberg, S
2015-01-01
Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874
Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian
2015-01-01
The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the ‘model forest tree’ Populus. PMID:26010156
Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian
2015-01-01
The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.
Genetic Architecture of a Hormonal Response to Gene Knockdown in Honey Bees
Rueppell, Olav; Huang, Zachary Y.; Wang, Ying; Fondrk, M. Kim; Page, Robert E.; Amdam, Gro V.
2015-01-01
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. PMID:25596612
Modeling Tumor Clonal Evolution for Drug Combinations Design
Zhao, Boyang; Hemann, Michael T.; Lauffenburger, Douglas A.
2016-01-01
Cancer is a clonal evolutionary process. This presents challenges for effective therapeutic intervention, given the constant selective pressure towards drug resistance. Mathematical modeling from population genetics, evolutionary dynamics, and engineering perspectives are being increasingly employed to study tumor progression, intratumoral heterogeneity, drug resistance, and rational drug scheduling and combinations design. In this review, we discuss promising opportunities these inter-disciplinary approaches hold for advances in cancer biology and treatment. We propose that quantitative modeling perspectives can complement emerging experimental technologies to facilitate enhanced understanding of disease progression and improved capabilities for therapeutic drug regimen designs. PMID:28435907
Automatic inference of multicellular regulatory networks using informative priors.
Sun, Xiaoyun; Hong, Pengyu
2009-01-01
To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.
Quantifying Disease Progression in Amyotrophic Lateral Sclerosis
Simon, Neil G; Turner, Martin R; Vucic, Steve; Al-Chalabi, Ammar; Shefner, Jeremy; Lomen-Hoerth, Catherine; Kiernan, Matthew C
2014-01-01
Amyotrophic lateral sclerosis (ALS) exhibits characteristic variability of onset and rate of disease progression, with inherent clinical heterogeneity making disease quantitation difficult. Recent advances in understanding pathogenic mechanisms linked to the development of ALS impose an increasing need to develop strategies to predict and more objectively measure disease progression. This review explores phenotypic and genetic determinants of disease progression in ALS, and examines established and evolving biomarkers that may contribute to robust measurement in longitudinal clinical studies. With targeted neuroprotective strategies on the horizon, developing efficiencies in clinical trial design may facilitate timely entry of novel treatments into the clinic. PMID:25223628
Entering the second century of maize quantitative genetics
USDA-ARS?s Scientific Manuscript database
Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architectur...
SoyBase, The USDA-ARS Soybean Genetics and Genomics Database
USDA-ARS?s Scientific Manuscript database
SoyBase, the USDA-ARS soybean genetic database, is a comprehensive repository for professionally curated genetics, genomics and related data resources for soybean. SoyBase contains the most current genetic, physical and genomic sequence maps integrated with qualitative and quantitative traits. The...
Godfrey, Ryan M; Johnson, Marc T J
2014-11-01
It has long been predicted that a loss of sexual reproduction leads to decreased heritable variation within populations and increased differentiation between populations. Despite an abundance of theory, there are few empirical tests of how sex affects genetic variation in phenotypic traits, especially for plants. Here we test whether repeated losses of two critical components of sex (recombination and segregation) in the evening primroses (Oenothera L., Onagraceae) affect quantitative genetic variation within and between populations. We sampled multiple genetic families from 3-5 populations from each of eight Oenothera species, which represented four independent transitions between sexual reproduction and a functionally asexual genetic system called "permanent translocation heterozygosity." We used quantitative genetics methods to partition genetic variation within and between populations for eight plant traits related to growth, leaf physiology, flowering, and resistance to herbivores. Heritability was, on average, 74% higher in sexual Oenothera populations than in functionally asexual populations, with plant growth rate, specific leaf area, and the percentage of leaf water content showing the strongest differences. By contrast, genetic differentiation among populations was 2.8× higher in functionally asexual vs. sexual Oenothera species. This difference was particularly strong for specific leaf area. Sexual populations tended to exhibit higher genetic correlations among traits, but this difference was weakly supported. These results support the prediction that sexual reproduction maintains higher genetic variation within populations, which may facilitate adaptive evolution. We also found partial support for the prediction that a loss of sex leads to greater population differentiation, which may elevate speciation rates. © 2014 Botanical Society of America, Inc.
IWGT report on quantitative approaches to genotoxicity risk ...
This is the second of two reports from the International Workshops on Genotoxicity Testing (IWGT) Working Group on Quantitative Approaches to Genetic Toxicology Risk Assessment (the QWG). The first report summarized the discussions and recommendations of the QWG related to the need for quantitative dose–response analysis of genetic toxicology data, the existence and appropriate evaluation of threshold responses, and methods to analyze exposure-response relationships and derive points of departure (PoDs) from which acceptable exposure levels could be determined. This report summarizes the QWG discussions and recommendations regarding appropriate approaches to evaluate exposure-related risks of genotoxic damage, including extrapolation below identified PoDs and across test systems and species. Recommendations include the selection of appropriate genetic endpoints and target tissues, uncertainty factors and extrapolation methods to be considered, the importance and use of information on mode of action, toxicokinetics, metabolism, and exposure biomarkers when using quantitative exposure-response data to determine acceptable exposure levels in human populations or to assess the risk associated with known or anticipated exposures. The empirical relationship between genetic damage (mutation and chromosomal aberration) and cancer in animal models was also examined. It was concluded that there is a general correlation between cancer induction and mutagenic and/or clast
SplicePlot: a utility for visualizing splicing quantitative trait loci.
Wu, Eric; Nance, Tracy; Montgomery, Stephen B
2014-04-01
RNA sequencing has provided unprecedented resolution of alternative splicing and splicing quantitative trait loci (sQTL). However, there are few tools available for visualizing the genotype-dependent effects of splicing at a population level. SplicePlot is a simple command line utility that produces intuitive visualization of sQTLs and their effects. SplicePlot takes mapped RNA sequencing reads in BAM format and genotype data in VCF format as input and outputs publication-quality Sashimi plots, hive plots and structure plots, enabling better investigation and understanding of the role of genetics on alternative splicing and transcript structure. Source code and detailed documentation are available at http://montgomerylab.stanford.edu/spliceplot/index.html under Resources and at Github. SplicePlot is implemented in Python and is supported on Linux and Mac OS. A VirtualBox virtual machine running Ubuntu with SplicePlot already installed is also available.
Freeman, Bradley D; Kennedy, Carie R; Bolcic-Jankovic, Dragana; Eastman, Alexander; Iverson, Ellen; Shehane, Erica; Celious, Aaron; Barillas, Jennifer; Clarridge, Brian
2012-02-01
Clinical studies conducted in intensive care units are associated with logistical and ethical challenges. Diseases investigated are precipitous and life-threatening, care is highly technological, and patients are often incapacitated and decision-making is provided by surrogates. These investigations increasingly involve collection of genetic data. The manner in which the exigencies of critical illness impact attitudes regarding genetic data collection is unstudied. Given interest in understanding stakeholder preferences as a foundation for the ethical conduct of research, filling this knowledge gap is timely. The conduct of opinion research in the critical care arena is novel. This brief report describes the development of parallel patient/surrogate decision-maker quantitative survey instruments for use in this environment. Future research employing this instrument or a variant of it with diverse populations promises to inform research practices in critical illness gene variation research.
Freeman, Bradley D.; Kennedy, Carie R.; Bolcic-Jankovic, Dragana; Eastman, Alexander; Iverson, Ellen; Shehane, Erica; Celious, Aaron; Barillas, Jennifer; Clarridge, Brian
2012-01-01
Clinical studies conducted in intensive care units are associated with logistical and ethical challenges. Diseases investigated are precipitous and life-threatening, care is highly technological, and patients are often incapacitated and decision-making is provided by surrogates. These investigations increasingly involve collection of genetic data. The manner in which the exigencies of critical illness impact attitudes regarding genetic data collection is unstudied. Given interest in understanding stakeholder preferences as a foundation for the ethical conduct of research, filling this knowledge gap is timely. The conduct of opinion research in the critical care arena is novel. This brief report describes the development of parallel patient/surrogate decision-maker quantitative survey instruments for use in this environment. Future research employing this instrument or a variant of it with diverse populations promises to inform research practices in critical illness gene variation research. PMID:22378135
Assessing Sociability, Social Memory, and Pup Retrieval in Mice.
Zimprich, Annemarie; Niessing, Jörn; Cohen, Lior; Garrett, Lillian; Einicke, Jan; Sperling, Bettina; Schmidt, Mathias V; Hölter, Sabine M
2017-12-20
Adaptive social behavior is important in mammals, both for the well-being of the individual and for the thriving of the species. Dysfunctions in social behavior occur in many neurodevelopmental and psychiatric diseases, and research into the genetic components of disease-relevant social deficits can open up new avenues for understanding the underlying biological mechanisms and therapeutic interventions. Genetically modified mouse models are particularly useful in this respect, and robust experimental protocols are needed to reliably assess relevant social behavior phenotypes. Here we describe in detail three protocols to quantitatively measure sociability, one of the most frequently investigated social behavior phenotypes in mice, using a three-chamber sociability test. These protocols can be extended to also assess social memory. In addition, we provide a detailed protocol on pup retrieval, which is a particularly robust maternal behavior amenable to various scientific questions. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Emerging Imaging and Genomic Tools for Developmental Systems Biology.
Liu, Zhe; Keller, Philipp J
2016-03-21
Animal development is a complex and dynamic process orchestrated by exquisitely timed cell lineage commitment, divisions, migration, and morphological changes at the single-cell level. In the past decade, extensive genetic, stem cell, and genomic studies provided crucial insights into molecular underpinnings and the functional importance of genetic pathways governing various cellular differentiation processes. However, it is still largely unknown how the precise coordination of these pathways is achieved at the whole-organism level and how the highly regulated spatiotemporal choreography of development is established in turn. Here, we discuss the latest technological advances in imaging and single-cell genomics that hold great promise for advancing our understanding of this intricate process. We propose an integrated approach that combines such methods to quantitatively decipher in vivo cellular dynamic behaviors and their underlying molecular mechanisms at the systems level with single-cell, single-molecule resolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Marshall, Patricia A; Adebamowo, Clement A; Adeyemo, Adebowale A; Ogundiran, Temidayo O; Strenski, Teri; Zhou, Jie; Rotimi, Charles N
2014-05-13
Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process.
Erickson, Priscilla A.; Glazer, Andrew M.; Cleves, Phillip A.; Smith, Alyson S.; Miller, Craig T.
2014-01-01
In convergent evolution, similar phenotypes evolve repeatedly in independent populations, often reflecting adaptation to similar environments. Understanding whether convergent evolution proceeds via similar or different genetic and developmental mechanisms offers insight towards the repeatability and predictability of evolution. Oceanic populations of threespine stickleback fish, Gasterosteus aculeatus, have repeatedly colonized countless freshwater lakes and streams, where new diets lead to morphological adaptations related to feeding. Here, we show that heritable increases in branchial bone length have convergently evolved in two independently derived freshwater stickleback populations. In both populations, an increased bone growth rate in juveniles underlies the convergent adult phenotype, and one population also has a longer cartilage template. Using F2 crosses from these two freshwater populations, we show that two quantitative trait loci (QTL) control branchial bone length at distinct points in development. In both populations, a QTL on chromosome 21 controls bone length throughout juvenile development, and a QTL on chromosome 4 controls bone length only in adults. In addition to these similar developmental profiles, these QTL show similar chromosomal locations in both populations. Our results suggest that sticklebacks have convergently evolved longer branchial bones using similar genetic and developmental programmes in two independently derived populations. PMID:24966315
Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers.
Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry
2017-01-01
The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean.
Tian, Tian; Salis, Howard M.
2015-01-01
Natural and engineered genetic systems require the coordinated expression of proteins. In bacteria, translational coupling provides a genetically encoded mechanism to control expression level ratios within multi-cistronic operons. We have developed a sequence-to-function biophysical model of translational coupling to predict expression level ratios in natural operons and to design synthetic operons with desired expression level ratios. To quantitatively measure ribosome re-initiation rates, we designed and characterized 22 bi-cistronic operon variants with systematically modified intergenic distances and upstream translation rates. We then derived a thermodynamic free energy model to calculate de novo initiation rates as a result of ribosome-assisted unfolding of intergenic RNA structures. The complete biophysical model has only five free parameters, but was able to accurately predict downstream translation rates for 120 synthetic bi-cistronic and tri-cistronic operons with rationally designed intergenic regions and systematically increased upstream translation rates. The biophysical model also accurately predicted the translation rates of the nine protein atp operon, compared to ribosome profiling measurements. Altogether, the biophysical model quantitatively predicts how translational coupling controls protein expression levels in synthetic and natural bacterial operons, providing a deeper understanding of an important post-transcriptional regulatory mechanism and offering the ability to rationally engineer operons with desired behaviors. PMID:26117546
Quantitative imaging for discovery and assembly of the metabo-regulome
Okumoto, Sakiko; Takanaga, Hitomi; Frommer, Wolf B.
2009-01-01
Summary Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux. PMID:19138219
Quantitating and Dating Recent Gene Flow between European and East Asian Populations
Qin, Pengfei; Zhou, Ying; Lou, Haiyi; Lu, Dongsheng; Yang, Xiong; Wang, Yuchen; Jin, Li; Chung, Yeun-Jun; Xu, Shuhua
2015-01-01
Historical records indicate that extensive cultural, commercial and technological interaction occurred between European and Asian populations. What have been the biological consequences of these contacts in terms of gene flow? We systematically estimated gene flow between Eurasian groups using genome-wide polymorphisms from 34 populations representing Europeans, East Asians, and Central/South Asians. We identified recent gene flow between Europeans and Asians in most populations we studied, including East Asians and Northwestern Europeans, which are normally considered to be non-admixed populations. In addition we quantitatively estimated the extent of this gene flow using two statistical approaches, and dated admixture events based on admixture linkage disequilibrium. Our results indicate that most genetic admixtures occurred between 2,400 and 310 years ago and show the admixture proportions to be highly correlated with geographic locations, with the highest admixture proportions observed in Central Asia and the lowest in East Asia and Northwestern Europe. Interestingly, we observed a North-to-South decline of European gene flow in East Asians, suggesting a northern path of European gene flow diffusing into East Asian populations. Our findings contribute to an improved understanding of the history of human migration and the evolutionary mechanisms that have shaped the genetic structure of populations in Eurasia. PMID:25833680
Is the child 'father of the man'? evaluating the stability of genetic influences across development.
Ronald, Angelica
2011-11-01
This selective review considers findings in genetic research that have shed light on how genes operate across development. We will address the question of whether the child is 'father of the Man' from a genetic perspective. In other words, do the same genetic influences affect the same traits across development? Using a 'taster menu' approach and prioritizing newer findings on cognitive and behavioral traits, examples from the following genetic disciplines will be discussed: (a) developmental quantitative genetics (such as longitudinal twin studies), (b) neurodevelopmental genetic syndromes with known genetic causes (such as Williams syndrome), (c) developmental candidate gene studies (such as those that link infant and adult populations), (d) developmental genome-wide association studies (GWAS), and (e) DNA resequencing. Evidence presented here suggests that there is considerable genetic stability of cognitive and behavioral traits across development, but there is also evidence for genetic change. Quantitative genetic studies have a long history of assessing genetic continuity and change across development. It is now time for the newer, more technology-enabled fields such as GWAS and DNA resequencing also to take on board the dynamic nature of human behavior. 2011 Blackwell Publishing Ltd.
Genetic and Environmental Influences on Behavior: Capturing All the Interplay
ERIC Educational Resources Information Center
Johnson, Wendy
2007-01-01
Basic quantitative genetic models of human behavioral variation have made clear that individual differences in behavior cannot be understood without acknowledging the importance of genetic influences. Yet these basic models estimate average, population-level genetic and environmental influences, obscuring differences that might exist within the…
Wang, Diane R; Han, Rongkui; Wolfrum, Edward J; McCouch, Susan R
2017-07-01
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice (Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associated with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. This study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less
Epigenetics and Epigenomics of Plants.
Yadav, Chandra Bhan; Pandey, Garima; Muthamilarasan, Mehanathan; Prasad, Manoj
2018-01-23
The genetic material DNA in association with histone proteins forms the complex structure called chromatin, which is prone to undergo modification through certain epigenetic mechanisms including cytosine DNA methylation, histone modifications, and small RNA-mediated methylation. Alterations in chromatin structure lead to inaccessibility of genomic DNA to various regulatory proteins such as transcription factors, which eventually modulates gene expression. Advancements in high-throughput sequencing technologies have provided the opportunity to study the epigenetic mechanisms at genome-wide levels. Epigenomic studies using high-throughput technologies will widen the understanding of mechanisms as well as functions of regulatory pathways in plant genomes, which will further help in manipulating these pathways using genetic and biochemical approaches. This technology could be a potential research tool for displaying the systematic associations of genetic and epigenetic variations, especially in terms of cytosine methylation onto the genomic region in a specific cell or tissue. A comprehensive study of plant populations to correlate genotype to epigenotype and to phenotype, and also the study of methyl quantitative trait loci (QTL) or epiGWAS, is possible by using high-throughput sequencing methods, which will further accelerate molecular breeding programs for crop improvement. Graphical Abstract.
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue
Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270
Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue.
Spühler, Isabelle A; Conley, Gaurasundar M; Scheffold, Frank; Sprecher, Simon G
2016-01-01
Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation.
Wang, Diane R.; Han, Rongkui; Wolfrum, Edward J.; ...
2017-05-30
Harnessing stem carbohydrate dynamics in grasses offers an opportunity to help meet future demands for plant-based food, fiber and fuel production, but requires a greater understanding of the genetic controls that govern the synthesis, interconversion and transport of such energy reserves. We map out a blueprint of the genetic architecture of rice ( Oryza sativa) stem nonstructural carbohydrates (NSC) at two critical developmental time-points using a subpopulation-specific genome-wide association approach on two diverse germplasm panels followed by quantitative trait loci (QTL) mapping in a biparental population. Overall, 26 QTL are identified; three are detected in multiple panels and are associatedmore » with starch-at-maturity, sucrose-at-maturity and NSC-at-heading. They tag OsHXK6 (rice hexokinase), ISA2 (rice isoamylase) and a tandem array of sugar transporters. Furthermore, this study provides the foundation for more in-depth molecular investigation to validate candidate genes underlying rice stem NSC and informs future comparative studies in other agronomically vital grass species.« less
Multiscale digital Arabidopsis predicts individual organ and whole-organism growth.
Chew, Yin Hoon; Wenden, Bénédicte; Flis, Anna; Mengin, Virginie; Taylor, Jasper; Davey, Christopher L; Tindal, Christopher; Thomas, Howard; Ougham, Helen J; de Reffye, Philippe; Stitt, Mark; Williams, Mathew; Muetzelfeldt, Robert; Halliday, Karen J; Millar, Andrew J
2014-09-30
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Genetic architecture of a hormonal response to gene knockdown in honey bees.
Ihle, Kate E; Rueppell, Olav; Huang, Zachary Y; Wang, Ying; Fondrk, M Kim; Page, Robert E; Amdam, Gro V
2015-01-01
Variation in endocrine signaling is proposed to underlie the evolution and regulation of social life histories, but the genetic architecture of endocrine signaling is still poorly understood. An excellent example of a hormonally influenced set of social traits is found in the honey bee (Apis mellifera): a dynamic and mutually suppressive relationship between juvenile hormone (JH) and the yolk precursor protein vitellogenin (Vg) regulates behavioral maturation and foraging of workers. Several other traits cosegregate with these behavioral phenotypes, comprising the pollen hoarding syndrome (PHS) one of the best-described animal behavioral syndromes. Genotype differences in responsiveness of JH to Vg are a potential mechanistic basis for the PHS. Here, we reduced Vg expression via RNA interference in progeny from a backcross between 2 selected lines of honey bees that differ in JH responsiveness to Vg reduction and measured JH response and ovary size, which represents another key aspect of the PHS. Genetic mapping based on restriction site-associated DNA tag sequencing identified suggestive quantitative trait loci (QTL) for ovary size and JH responsiveness. We confirmed genetic effects on both traits near many QTL that had been identified previously for their effect on various PHS traits. Thus, our results support a role for endocrine control of complex traits at a genetic level. Furthermore, this first example of a genetic map of a hormonal response to gene knockdown in a social insect helps to refine the genetic understanding of complex behaviors and the physiology that may underlie behavioral control in general. © The American Genetic Association. 2015.
Quantitative characterization of genetic parts and circuits for plant synthetic biology.
Schaumberg, Katherine A; Antunes, Mauricio S; Kassaw, Tessema K; Xu, Wenlong; Zalewski, Christopher S; Medford, June I; Prasad, Ashok
2016-01-01
Plant synthetic biology promises immense technological benefits, including the potential development of a sustainable bio-based economy through the predictive design of synthetic gene circuits. Such circuits are built from quantitatively characterized genetic parts; however, this characterization is a significant obstacle in work with plants because of the time required for stable transformation. We describe a method for rapid quantitative characterization of genetic plant parts using transient expression in protoplasts and dual luciferase outputs. We observed experimental variability in transient-expression assays and developed a mathematical model to describe, as well as statistical normalization methods to account for, this variability, which allowed us to extract quantitative parameters. We characterized >120 synthetic parts in Arabidopsis and validated our method by comparing transient expression with expression in stably transformed plants. We also tested >100 synthetic parts in sorghum (Sorghum bicolor) protoplasts, and the results showed that our method works in diverse plant groups. Our approach enables the construction of tunable gene circuits in complex eukaryotic organisms.
Lepère, Cécile; Ostrowski, Martin; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, David J
2016-08-01
Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J
2015-09-01
How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.
Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S
2016-09-01
High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...
QuASAR: quantitative allele-specific analysis of reads
Harvey, Chris T.; Moyerbrailean, Gregory A.; Davis, Gordon O.; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger
2015-01-01
Motivation: Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. Results: We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. Availability and implementation: http://github.com/piquelab/QuASAR. Contact: fluca@wayne.edu or rpique@wayne.edu Supplementary information: Supplementary Material is available at Bioinformatics online. PMID:25480375
Ede, Christopher; Chen, Ximin; Lin, Meng-Yin; Chen, Yvonne Y
2016-05-20
Inducible transcription systems play a crucial role in a wide array of synthetic biology circuits. However, the majority of inducible promoters are constructed from a limited set of tried-and-true promoter parts, which are susceptible to common shortcomings such as high basal expression levels (i.e., leakiness). To expand the toolbox for regulated mammalian gene expression and facilitate the construction of mammalian genetic circuits with precise functionality, we quantitatively characterized a panel of eight core promoters, including sequences with mammalian, viral, and synthetic origins. We demonstrate that this selection of core promoters can provide a wide range of basal gene expression levels and achieve a gradient of fold-inductions spanning 2 orders of magnitude. Furthermore, commonly used parts such as minimal CMV and minimal SV40 promoters were shown to achieve robust gene expression upon induction, but also suffer from high levels of leakiness. In contrast, a synthetic promoter, YB_TATA, was shown to combine low basal expression with high transcription rate in the induced state to achieve significantly higher fold-induction ratios compared to all other promoters tested. These behaviors remain consistent when the promoters are coupled to different genetic outputs and different response elements, as well as across different host-cell types and DNA copy numbers. We apply this quantitative understanding of core promoter properties to the successful engineering of human T cells that respond to antigen stimulation via chimeric antigen receptor signaling specifically under hypoxic environments. Results presented in this study can facilitate the design and calibration of future mammalian synthetic biology systems capable of precisely programmed functionality.
Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W
2012-12-01
To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.
McNeil, Casey L.; Bain, Clint L.; Macdonald, Stuart J.
2011-01-01
The observation that male genitalia diverge more rapidly than other morphological traits during evolution is taxonomically widespread and likely due to some form of sexual selection. One way to elucidate the evolutionary forces acting on these traits is to detail the genetic architecture of variation both within and between species, a program of research that is considerably more tractable in a model system. Drosophila melanogaster and its sibling species, D. simulans, D. mauritiana, and D. sechellia, are morphologically distinguishable only by the shape of the posterior lobe, a male-specific elaboration of the genital arch. We extend earlier studies identifying quantitative trait loci (QTL) responsible for lobe divergence across species and report the first genetic dissection of lobe shape variation within a species. Using an advanced intercross mapping design, we identify three autosomal QTL contributing to the difference in lobe shape between a pair of D. melanogaster inbred lines. The QTL each contribute 4.6–10.7% to shape variation, and two show a significant epistatic interaction. Interestingly, these intraspecific QTL map to the same locations as interspecific lobe QTL, implying some shared genetic control of the trait within and between species. As a first step toward a mechanistic understanding of natural lobe shape variation, we find an association between our QTL data and a set of genes that show sex-biased expression in the developing genital imaginal disc (the precursor of the adult genitalia). These genes are good candidates to harbor naturally segregating polymorphisms contributing to posterior lobe shape. PMID:22384345
Rodríguez-Quilón, Isabel; Santos-Del-Blanco, Luis; Serra-Varela, María Jesús; Koskela, Jarkko; González-Martínez, Santiago C; Alía, Ricardo
2016-10-01
Preserving intraspecific genetic diversity is essential for long-term forest sustainability in a climate change scenario. Despite that, genetic information is largely neglected in conservation planning, and how conservation units should be defined is still heatedly debated. Here, we use maritime pine (Pinus pinaster Ait.), an outcrossing long-lived tree with a highly fragmented distribution in the Mediterranean biodiversity hotspot, to prove the importance of accounting for genetic variation, of both neutral molecular markers and quantitative traits, to define useful conservation units. Six gene pools associated to distinct evolutionary histories were identified within the species using 12 microsatellites and 266 single nucleotide polymorphisms (SNPs). In addition, height and survival standing variation, their genetic control, and plasticity were assessed in a multisite clonal common garden experiment (16 544 trees). We found high levels of quantitative genetic differentiation within previously defined neutral gene pools. Subsequent cluster analysis and post hoc trait distribution comparisons allowed us to define 10 genetically homogeneous population groups with high evolutionary potential. They constitute the minimum number of units to be represented in a maritime pine dynamic conservation program. Our results uphold that the identification of conservation units below the species level should account for key neutral and adaptive components of genetic diversity, especially in species with strong population structure and complex evolutionary histories. The environmental zonation approach currently used by the pan-European genetic conservation strategy for forest trees would be largely improved by gradually integrating molecular and quantitative trait information, as data become available. © 2016 by the Ecological Society of America.
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.; ...
2018-02-03
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milano, Elizabeth R.; Payne, Courtney E.; Wolfrum, Edward J.
Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense. We explore the genetic architecture of tissue characteristics using a quantitative trait loci (QTL) mapping approach in Panicum hallii, a model lignocellulosic grass system.more » Diversity in the mapping population was generated by crossing xeric and mesic varietals, comparative to northern upland and southern lowland ecotypes in switchgrass. We use near-infrared spectroscopy with a primary analytical method to create a P. hallii specific calibration model to quickly quantify cell wall components. Ash, lignin, glucan, and xylan comprise 68% of total dry biomass in P. hallii: comparable to other feedstocks. We identified 14 QTL and one epistatic interaction across these four cell wall traits and found almost half of the QTL to localize to a single linkage group. Panicum hallii serves as the genomic model for its close relative and emerging biofuel crop, switchgrass (P. virgatum). We used high throughput phenotyping to map genomic regions that impact natural variation in leaf tissue composition. Understanding the genetic architecture of tissue traits in a tractable model grass system will lead to a better understanding of cell wall structure as well as provide genomic resources for bioenergy crop breeding programs.« less
Fransen, Karin; van Sommeren, Suzanne; Westra, Harm-Jan; Veenstra, Monique; Lamberts, Letitia E; Modderman, Rutger; Dijkstra, Gerard; Fu, Jingyuan; Wijmenga, Cisca; Franke, Lude; Weersma, Rinse K; van Diemen, Cleo C
2014-05-01
The Th17/IL23 pathway has both genetically and biologically been implicated in the pathogenesis of the inflammatory bowel diseases (IBD), Crohn's disease, and ulcerative colitis. So far, it is unknown whether and how associated risk variants affect expression of the genes encoding for Th17/IL23 pathway proteins. Ten IBD-associated SNPs residing near Th17/IL23 genes were used to construct a genetic risk model in 753 Dutch IBD cases and 1045 controls. In an independent cohort of 40 Crohn's disease, 40 ulcerative colitis, and 40 controls, the genetic risk load and presence of IBD were correlated to quantitative PCR-generated messenger RNA (mRNA) expression of 9 representative Th17/IL23 genes in both unstimulated and PMA/CaLo stimulated peripheral blood mononuclear cells. In 1240 individuals with various immunological diseases with whole genome genotype and mRNA-expression data, we also assessed correlation between genetic risk load and differential mRNA expression and sought for SNPs affecting expression of all currently known Th17/IL23 pathway genes (cis-expression quantitative trait locus). The presence of IBD, but not the genetic risk load, was correlated to differential mRNA expression for IL6 in unstimulated peripheral blood mononuclear cells and to IL23A and RORC in response to stimulation. The cis-expression quantitative trait locus analysis showed little evidence for correlation between genetic risk load and mRNA expression of Th17/IL23 genes, because we identified for only 2 of 22 Th17/IL23 genes a cis-expression quantitative trait locus single nucleotide polymorphism that is also associated to IBD (STAT3 and CCR6). Our results suggest that only the presence of IBD and not the genetic risk load alters mRNA expression levels of IBD-associated Th17/IL23 genes.
Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster
Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A.; Maltecca, Christian; Mackay, Trudy F. C.
2015-01-01
Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon. PMID:25943032
Shaw, Alison; Hurst, Jane A
2008-08-01
Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.
Quantitative autistic trait measurements index background genetic risk for ASD in Hispanic families.
Page, Joshua; Constantino, John Nicholas; Zambrana, Katherine; Martin, Eden; Tunc, Ilker; Zhang, Yi; Abbacchi, Anna; Messinger, Daniel
2016-01-01
Recent studies have indicated that quantitative autistic traits (QATs) of parents reflect inherited liabilities that may index background genetic risk for clinical autism spectrum disorder (ASD) in their offspring. Moreover, preferential mating for QATs has been observed as a potential factor in concentrating autistic liabilities in some families across generations. Heretofore, intergenerational studies of QATs have focused almost exclusively on Caucasian populations-the present study explored these phenomena in a well-characterized Hispanic population. The present study examined QAT scores in siblings and parents of 83 Hispanic probands meeting research diagnostic criteria for ASD, and 64 non-ASD controls, using the Social Responsiveness Scale-2 (SRS-2). Ancestry of the probands was characterized by genotype, using information from 541,929 single nucleotide polymorphic markers. In families of Hispanic children with an ASD diagnosis, the pattern of quantitative trait correlations observed between ASD-affected children and their first-degree relatives (ICCs on the order of 0.20), between unaffected first-degree relatives in ASD-affected families (sibling/mother ICC = 0.36; sibling/father ICC = 0.53), and between spouses (mother/father ICC = 0.48) were in keeping with the influence of transmitted background genetic risk and strong preferential mating for variation in quantitative autistic trait burden. Results from analysis of ancestry-informative genetic markers among probands in this sample were consistent with that from other Hispanic populations. Quantitative autistic traits represent measurable indices of inherited liability to ASD in Hispanic families. The accumulation of autistic traits occurs within generations, between spouses, and across generations, among Hispanic families affected by ASD. The occurrence of preferential mating for QATs-the magnitude of which may vary across cultures-constitutes a mechanism by which background genetic liability for ASD can accumulate in a given family in successive generations.
Törnwall, Outi; Silventoinen, Karri; Kaprio, Jaakko; Tuorila, Hely
2012-10-10
Although potential environmental influences on hedonic responses to oral pungency have been identified, little is known of the possible role of genetics underlying these responses. We explored the contribution of genetic and environmental influences on the pleasantness of oral pungency and spicy foods. Respondents were young adult Finnish twins (n=331, 21-25 years), including 47 complete monozygotic and 93 dizygotic twin pairs and 51 twin individuals without their co-twin. Pleasantness and intensity of strawberry jelly spiked with capsaicin (0.0001% w/v) relative to untainted strawberry jelly were rated. Furthermore, pleasantness of spicy foods and oral pungency caused by spices were rated based on food names in a questionnaire. Respondents were grouped as non-likers, medium-likers, and likers by their pleasantness responses to capsaicin spiked jelly. The contribution of genetic and environmental factors to variation and co-variation of the pleasantness traits was analyzed using quantitative genetic modeling. The non-likers perceived oral pungency as more intense (sensory) and rated pleasantness of spicy foods and pungent sensations caused by spices (questionnaire) as less pleasant than the likers. Genetic factors accounted for 18-58% of the variation in the pleasantness of oral pungency, spicy foods and pungent sensations. The rest was due to environmental factors. All pleasantness traits (sensory and questionnaire based) were shown to share a common genetic variance. This indicates that an underlying genetic aptitude to like oral pungency, and spicy foods exists and it is expressed in these measures. The findings broaden the understanding of the diverse nature of individual food preferences and motivate further search for the underlying genetic components of oral pungency. Copyright © 2012. Published by Elsevier Inc.
Genetic Architectures of Quantitative Variation in RNA Editing Pathways
Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.
2016-01-01
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Eichmiller, Jessica J.; Hicks, Randall E.; Sadowsky, Michael J.
2013-01-01
Water, sand, and sediment from a Lake Superior harbor site continuously receiving wastewater effluent was sampled monthly for June to October 2010 and from May to September 2011. Understanding the dynamics of genetic markers of fecal bacteria in these matrices is essential to accurately characterizing health risks. Genetic markers for enterococci, total Bacteroides, and human-associated Bacteroides were measured in site-water, sand, and sediment and in final effluent by quantitative PCR. The similarity between the quantity of molecular markers in the water column and effluent indicated that the abundance of genetic markers in the water column was likely controlled by effluent inputs. Effluent turbidity was positively correlated (p ≤ 0.05) with AllBac and HF183 in final effluent and AllBac in the water column. In sand and sediment, Entero1 and AllBac were most abundant in the upper 1– 3 cm depths, whereas HF183 was most abundant in the upper 1 cm of sand and at 7 cm in sediment. The AllBac and Entero1 markers were 1- and 2-orders of magnitude more abundant in sand and sediment relative to the water column per unit mass. These results indicate that sand and sediment may act as reservoirs for genetic markers of fecal pollution at some freshwater sites. PMID:23473470
Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm
Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua
2009-01-01
Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415
Multivariate Analysis of the Cotton Seed Ionome Reveals a Shared Genetic Architecture
Pauli, Duke; Ziegler, Greg; Ren, Min; Jenks, Matthew A.; Hunsaker, Douglas J.; Zhang, Min; Baxter, Ivan; Gore, Michael A.
2018-01-01
To mitigate the effects of heat and drought stress, a better understanding of the genetic control of physiological responses to these environmental conditions is needed. To this end, we evaluated an upland cotton (Gossypium hirsutum L.) mapping population under water-limited and well-watered conditions in a hot, arid environment. The elemental concentrations (ionome) of seed samples from the population were profiled in addition to those of soil samples taken from throughout the field site to better model environmental variation. The elements profiled in seeds exhibited moderate to high heritabilities, as well as strong phenotypic and genotypic correlations between elements that were not altered by the imposed irrigation regimes. Quantitative trait loci (QTL) mapping results from a Bayesian classification method identified multiple genomic regions where QTL for individual elements colocalized, suggesting that genetic control of the ionome is highly interrelated. To more fully explore this genetic architecture, multivariate QTL mapping was implemented among groups of biochemically related elements. This analysis revealed both additional and pleiotropic QTL responsible for coordinated control of phenotypic variation for elemental accumulation. Machine learning algorithms that utilized only ionomic data predicted the irrigation regime under which genotypes were evaluated with very high accuracy. Taken together, these results demonstrate the extent to which the seed ionome is genetically interrelated and predictive of plant physiological responses to adverse environmental conditions. PMID:29437829
Brechman, Jean M.; Lee, Chul-joo; Cappella, Joseph N.
2014-01-01
Understanding how genetic science is communicated to the lay public is of great import, given that media coverage of genetics is increasing exponentially and that the ways in which discoveries are presented in the news can have significant effects on a variety of health outcomes. To address this issue, this study examines the presentation of genetic research relating to cancer outcomes and behaviors (i.e., prostate cancer, breast cancer, colon cancer, smoking and obesity) in both the press release (N = 23) and its subsequent news coverage (N = 71) by using both quantitative content analysis and qualitative textual analysis. In contrast to earlier studies reporting that news stories often misrepresent genetics by presenting biologically deterministic and simplified portrayals (e.g., Mountcastle-Shah et al., 2003; Ten Eych & Williment, 2003), our data shows no clear trends in the direction of distortion toward deterministic claims in news articles. Also, other errors commonly attributed to science journalism, such as lack of qualifying details and use of oversimplified language (e.g., “fat gene”) are observed in press releases. These findings suggest that the intermediary press release rather than news coverage may serve as a source of distortion in the dissemination of science to the lay public. The implications of this study for future research in this area are discussed. PMID:25568611
Early life stages contribute strongly to local adaptation in Arabidopsis thaliana.
Postma, Froukje M; Ågren, Jon
2016-07-05
The magnitude and genetic basis of local adaptation is of fundamental interest in evolutionary biology. However, field experiments usually do not consider early life stages, and therefore may underestimate local adaptation and miss genetically based tradeoffs. We examined the contribution of differences in seedling establishment to adaptive differentiation and the genetic architecture of local adaptation using recombinant inbred lines (RIL) derived from a cross between two locally adapted populations (Italy and Sweden) of the annual plant Arabidopsis thaliana We planted freshly matured, dormant seeds (>180 000) representing >200 RILs at the native field sites of the parental genotypes, estimated the strength of selection during different life stages, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on seed dormancy. We found that selection during the seedling establishment phase contributed strongly to the fitness advantage of the local genotype at both sites. With one exception, local alleles of the eight distinct establishment QTL were favored. The major QTL for establishment and total fitness showed evidence of a fitness tradeoff and was located in the same region as the major seed dormancy QTL and the dormancy gene DELAY OF GERMINATION 1 (DOG1). RIL seed dormancy could explain variation in seedling establishment and fitness across the life cycle. Our results demonstrate that genetically based differences in traits affecting performance during early life stages can contribute strongly to adaptive differentiation and genetic tradeoffs, and should be considered for a full understanding of the ecology and genetics of local adaptation.
Biology Undergraduates' Misconceptions about Genetic Drift
ERIC Educational Resources Information Center
Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.
2012-01-01
This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…
Generalist Genes: Genetic Links between Brain, Mind, and Education
ERIC Educational Resources Information Center
Plomin, Robert; Kovas, Yulia; Haworth, Claire M. A.
2007-01-01
Genetics contributes importantly to learning abilities and disabilities--not just to reading, the target of most genetic research, but also to mathematics and other academic areas as well. One of the most important recent findings from quantitative genetic research such as twin studies is that the same set of genes is largely responsible for…
Ronald S., Jr. Zalesny
2006-01-01
Genetic and environmental factors affect the early rooting of Populus planted as unrooted hardwood cuttings. Populus genotypes of six genomic groups were tested in numerous studies for the quantitative genetics of rooting, along with effects of preplanting treatments and soil temperature. Genetics data (e.g. heritabilities,...
Genetic and Environmental Influences on Negative Life Events from Late Childhood to Adolescence
ERIC Educational Resources Information Center
Johnson, Daniel P.; Rhee, Soo Hyun; Whisman, Mark A.; Corley, Robin P.; Hewitt, John K.
2013-01-01
This multiwave longitudinal study tested two quantitative genetic developmental models to examine genetic and environmental influences on exposure to negative dependent and independent life events. Participants (N = 457 twin pairs) completed measures of life events annually from ages 9 to 16. The same genetic factors influenced exposure to…
Caffier, Valérie; Le Cam, Bruno; Al Rifaï, Mehdi; Bellanger, Marie-Noëlle; Comby, Morgane; Denancé, Caroline; Didelot, Frédérique; Expert, Pascale; Kerdraon, Tifenn; Lemarquand, Arnaud; Ravon, Elisa; Durel, Charles-Eric
2016-10-01
Quantitative plant resistance affects the aggressiveness of pathogens and is usually considered more durable than qualitative resistance. However, the efficiency of a quantitative resistance based on an isolate-specific Quantitative Trait Locus (QTL) is expected to decrease over time due to the selection of isolates with a high level of aggressiveness on resistant plants. To test this hypothesis, we surveyed scab incidence over an eight-year period in an orchard planted with susceptible and quantitatively resistant apple genotypes. We sampled 79 Venturia inaequalis isolates from this orchard at three dates and we tested their level of aggressiveness under controlled conditions. Isolates sampled on resistant genotypes triggered higher lesion density and exhibited a higher sporulation rate on apple carrying the resistance allele of the QTL T1 compared to isolates sampled on susceptible genotypes. Due to this ability to select aggressive isolates, we expected the QTL T1 to be non-durable. However, our results showed that the quantitative resistance based on the QTL T1 remained efficient in orchard over an eight-year period, with only a slow decrease in efficiency and no detectable increase of the aggressiveness of fungal isolates over time. We conclude that knowledge on the specificity of a QTL is not sufficient to evaluate its durability. Deciphering molecular mechanisms associated with resistance QTLs, genetic determinants of aggressiveness and putative trade-offs within pathogen populations is needed to help in understanding the erosion processes. Copyright © 2016 Elsevier B.V. All rights reserved.
Dumas, Marc-Emmanuel; Domange, Céline; Calderari, Sophie; Martínez, Andrea Rodríguez; Ayala, Rafael; Wilder, Steven P; Suárez-Zamorano, Nicolas; Collins, Stephan C; Wallis, Robert H; Gu, Quan; Wang, Yulan; Hue, Christophe; Otto, Georg W; Argoud, Karène; Navratil, Vincent; Mitchell, Steve C; Lindon, John C; Holmes, Elaine; Cazier, Jean-Baptiste; Nicholson, Jeremy K; Gauguier, Dominique
2016-09-30
The genetic regulation of metabolic phenotypes (i.e., metabotypes) in type 2 diabetes mellitus occurs through complex organ-specific cellular mechanisms and networks contributing to impaired insulin secretion and insulin resistance. Genome-wide gene expression profiling systems can dissect the genetic contributions to metabolome and transcriptome regulations. The integrative analysis of multiple gene expression traits and metabolic phenotypes (i.e., metabotypes) together with their underlying genetic regulation remains a challenge. Here, we introduce a systems genetics approach based on the topological analysis of a combined molecular network made of genes and metabolites identified through expression and metabotype quantitative trait locus mapping (i.e., eQTL and mQTL) to prioritise biological characterisation of candidate genes and traits. We used systematic metabotyping by 1 H NMR spectroscopy and genome-wide gene expression in white adipose tissue to map molecular phenotypes to genomic blocks associated with obesity and insulin secretion in a series of rat congenic strains derived from spontaneously diabetic Goto-Kakizaki (GK) and normoglycemic Brown-Norway (BN) rats. We implemented a network biology strategy approach to visualize the shortest paths between metabolites and genes significantly associated with each genomic block. Despite strong genomic similarities (95-99 %) among congenics, each strain exhibited specific patterns of gene expression and metabotypes, reflecting the metabolic consequences of series of linked genetic polymorphisms in the congenic intervals. We subsequently used the congenic panel to map quantitative trait loci underlying specific mQTLs and genome-wide eQTLs. Variation in key metabolites like glucose, succinate, lactate, or 3-hydroxybutyrate and second messenger precursors like inositol was associated with several independent genomic intervals, indicating functional redundancy in these regions. To navigate through the complexity of these association networks we mapped candidate genes and metabolites onto metabolic pathways and implemented a shortest path strategy to highlight potential mechanistic links between metabolites and transcripts at colocalized mQTLs and eQTLs. Minimizing the shortest path length drove prioritization of biological validations by gene silencing. These results underline the importance of network-based integration of multilevel systems genetics datasets to improve understanding of the genetic architecture of metabotype and transcriptomic regulation and to characterize novel functional roles for genes determining tissue-specific metabolism.
Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance
Mead, Rebecca; Hejmadi, Momna
2017-01-01
What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students’ understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance. PMID:28542179
Teaching genetics prior to teaching evolution improves evolution understanding but not acceptance.
Mead, Rebecca; Hejmadi, Momna; Hurst, Laurence D
2017-05-01
What is the best way to teach evolution? As microevolution may be configured as a branch of genetics, it being a short conceptual leap from understanding the concepts of mutation and alleles (i.e., genetics) to allele frequency change (i.e., evolution), we hypothesised that learning genetics prior to evolution might improve student understanding of evolution. In the UK, genetics and evolution are typically taught to 14- to 16-y-old secondary school students as separate topics with few links, in no particular order and sometimes with a large time span between. Here, then, we report the results of a large trial into teaching order of evolution and genetics. We modified extant questionnaires to ascertain students' understanding of evolution and genetics along with acceptance of evolution. Students were assessed prior to teaching, immediately post teaching and again after several months. Teachers were not instructed what to teach, just to teach in a given order. Regardless of order, teaching increased understanding and acceptance, with robust signs of longer-term retention. Importantly, teaching genetics before teaching evolution has a significant (p < 0.001) impact on improving evolution understanding by 7% in questionnaire scores beyond the increase seen for those taught in the inverse order. For lower ability students, an improvement in evolution understanding was seen only if genetics was taught first. Teaching genetics first additionally had positive effects on genetics understanding, by increasing knowledge. These results suggest a simple, minimally disruptive, zero-cost intervention to improve evolution understanding: teach genetics first. This same alteration does not, however, result in a significantly increased acceptance of evolution, which reflects a weak correlation between knowledge and acceptance of evolution. Qualitative focus group data highlights the role of authority figures in determination of acceptance.
Harden, K Paige
2014-03-01
There are dramatic individual differences among adolescents in how and when they become sexually active adults, and early sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically informed research on adolescent sexual behavior compares twins and family members as a form of quasi experiment: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of Gene × Environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally oriented theory and research.
Aström, Johan; Pettersson, Thomas J R; Reischer, Georg H; Hermansson, Malte
2013-09-01
The protection of drinking water from pathogens such as Cryptosporidium and Giardia requires an understanding of the short-term microbial release from faecal contamination sources in the catchment. Flow-weighted samples were collected during two rainfall events in a stream draining an area with on-site sewers and during two rainfall events in surface runoff from a bovine cattle pasture. Samples were analysed for human (BacH) and ruminant (BacR) Bacteroidales genetic markers through quantitative polymerase chain reaction (qPCR) and for sorbitol-fermenting bifidobacteria through culturing as a complement to traditional faecal indicator bacteria, somatic coliphages and the parasitic protozoa Cryptosporidium spp. and Giardia spp. analysed by standard methods. Significant positive correlations were observed between BacH, Escherichia coli, intestinal enterococci, sulphite-reducing Clostridia, turbidity, conductivity and UV254 in the stream contaminated by on-site sewers. For the cattle pasture, no correlation was found between any of the genetic markers and the other parameters. Although parasitic protozoa were not detected, the analysis for genetic markers provided baseline data on the short-term faecal contamination due to these potential sources of parasites. Background levels of BacH and BacR makers in soil emphasise the need to including soil reference samples in qPCR-based analyses for Bacteroidales genetic markers.
Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike
2014-01-01
Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848
Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.
Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito
2014-11-11
Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.
Brinkmeyer-Langford, Candice; Balog-Alvarez, Cynthia; Cai, James J; Davis, Brian W; Kornegay, Joe N
2016-08-22
Duchenne muscular dystrophy (DMD) causes progressive muscle degeneration, cardiomyopathy and respiratory failure in approximately 1/5,000 boys. Golden Retriever muscular dystrophy (GRMD) resembles DMD both clinically and pathologically. Like DMD, GRMD exhibits remarkable phenotypic variation among affected dogs, suggesting the influence of modifiers. Understanding the role(s) of genetic modifiers of GRMD may identify genes and pathways that also modify phenotypes in DMD and reveal novel therapies. Therefore, our objective in this study was to identify genetic modifiers that affect discrete GRMD phenotypes. We performed a linear mixed-model (LMM) analysis using 16 variably-affected dogs from our GRMD colony (8 dystrophic, 8 non-dystrophic). All of these dogs were either full or half-siblings, and phenotyped for 19 objective, quantitative biomarkers at ages 6 and 12 months. Each biomarker was individually assessed. Gene expression profiles of 59 possible candidate genes were generated for two muscle types: the cranial tibialis and medial head of the gastrocnemius. SNPs significantly associated with GRMD biomarkers were identified on multiple chromosomes (including the X chromosome). Gene expression levels for candidate genes located near these SNPs correlated with biomarker values, suggesting possible roles as GRMD modifiers. The results of this study enhance our understanding of GRMD pathology and represent a first step toward the characterization of GRMD modifiers that may be relevant to DMD pathology. Such modifiers are likely to be useful for DMD treatment development based on their relationships to GRMD phenotypes.
Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.
Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P
2017-01-01
In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool to equip modern crops with environment-tailored characteristics.
USE OF GENOTOXIC ACTIVITY PROFILES IN ASSESSMENT OF CARCINOGENESIS AND TRANSMISSIBLE GENETIC EFFECTS
A methodology has been developed to display and evaluate multiple test quantitative information on genetic toxicants for purposes of assessing carcinogenesis and transmissible genetic effects. ose Information is collected from the open literature: either the lowest effective dose...
The efficiency of close inbreeding to reduce genetic adaptation to captivity
Theodorou, K; Couvet, D
2015-01-01
Although ex situ conservation is indispensable for thousands of species, captive breeding is associated with negative genetic changes: loss of genetic variance and genetic adaptation to captivity that is deleterious in the wild. We used quantitative genetic individual-based simulations to model the effect of genetic management on the evolution of a quantitative trait and the associated fitness of wild-born individuals that are brought to captivity. We also examined the feasibility of the breeding strategies under a scenario of a large number of loci subject to deleterious mutations. We compared two breeding strategies: repeated half-sib mating and a method of minimizing mean coancestry (referred to as gc/mc). Our major finding was that half-sib mating is more effective in reducing genetic adaptation to captivity than the gc/mc method. Moreover, half-sib mating retains larger allelic and adaptive genetic variance. Relative to initial standing variation, the additive variance of the quantitative trait increased under half-sib mating during the sojourn in captivity. Although fragmentation into smaller populations improves the efficiency of the gc/mc method, half-sib mating still performs better in the scenarios tested. Half-sib mating shows two caveats that could mitigate its beneficial effects: low heterozygosity and high risk of extinction when populations are of low fecundity and size and one of the following conditions are met: (i) the strength of selection in captivity is comparable with that in the wild, (ii) deleterious mutations are numerous and only slightly deleterious. Experimental validation of half-sib mating is therefore needed for the advancement of captive breeding programs. PMID:25052417
Gordon, Erynn S; Gordish Dressman, Heather A; Hoffman, Eric P
2005-10-01
Much of the vast diversity we see in animals and people is governed by genetic loci that have quantitative effects of phenotype (quantitative trait loci; QTLs). Here we review the current knowledge of the genetics of atrophy and hypertrophy in both animal husbandry (meat quantity and quality), and humans (muscle size and performance). The selective breeding of animals for meat has apparently led to a few genetic loci with strong effects, with different loci in different animals. In humans, muscle quantitative trait loci (QTLs) appear to be more complex, with few "major" loci identified to date, although this is likely to change in the near future. We describe how the same phenotypic traits we see as positive, greater lean muscle mass in cattle or a better exercise results in humans, can also have negative "side effects" given specific environmental challenges. We also discuss the strength and limitations of single nucleotide polymorphisms (SNP) association studies; what the reader should look for and expect in a published study. Lastly we discuss the ethical and societal implications of this genetic information. As more and more research into the genetic loci that dictate phenotypic traits become available, the ethical implications of testing for these loci become increasingly important. As a society, most accept testing for genetic diseases or susceptibility, but do we as easily accept testing to determine one's athletic potential to be an Olympic endurance runner, or quarterback on the high school football team.
Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.).
Jiang, Congcong; Shi, Jiaqin; Li, Ruiyuan; Long, Yan; Wang, Hao; Li, Dianrong; Zhao, Jianyi; Meng, Jinling
2014-04-01
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Savolainen, Outi; Kujala, Sonja T; Sokol, Catherina; Pyhäjärvi, Tanja; Avia, Komlan; Knürr, Timo; Kärkkäinen, Katri; Hicks, Sheila
2011-01-01
The adaptive potential of the northernmost Pinus sylvestris L. (and other northern tree) populations is considered by examining first the current patterns of quantitative genetic adaptive traits, which show high population differentiation and clines. We then consider the postglacial history of the populations using both paleobiological and genetic data. The current patterns of diversity at nuclear genes suggest that the traces of admixture are mostly visible in mitochondrial DNA variation patterns. There is little evidence of increased diversity due to admixture between an eastern and western colonization lineage, but no signal of reduced diversity (due to sequential bottlenecks) either. Quantitative trait variation in the north is not associated with the colonizing lineages. The current clines arose rapidly and may be based on standing genetic variation. The initial phenotypic response of Scots pine in the north is predicted to be increased survival and growth. The genetic responses are examined based on quantitative genetic predictions of sustained selection response and compared with earlier simulation results that have aimed at more ecological realism. The phenotypic responses of increased growth and survival reduce the opportunity for selection and delay the evolutionary responses. The lengthening of the thermal growing period also causes selection on the critical photoperiod in the different populations. Future studies should aim at including multiple ecological and genetic factors in evaluating potential responses.
Archie, Elizabeth A; Chiyo, Patrick I
2012-02-01
Genetic tools are increasingly valuable for understanding the behaviour, evolution, and conservation of social species. In African elephants, for instance, genetic data provide basic information on the population genetic causes and consequences of social behaviour, and how human activities alter elephants' social and genetic structures. As such, African elephants provide a useful case study to understand the relationships between social behaviour and population genetic structure in a conservation framework. Here, we review three areas where genetic methods have made important contributions to elephant behavioural ecology and conservation: (1) understanding kin-based relationships in females and the effects of poaching on the adaptive value of elephant relationships, (2) understanding patterns of paternity in elephants and how poaching can alter these patterns, and (3) conservation genetic tools to census elusive populations, track ivory, and understand the behavioural ecology of crop-raiding. By comparing studies from populations that have experienced a range of poaching intensities, we find that human activities have a large effect on elephant behaviour and genetic structure. Poaching disrupts kin-based association patterns, decreases the quality of elephant social relationships, and increases male reproductive skew, with important consequences for population health and the maintenance of genetic diversity. In addition, we find that genetic tools to census populations or gather forensic information are almost always more accurate than non-genetic alternatives. These results contribute to a growing understanding of poaching on animal behaviour, and how genetic tools can be used to understand and conserve social species. © 2011 Blackwell Publishing Ltd.
Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li
2016-01-01
Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494
ERIC Educational Resources Information Center
Gottlieb, Gilbert
1995-01-01
Argues that a truly developmental behavior genetics will have to go beyond the traditional quantitative approach of population genetics in order to produce developmental explanatory content about differences and similarities in developmental outcomes. (MDM)
ERIC Educational Resources Information Center
Stevenson, J.; Langley, K.; Pay, H.; Payton, A.; Worthington, J.; Ollier, W.; Thapar, A.
2005-01-01
Background: Attention deficit/hyperactivity disorder (ADHD) and reading disability (RD) tend to co-occur and quantitative genetic studies have shown this to arise primarily through shared genetic influences. However, molecular genetic studies have shown different genes to be associated with each of these conditions. Neurobiological studies have…
Evaluation of an ensemble of genetic models for prediction of a quantitative trait.
Milton, Jacqueline N; Steinberg, Martin H; Sebastiani, Paola
2014-01-01
Many genetic markers have been shown to be associated with common quantitative traits in genome-wide association studies. Typically these associated genetic markers have small to modest effect sizes and individually they explain only a small amount of the variability of the phenotype. In order to build a genetic prediction model without fitting a multiple linear regression model with possibly hundreds of genetic markers as predictors, researchers often summarize the joint effect of risk alleles into a genetic score that is used as a covariate in the genetic prediction model. However, the prediction accuracy can be highly variable and selecting the optimal number of markers to be included in the genetic score is challenging. In this manuscript we present a strategy to build an ensemble of genetic prediction models from data and we show that the ensemble-based method makes the challenge of choosing the number of genetic markers more amenable. Using simulated data with varying heritability and number of genetic markers, we compare the predictive accuracy and inclusion of true positive and false positive markers of a single genetic prediction model and our proposed ensemble method. The results show that the ensemble of genetic models tends to include a larger number of genetic variants than a single genetic model and it is more likely to include all of the true genetic markers. This increased sensitivity is obtained at the price of a lower specificity that appears to minimally affect the predictive accuracy of the ensemble.
NASA Astrophysics Data System (ADS)
Topp, C. N.
2016-12-01
Our ability to harness the power of plant genomics for basic and applied science depends on how well and how fast we can quantify the phenotypic ramifications of genetic variation. Plants can be considered from many vantage points: at scales from cells to organs, over the course of development or evolution, and from biophysical, physiological, and ecological perspectives. In all of these ways, our understanding of plant form and function is greatly limited by our ability to study subterranean structures and processes. The limitations to accessing this knowledge are well known - soil is opaque, roots are morphologically complex, and root growth can be heavily influenced by a myriad of environmental factors. Nonetheless, recent technological innovations in imaging science have generated a renewed focus on roots and thus new opportunities to understand the plant as a whole. The Topp Lab is interested in crop root system growth dynamics and function in response to environmental stresses such as drought, rhizosphere interactions, and as a consequence of artificial selection for agronomically important traits such as nitrogen uptake and high plant density. Studying roots requires the development of imaging technologies, computational infrastructure, and statistical methods that can capture and analyze morphologically complex networks over time and at high-throughput. The lab uses several imaging tools (optical, X-ray CT, PET, etc.) along with quantitative genetics and molecular biology to understand the dynamics of root growth and physiology. We aim to understand the relationships among root traits that can be effectively measured both in controlled laboratory environments and in the field, and to identify genes and gene networks that control root, and ultimately whole plant architectural features useful for crop improvement.
Wiles, Travis J.; Norton, J. Paul; Russell, Colin W.; Dalley, Brian K.; Fischer, Kael F.; Mulvey, Matthew A.
2013-01-01
Strains of Extraintestinal Pathogenic Escherichia c oli (ExPEC) exhibit an array of virulence strategies and are a major cause of urinary tract infections, sepsis and meningitis. Efforts to understand ExPEC pathogenesis are challenged by the high degree of genetic and phenotypic variation that exists among isolates. Determining which virulence traits are widespread and which are strain-specific will greatly benefit the design of more effective therapies. Towards this goal, we utilized a quantitative genetic footprinting technique known as transposon insertion sequencing (Tn-seq) in conjunction with comparative pathogenomics to functionally dissect the genetic repertoire of a reference ExPEC isolate. Using Tn-seq and high-throughput zebrafish infection models, we tracked changes in the abundance of ExPEC variants within saturated transposon mutant libraries following selection within distinct host niches. Nine hundred and seventy bacterial genes (18% of the genome) were found to promote pathogen fitness in either a niche-dependent or independent manner. To identify genes with the highest therapeutic and diagnostic potential, a novel Trait Enrichment Analysis (TEA) algorithm was developed to ascertain the phylogenetic distribution of candidate genes. TEA revealed that a significant portion of the 970 genes identified by Tn-seq have homologues more often contained within the genomes of ExPEC and other known pathogens, which, as suggested by the first axiom of molecular Koch's postulates, is considered to be a key feature of true virulence determinants. Three of these Tn-seq-derived pathogen-associated genes—a transcriptional repressor, a putative metalloendopeptidase toxin and a hypothetical DNA binding protein—were deleted and shown to independently affect ExPEC fitness in zebrafish and mouse models of infection. Together, the approaches and observations reported herein provide a resource for future pathogenomics-based research and highlight the diversity of factors required by a single ExPEC isolate to survive within varying host environments. PMID:23990803
Jia, Dongjie; Shen, Fei; Wang, Yi; Wu, Ting; Xu, Xuefeng; Zhang, Xinzhong; Han, Zhenhai
2018-05-11
Many efforts have been made to map quantitative trait loci (QTLs) to facilitate practical marker-assisted selection (MAS) in plants. In the present study, we identified four genome-wide major QTLs responsible for apple fruit acidity by MapQTL and BSA-seq analyses using two independent pedigree-based populations. Candidate genes were screened in major QTL regions, and three functional gene markers, including a non-synonymous A/G single nucleotide polymorphism (SNP) in the coding region of MdPP2CH, a 36-bp insertion in the promoter of MdSAUR37, and a previously reported SNP in MdALMTII, were validated to influence the malate content of apple fruits. In addition, MdPP2CH inactivated three vacuolar H + -ATPases (MdVHA-A3, MdVHA-B2 and MdVHA-D2) and one aluminium-activated malate transporter (MdALMTII) via dephosphorylation and negatively influenced fruit malate accumulation. The dephosphotase activity of MdPP2CH was suppressed by MdSAUR37, which implied a higher hierarchy of genetic interaction. Therefore, the MdSAUR37/MdPP2CH/MdALMTII chain cascaded hierarchical epistatic genetic effects to precisely determine apple fruit malate content. An A/G SNP (-1010) on MdMYB44 promoter region from a major QTL (qtl08.1) was closely associated with fruit malate content. The predicted phenotype values (PPVs) were estimated using the tentative genotype values of the gene markers, and the PPVs were significantly correlated with the observed phenotype values. Our findings provide an insight into plant genome-based selection in apples and will aid in conducting research to understand the physiological fundamentals of quantitative genetics. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Complex Genetics of Behavior: BXDs in the Automated Home-Cage.
Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B
2017-01-01
This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.
Mapping QTLs for drought tolerance in a SEA 5 x AND 277 common bean cross with SSRs and SNP markers
Briñez, Boris; Perseguini, Juliana Morini Küpper Cardoso; Rosa, Juliana Santa; Bassi, Denis; Gonçalves, João Guilherme Ribeiro; Almeida, Caléo; Paulino, Jean Fausto de Carvalho; Blair, Matthew Ward; Chioratto, Alisson Fernando; Carbonell, Sérgio Augusto Morais; Valdisser, Paula Arielle Mendes Ribeiro; Vianello, Rosana Pereira; Benchimol-Reis, Luciana Lasry
2017-01-01
Abstract The common bean is characterized by high sensitivity to drought and low productivity. Breeding for drought resistance in this species involves genes of different genetic groups. In this work, we used a SEA 5 x AND 277 cross to map quantitative trait loci associated with drought tolerance in order to assess the factors that determine the magnitude of drought response in common beans. A total of 438 polymorphic markers were used to genotype the F8 mapping population. Phenotyping was done in two greenhouses, one used to simulate drought and the other to simulate irrigated conditions. Fourteen traits associated with drought tolerance were measured to identify the quantitative trait loci (QTLs). The map was constructed with 331 markers that covered all 11 chromosomes and had a total length of 1515 cM. Twenty-two QTLs were discovered for chlorophyll, leaf and stem fresh biomass, leaf biomass dry weight, leaf temperature, number of pods per plant, number of seeds per plant, seed weight, days to flowering, dry pod weight and total yield under well-watered and drought (stress) conditions. All the QTLs detected under drought conditions showed positive effects of the SEA 5 allele. This study provides a better understanding of the genetic inheritance of drought tolerance in common bean. PMID:29064511
Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data
NASA Astrophysics Data System (ADS)
Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo
2008-02-01
The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.
Brinton, Jemima; Simmonds, James; Minter, Francesca; Leverington-Waite, Michelle; Snape, John; Uauy, Cristobal
2017-08-01
Crop yields must increase to address food insecurity. Grain weight, determined by grain length and width, is an important yield component, but our understanding of the underlying genes and mechanisms is limited. We used genetic mapping and near isogenic lines (NILs) to identify, validate and fine-map a major quantitative trait locus (QTL) on wheat chromosome 5A associated with grain weight. Detailed phenotypic characterisation of developing and mature grains from the NILs was performed. We identified a stable and robust QTL associated with a 6.9% increase in grain weight. The positive interval leads to 4.0% longer grains, with differences first visible 12 d after fertilization. This grain length effect was fine-mapped to a 4.3 cM interval. The locus also has a pleiotropic effect on grain width (1.5%) during late grain development that determines the relative magnitude of the grain weight increase. Positive NILs have increased maternal pericarp cell length, an effect which is independent of absolute grain length. These results provide direct genetic evidence that pericarp cell length affects final grain size and weight in polyploid wheat. We propose that combining genes that control distinct biological mechanisms, such as cell expansion and proliferation, will enhance crop yields. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Bridging the Gap between Genomics and Education
ERIC Educational Resources Information Center
Petrill, Stephen A.; Justice, Laura M.
2007-01-01
Despite several decades of research suggesting the importance of both genetic and environmental factors, these findings are not well integrated into the larger educational literature. Following a discussion of quantitative and molecular genetic methods, this article reviews behavioral genetic findings related to cognitive and academic skills. This…
In a recent Cancer Discovery report, CTD2 researchers at the University of California in San Francisco developed a new quantitative chemical-genetic interaction mapping approach to evaluate drug sensitivity or resistance in isogenic cell lines. Performing a high-throughput screen with isogenic cell lines allowed the researchers to explore the impact of a panel of emerging and established drugs on cells overexpressing a single cancer-associated gene in isolation.
2014-01-01
In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment. PMID:24708694
QuASAR: quantitative allele-specific analysis of reads.
Harvey, Chris T; Moyerbrailean, Gregory A; Davis, Gordon O; Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger
2015-04-15
Expression quantitative trait loci (eQTL) studies have discovered thousands of genetic variants that regulate gene expression, enabling a better understanding of the functional role of non-coding sequences. However, eQTL studies are costly, requiring large sample sizes and genome-wide genotyping of each sample. In contrast, analysis of allele-specific expression (ASE) is becoming a popular approach to detect the effect of genetic variation on gene expression, even within a single individual. This is typically achieved by counting the number of RNA-seq reads matching each allele at heterozygous sites and testing the null hypothesis of a 1:1 allelic ratio. In principle, when genotype information is not readily available, it could be inferred from the RNA-seq reads directly. However, there are currently no existing methods that jointly infer genotypes and conduct ASE inference, while considering uncertainty in the genotype calls. We present QuASAR, quantitative allele-specific analysis of reads, a novel statistical learning method for jointly detecting heterozygous genotypes and inferring ASE. The proposed ASE inference step takes into consideration the uncertainty in the genotype calls, while including parameters that model base-call errors in sequencing and allelic over-dispersion. We validated our method with experimental data for which high-quality genotypes are available. Results for an additional dataset with multiple replicates at different sequencing depths demonstrate that QuASAR is a powerful tool for ASE analysis when genotypes are not available. http://github.com/piquelab/QuASAR. fluca@wayne.edu or rpique@wayne.edu Supplementary Material is available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Qing, Dongjin; Yang, Zhu; Li, Mingzhe; Wong, Wai Shing; Guo, Guangyu; Liu, Shichang; Guo, Hongwei; Li, Ning
2016-01-04
Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Uncovering the genetic signature of quantitative trait evolution with replicated time series data.
Franssen, S U; Kofler, R; Schlötterer, C
2017-01-01
The genetic architecture of adaptation in natural populations has not yet been resolved: it is not clear to what extent the spread of beneficial mutations (selective sweeps) or the response of many quantitative trait loci drive adaptation to environmental changes. Although much attention has been given to the genomic footprint of selective sweeps, the importance of selection on quantitative traits is still not well studied, as the associated genomic signature is extremely difficult to detect. We propose 'Evolve and Resequence' as a promising tool, to study polygenic adaptation of quantitative traits in evolving populations. Simulating replicated time series data we show that adaptation to a new intermediate trait optimum has three characteristic phases that are reflected on the genomic level: (1) directional frequency changes towards the new trait optimum, (2) plateauing of allele frequencies when the new trait optimum has been reached and (3) subsequent divergence between replicated trajectories ultimately leading to the loss or fixation of alleles while the trait value does not change. We explore these 3 phase characteristics for relevant population genetic parameters to provide expectations for various experimental evolution designs. Remarkably, over a broad range of parameters the trajectories of selected alleles display a pattern across replicates, which differs both from neutrality and directional selection. We conclude that replicated time series data from experimental evolution studies provide a promising framework to study polygenic adaptation from whole-genome population genetics data.
Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse
2014-01-01
Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225
Niqueux, Éric; Picault, Jean-Paul; Amelot, Michel; Allée, Chantal; Lamandé, Josiane; Guillemoto, Carole; Pierre, Isabelle; Massin, Pascale; Blot, Guillaume; Briand, François-Xavier; Rose, Nicolas; Jestin, Véronique
2014-01-10
EU annual serosurveillance programs show that domestic duck flocks have the highest seroprevalence of H5 antibodies, demonstrating the circulation of notifiable avian influenza virus (AIV) according to OIE, likely low pathogenic (LP). Therefore, transmission characteristics of LPAIV within these flocks can help to understand virus circulation and possible risk of propagation. This study aimed at estimating transmission parameters of four H5 LPAIV (three field strains from French poultry and decoy ducks, and one clonal reverse-genetics strain derived from one of the former), using a SIR model to analyze data from experimental infections in SPF Muscovy ducks. The design was set up to accommodate rearing on wood shavings with a low density of 1.6 ducks/m(2): 10 inoculated ducks were housed together with 15 contact-exposed ducks. Infection was monitored by RNA detection on oropharyngeal and cloacal swabs using real-time RT-PCR with a cutoff corresponding to 2-7 EID50. Depending on the strain, the basic reproduction number (R0) varied from 5.5 to 42.7, confirming LPAIV could easily be transmitted to susceptible Muscovy ducks. The lowest R0 estimate was obtained for a H5N3 field strain, due to lower values of transmission rate and duration of infectious period, whereas reverse-genetics derived H5N1 strain had the highest R0. Frequency and intensity of clinical signs were also variable between strains, but apparently not associated with longer infectious periods. Further comparisons of quantitative transmission parameters may help to identify relevant viral genetic markers for early detection of potentially more virulent strains during surveillance of LPAIV. Copyright © 2013 Elsevier B.V. All rights reserved.
Ma, Langlang; Liu, Min; Yan, Yuanyuan; Qing, Chunyan; Zhang, Xiaoling; Zhang, Yanling; Long, Yun; Wang, Lei; Pan, Lang; Zou, Chaoying; Li, Zhaoling; Wang, Yanli; Peng, Huanwei; Pan, Guangtang; Jiang, Zhou; Shen, Yaou
2018-01-01
The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration. PMID:29755499
Quillet, E; Krieg, F; Dechamp, N; Hervet, C; Bérard, A; Le Roy, P; Guyomard, R; Prunet, P; Pottinger, T G
2014-04-01
Better understanding of the mechanisms underlying interindividual variation in stress responses and their links with production traits is a key issue for sustainable animal breeding. In this study, we searched for quantitative trait loci (QTL) controlling the magnitude of the plasma cortisol stress response and compared them to body size traits in five F2 full-sib families issued from two rainbow trout lines divergently selected for high or low post-confinement plasma cortisol level. Approximately 1000 F2 individuals were individually tagged and exposed to two successive acute confinement challenges (1 month interval). Post-stress plasma cortisol concentrations were determined for each fish. A medium density genome scan was carried out (268 markers, overall marker spacing less than 10 cM). QTL detection was performed using qtlmap software, based on an interval mapping method (http://www.inra.fr/qtlmap). Overall, QTL of medium individual effects on cortisol responsiveness (<10% of phenotypic variance) were detected on 18 chromosomes, strongly supporting the hypothesis that control of the trait is polygenic. Although a core array of QTL controlled cortisol concentrations at both challenges, several QTL seemed challenge specific, suggesting that responses to the first and to a subsequent exposure to the confinement stressor are distinct traits sharing only part of their genetic control. Chromosomal location of the steroidogenic acute regulatory protein (STAR) makes it a good potential candidate gene for one of the QTL. Finally, comparison of body size traits QTL (weight, length and body conformation) with cortisol-associated QTL did not support evidence for negative genetic relationships between the two types of traits. © 2014 Stichting International Foundation for Animal Genetics.
Johnsson, Martin; Jonsson, Kenneth B; Andersson, Leif; Jensen, Per; Wright, Dominic
2015-05-01
Birds have a unique bone physiology, due to the demands placed on them through egg production. In particular their medullary bone serves as a source of calcium for eggshell production during lay and undergoes continuous and rapid remodelling. We take advantage of the fact that bone traits have diverged massively during chicken domestication to map the genetic basis of bone metabolism in the chicken. We performed a quantitative trait locus (QTL) and expression QTL (eQTL) mapping study in an advanced intercross based on Red Junglefowl (the wild progenitor of the modern domestic chicken) and White Leghorn chickens. We measured femoral bone traits in 456 chickens by peripheral computerised tomography and femoral gene expression in a subset of 125 females from the cross with microarrays. This resulted in 25 loci for female bone traits, 26 loci for male bone traits and 6318 local eQTL loci. We then overlapped bone and gene expression loci, before checking for an association between gene expression and trait values to identify candidate quantitative trait genes for bone traits. A handful of our candidates have been previously associated with bone traits in mice, but our results also implicate unexpected and largely unknown genes in bone metabolism. In summary, by utilising the unique bone metabolism of an avian species, we have identified a number of candidate genes affecting bone allocation and metabolism. These findings can have ramifications not only for the understanding of bone metabolism genetics in general, but could also be used as a potential model for osteoporosis as well as revealing new aspects of vertebrate bone regulation or features that distinguish avian and mammalian bone.
R Johnson; S. Lipow
2002-01-01
Because breeding imposes strong artificial selection for a narrow suite of economically important traits, genetic variation is reduced in seedlings derived from operational seed orchards. Both quantitative genetics theory and studies of allozyme variation show that seed orchards contain most of the genetic diversity found in natural populations, although low-frequency...
Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W
2017-03-01
Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.
Bryce A. Richardson; Gerald E. Rehfeldt; Mee-Sook Kim
2009-01-01
Analyses of molecular and quantitative genetic data demonstrate the existence of congruent climate-related patterns in western white pine (Pinus monticola). Two independent studies allowed comparisons of amplified fragment length polymorphism (AFLP) markers with quantitative variation in adaptive traits. Principal component analyses...
High-Content Movement Analysis as a Diagnostic Tool in C. elegans
NASA Astrophysics Data System (ADS)
Winter, Peter; Lancichinetti, Andrea; Krevitt, Leah; Amaral, Luis; Morimoto, Rick
2013-03-01
Many neurodegenerative diseases manifest themselves through a loss of motor control and give us information about the underlying disease. This loss of coordination is observed in humans and in the model organisms used to study neurodegeneration. In Caenorhabditis elegans, there is an extensive genetic library of strains that lack functional neuronal signaling pathways and expressing proteins associated with neurodegenerative diseases. While most of these strains have decrease motility or cause paralysis, relatively few have been screened to look for more subtle changes in motor control such as stiffness, twitching, or other changes in behavior. we use high-resolution position and posture data to automatically analyze the movement of worms from different genetic backgrounds and characterize 14 movement characteristics. By creating a quantitative mapping between the movement characterization and an online database of gene annotation, gene expression, and anatomy, we aim to predict a likely set of cellular and molecular disruptions. This work provides a proof of concept for the use of detailed movement analysis to uncover novel disruptions in certain motor control processes. Knowledge of the molecular origin of these disruptions provided by our understanding of C. elegans genetics and physiology could lead to new diagnostic and therapeutic targets for neurodegenerative disease.
Predicting evolutionary rescue via evolving plasticity in stochastic environments
Baskett, Marissa L.
2016-01-01
Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests. PMID:27655762
A statistical framework for genetic association studies of power curves in bird flight
Lin, Min; Zhao, Wei
2006-01-01
How the power required for bird flight varies as a function of forward speed can be used to predict the flight style and behavioral strategy of a bird for feeding and migration. A U-shaped curve was observed between the power and flight velocity in many birds, which is consistent to the theoretical prediction by aerodynamic models. In this article, we present a general genetic model for fine mapping of quantitative trait loci (QTL) responsible for power curves in a sample of birds drawn from a natural population. This model is developed within the maximum likelihood context, implemented with the EM algorithm for estimating the population genetic parameters of QTL and the simplex algorithm for estimating the QTL genotype-specific parameters of power curves. Using Monte Carlo simulation derived from empirical observations of power curves in the European starling (Sturnus vulgaris), we demonstrate how the underlying QTL for power curves can be detected from molecular markers and how the QTL detected affect the most appropriate flight speeds used to design an optimal migration strategy. The results from our model can be directly integrated into a conceptual framework for understanding flight origin and evolution. PMID:17066123
NASA Astrophysics Data System (ADS)
Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.
2010-03-01
This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.
Dengue virus replicates and accumulates in Aedes aegypti salivary glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raquin, Vincent, E-mail: vincent.raquin@univ-lyon1
Dengue virus (DENV) is an RNA virus transmitted among humans by mosquito vectors, mainly Aedes aegypti. DENV transmission requires viral dissemination from the mosquito midgut to the salivary glands. During this process the virus undergoes several population bottlenecks, which are stochastic reductions in population size that restrict intra-host viral genetic diversity and limit the efficiency of natural selection. Despite the implications for virus transmission and evolution, DENV replication in salivary glands has not been directly demonstrated. Here, we used a strand-specific quantitative RT-PCR assay to demonstrate that negative-strand DENV RNA is produced in Ae. aegypti salivary glands, providing conclusive evidencemore » that viral replication occurs in this tissue. Furthermore, we showed that the concentration of DENV genomic RNA in salivary glands increases significantly over time, indicating that active replication likely replenishes DENV genetic diversity prior to transmission. These findings improve our understanding of the biological determinants of DENV fitness and evolution. - Highlights: •Strand-specific RT-qPCR allows accurate quantification of DENV (-) RNA in mosquito tissues. •Detection of DENV (-) RNA in salivary glands provides evidence of viral replication in this tissue. •Viral replication in salivary glands likely replenishes DENV genetic diversity prior to transmission.« less
Vandeputte, Marc; Haffray, Pierrick
2014-01-01
Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in commercial conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment) more costly single nucleotide polymorphism markers should benefit from future developments in genomics and marker-assisted selection to combine parentage assignment and indirect prediction of breeding values. PMID:25566319
Sariaslan, A; Larsson, H; Fazel, S
2016-09-01
Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8-10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h(2)=53-71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30-0.33) than bipolar disorder (r=0.23; 0.21-0.25), and large proportions (51-67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21%; 20-22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disorder<0.001; Pschizophrenia=0.55). These findings highlight the problems of not disentangling common and unique sources of covariance across genetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence.
2014-01-01
Background Studies on informed consent to medical research conducted in low or middle-income settings have increased, including empirical investigations of consent to genetic research. We investigated voluntary participation and comprehension of informed consent among women involved in a genetic epidemiological study on breast cancer in an urban setting of Nigeria comparing women in the case and control groups. Methods Surveys were administered in face-to-face interviews with 215 participants following their enrollment in the genetic study (106 patients, 109 controls). Audio-taped in-depth interviews were conducted with a sub-sample of 17 (8%) women who completed the survey. Results The majority of all participants reported being told that participation in the genetic study was voluntary (97%), that they did not feel pressured to participate in the study (99%), and that they could withdraw from the study (81%). The majority of the breast cancer patients (83%) compared to 58% of women in the control group reported that the study purpose was to learn about the genetic inheritance of breast cancer (OR 3.44; 95% CI =1.66, 7.14, p value = 0.001). Most participants reported being told about study procedures (95%) and study benefits (98%). Sixty-eight percent of the patients, compared to 47% of the control group reported being told about study risks (p-value <0.001). Of the 165 married women, 19% reported asking permission from their husbands to enroll in the breast cancer study; no one sought permission from local elders. In-depth interviews highlight the use of persuasion and negotiation between a wife and her husband regarding study participation. Conclusions The global expansion of genetic and genomic research highlights our need to understand informed consent practices for studies in ethnically diverse cultural environments such as Africa. Quantitative and qualitative empirical investigations of the informed consent process for genetic and genomic research will further our knowledge of complex issues associated with communication of information, comprehension, decisional authority and voluntary participation. In the future, the development and testing of innovative strategies to promote voluntary participation and comprehension of the goals of genomic research will contribute to our understanding of strategies that enhance the consent process. PMID:24885380
Using genetic markers to orient the edges in quantitative trait networks: the NEO software.
Aten, Jason E; Fuller, Tova F; Lusis, Aldons J; Horvath, Steve
2008-04-15
Systems genetic studies have been used to identify genetic loci that affect transcript abundances and clinical traits such as body weight. The pairwise correlations between gene expression traits and/or clinical traits can be used to define undirected trait networks. Several authors have argued that genetic markers (e.g expression quantitative trait loci, eQTLs) can serve as causal anchors for orienting the edges of a trait network. The availability of hundreds of thousands of genetic markers poses new challenges: how to relate (anchor) traits to multiple genetic markers, how to score the genetic evidence in favor of an edge orientation, and how to weigh the information from multiple markers. We develop and implement Network Edge Orienting (NEO) methods and software that address the challenges of inferring unconfounded and directed gene networks from microarray-derived gene expression data by integrating mRNA levels with genetic marker data and Structural Equation Model (SEM) comparisons. The NEO software implements several manual and automatic methods for incorporating genetic information to anchor traits. The networks are oriented by considering each edge separately, thus reducing error propagation. To summarize the genetic evidence in favor of a given edge orientation, we propose Local SEM-based Edge Orienting (LEO) scores that compare the fit of several competing causal graphs. SEM fitting indices allow the user to assess local and overall model fit. The NEO software allows the user to carry out a robustness analysis with regard to genetic marker selection. We demonstrate the utility of NEO by recovering known causal relationships in the sterol homeostasis pathway using liver gene expression data from an F2 mouse cross. Further, we use NEO to study the relationship between a disease gene and a biologically important gene co-expression module in liver tissue. The NEO software can be used to orient the edges of gene co-expression networks or quantitative trait networks if the edges can be anchored to genetic marker data. R software tutorials, data, and supplementary material can be downloaded from: http://www.genetics.ucla.edu/labs/horvath/aten/NEO.
Environmental Influences on Reading-Related Outcomes: An Adoption Study
ERIC Educational Resources Information Center
Petrill, Stephen A.; Deater-Deckard, Kirby; Schatschneider, Christopher; Davis, Chayna
2007-01-01
Evidence from intervention studies, quantitative genetic and molecular genetic studies suggests that genetic, and to a lesser extent, shared environmental influences are important to the development of reading and related cognitive skills. The Northeast-Northwest Collaborative Adoption Projects (N2CAP) is a sample of 241 adoptive families,…
Scheper, Carsten; Wensch-Dorendorf, Monika; Yin, Tong; Dressel, Holger; Swalve, Herrmann; König, Sven
2016-06-29
Intensified selection of polled individuals has recently gained importance in predominantly horned dairy cattle breeds as an alternative to routine dehorning. The status quo of the current polled breeding pool of genetically-closely related artificial insemination sires with lower breeding values for performance traits raises questions regarding the effects of intensified selection based on this founder pool. We developed a stochastic simulation framework that combines the stochastic simulation software QMSim and a self-designed R program named QUALsim that acts as an external extension. Two traits were simulated in a dairy cattle population for 25 generations: one quantitative (QMSim) and one qualitative trait with Mendelian inheritance (i.e. polledness, QUALsim). The assignment scheme for qualitative trait genotypes initiated realistic initial breeding situations regarding allele frequencies, true breeding values for the quantitative trait and genetic relatedness. Intensified selection for polled cattle was achieved using an approach that weights estimated breeding values in the animal best linear unbiased prediction model for the quantitative trait depending on genotypes or phenotypes for the polled trait with a user-defined weighting factor. Selection response for the polled trait was highest in the selection scheme based on genotypes. Selection based on phenotypes led to significantly lower allele frequencies for polled. The male selection path played a significantly greater role for a fast dissemination of polled alleles compared to female selection strategies. Fixation of the polled allele implies selection based on polled genotypes among males. In comparison to a base breeding scenario that does not take polledness into account, intensive selection for polled substantially reduced genetic gain for this quantitative trait after 25 generations. Reducing selection intensity for polled males while maintaining strong selection intensity among females, simultaneously decreased losses in genetic gain and achieved a final allele frequency of 0.93 for polled. A fast transition to a completely polled population through intensified selection for polled was in contradiction to the preservation of high genetic gain for the quantitative trait. Selection on male polled genotypes with moderate weighting, and selection on female polled phenotypes with high weighting, could be a suitable compromise regarding all important breeding aspects.
Kida, S; Kato, T
2015-01-01
Psychiatric disorders are caused not only by genetic factors but also by complicated factors such as environmental ones. Moreover, environmental factors are rarely quantitated as biological and biochemical indicators, making it extremely difficult to understand the pathological conditions of psychiatric disorders as well as their underlying pathogenic mechanisms. Additionally, we have actually no other option but to perform biological studies on postmortem human brains that display features of psychiatric disorders, thereby resulting in a lack of experimental materials to characterize the basic biology of these disorders. From these backgrounds, animal, tissue, or cell models that can be used in basic research are indispensable to understand biologically the pathogenic mechanisms of psychiatric disorders. In this review, we discuss the importance of microendophenotypes of psychiatric disorders, i.e., phenotypes at the level of molecular dynamics, neurons, synapses, and neural circuits, as targets of basic research on these disorders.
Krueger, Robert F.; Markon, Kristian E.
2008-01-01
Research on psychopathology is at a historical crossroads. New technologies offer the promise of lasting advances in our understanding of the causes of human psychological suffering. Making the best use of these technologies, however, requires an empirically accurate model of psychopathology. Much current research is framed by the model of psychopathology portrayed in current versions of the Diagnostic and Statistical Manual of Mental Disorders (DSM; American Psychiatric Association, 2000). Although the modern DSMs have been fundamental in advancing psychopathology research, recent research also challenges some assumptions made in the DSM—for example, the assumption that all forms of psychopathology are well conceived of as discrete categories. Psychological science has a critical role to play in working through the implications of this research and the challenges it presents. In particular, behavior-genetic, personality, and quantitative-psychological research perspectives can be melded to inform the development of an empirically based model of psychopathology that would constitute an evolution of the DSM. PMID:18392116
Toward a systems-level view of dynamic phosphorylation networks
Newman, Robert H.; Zhang, Jin; Zhu, Heng
2014-01-01
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks. PMID:25177341
A unifying theory for genetic epidemiological analysis of binary disease data
2014-01-01
Background Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Results Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. Conclusions We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness. PMID:24552188
A unifying theory for genetic epidemiological analysis of binary disease data.
Lipschutz-Powell, Debby; Woolliams, John A; Doeschl-Wilson, Andrea B
2014-02-19
Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses. Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required. We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.
Quantitative Characteristics of Gene Regulation by Small RNA
Levine, Erel; Zhang, Zhongge; Kuhlman, Thomas; Hwa, Terence
2007-01-01
An increasing number of small RNAs (sRNAs) have been shown to regulate critical pathways in prokaryotes and eukaryotes. In bacteria, regulation by trans-encoded sRNAs is predominantly found in the coordination of intricate stress responses. The mechanisms by which sRNAs modulate expression of its targets are diverse. In common to most is the possibility that interference with the translation of mRNA targets may also alter the abundance of functional sRNAs. Aiming to understand the unique role played by sRNAs in gene regulation, we studied examples from two distinct classes of bacterial sRNAs in Escherichia coli using a quantitative approach combining experiment and theory. Our results demonstrate that sRNA provides a novel mode of gene regulation, with characteristics distinct from those of protein-mediated gene regulation. These include a threshold-linear response with a tunable threshold, a robust noise resistance characteristic, and a built-in capability for hierarchical cross-talk. Knowledge of these special features of sRNA-mediated regulation may be crucial toward understanding the subtle functions that sRNAs can play in coordinating various stress-relief pathways. Our results may also help guide the design of synthetic genetic circuits that have properties difficult to attain with protein regulators alone. PMID:17713988
Genome-wide identification of expression quantitative trait loci for human telomerase.
Kim, Hanseol; Ryu, Jihye; Lee, Chaeyoung
2016-10-01
A genome-wide association study was conducted to identify expression quantitative trait loci (eQTL) for human telomerase.We tested the genetic associations of nucleotide variants with expression of the genes encoding human telomerase reverse transcriptase (hTERT) and telomerase RNA components (TERC) in lymphoblastoid cell lines derived from 373 Europeans.Our results revealed 6 eQTLs associated with hTERT (P < 5 × 10). One eQTL (rs17755753) was located in the intron 1 of the gene encoding R-spondin-3 (RSPO3), a well-known Wnt signaling regulator. Transcriptome-wide association analysis for these eQTLs revealed their additional associations with the expression of 29 genes (P < 4.75 × 10), including prickle planar cell polarity protein 2 (PRICKLE2) gene important for the Wnt signaling pathway. This concurs with previous studies in which significant expressional relationships between hTERT and some genes (β-catenin and Wnt-3a) in the Wnt signaling pathway have been observed.This study suggested 6 novel eQTLs for hTERT and the association of hTERT with the Wnt signaling pathway. Further studies are needed to understand their underlying mechanisms to improve our understanding of the role of hTERT in cancer.
Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Induri, Brahma R; Ellis, Danielle R; Slavov, Goncho T.
2012-01-01
Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on themore » two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.« less
Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu
2016-05-10
The goats are widely kept as livestock throughout the world. Two excellent domestic breeds in China, the Laiwu Black and Jining Grey goats, have different fecundities and prolificacies. Although the goat genome sequences have been resolved recently, little is known about the gene regulations at the transcriptional level in goat. To understand the molecular and genetic mechanisms related to the fecundities and prolificacies, we performed genome-wide sequencing of the mRNAs from two breeds of goat using the next-generation RNA-Seq technology and used functional annotation to identify pathways of interest. Digital gene expression analysis showed 338 genes were up-regulated in the Jining Grey goats and 404 were up-regulated in the Laiwu Black goats. Quantitative real-time PCR verified the reliability of the RNA-Seq data. This study suggests that multiple genes responsible for various biological functions and signaling pathways are differentially expressed in the two different goat breeds, and these genes might be involved in the regulation of goat fecundity and prolificacy. Taken together, our study provides insight into the transcriptional regulation in the ovaries of 2 species of goats that might serve as a key resource for understanding goat fecundity, prolificacy and genetic diversity between species. Copyright © 2016 Elsevier B.V. All rights reserved.
Floros, J; Wang, G
2001-05-01
The high degree of similarity at the molecular level, between humans and other species, has provided the rationale for the use of a variety of species as model systems in research, resulting in enormous advances in biological sciences and medicine. In contrast, the individual variability observed among humans, for example, in external physique, organ functionality and others, is accounted for, by only a fraction of 1% of differences at the DNA level. These small differences, which are essential for understanding disease pathogenesis, have posed enormous challenges in medicine, as we try to understand why patients may respond differently to drugs or why one patient has complications and another does not. Differences in outcome are most likely the result of interactions among genetic components themselves and/or the environment at the molecular, cellular, organ, or organismal level, or the macroenvironment. In this paper: (1) we consider some issues for multifactorial disease pathogenesis; (2) we provide a review of human SP-A and how the knowledge gained and the characteristics of the hSP-A system may serve as a model in the study of disease with multifactorial etiology; and (3) we describe examples where hSP-A has been used in the study of disease.
Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease.
Wallace, Douglas C; Lott, Marie T
2017-01-01
The report in 1988 that Leber Hereditary Optic Neuropathy (LHON) was the product of mitochondrial DNA (mtDNA) mutations provided the first demonstration of the clinical relevance of inherited mtDNA variation. From LHON studies, the medical importance was demonstrated for the mtDNA showing its coding for the most important energy genes, its maternal inheritance, its high mutation rate, its presence in hundreds to thousands of copies per cell, its quantitatively segregation of biallelic genotypes during both mitosis and meiosis, its preferential effect on the most energetic tissues including the eye and brain, its wide range of functional polymorphisms that predispose to common diseases, and its accumulation of mutations within somatic tissues providing the aging clock. These features of mtDNA genetics, in combination with the genetics of the 1-2000 nuclear DNA (nDNA) coded mitochondrial genes, is not only explaining the genetics of LHON but also providing a model for understanding the complexity of many common diseases. With the maturation of LHON biology and genetics, novel animal models for complex disease have been developed and new therapeutic targets and strategies envisioned, both pharmacological and genetic. Multiple somatic gene therapy approaches are being developed for LHON which are applicable to other mtDNA diseases. Moreover, the unique cytoplasmic genetics of the mtDNA has permitted the first successful human germline gene therapy via spindle nDNA transfer from mtDNA mutant oocytes to enucleated normal mtDNA oocytes. Such LHON lessons are actively being applied to common ophthalmological diseases like glaucoma and neurological diseases like Parkinsonism.
Quantitative imaging of single mRNA splice variants in living cells
NASA Astrophysics Data System (ADS)
Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph
2014-06-01
Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.
Genetic mapping uncovers cis-regulatory landscape of RNA editing.
Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy
2015-09-16
Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.
Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana).
Evans, Ben J
2008-05-01
Speciation of clawed frogs occurred through bifurcation and reticulation of evolutionary lineages, and resulted in extant species with different ploidy levels. Duplicate gene evolution and expression in these animals provides a unique perspective into the earliest genomic transformations after vertebrate whole genome duplication (WGD) and suggests that functional constraints are relaxed compared to before duplication but still consistently strong for millions of years following WGD. Additionally, extensive quantitative expression divergence between duplicate genes occurred after WGD. Diversification of clawed frogs was potentially catalyzed by transposition and divergent resolution--processes that occur through different genetic mechanisms but that have analogous implications for genome structure. How sex determination is maintained after genome duplication is fundamental to our understanding of why allopolyploidization is so prevalent in this group, and why clawed frogs violate Haldane's Rule for hybrid sterility. Future studies of expression subfunctionalization in polyploids will shed light on the role and purviews of cis- and trans-regulatory elements in gene regulation.
Genetic diversity of Chlamydia among captive birds from central Argentina.
Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G
2015-01-01
To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom.
Terminology, concepts, and models in genetic epidemiology.
Teare, M Dawn; Koref, Mauro F Santibàñez
2011-01-01
Genetic epidemiology brings together approaches and techniques developed in mathematical genetics and statistics, medical genetics, quantitative genetics, and epidemiology. In the 1980s, the focus was on the mapping and identification of genes where defects had large effects at the individual level. More recently, statistical and experimental advances have made possible to identify and characterise genes associated with small effects at the individual level. In this chapter, we provide a brief outline of the models, concepts, and terminology used in genetic epidemiology.
Domestication of Plants in the Americas: Insights from Mendelian and Molecular Genetics
Pickersgill, Barbara
2007-01-01
Background Plant domestication occurred independently in four different regions of the Americas. In general, different species were domesticated in each area, though a few species were domesticated independently in more than one area. The changes resulting from human selection conform to the familiar domestication syndrome, though different traits making up this syndrome, for example loss of dispersal, are achieved by different routes in crops belonging to different families. Genetic and Molecular Analyses of Domestication Understanding of the genetic control of elements of the domestication syndrome is improving as a result of the development of saturated linkage maps for major crops, identification and mapping of quantitative trait loci, cloning and sequencing of genes or parts of genes, and discoveries of widespread orthologies in genes and linkage groups within and between families. As the modes of action of the genes involved in domestication and the metabolic pathways leading to particular phenotypes become better understood, it should be possible to determine whether similar phenotypes have similar underlying genetic controls, or whether human selection in genetically related but independently domesticated taxa has fixed different mutants with similar phenotypic effects. Conclusions Such studies will permit more critical analysis of possible examples of multiple domestications and of the origin(s) and spread of distinctive variants within crops. They also offer the possibility of improving existing crops, not only major food staples but also minor crops that are potential export crops for developing countries or alternative crops for marginal areas. PMID:17766847
Genetics of Venous Thrombosis: Insights from a New Genome Wide Association Study
Germain, Marine; Saut, Noémie; Greliche, Nicolas; Dina, Christian; Lambert, Jean-Charles; Perret, Claire; Cohen, William; Oudot-Mellakh, Tiphaine; Antoni, Guillemette; Alessi, Marie-Christine; Zelenika, Diana; Cambien, François; Tiret, Laurence; Bertrand, Marion; Dupuy, Anne-Marie; Letenneur, Luc; Lathrop, Mark; Emmerich, Joseph; Amouyel, Philippe; Trégouët, David-Alexandre; Morange, Pierre-Emmanuel
2011-01-01
Background Venous Thrombosis (VT) is a common multifactorial disease associated with a major public health burden. Genetics factors are known to contribute to the susceptibility of the disease but how many genes are involved and their contribution to VT risk still remain obscure. We aimed to identify genetic variants associated with VT risk. Methodology/Principal Findings We conducted a genome-wide association study (GWAS) based on 551,141 SNPs genotyped in 1,542 cases and 1,110 controls. Twelve SNPs reached the genome-wide significance level of 2.0×10−8 and encompassed four known VT-associated loci, ABO, F5, F11 and FGG. By means of haplotype analyses, we also provided novel arguments in favor of a role of HIVEP1, PROCR and STAB2, three loci recently hypothesized to participate in the susceptibility to VT. However, no novel VT-associated loci came out of our GWAS. Using a recently proposed statistical methodology, we also showed that common variants could explain about 35% of the genetic variance underlying VT susceptibility among which 3% could be attributable to the main identified VT loci. This analysis additionally suggested that the common variants left to be identified are not uniformly distributed across the genome and that chromosome 20, itself, could contribute to ∼7% of the total genetic variance. Conclusions/Significance This study might also provide a valuable source of information to expand our understanding of biological mechanisms regulating quantitative biomarkers for VT. PMID:21980494
Alvarez Prado, Santiago; Sadras, Víctor O; Borrás, Lucas
2014-08-01
Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ku, Lixia; Zhang, Liangkun; Tian, Zhiqiang; Guo, Shulei; Su, Huihui; Ren, Zhenzhen; Wang, Zhiyong; Li, Guohui; Wang, Xiaobo; Zhu, Yuguang; Zhou, Jinlong; Chen, Yanhui
2015-08-01
Plant height is one of the most heritable traits in maize (Zea mays L.). Understanding the genetic control of plant height is important for elucidating the molecular mechanisms that regulate maize development. To investigate the genetic basis of the plant height response to density in maize, we evaluated the effects of two different plant densities (60,000 and 120,000 plant/hm(2)) on three plant height-related traits (plant height, ear height, and ear height-to-plant height ratio) using four sets of recombinant inbred line populations. The phenotypes observed under the two-plant density treatments indicated that high plant density increased the phenotypic performance values of the three measured traits. Twenty-three quantitative trait loci (QTLs) were detected under the two-plant density treatments, and five QTL clusters were located. Nine QTLs were detected under the low plant density treatment, and seven QTLs were detected under the high plant density treatment. Our results suggested that plant height may be controlled mainly by a common set of genes that could be influenced by additional genetic mechanisms when the plants were grown under high plant density. Fine mapping for genetic regions of the stable QTLs across different plant density environments may provide additional information about their different responses to density. The results presented here provide useful information for further research and will help to reveal the molecular mechanisms related to plant height in response to density.
Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Sindern, Sven; Meyer, F. Michael
2016-09-01
Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become increasingly important for supply of REEs in the future.
Fournier-Level, Alexandre; Le Cunff, Loïc; Gomez, Camila; Doligez, Agnès; Ageorges, Agnès; Roux, Catherine; Bertrand, Yves; Souquet, Jean-Marc; Cheynier, Véronique; This, Patrice
2009-11-01
The combination of QTL mapping studies of synthetic lines and association mapping studies of natural diversity represents an opportunity to throw light on the genetically based variation of quantitative traits. With the positional information provided through quantitative trait locus (QTL) mapping, which often leads to wide intervals encompassing numerous genes, it is now feasible to directly target candidate genes that are likely to be responsible for the observed variation in completely sequenced genomes and to test their effects through association genetics. This approach was performed in grape, a newly sequenced genome, to decipher the genetic architecture of anthocyanin content. Grapes may be either white or colored, ranging from the lightest pink to the darkest purple tones according to the amount of anthocyanin accumulated in the berry skin, which is a crucial trait for both wine quality and human nutrition. Although the determinism of the white phenotype has been fully identified, the genetic bases of the quantitative variation of anthocyanin content in berry skin remain unclear. A single QTL responsible for up to 62% of the variation in the anthocyanin content was mapped on a Syrah x Grenache F(1) pseudo-testcross. Among the 68 unigenes identified in the grape genome within the QTL interval, a cluster of four Myb-type genes was selected on the basis of physiological evidence (VvMybA1, VvMybA2, VvMybA3, and VvMybA4). From a core collection of natural resources (141 individuals), 32 polymorphisms revealed significant association, and extended linkage disequilibrium was observed. Using a multivariate regression method, we demonstrated that five polymorphisms in VvMybA genes except VvMybA4 (one retrotransposon, three single nucleotide polymorphisms and one 2-bp insertion/deletion) accounted for 84% of the observed variation. All these polymorphisms led to either structural changes in the MYB proteins or differences in the VvMybAs promoters. We concluded that the continuous variation in anthocyanin content in grape was explained mainly by a single gene cluster of three VvMybA genes. The use of natural diversity helped to reduce one QTL to a set of five quantitative trait nucleotides and gave a clear picture of how isogenes combined their effects to shape grape color. Such analysis also illustrates how isogenes combine their effect to shape a complex quantitative trait and enables the definition of markers directly targeted for upcoming breeding programs.
Connallon, Tim; Clark, Andrew G.
2012-01-01
Antagonistically selected alleles -- those with opposing fitness effects between sexes, environments, or fitness components -- represent an important component of additive genetic variance in fitness-related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate-frequency alleles disproportionately contribute to genetic variance of life history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus non-antagonistic (e.g., overdominant and frequency-dependent selection) processes. We show that that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, non-antagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection. PMID:23461340
Prakash, Jai; Gabdulina, Gulzhan; Trofimov, Svetlana; Livshits, Gregory
2017-09-01
One of the potential molecular biomarkers of osteoarthritis (OA) is hyaluronic acid (HA). HA levels may be related to the severity and progression of OA. However, little is known about the contribution of major risk factors for osteoarthritis, e.g. obesity-related phenotypes and genetics to HA variation. To clarify the quantitative effect of these factors on HA. An ethnically homogeneous sample of 911 apparently healthy European-derived individuals, assessed for radiographic hand osteoarthritis (RHOA), HA, leptin, adiponectin, and several anthropometrical measures of obesity-related phenotypes was studied. Model-based quantitative genetic analysis was used to reveal genetic and shared environmental factors affecting the variation of the study's phenotypes. The HA levels significantly correlated with the age, RHOA, adiponectin, obesity-related phenotypes, and the waist-to-hip ratio. The putative genetic effects contributed significantly to the variation of HA (66.2 ± 9.3%) and they were also significant factors in the variations of all the other studied phenotypes, with the heritability estimate ranging between 0.122 ± 4.4% (WHR) and 45.7 ± 2.2% (joint space narrowing). This is the first study to report heritability estimates of HA variation and its correlation with obesity-related phenotypes, ADP and RHOA. However, the nature of genetic effects on HA and its correlation with other study phenotypes require further clarification.
Cox, R M; Costello, R A; Camber, B E; McGlothlin, J W
2017-07-01
Darwin viewed the ornamentation of females as an indirect consequence of sexual selection on males and the transmission of male phenotypes to females via the 'laws of inheritance'. Although a number of studies have supported this view by demonstrating substantial between-sex genetic covariance for ornament expression, the majority of this work has focused on avian plumage. Moreover, few studies have considered the genetic basis of ornaments from a multivariate perspective, which may be crucial for understanding the evolution of sex differences in general, and of complex ornaments in particular. Here, we provide a multivariate, quantitative-genetic analysis of a sexually dimorphic ornament that has figured prominently in studies of sexual selection: the brightly coloured dewlap of Anolis lizards. Using data from a paternal half-sibling breeding experiment in brown anoles (Anolis sagrei), we show that multiple aspects of dewlap size and colour exhibit significant heritability and a genetic variance-covariance structure (G) that is broadly similar in males (G m ) and females (G f ). Whereas sexually monomorphic aspects of the dewlap, such as hue, exhibit significant between-sex genetic correlations (r mf ), sexually dimorphic features, such as area and brightness, exhibit reduced r mf values that do not differ from zero. Using a modified random skewers analysis, we show that the between-sex genetic variance-covariance matrix (B) should not strongly constrain the independent responses of males and females to sexually antagonistic selection. Our microevolutionary analysis is in broad agreement with macroevolutionary perspectives indicating considerable scope for the independent evolution of coloration and ornamentation in males and females. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Brieuc, Marine S. O.; Purcell, Maureen K.; Palmer, Alexander D.; Naish, Kerry A.
2015-01-01
Understanding the mechanisms of host resistance to pathogens will allow insights into the response of wild populations to the emergence of new pathogens. Infectious hematopoietic necrosis virus (IHNV) is endemic to the Pacific Northwest and infectious to Pacific salmon and trout (Oncorhynchus spp.). Emergence of the M genogroup of IHNV in steelhead trout O. mykiss in the coastal streams of Washington State, between 2007 and 2011, was geographically heterogeneous. Differences in host resistance due to genetic change were hypothesized to be a factor influencing the IHNV emergence patterns. For example, juvenile steelhead trout losses at the Quinault National Fish Hatchery (QNFH) were much lower than those at a nearby facility that cultures a stock originally derived from the same source population. Using a classical quantitative genetic approach, we determined the potential for the QNFH steelhead trout population to respond to selection caused by the pathogen, by estimating the heritability for 2 traits indicative of IHNV resistance, mortality (h2 = 0.377 (0.226 - 0.550)) and days to death (h2 = 0.093 (0.018 - 0.203)). These results confirm that there is a genetic basis for resistance and that this population has the potential to adapt to IHNV. Additionally, genetic correlation between days to death and fish length suggests a correlated response in these traits to selection. Reduction of genetic variation, as well as the presence or absence of resistant alleles, could affect the ability of populations to adapt to the pathogen. Identification of the genetic basis for IHNV resistance could allow the assessment of the susceptibility of other steelhead populations.
Harden, K. Paige
2013-01-01
There are dramatic individual differences among adolescents in how and when they become sexually active adults, and “early” sexual activity is frequently cited as a cause of concern for scientists, policymakers, and the general public. Understanding the causes and developmental impact of adolescent sexual activity can be furthered by considering genes as a source of individual differences. Quantitative behavioral genetics (i.e., twin and family studies) and candidate gene association studies now provide clear evidence for the genetic underpinnings of individual differences in adolescent sexual behavior and related phenotypes. Genetic influences on sexual behavior may operate through a variety of direct and indirect mechanisms, including pubertal development, testosterone levels, and dopaminergic systems. Genetic differences may be systematically associated with exposure to environments that are commonly treated as causes of sexual behavior (gene-environment correlation). Possible gene-environment correlations pose a serious challenge for interpreting the results of much behavioral research. Multivariate, genetically-informed research on adolescent sexual behavior compares twins and family members as a form of “quasi-experiment”: How do twins who differ in their sexual experiences differ in their later development? The small but growing body of genetically-informed research has already challenged dominant assumptions regarding the etiology and sequelae of adolescent sexual behavior, with some studies indicating possible positive effects of teenage sexuality. Studies of gene × environment interaction may further elucidate the mechanisms by which genes and environments combine to shape the development of sexual behavior and its psychosocial consequences. Overall, the existence of heritable variation in adolescent sexual behavior has profound implications for environmentally-oriented theory and research. PMID:23855958
Ly, Goki; Alard, Bérénice; Laurent, Romain; Lafosse, Sophie; Toupance, Bruno; Monidarin, Chou; Diffloth, Gérard; Bourdier, Frédéric; Evrard, Olivier; Pavard, Samuel; Chaix, Raphaëlle
2018-03-01
Social organization plays a major role in shaping human population genetic diversity. In particular, matrilocal populations tend to exhibit less mitochondrial diversity than patrilocal populations, and the other way around for Y chromosome diversity. However, several studies have not replicated such findings. The objective of this study is to understand the reasons for such inconsistencies and further evaluate the influence of social organization on genetic diversity. We explored uniparental diversity patterns using mitochondrial HV1 sequences and 17 Y-linked short tandem repeats (STRs) in 12 populations (n = 619) from mainland South-East Asia exhibiting a wide range of social organizations, along with quantitative ethno-demographic information sampled at the individual level. MtDNA diversity was lower in matrilocal than in multilocal and patrilocal populations while Y chromosome diversity was similar among these social organizations. The reasons for such asymmetry at the genetic level were understood by quantifying sex-specific migration rates from our ethno-demographic data: while female migration rates varied between social organizations, male migration rates did not. This unexpected lack of difference in male migrations resulted from a higher flexibility in residence rule in patrilocal than in matrilocal populations. In addition, our data suggested an impact of clan fission process on uniparental genetic patterns. The observed lack of signature of patrilocality on Y chromosome patterns might be attributed to the higher residence flexibility in the studied patrilocal populations, thus providing a potential explanation for the apparent discrepancies between social and genetic structures. Altogether, this study highlights the need to quantify the actual residence and descent patterns to fit social to genetic structures. © 2018 Wiley Periodicals, Inc.
Kato, S; Ishii, A; Nishi, A; Kuriki, S; Koide, T
2014-01-01
Recent genetic studies have shown that genetic loci with significant effects in whole-genome quantitative trait loci (QTL) analyses were lost or weakened in congenic strains. Characterisation of the genetic basis of this attenuated QTL effect is important to our understanding of the genetic mechanisms of complex traits. We previously found that a consomic strain, B6-Chr6CMSM, which carries chromosome 6 of a wild-derived strain MSM/Ms on the genetic background of C57BL/6J, exhibited lower home-cage activity than C57BL/6J. In the present study, we conducted a composite interval QTL analysis using the F2 mice derived from a cross between C57BL/6J and B6-Chr6CMSM. We found one QTL peak that spans 17.6 Mbp of chromosome 6. A subconsomic strain that covers the entire QTL region also showed lower home-cage activity at the same level as the consomic strain. We developed 15 congenic strains, each of which carries a shorter MSM/Ms-derived chromosomal segment from the subconsomic strain. Given that the results of home-cage activity tests on the congenic strains cannot be explained by a simple single-gene model, we applied regression analysis to segregate the multiple genetic loci. The results revealed three loci (loci 1–3) that have the effect of reducing home-cage activity and one locus (locus 4) that increases activity. We also found that the combination of loci 3 and 4 cancels out the effects of the congenic strains, which indicates the existence of a genetic mechanism related to the loss of QTLs. PMID:24781804
Parsons, Kevin J; Concannon, Moira; Navon, Dina; Wang, Jason; Ea, Ilene; Groveas, Kiran; Campbell, Calum; Albertson, R Craig
2016-12-01
Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F 3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long-standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential. © 2016 John Wiley & Sons Ltd.
He, Dan; Xie, Xiao; Yang, Fan; Zhang, Heng; Su, Haomiao; Ge, Yun; Song, Haiping; Chen, Peng R
2017-11-13
A genetically encoded, multifunctional photocrosslinker was developed for quantitative and comparative proteomics. By bearing a bioorthogonal handle and a releasable linker in addition to its photoaffinity warhead, this probe enables the enrichment of transient and low-abundance prey proteins after intracellular photocrosslinking and prey-bait separation, which can be subject to stable isotope dimethyl labeling and mass spectrometry analysis. This quantitative strategy (termed isoCAPP) allowed a comparative proteomic approach to be adopted to identify the proteolytic substrates of an E. coli protease-chaperone dual machinery DegP. Two newly identified substrates were subsequently confirmed by proteolysis experiments. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jasinska, Anna J; Zelaya, Ivette; Service, Susan K; Peterson, Christine B; Cantor, Rita M; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A; Fears, Scott; Furterer, Allison E; Huang, Yu S; Ramensky, Vasily; Schmitt, Christopher A; Svardal, Hannes; Jorgensen, Matthew J; Kaplan, Jay R; Villar, Diego; Aken, Bronwen L; Flicek, Paul; Nag, Rishi; Wong, Emily S; Blangero, John; Dyer, Thomas D; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K; Jentsch, J David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P; Freimer, Nelson B
2017-12-01
By analyzing multitissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalog of expression quantitative trait loci (eQTLs) in a nonhuman primate model. This catalog contains more genome-wide significant eQTLs per sample than comparable human resources and identifies sex- and age-related expression patterns. Findings include a master regulatory locus that likely has a role in immune function and a locus regulating hippocampal long noncoding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders.
NASA Astrophysics Data System (ADS)
Newman, Timothy
2011-08-01
The development of an adult organism from a fertilized egg remains one of the deep mysteries of biology. Great strides have been made in the past three decades, primarily through ever more sophisticated genetic analyses and the advent of live-cell imaging, yet the underlying principles governing development are elusive. Recently, a new generation of biological physicists has entered the field, attracted by the hallmarks of development— coordinated dynamics and pattern formation arising from cell-cell interactions—which reflect tantalizing analogs with many-body systems in condensed matter physics and related fields. There have been corresponding influxes of researchers from other quantitative disciplines. With new workers come new questions and foci at different scales in space, time and complexity. The reductionist philosophy of developmental genetics has become increasingly complemented by a search for effective mechanisms at higher scales, a strategy which has a proven track record of success in the study of complex systems in physics. Are there new and universal mechanisms of development, supra-genetic in nature, waiting to be discovered by focusing on higher scales, or is development fundamentally the intricately scripted unfolding of complex genetic instructions? In this special focus issue of Physical Biology, we present cutting-edge research into embryo development from a broad spectrum of groups representing cell and developmental biology, biological physics, bioengineering and biomathematics. We are provided with a sense of how this multidisciplinary community views the fundamental issue of scale in development and are given some excellent examples of how we can bridge these scales through interdisciplinary collaboration, in order to create new levels of understanding. We start with two reviews which will provide newcomers with a guide to some of the outstanding questions in the field. Winklbauer and Müller use the phenomenon of mesoderm spreading as a platform to discuss the fascinating challenge of connecting cell-level behaviours to tissue-scale dynamics, thereby putting meat on the bones of traditional physical metaphors of 'the embryonic tissue as a material'. A fresh look at natural variation in embryonic phenotypes through the lens of physics, especially mechanics, is provided by von Dassow and Davidson. They stress the importance of environmental scales in providing both physical challenges and an evolutionary backdrop for robust development. The next two papers are concerned with the crucial role of signalling in morphogenesis. Zartman et al study in detail a stage of oogenesis in Drosophila, and show how quantitative experimental determination of pattern formation can be used as a stringent test of proposed underlying molecular mechanisms; in turn, they show how such selected mechanisms can thereafter be tested by newly designed experiments. Streichan et al consider collective cell motion in the zebrafish embryo. They propose an elegant theoretical mechanism to explain how directed collective cell motion can be generated in a uniform signalling landscape through a non-linear chemotactic feedback loop, and propose experimental tests of this idea. The next two papers describe state-of-the-art spatio-temporal quantification of whole embryo dynamics with cell-level resolution. Fernandez-Gonzalez and Zallen study the fascinating phenomenon of cell surface oscillations during axis elongation in Drosophila. They use a newly designed computer algorithm to measure spatio-temporal statistics of the oscillations and connect this information to intracellular actomyosin dynamics. Szabó et al study extracellular matrix (ECM) dynamics during primitive streak extension in the avian embryo. Using computer tracking and analysis they are able to measure spatial and temporal correlations of the ECM during development and use this data to inform the crucial, yet poorly understood, role of cell-ECM interactions. The last two papers are companion articles by Sandersius et al. The first paper describes the integration of active subcellular dynamics into an existing multicellular simulation algorithm. The resulting algorithm, which is parameterized at length and time scales of microns and seconds, is capable of reproducing various experimentally observed phenotypes at significantly higher scales, namely large-strain cell stretching, effective viscosity of embryonic epithelia and streaming patterns of collective cell motion within tissues. The second paper uses this new algorithm to quantitatively test the hypothesis that a dipolar arrangement of chemotactic sources is capable of driving primitive streak formation in amniotes. The hypothesis is found to be consistent with experimental data on cell movement patterns and quantitative estimates are given for the robustness of the chemotaxis mechanism. Is the simplest model of an embryo an embryo? Alternatively, are there higher scales of understanding that will provide predictive and powerful new insights into development? We hope this special focus issue of Physical Biology will provide a snapshot of how quantitative and interdisciplinary approaches are helping to answer these fundamental questions.
Guan, Wenna; Zhao, Hui; Lu, Xuefeng; Wang, Cong; Yang, Menglong; Bai, Fali
2011-11-11
Simple and rapid quantitative determination of fatty-acid-based biofuels is greatly important for the study of genetic engineering progress for biofuels production by microalgae. Ideal biofuels produced from biological systems should be chemically similar to petroleum, like fatty-acid-based molecules including free fatty acids, fatty acid methyl esters, fatty acid ethyl esters, fatty alcohols and fatty alkanes. This study founded a gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of seven free fatty acids, nine fatty acid methyl esters, five fatty acid ethyl esters, five fatty alcohols and three fatty alkanes produced by wild-type Synechocystis PCC 6803 and its genetically engineered strain. Data obtained from GC-MS analyses were quantified using internal standard peak area comparisons. The linearity, limit of detection (LOD) and precision (RSD) of the method were evaluated. The results demonstrated that fatty-acid-based biofuels can be directly determined by GC-MS without derivation. Therefore, rapid and reliable quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria can be achieved using the GC-MS method founded in this work. Copyright © 2011 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The genetic effects of long term random mating and natural selection aided by genetic male sterility (gms) were evaluated in two soybean [Glycine max (L.) Merr.] populations designated: RSII and RSIII. These populations were evaluated in the field at three locations each with two replications. Genot...
Creativity and the Genome: The State of Affairs
ERIC Educational Resources Information Center
Grigorenko, Elena L.
2017-01-01
This essay is focused on the research into the genetic etiology of creativity and related processes. In an attempt to identify the most salient points of this research, the article provides a brief overview of quantitative-genetic (family and twin) and molecular-genetic (candidate-gene and whole-genome) studies of creativity. To conclude, the…
USDA-ARS?s Scientific Manuscript database
Given a set of biallelic molecular markers, such as SNPs, with genotype values encoded numerically on a collection of plant, animal or human samples, the goal of genetic trait prediction is to predict the quantitative trait values by simultaneously modeling all marker effects. Genetic trait predicti...
USDA-ARS?s Scientific Manuscript database
We proposed a method to estimate the error variance among non-replicated genotypes, thus to estimate the genetic parameters by using replicated controls. We derived formulas to estimate sampling variances of the genetic parameters. Computer simulation indicated that the proposed methods of estimatin...
Communicating the role of genetics in management
Mary F. Mahalovich
1997-01-01
Three current issues serve as examples to convey the role of genetics in management. (1) Consequences of silvicultural systems on the genetic resource of tree species are limited to one generation of study and isozyme (qualitative) data. Results of simulated data for diameter (quantitative data) over several generations, illustrate the pitfalls of working towards...
Exploring human disease using the Rat Genome Database.
Shimoyama, Mary; Laulederkind, Stanley J F; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R; Tutaj, Marek; Petri, Victoria; Hayman, G Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R
2016-10-01
Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers - within and beyond the rat community - who are particularly interested in leveraging rat-based insights to understand human diseases. © 2016. Published by The Company of Biologists Ltd.
Duarte-Delgado, Diana; Ñústez-López, Carlos-Eduardo; Narváez-Cuenca, Carlos-Eduardo; Restrepo-Sánchez, Luz-Patricia; Melo, Sandra E; Sarmiento, Felipe; Kushalappa, Ajjamada C; Mosquera-Vásquez, Teresa
2016-09-01
Potato frying quality is a complex trait influenced by sugar content in tubers. Good frying quality requires low content of reducing sugars to avoid the formation of dark pigments. Solanum tuberosum Group Phureja is a valuable genetic resource for breeding and for genetic studies. The sugar content after harvest was analyzed in a germplasm collection of Group Phureja to contribute to the understanding of the natural variation of this trait. Sucrose, glucose and fructose genotypic mean values ranged from 6.39 to 29.48 g kg(-1) tuber dry weight (DW), from 0.46 to 28.04 g kg(-1) tuber DW and from 0.29 to 27.23 g kg(-1) tuber DW, respectively. Glucose/fructose and sucrose/reducing sugars ratios ranged from 1.01 to 6.67 mol mol(-1) and from 0.15 to 7.78 mol mol(-1) , respectively. Five clusters of genotypes were recognized, three of them with few genotypes and extreme phenotypic values. Sugar content showed a wide variation, representing the available variability useful for potato breeding. The results provide a quantitative approach to analyze the frying quality trait and are consistent with frying color. The analyzed germplasm presents extreme phenotypes, which will contribute to the understanding of the genetic basis of this trait. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Fletcher, Richard S; Mullen, Jack L; Heiliger, Annie; McKay, John K
2015-01-01
Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Ermolli, M; Prospero, A; Balla, B; Querci, M; Mazzeo, A; Van Den Eede, G
2006-09-01
An innovative immunoassay, called enzyme-linked immunoabsorbant assay (ELISA) Reverse, based on a new conformation of the solid phase, was developed. The solid support was expressly designed to be immersed directly in liquid samples to detect the presence of protein targets. Its application is proposed in those cases where a large number of samples have to be screened simultaneously or when the simultaneous detection of different proteins is required. As a first application, a quantitative immunoassay for Cry1AB protein in genetically modified maize was optimized. The method was tested using genetically modified organism concentrations from 0.1 to 2.0%. The limit of detection and limit of quantitation of the method were determined as 0.0056 and 0.0168 (expressed as the percentage of genetically modified organisms content), respectively. A qualitative multiplex assay to assess the presence of two genetically modified proteins simultaneously was also established for the case of the Cry1AB and the CP4EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) present in genetically modified maize and soy, respectively.
Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W
2010-06-01
Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.
Reuning, Gretchen A; Bauerle, William L; Mullen, Jack L; McKay, John K
2015-04-01
Transpiration is controlled by evaporative demand and stomatal conductance (gs ), and there can be substantial genetic variation in gs . A key parameter in empirical models of transpiration is minimum stomatal conductance (g0 ), a trait that can be measured and has a large effect on gs and transpiration. In Arabidopsis thaliana, g0 exhibits both environmental and genetic variation, and quantitative trait loci (QTL) have been mapped. We used this information to create a genetically parameterized empirical model to predict transpiration of genotypes. For the parental lines, this worked well. However, in a recombinant inbred population, the predictions proved less accurate. When based only upon their genotype at a single g0 QTL, genotypes were less distinct than our model predicted. Follow-up experiments indicated that both genotype by environment interaction and a polygenic inheritance complicate the application of genetic effects into physiological models. The use of ecophysiological or 'crop' models for predicting transpiration of novel genetic lines will benefit from incorporating further knowledge of the genetic control and degree of independence of core traits/parameters underlying gs variation. © 2014 John Wiley & Sons Ltd.
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R.
2018-01-01
Bio-barcode assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio-barcode assay requires lengthy experimental procedures including the preparation and release of barcode DNA probes from the target-nanoparticle complex, and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio-barcode assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2’2’-bipyridyl) ruthenium (TBR)-labele barcode DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products. PMID:18386909
Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R
2008-05-15
A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.
Quantitative genetic analysis of injury liability in infants and toddlers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, K.; Matheny, A.P. Jr.
1995-02-27
A threshold model of latent liability was applied to infant and toddler twin data on total count of injuries sustained during the interval from birth to 36 months of age. A quantitative genetic analysis of estimated twin correlations in injury liability indicated strong genetic dominance effects, but no additive genetic variance was detected. Because interpretations involving overdominance have little research support, the results may be due to low order epistasis or other interaction effects. Boys had more injuries than girls, but this effect was found only for groups whose parents were prompted and questioned in detail about their children`s injuries.more » Activity and impulsivity are two behavioral predictors of childhood injury, and the results are discussed in relation to animal research on infant and adult activity levels, and impulsivity in adult humans. Genetic epidemiological approaches to childhood injury should aid in targeting higher risk children for preventive intervention. 30 refs., 4 figs., 3 tabs.« less
Kovas, Yulia; Haworth, Claire M. A.; Petrill, Stephen A.; Plomin, Robert
2009-01-01
The genetic and environmental etiologies of 3 aspects of low mathematical performance (math disability) and the full range of variability (math ability) were compared for boys and girls in a sample of 5,348 children age 10 years (members of 2,674 pairs of same-sex and opposite-sex twins) from the United Kingdom (UK). The measures, which we developed for Web-based testing, included problems from 3 domains of mathematics taught as part of the UK National Curriculum. Using quantitative genetic model-fitting analyses, similar results were found for math disabilities and abilities for all 3 measures: Moderate genetic influence and environmental influence were mainly due to nonshared environmental factors that were unique to the individual, with little influence from shared environment. No sex differences were found in the etiologies of math abilities and disabilities. We conclude that low mathematical performance is the quantitative extreme of the same genetic and environmental factors responsible for variation throughout the distribution. PMID:18064980
General Methods for Evolutionary Quantitative Genetic Inference from Generalized Mixed Models.
de Villemereuil, Pierre; Schielzeth, Holger; Nakagawa, Shinichi; Morrissey, Michael
2016-11-01
Methods for inference and interpretation of evolutionary quantitative genetic parameters, and for prediction of the response to selection, are best developed for traits with normal distributions. Many traits of evolutionary interest, including many life history and behavioral traits, have inherently nonnormal distributions. The generalized linear mixed model (GLMM) framework has become a widely used tool for estimating quantitative genetic parameters for nonnormal traits. However, whereas GLMMs provide inference on a statistically convenient latent scale, it is often desirable to express quantitative genetic parameters on the scale upon which traits are measured. The parameters of fitted GLMMs, despite being on a latent scale, fully determine all quantities of potential interest on the scale on which traits are expressed. We provide expressions for deriving each of such quantities, including population means, phenotypic (co)variances, variance components including additive genetic (co)variances, and parameters such as heritability. We demonstrate that fixed effects have a strong impact on those parameters and show how to deal with this by averaging or integrating over fixed effects. The expressions require integration of quantities determined by the link function, over distributions of latent values. In general cases, the required integrals must be solved numerically, but efficient methods are available and we provide an implementation in an R package, QGglmm. We show that known formulas for quantities such as heritability of traits with binomial and Poisson distributions are special cases of our expressions. Additionally, we show how fitted GLMM can be incorporated into existing methods for predicting evolutionary trajectories. We demonstrate the accuracy of the resulting method for evolutionary prediction by simulation and apply our approach to data from a wild pedigreed vertebrate population. Copyright © 2016 de Villemereuil et al.
Remington, David L
2015-12-01
Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Explaining stasis: microevolutionary studies in natural populations.
Merilä, J; Sheldon, B C; Kruuk, L E
2001-01-01
Microevolution, defined as a change in the genetic constitution of a population over time, is considered to be of commonplace occurrence in nature. Its ubiquity can be inferred from the observation that quantitative genetic divergence among populations usually exceeds that to be expected due to genetic drift alone, and from numerous observations and experiments consistent with local adaptation. Experimental manipulations in natural populations have provided evidence that rapid evolutionary responses may occur in the wild. However, there are remarkably few cases where direct observations of natural populations have revealed microevolutionary changes occurring, despite the frequent demonstration of additive genetic variation and strong directional selection for particular traits. Those few cases where responses congruent with expectation have been demonstrated are restricted to changes over one generation. In this article we focus on possible explanations as to why heritable traits under apparently strong directional selection often fail to show the expected evolutionary response. To date, few of these explanations for apparent stasis have been amenable to empirical testing. We describe new methods, derived from procedures developed by animal breeding scientists, which can be used to address these explanations, and illustrate the approach with examples from long-term studies of collared flycatchers (Ficedula albicollis) and red deer (Cervus elaphus). Understanding why most intensively studied natural populations do not appear to be evolving is an important challenge for evolutionary biology.
A new QTL for resistance to Fusarium ear rot in maize.
Li, Zhi-Min; Ding, Jun-Qiang; Wang, Rui-Xia; Chen, Jia-Fa; Sun, Xiao-Dong; Chen, Wei; Song, Wei-Bin; Dong, Hua-Fang; Dai, Xiao-Dong; Xia, Zong-Liang; Wu, Jian-Yu
2011-11-01
Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83 cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.
Single Molecule Approaches in RNA-Protein Interactions.
Serebrov, Victor; Moore, Melissa J
RNA-protein interactions govern every aspect of RNA metabolism, and aberrant RNA-binding proteins are the cause of hundreds of genetic diseases. Quantitative measurements of these interactions are necessary in order to understand mechanisms leading to diseases and to develop efficient therapies. Existing methods of RNA-protein interactome capture can afford a comprehensive snapshot of RNA-protein interaction networks but lack the ability to characterize the dynamics of these interactions. As all ensemble methods, their resolution is also limited by statistical averaging. Here we discuss recent advances in single molecule techniques that have the potential to tackle these challenges. We also provide a thorough overview of single molecule colocalization microscopy and the essential protein and RNA tagging and detection techniques.
Variation of BMP3 Contributes to Dog Breed Skull Diversity
Schoenebeck, Jeffrey J.; Hutchinson, Sarah A.; Byers, Alexandra; Beale, Holly C.; Carrington, Blake; Faden, Daniel L.; Rimbault, Maud; Decker, Brennan; Kidd, Jeffrey M.; Sood, Raman; Boyko, Adam R.; Fondon, John W.; Wayne, Robert K.; Bustamante, Carlos D.; Ciruna, Brian; Ostrander, Elaine A.
2012-01-01
Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait. PMID:22876193
Quantitative measures of healthy aging and biological age
Kim, Sangkyu; Jazwinski, S. Michal
2015-01-01
Numerous genetic and non-genetic factors contribute to aging. To facilitate the study of these factors, various descriptors of biological aging, including ‘successful aging’ and ‘frailty’, have been put forth as integrative functional measures of aging. A separate but related quantitative approach is the ‘frailty index’, which has been operationalized and frequently used. Various frailty indices have been constructed. Although based on different numbers and types of health variables, frailty indices possess several common properties that make them useful across different studies. We have been using a frailty index termed FI34 based on 34 health variables. Like other frailty indices, FI34 increases non-linearly with advancing age and is a better indicator of biological aging than chronological age. FI34 has a substantial genetic basis. Using FI34, we found elevated levels of resting metabolic rate linked to declining health in nonagenarians. Using FI34 as a quantitative phenotype, we have also found a genomic region on chromosome 12 that is associated with healthy aging and longevity. PMID:26005669
Lin, J. Z.; Ritland, K.
1997-01-01
Theoretical predictions about the evolution of selfing depend on the genetic architecture of loci controlling selfing (monogenic vs. polygenic determination, large vs. small effect of alleles, dominance vs. recessiveness), and studies of such architecture are lacking. We inferred the genetic basis of mating system differences between the outbreeding Mimulus guttatus and the inbreeding M. platycalyx by quantitative trait locus (QTL) mapping using random amplified polymorphic DNA and isozyme markers. One to three QTL were detected for each of five mating system characters, and each QTL explained 7.6-28.6% of the phenotypic variance. Taken together, QTL accounted for up to 38% of the variation in mating system characters, and a large proportion of variation was unaccounted for. Inferred QTL often affected more than one trait, contributing to the genetic correlation between those traits. These results are consistent with the hypothesis that quantitative variation in plant mating system characters is primarily controlled by loci with small effect. PMID:9215912
Effects of normalization on quantitative traits in association test
2009-01-01
Background Quantitative trait loci analysis assumes that the trait is normally distributed. In reality, this is often not observed and one strategy is to transform the trait. However, it is not clear how much normality is required and which transformation works best in association studies. Results We performed simulations on four types of common quantitative traits to evaluate the effects of normalization using the logarithm, Box-Cox, and rank-based transformations. The impact of sample size and genetic effects on normalization is also investigated. Our results show that rank-based transformation gives generally the best and consistent performance in identifying the causal polymorphism and ranking it highly in association tests, with a slight increase in false positive rate. Conclusion For small sample size or genetic effects, the improvement in sensitivity for rank transformation outweighs the slight increase in false positive rate. However, for large sample size and genetic effects, normalization may not be necessary since the increase in sensitivity is relatively modest. PMID:20003414
Carreno-Quintero, Natalia; Acharjee, Animesh; Maliepaard, Chris; Bachem, Christian W.B.; Mumm, Roland; Bouwmeester, Harro; Visser, Richard G.F.; Keurentjes, Joost J.B.
2012-01-01
Recent advances in -omics technologies such as transcriptomics, metabolomics, and proteomics along with genotypic profiling have permitted dissection of the genetics of complex traits represented by molecular phenotypes in nonmodel species. To identify the genetic factors underlying variation in primary metabolism in potato (Solanum tuberosum), we have profiled primary metabolite content in a diploid potato mapping population, derived from crosses between S. tuberosum and wild relatives, using gas chromatography-time of flight-mass spectrometry. In total, 139 polar metabolites were detected, of which we identified metabolite quantitative trait loci for approximately 72% of the detected compounds. In order to obtain an insight into the relationships between metabolic traits and classical phenotypic traits, we also analyzed statistical associations between them. The combined analysis of genetic information through quantitative trait locus coincidence and the application of statistical learning methods provide information on putative indicators associated with the alterations in metabolic networks that affect complex phenotypic traits. PMID:22223596
Andrew, R L; Peakall, R; Wallis, I R; Wood, J T; Knight, E J; Foley, W J
2005-12-01
Marker-based methods for estimating heritability and genetic correlation in the wild have attracted interest because traditional methods may be impractical or introduce bias via G x E effects, mating system variation, and sampling effects. However, they have not been widely used, especially in plants. A regression-based approach, which uses a continuous measure of genetic relatedness, promises to be particularly appropriate for use in plants with mixed-mating systems and overlapping generations. Using this method, we found significant narrow-sense heritability of foliar defense chemicals in a natural population of Eucalyptus melliodora. We also demonstrated a genetic basis for the phenotypic correlation underlying an ecological example of conditioned flavor aversion involving different biosynthetic pathways. Our results revealed that heritability estimates depend on the spatial scale of the analysis in a way that offers insight into the distribution of genetic and environmental variance. This study is the first to successfully use a marker-based method to measure quantitative genetic parameters in a tree. We suggest that this method will prove to be a useful tool in other studies and offer some recommendations for future applications of the method.
Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin
2008-10-01
Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system.
Public understandings of genetics and health.
Condit, C M
2010-01-01
This review of adult public understandings of genetics related to health indicates that the public's understandings overlap with those of professionals in some areas, but not others. Specifically, the majority of the world's people who have been studied understand genetics through the lens of heredity, not in terms of the structural and functional nature of genes. Public understandings of hereditary processes are influenced by models of social relationships and by experiential familiarity with particular conditions as much as by academic research results. Most people hold a fairly strong belief that many health conditions are substantially influenced by both genes and other factors. However, they do not have a stable understanding of the nature of gene-environment interactions. People in cultures where science is not a prominent cultural mode are even less likely to hold the belief structures of professional geneticists. In some areas--notably with regard to racialization of genetic medicine and characterizations of genetic variations as 'mutations'--at least some members of the public strongly reject some geneticists' constructions. Public understanding of details pertinent to genetic testing generally appears to be weak.
Kernel-based whole-genome prediction of complex traits: a review.
Morota, Gota; Gianola, Daniel
2014-01-01
Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.
Richter-Boix, Alex; Teplitsky, Céline; Rogell, Björn; Laurila, Anssi
2010-02-01
In ectotherms, variation in life history traits among populations is common and suggests local adaptation. However, geographic variation itself is not a proof for local adaptation, as genetic drift and gene flow may also shape patterns of quantitative variation. We studied local and regional variation in means and phenotypic plasticity of larval life history traits in the common frog Rana temporaria using six populations from central Sweden, breeding in either open-canopy or partially closed-canopy ponds. To separate local adaptation from genetic drift, we compared differentiation in quantitative genetic traits (Q(ST)) obtained from a common garden experiment with differentiation in presumably neutral microsatellite markers (F(ST)). We found that R. temporaria populations differ in means and plasticities of life history traits in different temperatures at local, and in F(ST) at regional scale. Comparisons of differentiation in quantitative traits and in molecular markers suggested that natural selection was responsible for the divergence in growth and development rates as well as in temperature-induced plasticity, indicating local adaptation. However, at low temperature, the role of genetic drift could not be separated from selection. Phenotypes were correlated with forest canopy closure, but not with geographical or genetic distance. These results indicate that local adaptation can evolve in the presence of ongoing gene flow among the populations, and that natural selection is strong in this system.
Kengne-Ouafo, Jonas A.; Millard, James D.; Nji, Theobald M.; Tantoh, William F.; Nyoh, Doris N.; Tendongfor, Nicholas; Enyong, Peter A.; Newport, Melanie J.; Davey, Gail; Wanji, Samuel
2016-01-01
Background There is limited assessment of whether research participants in low-income settings are afforded a full understanding of the meaning of medical research. There may also be particular issues with the understanding of genetic research. We used a rapid ethical assessment methodology to explore perceptions surrounding the meaning of research, genetics and genetic research in north west Cameroon. Methods Eleven focus group discussions (including 107 adults) and 72 in-depth interviews were conducted with various stakeholders in two health districts in north west Cameroon between February and April 2012. Results Most participants appreciated the role of research in generating knowledge and identified a difference between research and healthcare but gave varied explanations as to this difference. Most participants' understanding of genetics was limited to concepts of hereditary, with potential benefits limited to the level of the individual or family. Explanations based on supernatural beliefs were identified as a special issue but participants tended not to identify any other special risks with genetic research. Conclusion We demonstrated a variable level of understanding of research, genetics and genetic research, with implications for those carrying out genetic research in this and other low resource settings. Our study highlights the utility of rapid ethical assessment prior to complex or sensitive research. PMID:25969503
Exploring Middle School Students' Understanding of Three Conceptual Models in Genetics
ERIC Educational Resources Information Center
Freidenreich, Hava Bresler; Duncan, Ravit Golan; Shea, Nicole
2011-01-01
Genetics is the cornerstone of modern biology and a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions about issues and emerging technologies in this domain, such as genetic screening, genetically modified foods, etc.…
ERIC Educational Resources Information Center
Osman, Enja; BouJaoude, Saouma; Hamdan, Hiba
2017-01-01
Lebanese educators claim that middle and secondary school students exhibit poor understanding of genetics due to misconceptions and difficulties that hinder progression in conceptual understanding of major genetics concepts and phenomena across different grade levels. They attributed these problems to Lebanon's ill-structured genetics curriculum…
Hann, Katie E J; Freeman, Madeleine; Fraser, Lindsay; Waller, Jo; Sanderson, Saskia C; Rahman, Belinda; Side, Lucy; Gessler, Sue; Lanceley, Anne
2017-05-25
Genetic testing for risk of hereditary cancer can help patients to make important decisions about prevention or early detection. US and UK studies show that people from ethnic minority groups are less likely to receive genetic testing. It is important to understand various groups' awareness of genetic testing and its acceptability to avoid further disparities in health care. This review aims to identify and detail awareness, knowledge, perceptions, and attitudes towards genetic counselling/testing for cancer risk prediction in ethnic minority groups. A search was carried out in PsycInfo, CINAHL, Embase and MEDLINE. Search terms referred to ethnicity, genetic testing/counselling, cancer, awareness, knowledge, attitudes, and perceptions. Quantitative and qualitative studies, written in English, and published between 2000 and 2015, were included. Forty-one studies were selected for review: 39 from the US, and two from Australia. Results revealed low awareness and knowledge of genetic counselling/testing for cancer susceptibility amongst ethnic minority groups including African Americans, Asian Americans, and Hispanics. Attitudes towards genetic testing were generally positive; perceived benefits included positive implications for personal health and being able to inform family. However, negative attitudes were also evident, particularly the anticipated emotional impact of test results, and concerns about confidentiality, stigma, and discrimination. Chinese Australian groups were less studied, but of interest was a finding from qualitative research indicating that different views of who close family members are could impact on reported family history of cancer, which could in turn impact a risk assessment. Interventions are needed to increase awareness and knowledge of genetic testing for cancer risk and to reduce the perceived stigma and taboo surrounding the topic of cancer in ethnic minority groups. More detailed research is needed in countries other than the US and across a broader spectrum of ethnic minority groups to develop effective culturally sensitive approaches for cancer prevention.
An overview of the genetic susceptibility to alcoholism.
Buscemi, Loredana; Turchi, Chiara
2011-01-01
Alcoholism is a multifactorial, genetically influenced disorder. It is a major health and social issue, a highly frequent disease and a cause of premature death. It is also the most expensive addictive disorder due to morbidity, mortality, societal and legal problems. Besides their involvement in alcohol-related fatalities, forensic scientists are also required to assess driving and working ability as well as permanent invalidity due to alcohol-related conditions. Greater knowledge of the genetic basis of alcoholism could improve prevention by identifying specific risk factors and mechanisms, leading to effective therapeutic strategies and eventually to personalized treatments. This overview of the recent scientific literature on the genetic basis of alcoholism summarizes the analytical strategies currently applied to the identification of candidate genes involved in alcohol-use disorders (AUDs) and discusses some genes and related phenotypes that have been shown to influence the risk of alcoholism. Alcoholism is a complex heterogeneous genetic disease. It is a quantitative disorder, in which the combined incidence of multiple genetic factors and environmental factors varies from one subject to another. Family, twin and adoption studies indicate that 50-60% of the risk of alcoholism is due to genetic factors. Risk loci for AUDs include both genes involved in alcohol pharmacokinetics and pharmacodynamics as well as genes moderating neurophysiological responses such as impulsivity, disinhibition, sensation-seeking and externalizing behaviours. Alcoholism also co-exists with other addictions and psychiatric disorders. Such co-morbidity suggests the existence of shared aetiological factors. Despite several genes that influence the risk for AUDs having been identified, the genetic bases of alcoholism remain largely unknown. Particularly the mechanism of action or the understanding of the physiology of some genes, as well as the gene-environment interactions, is still unknown. Technological progress and advances in transcriptomics, epigenomics and proteomics are expected to enhance our knowledge of the genetic susceptibility to alcoholism.
Ristov, Strahil; Brajkovic, Vladimir; Cubric-Curik, Vlatka; Michieli, Ivan; Curik, Ino
2016-09-10
Identification of genes or even nucleotides that are responsible for quantitative and adaptive trait variation is a difficult task due to the complex interdependence between a large number of genetic and environmental factors. The polymorphism of the mitogenome is one of the factors that can contribute to quantitative trait variation. However, the effects of the mitogenome have not been comprehensively studied, since large numbers of mitogenome sequences and recorded phenotypes are required to reach the adequate power of analysis. Current research in our group focuses on acquiring the necessary mitochondria sequence information and analysing its influence on the phenotype of a quantitative trait. To facilitate these tasks we have produced software for processing pedigrees that is optimised for maternal lineage analysis. We present MaGelLAn 1.0 (maternal genealogy lineage analyser), a suite of four Python scripts (modules) that is designed to facilitate the analysis of the impact of mitogenome polymorphism on quantitative trait variation by combining molecular and pedigree information. MaGelLAn 1.0 is primarily used to: (1) optimise the sampling strategy for molecular analyses; (2) identify and correct pedigree inconsistencies; and (3) identify maternal lineages and assign the corresponding mitogenome sequences to all individuals in the pedigree, this information being used as input to any of the standard software for quantitative genetic (association) analysis. In addition, MaGelLAn 1.0 allows computing the mitogenome (maternal) effective population sizes and probability of mitogenome (maternal) identity that are useful for conservation management of small populations. MaGelLAn is the first tool for pedigree analysis that focuses on quantitative genetic analyses of mitogenome data. It is conceived with the purpose to significantly reduce the effort in handling and preparing large pedigrees for processing the information linked to maternal lines. The software source code, along with the manual and the example files can be downloaded at http://lissp.irb.hr/software/magellan-1-0/ and https://github.com/sristov/magellan .
The correlation between relatives on the supposition of genomic imprinting.
Spencer, Hamish G
2002-01-01
Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight. PMID:12019254
The correlation between relatives on the supposition of genomic imprinting.
Spencer, Hamish G
2002-05-01
Standard genetic analyses assume that reciprocal heterozygotes are, on average, phenotypically identical. If a locus is subject to genomic imprinting, however, this assumption does not hold. We incorporate imprinting into the standard quantitative-genetic model for two alleles at a single locus, deriving expressions for the additive and dominance components of genetic variance, as well as measures of resemblance among relatives. We show that, in contrast to the case with Mendelian expression, the additive and dominance deviations are correlated. In principle, this correlation allows imprinting to be detected solely on the basis of different measures of familial resemblances, but in practice, the standard error of the estimate is likely to be too large for a test to have much statistical power. The effects of genomic imprinting will need to be incorporated into quantitative-genetic models of many traits, for example, those concerned with mammalian birthweight.
An introduction to genetic quality in the context of sexual selection.
Pitcher, Trevor E; Mays, Herman L
2008-09-01
This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.
Genetical Genomics Identifies the Genetic Architecture for Growth and Weevil Resistance in Spruce
Porth, Ilga; White, Richard; Jaquish, Barry; Alfaro, René; Ritland, Carol; Ritland, Kermit
2012-01-01
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized with resistance trait QTLs. For a composite resistance phenotype of six attack and oviposition traits, 149 positional candidate genes were identified. Resistance and growth QTLs also overlapped with eQTL hotspots along the genome suggesting that: 1) genetic pleiotropy of resistance and growth traits in interior spruce was substantial, and 2) master regulatory genes were important for weevil resistance in spruce. These results will enable future work on functional genetic studies of insect resistance in spruce, and provide valuable information about candidate genes for genetic improvement of spruce. PMID:22973444
Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu
2016-12-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Yadav, Anupama; Dhole, Kaustubh
2016-01-01
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852
NASA Astrophysics Data System (ADS)
Chen, Yi; Ma, Yong; Lu, Zheng; Peng, Bei; Chen, Qin
2011-08-01
In the field of anti-illicit drug applications, many suspicious mixture samples might consist of various drug components—for example, a mixture of methamphetamine, heroin, and amoxicillin—which makes spectral identification very difficult. A terahertz spectroscopic quantitative analysis method using an adaptive range micro-genetic algorithm with a variable internal population (ARVIPɛμGA) has been proposed. Five mixture cases are discussed using ARVIPɛμGA driven quantitative terahertz spectroscopic analysis in this paper. The devised simulation results show agreement with the previous experimental results, which suggested that the proposed technique has potential applications for terahertz spectral identifications of drug mixture components. The results show agreement with the results obtained using other experimental and numerical techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trosko, J.E.; Schultz, R.S.; Chang, C.C.
1980-01-01
The role on unrepaired DNA lesions in the production of mutations is suspected of contributing to the initiation phase of carcinogenesis. Since the molecular basis of mutagenesis is not understood in eukaryotic cells, development of new genetic markers for quantitative in vitro measurement of mutations for mammalian cells is needed. Furthermore, mammalian cells, genetically deficient for various DNA repair enzymes, will be needed to study the role of unrepaired DNA lesions in mutagenesis. The results in this report relate to preliminary attempts to characterize the diphtheria toxin resistance marker as a useful quantitative genetic marker in human cells and tomore » isolate and characterize various DNA repair-deficient Chinese hamster cells.« less
Baldwin, Nicole E.; Chesler, Elissa J.; Kirov, Stefan; ...
2005-01-01
Gene expression microarray data can be used for the assembly of genetic coexpression network graphs. Using mRNA samples obtained from recombinant inbred Mus musculus strains, it is possible to integrate allelic variation with molecular and higher-order phenotypes. The depth of quantitative genetic analysis of microarray data can be vastly enhanced utilizing this mouse resource in combination with powerful computational algorithms, platforms, and data repositories. The resulting network graphs transect many levels of biological scale. This approach is illustrated with the extraction of cliques of putatively co-regulated genes and their annotation using gene ontology analysis and cis -regulatory element discovery. Themore » causal basis for co-regulation is detected through the use of quantitative trait locus mapping.« less
Jasinska, Anna J.; Zelaya, Ivette; Service, Susan K.; Peterson, Christine B.; Cantor, Rita M.; Choi, Oi-Wa; DeYoung, Joseph; Eskin, Eleazar; Fairbanks, Lynn A.; Fears, Scott; Furterer, Allison E.; Huang, Yu S.; Ramensky, Vasily; Schmitt, Christopher A.; Svardal, Hannes; Jorgensen, Matthew J.; Kaplan, Jay R.; Villar, Diego; Aken, Bronwen L.; Flicek, Paul; Nag, Rishi; Wong, Emily S.; Blangero, John; Dyer, Thomas D.; Bogomolov, Marina; Benjamini, Yoav; Weinstock, George M.; Dewar, Ken; Sabatti, Chiara; Wilson, Richard K.; Jentsch, J. David; Warren, Wesley; Coppola, Giovanni; Woods, Roger P.; Freimer, Nelson B.
2017-01-01
By analyzing multi-tissue gene expression and genome-wide genetic variation data in samples from a vervet monkey pedigree, we generated a transcriptome resource and produced the first catalogue of expression quantitative trait loci (eQTLs) in a non-human primate model. This catalogue contains more genome-wide significant eQTLs, per sample, than comparable human resources, and reveals sex and age-related expression patterns. Findings include a master regulatory locus that likely plays a role in immune function, and a locus regulating hippocampal long non-coding RNAs (lncRNAs), whose expression correlates with hippocampal volume. This resource will facilitate genetic investigation of quantitative traits, including brain and behavioral phenotypes relevant to neuropsychiatric disorders. PMID:29083405
USDA-ARS?s Scientific Manuscript database
In the early 1900s, breed society herdbooks had been established, and milk recording programs were in their infancy. Farmers were interested in improving the productivity of dairy cattle, but the foundations of population genetics, quantitative genetics, and animal breeding had not yet been laid. Li...
USDA-ARS?s Scientific Manuscript database
Decisions on the appropriate crossing systems to employ for genetic improvement of quantitative traits are critical in cotton breeding. Determination of genetic variance for lint yield and fiber quality in three different crossing schemes, i.e., single cross (SC), three-way cross (TWC), and double ...
NASA Astrophysics Data System (ADS)
Guo, Jingyu; Tian, Dehua; McKinney, Brett A.; Hartman, John L.
2010-06-01
Interactions between genetic and/or environmental factors are ubiquitous, affecting the phenotypes of organisms in complex ways. Knowledge about such interactions is becoming rate-limiting for our understanding of human disease and other biological phenomena. Phenomics refers to the integrative analysis of how all genes contribute to phenotype variation, entailing genome and organism level information. A systems biology view of gene interactions is critical for phenomics. Unfortunately the problem is intractable in humans; however, it can be addressed in simpler genetic model systems. Our research group has focused on the concept of genetic buffering of phenotypic variation, in studies employing the single-cell eukaryotic organism, S. cerevisiae. We have developed a methodology, quantitative high throughput cellular phenotyping (Q-HTCP), for high-resolution measurements of gene-gene and gene-environment interactions on a genome-wide scale. Q-HTCP is being applied to the complete set of S. cerevisiae gene deletion strains, a unique resource for systematically mapping gene interactions. Genetic buffering is the idea that comprehensive and quantitative knowledge about how genes interact with respect to phenotypes will lead to an appreciation of how genes and pathways are functionally connected at a systems level to maintain homeostasis. However, extracting biologically useful information from Q-HTCP data is challenging, due to the multidimensional and nonlinear nature of gene interactions, together with a relative lack of prior biological information. Here we describe a new approach for mining quantitative genetic interaction data called recursive expectation-maximization clustering (REMc). We developed REMc to help discover phenomic modules, defined as sets of genes with similar patterns of interaction across a series of genetic or environmental perturbations. Such modules are reflective of buffering mechanisms, i.e., genes that play a related role in the maintenance of physiological homeostasis. To develop the method, 297 gene deletion strains were selected based on gene-drug interactions with hydroxyurea, an inhibitor of ribonucleotide reductase enzyme activity, which is critical for DNA synthesis. To partition the gene functions, these 297 deletion strains were challenged with growth inhibitory drugs known to target different genes and cellular pathways. Q-HTCP-derived growth curves were used to quantify all gene interactions, and the data were used to test the performance of REMc. Fundamental advantages of REMc include objective assessment of total number of clusters and assignment to each cluster a log-likelihood value, which can be considered an indicator of statistical quality of clusters. To assess the biological quality of clusters, we developed a method called gene ontology information divergence z-score (GOid_z). GOid_z summarizes total enrichment of GO attributes within individual clusters. Using these and other criteria, we compared the performance of REMc to hierarchical and K-means clustering. The main conclusion is that REMc provides distinct efficiencies for mining Q-HTCP data. It facilitates identification of phenomic modules, which contribute to buffering mechanisms that underlie cellular homeostasis and the regulation of phenotypic expression.
Paccard, Antoine; Van Buskirk, Josh; Willi, Yvonne
2016-05-01
Species distribution limits are hypothesized to be caused by small population size and limited genetic variation in ecologically relevant traits, but earlier studies have not evaluated genetic variation in multivariate phenotypes. We asked whether populations at the latitudinal edges of the distribution have altered quantitative genetic architecture of ecologically relevant traits compared with midlatitude populations. We calculated measures of evolutionary potential in nine Arabidopsis lyrata populations spanning the latitudinal range of the species in eastern and midwestern North America. Environments at the latitudinal extremes have reduced water availability, and therefore plants were assessed under wet and dry treatments. We estimated genetic variance-covariance (G-) matrices for 10 traits related to size, development, and water balance. Populations at southern and northern distribution edges had reduced levels of genetic variation across traits, but their G-matrices were more spherical; G-matrix orientation was unrelated to latitude. As a consequence, the predicted short-term response to selection was at least as strong in edge populations as in central populations. These results are consistent with genetic drift eroding variation and reducing the effectiveness of correlational selection at distribution margins. We conclude that genetic variation of isolated traits poorly predicts the capacity to evolve in response to multivariate selection and that the response to selection may frequently be greater than expected at species distribution margins because of genetic drift.
Quantitative PCR for Genetic Markers of Human Fecal Pollution
Assessment of health risk and fecal bacteria loads associated with human fecal pollution requires reliable host-specific analytical methods and a rapid quantificationapproach. We report the development of quantitative PCR assays for quantification of two recently described human-...