Swindell, William R.; Johnston, Andrew; Sun, Liou; Xing, Xianying; Fisher, Gary J.; Bulyk, Martha L.; Elder, James T.; Gudjonsson, Johann E.
2012-01-01
Background Skin aging is associated with intrinsic processes that compromise the structure of the extracellular matrix while promoting loss of functional and regenerative capacity. These processes are accompanied by a large-scale shift in gene expression, but underlying mechanisms are not understood and conservation of these mechanisms between humans and mice is uncertain. Results We used genome-wide expression profiling to investigate the aging skin transcriptome. In humans, age-related shifts in gene expression were sex-specific. In females, aging increased expression of transcripts associated with T-cells, B-cells and dendritic cells, and decreased expression of genes in regions with elevated Zeb1, AP-2 and YY1 motif density. In males, however, these effects were contrasting or absent. When age-associated gene expression patterns in human skin were compared to those in tail skin from CB6F1 mice, overall human-mouse correspondence was weak. Moreover, inflammatory gene expression patterns were not induced with aging of mouse tail skin, and well-known aging biomarkers were in fact decreased (e.g., Clec7a, Lyz1 and Lyz2). These unexpected patterns and weak human-mouse correspondence may be due to decreased abundance of antigen presenting cells in mouse tail skin with age. Conclusions Aging is generally associated with a pro-inflammatory state, but we have identified an exception to this pattern with aging of CB6F1 mouse tail skin. Aging therefore does not uniformly heighten inflammatory status across all mouse tissues. Furthermore, we identified both intercellular and intracellular mechanisms of transcriptome aging, including those that are sex- and species-specific. PMID:22413003
Kitsos, Christine M; Bhamidipati, Phani; Melnikova, Irena; Cash, Ethan P; McNulty, Chris; Furman, Julia; Cima, Michael J; Levinson, Douglas
2007-01-01
This study examined whether hierarchical clustering could be used to detect cell states induced by treatment combinations that were generated through automation and high-throughput (HT) technology. Data-mining techniques were used to analyze the large experimental data sets to determine whether nonlinear, non-obvious responses could be extracted from the data. Unary, binary, and ternary combinations of pharmacological factors (examples of stimuli) were used to induce differentiation of HL-60 cells using a HT automated approach. Cell profiles were analyzed by incorporating hierarchical clustering methods on data collected by flow cytometry. Data-mining techniques were used to explore the combinatorial space for nonlinear, unexpected events. Additional small-scale, follow-up experiments were performed on cellular profiles of interest. Multiple, distinct cellular profiles were detected using hierarchical clustering of expressed cell-surface antigens. Data-mining of this large, complex data set retrieved cases of both factor dominance and cooperativity, as well as atypical cellular profiles. Follow-up experiments found that treatment combinations producing "atypical cell types" made those cells more susceptible to apoptosis. CONCLUSIONS Hierarchical clustering and other data-mining techniques were applied to analyze large data sets from HT flow cytometry. From each sample, the data set was filtered and used to define discrete, usable states that were then related back to their original formulations. Analysis of resultant cell populations induced by a multitude of treatments identified unexpected phenotypes and nonlinear response profiles.
Compensation for intracellular environment in expression levels of mammalian circadian clock genes
Matsumura, Ritsuko; Okamoto, Akihiko; Node, Koichi; Akashi, Makoto
2014-01-01
The circadian clock is driven by transcriptional oscillation of clock genes in almost all body cells. To investigate the effect of cell type-specific intracellular environment on the circadian machinery, we examined gene expression profiles in five peripheral tissues. As expected, the phase relationship between expression rhythms of nine clock genes was similar in all tissues examined. We also compared relative expression levels of clock genes among tissues, and unexpectedly found that quantitative variation remained within an approximately three-fold range, which was substantially smaller than that of metabolic housekeeping genes. Interestingly, circadian gene expression was little affected even when fibroblasts were cultured with different concentrations of serum. Together, these findings support a hypothesis that expression levels of clock genes are quantitatively compensated for the intracellular environment, such as redox potential and metabolite composition. However, more comprehensive studies are required to reach definitive conclusions. PMID:24504324
Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram
2003-01-01
Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352
Sistani, Laleh; Rodriguez, Patricia Q; Hultenby, Kjell; Uhlen, Mathias; Betsholtz, Christer; Jalanko, Hannu; Tryggvason, Karl; Wernerson, Annika; Patrakka, Jaakko
2013-01-01
The podocyte has a central role in the glomerular filtration barrier typified by a sophisticated morphology of highly organized primary (major) and secondary (foot) processes. The molecular makeup of foot processes is well characterized, but that of major processes is poorly known. Previously, we profiled the glomerular transcriptome through large-scale sequencing and microarray profiling. Unexpectedly, the survey found expression of three neuronal proteins (Huntingtin interacting protein 1 (Hip1), neurofascin (Nfasc), and olfactomedin-like 2a (Olfml2a)), all enriched in the glomerulus. These proteins were expressed exclusively by podocytes, wherein they localized to major processes as verified by RT-PCR, western blotting, immunofluorescence, and immunoelectron microscopy. During podocyte development, these proteins colocalized with vimentin, confirming their association with major processes. Using immunohistochemistry, we found coexpression of Hip1 and Olfml2a along with the recognized podocyte markers synaptopodin and Pdlim2 in glomerular crescents of human kidneys, indicating the presence of podocytes in these lesions. Thus, three neuronal proteins are highly expressed in podocyte major process. Using these new markers we found that podocytes contribute to the formation of glomerular crescents.
Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping
2016-06-02
Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis.
Zhao, Lanying; Liu, Lusha; Wang, Shouhong; Wang, Hongyuan; Jiang, Jianping
2016-01-01
Anuran metamorphosis is an excellent system in which to study postembryonic development. Studies on Xenopus (Mesobatrachia) show that thyroid hormone receptors (TRs) regulate metamorphosis in a ligand-dependent manner by coordinating the action of hundreds of genes. However, whether this mechanism is conserved among amphibians is still unknown. To understand the molecular mechanism of this universal phenomenon, we report the transcriptional profiles of the three key developmental stages in Microhyla fissipes (Neobatrachia): premetamorphosis (PM), metamorphic climax (MC) and completion of metamorphosis (CM). In total, 2,293 differentially expressed genes were identified from comparisons of transcriptomes, and these genes showed stage-specific expression patterns. Unexpectedly, we found that TRα was highly expressed in Xenopus laevis and Bufo gargarizans at premetamorphosis but showed low expression in M. fissipes. In contrast, TRβ was highly expressed during metamorphosis in M. fissipes and X. laevis. This result may imply that TRβ is essential for initiating metamorphosis, at least in M. fissipes. Thus, our work not only identifies genes that are likely to be involved in Neobatrachia metamorphosis but also clarifies the roles of unliganded TRα in regulating tadpole growth and timing of metamorphosis, which may be conserved in anurans, and the role of liganded TRβ in launching metamorphosis. PMID:27254593
Koelsch, Stefan; Kilches, Simone; Steinbeis, Nikolaus; Schelinski, Stefanie
2008-07-09
There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.
Du, Yang; Cheng, Wang; Li, Wei-Fang
2012-08-01
Iron homeostasis plays a crucial role in growth and division of cells in all kingdoms of life. Although yeast iron metabolism has been extensively studied, little is known about the molecular mechanism of response to surplus iron. In this study, expression profiling of Saccharomyces cerevisiae in the presence of surplus iron revealed a dual effect at 1 and 4 h. A cluster of stress-responsive genes was upregulated via activation of the stress-resistance transcription factor Msn4, which indicated the stress effect of surplus iron on yeast metabolism. Genes involved in aerobic metabolism and several anabolic pathways are also upregulated in iron-surplus conditions, which could significantly accelerate yeast growth. This dual effect suggested that surplus iron might participate in a more complex metabolic network, in addition to serving as a stress inducer. These findings contribute to our understanding of the global response of yeast to the fluctuating availability of iron in the environment.
Molecular and functional definition of the developing human striatum.
Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena
2014-12-01
The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.
Ikebuchi, Ryoyo; Teraguchi, Shunsuke; Vandenbon, Alexis; Honda, Tetsuya; Shand, Francis H W; Nakanishi, Yasutaka; Watanabe, Takeshi; Tomura, Michio
2016-10-19
Foxp3 + regulatory T cells (Tregs) migrating from the skin to the draining lymph node (dLN) have a strong immunosuppressive effect on the cutaneous immune response. However, the subpopulations responsible for their inhibitory function remain unclear. We investigated single-cell gene expression heterogeneity in Tregs from the dLN of inflamed skin in a contact hypersensitivity model. The immunosuppressive genes Ctla4 and Tgfb1 were expressed in the majority of Tregs. Although Il10-expressing Tregs were rare, unexpectedly, the majority of Il10-expressing Tregs co-expressed Gzmb and displayed Th1-skewing. Single-cell profiling revealed that CD43 + CCR5 + Tregs represented the main subset within the Il10/Gzmb-expressing cell population in the dLN. Moreover, CD43 + CCR5 + CXCR3 - Tregs expressed skin-tropic chemokine receptors, were preferentially retained in inflamed skin and downregulated the cutaneous immune response. The identification of a rare Treg subset co-expressing multiple immunosuppressive molecules and having tissue-remaining capacity offers a novel strategy for the control of skin inflammatory responses.
Koelsch, Stefan; Kilches, Simone; Steinbeis, Nikolaus; Schelinski, Stefanie
2008-01-01
Background There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. Methodology/Principal Findings This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression), we also created versions without variations in tempo and loudness (without musical expression) to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing) and an N5 (reflecting processing of meaning information) in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses). The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function) differed between the expressive and the non-expressive condition. Conclusions/Significance These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music. PMID:18612459
Gene expression profiling assigns CHEK2 1100delC breast cancers to the luminal intrinsic subtypes.
Nagel, Jord H A; Peeters, Justine K; Smid, Marcel; Sieuwerts, Anieta M; Wasielewski, Marijke; de Weerd, Vanja; Trapman-Jansen, Anita M A C; van den Ouweland, Ans; Brüggenwirth, Hennie; van I Jcken, Wilfred F J; Klijn, Jan G M; van der Spek, Peter J; Foekens, John A; Martens, John W M; Schutte, Mieke; Meijers-Heijboer, Hanne
2012-04-01
CHEK2 1100delC is a moderate-risk cancer susceptibility allele that confers a high breast cancer risk in a polygenic setting. Gene expression profiling of CHEK2 1100delC breast cancers may reveal clues to the nature of the polygenic CHEK2 model and its genes involved. Here, we report global gene expression profiles of a cohort of 155 familial breast cancers, including 26 CHEK2 1100delC mutant tumors. In line with previous work, all CHEK2 1100delC mutant tumors clustered among the hormone receptor-positive breast cancers. In the hormone receptor-positive subset, a 40-gene CHEK2 signature was subsequently defined that significantly associated with CHEK2 1100delC breast cancers. The identification of a CHEK2 gene signature implies an unexpected biological homogeneity among the CHEK2 1100delC breast cancers. In addition, all 26 CHEK2 1100delC tumors classified as luminal intrinsic subtype breast cancers, with 8 luminal A and 18 luminal B tumors. This biological make-up of CHEK2 1100delC breast cancers suggests that a relatively limited number of additional susceptibility alleles are involved in the polygenic CHEK2 model. Identification of these as-yet-unknown susceptibility alleles should be aided by clues from the 40-gene CHEK2 signature.
Van Laere, Steven J; Ueno, Naoto T; Finetti, Pascal; Vermeulen, Peter; Lucci, Anthony; Robertson, Fredika M; Marsan, Melike; Iwamoto, Takayuki; Krishnamurthy, Savitri; Masuda, Hiroko; van Dam, Peter; Woodward, Wendy A; Viens, Patrice; Cristofanilli, Massimo; Birnbaum, Daniel; Dirix, Luc; Reuben, James M; Bertucci, François
2013-09-01
Inflammatory breast cancer (IBC) is a poorly characterized form of breast cancer. So far, the results of expression profiling in IBC are inconclusive due to various reasons including limited sample size. Here, we present the integration of three Affymetrix expression datasets collected through the World IBC Consortium allowing us to interrogate the molecular profile of IBC using the largest series of IBC samples ever reported. Affymetrix profiles (HGU133-series) from 137 patients with IBC and 252 patients with non-IBC (nIBC) were analyzed using unsupervised and supervised techniques. Samples were classified according to the molecular subtypes using the PAM50-algorithm. Regression models were used to delineate IBC-specific and molecular subtype-independent changes in gene expression, pathway, and transcription factor activation. Four robust IBC-sample clusters were identified, associated with the different molecular subtypes (P<0.001), all of which were identified in IBC with a similar prevalence as in nIBC, except for the luminal A subtype (19% vs. 42%; P<0.001) and the HER2-enriched subtype (22% vs. 9%; P<0.001). Supervised analysis identified and validated an IBC-specific, molecular subtype-independent 79-gene signature, which held independent prognostic value in a series of 871 nIBCs. Functional analysis revealed attenuated TGF-β signaling in IBC. We show that IBC is transcriptionally heterogeneous and that all molecular subtypes described in nIBC are detectable in IBC, albeit with a different frequency. The molecular profile of IBC, bearing molecular traits of aggressive breast tumor biology, shows attenuation of TGF-β signaling, potentially explaining the metastatic potential of IBC tumor cells in an unexpected manner. ©2013 AACR.
Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke
2016-01-01
Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. PMID:26560065
Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke
2016-01-01
Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under nonoptimal culture conditions but also provide valuable insights into intriguing biological principles, including the balance of proteome resource allocation and the role of gene duplication in evolutionary history. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Different gene expressions between cattle and yak provide insights into high-altitude adaptation.
Wang, K; Yang, Y; Wang, L; Ma, T; Shang, H; Ding, L; Han, J; Qiu, Q
2016-02-01
DNA sequence variation has been widely reported as the genetic basis for adaptation, in both humans and other animals, to the hypoxic environment experienced at high altitudes. However, little is known about the patterns of gene expression underlying such hypoxic adaptations. In this study, we examined the differences in the transcriptomes of four organs (heart, kidney, liver and lung) between yak and cattle, a pair of closely related species distributed at high and low altitudes respectively. Of the four organs examined, heart shows the greatest differentiation between the two species in terms of gene expression profiles. Detailed analyses demonstrated that some genes associated with the oxygen supply system and the defense systems that respond to threats of hypoxia are differentially expressed. In addition, genes with significantly differentiated patterns of expression in all organs exhibited an unexpected uniformity of regulation along with an elevated frequency of nonsynonymous substitutions. This co-evolution of protein sequences and gene expression patterns is likely to be correlated with the optimization of the yak metabolic system to resist hypoxia. © 2015 Stichting International Foundation for Animal Genetics.
Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.
Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S
2009-06-01
Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.
Overcoming confounded controls in the analysis of gene expression data from microarray experiments.
Bhattacharya, Soumyaroop; Long, Dang; Lyons-Weiler, James
2003-01-01
A potential limitation of data from microarray experiments exists when improper control samples are used. In cancer research, comparisons of tumour expression profiles to those from normal samples is challenging due to tissue heterogeneity (mixed cell populations). A specific example exists in a published colon cancer dataset, in which tissue heterogeneity was reported among the normal samples. In this paper, we show how to overcome or avoid the problem of using normal samples that do not derive from the same tissue of origin as the tumour. We advocate an exploratory unsupervised bootstrap analysis that can reveal unexpected and undesired, but strongly supported, clusters of samples that reflect tissue differences instead of tumour versus normal differences. All of the algorithms used in the analysis, including the maximum difference subset algorithm, unsupervised bootstrap analysis, pooled variance t-test for finding differentially expressed genes and the jackknife to reduce false positives, are incorporated into our online Gene Expression Data Analyzer ( http:// bioinformatics.upmc.edu/GE2/GEDA.html ).
Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects
Yeri, Ashish; Courtright, Amanda; Reiman, Rebecca; Carlson, Elizabeth; Beecroft, Taylor; Janss, Alex; Siniard, Ashley; Richholt, Ryan; Balak, Chris; Rozowsky, Joel; Kitchen, Robert; Hutchins, Elizabeth; Winarta, Joseph; McCoy, Roger; Anastasi, Matthew; Kim, Seungchan; Huentelman, Matthew; Van Keuren-Jensen, Kendall
2017-01-01
Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18–25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual’s exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals. PMID:28303895
Lumeng, Carey N.; Liu, Jianhua; Geletka, Lynn; Delaney, Colin; DelProposto, Jennifer; Desai, Anjali; Oatmen, Kelsie; Martinez-Santibanez, Gabriel; Julius, Annabelle; Garg, Sanjay; Yung, Raymond L.
2011-01-01
Age-related adiposity has been linked to chronic inflammatory diseases in late-life. To date, the studies on adipose tissue leukocytes and aging have not taken into account the heterogeneity of adipose tissue macrophages (ATMs), nor have they examined how age impacts other leukocytes such as T cell in fat. Therefore, we have performed a detailed examination of ATM subtypes in young and old mice using state of the art techniques. Our results demonstrate qualitative changes in ATMs with aging that generate a decrease in resident Type 2 (M2) ATMs. The profile of ATMs in old fat shifts towards a pro-inflammatory environment with increased numbers of CD206-CD11c- (double negative) ATMs. The mechanism of this aging-induced shift in the phenotypic profile of ATMs was found to be related to a decrease in PPARγ expression in ATMs and alterations in chemokine/chemokine receptor expression profiles. Furthermore, we have revealed a profound and unexpected expansion of adipose tissue T (ATT) cells in visceral fat with aging that includes a significant induction of regulatory T cells (Tregs) in fat. Our findings demonstrate a unique inflammatory cell signature in the physiologic context of aging adipose tissue that differs from those induced in setting of diet-induced obesity. PMID:22075699
Molecular Basis of Mechano-Signal Transduction in Vascular Endothelial Cells
NASA Technical Reports Server (NTRS)
Jo, Hanjoong
2004-01-01
Simulated microgravity studies using a random positioning machine (RPM). One RPM machine has been built for us by Fokker Science in Netherland. Using the device, we have developed an in vitro system to examine the effect of simulated microgravity on osteoblastic bone cells. Using this system, we have carried out gene chip studies to determine the gene expression profiles of osteoblasts cultured under simulated microgravity conditions in comparison to static controls. From this study, we have identified numerous genes, some of which are expected ones inducing bone loss, but many of which are unexpected and unknown. These findings are being prepared for publications.
Li, Weiwei; Zhao, Lei; Meng, Fei; Wang, Yunsheng; Tan, Huarong; Yang, Hua; Wei, Chaoling; Wan, Xiaochun; Gao, Liping; Xia, Tao
2013-01-01
Phenolic compounds in tea plant [Camellia sinensis (L.)] play a crucial role in dominating tea flavor and possess a number of key pharmacological benefits on human health. The present research aimed to study the profile of tissue-specific, development-dependent accumulation pattern of phenolic compounds in tea plant. A total of 50 phenolic compounds were identified qualitatively using liquid chromatography in tandem mass spectrometry technology. Of which 29 phenolic compounds were quantified based on their fragmentation behaviors. Most of the phenolic compounds were higher in the younger leaves than that in the stem and root, whereas the total amount of proanthocyanidins were unexpectedly higher in the root. The expression patterns of 63 structural and regulator genes involved in the shikimic acid, phenylpropanoid, and flavonoid pathways were analyzed by quantitative real-time polymerase chain reaction and cluster analysis. Based on the similarity of their expression patterns, the genes were classified into two main groups: C1 and C2; and the genes in group C1 had high relative expression level in the root or low in the bud and leaves. The expression patterns of genes in C2-2-1 and C2-2-2-1 groups were probably responsible for the development-dependent accumulation of phenolic compounds in the leaves. Enzymatic analysis suggested that the accumulation of catechins was influenced simultaneously by catabolism and anabolism. Further research is recommended to know the expression patterns of various genes and the reason for the variation in contents of different compounds in different growth stages and also in different organs. PMID:23646127
Autefage, Hélène; Littmann, Elena; Hedegaard, Martin A. B.; Von Erlach, Thomas; O’Donnell, Matthew; Burden, Frank R.; Winkler, David A.; Stevens, Molly M.
2015-01-01
Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells’ global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell–material interactions and suggest alternative research routes for evaluating biomaterials to improve their design. PMID:25831522
Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.
2014-01-01
Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601
Comprehensive transcriptional map of primate brain development
Bakken, Trygve E.; Miller, Jeremy A.; Ding, Song-Lin; Sunkin, Susan M.; Smith, Kimberly A.; Ng, Lydia; Szafer, Aaron; Dalley, Rachel A.; Royall, Joshua J.; Lemon, Tracy; Shapouri, Sheila; Aiona, Kaylynn; Arnold, James; Bennett, Jeffrey L.; Bertagnolli, Darren; Bickley, Kristopher; Boe, Andrew; Brouner, Krissy; Butler, Stephanie; Byrnes, Emi; Caldejon, Shiella; Carey, Anita; Cate, Shelby; Chapin, Mike; Chen, Jefferey; Dee, Nick; Desta, Tsega; Dolbeare, Tim A.; Dotson, Nadia; Ebbert, Amanda; Fulfs, Erich; Gee, Garrett; Gilbert, Terri L.; Goldy, Jeff; Gourley, Lindsey; Gregor, Ben; Gu, Guangyu; Hall, Jon; Haradon, Zeb; Haynor, David R.; Hejazinia, Nika; Hoerder-Suabedissen, Anna; Howard, Robert; Jochim, Jay; Kinnunen, Marty; Kriedberg, Ali; Kuan, Chihchau L.; Lau, Christopher; Lee, Chang-Kyu; Lee, Felix; Luong, Lon; Mastan, Naveed; May, Ryan; Melchor, Jose; Mosqueda, Nerick; Mott, Erika; Ngo, Kiet; Nyhus, Julie; Oldre, Aaron; Olson, Eric; Parente, Jody; Parker, Patrick D.; Parry, Sheana; Pendergraft, Julie; Potekhina, Lydia; Reding, Melissa; Riley, Zackery L.; Roberts, Tyson; Rogers, Brandon; Roll, Kate; Rosen, David; Sandman, David; Sarreal, Melaine; Shapovalova, Nadiya; Shi, Shu; Sjoquist, Nathan; Sodt, Andy J.; Townsend, Robbie; Velasquez, Lissette; Wagley, Udi; Wakeman, Wayne B.; White, Cassandra; Bennett, Crissa; Wu, Jennifer; Young, Rob; Youngstrom, Brian L.; Wohnoutka, Paul; Gibbs, Richard A.; Rogers, Jeffrey; Hohmann, John G.; Hawrylycz, Michael J.; Hevner, Robert F.; Molnár, Zoltán; Phillips, John W.; Dang, Chinh; Jones, Allan R.; Amaral, David G.; Bernard, Amy; Lein, Ed S.
2017-01-01
The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high resolution transcriptional atlas of rhesus monkey brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical parcellation of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons, and cortical layers and areas acquire adult-like molecular profiles surprisingly late postnatally. Disparate cell populations exhibit distinct developmental timing but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, and approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny. PMID:27409810
Prieto, Pedro Antonio
2012-01-01
During the decade of the 1990s and the first years of the current century, our group embarked on a project to study and synthesize human milk oligosaccharides. This report describes 2 unexpected collateral observations from that endeavor. The first observation was the detection and confirmation of 2 rare neutral human milk oligosaccharides profiles that were uncovered while assessing oligosaccharide content in hundreds of samples of human milk. One of these lacked fucosylated structures altogether, and the other lacked the oligosaccharide 3-fucosyllactose [Galβ1–4(Fucα1–3)Glc]. We used glycoconjugate probes to determine whether the unusual profiles were mirrored by fucosylation of milk glycoproteins. The results show that the lack of fucosylated oligosaccharides in these samples corresponds to the absence of equivalent fucosylated motifs in milk glycoproteins. The second finding was a shortened and distinct lactation process in transgenic rabbits expressing the human fucosyltransferase 1. During the first day of lactation, these animals expressed milk that contained both lactose and 2′-fucosylactose, but on the second day, the production of milk was severely diminished, and by the fourth day, no lactose was detected in their milk. Meanwhile, the concentration of fucosylated glycoproteins increased from the onset of lactation through its premature termination. These 2 findings may shed light on the glycobiology of milk and perhaps on mammary gland differentiation. PMID:22585925
Couch, Yvonne; Anthony, Daniel C; Dolgov, Oleg; Revischin, Alexander; Festoff, Barry; Santos, Ana Isabel; Steinbusch, Harry W; Strekalova, Tatyana
2013-03-01
A chronic stress paradigm comprising exposure to predation, tail suspension and restraint induces a depressive syndrome in C57BL/6J mice that occurs in some, but not all, animals. Here, we sought to extend our behavioural studies to investigate how susceptibility (sucrose preference<65%) or resilience (sucrose preference>65%) to stress-induced anhedonia affects the 5HT system and the expression of inflammation-related genes. All chronically stressed animals, displayed increased level of anxiety, but susceptible mice exhibited an increased propensity to float in the forced swim test and demonstrate hyperactivity under stressful lighting conditions. These changes were not present in resilient or acutely stressed animals. Compared to resilient animals, susceptible mice showed elevated expression of tumour necrosis factor alpha (TNF) and the 5-HT transporter (SERT) in the pre-frontal area. Enhanced expression of 5HT(2A) and COX-1 in the pre-frontal area was observed in all stressed animals. In turn, indoleamine-2,3-dioxygenase (IDO) was significantly unregulated in the raphe of susceptible animals. At the cellular level, increased numbers of Iba-1-positive microglial cells were also present in the prefrontal area of susceptible animals compared to resilient animals. Consequently, the susceptible animals display a unique molecular profile when compared to resilient, but anxious, animals. Unexpectedly, this altered profile provides a rationale for exploring anti-inflammatory, and possibly, TNF-targeted therapy for major depression. Copyright © 2013 Elsevier Inc. All rights reserved.
Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf.
Magella, Bliss; Adam, Mike; Potter, Andrew S; Venkatasubramanian, Meenakshi; Chetal, Kashish; Hay, Stuart B; Salomonis, Nathan; Potter, S Steven
2018-02-01
The developing kidney provides a useful model for study of the principles of organogenesis. In this report we use three independent platforms, Drop-Seq, Chromium 10x Genomics and Fluidigm C1, to carry out single cell RNA-Seq (scRNA-Seq) analysis of the E14.5 mouse kidney. Using the software AltAnalyze, in conjunction with the unsupervised approach ICGS, we were unable to identify and confirm the presence of 16 distinct cell populations during this stage of active nephrogenesis. Using a novel integrative supervised computational strategy, we were able to successfully harmonize and compare the cell profiles across all three technological platforms. Analysis of possible cross compartment receptor/ligand interactions identified the nephrogenic zone stroma as a source of GDNF. This was unexpected because the cap mesenchyme nephron progenitors had been thought to be the sole source of GDNF, which is a key driver of branching morphogenesis of the collecting duct system. The expression of Gdnf by stromal cells was validated in several ways, including Gdnf in situ hybridization combined with immunohistochemistry for SIX2, and marker of nephron progenitors, and MEIS1, a marker of stromal cells. Finally, the single cell gene expression profiles generated in this study confirmed and extended previous work showing the presence of multilineage priming during kidney development. Nephron progenitors showed stochastic expression of genes associated with multiple potential differentiation lineages. Copyright © 2017 Elsevier Inc. All rights reserved.
Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer
Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna
2018-01-01
Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-29
... unexpected haircut or capital charge that does not fundamentally change its risk profile), and (ii) return all or a portion of the collateral premium amount if it believes that the member's risk profile does...
Aging-like Changes in the Transcriptome of Irradiated Microglia
Li, Matthew D.; Burns, Terry C.; Kumar, Sunny; Morgan, Alexander A.; Sloan, Steven A.; Palmer, Theo D.
2014-01-01
Whole brain irradiation remains important in the management of brain tumors. Although necessary for improving survival outcomes, cranial irradiation also results in cognitive decline in long-term survivors. A chronic inflammatory state characterized by microglial activation has been implicated in radiation-induced brain injury. We here provide the first comprehensive transcriptional profile of irradiated microglia. Fluorescence-activated cell sorting (FACS) was used to isolate CD11b+ microglia from the hippocampi of C57BL/6 and Balb/c mice 1 month after 10Gy cranial irradiation. Affymetrix gene expression profiles were evaluated using linear modeling, rank product analyses. One month after irradiation, a conserved irradiation signature across strains was identified, comprising 448 and 85 differentially up- and down-regulated genes, respectively. Gene set enrichment analysis (GSEA) demonstrated enrichment for inflammation, including M1 macrophage-associated genes, but also an unexpected enrichment for extracellular matrix and blood coagulation-related gene sets, in contrast previously described microglial states. Weighted gene co-expression network analysis (WGCNA) confirmed these findings and further revealed alterations in mitochondrial function. The RNA-seq transcriptome of microglia 24h post-radiation proved similar to the 1-month transcriptome, but additionally featured alterations in apoptotic and lysosomal gene expression. Re-analysis of published aging mouse microglia transcriptome data demonstrated striking similarity to the 1 month irradiated microglia transcriptome, suggesting that shared mechanisms may underlie aging and chronic irradiation-induced cognitive decline. PMID:25690519
ERIC Educational Resources Information Center
Vanthournout, Gert; Coertjens, Liesje; Gijbels, David; Donche, Vincent; Van Petegem, Peter
2013-01-01
Research regarding the development of students' learning approaches have at times reported unexpected or lack of expected changes. The current study explores the idea of differential developments in learning approaches according to students' initial learning profiles as a possible explanation for these outcomes. A learning profile is conceived as…
Predictive teratology: teratogenic risk-hazard identification partnered in the discovery process.
Augustine-Rauch, K A
2008-11-01
Unexpected teratogenicity is ranked as one of the most prevalent causes for toxicity-related attrition of drug candidates. Without proactive assessment, the liability tends to be identified relatively late in drug development, following significant investment in compound and engagement in pre clinical and clinical studies. When unexpected teratogenicity occurs in pre-clinical development, three principle questions arise: Can clinical trials that include women of child bearing populations be initiated? Will all compounds in this pharmacological class produce the same liability? Could this effect be related to the chemical structure resulting in undesirable off-target adverse effects? The first question is typically addressed at the time of the unexpected finding and involves considering the nature of the teratogenicity, whether or not maternal toxicity could have had a role in onset, human exposure margins and therapeutic indication. The latter two questions can be addressed proactively, earlier in the discovery process as drug target profiling and lead compound optimization is taking place. Such proactive approaches include thorough assessment of the literature for identification of potential liabilities and follow-up work that can be conducted on the level of target expression and functional characterization using molecular biology and developmental model systems. Developmental model systems can also be applied in the form of in vitro teratogenicity screens, and show potential for effective hazard identification or issue resolution on the level of characterizing teratogenic mechanism. This review discusses approaches that can be applied for proactive assessment of compounds for teratogenic liability.
Inoue, Kimiko; Oikawa, Mami; Kamimura, Satoshi; Ogonuki, Narumi; Nakamura, Toshinobu; Nakano, Toru; Abe, Kuniya; Ogura, Atsuo
2015-01-01
Although mammalian cloning by somatic cell nuclear transfer (SCNT) has been established in various species, the low developmental efficiency has hampered its practical applications. Treatment of SCNT-derived embryos with histone deacetylase (HDAC) inhibitors can improve their development, but the underlying mechanism is still unclear. To address this question, we analysed gene expression profiles of SCNT-derived 2-cell mouse embryos treated with trichostatin A (TSA), a potent HDAC inhibitor that is best used for mouse cloning. Unexpectedly, TSA had no effect on the numbers of aberrantly expressed genes or the overall gene expression pattern in the embryos. However, in-depth investigation by gene ontology and functional analyses revealed that TSA treatment specifically improved the expression of a small subset of genes encoding transcription factors and their regulatory factors, suggesting their positive involvement in de novo RNA synthesis. Indeed, introduction of one of such transcription factors, Spi-C, into the embryos at least partially mimicked the TSA-induced improvement in embryonic development by activating gene networks associated with transcriptional regulation. Thus, the effects of TSA treatment on embryonic gene expression did not seem to be stochastic, but more specific than expected, targeting genes that direct development and trigger zygotic genome activation at the 2-cell stage. PMID:25974394
Høgslund, Niels; Radutoiu, Simona; Krusell, Lene; Voroshilova, Vera; Hannah, Matthew A.; Goffard, Nicolas; Sanchez, Diego H.; Lippold, Felix; Ott, Thomas; Sato, Shusei; Tabata, Satoshi; Liboriussen, Poul; Lohmann, Gitte V.; Schauser, Leif; Weiller, Georg F.; Udvardi, Michael K.; Stougaard, Jens
2009-01-01
Genetic analyses of plant symbiotic mutants has led to the identification of key genes involved in Rhizobium-legume communication as well as in development and function of nitrogen fixing root nodules. However, the impact of these genes in coordinating the transcriptional programs of nodule development has only been studied in limited and isolated studies. Here, we present an integrated genome-wide analysis of transcriptome landscapes in Lotus japonicus wild-type and symbiotic mutant plants. Encompassing five different organs, five stages of the sequentially developed determinate Lotus root nodules, and eight mutants impaired at different stages of the symbiotic interaction, our data set integrates an unprecedented combination of organ- or tissue-specific profiles with mutant transcript profiles. In total, 38 different conditions sampled under the same well-defined growth regimes were included. This comprehensive analysis unravelled new and unexpected patterns of transcriptional regulation during symbiosis and organ development. Contrary to expectations, none of the previously characterized nodulins were among the 37 genes specifically expressed in nodules. Another surprise was the extensive transcriptional response in whole root compared to the susceptible root zone where the cellular response is most pronounced. A large number of transcripts predicted to encode transcriptional regulators, receptors and proteins involved in signal transduction, as well as many genes with unknown function, were found to be regulated during nodule organogenesis and rhizobial infection. Combining wild type and mutant profiles of these transcripts demonstrates the activation of a complex genetic program that delineates symbiotic nitrogen fixation. The complete data set was organized into an indexed expression directory that is accessible from a resource database, and here we present selected examples of biological questions that can be addressed with this comprehensive and powerful gene expression data set. PMID:19662091
Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing
Nguyen, Minh Q.; Wu, Youmei; Bonilla, Lauren S.; von Buchholtz, Lars J.
2017-01-01
The trigeminal ganglion contains somatosensory neurons that detect a range of thermal, mechanical and chemical cues and innervate unique sensory compartments in the head and neck including the eyes, nose, mouth, meninges and vibrissae. We used single-cell sequencing and in situ hybridization to examine the cellular diversity of the trigeminal ganglion in mice, defining thirteen clusters of neurons. We show that clusters are well conserved in dorsal root ganglia suggesting they represent distinct functional classes of somatosensory neurons and not specialization associated with their sensory targets. Notably, functionally important genes (e.g. the mechanosensory channel Piezo2 and the capsaicin gated ion channel Trpv1) segregate into multiple clusters and often are expressed in subsets of cells within a cluster. Therefore, the 13 genetically-defined classes are likely to be physiologically heterogeneous rather than highly parallel (i.e., redundant) lines of sensory input. Our analysis harnesses the power of single-cell sequencing to provide a unique platform for in silico expression profiling that complements other approaches linking gene-expression with function and exposes unexpected diversity in the somatosensory system. PMID:28957441
Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells.
Xin, Yurong; Kim, Jinrang; Ni, Min; Wei, Yi; Okamoto, Haruka; Lee, Joseph; Adler, Christina; Cavino, Katie; Murphy, Andrew J; Yancopoulos, George D; Lin, Hsin Chieh; Gromada, Jesper
2016-03-22
This study provides an assessment of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. The system combines microfluidic technology and nanoliter-scale reactions. We sequenced 622 cells, allowing identification of 341 islet cells with high-quality gene expression profiles. The cells clustered into populations of α-cells (5%), β-cells (92%), δ-cells (1%), and pancreatic polypeptide cells (2%). We identified cell-type-specific transcription factors and pathways primarily involved in nutrient sensing and oxidation and cell signaling. Unexpectedly, 281 cells had to be removed from the analysis due to low viability, low sequencing quality, or contamination resulting in the detection of more than one islet hormone. Collectively, we provide a resource for identification of high-quality gene expression datasets to help expand insights into genes and pathways characterizing islet cell types. We reveal limitations in the C1 Fluidigm cell capture process resulting in contaminated cells with altered gene expression patterns. This calls for caution when interpreting single-cell transcriptomics data using the C1 Fluidigm system.
Zhang, Qian; Zeng, Lei-Ping; Zhou, Peng; Irving, Aaron T; Li, Shang; Shi, Zheng-Li; Wang, Lin-Fa
2017-01-01
Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.
Miersch, Claudia; Döring, Frank
2013-07-02
The metabolic and health-promoting effects of dietary restriction (DR) have been extensively studied in several species. The response to DR with respect to sex is essentially unknown. To address this question, we used the model organism Caenorhabditis elegans to analyze body composition and gene expression in males and hermaphrodites in response to DR. Unexpectedly, DR increased the fat-to-fat-free mass ratio and enlarged lipid droplets in both sexes to a similar extent. These effects were linked to a downregulation of the lipase-like 5 (lipl-5) gene in both sexes at two developmental stages. By contrast, the reductions in body size, protein content, and total RNA content in response to DR were more pronounced in hermaphrodites than in males. Functional enrichment analysis of gene expression data showed a DR-induced downregulation of several embryogenesis-associated genes concomitant with an ongoing expression of sperm-associated genes in hermaphrodites. In conclusion, DR increases fat stores in both sexes of C. elegans in the form of large and possibly lipolysis-resistant lipid droplets and markedly alters the reproductive program in hermaphrodites but not in males.
Novak, Rachel L; Harper, David P; Caudell, David; Slape, Christopher; Beachy, Sarah H; Aplan, Peter D
2012-12-01
NUP98-HOXD13 (NHD13) and CALM-AF10 (CA10) are oncogenic fusion proteins produced by recurrent chromosomal translocations in patients with acute myeloid leukemia (AML). Transgenic mice that express these fusions develop AML with a long latency and incomplete penetrance, suggesting that collaborating genetic events are required for leukemic transformation. We employed genetic techniques to identify both preleukemic abnormalities in healthy transgenic mice as well as collaborating events leading to leukemic transformation. Candidate gene resequencing revealed that 6 of 27 (22%) CA10 AMLs spontaneously acquired a Ras pathway mutation and 8 of 27 (30%) acquired an Flt3 mutation. Two CA10 AMLs acquired an Flt3 internal-tandem duplication, demonstrating that these mutations can be acquired in murine as well as human AML. Gene expression profiles revealed a marked upregulation of Hox genes, particularly Hoxa5, Hoxa9, and Hoxa10 in both NHD13 and CA10 mice. Furthermore, mir196b, which is embedded within the Hoxa locus, was overexpressed in both CA10 and NHD13 samples. In contrast, the Hox cofactors Meis1 and Pbx3 were differentially expressed; Meis1 was increased in CA10 AMLs but not NHD13 AMLs, whereas Pbx3 was consistently increased in NHD13 but not CA10 AMLs. Silencing of Pbx3 in NHD13 cells led to decreased proliferation, increased apoptosis, and decreased colony formation in vitro, suggesting a previously unexpected role for Pbx3 in leukemic transformation. Published by Elsevier Inc.
Buravkova, Ludmila B; Rudimov, Eugene G; Andreeva, Elena R; Grigoriev, Anatoly I
2018-03-01
Microgravity is a principal risk factor hampering human cardiovascular regulation during space flights. Endothelial dysfunction associated with the impaired integrity and uniformity of the monolayer represents a potential trigger for vascular damage. We characterized the expression profile of the multi-step cascade of adhesion molecules (ICAM-1, VCAM-1, E-selectin, VE-cadherin) in umbilical cord endothelial cells (ECs) after 24 h of exposure to simulated microgravity (SMG), pro-inflammatory cytokine TNF-α, and the combination of the two. Random Positioning Machine (RPM)-mediated SMG was used to mimic microgravity effects. SMG stimulated the expression of E-selectin, which is known to be involved in slowing leukocyte rolling. Primary ECs displayed heterogeneity with respect to the proportion of ICAM-1-positive cells. ECs were divided into two groups: pre-activated ECs displaying high proportion of ICAM-1 + -cells (ECs-1) (greater than 50%) and non-activated ECs with low proportion of ICAM-1 + -cells (ECs-2) (less than 25%). Only non-activated ECs-2 responded to SMG by elevating gene transcription and increasing ICAM-1 and VE-cadherin expression. This effect was enhanced after cumulative SMG-TNF-α exposure. ECs-1 displayed an unexpected decrease in number of E-selectin- and ICAM-1-positive ECs and pronounced up-regulation of VCAM1 upon activation of inflammation, which was partially abolished by SMG. Thus, non-activated ECs-2 are quite resistant to the impacts of microgravity and even exhibited an elevation of the VE-cadherin gene and protein expression, thus improving the integrity of the endothelial monolayer. Pre-activation of ECs with inflammatory stimuli may disturb the EC adhesion profile, attenuating its barrier function. These alterations may be among the mechanisms underlying cardiovascular dysregulation in real microgravity conditions. © 2017 Wiley Periodicals, Inc.
We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...
Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.
2015-01-01
Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087
Induction of Interferon-Stimulated Genes by Simian Virus 40 T Antigens
Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.
2010-01-01
Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs. PMID:20692676
Increased Differentiation of Dermal Mast Cells in Mice Lacking the Mpl Gene
Ghinassi, Barbara; Zingariello, Maria; Martelli, Fabrizio; Lorenzini, Rodolfo; Vannucchi, Alessandro M.; Rana, Rosa Alba; Nishikawa, Mitsuo; Migliaccio, Giovanni; Mascarenhas, John
2009-01-01
Thrombopoietin interactions with its receptor, Mpl, play an important role in the regulation of hematopoietic stem/progenitor cell proliferation and differentiation. In this study, we report that the mast cell restricted progenitor cells (MCP) and the mast cell precursors in the bone marrow of wild-type mice express Mpl on their surface. Furthermore, targeted deletion of the Mpl gene in mice decreases the number of MCP while increasing the number of mast cell precursors present in the marrow and spleen. It also increases the number of mast cells present in the dermis, in the peritoneal cavity, and in the gut of the mice. In addition, serosal mast cells from Mplnull mice have a distinctive differentiation profile similar to that expressed by wild-type dermal mast cells. These results suggest that not only does ligation of thrombopoietin with the Mpl receptor exert an effect at the mast cell restricted progenitor cell level, but also plays an unexpected yet important role in mast cell maturation. PMID:19025339
Andrade, Fábia de Oliveira; de Assis, Sonia; Jin, Lu; Fontelles, Camile Castilho; Barbisan, Luís Fernando; Purgatto, Eduardo; Hilakivi-Clarke, Leena; Ong, Thomas Prates
2015-09-05
The persistent effects of animal fat consumption during pregnancy and nursing on the programming of breast cancer risk among female offspring were studied here. We have previously found that female offspring of rat dams that consumed a lard-based high-fat (HF) diet (60% fat-derived energy) during pregnancy, or during pregnancy and lactation, were at a reduced risk of developing mammary cancer. To better understand the unexpected protective effects of early life lard exposure, we have applied lipidomics and nutrigenomics approaches to investigate the fatty acid profile and global gene expression patterns in the mammary tissue of the female offspring. Consumption of this HF diet during gestation had few effects on the mammary tissue fatty acids profile of young adult offspring, while exposure from gestation throughout nursing promoted significant alterations in the fatty acids profile. Major differences were related to decreases in saturated fatty acids (SFA) and increases in omega-6 polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs) and conjugated linolenic acid (CLA) concentrations. In addition several differences in gene expression patterns by microarray analysis between the control and in utero or in utero and during lactation HF exposed offspring were identified. Differential dependency network (DDN) analysis indicated that many of the genes exhibited unique connections to other genes only in the HF offspring. These unique connections included Hrh1-Ythdf1 and Repin1-Elavl2 in the in utero HF offspring, and Rnf213-Htr3b and Klf5-Chrna4 in the in utero and lactation HF offspring, compared with the control offspring. We conclude that an exposure to a lard-based HF diet during early life changes the fatty acid profile and transcriptional network in mammary gland in young adult rats, and these changes appear to be consistent with reduced mammary cancer risk observed in our previous study. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Unraveling the molecular genetics of head and neck cancer through genome-wide approaches
Riaz, Nadeem; Morris, Luc G.; Lee, William; Chan, Timothy A.
2014-01-01
The past decade has seen an unprecedented increase in our understanding of the biology and etiology of head and neck squamous cell carcinomas (HNSCC). Genome-wide sequencing projects have identified a number of recurrently mutated genes, including unexpected alterations in the NOTCH pathway and chromatin related genes. Gene-expression profiling has identified 4 distinct genetic subtypes which show some parallels to lung squamous cell carcinoma biology. The identification of the human papilloma virus as one causative agent in a subset of oropharyngeal cancers and their association with a favorable prognosis has opened up avenues for new therapeutic strategies. The expanding knowledge of the underlying molecular abnormalities in this once very poorly understood cancer should allow for increasingly rational clinical trial design and improved patient outcomes. PMID:25642447
Single-cell gene expression analysis reveals diversity among human spermatogonia.
Neuhaus, N; Yoon, J; Terwort, N; Kliesch, S; Seggewiss, J; Huge, A; Voss, R; Schlatt, S; Grindberg, R V; Schöler, H R
2017-02-10
Is the molecular profile of human spermatogonia homogeneous or heterogeneous when analysed at the single-cell level? Heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the existence of a heterogeneous stem cell population. Despite the fact that many studies have sought to identify specific markers for human spermatogonia, the molecular fingerprint of these cells remains hitherto unknown. Testicular tissues from patients with spermatogonial arrest (arrest, n = 1) and with qualitatively normal spermatogenesis (normal, n = 7) were selected from a pool of 179 consecutively obtained biopsies. Gene expression analyses of cell populations and single-cells (n = 105) were performed. Two OCT4-positive individual cells were selected for global transcriptional capture using shallow RNA-seq. Finally, expression of four candidate markers was assessed by immunohistochemistry. Histological analysis and blood hormone measurements for LH, FSH and testosterone were performed prior to testicular sample selection. Following enzymatic digestion of testicular tissues, differential plating and subsequent micromanipulation of individual cells was employed to enrich and isolate human spermatogonia, respectively. Endpoint analyses were qPCR analysis of cell populations and individual cells, shallow RNA-seq and immunohistochemical analyses. Unexpectedly, single-cell expression data from the arrest patient (20 cells) showed heterogeneous expression profiles. Also, from patients with normal spermatogenesis, heterogeneous expression patterns of undifferentiated (OCT4, UTF1 and MAGE A4) and differentiated marker genes (BOLL and PRM2) were obtained within each spermatogonia cluster (13 clusters with 85 cells). Shallow RNA-seq analysis of individual human spermatogonia was validated, and a spermatogonia-specific heterogeneous protein expression of selected candidate markers (DDX5, TSPY1, EEF1A1 and NGN3) was demonstrated. The heterogeneity of human spermatogonia at the RNA and protein levels is a snapshot. To further assess the functional meaning of this heterogeneity and the dynamics of stem cell populations, approaches need to be developed to facilitate the repeated analysis of individual cells. Our data suggest that heterogeneous expression profiles may be a key characteristic of human spermatogonia, supporting the model of a heterogeneous stem cell population. Future studies will assess the dynamics of spermatogonial populations in fertile and infertile patients. RNA-seq data is published in the GEO database: GSE91063. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft DFG-Research Unit FOR 1041 Germ Cell Potential (grant numbers SCHO 340/7-1, SCHL394/11-2). The authors declare that there is no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Zhai, Yali; Kuick, Rork; Tipton, Courtney; Wu, Rong; Sessine, Michael; Wang, Zhong; Baker, Suzanne J.; Fearon, Eric R.; Cho, Kathleen R.
2015-01-01
Inactivation of the ARID1A tumor suppressor gene is frequent in ovarian endometrioid (OEC) and clear cell carcinomas (OCCC), often in conjunction with mutations activating the PI3K/AKT and/or canonical Wnt signaling pathways. Prior work has shown that conditional bi-allelic inactivation of the Apc and Pten tumor suppressor genes in the mouse ovarian surface epithelium (OSE) promotes outgrowth of tumors that reflect the biological behavior and gene expression profiles of human OECs harboring comparable Wnt and PI3K/AKT pathway defects, though the mouse tumors are more poorly differentiated than their human tumor counterparts. We found that conditional inactivation of one or both Arid1a alleles in OSE concurrently with Apc and Pten inactivation unexpectedly prolonged survival of tumor-bearing mice and promoted striking epithelial differentiation of the cancer cells, resulting in morphological features akin to those in human OECs. Enhanced epithelial differentiation was linked to reduced expression of mesenchymal markers N-cadherin and vimentin, and increased expression of epithelial markers Crb3 and E-cadherin. Global gene expression profiling showed enrichment for genes associated with mesenchymal-to-epithelial transition in the Arid1a-deficient tumors. We also found that an activating (E545K) Pik3ca mutation, unlike Pten inactivation or Pik3ca H1047R mutation, cannot cooperate with Arid1a loss to promote ovarian cancer development in the mouse. Our results indicate the Arid1a tumor suppressor gene has a key role in regulating OEC differentiation, and paradoxically the mouse cancers with more initiating tumor suppressor gene defects had a less aggressive phenotype than cancers arising from fewer gene alterations. PMID:26279473
Kaufmann, Martin; Lee, Seong Min; Pike, J. Wesley
2015-01-01
Vitamin D receptor (VDR)-mediated 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-dependent gene expression is compromised in the VDR null mouse. The biological consequences include: hypocalcemia, hypophosphatemia, elevated parathyroid hormone (PTH) and 1,25(OH)2D3, and consequential skeletal abnormalities. CYP24A1 is a cytochrome P450 enzyme that is involved in the side chain oxidation and destruction of both 1,25(OH)2D3 and 25-hydroxyvitamin D3 (25-OH-D3). In the current studies, we used liquid chromatography-tandem mass spectrometry technology to compare the metabolic profiles of VDR null mice fed either a normal or a calcium and phosphate-enriched rescue diet and to assess the consequence of transgenic expression of either mouse or human VDR genes in the same background. Serum 1,25(OH)2D3 levels in VDR null mice on normal chow were highly elevated (>3000 pg/mL) coincident with undetectable levels of catabolites such as 24,25-(OH)2D3 and 25-OH-D3-26,23-lactone normally observed in wild-type mice. The rescue diet corrected serum Ca++, PTH, and 1,25(OH)2D3 values and restored basal expression of Cyp24a1 as evidenced by both renal expression of Cyp24a1 and detection of 24,25-(OH)2D3 and the 25-OH-D3-26,23-lactone. Unexpectedly, this diet also resulted in supranormal levels of 3-epi-24,25-(OH)2D3 and 3-epi-25-OH-D3-26,23-lactone. The reappearance of serum 24,25-(OH)2D3 and renal Cyp24a1 expression after rescue suggests that basal levels of Cyp24a1 may be repressed by high PTH. Introduction of transgenes for either mouse or human VDR also normalized vitamin D metabolism in VDR null mice, whereas this metabolic pattern was unaffected by a transgene encoding a ligand binding-deficient mutant (L233S) human VDR. We conclude that liquid chromatography-tandem mass spectrometry-based metabolic profiling is an ideal analytical method to study mouse models with alterations in calcium/phosphate homeostasis. PMID:26441239
Zhang, Chunyu; Elkahloun, Abdel G.; Robertson, Matthew; Gills, Joell J.; Tsurutani, Junji; Shih, Joanna H.; Fukuoka, Junya; Hollander, M. Christine; Harris, Curtis C.; Travis, William D.; Jen, Jin; Dennis, Phillip A.
2011-01-01
The dismal lethality of lung cancer is due to late stage at diagnosis and inherent therapeutic resistance. The incorporation of targeted therapies has modestly improved clinical outcomes, but the identification of new targets could further improve clinical outcomes by guiding stratification of poor-risk early stage patients and individualizing therapeutic choices. We hypothesized that a sequential, combined microarray approach would be valuable to identify and validate new targets in lung cancer. We profiled gene expression signatures during lung epithelial cell immortalization and transformation, and showed that genes involved in mitosis were progressively enhanced in carcinogenesis. 28 genes were validated by immunoblotting and 4 genes were further evaluated in non-small cell lung cancer tissue microarrays. Although CDK1 was highly expressed in tumor tissues, its loss from the cytoplasm unexpectedly predicted poor survival and conferred resistance to chemotherapy in multiple cell lines, especially microtubule-directed agents. An analysis of expression of CDK1 and CDK1-associated genes in the NCI60 cell line database confirmed the broad association of these genes with chemotherapeutic responsiveness. These results have implications for personalizing lung cancer therapy and highlight the potential of combined approaches for biomarker discovery. PMID:21887332
Loher, Phillipe; Londin, Eric R.; Rigoutsos, Isidore
2014-01-01
For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a ‘static’ and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more ‘dynamic’ and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different ‘seed’ sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway. PMID:25229428
Loher, Phillipe; Londin, Eric R; Rigoutsos, Isidore
2014-09-30
For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a 'static' and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more 'dynamic' and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different 'seed' sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway.
NASA Astrophysics Data System (ADS)
Piazza, Roberto; Buzzaccaro, Stefano; Secchi, Eleonora; Parola, Alberto
Particle settling is a pervasive process in nature, and centrifugation is a much versatile separation technique. Yet, the results of settling and ultracentrifugation experiments often appear to contradict the very law on which they are based: Archimedes Principle - arguably, the oldest Physical Law. The purpose of this paper is delving at the very roots of the concept of buoyancy by means of a combined experimental-theoretical study on sedimentation profiles in colloidal mixtures. Our analysis shows that the standard Archimedes' principle is only a limiting approximation, valid for mesoscopic particles settling in a molecular fluid, and we provide a general expression for the actual buoyancy force. This "Generalized Archimedes Principle" accounts for unexpected effects, such as denser particles floating on top of a lighter fluid, which in fact we observe in our experiments.
Investigating Initial Disclosures and Reactions to Unexpected, Positive HPV Diagnosis.
Smith, Rachel A; Hernandez, Rachael; Catona, Danielle
2014-07-01
Initial disclosures of health conditions are critical communication moments. Existing research focuses on disclosers; integrating confidants into studies of initial disclosures is needed. Guided by the disclosure decision-making model (DD-MM; Greene, 2009), this study examined what diagnosed persons and confidants may say when faced with unexpected test results and unexpected disclosures, respectively. Participants ( N = 151) recorded an audio-visual message for another person, after imagining that they or the other person had just received unexpected, positive HPV test results. The qualitative analysis revealed four themes: (1) impression management and social distance, (2) invisible symptoms and advice regarding future disclosures, (3) expressing and acknowledging emotional reactions, and (4) misunderstandings and lacking knowledge about HPV. These findings suggested that DD-MM may be a relevant framework for understanding not only when disclosers share, but what disclosers and confidants say in early conversations about new diagnoses. While disclosers' and confidants' messages showed marked similarities, important differences appeared. For example, confidants focused on assuaging disclosers' fear about the consequences, whereas disclosers expressed distress related to their uncertainty about the prognosis of an HPV infection and how to prepare for next steps. The discussion highlighted implications for the DD-MM, HPV disclosures, and future interventions.
Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia–cell cycle dual reporter
Le, Anne; Stine, Zachary E.; Nguyen, Christopher; Afzal, Junaid; Sun, Peng; Hamaker, Max; Siegel, Nicholas M.; Gouw, Arvin M.; Kang, Byung-hak; Yu, Shu-Han; Cochran, Rory L.; Sailor, Kurt A.; Song, Hongjun; Dang, Chi V.
2014-01-01
Although aerobic glycolysis provides an advantage in the hypoxic tumor microenvironment, some cancer cells can also respire via oxidative phosphorylation. These respiring (“non-Warburg”) cells were previously thought not to play a key role in tumorigenesis and thus fell from favor in the literature. We sought to determine whether subpopulations of hypoxic cancer cells have different metabolic phenotypes and gene-expression profiles that could influence tumorigenicity and therapeutic response, and we therefore developed a dual fluorescent protein reporter, HypoxCR, that detects hypoxic [hypoxia-inducible factor (HIF) active] and/or cycling cells. Using HEK293T cells as a model, we identified four distinct hypoxic cell populations by flow cytometry. The non-HIF/noncycling cell population expressed a unique set of genes involved in mitochondrial function. Relative to the other subpopulations, these hypoxic “non-Warburg” cells had highest oxygen consumption rates and mitochondrial capacity consistent with increased mitochondrial respiration. We found that these respiring cells were unexpectedly tumorigenic, suggesting that continued respiration under limiting oxygen conditions may be required for tumorigenicity. PMID:25114222
Challenges in projecting clustering results across gene expression-profiling datasets.
Lusa, Lara; McShane, Lisa M; Reid, James F; De Cecco, Loris; Ambrogi, Federico; Biganzoli, Elia; Gariboldi, Manuela; Pierotti, Marco A
2007-11-21
Gene expression microarray studies for several types of cancer have been reported to identify previously unknown subtypes of tumors. For breast cancer, a molecular classification consisting of five subtypes based on gene expression microarray data has been proposed. These subtypes have been reported to exist across several breast cancer microarray studies, and they have demonstrated some association with clinical outcome. A classification rule based on the method of centroids has been proposed for identifying the subtypes in new collections of breast cancer samples; the method is based on the similarity of the new profiles to the mean expression profile of the previously identified subtypes. Previously identified centroids of five breast cancer subtypes were used to assign 99 breast cancer samples, including a subset of 65 estrogen receptor-positive (ER+) samples, to five breast cancer subtypes based on microarray data for the samples. The effect of mean centering the genes (i.e., transforming the expression of each gene so that its mean expression is equal to 0) on subtype assignment by method of centroids was assessed. Further studies of the effect of mean centering and of class prevalence in the test set on the accuracy of method of centroids classifications of ER status were carried out using training and test sets for which ER status had been independently determined by ligand-binding assay and for which the proportion of ER+ and ER- samples were systematically varied. When all 99 samples were considered, mean centering before application of the method of centroids appeared to be helpful for correctly assigning samples to subtypes, as evidenced by the expression of genes that had previously been used as markers to identify the subtypes. However, when only the 65 ER+ samples were considered for classification, many samples appeared to be misclassified, as evidenced by an unexpected distribution of ER+ samples among the resultant subtypes. When genes were mean centered before classification of samples for ER status, the accuracy of the ER subgroup assignments was highly dependent on the proportion of ER+ samples in the test set; this effect of subtype prevalence was not seen when gene expression data were not mean centered. Simple corrections such as mean centering of genes aimed at microarray platform or batch effect correction can have undesirable consequences because patient population effects can easily be confused with these assay-related effects. Careful thought should be given to the comparability of the patient populations before attempting to force data comparability for purposes of assigning subtypes to independent subjects.
Hietaniemi, M; Jokela, M; Rantala, M; Ukkola, O; Vuoristo, J T; Ilves, M; Rysä, J; Kesäniemi, Y
2009-03-01
Most gene expression studies examining the effect of obesity and weight loss have been performed using adipose tissue. However, the liver also plays a central role in maintaining energy balance. We wanted to study the effects of a hypocaloric diet on overall hepatic gene expression and metabolic risk factors. The study subjects were middle-aged, obese women. The diet intervention subjects (n=12) were on a hypocaloric, low-fat diet for 8 weeks with a daily energy intake of 5.0 MJ (1200 kcal), while the control subjects (n=19) maintained their weight. Liver biopsies were taken at the end of the diet period during a gallbladder operation. Hepatic gene expression was analyzed using microarrays by comparing the gene expression profiles from four subjects per group. A global decrease in gene expression was observed with 142 down-regulated genes and only one up-regulated gene in the diet intervention group. The diet resulted in a mean weight loss of 5% of body weight. Triglyceride and fasting insulin concentrations decreased significantly after the diet. The global decrease in hepatic gene expression was unexpected but the results are interesting, since they included several genes not previously linked to weight reduction. However, since the comparison was made only after the weight reduction, other factors in addition to weight loss may also have been involved in the differences in gene expression between the groups. The decrease in triglyceride and fasting plasma insulin concentrations is in accordance with results from previous weight-loss studies.
Chakravarthy, Suma; Tuori, Robert P.; D'Ascenzo, Mark D.; Fobert, Pierre R.; Després, Charles; Martin, Gregory B.
2003-01-01
The tomato transcription factor Pti4, an ethylene-responsive factor (ERF), interacts physically with the disease resistance protein Pto and binds the GCC box cis element that is present in the promoters of many pathogenesis-related (PR) genes. We reported previously that Arabidopsis plants expressing Pti4 constitutively express several GCC box–containing PR genes and show reduced disease symptoms compared with wild-type plants after inoculation with Pseudomonas syringae pv tomato or Erysiphe orontii. To gain insight into how genome-wide gene expression is affected by Pti4, we used serial analysis of gene expression (SAGE) to compare transcripts in wild-type and Pti4-expressing Arabidopsis plants. SAGE provided quantitative measurements of >20,000 transcripts and identified the 50 most highly expressed genes in Arabidopsis vegetative tissues. Comparison of the profiles from wild-type and Pti4-expressing Arabidopsis plants revealed 78 differentially abundant transcripts encoding defense-related proteins, protein kinases, ribosomal proteins, transporters, and two transcription factors (TFs). Many of the genes identified were expressed differentially in wild-type Arabidopsis during infection by Pseudomonas syringae pv tomato, supporting a role for them in defense-related processes. Unexpectedly, the promoters of most Pti4-regulated genes did not have a GCC box. Chromatin immunoprecipitation experiments confirmed that Pti4 binds in vivo to promoters lacking this cis element. Potential binding sites for ERF, MYB, and GBF TFs were present in statistically significantly increased numbers in promoters regulated by Pti4. Thus, Pti4 appears to regulate gene expression directly by binding the GCC box and possibly a non-GCC box element and indirectly by either activating the expression of TF genes or interacting physically with other TFs. PMID:14630974
Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".
Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana
2014-12-01
We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.
Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly
Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.
2011-01-01
The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542
Yan, Yun; Zhao, Wukui; Huang, Yikai; Tong, Huan; Xia, Yin; Jiang, Qing; Qin, Jinzhong
2017-01-01
The Polycomb repressive complex 1 (PRC1) is essential for fate decisions of embryonic stem (ES) cells. Emerging evidence suggests that six major variants of PRC1 complex, defined by the mutually exclusive presence of Pcgf subunit, regulate distinct biological processes, yet very little is known about the mechanism by which each version of PRC1 instructs and maintains cell fate. Here, we disrupted the Pcgf1, also known as Nspc1 and one of six Pcgf paralogs, in mouse ES cells by the CRISPR/Cas9 technology. We showed that although these mutant cells were viable and retained normal self-renewal, they displayed severe defects in differentiation in vitro. To gain a better understanding of the role of Pcgf1 in transcriptional control of differentiation, we analysed mRNA profiles from Pcgf1 deficient cells using RNA-seq. Interestingly, we found that Pcgf1 positively regulated expression of essential transcription factors involved in ectoderm and mesoderm differentiation, revealing an unexpected function of Pcgf1 in gene activation during ES cell lineage specification. Chromatin immunoprecipitation experiments demonstrated that Pcgf1 deletion caused a decrease in Ring1B and its associated H2AK119ub1 mark binding to target genes. Altogether, our results suggested an unexpected function of Pcgf1 in gene activation during ES cell maintenance. PMID:28393894
Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su
2018-01-01
Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.
Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; ...
2017-01-25
Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed andmore » incubated under anaerobic conditions in serum bottles with an initial N 2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO 2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO 2 fixation, H 2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.« less
Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus; Chakraborty, Romy; Brodie, Eoin L.; Williams, Kenneth H.; Beller, Harry R.
2017-01-01
Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with an initial N2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation, H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling. PMID:28179898
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jewell, Talia N. M.; Karaoz, Ulas; Bill, Markus
Organic matter deposits in alluvial aquifers have been shown to result in the formation of naturally reduced zones (NRZs), which can modulate aquifer redox status and influence the speciation and mobility of metals, affecting groundwater geochemistry. In this study, we sought to better understand how natural organic matter fuels microbial communities within anoxic biogeochemical hot spots (NRZs) in a shallow alluvial aquifer at the Rifle (CO) site. We conducted a 20-day microcosm experiment in which NRZ sediments, which were enriched in buried woody plant material, served as the sole source of electron donors and microorganisms. The microcosms were constructed andmore » incubated under anaerobic conditions in serum bottles with an initial N 2 headspace and were sampled every 5 days for metagenome and metatranscriptome profiles in combination with biogeochemical measurements. Biogeochemical data indicated that the decomposition of native organic matter occurred in different phases, beginning with mineralization of dissolved organic matter (DOM) to CO 2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. A pulse of methanogenesis co-occurred with acetogenesis, but only accounted for a small fraction of carbon flux. The depletion of DOM over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage (~8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO 2 fixation, H 2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell-wall-associated hydrolases with unknown substrates (numerous lesser expressed cell-wall-associated hydrolases targeted peptidoglycan). Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with recycling of bacterial biomass. Overall, these results highlight the complex nature of organic matter transformation in NRZs and the microbial metabolic pathways that interact to mediate redox status and elemental cycling.« less
Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph
2012-01-01
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541
A single-cell survey of the small intestinal epithelium
Haber, Adam L.; Biton, Moshe; Rogel, Noga; Herbst, Rebecca H.; Shekhar, Karthik; Smillie, Christopher; Burgin, Grace; Delorey, Toni M.; Howitt, Michael R.; Katz, Yarden; Tirosh, Itay; Beyaz, Semir; Dionne, Danielle; Zhang, Mei; Raychowdhury, Raktima; Garrett, Wendy S.; Rozenblatt-Rosen, Orit; Shi, Hai Ning; Yilmaz, Omer; Xavier, Ramnik J.; Regev, Aviv
2018-01-01
Intestinal epithelial cells (IECs) absorb nutrients, respond to microbes, provide barrier function and help coordinate immune responses. We profiled 53,193 individual epithelial cells from mouse small intestine and organoids, and characterized novel subtypes and their gene signatures. We showed unexpected diversity of hormone-secreting enteroendocrine cells and constructed their novel taxonomy. We distinguished between two tuft cell subtypes, one of which expresses the epithelial cytokine TSLP and CD45 (Ptprc), the pan-immune marker not previously associated with non-hematopoietic cells. We also characterized how cell-intrinsic states and cell proportions respond to bacterial and helminth infections. Salmonella infection caused an increase in Paneth cells and enterocytes abundance, and broad activation of an antimicrobial program. In contrast, Heligmosomoides polygyrus caused an expansion of goblet and tuft cell populations. Our survey highlights new markers and programs, associates sensory molecules to cell types, and uncovers principles of gut homeostasis and response to pathogens. PMID:29144463
Andréoletti, Olivier; Lacroux, Caroline; Prieto, Irene; Lorenzo, Patricia; Larska, Magdalena; Baron, Thierry; Espinosa, Juan-Carlos
2011-01-01
Bovine spongiform encephalopathy (BSE) and BSE-related disorders have been associated with a single major prion strain. Recently, 2 atypical, presumably sporadic forms of BSE have been associated with 2 distinct prion strains that are characterized mainly by distinct Western blot profiles of abnormal protease-resistant prion protein (PrPres), named high-type (BSE-H) and low-type (BSE-L), that also differed from classical BSE. We characterized 5 atypical BSE-H isolates by analyzing their molecular and neuropathologic properties during transmission in transgenic mice expressing homologous bovine prion protein. Unexpectedly, in several inoculated animals, strain features emerged that were highly similar to those of classical BSE agent. These findings demonstrate the capability of an atypical bovine prion to acquire classical BSE–like properties during propagation in a homologous bovine prion protein context and support the view that the epidemic BSE agent could have originated from such a cattle prion. PMID:21888788
Panic disorder: a review of DSM-IV panic disorder and proposals for DSM-V.
Craske, Michelle G; Kircanski, Katharina; Epstein, Alyssa; Wittchen, Hans-Ulrich; Pine, Danny S; Lewis-Fernández, Roberto; Hinton, Devon
2010-02-01
This review covers the literature since the publication of DSM-IV on the diagnostic criteria for panic attacks (PAs) and panic disorder (PD). Specific recommendations are made based on the evidence available. In particular, slight changes are proposed for the wording of the diagnostic criteria for PAs to ease the differentiation between panic and surrounding anxiety; simplification and clarification of the operationalization of types of PAs (expected vs. unexpected) is proposed; and consideration is given to the value of PAs as a specifier for all DSM diagnoses and to the cultural validity of certain symptom profiles. In addition, slight changes are proposed for the wording of the diagnostic criteria to increase clarity and parsimony of the criteria. Finally, based on the available evidence, no changes are proposed with regard to the developmental expression of PAs or PD. This review presents a number of options and preliminary recommendations to be considered for DSM-V.
Ferree, Patrick M.; Fang, Christopher; Mastrodimos, Mariah; Hay, Bruce A.; Amrhein, Henry; Akbari, Omar S.
2015-01-01
The jewel wasp Nasonia vitripennis is a rising model organism for the study of haplo-diploid reproduction characteristic of hymenopteran insects, which include all wasps, bees, and ants. We performed transcriptional profiling of the ovary, the female soma, and the male soma of N. vitripennis to complement a previously existing transcriptome of the wasp testis. These data were deposited into an open-access genome browser for visualization of transcripts relative to their gene models. We used these data to identify the assemblies of genes uniquely expressed in the germ-line tissues. We found that 156 protein-coding genes are expressed exclusively in the wasp testis compared with only 22 in the ovary. Of the testis-specific genes, eight are candidates for male-specific DNA packaging proteins known as protamines. We found very similar expression patterns of centrosome associated genes in the testis and ovary, arguing that de novo centrosome formation, a key process for development of unfertilized eggs into males, likely does not rely on large-scale transcriptional differences between these tissues. In contrast, a number of meiosis-related genes show a bias toward testis-specific expression, despite the lack of true meiosis in N. vitripennis males. These patterns may reflect an unexpected complexity of male gamete production in the haploid males of this organism. Broadly, these data add to the growing number of genomic and genetic tools available in N. vitripennis for addressing important biological questions in this rising insect model organism. PMID:26464360
Method and apparatus for measuring irradiated fuel profiles
Lee, D.M.
1980-03-27
A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).
Fukuzawa, R; Anaka, M R; Heathcott, R W; McNoe, L A; Morison, I M; Perlman, E J; Reeve, A E
2008-08-01
Current models of Wilms tumour development propose that histological features of the tumours are programmed by the underlying molecular aberrations. For example, tumours associated with WT1 mutations arise from intralobar nephrogenic rests (ILNR), concur with CTNNB1 mutations and have distinct histology, whereas tumours with IGF2 loss of imprinting (LOI) often arise from perilobar nephrogenic rests (PLNR). Intriguingly, ILNR and PLNR are found simultaneously in Wilms tumours in children with overgrowth who have constitutional IGF2 LOI. We therefore examined whether the precursor lesions or early epigenetic changes are the primary determinant of Wilms tumour histology. We examined the histological features and gene expression profiles of IGF2 LOI tumours and WT1-mutant tumours which are associated with PLNR and/or ILNR. Two distinct types of IGF2 LOI tumours were identified: the first type had a blastemal-predominant histology associated with PLNR, while the second subtype had a myogenic histology, increased expression of mesenchymal lineage genes and an association with ILNR, similar to WT1-mutant tumours. These ILNR-associated IGF2 LOI tumours also showed signatures of activation of the WNT signalling pathway: differential expression of beta-catenin targets (MMP2, RARG, DKK1) and WNT antagonist genes (DKK1, WIF1, SFRP4). Unexpectedly, the majority of these tumours had CTNNB1 mutations, which are normally only seen in WT1-mutant tumours. The absence of WT1 mutations in tumours with IGF2 LOI indicated that CTNNB1 mutations occur predominantly in tumours arising from ILNR independent of the presence or absence of WT1 mutations. Thus, even though these two classes of tumours with IGF2 LOI have the same underlying predisposing epigenetic error, the tumour histology and the gene expression profiles are determined by the nature of the precursor cells within the nephrogenic rests and subsequent CTNNB1 mutations. Copyright (c) 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Water residence time may critically influence the expression of estuarine eutrophication symptoms such as phytoplankton blooms, anoxia/hypoxia, build-up of organic matter, and altered community composition. While a conceptual model was developed in the late 1990’s; pioneer...
Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W
2018-06-01
Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.
A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs
Huang, Chunliu; Shi, Junjie; Guo, Yibin; Huang, Weijun; Huang, Shanshan; Ming, Siqi; Wu, Xingui; Zhang, Rui; Ding, Junjun; Zhao, Wei; Jia, Jie; Huang, Xi; Xiang, Andy Peng
2017-01-01
Abstract mRNA 3′ end processing is an essential step in gene expression. It is well established that canonical eukaryotic pre-mRNA 3′ processing is carried out within a macromolecular machinery consisting of dozens of trans-acting proteins. However, it is unknown whether RNAs play any role in this process. Unexpectedly, we found that a subset of small nucleolar RNAs (snoRNAs) are associated with the mammalian mRNA 3′ processing complex. These snoRNAs primarily interact with Fip1, a component of cleavage and polyadenylation specificity factor (CPSF). We have functionally characterized one of these snoRNAs and our results demonstrated that the U/A-rich SNORD50A inhibits mRNA 3′ processing by blocking the Fip1-poly(A) site (PAS) interaction. Consistently, SNORD50A depletion altered the Fip1–RNA interaction landscape and changed the alternative polyadenylation (APA) profiles and/or transcript levels of a subset of genes. Taken together, our data revealed a novel function for snoRNAs and provided the first evidence that non-coding RNAs may play an important role in regulating mRNA 3′ processing. PMID:28911119
Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development.
Noll, Gundula A; Fontanellaz, Maria E; Rüping, Boris; Ashoub, Ahmed; van Bel, Aart J E; Fischer, Rainer; Knoblauch, Michael; Prüfer, Dirk
2007-10-01
Forisomes are protein aggregates found uniquely in the sieve elements of Fabaceaen plants. Upon wounding they undergo a reversible, calcium-dependent conformational switch which enables them to act as cellular stopcocks. Forisomes begin to form in young sieve elements at an early stage of metaphloem differentiation. Genes encoding forisome components could therefore be useful as markers of early sieve element development. Here we present a comprehensive analysis of the developmental expression profile of for1, which encodes such a forisome component. The for1 gene is highly conserved among Fabaceaen species and appears to be unique to this phylogenetic lineage since no orthologous genes have been found in other plants, including Arabidopsis and rice. Even so, transgenic tobacco plants expressing reporter genes under the control of the for1 promoter display reporter activity exclusively in immature sieve elements. This suggests that the regulation of sieve element development is highly conserved even in plants where mature forisomes have not been detected. The promoter system could therefore provide a powerful tool for the detailed analysis of differentiation in metaphloem sieve elements in an unexpectedly broad range of plant species.
Managing pedestrians during evacuations of metropolitan areas.
DOT National Transportation Integrated Search
2007-03-01
The September 11(or 9/11), 2001, attacks on the high-profile workplaces of the World Trade Center (WTC) in New York City and the Pentagon in : the Washington, D.C. area, made real the impact of an unexpected, or no-notice, event in a metropolit...
Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.
2016-01-01
Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524
Fister, Andrew S; O'Neil, Shawn T; Shi, Zi; Zhang, Yufan; Tyler, Brett M; Guiltinan, Mark J; Maximova, Siela N
2015-10-01
Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Fister, Andrew S.; O’Neil, Shawn T.; Shi, Zi; Zhang, Yufan; Tyler, Brett M.; Guiltinan, Mark J.; Maximova, Siela N.
2015-01-01
Understanding the genetic basis of pathogen susceptibility in various crop plants is crucial to increasing the stability of food, feed, and fuel production. Varietal differences in defence responses provide insights into the mechanisms of resistance and are a key resource for plant breeders. To explore the role of salicylic acid in the regulation of defence in cacao, we demonstrated that SA treatment decreased susceptibility to a pod rot pathogen, Phytophthora tropicalis in two genotypes, Scavina 6 and Imperial College Selection 1, which differ in their resistance to several agriculturally important pathogens. Transient overexpression of TcNPR1, a major transcriptional regulator of the SA-dependent plant immune system, also increased pathogen tolerance in cacao leaves. To explore further the genetic basis of resistance in cacao, we used microarrays to measure gene expression profiles after salicylic acid (SA) treatment in these two cacao genotypes. The two genotypes displayed distinct transcriptional responses to SA. Unexpectedly, the expression profile of the susceptible genotype ICS1 included a larger number of pathogenesis-related genes that were induced by SA at 24h after treatment, whereas genes encoding many chloroplast and mitochondrial proteins implicated in reactive oxygen species production were up-regulated in the resistant genotype, Sca6. Sca6 accumulated significantly more superoxide at 24h after treatment of leaves with SA. These experiments revealed critical insights regarding the molecular differences between cacao varieties, which will allow a better understanding of defence mechanisms to help guide breeding programmes. PMID:26163705
Outcomes Desired by Practitioners and Academics.
ERIC Educational Resources Information Center
Neff, Bonita Dostal; Walker, Gael; Smith, Michael F.; Creedon, Pam J.
1999-01-01
Uses data from the national survey described elsewhere in this issue to develop profiles of the desired characteristics of entry-level and advanced-level practitioners, and for educators teaching public relations in undergraduate and graduate programs. Finds unexpectedly strong agreement between educators and practitioners regarding these issues,…
Characterization of a beta-lactamase produced in Mycobacterium fortuitum D316.
Amicosante, G; Franceschini, N; Segatore, B; Oratore, A; Fattorini, L; Orefici, G; Van Beeumen, J; Frere, J M
1990-01-01
A beta-lactamase from Mycobacterium fortuitum D316 was purified and some physico-chemical properties and substrate profile determined. On the basis of its N-terminal sequence and of its sensitivity to beta-iodopenicillanate inactivation, the enzyme appeared to be a class A beta-lactamase, but its substrate profile was quite unexpected, since nine cephalosporins were among the eleven best substrates. The enzyme also hydrolysed ureidopenicillins and some so-called 'beta-lactamase-stable' cephalosporins. Images Fig. 1. PMID:2123098
Mariscotti, Javier F; García-del Portillo, Francisco
2009-03-01
Intracellular growth attenuator A (IgaA) was identified as a Salmonella enterica regulator limiting bacterial growth inside fibroblasts. Genetic evidence further linked IgaA to repression of the RcsCDB regulatory system, which responds to envelope stress. How IgaA attenuates this system is unknown. Here, we present genome expression profiling data of S. enterica serovar Typhimurium igaA mutants grown at high osmolarity and displaying exacerbated Rcs responses. Transcriptome data revealed that IgaA attenuates gene expression changes requiring phosphorylated RcsB (RcsB~P) activity. Some RcsB-regulated genes, yciGFE and STM1862 (pagO)-STM1863-STM1864, were equally expressed in wild-type and igaA strains, suggesting a maximal expression at low levels of RcsB ~P. Other genes, such as metB, ypeC, ygaC, glnK, glnP, napA, glpA, and nirB, were shown for the first time and by independent methods to be regulated by the RcsCDB system. Interestingly, IgaA-deficient strains with reduced RcsC or RcsD levels exhibited different Rcs responses and distinct virulence properties. spv virulence genes were differentially expressed in most of the analyzed strains. spvA expression required RcsB and IgaA but, unexpectedly, was also impaired upon stimulation of the RcsC-->RcsD-->RcsB phosphorelay. Overproduction of either RcsB(+) or a nonphosphorylatable RcsB(D56Q) variant in strains displaying low spvA expression unveiled that both dephosphorylated RcsB and RcsB~P are required for optimal spvA expression. Taken together, our data support a model with IgaA attenuating the RcsCDB system by favoring the switch of RcsB~P to the dephosphorylated state. This role of IgaA in constantly fine-tuning the RcsB~P/RcsB ratio may ensure the proper expression of important virulence factors, such as the Spv proteins.
Chen, Lin-xing; Hu, Min; Huang, Li-nan; Hua, Zheng-shuang; Kuang, Jia-liang; Li, Sheng-jin; Shu, Wen-sheng
2015-07-01
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng
2018-02-14
The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.
The Reactome Pathway Knowledgebase
Jupe, Steven; Matthews, Lisa; Sidiropoulos, Konstantinos; Gillespie, Marc; Garapati, Phani; Haw, Robin; Jassal, Bijay; Korninger, Florian; May, Bruce; Milacic, Marija; Roca, Corina Duenas; Rothfels, Karen; Sevilla, Cristoffer; Shamovsky, Veronica; Shorser, Solomon; Varusai, Thawfeek; Viteri, Guilherme; Weiser, Joel
2018-01-01
Abstract The Reactome Knowledgebase (https://reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism, and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression profiles or somatic mutation catalogues from tumor cells. To support the continued brisk growth in the size and complexity of Reactome, we have implemented a graph database, improved performance of data analysis tools, and designed new data structures and strategies to boost diagram viewer performance. To make our website more accessible to human users, we have improved pathway display and navigation by implementing interactive Enhanced High Level Diagrams (EHLDs) with an associated icon library, and subpathway highlighting and zooming, in a simplified and reorganized web site with adaptive design. To encourage re-use of our content, we have enabled export of pathway diagrams as ‘PowerPoint’ files. PMID:29145629
Potok, Magdalena E.; Nix, David A.; Parnell, Timothy J.; Cairns, Bradley R.
2014-01-01
SUMMARY Early vertebrate embryos must achieve totipotency and prepare for zygotic genome activation (ZGA). To understand this process, we determined the DNA methylation (DNAme) profiles of zebrafish gametes, embryos at different stages, and somatic muscle and compared them to gene activity and histone modifications. Sperm chromatin patterns are virtually identical to those at ZGA. Unexpectedly, the DNA of many oocyte genes important for germ-line functions (i.e., piwil1) or early development (i.e., hox genes) is methylated, but the loci are demethylated during zygotic cleavage stages to precisely the state observed in sperm, even in parthenogenetic embryos lacking a replicating paternal genome. Furthermore, this cohort constitutes the genes and loci that acquire DNAme during development (i.e., ZGA to muscle). Finally, DNA methyltransferase inhibition experiments suggest that DNAme silences particular gene and chromatin cohorts at ZGA, preventing their precocious expression. Thus, zebrafish achieve a totipotent chromatin state at ZGA through paternal genome competency and maternal genome DNAme reprogramming. PMID:23663776
Method and apparatus for measuring irradiated fuel profiles
Lee, David M.
1982-01-01
A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.
Juss, Jatinder K.; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M. L.; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M.; Condliffe, Alison
2016-01-01
Rationale: Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease’s complex pathophysiology, yet these cells have been little studied. Objectives: To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Methods: Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Measurements and Main Results: Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Conclusions: Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase–dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells. PMID:27064380
Lange, C.; Rittmann, D.; Wendisch, V. F.; Bott, M.; Sahm, H.
2003-01-01
Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain. PMID:12732517
Frismantas, Viktoras; Dobay, Maria Pamela; Rinaldi, Anna; Tchinda, Joelle; Dunn, Samuel H; Kunz, Joachim; Richter-Pechanska, Paulina; Marovca, Blerim; Pail, Orrin; Jenni, Silvia; Diaz-Flores, Ernesto; Chang, Bill H; Brown, Timothy J; Collins, Robert H; Uhrig, Sebastian; Balasubramanian, Gnana P; Bandapalli, Obul R; Higi, Salome; Eugster, Sabrina; Voegeli, Pamela; Delorenzi, Mauro; Cario, Gunnar; Loh, Mignon L; Schrappe, Martin; Stanulla, Martin; Kulozik, Andreas E; Muckenthaler, Martina U; Saha, Vaskar; Irving, Julie A; Meisel, Roland; Radimerski, Thomas; Von Stackelberg, Arend; Eckert, Cornelia; Tyner, Jeffrey W; Horvath, Peter; Bornhauser, Beat C; Bourquin, Jean-Pierre
2017-03-16
Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL -AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs. © 2017 by The American Society of Hematology.
Jacobs, Jonathan M; Babujee, Lavanya; Meng, Fanhong; Milling, Annett; Allen, Caitilyn
2012-01-01
Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 10(8) to 10(9) CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 10(8) CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. IMPORTANCE Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical farmers, with major economic and human consequences. It is also a model for the many destructive microbes that colonize the water-conducting plant xylem tissue, which is low in nutrients and oxygen. We extracted bacteria from infected tomato plants and globally identified the biological functions that R. solanacearum expresses during plant pathogenesis. This revealed the unexpected presence of sucrose in tomato xylem fluid and the pathogen's dependence on host sucrose for virulence on tomato, potato, and the common weed bittersweet nightshade. Further, R. solanacearum was highly responsive to the plant environment, expressing several metabolic and virulence functions quite differently in the plant than in pure culture. These results reinforce the utility of studying pathogens in interaction with hosts and suggest that selecting for reduced sucrose levels could generate wilt-resistant crops.
Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E
2014-04-01
Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...
2015-05-20
Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less
Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.
Gao, Zhiguang; Mao, Chai-An; Pan, Ping; Mu, Xiuqian; Klein, William H
2014-11-01
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis. © 2014 Wiley Periodicals, Inc.
Potential for Cell-Mediated Immune Responses in Mouse Models of Pelizaeus-Merzbacher Disease
Southwood, Cherie M.; Fykkolodziej, Bozena; Dachet, Fabien; Gow, Alexander
2013-01-01
Although activation of the innate and adaptive arms of the immune system are undoubtedly involved in the pathophysiology of neurodegenerative diseases, it is unclear whether immune system activation is a primary or secondary event. Increasingly, published studies link primary metabolic stress to secondary inflammatory responses inside and outside of the nervous system. In this study, we show that the metabolic stress pathway known as the unfolded protein response (UPR) leads to secondary activation of the immune system. First, we observe innate immune system activation in autopsy specimens from Pelizaeus-Merzbacher disease (PMD) patients and mouse models stemming from PLP1 gene mutations. Second, missense mutations in mildly- and severely-affected Plp1-mutant mice exhibit immune-associated expression profiles with greater disease severity causing an increasingly proinflammatory environment. Third, and unexpectedly, we find little evidence for dysregulated expression of major antioxidant pathways, suggesting that the unfolded protein and oxidative stress responses are separable. Together, these data show that UPR activation can precede innate and/or adaptive immune system activation and that neuroinflammation can be titrated by metabolic stress in oligodendrocytes. Whether or not such activation leads to autoimmune disease in humans is unclear, but the case report of steroid-mitigated symptoms in a PMD patient initially diagnosed with multiple sclerosis lends support. PMID:24575297
Trichomonas vaginalis Repair of Iron Centres Proteins: The Different Role of Two Paralogs.
Nobre, Lígia S; Meloni, Dionigia; Teixeira, Miguel; Viscogliosi, Eric; Saraiva, Lígia M
2016-06-01
Trichomonas vaginalis, the causative parasite of one of the most prevalent sexually transmitted diseases is, so far, the only protozoan encoding two putative Repair of Iron Centres (RIC) proteins. Homologs of these proteins have been shown to protect bacteria from the chemical stress imposed by mammalian immunity. In this work, the biochemical and functional characterisation of the T. vaginalis RICs revealed that the two proteins have different properties. Expression of ric1 is induced by nitrosative stress but not by hydrogen peroxide, while ric2 transcription remained unaltered under similar conditions. T. vaginalis RIC1 contains a di-iron centre, but RIC2 apparently does not. Only RIC1 resembles bacterial RICs on spectroscopic profiling and repairing ability of oxidatively-damaged iron-sulfur clusters. Unexpectedly, RIC2 was found to bind DNA plasmid and T. vaginalis genomic DNA, a function proposed to be related with its leucine zipper domain. The two proteins also differ in their cellular localization: RIC1 is expressed in the cytoplasm only, and RIC2 occurs both in the nucleus and cytoplasm. Therefore, we concluded that the two RIC paralogs have different roles in T. vaginalis, with RIC2 showing an unprecedented DNA binding ability when compared with all other until now studied RICs. Copyright © 2016 Elsevier GmbH. All rights reserved.
Pružinská, Adriana; Shindo, Takayuki; Niessen, Sherry; Kaschani, Farnusch; Tóth, Réka; Millar, A Harvey; van der Hoorn, Renier A L
2017-01-06
Papain-like Cys Proteases (PLCPs) and Vacuolar Processing Enzymes (VPEs) are amongst the most highly expressed proteases during leaf senescence in Arabidopsis. Using activity-based protein profiling (ABPP), a method that enables detection of active enzymes within a complex sample using chemical probes, the activities of PLCPs and VPEs were investigated in individually darkened leaves of Arabidopsis, and their role in senescence was tested in null mutants. ABPP and mass spectrometry revealed an increased activity of several PLCPs, particularly RD21A and AALP. By contrast, despite increased VPE transcript levels, active VPE decreased in individually darkened leaves. Eight protease knock-out lines and two protease over expressing lines were subjected to senescence phenotype analysis to determine the importance of individual protease activities to senescence. Unexpectedly, despite the absence of dominating PLCP activities in these plants, the rubisco and chlorophyll decline in individually darkened leaves and the onset of whole plant senescence were unaltered. However, a significant delay in progression of whole plant senescence was observed in aalp-1 and rd21A-1/aalp-1 mutants, visible in the reduced number of senescent leaves. Major Cys protease activities are not essential for dark-induced and developmental senescence and only a knock out line lacking AALP shows a slight but significant delay in plant senescence.
Leonhardt, Sara D.; Rasmussen, Claus; Schmitt, Thomas
2013-01-01
Chemical compounds are highly important in the ecology of animals. In social insects, compounds on the body surface represent a particularly interesting trait, because they comprise different compound classes that are involved in different functions, such as communication, recognition and protection, all of which can be differentially affected by evolutionary processes. Here, we investigate the widely unknown and possibly antagonistic influence of phylogenetic and environmental factors on the composition of the cuticular chemistry of tropical stingless bees. We chose stingless bees because some species are unique in expressing not only self-produced compounds, but also compounds that are taken up from the environment. By relating the cuticular chemistry of 40 bee species from all over the world to their molecular phylogeny and geographical occurrence, we found that distribution patterns of different groups of compounds were differentially affected by genetic relatedness and biogeography. The ability to acquire environmental compounds was, for example, highly correlated with the bees' phylogeny and predominated in evolutionarily derived species. Owing to the presence of environmentally derived compounds, those species further expressed a higher chemical and thus functional diversity. In Old World species, chemical similarity of both environmentally derived and self-produced compounds was particularly high among sympatric species, even when they were less related to each other than to allopatric species, revealing a strong environmental effect even on largely genetically determined compounds. Thus, our findings do not only reveal an unexpectedly strong influence of the environment on the cuticular chemistry of stingless bees, but also demonstrate that even within one morphological trait (an insect's cuticular profile), different components (compound classes) can be differentially affected by different drivers (relatedness and biogeography), depending on the functional context. PMID:23658202
Kao, Damian; Felix, Daniel; Aboobaker, Aziz
2013-11-16
Planarians can regenerate entire animals from a small fragment of the body. The regenerating fragment is able to create new tissues and remodel existing tissues to form a complete animal. Thus different fragments with very different starting components eventually converge on the same solution. In this study, we performed an extensive RNA-seq time-course on regenerating head and tail fragments to observe the differences and similarities of the transcriptional landscape between head and tail fragments during regeneration. We have consolidated existing transcriptomic data for S. mediterranea to generate a high confidence set of transcripts for use in genome wide expression studies. We performed a RNA-seq time-course on regenerating head and tail fragments from 0 hours to 3 days. We found that the transcriptome profiles of head and tail regeneration were very different at the start of regeneration; however, an unexpected convergence of transcriptional profiles occurred at 48 hours when head and tail fragments are still morphologically distinct. By comparing differentially expressed transcripts at various time-points, we revealed that this divergence/convergence pattern is caused by a shared regulatory program that runs early in heads and later in tails.Additionally, we also performed RNA-seq on smed-prep(RNAi) tail fragments which ultimately fail to regenerate anterior structures. We find the gene regulation program in response to smed-prep(RNAi) to display the opposite regulatory trend compared to the previously mentioned share regulatory program during regeneration. Using annotation data and comparative approaches, we also identified a set of approximately 4,800 triclad specific transcripts that were enriched amongst the genes displaying differential expression during the regeneration time-course. The regeneration transcriptome of head and tail regeneration provides us with a rich resource for investigating the global expression changes that occurs during regeneration. We show that very different regenerative scenarios utilize a shared core regenerative program. Furthermore, our consolidated transcriptome and annotations allowed us to identity triclad specific transcripts that are enriched within this core regulatory program. Our data support the hypothesis that both conserved aspects of animal developmental programs and recent evolutionarily innovations work in concert to control regeneration.
The role of trauma scoring in developing trauma clinical governance in the Defence Medical Services
Russell, R. J.; Hodgetts, T. J.; McLeod, J.; Starkey, K.; Mahoney, P.; Harrison, K.; Bell, E.
2011-01-01
This paper discusses mathematical models of expressing severity of injury and probability of survival following trauma and their use in establishing clinical governance of a trauma system. There are five sections: (i) Historical overview of scoring systems—anatomical, physiological and combined systems and the advantages and disadvantages of each. (ii) Definitions used in official statistics—definitions of ‘killed in action’ and other categories and the importance of casualty reporting rates and comparison across conflicts and nationalities. (iii) Current scoring systems and clinical governance—clinical governance of the trauma system in the Defence Medical Services (DMS) by using trauma scoring models to analyse injury and clinical patterns. (iv) Unexpected outcomes—unexpected outcomes focus clinical governance tools. Unexpected survivors signify good practice to be promulgated. Unexpected deaths pick up areas of weakness to be addressed. Seventy-five clinically validated unexpected survivors were identified over 2 years during contemporary combat operations. (v) Future developments—can the trauma scoring methods be improved? Trauma scoring systems use linear approaches and have significant weaknesses. Trauma and its treatment is a complex system. Nonlinear methods need to be investigated to determine whether these will produce a better approach to the analysis of the survival from major trauma. PMID:21149354
Asymmetric simple exclusion process on chains with a shortcut.
Bunzarova, Nadezhda; Pesheva, Nina; Brankov, Jordan
2014-03-01
We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007)] to describe directed motion of molecular motors along twisted filaments. We report here unexpected results which revise the previous findings in the case of maximum current through the network. Our theoretical analysis, based on the effective rates' approximation, shows that the second (shunted) segment can exist in both low- and high-density phases, as well as in the coexistence (shock) phase. Numerical simulations demonstrate that the last option takes place in finite-size networks with head and tail chains of equal length, provided the injection and ejection rates at their external ends are equal and greater than one-half. Then the local density distribution and the nearest-neighbor correlations in the middle chain correspond to a shock phase with completely delocalized domain wall. Upon moving the shortcut to the head or tail of the network, the density profile takes a shape typical of a high- or low-density phase, respectively. Surprisingly, the main quantitative parameters of that shock phase are governed by a positive root of a cubic equation, the coefficients of which linearly depend on the probability of choosing the shortcut. Alternatively, they can be expressed in a universal way through the shortcut current. The unexpected conclusion is that a shortcut in the bulk of a single lane may create traffic jams.
Pascucci, L; Curina, G; Mercati, F; Marini, C; Dall'Aglio, C; Paternesi, B; Ceccarelli, P
2011-12-15
In the last decades, multipotent mesenchymal progenitor cells have been isolated from many adult tissues of different species. The International Society for Cellular Therapy (ISCT) has recently established that multipotent mesenchymal stromal cells (MSCs) is the currently recommended designation. In this study, we used flow cytometry to evaluate the expression of several molecules related to stemness (CD90, CD44, CD73 and STRO-1) in undifferentiated, early-passaged MSCs isolated from adipose tissue of four donor horses (AdMSCs). The four populations unanimously expressed high levels of CD90 and CD44. On the contrary, they were unexpectedly negative to CD73. A small percentage of the cells, finally, showed the expression of STRO-1. This last result might be due to the existence of a small subpopulation of STRO-1+ cells or to a poor cross-reactivity of the antibody. A remarkable donor-to-donor consistency and reproducibility of these findings was demonstrated. The data presented herein support the idea that equine AdMSCs may be easily isolated and selected by adherence to tissue culture plastic and exhibit a surface profile characterized by some peculiar differences in comparison to those described in other species. Continued characterization of these cells will help to clarify several aspects of their biology and may ultimately enable the isolation of specific, purified subpopulations. Copyright © 2011 Elsevier B.V. All rights reserved.
A New Serial-direction Trail Effect in CCD Images of the Lunar-based Ultraviolet Telescope
NASA Astrophysics Data System (ADS)
Wu, C.; Deng, J. S.; Guyonnet, A.; Antilogus, P.; Cao, L.; Cai, H. B.; Meng, X. M.; Han, X. H.; Qiu, Y. L.; Wang, J.; Wang, S.; Wei, J. Y.; Xin, L. P.; Li, G. W.
2016-10-01
Unexpected trails have been seen subsequent to relative bright sources in astronomical images taken with the CCD camera of the Lunar-based Ultraviolet Telescope (LUT) since its first light on the Moon’s surface. The trails can only be found in the serial-direction of CCD readout, differing themselves from image trails of radiation-damaged space-borne CCDs, which usually appear in the parallel-readout direction. After analyzing the same trail defects following warm pixels (WPs) in dark frames, we found that the relative intensity profile of the LUT CCD trails can be expressed as an exponential function of the distance i (in number of pixels) of the trailing pixel to the original source (or WP), i.e., {\\mathtt{\\exp }}(α {\\mathtt{i}}+β ). The parameters α and β seem to be independent of the CCD temperature, intensity of the source (or WP), and its position in the CCD frame. The main trail characteristics show evolution occurring at an increase rate of ˜(7.3 ± 3.6) × 10-4 in the first two operation years. The trails affect the consistency of the profiles of different brightness sources, which make smaller aperture photometry have larger extra systematic error. The astrometric uncertainty caused by the trails is too small to be acceptable based on LUT requirements for astrometry accuracy. Based on the empirical profile model, a correction method has been developed for LUT images that works well for restoring the fluxes of astronomical sources that are lost in trailing pixels.
Fan, Jung-Wei; Lussier, Yves A
2017-01-01
Dietary supplements remain a relatively underexplored source for drug repurposing. A systematic approach to soliciting responses from a large consumer population is desirable to speed up innovation. We tested a workflow that mines unexpected benefits of dietary supplements from massive consumer reviews. A (non-exhaustive) list of regular expressions was used to screen over 2 million reviews on health and personal care products. The matched reviews were manually analyzed, and one supplement-disease pair was linked to biological databases for enriching the hypothesized association. The regular expressions found 169 candidate reviews, of which 45.6% described unexpected benefits of certain dietary supplements. The manual analysis showed some of the supplement-disease associations to be novel or in agreement with evidence published later in the literature. The hypothesis enrichment was able to identify meaningful function similarity between the supplement and the disease. The results demonstrated value of the workflow in identifying candidates for supplement repurposing.
54th Annual Conference Host: The University of Nevada, Reno
ERIC Educational Resources Information Center
Campus Law Enforcement Journal, 2012
2012-01-01
This article profiles the University of Nevada, Reno, a place of unexpected beauty and history, with an impressive breadth of academic programs and the state's largest research portfolio. Founded in 1874 as the state's land-grant institution, the university is now ranked in the top tier of "best national universities" by "U.S. News…
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...
ERIC Educational Resources Information Center
Brushwood Rose, Chloe; Granger, Colette A.
2013-01-01
This study explores the tension between self-knowledge and self-expression, and how it manifests in the processes of storytelling that unfold in digital storytelling workshops offered to new immigrant women living in Toronto, Canada. Both in their multi-modal complexity and in the significant shifts from their original telling, the digital stories…
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
Comparison of raindrop size distributions measured by radar wind profiler and by airplane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, R.R.; Ethier, S.A.; Baumgardner, D.
1993-04-01
Wind profilers are radars that operate in the VHF and UHF bands and are designed for detecting the weak echoes reflected by the optically clear atmosphere. An unexpected application of wind profilers has been the revival of an old method of estimating drop size distributions in rain from the Doppler spectrum of the received signal. Originally attempted with radars operating at microwave frequencies, the method showed early promise but was seriously limited in application because of the crucial sensitivity of the estimated drop sizes to the vertical air velocity, a quantity generally unknown and, at that time, unmeasurable. Profilers havemore » solved this problem through their ability to measure, under appropriate conditions, both air motions and drop motions. This paper compares the drop sizes measured by a UHF profiler at two altitudes in a shower with those measured simultaneously by an instrumented airplane. The agreement is satisfactory, lending support to this new application of wind profilers. 20 refs., 5 figs.« less
Bahar Halpern, Keren; Vana, Tal; Walker, Michael D.
2014-01-01
The transcription factor FoxA2 is a master regulator of endoderm development and pancreatic beta cell gene expression. To elucidate the mechanisms underlying the activation of the FoxA2 gene during differentiation, we have compared the epigenetic status of undifferentiated human embryonic stem cells (hESCs), hESC-derived early endoderm stage cells (CXCR4+ cells), and pancreatic islet cells. Unexpectedly, a CpG island in the promoter region of the FoxA2 gene displayed paradoxically high levels of DNA methylation in expressing tissues (CXCR4+, islets) and low levels in nonexpressing tissues. This CpG island region was found to repress reporter gene expression and bind the Polycomb group protein SUZ12 and the DNA methyltransferase (DNMT)3b preferentially in undifferentiated hESCs as compared with CXCR4+ or islets cells. Consistent with this, activation of FoxA2 gene expression, but not CXCR4 or SOX17, was strongly inhibited by 5-aza-2′-deoxycytidine and by knockdown of DNMT3b. We hypothesize that in nonexpressing tissues, the lack of DNA methylation allows the binding of DNA methyltransferases and repressing proteins, such as Polycomb group proteins; upon differentiation, DNMT activation leads to CpG island methylation, causing loss of repressor protein binding. These results suggest a novel and unexpected role for DNA methylation in the activation of FoxA2 gene expression during differentiation. PMID:25016019
Trade in Higher Education Services in Malaysia: Key Policy Challenges
ERIC Educational Resources Information Center
Tham, Siew Yean
2010-01-01
In recent years, Malaysia has emerged as an unexpected contender in the world market for international students in higher education. Recognizing this sector as a potential new source of growth and export revenue, Malaysia aims to become a regional hub for higher education. In view of this, the objectives of this paper are to profile the pattern of…
Gracey, Eric; Lin, Aifeng; Akram, Ali; Chiu, Basil; Inman, Robert D.
2013-01-01
Macrophages can display a number of distinct phenotypes, known collectively as polarized macrophages. The best defined of these phenotypes are the classically-activated, interferon gamma (IFNγ)/LPS induced (M1) and alternatively-activated, IL-4 induced (M2) macrophages. The goal of this study is to characterize macrophage- Chlamydia interactions in the context of macrophage polarization. Here we use Chlamydia muridarum and murine bone-marrow derived macrophages to show Chlamydia does not induce M2 polarization in macrophages as a survival strategy. Unexpectedly, the infection of macrophages was silent with no upregulation of M1 macrophage-associated genes. We further demonstrate that macrophages polarized prior to infection have a differential capacity to control Chlamydia . M1 macrophages harbor up to 40-fold lower inclusion forming units (IFU) than non-polarized or M2 polarized macrophages. Gene expression analysis showed an increase in 16sRNA in M2 macrophages with no change in M1 macrophages. Suppressed Chlamydia growth in M1 macrophages correlated with the induction of a bacterial gene expression profile typical of persistence as evident by increased Euo expression and decreased Omp1 and Tal expression. Observations of permissive Chlamydia growth in non-polarized and M2 macrophages and persistence in M1 macrophages were supported through electron microscopy. This work supports the importance of IFNγ in the innate immune response to Chlamydia . However, demonstration that the M1 macrophages, despite an antimicrobial signature, fail to eliminate intracellular Chlamydia supports the notion that host–pathogen co-evolution has yielded a pathogen that can evade cellular defenses against this pathogen, and persist for prolonged periods of time in the host. PMID:23967058
Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes
Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie
2015-01-01
Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816
Tarver, Matthew R; Coy, Monique R; Scharf, Michael E
2012-07-01
Termites are eusocial insects that jointly utilize juvenile hormone (JH), pheromones, and other semiochemicals to regulate caste differentiation and achieve caste homeostasis. Prior EST sequencing from the symbiont-free gut transcriptome of Reticulitermes flavipes unexpectedly revealed a number of unique cytochrome P450 (Cyp) transcripts, including fragments of a Cyp15 family gene (Cyp15F1) with homology to other insect Cyp15s that participate in JH biosynthesis. The present study investigated the role of Cyp15F1 in termite caste polyphenism and specifically tested the hypothesis that it plays a role in JH-dependent caste differentiation. After assembling the full-length Cyp15F1 cDNA sequence, we (i) determined its mRNA tissue expression profile, (ii) investigated mRNA expression changes in response to JH and the caste-regulatory primer pheromones γ-cadinene (CAD) and γ-cadinenal (ALD), and (iii) used RNA interference (RNAi) in combination with caste differentiation bioassays to investigate gene function at the phenotype level. Cyp15F1 has ubiquitous whole-body expression (including gut tissue); is rapidly and sustainably induced from 3 h to 48 h by JH, CAD, and ALD; and functions at least in part by facilitating JH-dependent soldier caste differentiation. These findings provide the second example of a termite caste regulatory gene identified through the use of RNAi, and significantly build upon our understanding of termite caste homeostatic mechanisms. These results also reinforce the concept of environmental caste determination in termites by revealing how primer pheromones, as socioenvironmental factors, can directly influence Cyp15 expression and caste differentiation. © 2012 Wiley Periodicals, Inc.
Deregulation of polycomb repressor complex 1 modifier AUTS2 in T-cell leukemia.
Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; Drexler, Hans G; MacLeod, Roderick A F
2016-07-19
Recently, we identified deregulated expression of the B-cell specific transcription factor MEF2C in T-cell acute lymphoid leukemia (T-ALL). Here, we performed sequence analysis of a regulatory upstream section of MEF2C in T-ALL cell lines which, however, proved devoid of mutations. Unexpectedly, we found strong conservation between the regulatory upstream region of MEF2C (located at chromosomal band 5q14) and an intergenic stretch at 7q11 located between STAG3L4 and AUTS2, covering nearly 20 kb. While the non-coding gene STAG3L4 was inconspicuously expressed, AUTS2 was aberrantly upregulated in 6% of T-ALL patients (public dataset GSE42038) and in 3/24 T-ALL cell lines, two of which represented very immature differentiation stages. AUTS2 expression was higher in normal B-cells than in T-cells, indicating lineage-specific activity in lymphopoiesis. While excluding chromosomal aberrations, examinations of AUTS2 transcriptional regulation in T-ALL cells revealed activation by IL7-IL7R-STAT5-signalling and MEF2C. AUTS2 protein has been shown to interact with polycomb repressor complex 1 subtype 5 (PRC1.5), transforming this particular complex into an activator. Accordingly, expression profiling and functional analyses demonstrated that AUTS2 activated while PCGF5 repressed transcription of NKL homeobox gene MSX1 in T-ALL cells. Forced expression and pharmacological inhibition of EZH2 in addition to H3K27me3 analysis indicated that PRC2 repressed MSX1 as well. Taken together, we found that AUTS2 and MEF2C, despite lying on different chromosomes, share strikingly similar regulatory upstream regions and aberrant expression in T-ALL subsets. Our data implicate chromatin complexes PRC1/AUTS2 and PRC2 in a gene network in T-ALL regulating early lymphoid differentiation.
Sinha, Amit; Sommer, Ralf J; Dieterich, Christoph
2012-06-19
An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution.
2012-01-01
Background An organism can respond to changing environmental conditions by adjusting gene regulation and by forming alternative phenotypes. In nematodes, these mechanisms are coupled because many species will form dauer larvae, a stress-resistant and non-aging developmental stage, when exposed to unfavorable environmental conditions, and execute gene expression programs that have been selected for the survival of the animal in the wild. These dauer larvae represent an environmentally induced, homologous developmental stage across many nematode species, sharing conserved morphological and physiological properties. Hence it can be expected that some core components of the associated transcriptional program would be conserved across species, while others might diverge over the course of evolution. However, transcriptional and metabolic analysis of dauer development has been largely restricted to Caenorhabditis elegans. Here, we use a transcriptomic approach to compare the dauer stage in the evolutionary model system Pristionchus pacificus with the dauer stage in C. elegans. Results We have employed Agilent microarrays, which represent 20,446 P. pacificus and 20,143 C. elegans genes to show an unexpected divergence in the expression profiles of these two nematodes in dauer and dauer exit samples. P. pacificus and C. elegans differ in the dynamics and function of genes that are differentially expressed. We find that only a small number of orthologous gene pairs show similar expression pattern in the dauers of the two species, while the non-orthologous fraction of genes is a major contributor to the active transcriptome in dauers. Interestingly, many of the genes acquired by horizontal gene transfer and orphan genes in P. pacificus, are differentially expressed suggesting that these genes are of evolutionary and functional importance. Conclusion Our data set provides a catalog for future functional investigations and indicates novel insight into evolutionary mechanisms. We discuss the limited conservation of core developmental and transcriptional programs as a common aspect of animal evolution. PMID:22712530
Technical variables in high-throughput miRNA expression profiling: much work remains to be done.
Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang
2008-11-01
MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.
Novel Functional Properties of Drosophila CNS Glutamate Receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan; Dharkar, Poorva; Han, Tae-Hee
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation bymore » its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation.« less
Litichevskiy, Lev; Peckner, Ryan; Abelin, Jennifer G; Asiedu, Jacob K; Creech, Amanda L; Davis, John F; Davison, Desiree; Dunning, Caitlin M; Egertson, Jarrett D; Egri, Shawn; Gould, Joshua; Ko, Tak; Johnson, Sarah A; Lahr, David L; Lam, Daniel; Liu, Zihan; Lyons, Nicholas J; Lu, Xiaodong; MacLean, Brendan X; Mungenast, Alison E; Officer, Adam; Natoli, Ted E; Papanastasiou, Malvina; Patel, Jinal; Sharma, Vagisha; Toder, Courtney; Tubelli, Andrew A; Young, Jennie Z; Carr, Steven A; Golub, Todd R; Subramanian, Aravind; MacCoss, Michael J; Tsai, Li-Huei; Jaffe, Jacob D
2018-04-25
Although the value of proteomics has been demonstrated, cost and scale are typically prohibitive, and gene expression profiling remains dominant for characterizing cellular responses to perturbations. However, high-throughput sentinel assays provide an opportunity for proteomics to contribute at a meaningful scale. We present a systematic library resource (90 drugs × 6 cell lines) of proteomic signatures that measure changes in the reduced-representation phosphoproteome (P100) and changes in epigenetic marks on histones (GCP). A majority of these drugs elicited reproducible signatures, but notable cell line- and assay-specific differences were observed. Using the "connectivity" framework, we compared signatures across cell types and integrated data across assays, including a transcriptional assay (L1000). Consistent connectivity among cell types revealed cellular responses that transcended lineage, and consistent connectivity among assays revealed unexpected associations between drugs. We further leveraged the resource against public data to formulate hypotheses for treatment of multiple myeloma and acute lymphocytic leukemia. This resource is publicly available at https://clue.io/proteomics. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Li, Yan; Dharkar, Poorva; Han, Tae-Hee; Serpe, Mihaela; Lee, Chi-Hon; Mayer, Mark L
2016-12-07
Phylogenetic analysis reveals AMPA, kainate, and NMDA receptor families in insect genomes, suggesting conserved functional properties corresponding to their vertebrate counterparts. However, heterologous expression of the Drosophila kainate receptor DKaiR1D and the AMPA receptor DGluR1A revealed novel ligand selectivity at odds with the classification used for vertebrate glutamate receptor ion channels (iGluRs). DKaiR1D forms a rapidly activating and desensitizing receptor that is inhibited by both NMDA and the NMDA receptor antagonist AP5; crystallization of the KaiR1D ligand-binding domain reveals that these ligands stabilize open cleft conformations, explaining their action as antagonists. Surprisingly, the AMPA receptor DGluR1A shows weak activation by its namesake agonist AMPA and also by quisqualate. Crystallization of the DGluR1A ligand-binding domain reveals amino acid exchanges that interfere with binding of these ligands. The unexpected ligand-binding profiles of insect iGluRs allows classical tools to be used in novel approaches for the study of synaptic regulation. VIDEO ABSTRACT. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annabi, Borhane; Currie, Jean-Christophe; Bouzeghrane, Mounia
Purpose: PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. Results: [{sup 14}C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145more » binding but unexpectedly not to its uptake. Conclusions: Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.« less
Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes.
Ai, Rizi; Laragione, Teresina; Hammaker, Deepa; Boyle, David L; Wildberg, Andre; Maeshima, Keisuke; Palescandolo, Emanuele; Krishna, Vinod; Pocalyko, David; Whitaker, John W; Bai, Yuchen; Nagpal, Sunil; Bachman, Kurtis E; Ainsworth, Richard I; Wang, Mengchi; Ding, Bo; Gulko, Percio S; Wang, Wei; Firestein, Gary S
2018-05-15
Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with "Huntington's Disease Signaling" identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets.
Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.
Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D
2018-02-28
The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered baseline and/or nicotine-mediated behavioral profiles were discovered in transgenic mice from the ChAT (BAC) -Cre and ChAT (IRES) -Cre lines. Given that these cre-expressing mice have become increasingly used by the scientific community, either independently with chemicogenetic and optogenetic viral vectors or crossed with other transgenic lines, the current studies highlight important considerations for the interpretation of data from previous and future experimental investigations. Moreover, the current findings detail the behavioral effects of either increased or decreased baseline cholinergic signaling mechanisms on locomotor, anxiety, learning/memory, and intravenous nicotine self-administration behaviors. Copyright © 2018 the authors 0270-6474/18/382177-12$15.00/0.
Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties
Leung, Elaine Lai-Han; Fiscus, Ronald R.; Tung, James W.; Tin, Vicky Pui-Chi; Cheng, Lik Cheung; Sihoe, Alan Dart-Loon; Fink, Louis M.; Ma, Yupo; Wong, Maria Pik
2010-01-01
Background The cancer stem cell theory hypothesizes that cancers are perpetuated by cancer stem cells (CSC) or tumor initiating cells (TIC) possessing self-renewal and other stem cell-like properties while differentiated non-stem/initiating cells have a finite life span. To investigate whether the hypothesis is applicable to lung cancer, identification of lung CSC and demonstration of these capacities is essential. Methodology/Principal Finding The expression profiles of five stem cell markers (CD34, CD44, CD133, BMI1 and OCT4) were screened by flow cytometry in 10 lung cancer cell lines. CD44 was further investigated by testing for in vitro and in vivo tumorigenecity. Formation of spheroid bodies and in vivo tumor initiation ability were demonstrated in CD44+ cells of 4 cell lines. Serial in vivo tumor transplantability in nude mice was demonstrated using H1299 cell line. The primary xenografts initiated from CD44+ cells consisted of mixed CD44+ and CD44− cells in similar ratio as the parental H1299 cell line, supporting in vivo differentiation. Semi-quantitative Real-Time PCR (RT-PCR) showed that both freshly sorted CD44+ and CD44+ cells derived from CD44+-initiated tumors expressed the pluripotency genes OCT4/POU5F1, NANOG, SOX2. These stemness markers were not expressed by CD44− cells. Furthermore, freshly sorted CD44+ cells were more resistant to cisplatin treatment with lower apoptosis levels than CD44− cells. Immunohistochemical analysis of 141 resected non-small cell lung cancers showed tumor cell expression of CD44 in 50.4% of tumors while no CD34, and CD133 expression was observed in tumor cells. CD44 expression was associated with squamous cell carcinoma but unexpectedly, a longer survival was observed in CD44-expressing adenocarcinomas. Conclusion/Significance Overall, our results demonstrated that stem cell-like properties are enriched in CD44-expressing subpopulations of some lung cancer cell lines. Further investigation is required to clarify the role of CD44 in tumor cell renewal and cancer propagation in the in vivo environment. PMID:21124918
Asymmetric simple exclusion process on chains with a shortcut
NASA Astrophysics Data System (ADS)
Bunzarova, Nadezhda; Pesheva, Nina; Brankov, Jordan
2014-03-01
We consider the asymmetric simple exclusion process (TASEP) on an open network consisting of three consecutively coupled macroscopic chain segments with a shortcut between the tail of the first segment and the head of the third one. The model was introduced by Y.-M. Yuan et al. [J. Phys. A 40, 12351 (2007), 10.1088/1751-8113/40/41/006] to describe directed motion of molecular motors along twisted filaments. We report here unexpected results which revise the previous findings in the case of maximum current through the network. Our theoretical analysis, based on the effective rates' approximation, shows that the second (shunted) segment can exist in both low- and high-density phases, as well as in the coexistence (shock) phase. Numerical simulations demonstrate that the last option takes place in finite-size networks with head and tail chains of equal length, provided the injection and ejection rates at their external ends are equal and greater than one-half. Then the local density distribution and the nearest-neighbor correlations in the middle chain correspond to a shock phase with completely delocalized domain wall. Upon moving the shortcut to the head or tail of the network, the density profile takes a shape typical of a high- or low-density phase, respectively. Surprisingly, the main quantitative parameters of that shock phase are governed by a positive root of a cubic equation, the coefficients of which linearly depend on the probability of choosing the shortcut. Alternatively, they can be expressed in a universal way through the shortcut current. The unexpected conclusion is that a shortcut in the bulk of a single lane may create traffic jams.
Causes and Characteristics of Death in Intensive Care Units: A Prospective Multicenter Study.
Orban, Jean-Christophe; Walrave, Yannick; Mongardon, Nicolas; Allaouchiche, Bernard; Argaud, Laurent; Aubrun, Frédéric; Barjon, Geneviève; Constantin, Jean-Michel; Dhonneur, Gilles; Durand-Gasselin, Jacques; Dupont, Hervé; Genestal, Michèle; Goguey, Chloé; Goutorbe, Philippe; Guidet, Bertrand; Hyvernat, Hervé; Jaber, Samir; Lefrant, Jean-Yves; Mallédant, Yannick; Morel, Jerôme; Ouattara, Alexandre; Pichon, Nicolas; Guérin Robardey, Anne-Marie; Sirodot, Michel; Theissen, Alexandre; Wiramus, Sandrine; Zieleskiewicz, Laurent; Leone, Marc; Ichai, Carole
2017-05-01
Different modes of death are described in selected populations, but few data report the characteristics of death in a general intensive care unit population. This study analyzed the causes and characteristics of death of critically ill patients and compared anticipated death patients to unexpected death counterparts. An observational multicenter cohort study was performed in 96 intensive care units. During 1 yr, each intensive care unit was randomized to participate during a 1-month period. Demographic data, characteristics of organ failures (Sequential Organ Failure Assessment subscore greater than or equal to 3), and organ supports were collected on all patients who died in the intensive care unit. Modes of death were defined as anticipated (after withdrawal or withholding of treatment or brain death) or unexpected (despite engagement of full-level care or sudden refractory cardiac arrest). A total of 698 patients were included during the study period. At the time of death, 84% had one or more organ failures (mainly hemodynamic) and 89% required at least one organ support (mainly mechanical ventilation). Deaths were considered unexpected and anticipated in 225 and 473 cases, respectively. Compared to its anticipated counterpart, unexpected death occurred earlier (1 day vs. 5 days; P< 0.001) and had fewer organ failures (1 [1 to 2] vs. 1 [1 to 3]; P< 0.01) and more organ supports (2 [2 to 3] vs. 1 [1 to 2]; P< 0.01). Withdrawal or withholding of treatments accounted for half of the deaths. In a general intensive care unit population, the majority of patients present with at least one organ failure at the time of death. Anticipated and unexpected deaths represent two different modes of dying and exhibit profiles reflecting the different pathophysiologic underlying mechanisms.
Rodrigues, Ramila C.; Haddad, Nabila; Chevret, Didier; Cappelier, Jean-Michel; Tresse, Odile
2016-01-01
Campylobacter jejuni accounts for one of the leading causes of foodborne bacterial enteritis in humans. Despite being considered an obligate microaerobic microorganism, C. jejuni is regularly exposed to oxidative stress. However, its adaptive strategies to survive the atmospheric oxygen level during transmission to humans remain unclear. Recently, the clinical C. jejuni strain Bf was singled out for its unexpected ability to grow under ambient atmosphere. Here, we aimed to understand better the biological mechanisms underlying its atypical aerotolerance trait using two-dimensional protein electrophoresis, gene expression, and enzymatic activities. Forty-seven proteins were identified with a significantly different abundance between cultivation under microaerobic and aerobic conditions. The over-expressed proteins in aerobiosis belonged mainly to the oxidative stress response, enzymes of the tricarboxylic acid cycle, iron uptake, and regulation, and amino acid uptake when compared to microaerobic conditions. The higher abundance of proteins related to oxidative stress was correlated to dramatically higher transcript levels of the corresponding encoding genes in aerobic conditions compared to microaerobic conditions. In addition, a higher catalase-equivalent activity in strain Bf was observed. Despite the restricted catabolic capacities of C. jejuni, this study reveals that strain Bf is equipped to withstand oxidative stress. This ability could contribute to emergence and persistence of particular strains of C. jejuni throughout food processing or macrophage attack during human infection. PMID:27790195
Lee, Hae-In; Donati, Andrew J; Hahn, Dittmar; Tisa, Louis S; Chang, Woo-Suk
2013-12-01
We investigated the effect of different nitrogen (N) sources on exopolysaccharide (EPS) production and composition by Frankia strain CcI3, a N2-fixing actinomycete that forms root nodules with Casuarina species. Frankia cells grown in the absence of NH4Cl (i.e., under N2-fixing conditions) produced 1.7-fold more EPS, with lower galactose (45.1 vs. 54.7 mol%) and higher mannose (17.3 vs. 9.7 mol%) contents than those grown in the presence of NH4Cl as a combined N-source. In the absence of the combined N-source, terminally linked and branched residue contents were nearly twice as high with 32.8 vs. 15.1 mol% and 15.1 vs. 8.7 mol%, respectively, than in its presence, while the content of linearly linked residues was lower with 52.1 mol% compared to 76.2 mol%. To find out clues for the altered EPS production at the transcriptional level, we performed whole-gene expression profiling using quantitative reverse transcription PCR and microarray technology. The transcription profiles of Frankia strain CcI3 grown in the absence of NH4Cl revealed up to 2 orders of magnitude higher transcription of nitrogen fixation-related genes compared to those of CcI3 cells grown in the presence of NH4Cl. Unexpectedly, microarray data did not provide evidence for transcriptional regulation as a mechanism for differences in EPS production. These findings indicate effects of nitrogen fixation on the production and composition of EPS in Frankia strain CcI3 and suggest posttranscriptional regulation of enhanced EPS production in the absence of the combined N-source.
Janji, Bassam; Vallar, Laurent; Tanoury, Ziad Al; Bernardin, François; Vetter, Guillaume; Schaffner-Reckinger, Elisabeth; Berchem, Guy; Friederich, Evelyne; Chouaib, Salem
2010-01-01
Abstract We used a tumour necrosis factor (TNF)-α resistant breast adenocarcinoma MCF-7 cell line to investigate the involvement of the actin cytoskeleton in the mechanism of cell resistance to this cytokine. We found that TNF resistance correlates with the loss of cell epithelial properties and the gain of a mesenchymal phenotype, reminiscent of an epithelial-to-mesenchymal transition (EMT). Morphological changes were associated with a profound reorganization of the actin cytoskeleton and with a change in the repertoire of expressed actin cytoskeleton genes and EMT markers, as revealed by DNA microarray-based expression profiling. L-plastin, an F-actin cross-linking and stabilizing protein, was identified as one of the most significantly up-regulated genes in TNF-resistant cells. Knockdown of L-plastin in these cells revealed its crucial role in conferring TNF resistance. Importantly, overexpression of wild-type L-plastin in TNF-sensitive MCF-7 cells was sufficient to protect them against TNF-mediated cell death. Furthermore, we found that this effect is dependent on serine-5 phosphorylation of L-plastin and that non-conventional protein kinase C isoforms and the ceramide pathway may regulate its phosphorylation state. The protective role of L-plastin was not restricted to TNF-α resistant MCF-7 cells because a correlation between the expression of L-plastin and the resistance to TNF-α was observed in other breast cancer cell lines. Together, our study discloses a novel unexpected role of the actin bundling protein L-plastin as a cell protective protein against TNF-cytotoxicity. PMID:19799649
Hara, Toshifumi; Jones, Matthew F.; Subramanian, Murugan; Li, Xiao Ling; Ou, Oliver; Zhu, Yuelin; Yang, Yuan; Wakefield, Lalage M.; Hussain, S. Perwez; Gaedcke, Jochen; Ried, Thomas; Luo, Ji; Caplen, Natasha J.; Lal, Ashish
2014-01-01
MicroRNAs (miRNAs) regulate the expression of hundreds of genes. However, identifying the critical targets within a miRNA-regulated gene network is challenging. One approach is to identify miRNAs that exert a context-dependent effect, followed by expression profiling to determine how specific targets contribute to this selective effect. In this study, we performed miRNA mimic screens in isogenic KRAS-Wild-type (WT) and KRAS-Mutant colorectal cancer (CRC) cell lines to identify miRNAs selectively targeting KRAS-Mutant cells. One of the miRNAs we identified as a selective inhibitor of the survival of multiple KRAS-Mutant CRC lines was miR-126. In KRAS-Mutant cells, miR-126 over-expression increased the G1 compartment, inhibited clonogenicity and tumorigenicity, while exerting no effect on KRAS-WT cells. Unexpectedly, the miR-126-regulated transcriptome of KRAS-WT and KRAS-Mutant cells showed no significant differences. However, by analyzing the overlap between miR-126 targets with the synthetic lethal genes identified by RNAi in KRAS-Mutant cells, we identified and validated a subset of miR-126-regulated genes selectively required for the survival and clonogenicity of KRAS-Mutant cells. Our strategy therefore identified critical target genes within the miR-126-regulated gene network. We propose that the selective effect of miR-126 on KRAS-Mutant cells could be utilized for the development of targeted therapy for KRAS mutant tumors. PMID:25245095
Le Pape, Elodie; Passeron, Thierry; Giubellino, Alessio; Valencia, Julio C.; Wolber, Rainer; Hearing, Vincent J.
2009-01-01
The melanocortin-1 receptor (MC1R) is a key regulator of pigmentation in mammals and is tightly linked to an increased risk of skin cancers, including melanoma, in humans. Physiologically activated by α-melanocyte stimulating hormone (αMSH), MC1R function can be antagonized by a secreted factor, agouti signal protein (ASP), which is responsible for the lighter phenotypes in mammals (including humans), and is also associated with increased risk of skin cancer. It is therefore of great interest to characterize the molecular effects elicited by those MC1R ligands. In this study, we determined the gene expression profiles of murine melan-a melanocytes treated with ASP or αMSH over a 4-day time course using genome-wide oligonucleotide microarrays. As expected, there were significant reductions in expression of numerous melanogenic proteins elicited by ASP, which correlates with its inhibition of pigmentation. ASP also unexpectedly modulated the expression of genes involved in various other cellular pathways, including glutathione synthesis and redox metabolism. Many genes up-regulated by ASP are involved in morphogenesis (especially in nervous system development), cell adhesion, and extracellular matrix-receptor interactions. Concomitantly, ASP enhanced the migratory potential and the invasiveness of melanocytic cells in vitro. These results demonstrate the role of ASP in the dedifferentiation of melanocytes, identify pigment-related genes targeted by ASP and by αMSH, and provide insights into the pleiotropic molecular effects of MC1R signaling that may function during development and may affect skin cancer risk. PMID:19174519
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
NASA Astrophysics Data System (ADS)
Zhang, Huifang; Yang, Minghong; Xu, Xueke; Wu, Lunzhe; Yang, Weiguang; Shao, Jianda
2017-10-01
The surface figure control of the conventional annular polishing system is realized ordinarily by the interaction between the conditioner and the lap. The surface profile of the pitch lap corrected by the marble conditioner has been measured and analyzed as a function of kinematics, loading conditions, and polishing time. The surface profile measuring equipment of the large lap based on laser alignment was developed with the accuracy of about 1μm. The conditioning mechanism of the conditioner is simply determined by the kinematics and fully fitting principle, but the unexpected surface profile deviation of the lap emerged frequently due to numerous influencing factors including the geometrical relationship, the pressure distribution at the conditioner/lap interface. Both factors are quantitatively evaluated and described, and have been combined to develop a spatial and temporal model to simulate the surface profile evolution of pitch lap. The simulations are consistent with the experiments. This study is an important step toward deterministic full-aperture annular polishing, providing a beneficial guidance for the surface profile correction of the pitch lap.
2013-01-01
Background The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this manipulation on the seed’s metabolism. Results Two forms of Arabidopsis CGS (AtCGS) were expressed under the control of the seeds-specific promoter of legumin B4: feedback-sensitive F-AtCGS (LF seeds), and feedback-insensitive T-AtCGS (LT seeds). Unexpectedly, the soluble content of methionine was reduced significantly in both sets of transgenic seeds. Amino acids analysis and feeding experiments indicated that although the level of methionine was reduced, the flux through its synthesis had increased. As a result, the level of protein-incorporated methionine had increased significantly in LT seeds by up to 60%, but this was not observed in LF seeds, whose methionine content is tightly regulated. This increase was accompanied by a higher content of other protein-incorporated amino acids, which led to 27% protein content in the seeds although this was statistically insignificantly. In addition, the levels of reducing sugars (representing starch) were slightly but significantly reduced, while that of oil was insignificantly reduced. To assess the impact of the high expression level of T-AtCGS in seeds on other primary metabolites, metabolic profiling using GC-MS was performed. This revealed significant alterations to the primary seed metabolism manifested by a significant increase in eight annotated metabolites (mostly sugars and their oxidized derivatives), while the levels of 12 other metabolites were reduced significantly in LT compared to wild-type seeds. Conclusion Expression of T-AtCGS leads to an increase in the level of total Met, higher contents of total amino acids, and significant changes in the levels of 20 annotated metabolites. The high level of oxidized metabolites, the two stress-associated amino acids, proline and serine, and low level of glutathione suggest oxidative stress that occurs during LT seed development. This study provides information on the metabolic consequence of increased CGS activity in seeds and how it affects the seed’s nutritional quality. PMID:24314105
A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.
He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang
2017-11-06
Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S
2015-04-01
With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.
Ly6Chi inflammatory monocytes promote susceptibility to Leishmania donovani infection.
Terrazas, Cesar; Varikuti, Sanjay; Oghumu, Steve; Steinkamp, Heidi M; Ardic, Nurittin; Kimble, Jennifer; Nakhasi, Hira; Satoskar, Abhay R
2017-10-31
Ly6C hi inflammatory monocytes (iMO) are critical for host defense against toxoplasmosis and malaria but their role in leishmaniasis is unclear. In this study, we report a detrimental role of Ly6C hi iMOs in visceral leishmaniasis (VL) caused by Leishmania donovani. We demonstrate that Ly6C hi iMOs are continuously recruited into the spleen and liver during L. donovani infection and they are preferential targets for the parasite. Using microarray-based gene expression profiling, we show that Ly6C hi iMOs isolated from the infected liver and spleen have distinct phenotypic and activation profiles. Furthermore, we demonstrate that blocking the recruitment of Ly6C hi iMOs into the liver and spleen during L. donovani infection using a CCR2 antagonist reduces the frequency of the pathogenic IFN-γ/IL10 dual producer CD4+ T cells in the spleen and leads to a significant reduction in parasite loads in the liver and spleen. Using STAT1-/- mice we show that STAT1 is critical for mediating the recruitment of Ly6C hi iMOs into organs during L. donovani infection, and adaptive transfer of wild type Ly6C hi iMOs into STAT1-/- recipients renders them susceptible to disease. Our findings reveal an unexpected pathogenic role for Ly6C hi iMOs in promoting parasite survival in VL and open the possibility of targeting this population for host-directed therapy during VL.
Reproductive health rights and survival: The voices of mothers experiencing homelessness.
Cronley, Courtney; Hohn, Kris; Nahar, Shamsun
2018-03-01
Women experiencing homelessness report higher rates of reproductive health-related traumas, including unplanned pregnancy, miscarriage, and abortion than their non-homeless peers. Using phenomenological hermeneutic methods, we sought to understand the reproductive health histories of women currently experiencing homelessness (N = 20, 25-61 years old, Mage = 38.33, SDage = 9.33) analyzing data collected between June 2014 and July 2015 in north central Texas. Three key themes highlight the essence of the women's experiences: (1) unexpected pregnancy-pregnancy just happened, (2) loss of reproductive health rights-I was broken, and (3) resilience-giving back and looking forward to good things. Many of the women became mothers through unexpected pregnancies, and overnight found that their lives were transformed irrevocably. Often unexpected pregnancy was the result or cause of a lack of ownership over their reproductive health and led to prolonged health-related traumas. Over time, though, many of the women whom we interviewed re-expressed resilience through social support, housing assistance, and a sense of giving back to society. Results indicate that reproductive health care providers require training to identify the relationship among unexpected pregnancy, reproductive health-related traumas, and housing insecurity. Providers can help preserve women's reproductive health rights through education and empowerment.
1991-08-01
consistent with military and/or psychological protocol, philosophy, and theory . Each skill had to be consid- ered learnable by each individual within...VII. DEGREE OFFLUX A. Quantity of information exchanged (L) A. Expected (H) B. Emphasis on task rather than B. Unexpected (M) socioemotional aspects...personality. New York: Oxford University Press. Parsons, T. (1956). Suggestions for a sociological approach to the theory of organiza- tions
2012-01-01
Background Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Methods Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. Results An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. Conclusions These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease. PMID:23061798
Fourtounis, Jimmy; Wang, I-Ming; Mathieu, Marie-Claude; Claveau, David; Loo, Tenneille; Jackson, Aimee L; Peters, Mette A; Therien, Alex G; Boie, Yves; Crackower, Michael A
2012-10-12
Oxidative Stress contributes to the pathogenesis of many diseases. The NRF2/KEAP1 axis is a key transcriptional regulator of the anti-oxidant response in cells. Nrf2 knockout mice have implicated this pathway in regulating inflammatory airway diseases such as asthma and COPD. To better understand the role the NRF2 pathway has on respiratory disease we have taken a novel approach to define NRF2 dependent gene expression in a relevant lung system. Normal human lung fibroblasts were transfected with siRNA specific for NRF2 or KEAP1. Gene expression changes were measured at 30 and 48 hours using a custom Affymetrix Gene array. Changes in Eotaxin-1 gene expression and protein secretion were further measured under various inflammatory conditions with siRNAs and pharmacological tools. An anti-correlated gene set (inversely regulated by NRF2 and KEAP1 RNAi) that reflects specific NRF2 regulated genes was identified. Gene annotations show that NRF2-mediated oxidative stress response is the most significantly regulated pathway, followed by heme metabolism, metabolism of xenobiotics by Cytochrome P450 and O-glycan biosynthesis. Unexpectedly the key eosinophil chemokine Eotaxin-1/CCL11 was found to be up-regulated when NRF2 was inhibited and down-regulated when KEAP1 was inhibited. This transcriptional regulation leads to modulation of Eotaxin-1 secretion from human lung fibroblasts under basal and inflammatory conditions, and is specific to Eotaxin-1 as NRF2 or KEAP1 knockdown had no effect on the secretion of a set of other chemokines and cytokines. Furthermore, the known NRF2 small molecule activators CDDO and Sulphoraphane can also dose dependently inhibit Eotaxin-1 release from human lung fibroblasts. These data uncover a previously unknown role for NRF2 in regulating Eotaxin-1 expression and further the mechanistic understanding of this pathway in modulating inflammatory lung disease.
Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea
2011-01-01
Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280
Gan, Lin; Denecke, Bernd
2013-01-01
Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179
Tan, Helin; Xie, Qingjun; Xiang, Xiaoe; Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue
2015-01-01
Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil accumulation at the metabolite level.
Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W
2007-01-01
Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588
Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone
Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P
2009-01-01
Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908
Lee, J; Park, T G; Choi, H
2000-02-25
80% except for acetaminophen, due to its lower solubility in water and higher solubility in corn oil. The release profile of the drug was pH dependent. In acidic medium, the release rate was much slower, however, the drug was released quickly at pH 7.4. Tacrine showed unexpected release profiles, probably due to ionic interaction with polymer matrix and the shell structure and the highest release rate was obtained at pH 2.0. The prepared microspheres had a sponge-like inner structure with or without central hollow core and the surface was dense with no apparent pores.
Naidu, B Narasimhulu; Walker, Michael A; Sorenson, Margaret E; Ueda, Yasutsugu; Matiskella, John D; Connolly, Timothy P; Dicker, Ira B; Lin, Zeyu; Bollini, Sagarika; Terry, Brian J; Higley, Helen; Zheng, Ming; Parker, Dawn D; Wu, Dedong; Adams, Stephen; Krystal, Mark R; Meanwell, Nicholas A
2018-07-01
BMS-707035 is an HIV-1 integrase strand transfer inhibitor (INSTI) discovered by systematic optimization of N-methylpyrimidinone carboxamides guided by structure-activity relationships (SARs) and the single crystal X-ray structure of compound 10. It was rationalized that the unexpectedly advantageous profiles of N-methylpyrimidinone carboxamides with a saturated C2-substitutent may be due, in part, to the geometric relationship between the C2-substituent and the pyrimidinone core. The single crystal X-ray structure of 10 provided support for this reasoning and guided the design of a spirocyclic series 12 which led to discovery of the morpholino-fused pyrimidinone series 13. Several carboxamides derived from this bicyclic scaffold displayed improved antiviral activity and pharmacokinetic profiles when compared with corresponding spirocyclic analogs. Based on the excellent antiviral activity, preclinical profiles and acceptable in vitro and in vivo toxicity profiles, 13a (BMS-707035) was selected for advancement into phase I clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.
The Cognitive and Academic Profiles of Reading and Mathematics Learning Disabilities
Compton, Donald L.; Fuchs, Lynn S.; Fuchs, Douglas; Lambert, Warren; Hamlett, Carol
2012-01-01
The purpose of this study was to examine the cognitive and academic profiles associated with learning disability (LD) in reading comprehension, word reading, applied problems, and calculations. The goal was to assess the specificity hypothesis, in which unexpected underachievement associated with LD is represented in terms of distinctive patterns of cognitive and academic strengths and weaknesses. At the start of 3rd grade, the authors assessed 684 students on five cognitive dimensions (nonverbal problem solving, processing speed, concept formation, language, and working memory), and across Grades 3 through 5, the authors assessed performance in each academic area three to four times. Based on final intercept, the authors classified students as LD or not LD in each of the four academic areas. For each of these four LD variables, they conducted multivariate cognitive profile analysis and academic profile analysis. Results, which generally supported the specificity hypothesis, are discussed in terms of the potential connections between reading and mathematics LD. PMID:21444929
The cognitive and academic profiles of reading and mathematics learning disabilities.
Compton, Donald L; Fuchs, Lynn S; Fuchs, Douglas; Lambert, Warren; Hamlett, Carol
2012-01-01
The purpose of this study was to examine the cognitive and academic profiles associated with learning disability (LD) in reading comprehension, word reading, applied problems, and calculations. The goal was to assess the specificity hypothesis, in which unexpected underachievement associated with LD is represented in terms of distinctive patterns of cognitive and academic strengths and weaknesses. At the start of 3rd grade, the authors assessed 684 students on five cognitive dimensions (nonverbal problem solving, processing speed, concept formation, language, and working memory), and across Grades 3 through 5, the authors assessed performance in each academic area three to four times. Based on final intercept, the authors classified students as LD or not LD in each of the four academic areas. For each of these four LD variables, they conducted multivariate cognitive profile analysis and academic profile analysis. Results, which generally supported the specificity hypothesis, are discussed in terms of the potential connections between reading and mathematics LD.
Haebig, Eileen; Sterling, Audra
2017-02-01
Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD.
Sterling, Audra
2016-01-01
Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD. PMID:27796729
A Chinese Nurse's Socio-Cultural Experiences in Australia
ERIC Educational Resources Information Center
Huang, Yang
2014-01-01
In this article, the author expresses her thoughts and experiences on studying abroad. Yang Huang explains that studying overseas for international students means a lot--not only being away from home but also experiencing quite a few unexpected difficulties. Studying abroad is full of challenges for every student due to the language barrier,…
The Creative Impulse: Why It Won't Just Quit.
ERIC Educational Resources Information Center
Kastenbaum, Robert
1991-01-01
Ebb and flow of creativity in later life has many explanations: for some, it is second nature; others remain open to new experiences. Decline of sensory and cognitive functions may impair continued creative expression. Some may have already completed their creative agendas. In others, creativity may manifest itself in subtle, unexpected ways that…
Xu, Xiang-Ru Shannon; Gantz, Valentino Matteo; Siomava, Natalia; Bier, Ethan
2017-12-23
The knirps ( kni ) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila . Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ' in locus ' mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. © 2017, Xu et al.
Siomava, Natalia
2017-01-01
The knirps (kni) locus encodes transcription factors required for induction of the L2 wing vein in Drosophila. Here, we employ diverse CRISPR/Cas9 genome editing tools to generate a series of targeted lesions within the endogenous cis-regulatory module (CRM) required for kni expression in the L2 vein primordium. Phenotypic analysis of these ‘in locus’ mutations based on both expression of Kni protein and adult wing phenotypes, reveals novel unexpected features of L2-CRM function including evidence for a chromosome pairing-dependent process that promotes transcription. We also demonstrate that self-propagating active genetic elements (CopyCat elements) can efficiently delete and replace the L2-CRM with orthologous sequences from other divergent fly species. Wing vein phenotypes resulting from these trans-species enhancer replacements parallel features of the respective donor fly species. This highly sensitive phenotypic readout of enhancer function in a native genomic context reveals novel features of CRM function undetected by traditional reporter gene analysis. PMID:29274230
Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions.
Fujii, Sota; Toda, Takushi; Kikuchi, Shunsuke; Suzuki, Ryutaro; Yokoyama, Koji; Tsuchida, Hiroko; Yano, Kentaro; Toriyama, Kinya
2011-06-01
Plant mitochondria contain a relatively large amount of genetic information, suggesting that their functional regulation may not be as straightforward as that of metazoans. We used a genomic tiling array to draw a transcriptomic atlas of Oryza sativa japonica (rice) mitochondria, which was predicted to be approximately 490-kb long. Whereas statistical analysis verified the transcription of all previously known functional genes such as the ones related to oxidative phosphorylation, a similar extent of RNA expression was frequently observed in the inter-genic regions where none of the previously annotated genes are located. The newly identified open reading frames (ORFs) predicted in these transcribed inter-genic regions were generally not conserved among flowering plant species, suggesting that these ORFs did not play a role in mitochondrial principal functions. We also identified two partial fragments of retrotransposon sequences as being transcribed in rice mitochondria. The present study indicated the previously unexpected complexity of plant mitochondrial RNA metabolism. Our transcriptomic data (Oryza sativa Mitochondrial rna Expression Server: OsMES) is publicly accessible at [http://bioinf.mind.meiji.ac.jp/cgi-bin/gbrowse/OsMes/#search].
Bentley, Blair P; Haas, Brian J; Tedeschi, Jamie N; Berry, Oliver
2017-06-01
Oviparous reptile embryos are expected to breach their critical thermal maxima if temperatures reach those predicted under current climate change models due to the lack of the maternal buffering processes and parental care. Heat-shock proteins (HSPs) are integral in the molecular response to thermal stress, and their expression is heritable, but the roles of other candidate families such as the heat-shock factors (HSFs) have not been determined in reptiles. Here, we subject embryonic sea turtles (Caretta caretta) to a biologically realistic thermal stress and employ de novo transcriptomic profiling of brain tissue to investigate the underlying molecular response. From a reference transcriptome of 302 293 transcripts, 179 were identified as differentially expressed between treatments. As anticipated, genes enriched in the heat-shock treatment were primarily associated with the Hsp families, or were genes whose products play similar protein editing and chaperone functions (e.g. bag3, MYOC and serpinh1). Unexpectedly, genes encoding the HSFs were not significantly upregulated under thermal stress, indicating their presence in unstressed cells in an inactive state. Genes that were downregulated under thermal stress were less well functionally defined but were associated with stress response, development and cellular organization, suggesting that developmental processes may be compromised at realistically high temperatures. These results confirm that genes from the Hsp families play vital roles in the thermal tolerance of developing reptile embryos and, in addition with a number of other genes, should be targets for evaluating the capacity of oviparous reptiles to respond adaptively to the effects of climate change. © 2017 John Wiley & Sons Ltd.
Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S
2013-03-01
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores
Ryzhov, Sergey; Tikhomirov, Oleg; Duarte, Christine W.; Congdon, Clare Bates; Lessard, Craig R.; McFarland, Samuel; Rochette-Egly, Cecile; Tran, Truc-Linh; Galindo, Cristi L.; Favreau-Lessard, Amanda J.; Sawyer, Douglas B.
2016-01-01
To determine whether hepatic depletion of vitamin A (VA) stores has an effect on the postnatal heart, studies were carried out with mice lacking liver retinyl ester stores fed either a VA-sufficient (LRVAS) or VA-deficient (LRVAD) diet (to deplete circulating retinol and extrahepatic stores of retinyl esters). There were no observable differences in the weights or gross morphology of hearts from LRVAS or LRVAD mice relative to sex-matched, age-matched, and genetically matched wild-type (WT) controls fed the VAS diet (WTVAS), but changes in the transcription of functionally relevant genes were consistent with a state of VAD in LRVAS and LRVAD ventricles. In silico analysis revealed that 58/67 differentially expressed transcripts identified in a microarray screen are products of genes that have DNA retinoic acid response elements. Flow cytometric analysis revealed a significant and cell-specific increase in the number of proliferating Sca-1 cardiac progenitor cells in LRVAS animals relative to WTVAS controls. Before myocardial infarction, LRVAS and WTVAS mice had similar cardiac systolic function and structure, as measured by echocardiography, but, unexpectedly, repeat echocardiography demonstrated that LRVAS mice had less adverse remodeling by 1 wk after myocardial infarction. Overall, the results demonstrate that the adult heart is responsive to retinoids, and, most notably, reducing hepatic VA stores (while maintaining circulating levels of VA) impacts ventricular gene expression profiles, progenitor cell numbers, and response to injury. PMID:27084391
Effects of vitamin A deficiency in the postnatal mouse heart: role of hepatic retinoid stores.
Asson-Batres, Mary Ann; Ryzhov, Sergey; Tikhomirov, Oleg; Duarte, Christine W; Congdon, Clare Bates; Lessard, Craig R; McFarland, Samuel; Rochette-Egly, Cecile; Tran, Truc-Linh; Galindo, Cristi L; Favreau-Lessard, Amanda J; Sawyer, Douglas B
2016-06-01
To determine whether hepatic depletion of vitamin A (VA) stores has an effect on the postnatal heart, studies were carried out with mice lacking liver retinyl ester stores fed either a VA-sufficient (LRVAS) or VA-deficient (LRVAD) diet (to deplete circulating retinol and extrahepatic stores of retinyl esters). There were no observable differences in the weights or gross morphology of hearts from LRVAS or LRVAD mice relative to sex-matched, age-matched, and genetically matched wild-type (WT) controls fed the VAS diet (WTVAS), but changes in the transcription of functionally relevant genes were consistent with a state of VAD in LRVAS and LRVAD ventricles. In silico analysis revealed that 58/67 differentially expressed transcripts identified in a microarray screen are products of genes that have DNA retinoic acid response elements. Flow cytometric analysis revealed a significant and cell-specific increase in the number of proliferating Sca-1 cardiac progenitor cells in LRVAS animals relative to WTVAS controls. Before myocardial infarction, LRVAS and WTVAS mice had similar cardiac systolic function and structure, as measured by echocardiography, but, unexpectedly, repeat echocardiography demonstrated that LRVAS mice had less adverse remodeling by 1 wk after myocardial infarction. Overall, the results demonstrate that the adult heart is responsive to retinoids, and, most notably, reducing hepatic VA stores (while maintaining circulating levels of VA) impacts ventricular gene expression profiles, progenitor cell numbers, and response to injury. Copyright © 2016 the American Physiological Society.
Jedlička, Pavel; Ernst, Ulrich R; Votavová, Alena; Hanus, Robert; Valterová, Irena
2016-01-01
Understanding the social evolution leading to insect eusociality requires, among other, a detailed insight into endocrine regulatory mechanisms that have been co-opted from solitary ancestors to play new roles in the complex life histories of eusocial species. Bumblebees represent well-suited models of a relatively primitive social organization standing on the mid-way to highly advanced eusociality and their queens undergo both, a solitary and a social phase, separated by winter diapause. In the present paper, we characterize the gene expression levels of major endocrine regulatory pathways across tissues, sexes, and life-stages of the buff-tailed bumblebee, Bombus terrestris , with special emphasis on critical stages of the queen's transition from solitary to social life. We focused on fundamental genes of three pathways: (1) Forkhead box protein O and insulin/insulin-like signaling, (2) Juvenile hormone (JH) signaling, and (3) Adipokinetic hormone signaling. Virgin queens were distinguished by higher expression of forkhead box protein O and downregulated insulin-like peptides and JH signaling, indicated by low expression of methyl farnesoate epoxidase ( MFE ) and transcription factor Krüppel homolog 1 ( Kr-h1 ). Diapausing queens showed the expected downregulation of JH signaling in terms of low MFE and vitellogenin ( Vg ) expressions, but an unexpectedly high expression of Kr-h1 . By contrast, reproducing queens revealed an upregulation of MFE and Vg together with insulin signaling. Surprisingly, the insulin growth factor 1 (IGF-1) turned out to be a queen-specific hormone. Workers exhibited an expression pattern of MFE and Vg similar to that of reproducing queens. Males were characterized by high Kr-h1 expression and low Vg level. The tissue comparison unveiled an unexpected resemblance between the fat body and hypopharyngeal glands across all investigated genes, sexes, and life stages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kos, L.; Tskhakaya, D. D.; Jelic, N.
2011-05-15
A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile {Phi}(x) near the sheath edge x{sub s} in the limit {epsilon}{identical_to}{lambda}{sub D}/l=0 (where {lambda}{sub D} is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation ({epsilon}=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys.more » D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source temperatures, the potential is proportional to the space coordinate powered by rational numbers {alpha}=1/2 and {alpha}=2/3, with medium ion source temperatures. We found {alpha} between these values being a non-rational number strongly dependent on the ion source temperature. The range of the non-rational power-law turns out to be a very narrow one, at the expense of the extension of {alpha}=2/3 region towards unexpectedly low ion source temperatures.« less
Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect
NASA Astrophysics Data System (ADS)
Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos
1997-05-01
The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.
Single cell gene expression profiling of cortical osteoblast lineage cells.
Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon
2013-03-01
In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.
McKenney, James; Bays, Harold; Gleim, Gilbert; Mitchel, Yale; Kuznetsova, Olga; Sapre, Aditi; Sirah, Waheeda; Maccubbin, Darbie
2015-01-01
The Heart Protection Study 2-Treatment of HDL to Reduce the Incidence of Vascular Events (HPS2-THRIVE) showed that adding extended-release niacin-laropiprant (ERN-LRPT) to statin provided no incremental cardiovascular benefit vs placebo (PBO). ERN-LRPT was also associated with an excess of serious adverse experiences (AEs), some of which were unexpected (infections and bleeding). These findings led to the withdrawal of ERN-LRPT from all markets. We examined the safety profile of ERN-LRPT vs the comparators ERN alone and statins in the ERN-LRPT development program to assess whether similar safety signals were observed to those seen in HPS-THRIVE and whether these might be attributed to ERN or LRPT. Postrandomization safety data from 12 clinical studies, 12 to 52 weeks in duration and involving 11,310 patients, were analyzed across 3 treatments: (1) ERN-LRPT; (2) ERN-NSP (ERN, Merck & Co, Inc or Niaspan [NSP], Abbott Laboratories); and (3) statin-PBO (statin or PBO). The safety profiles of ERN-LRPT and ERN-NSP were similar, except for less flushing with ERN-LRPT. Nonflushing AEs reported more frequently with ERN-LRPT or ERN-NSP than with statin-PBO were mostly nonserious and typical of niacin (nausea, diarrhea, and increased blood glucose). There was no evidence for an increased risk of serious AEs related to diabetes, muscle, infection, or bleeding. Pooled data from 11,310 patients revealed that, except for reduced flushing, the safety profile of ERN-LRPT was similar to that of ERN-NSP; LRPT did not appear to adversely affect the side-effect profile of ERN. The inability to replicate the unexpected AE findings in HPS2-THRIVE could be because of the smaller sample size and substantially shorter duration of these studies. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.
2007-05-01
Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis Patients PRINCIPAL INVESTIGATOR: Matt van de Rijn, M.D., Ph.D. Torsten...Annual 3. DATES COVERED 1 May 2006 –30 Apr 2007 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Genomic and Expression Profiling of Benign and Malignant Nerve...Award Number: DAMD17-03-1-0297 Title: Genomic and Expression Profiling of Benign and Malignant Nerve Sheath Tumors in Neurofibromatosis
Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P
2008-01-01
The human intestinal absorption of acetamiprid (AAP) using the Caco-2 cell line reveals that AAP flux was active in a bidirectional mode with an apparent permeability coefficient of 26 x 10(-6) cm x s(-1) at 37 degrees C. Apical uptake was concentration-dependent and unsaturated for AAP concentrations up to 200 micro M. AAP cell preloading demonstrated the involvement of active transport mechanisms. Arrhenius plot analysis revealed an unusual profile with two apparent activation energies suggesting two transport processes. Uptake Vi studies indicated the involvement of a sodium-dependent transporter, the presence of a common transporter of AAP and nicotine and the involvement of Ti-sensitive ATP-dependent efflux transporters. Apical efflux investigations showed the involvement of inward active transporter(s). Whereas vincristine had no effect on intracellular accumulation, taxol and daunorubicin treatments unexpectedly led to 10% and 23% reductions respectively, suggesting that the latter shared a common inward transporter with AAP. All these results suggest full and express AAP absorption in vivo with transport involving both inward and outward, passive and active mechanisms. Thus, AAP or its metabolites could be representative of a risk for human health after its ingestion in food.
Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*
Cha, Jeeyeon; Burnum-Johnson, Kristin E.; Bartos, Amanda; Li, Yingju; Baker, Erin S.; Tilton, Susan C.; Webb-Robertson, Bobbie-Jo M.; Piehowski, Paul D.; Monroe, Matthew E.; Jegga, Anil G.; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K.
2015-01-01
Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses (“pseudoimplantation”) that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. PMID:25931120
Park, Young-Min; Kanaley, Jill A; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J; Will, Matthew J; Britton, Steven L; Koch, Lauren G; Ruegsegger, Gregory N; Booth, Frank W; Thyfault, John P; Vieira-Potter, Victoria J
2016-10-01
Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with the dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. Forty female HCR and LCR rats (age ~27weeks) had either SHM or OVX operations, and given access to a running wheel for 11weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. The DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, HCR rats are not protected against OVX-induced reduction in wheel running or OVX-mediated reduction in the ratio of excitatory/inhibitory DA receptor mRNA expression. OVX-mediated reduction in motivated physical activity may be partially explained by a reduced ratio of excitatory/inhibitory DA receptor mRNA expression for which intrinsic fitness does not confer protection. Copyright © 2016 Elsevier Inc. All rights reserved.
Gene expression inference with deep learning.
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-06-15
Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. D-GEX is available at https://github.com/uci-cbcl/D-GEX CONTACT: xhx@ics.uci.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gene expression inference with deep learning
Chen, Yifei; Li, Yi; Narayan, Rajiv; Subramanian, Aravind; Xie, Xiaohui
2016-01-01
Motivation: Large-scale gene expression profiling has been widely used to characterize cellular states in response to various disease conditions, genetic perturbations, etc. Although the cost of whole-genome expression profiles has been dropping steadily, generating a compendium of expression profiling over thousands of samples is still very expensive. Recognizing that gene expressions are often highly correlated, researchers from the NIH LINCS program have developed a cost-effective strategy of profiling only ∼1000 carefully selected landmark genes and relying on computational methods to infer the expression of remaining target genes. However, the computational approach adopted by the LINCS program is currently based on linear regression (LR), limiting its accuracy since it does not capture complex nonlinear relationship between expressions of genes. Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of target genes from the expression of landmark genes. We used the microarray-based Gene Expression Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its performance to those from other methods. In terms of mean absolute error averaged across all genes, deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise comparative analysis shows that deep learning achieves lower error than LR in 99.97% of the target genes. We also tested the performance of our learned model on an independent RNA-Seq-based GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with 6.57% relative improvement, and achieves lower error in 81.31% of the target genes. Availability and implementation: D-GEX is available at https://github.com/uci-cbcl/D-GEX. Contact: xhx@ics.uci.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26873929
Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells.
Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...
Similar protein expression profiles of ovarian and endometrial high-grade serous carcinomas.
Hiramatsu, Kosuke; Yoshino, Kiyoshi; Serada, Satoshi; Yoshihara, Kosuke; Hori, Yumiko; Fujimoto, Minoru; Matsuzaki, Shinya; Egawa-Takata, Tomomi; Kobayashi, Eiji; Ueda, Yutaka; Morii, Eiichi; Enomoto, Takayuki; Naka, Tetsuji; Kimura, Tadashi
2016-03-01
Ovarian and endometrial high-grade serous carcinomas (HGSCs) have similar clinical and pathological characteristics; however, exhaustive protein expression profiling of these cancers has yet to be reported. We performed protein expression profiling on 14 cases of HGSCs (7 ovarian and 7 endometrial) and 18 endometrioid carcinomas (9 ovarian and 9 endometrial) using iTRAQ-based exhaustive and quantitative protein analysis. We identified 828 tumour-expressed proteins and evaluated the statistical similarity of protein expression profiles between ovarian and endometrial HGSCs using unsupervised hierarchical cluster analysis (P<0.01). Using 45 statistically highly expressed proteins in HGSCs, protein ontology analysis detected two enriched terms and proteins composing each term: IMP2 and MCM2. Immunohistochemical analyses confirmed the higher expression of IMP2 and MCM2 in ovarian and endometrial HGSCs as well as in tubal and peritoneal HGSCs than in endometrioid carcinomas (P<0.01). The knockdown of either IMP2 or MCM2 by siRNA interference significantly decreased the proliferation rate of ovarian HGSC cell line (P<0.01). We demonstrated the statistical similarity of the protein expression profiles of ovarian and endometrial HGSC beyond the organs. We suggest that increased IMP2 and MCM2 expression may underlie some of the rapid HGSC growth observed clinically.
Wan, B; Yarbrough, J W; Schultz, T W
2008-01-01
This study was undertaken to test the hypothesis that structurally similar PAHs induce similar gene expression profiles. THP-1 cells were exposed to a series of 12 selected PAHs at 50 microM for 24 hours and gene expressions profiles were analyzed using both unsupervised and supervised methods. Clustering analysis of gene expression profiles revealed that the 12 tested chemicals were grouped into five clusters. Within each cluster, the gene expression profiles are more similar to each other than to the ones outside the cluster. One-methylanthracene and 1-methylfluorene were found to have the most similar profiles; dibenzothiophene and dibenzofuran were found to share common profiles with fluorine. As expression pattern comparisons were expanded, similarity in genomic fingerprint dropped off dramatically. Prediction analysis of microarrays (PAM) based on the clustering pattern generated 49 predictor genes that can be used for sample discrimination. Moreover, a significant analysis of Microarrays (SAM) identified 598 genes being modulated by tested chemicals with a variety of biological processes, such as cell cycle, metabolism, and protein binding and KEGG pathways being significantly (p < 0.05) affected. It is feasible to distinguish structurally different PAHs based on their genomic fingerprints, which are mechanism based.
Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong
2013-10-18
Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics.
Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki S.; Halpern, Marnie E.
2014-01-01
Background: Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. Results: We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves. Citation: Gorelick DA, Iwanowicz LR, Hung AL, Blazer VS, Halpern ME. 2014. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples. Environ Health Perspect 122:356–362; http://dx.doi.org/10.1289/ehp.1307329 PMID:24425189
Flannery, Clare A.; Fleming, Andrew G.; Choe, Gina H.; Naqvi, Hanyia; Zhang, Margaret; Sharma, Anu
2016-01-01
Endometrial cancer develops during exposure to estrogen unopposed by progesterone. Traditional formulations for menopausal hormone therapy include a progestin in women with a uterus. However, progestin exposure increases breast cancer risk in postmenopausal women. Alternatives to progestin include bazedoxifene (BZA), a selective estrogen receptor modulator, which prevents estrogen induced endometrial hyperplasia in clinical trials. Molecular mechanisms responsible for BZA's antiproliferative effect are not fully elucidated. We profiled endometrial adenocarcinoma, hyperplasia, and normal proliferative endometrium for differential expression in genes known to be regulated by estrogens or progesterone. Fibroblast growth factor (FGF)18, a paracrine growth factor promoting epithelial proliferation, was significantly increased in adenocarcinoma. Progesterone represses FGF18 by inducing heart and neural crest derivatives expressed transcript 2 (HAND2) in stromal cells. Notably, we confirmed lower HAND2 mRNA in adenocarcinoma, along with higher FGF tyrosine kinase receptor 2 and E74-like factor 5, collectively promoting FGF18 activity. We hypothesized BZA reduces epithelial proliferation by inhibiting FGF18 synthesis in stromal cells. To determine whether BZA regulates FGF18, we treated primary stromal cells with BZA or vehicle. In vitro, BZA reduced FGF18, but did not affect, HAND2. CD1 female mice received either BZA, conjugated estrogen (CE), or combined BZA/CE for 8 weeks. CE-treated mice had nearly 3-fold higher FGF18 expression. In contrast, BZA-treated mice, alone or with CE, had similar FGF18 as controls. Unexpectedly, BZA, alone or with CE, reduced HAND2 more than 80%, differing from progesterone regulation. Reduction of FGF18 is a potential mechanism by which BZA reduces endometrial proliferation and hyperplasia induced by estrogens. However, BZA works independently of HAND2, revealing a novel mechanism for progestin-free hormone therapy in postmenopausal women. PMID:27267714
Chapter 1: A conservation assessment framework for forest carnivores.
Leonard F. Ruggiero; William J. Zielinski; Keith B. Aubry; Steven W. Buskirk; L. Jack Lyon
1994-01-01
Controversy over managing public lands is neither an unexpected nor recent development. In the 1970's, debate over land management began to focus on the effects of timber management practices on wildlife. This was most evident in the Pacific Northwest where the public was beginning to express strong concerns about the effects of timber harvest in late-successional...
Workplace Safety Concerns among Co-workers of Responder Returning from Ebola-Affected Country
Daly, Elizabeth R.; Talbot, Elizabeth A.
2015-01-01
We surveyed public health co-workers regarding attitudes toward a physician who returned to New Hampshire after volunteering in the West African Ebola outbreak. An unexpectedly large (18.0%) proportion of staff expressed discomfort with the Ebola responder returning to work. Employers should take proactive steps to address employee fears and concerns. PMID:26488494
Handisurya, Alessandra; Day, Patricia M.; Thompson, Cynthia D.; Buck, Christopher B.; Pang, Yuk-Ying S.; Lowy, Douglas R.
2013-01-01
Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism. PMID:24067981
Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.
Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora
2017-01-01
Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.
Gene expression profiles in arsenic-treated MCF-7 breast cancer cells expressing different levels of HSP70
Gail Nelson, Susan Hester, Ernest Winkfield, Jill Barnes, James Allen
Environmental Carcinogenesis Division, NHEERL, ORD, US Environmental Protection Agency, Rese...
iPcc: a novel feature extraction method for accurate disease class discovery and prediction
Ren, Xianwen; Wang, Yong; Zhang, Xiang-Sun; Jin, Qi
2013-01-01
Gene expression profiling has gradually become a routine procedure for disease diagnosis and classification. In the past decade, many computational methods have been proposed, resulting in great improvements on various levels, including feature selection and algorithms for classification and clustering. In this study, we present iPcc, a novel method from the feature extraction perspective to further propel gene expression profiling technologies from bench to bedside. We define ‘correlation feature space’ for samples based on the gene expression profiles by iterative employment of Pearson’s correlation coefficient. Numerical experiments on both simulated and real gene expression data sets demonstrate that iPcc can greatly highlight the latent patterns underlying noisy gene expression data and thus greatly improve the robustness and accuracy of the algorithms currently available for disease diagnosis and classification based on gene expression profiles. PMID:23761440
Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo
2014-01-01
We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Availability and implementation: Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. Database URL: http://rged.wall-eva.net PMID:25252782
Zhang, Qingzhou; Yang, Bo; Chen, Xujiao; Xu, Jing; Mei, Changlin; Mao, Zhiguo
2014-01-01
We present a bioinformatics database named Renal Gene Expression Database (RGED), which contains comprehensive gene expression data sets from renal disease research. The web-based interface of RGED allows users to query the gene expression profiles in various kidney-related samples, including renal cell lines, human kidney tissues and murine model kidneys. Researchers can explore certain gene profiles, the relationships between genes of interests and identify biomarkers or even drug targets in kidney diseases. The aim of this work is to provide a user-friendly utility for the renal disease research community to query expression profiles of genes of their own interest without the requirement of advanced computational skills. Website is implemented in PHP, R, MySQL and Nginx and freely available from http://rged.wall-eva.net. http://rged.wall-eva.net. © The Author(s) 2014. Published by Oxford University Press.
A transcriptome-based model of central memory CD4 T cell death in HIV infection.
Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique
2016-11-22
Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Park, Young-Min; Kanaley, Jill A.; Padilla, Jaume; Zidon, Terese; Welly, Rebecca J.; Will, Matthew J.; Britton, Steven L.; Koch, Lauren G.; Ruegsegger, Gregory N.; Booth, Frank W.; Thyfault, John P.; Vieira-Potter, Victoria J.
2016-01-01
Rats selectively bred for high (HCR) and low (LCR) aerobic capacity show a stark divergence in wheel running behavior, which may be associated with dopamine (DA) system in the brain. HCR possess greater motivation for voluntary running along with greater brain DA activity compared to LCR. We recently demonstrated that HCR are not immune to ovariectomy (OVX)-associated reductions in spontaneous cage (i.e. locomotor) activity. Whether HCR and LCR rats differ in their OVX-mediated voluntary wheel running response is unknown. PURPOSE To determine whether HCR are protected from OVX-associated reduction in voluntary wheel running. METHODS Forty female HCR and LCR rats (age ~27 weeks) had either SHM or OVX operations, and given access to a running wheel for 11 weeks. Weekly wheel running distance was monitored throughout the intervention. Nucleus accumbens (NAc) was assessed for mRNA expression of DA receptors at sacrifice. RESULTS Compared to LCR, HCR ran greater distance and had greater ratio of excitatory/inhibitory DA mRNA expression (both line main effects, P<0.05). Wheel running distance was significantly, positively correlated with the ratio of excitatory/inhibitory DA mRNA expression across animals. In both lines, OVX reduced wheel running (P<0.05). Unexpectedly, although HCR started with significantly greater voluntary wheel running, they had greater OVX-induced reduction in wheel running than LCR such that no differences were found 11 weeks after OVX between HCROVX and LCROVX (interaction, P<0.05). This significant reduction in wheel running in HCR was associated with an OVX-mediated reduction in the ratio of excitatory/inhibitory DA mRNA expression. CONCLUSION DA system in the NAc region may play a significant role in motivation to run in female rats. Compared to LCR, HCR rats run significantly more, which associates with greater ratio of excitatory/inhibitory DA mRNA expression. However, despite greater inherent motivation to run and an associated brain DA mRNA expression profile, these HCR rats are not protected against OVX-induced reduction in wheel running. The impairment in wheel running in HCR rats may be partially explained by their reduced ratio of excitatory/inhibitory DA receptor mRNA expression. PMID:27297873
Dysregulation of miRNAs in bladder cancer: altered expression with aberrant biogenesis procedure
Dong, Fan; Xu, Tianyuan; Shen, Yifan; Zhong, Shan; Chen, Shanwen; Ding, Qiang; Shen, Zhoujun
2017-01-01
Aberrant expression profiles of miRNAs are widely observed in the clinical tissue specimens and urine samples as well as the blood samples of bladder cancer patients. These profiles are closely related to the pathological features of bladder cancer, such as the tumour stage/grade, metastasis, recurrence and chemo-sensitivity. MiRNA biogenesis forms the basis of miRNA expression and function, and its dysregulation has been shown to be essential for variations in miRNA expression profiles as well as tumourigenesis and cancer progression. In this review, we summarize the up-to-date and widely reported miRNAs in bladder cancer that display significantly altered expression. We then compare the miRNA expression profiles among three different sample types (tissue, urine and blood) from patients with bladder cancer. Moreover, for the first time, we outline the dysregulated miRNA biogenesis network in bladder cancer from different levels and analyse its possible relationship with aberrant miRNA expression and the pathological characteristics of the disease. PMID:28187437
Riis, Margit L H; Lüders, Torben; Markert, Elke K; Haakensen, Vilde D; Nesbakken, Anne-Jorun; Kristensen, Vessela N; Bukholm, Ida R K
2012-01-01
Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology.
Riis, Margit L. H.; Lüders, Torben; Markert, Elke K.; Haakensen, Vilde D.; Nesbakken, Anne-Jorun; Kristensen, Vessela N.; Bukholm, Ida R. K.
2012-01-01
Gene expression studies on breast cancer have generally been performed on tissue obtained at the time of surgery. In this study, we have compared the gene expression profiles in preoperative tissue (core needle biopsies) while tumor is still in its normal milieu to postoperative tissue from the same tumor obtained during surgery. Thirteen patients were included of which eleven had undergone sentinel node diagnosis procedure before operation. Microarray gene expression analysis was performed using total RNA from all the samples. Paired significance analysis of microarrays revealed 228 differently expressed genes, including several early response stress-related genes such as members of the fos and jun families as well as genes of which the expression has previously been associated with cancer. The expression profiles found in the analyses of breast cancer tissue must be evaluated with caution. Different profiles may simply be the result of differences in the surgical trauma and timing of when samples are taken and not necessarily associated with tumor biology. PMID:23227362
Expression profiles of antimicrobial peptides (AMPs) and their regulation by Relish
NASA Astrophysics Data System (ADS)
Wang, Dongdong; Li, Fuhua; Li, Shihao; Wen, Rong; Xiang, Jianhai
2012-07-01
Antimicrobial peptides (AMPs), as key immune effectors, play important roles in the innate immune system of invertebrates. Different types of AMPs, including Penaeidin, Crustin, ALF (antilipopolysaccharide factor) have been identified in different penaeid shrimp; however, systematic analyses on the function of different AMPs in shrimp responsive to different types of bacteria are very limited. In this study, we analyzed the expression profiles of AMPs in the Chinese shrimps, Fenneropenaeus chinensis, simultaneously by real-time RT-PCR (reverse transcription-polymerase chain reaction) when shrimp were challenged with Micrococcus lysodeikticus (Gram-positive, G+) or Vibrio anguillarium (Gram-negative, G-). Different AMPs showed different expression profiles when shrimp were injected with one type of bacterium, and one AMP also showed different expression profiles when shrimp were challenged with different bacteria. Furthermore, the expression of these AMPs showed temporal expression profiles, suggesting that different AMPs function coordinately in bacteria-infected shrimp. An RNA interference approach was used to study the function of the Relish transcription factor in regulating the transcription of different AMPs. The current study showed that Relish could regulate the transcription of different AMPs in shrimp. Differential expression profiles of AMPs in shrimp injected with different types of bacteria indicated that a complicated antimicrobial response network existed in shrimp. These data contribute to our understanding of immunity in shrimp and may provide a strategy for the control of disease in shrimp.
Baculovirus induced transcripts in hemocytes from Heliothis virescens
USDA-ARS?s Scientific Manuscript database
Using RNA-sequencing digital difference expression profiling methods we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcri...
Camphausen, Kevin; Purow, Benjamin; Sproull, Mary; Scott, Tamalee; Ozawa, Tomoko; Deen, Dennis F.; Tofilon, Philip J.
2005-01-01
Defining the molecules that regulate tumor cell survival is an essential prerequisite for the development of targeted approaches to cancer treatment. Whereas many studies aimed at identifying such targets use human tumor cells grown in vitro or as s.c. xenografts, it is unclear whether such experimental models replicate the phenotype of the in situ tumor cell. To begin addressing this issue, we have used microarray analysis to define the gene expression profile of two human glioma cell lines (U251 and U87) when grown in vitro and in vivo as s.c. or as intracerebral (i.c.) xenografts. For each cell line, the gene expression profile generated from tissue culture was significantly different from that generated from the s.c. tumor, which was significantly different from those grown i.c. The disparity between the i.c gene expression profiles and those generated from s.c. xenografts suggests that whereas an in vivo growth environment modulates gene expression, orthotopic growth conditions induce a different set of modifications. In this study the U251 and U87 gene expression profiles generated under the three growth conditions were also compared. As expected, the profiles of the two glioma cell lines were significantly different when grown as monolayer cultures. However, the glioma cell lines had similar gene expression profiles when grown i.c. These results suggest that tumor cell gene expression, and thus phenotype, as defined in vitro is affected not only by in vivo growth but also by orthotopic growth, which may have implications regarding the identification of relevant targets for cancer therapy. PMID:15928080
Cheng, Kevin P.; Kiernan, Elizabeth A.; Eliceiri, Kevin W.; Williams, Justin C.; Watters, Jyoti J.
2016-01-01
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS. PMID:26883795
Cheng, Kevin P; Kiernan, Elizabeth A; Eliceiri, Kevin W; Williams, Justin C; Watters, Jyoti J
2016-02-17
Neural optogenetic applications over the past decade have steadily increased; however the effects of commonly used blue light paradigms on surrounding, non-optogenetic protein-expressing CNS cells are rarely considered, despite their simultaneous exposure. Here we report that blue light (450 nm) repetitively delivered in both long-duration boluses and rapid optogenetic bursts gene-specifically altered basal expression of inflammatory and neurotrophic genes in immortalized and primary murine wild type microglial cultures. In addition, blue light reduced pro-inflammatory gene expression in microglia activated with lipopolysaccharide. These results demonstrate previously unreported, off-target effects of blue light in cells not expressing optogenetic constructs. The unexpected gene modulatory effects of blue light on wild type CNS resident immune cells have novel and important implications for the neuro-optogenetic field. Further studies are needed to elucidate the molecular mechanisms and potential therapeutic utility of blue light modulation of the wild type CNS.
A genome-scale map of expression for a mouse brain section obtained using voxelation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Mark H.; Geng, Alex B.; Khan, Arshad H.
Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological diseases. We have reconstructed 2- dimensional images of gene expression for 20,000 genes in a coronal slice of the mouse brain at the level of the striatum by using microarrays in combination with voxelation at a resolution of 1 mm3. Good reliability of the microarray results were confirmed using multiple replicates, subsequent quantitative RT-PCR voxelation, mass spectrometry voxelation and publicly available in situ hybridization data. Known and novel genes were identified with expression patterns localized to defined substructures within the brain. In addition, genesmore » with unexpected patterns were identified and cluster analysis identified a set of genes with a gradient of dorsal/ventral expression not restricted to known anatomical boundaries. The genome-scale maps of gene expression obtained using voxelation will be a valuable tool for the neuroscience community.« less
A gene expression resource generated by genome-wide lacZ profiling in the mouse
Tuck, Elizabeth; Estabel, Jeanne; Oellrich, Anika; Maguire, Anna Karin; Adissu, Hibret A.; Souter, Luke; Siragher, Emma; Lillistone, Charlotte; Green, Angela L.; Wardle-Jones, Hannah; Carragher, Damian M.; Karp, Natasha A.; Smedley, Damian; Adams, Niels C.; Bussell, James N.; Adams, David J.; Ramírez-Solis, Ramiro; Steel, Karen P.; Galli, Antonella; White, Jacqueline K.
2015-01-01
ABSTRACT Knowledge of the expression profile of a gene is a critical piece of information required to build an understanding of the normal and essential functions of that gene and any role it may play in the development or progression of disease. High-throughput, large-scale efforts are on-going internationally to characterise reporter-tagged knockout mouse lines. As part of that effort, we report an open access adult mouse expression resource, in which the expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter gene. Many specific and informative expression patterns were noted. Expression was most commonly observed in the testis and brain and was most restricted in white adipose tissue and mammary gland. Over half of the assessed genes presented with an absent or localised expression pattern (categorised as 0-10 positive structures). A link between complexity of expression profile and viability of homozygous null animals was observed; inactivation of genes expressed in ≥21 structures was more likely to result in reduced viability by postnatal day 14 compared with more restricted expression profiles. For validation purposes, this mouse expression resource was compared with Bgee, a federated composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Furthermore, there were 1207 observations of expression of a particular gene in an anatomical structure where Bgee had no data, indicating a large amount of novelty in our data set. Examples of expression data corroborating and extending genotype-phenotype associations and supporting disease gene candidacy are presented to demonstrate the potential of this powerful resource. PMID:26398943
Liu, Yuesheng; Ji, Yuqiang; Li, Min; Wang, Min; Yi, Xiaoqing; Yin, Chunyan; Wang, Sisi; Zhang, Meizhen; Zhao, Zhao; Xiao, Yanfeng
2018-06-08
Long noncoding RNAs (lncRNAs) have an important role in adipose tissue function and energy metabolism homeostasis, and abnormalities may lead to obesity. To investigate whether lncRNAs are involved in childhood obesity, we investigated the differential expression profile of lncRNAs in obese children compared with non-obese children. A total number of 1268 differentially expressed lncRNAs and 1085 differentially expressed mRNAs were identified. Gene Ontology (GO) and pathway analysis revealed that these lncRNAs were involved in varied biological processes, including the inflammatory response, lipid metabolic process, osteoclast differentiation and fatty acid metabolism. In addition, the lncRNA-mRNA co-expression network and the protein-protein interaction (PPI) network were constructed to identify hub regulatory lncRNAs and genes based on the microarray expression profiles. This study for the first time identifies an expression profile of differentially expressed lncRNAs in obese children and indicated hub lncRNA RP11-20G13.3 attenuated adipogenesis of preadipocytes, which is conducive to the search for new diagnostic and therapeutic strategies of childhood obesity.
Gene Expression Profiling Predicts the Development of Oral Cancer
Saintigny, Pierre; Zhang, Li; Fan, You-Hong; El-Naggar, Adel K.; Papadimitrakopoulou, Vali; Feng, Lei; Lee, J. Jack; Kim, Edward S.; Hong, Waun Ki; Mao, Li
2011-01-01
Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. PMID:21292635
2013-01-01
e003130. doi:10.1136/ bmjopen-2013-003130 ▸ Prepublication history for this paper is available online . To view these files please visit the journal... online (http://dx.doi.org/10.1136/ bmjopen-2013-003130). Received 26 April 2013 Revised 21 June 2013 Accepted 24 June 2013 For numbered affiliations see...harass and often incorporating military stores ’.2 IEDs have been shown to generate a different injury profile compared to con- ventional munitions, and
Willemse, Hermia; Theodoratos, Angelo; Smith, Paul N; Dulhunty, Angela F
2016-02-01
The skeletal muscle ryanodine receptor Ca(2+) release channel (RyR1), essential for excitation-contraction (EC) coupling, demonstrates a known developmentally regulated alternative splicing in the ASI region. We now find unexpectedly that the expression of the splice variants is closely related to fiber type in adult human lower limb muscles. We examined the distribution of myosin heavy chain isoforms and ASI splice variants in gluteus minimus, gluteus medius and vastus medialis from patients aged 45 to 85 years. There was a strong positive correlation between ASI(+)RyR1 and the percentage of type 2 fibers in the muscles (r = 0.725), and a correspondingly strong negative correlation between the percentages of ASI(+)RyR1 and percentage of type 1 fibers. When the type 2 fiber data were separated into type 2X and type 2A, the correlation with ASI(+)RyR1 was stronger in type 2X fibers (r = 0.781) than in type 2A fibers (r = 0.461). There was no significant correlation between age and either fiber-type composition or ASI(+)RyR1/ASI(-)RyR1 ratio. The results suggest that the reduced expression of ASI(-)RyR1 during development may reflect a reduction in type 1 fibers during development. Preferential expression of ASI(-) RyR1, having a higher gain of in Ca(2+) release during EC coupling than ASI(+)RyR1, may compensate for the reduced terminal cisternae volume, fewer junctional contacts and reduced charge movement in type 1 fibers.
An unexpected effect of TNF-α on F508del-CFTR maturation and function
Bitam, Sara; Urbach, Valérie; Sermet-Gaudelus, Isabelle; Hinzpeter, Alexandre; Edelman, Aleksander
2015-01-01
Cystic fibrosis (CF) is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene ( CFTR), which encodes a cAMP-dependent Cl - channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT) CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml) of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE) leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC) signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular. PMID:26594334
Zhao, Chen; Mao, Jinghe; Ai, Junmei; Shenwu, Ming; Shi, Tieliu; Zhang, Daqing; Wang, Xiaonan; Wang, Yunliang; Deng, Youping
2013-01-01
Insulin resistance is a key element in the pathogenesis of type 2 diabetes mellitus. Plasma free fatty acids were assumed to mediate the insulin resistance, while the relationship between lipid and glucose disposal remains to be demonstrated across liver, skeletal muscle and blood. We profiled both lipidomics and gene expression of 144 total peripheral blood samples, 84 from patients with T2D and 60 from healthy controls. Then, factor and partial least squares models were used to perform a combined analysis of lipidomics and gene expression profiles to uncover the bioprocesses that are associated with lipidomic profiles in type 2 diabetes. According to factor analysis of the lipidomic profile, several species of lipids were found to be correlated with different phenotypes, including diabetes-related C23:2CE, C23:3CE, C23:4CE, ePE36:4, ePE36:5, ePE36:6; race-related (African-American) PI36:1; and sex-related PE34:1 and LPC18:2. The major variance of gene expression profile was not caused by known factors and no significant difference can be directly derived from differential gene expression profile. However, the combination of lipidomic and gene expression analyses allows us to reveal the correlation between the altered lipid profile with significantly enriched pathways, such as one carbon pool by folate, arachidonic acid metabolism, insulin signaling pathway, amino sugar and nucleotide sugar metabolism, propanoate metabolism, and starch and sucrose metabolism. The genes in these pathways showed a good capability to classify diabetes samples. Combined analysis of gene expression and lipidomic profiling reveals type 2 diabetes-associated lipid species and enriched biological pathways in peripheral blood, while gene expression profile does not show direct correlation. Our findings provide a new clue to better understand the mechanism of disordered lipid metabolism in association with type 2 diabetes.
Saiag, P; Gutzmer, R; Ascierto, P A; Maio, M; Grob, J-J; Murawa, P; Dreno, B; Ross, M; Weber, J; Hauschild, A; Rutkowski, P; Testori, A; Levchenko, E; Enk, A; Misery, L; Vanden Abeele, C; Vojtek, I; Peeters, O; Brichard, V G; Therasse, P
2016-10-01
Genomic profiling of tumor tissue may aid in identifying predictive or prognostic gene signatures (GS) in some cancers. Retrospective gene expression profiling of melanoma and non-small-cell lung cancer led to the characterization of a GS associated with clinical benefit, including improved overall survival (OS), following immunization with the MAGE-A3 immunotherapeutic. The goal of the present study was to prospectively evaluate the predictive value of the previously characterized GS. An open-label prospective phase II trial ('PREDICT') in patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma. Of 123 subjects who received the MAGE-A3 immunotherapeutic, 71 (58.7%) displayed the predictive GS (GS+). The 1-year OS rate was 83.1%/83.3% in the GS+/GS- populations. The rate of progression-free survival at 12 months was 5.8%/4.1% in GS+/GS- patients. The median time-to-treatment failure was 2.7/2.4 months (GS+/GS-). There was one complete response (GS-) and two partial responses (GS+). The MAGE-A3 immunotherapeutic was similarly immunogenic in both populations and had a clinically acceptable safety profile. Treatment of patients with MAGE-A3-positive unresectable stage IIIB-C/IV-M1a melanoma with the MAGE-A3 immunotherapeutic demonstrated an overall 1-year OS rate of 83.5%. GS- and GS+ patients had similar 1-year OS rates, indicating that in this study, GS was not predictive of outcome. Unexpectedly, the objective response rate was lower in this study than in other studies carried out in the same setting with the MAGE-A3 immunotherapeutic. Investigation of a GS to predict clinical benefit to adjuvant MAGE-A3 immunotherapeutic treatment is ongoing in another melanoma study.This study is registered at www.clinicatrials.gov NCT00942162. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology.
Cecchi, Lorenzo; Migliorini, Marzia; Cherubini, Chiara; Innocenti, Marzia; Mulinacci, Nadia
2015-02-04
The phenolic profiles of three typical Tuscan olive cultivars, Frantoio, Moraiolo, and Leccino, stored in different conditions (fresh, frozen, and whole lyophilized fruits), have been compared during the ripening period. Our main goals were to evaluate the phenolic content of whole freeze-dried fruits and to test the stability of the corresponding cake in oxidative-stress conditions. The comparison of fresh and whole freeze-dried fruits from the 2012 season gave unexpected results; e.g., oleuropein in lyophilized fruits was up to 20 times higher than in fresh olives with values up to 80.3 g/kg. Over time we noted that the olive pastes obtained from lyophilized olives contained highly stable phenolic compounds, even under strong oxidative stress conditions. Finally, it was also observed that the cake/powder obtained from unripe freeze-dried olives was very poor in oil content and therefore quite suitable for use in nutritional supplements rich in phenolic compounds, such as secoiridoids, which are not widely present in the human diet.
Goicoechea, Héctor C; Olivieri, Alejandro C; Tauler, Romà
2010-03-01
Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible method for processing first-order instrumental data and achieve analyte quantitation in the presence of unexpected interferences. Both for simulated and experimental data sets, the proposed method could correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of analyte concentrations in test samples. Since no information concerning the interferences was present in calibration samples, the proposed multivariate calibration approach including the correlation constraint facilitates the achievement of the so-called second-order advantage for the analyte of interest, which is known to be present for more complex higher-order richer instrumental data. The proposed method is tested using a simulated data set and two experimental data systems, one for the determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
Cui, Dapeng; Dougherty, Kimberly J.; Machacek, David W.; Sawchuk, Michael; Hochman, Shawn; Baro, Deborah J.
2009-01-01
Studies in the developing spinal cord suggest that different motoneuron (MN) cell types express very different genetic programs, but the degree to which adult programs differ is unknown. To compare genetic programs between adult MN columnar cell types, we used laser capture micro-dissection (LCM) and Affymetrix microarrays to create expression profiles for three columnar cell types: lateral and medial MNs from lumbar segments and sympathetic preganglionic motoneurons located in the thoracic intermediolateral nucleus. A comparison of the three expression profiles indicated that ~7% (813/11,552) of the genes showed significant differences in their expression levels. The largest differences were observed between sympathetic preganglionic MNs and the lateral motor column, with 6% (706/11,552) of the genes being differentially expressed. Significant differences in expression were observed for 1.8% (207/11,552) of the genes when comparing sympathetic preganglionic MNs with the medial motor column. Lateral and medial MNs showed the least divergence, with 1.3% (150/11,552) of the genes being differentially expressed. These data indicate that the amount of divergence in expression profiles between identified columnar MNs does not strictly correlate with divergence of function as defined by innervation patterns (somatic/muscle vs. autonomic/viscera). Classification of the differentially expressed genes with regard to function showed that they underpin all fundamental cell systems and processes, although most differentially expressed genes encode proteins involved in signal transduction. Mining the expression profiles to examine transcription factors essential for MN development suggested that many of the same transcription factors participatein combinatorial codes in embryonic and adult neurons, but patterns of expression change significantly. PMID:16317082
Seq-ing answers: uncovering the unexpected in global gene regulation.
Otto, George Maxwell; Brar, Gloria Ann
2018-04-19
The development of techniques for measuring gene expression globally has greatly expanded our understanding of gene regulatory mechanisms in depth and scale. We can now quantify every intermediate and transition in the canonical pathway of gene expression-from DNA to mRNA to protein-genome-wide. Employing such measurements in parallel can produce rich datasets, but extracting the most information requires careful experimental design and analysis. Here, we argue for the value of genome-wide studies that measure multiple outputs of gene expression over many timepoints during the course of a natural developmental process. We discuss our findings from a highly parallel gene expression dataset of meiotic differentiation, and those of others, to illustrate how leveraging these features can provide new and surprising insight into fundamental mechanisms of gene regulation.
Vacuolar CAX1 and CAX3 influence auxin transport in guard cells via regulation of apoplastic pH
USDA-ARS?s Scientific Manuscript database
Cation exchangers CAX1 and CAX3 are vacuolar ion transporters involved in ion homeostasis in plants. Widely expressed in the plant, they mediate calcium transport from the cytosol to the vacuole lumen using the proton gradient across the tonoplast. Here, we report an unexpected role of CAX1 and CAX3...
Face in profile view reduces perceived facial expression intensity: an eye-tracking study.
Guo, Kun; Shaw, Heather
2015-02-01
Recent studies measuring the facial expressions of emotion have focused primarily on the perception of frontal face images. As we frequently encounter expressive faces from different viewing angles, having a mechanism which allows invariant expression perception would be advantageous to our social interactions. Although a couple of studies have indicated comparable expression categorization accuracy across viewpoints, it is unknown how perceived expression intensity and associated gaze behaviour change across viewing angles. Differences could arise because diagnostic cues from local facial features for decoding expressions could vary with viewpoints. Here we manipulated orientation of faces (frontal, mid-profile, and profile view) displaying six common facial expressions of emotion, and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. In comparison with frontal faces, profile faces slightly reduced identification rates for disgust and sad expressions, but significantly decreased perceived intensity for all tested expressions. Although quantitatively viewpoint had expression-specific influence on the proportion of fixations directed at local facial features, the qualitative gaze distribution within facial features (e.g., the eyes tended to attract the highest proportion of fixations, followed by the nose and then the mouth region) was independent of viewpoint and expression type. Our results suggest that the viewpoint-invariant facial expression processing is categorical perception, which could be linked to a viewpoint-invariant holistic gaze strategy for extracting expressive facial cues. Copyright © 2014 Elsevier B.V. All rights reserved.
Vargas, Sergio L.; Ponce, Carolina A.; Gallo, Miriam; Pérez, Francisco; Astorga, J.-Felipe; Bustamante, Rebeca; Chabé, Magali; Durand-Joly, Isabelle; Iturra, Pablo; Miller, Robert F.; Aliouat, El Moukthar; Dei-Cas, Eduardo
2013-01-01
Background. Pneumocystis without obvious accompanying pathology is occasionally reported in autopsied infant lungs. Its prevalence and significance are unknown. Interestingly, this mild infection induces a strong activation of mucus secretion–related genes in young immunocompetent rodents that has not been explored in infants. Excess mucus is induced by multiple airway offenders through nonspecific pathways and would explain a cofactor role of Pneumocystis in respiratory disease. We undertook characterization of the prevalence of Pneumocystis and associated mucus in infant lungs. Methods. Samples from 128 infants (mean age, 101 days) who died suddenly and unexpectedly in Santiago during 1999–2004 were examined for Pneumocystis using nested polymerase chain reaction (nPCR) amplification of the P. jirovecii mtLSU ribosomal RNA gene and immunofluorescence microscopy (IF). Pneumocystis-negative infants 28 days and older and their age-closest positives were studied for MUC5AC expression and Pneumocystis burden by Western blot and quantitative PCR, respectively. Results. Pneumocystis DNA was detected by nPCR in 105 of the 128 infants (82.0%) and Pneumocystis organisms were visualized by IF in 99 (94.3%) of the DNA-positive infants. The infection was commonest at 3–4 months with 40 of 41 (97.6%) infants of that age testing positive. MUC5AC was significantly increased in Pneumocystis-positive tissue specimens (P = .013). Death was unexplained in 113 (88.3%) infants; Pneumocystis was detected in 95 (84.0%) of them vs 10 of 15 (66.7%) with explained death (P = .28). Conclusions. A highly focal Pneumocystis infection associated to increased mucus expression is almost universally present in the lungs of infants dying unexpectedly in the community regardless of autopsy diagnosis. PMID:23074306
2013-01-01
Background Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. Results This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization. The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Conclusions Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be potentially used to identify genes which have the same patterns or biological processes, and help facing the present and forthcoming challenges of data analysis in functional genomics. PMID:24134721
Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-01-01
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma. PMID:25971279
Cai, Jinquan; Chen, Jing; Zhang, Wei; Yang, Pei; Zhang, Chuanbao; Li, Mingyang; Yao, Kun; Wang, Hongjun; Li, Qingbin; Jiang, Chuanlu; Jiang, Tao
2015-07-20
Loss of ATRX leads to epigenetic alterations, including abnormal levels of DNA methylation at repetitive elements such as telomeres in murine cells. We conducted an extensive DNA methylation and mRNA expression profile study on a cohort of 82 patients with astrocytic tumors to study whether ATRX expression was associated with DNA methylation level in astrocytic tumors and in which cellular functions it participated. We observed that astrocytic tumors with lower ATRX expression harbored higher DNA methylation level at chromatin end and astrocytic tumors with ATRX-low had distinct gene expression profile and DNA methylation profile compared with ATRX-high tumors. Then, we uncovered that several ATRX associated biological functions in the DNA methylation and mRNA expression profile (GEP), including apoptotic process, DNA-dependent positive regulation of transcription, chromatin modification, and observed that ATRX expression was companied by MGMT methylation and expression. We also found that loss of ATRX caused by siRNA induced apoptotic cells increasing, reduced tumor cell proliferation and repressed the cell migration in glioma cells. Our results showed ATRX-related regulatory functions of the combined profiles from DNA methylation and mRNA expression in astrocytic tumors, and delineated that loss of ATRX impacted biological behaviors of astrocytic tumor cells, providing important resources for future dissection of ATRX role in glioma.
Repp, B H
1999-03-01
Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.
Woods, Matthew W; Zahoor, Muhammad Atif; Dizzell, Sara; Verschoor, Chris P; Kaushic, Charu
2018-01-01
Medroxyprogesterone acetate (MPA), a progestin-based hormonal contraceptive designed to mimic progesterone, has been linked to increased human immunodeficiency virus (HIV-1) susceptibility. Genital epithelial cells (GECs) form the mucosal lining of the female genital tract (FGT) and provide the first line of protection against HIV-1. The impact of endogenous sex hormones or MPA on the gene expression profile of GECs has not been comprehensively documented. Using microarray analysis, we characterized the transcriptional profile of primary endometrial epithelial cells grown in physiological levels of E2, P4, and MPA. Each hormone treatment altered the gene expression profile of GECs in a unique manner. Interestingly, although MPA is a progestogen, the gene expression profile induced by it was distinct from P4. MPA increased gene expression of genes related to inflammation and cholesterol synthesis linked to innate immunity and HIV-1 susceptibility. The analysis of gene expression profiles provides insights into the effects of sex hormones and MPA on GECs and allows us to posit possible mechanisms of the MPA-mediated increase in HIV-1 acquisition. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The rationale for this research is: i) Protein expression changes with life stage, disease, tissue type and environmental stressors; ii) Technology allows rapid analysis of large numbers of proteins to provide protein expression profiles; iii) Protein profiles are used as specifi...
A rapidly evolving secretome builds and patterns a sea shell
Jackson, Daniel J; McDougall, Carmel; Green, Kathryn; Simpson, Fiona; Wörheide, Gert; Degnan, Bernard M
2006-01-01
Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl) deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables diversification of shell strength and design, and as such must contribute to the variety of adaptive architectures and colors found in mollusk shells. The composition of this novel mantle-specific secretome suggests that there are significant molecular differences in the ways in which gastropods synthesize their shells. PMID:17121673
Formulations for children: problems and solutions
Batchelor, Hannah K; Marriott, John F
2015-01-01
Paediatric formulation design is complex as there is a need to understand the developmental physiological changes that occur during childhood and their impact on the absorption of drugs. Paediatric dose adjustments are usually based on achieving pharmacokinetic or pharmacodynamic profiles equivalent to those achieved in adult populations. However, differences in the way in which children handle adult products or the use of bespoke paediatric formulations can result in unexpected pharmacokinetic drug profiles with altered clinical efficacy. Differences in drug formulations need to be understood by healthcare professionals involved in the prescribing, administration or dispensing of drugs to children such that appropriate advice is given to ensure that therapeutic outcomes are achieved. This issue is not confined to oral medicines but is applicable for all routes of administration encountered in paediatric therapy. PMID:25855822
Cohen, Hagai; Amir, Rachel
2017-05-01
Higher methionine levels in transgenic Arabidopsis seeds trigger the accumulation of stress-related transcripts and primary metabolites. These responses depend on the levels of methionine within seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. To reveal the regulatory role of the Arabidopsis thaliana CYSTATHIONINE γ-SYNTHASE (AtCGS), methionine main regulatory enzyme, in the synthesis of methionine in seeds, we generated transgenic RNAi seeds with targeted repression of AtCGS during late developmental stages of seeds. Unexpectedly, these seeds accumulated 2.5-fold more methionine than wild-type seeds. To study the nature of these seeds, transcriptomic and primary metabolite profiling were employed using Affymetrix ATH1 microarray and gas chromatography-mass spectrometry analyses, respectively. The results were compared to transgenic Arabidopsis seeds expressing a feedback-insensitive form of AtCGS (named SSE-AtD-CGS) that were previously showed to accumulate up to sixfold more soluble methionine than wild-type seeds. Statistical assessments showed that the nature of transcriptomic and metabolic changes that occurred in RNAi::AtCGS seeds were relatively similar, but to lesser extents, to those previously reported for SSE-AtD-CGS seeds, and linked to the induction of global transcriptomic and metabolic responses associated with stronger desiccation stress. As transgenic seeds obtained by both manipulations exhibited higher, but different methionine levels, the data strongly suggest that these changes depend on the absolute amounts of methionine within seeds and much less to the expression level of AtCGS.
Variation-preserving normalization unveils blind spots in gene expression profiling
Roca, Carlos P.; Gomes, Susana I. L.; Amorim, Mónica J. B.; Scott-Fordsmand, Janeck J.
2017-01-01
RNA-Seq and gene expression microarrays provide comprehensive profiles of gene activity, but lack of reproducibility has hindered their application. A key challenge in the data analysis is the normalization of gene expression levels, which is currently performed following the implicit assumption that most genes are not differentially expressed. Here, we present a mathematical approach to normalization that makes no assumption of this sort. We have found that variation in gene expression is much larger than currently believed, and that it can be measured with available assays. Our results also explain, at least partially, the reproducibility problems encountered in transcriptomics studies. We expect that this improvement in detection will help efforts to realize the full potential of gene expression profiling, especially in analyses of cellular processes involving complex modulations of gene expression. PMID:28276435
Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Costumero, Víctor; Ventura-Campos, Noelia; Bustamante, Juan Carlos; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso
2016-01-01
A "disinhibited" cognitive profile has been proposed for individuals with high reward sensitivity, characterized by increased engagement in goal-directed responses and reduced processing of negative or unexpected cues, which impairs adequate behavioral regulation after feedback in these individuals. This pattern is manifested through deficits in inhibitory control and/or increases in RT variability. In the present work, we aimed to test whether this profile is associated with the activity of functional networks during a stop-signal task using independent component analysis (ICA). Sixty-one participants underwent fMRI while performing a stop-signal task, during which a manual response had to be inhibited. ICA was used to mainly replicate the functional networks involved in the task (Zhang and Li, 2012): two motor networks involved in the go response, the left and right fronto-parietal networks for stopping, a midline error-processing network, and the default-mode network (DMN), which was further subdivided into its anterior and posterior parts. Reward sensitivity was mainly associated with greater activity of motor networks, reduced activity in the midline network during correct stop trials and, behaviorally, increased RT variability. All these variables explained 36% of variance of the SR scores. This pattern of associations suggests that reward sensitivity involves greater motor engagement in the dominant response, more distractibility and reduced processing of salient or unexpected events, which may lead to disinhibited behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Sex differences in attention to disgust facial expressions.
Kraines, Morganne A; Kelberer, Lucas J A; Wells, Tony T
2017-12-01
Research demonstrates that women experience disgust more readily and with more intensity than men. The experience of disgust is associated with increased attention to disgust-related stimuli, but no prior study has examined sex differences in attention to disgust facial expressions. We hypothesised that women, compared to men, would demonstrate increased attention to disgust facial expressions. Participants (n = 172) completed an eye tracking task to measure visual attention to emotional facial expressions. Results indicated that women spent more time attending to disgust facial expressions compared to men. Unexpectedly, we found that men spent significantly more time attending to neutral faces compared to women. The findings indicate that women's increased experience of emotional disgust also extends to attention to disgust facial stimuli. These findings may help to explain sex differences in the experience of disgust and in diagnoses of anxiety disorders in which disgust plays an important role.
Ekema-Agbaw, Michael L; McCutchen, Jenna A; Geller, E Scott
2016-01-01
Two studies examined interventions to increase the frequency of gratitude expression among college students in two large lecture classes of an Introduction to Psychology course at a large university in southwest Virginia. Both studies evaluated the impact of a writing exercise designed to increase intentions to express gratitude in a prescribed manner. In addition, participants in both studies were given one week to express gratitude to people who performed prosocial behavior. Gratitude expression was assessed by self-report on a survey administered during the psychology class. In both studies, intentions to thank another person for a kind act were significantly higher in the Intervention class than in the Control class, but self-reported expressions of gratitude were significantly higher in the Control class than in the Intervention class. This was an unexpected "countercontrol effect." Directions for future research are discussed, as well as theoretical/methodological explanations.
Gene expression profiling of intestinal regeneration in the sea cucumber
Ortiz-Pineda, Pablo A; Ramírez-Gómez, Francisco; Pérez-Ortiz, Judit; González-Díaz, Sebastián; Santiago-De Jesús, Francisco; Hernández-Pasos, Josue; Del Valle-Avila, Cristina; Rojas-Cartagena, Carmencita; Suárez-Castillo, Edna C; Tossas, Karen; Méndez-Merced, Ana T; Roig-López, José L; Ortiz-Zuazaga, Humberto; García-Arrarás, José E
2009-01-01
Background Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools. For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. Results In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. Conclusion Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes. PMID:19505337
Kim, Soung Min; Jeong, Dasul; Kim, Min Keun; Lee, Sang Shin; Lee, Suk Keun
2017-08-08
Oral squamous cell carcinoma (OSCC) is one of the most dangerous cancers in the body, producing serious complications with individual behaviors. Many different pathogenetic factors are involved in the carcinogenesis of OSCC. Cancer cells derived from oral keratinocytes can produce different carcinogenic signaling pathways through differences in protein expression, but their protein expression profiles cannot be easily explored with ordinary detection methods. The present study compared the protein expression profiles between two different types of OSCCs, which were analyzed through immunoprecipitation high-performance liquid chromatography (IP-HPLC). Two types of squamous cell carcinoma (SCC) occurred in a mandibular (SCC-1) and maxillary gingiva (SCC-2), but their clinical features and progression were quite different from each other. SCC-1 showed a large gingival ulceration with severe halitosis and extensive bony destruction, while SCC-2 showed a relatively small papillary gingival swelling but rapidly grew to form a large submucosal mass, followed by early cervical lymph node metastasis. In the histological observation, SCC-1 was relatively well differentiated with a severe inflammatory reaction, while SCC-2 showed severely infiltrative growth of each cancer islets accompanied with a mild inflammatory reaction. IP-HPLC analysis revealed contrary protein expression profiles analyzed by 72 different oncogenic proteins. SCC-1 showed more cellular apoptosis and invasive growth than SCC-2 through increased expression of caspases, MMPs, p53 signaling, FAS signaling, TGF-β1 signaling, and angiogenesis factors, while SCC-2 showed more cellular growth and survival than SCC-1 through the increased expression of proliferating factors, RAS signaling, eIF5A signaling, WNT signaling, and survivin. The increased trends of cellular apoptosis and invasiveness in the protein expression profiles of SCC-1 were implicative of its extensive gingival ulceration and bony destruction, while the increased trends of cellular proliferation and survival in the protein profile of SCC-2 were implicative of its rapid growing tumor mass and early lymph node metastasis. These analyses of the essential oncogenic protein expression profiles in OSCC provide important information for genetic counseling or customized gene therapy in cancer treatment. Therefore, protein expression profile analysis through IP-HPLC is helpful not only for the molecular genetic diagnosis of cancer but also in identifying target molecules for customized gene therapy in near future.
Katagiri, Fumiaki; Glazebrook, Jane
2003-01-01
A major task in computational analysis of mRNA expression profiles is definition of relationships among profiles on the basis of similarities among them. This is generally achieved by pattern recognition in the distribution of data points representing each profile in a high-dimensional space. Some drawbacks of commonly used pattern recognition algorithms stem from their use of a globally linear space and/or limited degrees of freedom. A pattern recognition method called Local Context Finder (LCF) is described here. LCF uses nonlinear dimensionality reduction for pattern recognition. Then it builds a network of profiles based on the nonlinear dimensionality reduction results. LCF was used to analyze mRNA expression profiles of the plant host Arabidopsis interacting with the bacterial pathogen Pseudomonas syringae. In one case, LCF revealed two dimensions essential to explain the effects of the NahG transgene and the ndr1 mutation on resistant and susceptible responses. In another case, plant mutants deficient in responses to pathogen infection were classified on the basis of LCF analysis of their profiles. The classification by LCF was consistent with the results of biological characterization of the mutants. Thus, LCF is a powerful method for extracting information from expression profile data. PMID:12960373
Analyzing gene expression time-courses based on multi-resolution shape mixture model.
Li, Ying; He, Ye; Zhang, Yu
2016-11-01
Biological processes actually are a dynamic molecular process over time. Time course gene expression experiments provide opportunities to explore patterns of gene expression change over a time and understand the dynamic behavior of gene expression, which is crucial for study on development and progression of biology and disease. Analysis of the gene expression time-course profiles has not been fully exploited so far. It is still a challenge problem. We propose a novel shape-based mixture model clustering method for gene expression time-course profiles to explore the significant gene groups. Based on multi-resolution fractal features and mixture clustering model, we proposed a multi-resolution shape mixture model algorithm. Multi-resolution fractal features is computed by wavelet decomposition, which explore patterns of change over time of gene expression at different resolution. Our proposed multi-resolution shape mixture model algorithm is a probabilistic framework which offers a more natural and robust way of clustering time-course gene expression. We assessed the performance of our proposed algorithm using yeast time-course gene expression profiles compared with several popular clustering methods for gene expression profiles. The grouped genes identified by different methods are evaluated by enrichment analysis of biological pathways and known protein-protein interactions from experiment evidence. The grouped genes identified by our proposed algorithm have more strong biological significance. A novel multi-resolution shape mixture model algorithm based on multi-resolution fractal features is proposed. Our proposed model provides a novel horizons and an alternative tool for visualization and analysis of time-course gene expression profiles. The R and Matlab program is available upon the request. Copyright © 2016 Elsevier Inc. All rights reserved.
Kayano, Mitsunori; Matsui, Hidetoshi; Yamaguchi, Rui; Imoto, Seiya; Miyano, Satoru
2016-04-01
High-throughput time course expression profiles have been available in the last decade due to developments in measurement techniques and devices. Functional data analysis, which treats smoothed curves instead of originally observed discrete data, is effective for the time course expression profiles in terms of dimension reduction, robustness, and applicability to data measured at small and irregularly spaced time points. However, the statistical method of differential analysis for time course expression profiles has not been well established. We propose a functional logistic model based on elastic net regularization (F-Logistic) in order to identify the genes with dynamic alterations in case/control study. We employ a mixed model as a smoothing method to obtain functional data; then F-Logistic is applied to time course profiles measured at small and irregularly spaced time points. We evaluate the performance of F-Logistic in comparison with another functional data approach, i.e. functional ANOVA test (F-ANOVA), by applying the methods to real and synthetic time course data sets. The real data sets consist of the time course gene expression profiles for long-term effects of recombinant interferon β on disease progression in multiple sclerosis. F-Logistic distinguishes dynamic alterations, which cannot be found by competitive approaches such as F-ANOVA, in case/control study based on time course expression profiles. F-Logistic is effective for time-dependent biomarker detection, diagnosis, and therapy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...
21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a...
Expression and secretory profile of buffalo fetal fibroblasts and Wharton's jelly feeder layers.
Parmar, Mehtab S; Mishra, Smruti Ranjan; Somal, Anjali; Pandey, Sriti; Kumar, G Sai; Sarkar, Mihir; Chandra, Vikash; Sharma, G Taru
2017-05-01
The present study examined the comparative expression and secretory profile of vital signaling molecules in buffalo fetal fibroblasts (BFF) and Wharton's jelly (BWJ) feeder layers at different passages. Both feeder layers were expanded up to 8th passage. Signaling molecules viz. bone morphogenetic protein 4 (BMP4), fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF) and transforming growth factor beta 1 (TGFB1) and pluripotency-associated transcriptional factors (POU5F1, SOX2, NANOG, KLF4, MYC and FOXD3) were immunolocalized in the both feeder types. A clear variation in the expression pattern of key signaling molecules with passaging was registered in both feeders compared to primary culture (0 passage). The conditioned media (CM) was collected from different passages (2, 4, 6, 8) of both the feeder layers and was quantified using enzyme-linked immunosorbent assay (ELISA). Concomitant to expression profile, protein quantification also revealed differences in the concentration of signaling molecules at different time points. Conjointly, expression and secretory profile revealed that 2nd passage of BFF and 6th passage of BWJ exhibit optimal levels of key signaling molecules thus may be selected as best passages for embryonic stem cells (ESCs) propagation. Further, the effect of mitomycin-C (MMC) treatment on the expression profile of signaling molecules in the selected passages of BFF and BWJ revealed that MMC modulates the expression profile of these molecules. In conclusion, the results indicate that feeder layers vary in expression and secretory pattern of vital signaling molecules with passaging. Based on these findings, the appropriate feeder passages may be selected for the quality propagation of buffalo ESCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Obermeier, Christian; Hosseini, Bashir; Friedt, Wolfgang; Snowdon, Rod
2009-01-01
Background Serial analysis of gene expression (LongSAGE) was applied for gene expression profiling in seeds of oilseed rape (Brassica napus ssp. napus). The usefulness of this technique for detailed expression profiling in a non-model organism was demonstrated for the highly complex, neither fully sequenced nor annotated genome of B. napus by applying a tag-to-gene matching strategy based on Brassica ESTs and the annotated proteome of the closely related model crucifer A. thaliana. Results Transcripts from 3,094 genes were detected at two time-points of seed development, 23 days and 35 days after pollination (DAP). Differential expression showed a shift from gene expression involved in diverse developmental processes including cell proliferation and seed coat formation at 23 DAP to more focussed metabolic processes including storage protein accumulation and lipid deposition at 35 DAP. The most abundant transcripts at 23 DAP were coding for diverse protease inhibitor proteins and proteases, including cysteine proteases involved in seed coat formation and a number of lipid transfer proteins involved in embryo pattern formation. At 35 DAP, transcripts encoding napin, cruciferin and oleosin storage proteins were most abundant. Over both time-points, 18.6% of the detected genes were matched by Brassica ESTs identified by LongSAGE tags in antisense orientation. This suggests a strong involvement of antisense transcript expression in regulatory processes during B. napus seed development. Conclusion This study underlines the potential of transcript tagging approaches for gene expression profiling in Brassica crop species via EST matching to annotated A. thaliana genes. Limits of tag detection for low-abundance transcripts can today be overcome by ultra-high throughput sequencing approaches, so that tag-based gene expression profiling may soon become the method of choice for global expression profiling in non-model species. PMID:19575793
Mäurer, André P; Mehlitz, Adrian; Mollenkopf, Hans J; Meyer, Thomas F
2007-01-01
The obligate intracellular, gram-negative bacterium Chlamydophila pneumoniae (Cpn) has impact as a human pathogen. Little is known about changes in the Cpn transcriptome during its biphasic developmental cycle (the acute infection) and persistence. The latter stage has been linked to chronic diseases. To analyze Cpn CWL029 gene expression, we designed a pathogen-specific oligo microarray and optimized the extraction method for pathogen RNA. Throughout the acute infection, ratio expression profiles for each gene were generated using 48 h post infection as a reference. Based on these profiles, significantly expressed genes were separated into 12 expression clusters using self-organizing map clustering and manual sorting into the “early”, “mid”, “late”, and “tardy” cluster classes. The latter two were differentiated because the “tardy” class showed steadily increasing expression at the end of the cycle. The transcriptome of the Cpn elementary body (EB) and published EB proteomics data were compared to the cluster profile of the acute infection. We found an intriguing association between “late” genes and genes coding for EB proteins, whereas “tardy” genes were mainly associated with genes coding for EB mRNA. It has been published that iron depletion leads to Cpn persistence. We compared the gene expression profiles during iron depletion–mediated persistence with the expression clusters of the acute infection. This led to the finding that establishment of iron depletion–mediated persistence is more likely a mid-cycle arrest in development rather than a completely distinct gene expression pattern. Here, we describe the Cpn transcriptome during the acute infection, differentiating “late” genes, which correlate to EB proteins, and “tardy” genes, which lead to EB mRNA. Expression profiles during iron mediated–persistence led us to propose the hypothesis that the transcriptomic “clock” is arrested during acute mid-cycle. PMID:17590080
2015-10-01
1 Award Number: W81XWH-10-1-0585 TITLE: A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors...TITLE AND SUBTITLE A Gene Expression Profile of BRCAness That Predicts for Responsiveness to Platinum and PARP Inhibitors 5a. CONTRACT NUMBER W81XWH...BRCAlike, i.e. not HR deficient and are resistant to PARPis but are sensitive to platinum . These tumors exhibit alterations in another DNA repair
2012-01-01
components of the endomembrane system, including endoplasmic reticulum (ER) and Golgi apparatus were significantly down-regulated. As a result of...impairment in dopaminergic functions (Lucot JB, personal communication). Interestingly, data on sarin exposures have shown inhibition of new memory...quite unexpected that the endoplasmic reticulum (ER) and Golgi apparatus , the subcellular organelles essential for processing (e.g., folding, post
Finlay, Barbara L; Syal, Supriya
2014-12-01
Sociality and cooperation are benefits to human cultures but may carry unexpected costs. We suggest that both the human experience of pain and the expression of distress may result from many causes not experienced as painful in our close primate relatives, because human ancestors motivated to ask for help survived in greater numbers than either the thick-skinned or the stoic. Copyright © 2014 Elsevier Ltd. All rights reserved.
Brodsky, Leonid; Leontovich, Andrei; Shtutman, Michael; Feinstein, Elena
2004-01-01
Mathematical methods of analysis of microarray hybridizations deal with gene expression profiles as elementary units. However, some of these profiles do not reflect a biologically relevant transcriptional response, but rather stem from technical artifacts. Here, we describe two technically independent but rationally interconnected methods for identification of such artifactual profiles. Our diagnostics are based on detection of deviations from uniformity, which is assumed as the main underlying principle of microarray design. Method 1 is based on detection of non-uniformity of microarray distribution of printed genes that are clustered based on the similarity of their expression profiles. Method 2 is based on evaluation of the presence of gene-specific microarray spots within the slides’ areas characterized by an abnormal concentration of low/high differential expression values, which we define as ‘patterns of differentials’. Applying two novel algorithms, for nested clustering (method 1) and for pattern detection (method 2), we can make a dual estimation of the profile’s quality for almost every printed gene. Genes with artifactual profiles detected by method 1 may then be removed from further analysis. Suspicious differential expression values detected by method 2 may be either removed or weighted according to the probabilities of patterns that cover them, thus diminishing their input in any further data analysis. PMID:14999086
Whitney, Heather M; Michaelson, Louise V; Sayanova, Olga; Pickett, John A; Napier, Johnathan A
2003-10-01
The Ranunculaceae are known to accumulate a wide range of unusual fatty acids in their seed lipids, and this variability has been advocated as a taxonomic marker. The Anemone species, Anemone leveillei L. and Anemone rivularis Buch.-Ham., have previously been reported to accumulate Delta5-desaturated fatty acids in their seed tissue [K. Aitzetmüller (1995) Plant Syst Evol 9:229-240]. Two cDNAs, AL1 and AL2, with similarity to plant cytochrome b5-fusion "front-end" desaturases were isolated from developing seeds of A. leveillei and their function identified by expression in Saccharomyces cerevisiae. AL2 was characterised as a sphingolipid long-chain-base Delta8-desaturase, while AL1 acted as a fatty acid desaturase. However, AL1 did not produce Delta5-desaturated fatty acids as expected; instead, when expressed in transgenic S. cerevisiae or Arabidopsis thaliana this enzyme was functionally characterised as a Delta6-desaturase. Northern analysis confirmed the expression of this gene in seed tissue and leaf tissue of A. leveillei, though Delta6-desaturated fatty acids were found to accumulate only in the leaf tissue. The unexpected characterisation of a Delta6-desaturase in A. leveillei has implications for the use of fatty acids in chemotaxonomic studies. This is also the first report of a higher-plant Delta6-desaturase from a family other than the Boraginaceae.
Essential and Unexpected Role of YY1 to Promote Mesodermal Cardiac Differentiation
Gregoire, Serge; Karra, Ravi; Passer, Derek; Deutsch, Marcus-Andre; Krane, Markus; Feistritzer, Rebecca; Sturzu, Anthony; Domian, Ibrahim; Saga, Yumiko; Wu, Sean M.
2013-01-01
Rational Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). Objective To identify novel regulators of mesodermal cardiac lineage commitment. Methods and Results We performed a bioinformatic-based transcription factor binding site analysis on upstream promoter regions of genes that are enriched in embryonic stem cell (ESC)-derived CPCs. From 32 candidate transcription factors screened, we found that YY1, a repressor of sarcomeric gene expression, is present in CPCs in vivo. Interestingly, we uncovered the ability of YY1 to transcriptionally activate Nkx2.5, a key marker of early cardiogenic commitment. YY1 regulates Nkx2.5 expression via a 2.1 kb cardiac-specific enhancer as demonstrated by in vitro luciferase-based assays and in vivo chromatin immunoprecipitation (ChIP) and genome-wide sequencing analysis. Furthermore, the ability of YY1 to activate Nkx2.5 expression depends on its cooperative interaction with Gata4 at a nearby chromatin. Cardiac mesoderm-specific loss-of-function of YY1 resulted in early embryonic lethality. This was corroborated in vitro by ESC-based assays where we show that the overexpression of YY1 enhanced the cardiogenic differentiation of ESCs into CPCs. Conclusion These results demonstrate an essential and unexpected role for YY1 to promote cardiogenesis as a transcriptional activator of Nkx2.5 and other CPC-enriched genes. PMID:23307821
Zhan, Siyuan; Zhao, Wei; Song, Tianzeng; Dong, Yao; Guo, Jiazhong; Cao, Jiaxue; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping
2018-01-01
Muscle growth and development from fetal to neonatal stages consist of a series of delicately regulated and orchestrated changes in expression of genes. In this study, we performed whole transcriptome profiling based on RNA-Seq of caprine longissimus dorsi muscle tissue obtained from prenatal stages (days 45, 60, and 105 of gestation) and neonatal stage (the 3-day-old newborn) to identify genes that are differentially expressed and investigate their temporal expression profiles. A total of 3276 differentially expressed genes (DEGs) were identified (Q value < 0.01). Time-series expression profile clustering analysis indicated that DEGs were significantly clustered into eight clusters which can be divided into two classes (Q value < 0.05), class I profiles with downregulated patterns and class II profiles with upregulated patterns. Based on cluster analysis, GO enrichment analysis found that 75, 25, and 8 terms to be significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in class I profiles, while 35, 21, and 8 terms to be significantly enriched in BP, CC, and MF in class II profiles. KEGG pathway analysis revealed that DEGs from class I profiles were significantly enriched in 22 pathways and the most enriched pathway was Rap1 signaling pathway. DEGs from class II profiles were significantly enriched in 17 pathways and the mainly enriched pathway was AMPK signaling pathway. Finally, six selected DEGs from our sequencing results were confirmed by qPCR. Our study provides a comprehensive understanding of the molecular mechanisms during goat skeletal muscle development from fetal to neonatal stages and valuable information for future studies of muscle development in goats.
Li, Bing; Shi, Xiao-Yu; Liao, Dai-Xiang; Cao, Bang-Rong; Luo, Cheng-Hua; Cheng, Shu-Jun
2015-01-01
There are still no absolute parameters predicting progression of adenoma into cancer. The present study aimed to characterize functional differences on the multistep carcinogenetic process from the adenoma-carcinoma sequence. All samples were collected and mRNA expression profiling was performed by using Agilent Microarray high-throughput gene-chip technology. Then, the characteristics of mRNA expression profiles of adenoma-carcinoma sequence were described with bioinformatics software, and we analyzed the relationship between gene expression profiles of adenoma-adenocarcinoma sequence and clinical prognosis of colorectal cancer. The mRNA expressions of adenoma-carcinoma sequence were significantly different between high-grade intraepithelial neoplasia group and adenocarcinoma group. The biological process of gene ontology function enrichment analysis on differentially expressed genes between high-grade intraepithelial neoplasia group and adenocarcinoma group showed that genes enriched in the extracellular structure organization, skeletal system development, biological adhesion and itself regulated growth regulation, with the P value after FDR correction of less than 0.05. In addition, IPR-related protein mainly focused on the insulin-like growth factor binding proteins. The variable trends of gene expression profiles for adenoma-carcinoma sequence were mainly concentrated in high-grade intraepithelial neoplasia and adenocarcinoma. The differentially expressed genes are significantly correlated between high-grade intraepithelial neoplasia group and adenocarcinoma group. Bioinformatics analysis is an effective way to study the gene expression profiles in the adenoma-carcinoma sequence, and may provide an effective tool to involve colorectal cancer research strategy into colorectal adenoma or advanced adenoma.
Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus.
Cha, Jeeyeon; Burnum-Johnson, Kristin E; Bartos, Amanda; Li, Yingju; Baker, Erin S; Tilton, Susan C; Webb-Robertson, Bobbie-Jo M; Piehowski, Paul D; Monroe, Matthew E; Jegga, Anil G; Murata, Shigeo; Hirota, Yasushi; Dey, Sudhansu K
2015-06-12
Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Zajaczkowski, Esmi L; Zhao, Qiong-Yi; Zhang, Zong Hong; Li, Xiang; Wei, Wei; Marshall, Paul R; Leighton, Laura J; Nainar, Sarah; Feng, Chao; Spitale, Robert C; Bredy, Timothy W
2018-06-15
Transcriptome-wide expression profiling of neurons has provided important insights into the underlying molecular mechanisms and gene expression patterns that transpire during learning and memory formation. However, there is a paucity of tools for profiling stimulus-induced RNA within specific neuronal cell populations. A bioorthogonal method to chemically label nascent (i.e., newly transcribed) RNA in a cell-type-specific and temporally controlled manner, which is also amenable to bioconjugation via click chemistry, was recently developed and optimized within conventional immortalized cell lines. However, its value within a more fragile and complicated cellular system such as neurons, as well as for transcriptome-wide expression profiling, has yet to be demonstrated. Here, we report the visualization and sequencing of activity-dependent nascent RNA derived from neurons using this labeling method. This work has important implications for improving transcriptome-wide expression profiling and visualization of nascent RNA in neurons, which has the potential to provide valuable insights into the mechanisms underlying neural plasticity, learning, and memory.
Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K; Lukacs, Peter; Gawali, Vaibhavkumar S; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter
2013-12-01
The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licensed as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Nav1.5 sodium and Cav1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Glud, Martin; Klausen, Mikkel; Gniadecki, Robert; Rossing, Maria; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T
2009-05-01
MicroRNAs (miRNAs) are small, noncoding RNA molecules that regulate cellular differentiation, proliferation, and apoptosis. MiRNAs are expressed in a developmentally regulated and tissue-specific manner. Aberrant expression may contribute to pathological processes such as cancer, and miRNA may therefore serve as biomarkers that may be useful in a clinical environment for diagnosis of various diseases. Most miRNA profiling studies have used fresh tissue samples. However, in some types of cancer, including malignant melanoma, fresh material is difficult to obtain from primary tumors, and most surgical specimens are formalin fixed and paraffin embedded (FFPE). To explore whether FFPE material would be suitable for miRNA profiling in melanocytic lesions, we compared miRNA expression patterns in FFPE versus fresh frozen samples, obtained from 15 human melanocytic nevi. Out of microarray data, we identified 84 miRNAs that were expressed in both types of samples and represented an miRNA profile of melanocytic nevi. Our results showed a high correlation in miRNA expression (Spearman r-value of 0.80) between paired FFPE and fresh frozen material. The data were further validated by quantitative RT-PCR. In conclusion, FFPE specimens of melanocytic lesions are suitable as a source for miRNA microarray profiling.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Bill, M.; Chakraborty, R.; Brodie, E.; Williams, K. H.
2016-12-01
In this study, we sought to better understand how natural organic matter fuels microbial communities in the anoxic subsurface at the Rifle (CO) site. We conducted a 20-day microcosm experiment with naturally reduced zone (NRZ) sediments and collected samples every 5 days for omics (metagenome and metatranscriptome) and geochemical measurements. No electron donors were added other than the NRZ sediment, which is enriched in buried woody plant material. The microcosms were constructed and incubated under anaerobic conditions in serum bottles with a N2 headspace. Biogeochemical measurements indicated that the decomposition of native organic matter occurred in different phases, including mineralization of dissolved organic carbon (DOC) to CO2 during the first week of incubation, followed by a pulse of acetogenesis that dominated carbon flux after 2 weeks. The depletion of DOC over time was strongly correlated with increases in expression of many genes associated with heterotrophy (e.g., amino acid, fatty acid, and carbohydrate metabolism) belonging to a Hydrogenophaga strain that accounted for a relatively large percentage ( 8%) of the metatranscriptome. This Hydrogenophaga strain also expressed genes indicative of chemolithoautotrophy, including CO2 fixation (RubisCO), H2 oxidation, S-compound oxidation, and denitrification. The pulse of acetogenesis appears to have been collectively catalyzed by a number of different organisms and metabolisms, most prominently pyruvate:ferredoxin oxidoreductase. Unexpected genes were identified among the most highly expressed (>98th percentile) transcripts, including acetone carboxylase and cell wall-associated hydrolases, some of which are known to act on peptidoglycan. Many of the most highly expressed hydrolases belonged to a Ca. Bathyarchaeota strain and may have been associated with scavenging of bacterial biomass. Overall, observed metabolism ranged far beyond the expected fermentation of plant-derived organic matter.
NASA Astrophysics Data System (ADS)
Beller, H. R.; Jewell, T. N. M.; Karaoz, U.; Banfield, J. F.; Brodie, E.; Williams, K. H.
2015-12-01
Modern molecular ecology techniques are revealing the metabolic potential of uncultivated microorganisms, but there is still much to be learned about the actual biogeochemical roles of microbes that have cultivated relatives. Here, we present metatranscriptomic and metagenomic data from a field study that provides evidence of coupled redox processes that have not been documented in cultivated relatives and, indeed, represent strains with metabolic traits that are novel with respect to closely related isolates. The data come from omics analysis of groundwater samples collected during an experiment in which nitrate (a native electron acceptor) was injected into a perennially suboxic aquifer in Rifle (CO). Transcriptional data indicated that just two groups of chemolithoautotrophic bacteria accounted for a very large portion (~80%) of overall community gene expression: (1) members of the Fe(II)-oxidizing Gallionellaceae family and (2) strains of the S-oxidizing species, Sulfurimonas denitrificans. Metabolic lifestyles for Gallionellaceae strains that were novel compared to cultivated representatives included nitrate-dependent Fe(II) oxidation and S oxidation. Evidence for these metabolisms included highly correlated temporal expression in binned data of nitrate reductase (e.g., narGHI) genes (which have never been reported in Gallionellaceae genomes) and Fe(II) oxidation genes (e.g., mtoA) or S oxidation genes (e.g., dsrE, aprA). Of the two most active strains of S. denitrificans, only one showed strong expression of S oxidation genes, whereas the other was apparently using an unexpected (as-yet unidentified) primary electron donor. Transcriptional data added considerable interpretive value to this study, as (1) metagenomic data would not have highlighted these organisms, which had a disproportionately large role in community metabolism relative to their populations, and (2) co-expression of coupled pathway genes could not be predicted based solely on metagenomic data.
MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.
Blenkiron, Cherie; Goldstein, Leonard D; Thorne, Natalie P; Spiteri, Inmaculada; Chin, Suet-Feung; Dunning, Mark J; Barbosa-Morais, Nuno L; Teschendorff, Andrew E; Green, Andrew R; Ellis, Ian O; Tavaré, Simon; Caldas, Carlos; Miska, Eric A
2007-01-01
MicroRNAs (miRNAs), a class of short non-coding RNAs found in many plants and animals, often act post-transcriptionally to inhibit gene expression. Here we report the analysis of miRNA expression in 93 primary human breast tumors, using a bead-based flow cytometric miRNA expression profiling method. Of 309 human miRNAs assayed, we identify 133 miRNAs expressed in human breast and breast tumors. We used mRNA expression profiling to classify the breast tumors as luminal A, luminal B, basal-like, HER2+ and normal-like. A number of miRNAs are differentially expressed between these molecular tumor subtypes and individual miRNAs are associated with clinicopathological factors. Furthermore, we find that miRNAs could classify basal versus luminal tumor subtypes in an independent data set. In some cases, changes in miRNA expression correlate with genomic loss or gain; in others, changes in miRNA expression are likely due to changes in primary transcription and or miRNA biogenesis. Finally, the expression of DICER1 and AGO2 is correlated with tumor subtype and may explain some of the changes in miRNA expression observed. This study represents the first integrated analysis of miRNA expression, mRNA expression and genomic changes in human breast cancer and may serve as a basis for functional studies of the role of miRNAs in the etiology of breast cancer. Furthermore, we demonstrate that bead-based flow cytometric miRNA expression profiling might be a suitable platform to classify breast cancer into prognostic molecular subtypes.
Kusaka, M; Okamoto, M; Takenaka, M; Sasaki, H; Fukami, N; Kataoka, K; Ito, T; Kenmochi, T; Hoshinaga, K; Shiroki, R
2017-06-01
Kidney transplant recipients are at increased risk of developing cancer in comparison with the general population. To effectively manage post-transplantation malignancies, it is essential to proactively monitor patients. A long-term intensive screening program was associated with a reduced incidence of cancer after transplantation. This study evaluated the usefulness of the gene expression profiling of peripheral blood samples obtained from kidney transplant patients and adopted a screening test for detecting cancer of the digestive system (gastric, colon, pancreas, and biliary tract). Nineteen patients were included in this study and a total of 53 gene expression screening tests were performed. The gene expression profiles of blood-delivered total RNA and whole genome human gene expression profiles were obtained. We investigated the expression levels of 2665 genes associated with digestive cancers and counted the number of genes in which expression was altered. A hierarchical clustering analysis was also performed. The final prediction of the cancer possibility was determined according to an algorithm. The number of genes in which expression was altered was significantly increased in the kidney transplant recipients in comparison with the general population (1091 ± 63 vs 823 ± 94; P = .0024). The number of genes with altered expression decreased after the induction of mechanistic target of rapamycin (mTOR) inhibitor (1484 ± 227 vs 883 ± 154; P = .0439). No cases of possible digestive cancer were detected in this study period. The gene expression profiling of peripheral blood samples may be a useful and noninvasive diagnostic tool that allows for the early detection of cancer of the digestive system. Copyright © 2017 Elsevier Inc. All rights reserved.
Kaneko, Kunihiko
2011-06-01
Here I present and discuss a model that, among other things, appears able to describe the dynamics of cancer cell origin from the perspective of stable and unstable gene expression profiles. In identifying such aberrant gene expression profiles as lying outside the normal stable states attracted through development and normal cell differentiation, the hypothesis explains why cancer cells accumulate mutations, to which they are not robust, and why these mutations create a new stable state far from the normal gene expression profile space. Such cells are in strong contrast with normal cell types that appeared as an attractor state in the gene expression dynamical system under cell-cell interaction and achieved robustness to noise through evolution, which in turn also conferred robustness to mutation. In complex gene regulation networks, other aberrant cellular states lacking such high robustness are expected to remain, which would correspond to cancer cells. Copyright © 2011 WILEY Periodicals, Inc.
Gene expression profiling of single cells on large-scale oligonucleotide arrays
Hartmann, Claudia H.; Klein, Christoph A.
2006-01-01
Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717
microRNA Expression Profiling: Technologies, Insights, and Prospects.
Roden, Christine; Mastriano, Stephen; Wang, Nayi; Lu, Jun
2015-01-01
Since the early days of microRNA (miRNA) research, miRNA expression profiling technologies have provided important tools toward both better understanding of the biological functions of miRNAs and using miRNA expression as potential diagnostics. Multiple technologies, such as microarrays, next-generation sequencing, bead-based detection system, single-molecule measurements, and quantitative RT-PCR, have enabled accurate quantification of miRNAs and the subsequent derivation of key insights into diverse biological processes. As a class of ~22 nt long small noncoding RNAs, miRNAs present unique challenges in expression profiling that require careful experimental design and data analyses. We will particularly discuss how normalization and the presence of miRNA isoforms can impact data interpretation. We will present one example in which the consideration in data normalization has provided insights that helped to establish the global miRNA expression as a tumor suppressor. Finally, we discuss two future prospects of using miRNA profiling technologies to understand single cell variability and derive new rules for the functions of miRNA isoforms.
Expression profiling of the mouse early embryo: Reflections and Perspectives
Ko, Minoru S. H.
2008-01-01
Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220
Select medications that unexpectedly lower HbA1c levels.
Tillman, F; Kim, J
2018-04-19
A variety of medication classes are available for diabetes; however, treatment options become limited due to adverse effect profiles and cost. Current diabetes guidelines include agents not originally developed for diabetes treatment, bromocriptine and colesevelam. Other non-diabetes medications demonstrating haemoglobin A1c lowering, including agents for weight loss, depression, anaemia and coronary artery disease, are described in this review article. More research looking into the impact of non-diabetes medications on blood glucose may offer additional diabetes treatment strategies. © 2018 John Wiley & Sons Ltd.
OPEN PROBLEM: Turbulence transition in pipe flow: some open questions
NASA Astrophysics Data System (ADS)
Eckhardt, Bruno
2008-01-01
The transition to turbulence in pipe flow is a longstanding problem in fluid dynamics. In contrast to many other transitions it is not connected with linear instabilities of the laminar profile and hence follows a different route. Experimental and numerical studies within the last few years have revealed many unexpected connections to the nonlinear dynamics of strange saddles and have considerably improved our understanding of this transition. The text summarizes some of these insights and points to some outstanding problems in areas where valuable contributions from nonlinear dynamics can be expected.
Expression signature as a biomarker for prenatal diagnosis of trisomy 21.
Volk, Marija; Maver, Aleš; Lovrečić, Luca; Juvan, Peter; Peterlin, Borut
2013-01-01
A universal biomarker panel with the potential to predict high-risk pregnancies or adverse pregnancy outcome does not exist. Transcriptome analysis is a powerful tool to capture differentially expressed genes (DEG), which can be used as biomarker-diagnostic-predictive tool for various conditions in prenatal setting. In search of biomarker set for predicting high-risk pregnancies, we performed global expression profiling to find DEG in Ts21. Subsequently, we performed targeted validation and diagnostic performance evaluation on a larger group of case and control samples. Initially, transcriptomic profiles of 10 cultivated amniocyte samples with Ts21 and 9 with normal euploid constitution were determined using expression microarrays. Datasets from Ts21 transcriptomic studies from GEO repository were incorporated. DEG were discovered using linear regression modelling and validated using RT-PCR quantification on an independent sample of 16 cases with Ts21 and 32 controls. The classification performance of Ts21 status based on expression profiling was performed using supervised machine learning algorithm and evaluated using a leave-one-out cross validation approach. Global gene expression profiling has revealed significant expression changes between normal and Ts21 samples, which in combination with data from previously performed Ts21 transcriptomic studies, were used to generate a multi-gene biomarker for Ts21, comprising of 9 gene expression profiles. In addition to biomarker's high performance in discriminating samples from global expression profiling, we were also able to show its discriminatory performance on a larger sample set 2, validated using RT-PCR experiment (AUC=0.97), while its performance on data from previously published studies reached discriminatory AUC values of 1.00. Our results show that transcriptomic changes might potentially be used to discriminate trisomy of chromosome 21 in the prenatal setting. As expressional alterations reflect both, causal and reactive cellular mechanisms, transcriptomic changes may thus have future potential in the diagnosis of a wide array of heterogeneous diseases that result from genetic disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, Andrew; Department of Statistics, Oregon State University; Superfund Research Center, Oregon State University
2013-03-01
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdanimore » logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions for combining PAH mixtures in agreement with microarrays ► Predictions highly dependent on aryl hydrocarbon receptor repressor expression.« less
mRNA expression profiling of laser microbeam microdissected cells from slender embryonic structures.
Scheidl, Stefan J; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per
2002-03-01
Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-beta1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions.
ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.
Dvorak, Pavel; Pesta, Martin; Soucek, Pavel
2017-05-01
Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.
Cell-specific prediction and application of drug-induced gene expression profiles.
Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David; Dudley, Joel
2018-01-01
Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes.
Cell-specific prediction and application of drug-induced gene expression profiles
Hodos, Rachel; Zhang, Ping; Lee, Hao-Chih; Duan, Qiaonan; Wang, Zichen; Clark, Neil R.; Ma'ayan, Avi; Wang, Fei; Kidd, Brian; Hu, Jianying; Sontag, David
2017-01-01
Gene expression profiling of in vitro drug perturbations is useful for many biomedical discovery applications including drug repurposing and elucidation of drug mechanisms. However, limited data availability across cell types has hindered our capacity to leverage or explore the cell-specificity of these perturbations. While recent efforts have generated a large number of drug perturbation profiles across a variety of human cell types, many gaps remain in this combinatorial drug-cell space. Hence, we asked whether it is possible to fill these gaps by predicting cell-specific drug perturbation profiles using available expression data from related conditions--i.e. from other drugs and cell types. We developed a computational framework that first arranges existing profiles into a three-dimensional array (or tensor) indexed by drugs, genes, and cell types, and then uses either local (nearest-neighbors) or global (tensor completion) information to predict unmeasured profiles. We evaluate prediction accuracy using a variety of metrics, and find that the two methods have complementary performance, each superior in different regions in the drug-cell space. Predictions achieve correlations of 0.68 with true values, and maintain accurate differentially expressed genes (AUC 0.81). Finally, we demonstrate that the predicted profiles add value for making downstream associations with drug targets and therapeutic classes. PMID:29218867
Light-controlled inhibition of malignant glioma by opsin gene transfer
Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P
2013-01-01
Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851
Light-controlled inhibition of malignant glioma by opsin gene transfer.
Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P
2013-10-31
Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach.
Unexpected development of artistic talents
Gordon, N
2005-01-01
The development of exceptional and unexpected artistic skills at any age must be a matter of curiosity. This can occur among young children with severe learning difficulties, especially if they are autistic. Some examples of these so called idiot-savants are given, and the way in which their brains may function. It is also true that elderly people who suffer from frontotemporal dementia can find that they are able to express themselves in remarkable art forms. This can occur in other types of dementia, but then more often it is the changes that result in the paintings of established artists, for example in the paintings of de Kooning. Possible links between these two phenomenon are discussed, and it is suggested that in both instances it may be that if the brain is relieved of a number of functions it can concentrate on the remaining ones. Ways in which this may operate in both groups are reviewed. PMID:16344297
A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data
NASA Astrophysics Data System (ADS)
Labow, G. J.; McPeters, R. D.; Ziemke, J. R.
2014-12-01
A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.
2013-01-01
Background Variation of gene expression can lead to phenotypic variation and have therefore been assumed to contribute the diversity of wine yeast (Saccharomyces cerevisiae) properties. However, the molecular bases of this variation of gene expression are unknown. We addressed these questions by carrying out an integrated genetical-genomic study in fermentation conditions. We report here quantitative trait loci (QTL) mapping based on expression profiling in a segregating population generated by a cross between a derivative of the popular wine strain EC1118 and the laboratory strain S288c. Results Most of the fermentation traits studied appeared to be under multi-allelic control. We mapped five phenotypic QTLs and 1465 expression QTLs. Several expression QTLs overlapped in hotspots. Among the linkages unraveled here, several were associated with metabolic processes essential for wine fermentation such as glucose sensing or nitrogen and vitamin metabolism. Variations affecting the regulation of drug detoxification and export (TPO1, PDR12 or QDR2) were linked to variation in four genes encoding transcription factors (PDR8, WAR1, YRR1 and HAP1). We demonstrated that the allelic variation of WAR1 and TPO1 affected sorbic and octanoic acid resistance, respectively. Moreover, analysis of the transcription factors phylogeny suggests they evolved with a specific adaptation of the strains to wine fermentation conditions. Unexpectedly, we found that the variation of fermentation rates was associated with a partial disomy of chromosome 16. This disomy resulted from the well known 8–16 translocation. Conclusions This large data set made it possible to decipher the effects of genetic variation on gene expression during fermentation and certain wine fermentation properties. Our findings shed a new light on the adaptation mechanisms required by yeast to cope with the multiple stresses generated by wine fermentation. In this context, the detoxification and export systems appear to be of particular importance, probably due to nitrogen starvation. Furthermore, we show that the well characterized 8–16 translocation located in SSU1, which is associated with sulfite resistance, can lead to a partial chromosomic amplification in the progeny of strains that carry it, greatly improving fermentation kinetics. This amplification has been detected among other wine yeasts. PMID:24094006
Hezova, Renata; Slaby, Ondrej; Faltejskova, Petra; Mikulkova, Zuzana; Buresova, Ivana; Raja, K R Muthu; Hodek, Jan; Ovesna, Jaroslava; Michalek, Jaroslav
2010-01-01
Regulatory T cells (Tregs) are critical regulators of autoimmune diseases, including type 1 diabetes mellitus. It is hypothesised that Tregs' function can be influenced by changes in the expression of specific microRNAs (miRNAs). Thus, we performed miRNAs profiling in a population of Tregs separated from peripheral blood of five type 1 diabetic patients and six healthy donors. For more detailed molecular characterisation of Tregs, we additionally compared miRNAs expression profiles of Tregs and conventional T cells. Tregs were isolated according to CD3+, CD4+, CD25(hi)+ and CD127- by flow cytometry, and miRNA expression profiling was performed using TaqMan Array Human MicroRNA Panel-1 (384-well low density array). In Tregs of diabetic patients we found significantly increased expression of miRNA-510 (p=0.05) and decreased expression of both miRNA-342 (p<0.0001) and miRNA-191 (p=0.0079). When comparing Tregs and T cells, we revealed that Tregs had significant higher expression of miRNA-146a and lower expression of eight specific miRNAs (20b, 31, 99a, 100, 125b, 151, 335, and 365). To our knowledge, this is the first study demonstrating changes in miRNA expression profiles occurring in Tregs of T1D patients and a miRNAs signature of adult Tregs.
Stress amplifies sex differences in primate prefrontal profiles of gene expression.
Lee, Alex G; Hagenauer, Megan; Absher, Devin; Morrison, Kathleen E; Bale, Tracy L; Myers, Richard M; Watson, Stanley J; Akil, Huda; Schatzberg, Alan F; Lyons, David M
2017-11-02
Stress is a recognized risk factor for mood and anxiety disorders that occur more often in women than men. Prefrontal brain regions mediate stress coping, cognitive control, and emotion. Here, we investigate sex differences and stress effects on prefrontal cortical profiles of gene expression in squirrel monkey adults. Dorsolateral, ventrolateral, and ventromedial prefrontal cortical regions from 18 females and 12 males were collected after stress or no-stress treatment conditions. Gene expression profiles were acquired using HumanHT-12v4.0 Expression BeadChip arrays adapted for squirrel monkeys. Extensive variation between prefrontal cortical regions was discerned in the expression of numerous autosomal and sex chromosome genes. Robust sex differences were also identified across prefrontal cortical regions in the expression of mostly autosomal genes. Genes with increased expression in females compared to males were overrepresented in mitogen-activated protein kinase and neurotrophin signaling pathways. Many fewer genes with increased expression in males compared to females were discerned, and no molecular pathways were identified. Effect sizes for sex differences were greater in stress compared to no-stress conditions for ventromedial and ventrolateral prefrontal cortical regions but not dorsolateral prefrontal cortex. Stress amplifies sex differences in gene expression profiles for prefrontal cortical regions involved in stress coping and emotion regulation. Results suggest molecular targets for new treatments of stress disorders in human mental health.
RNA Expression Profiles from Blood for the Diagnosis of Stroke and its Causes
Sharp, Frank R; Jickling, Glen C; Stamova, Boryana; Tian, Yingfang; Zhan, Xinhua; Ander, Bradley P; Cox, Christopher; Kuczynski, Beth; Liu, DaZhi
2013-01-01
A blood test to detect stroke and its causes would be particularly useful in babies, young children, and patients in intensive care units, and for emergencies when imaging is difficult to obtain or unavailable. Using whole genome microarrays, we first showed specific gene expression profiles in rats 24 hours after ischemic and hemorrhagic stroke, hypoxia, and hypoglycemia. These proof-of-principle studies revealed that groups of genes (called gene profiles) can distinguish ischemic stroke patients from controls 3 hours to 24 hours after the strokes. In addition, gene expression profiles have been developed that distinguish stroke due to large-vessel atherosclerosis from cardioembolic stroke. These profiles will be useful for predicting the causes of cryptogenic stroke. Our results in adults suggest similar diagnostic tools could be developed for children. PMID:21636778
Gene-expression profiling for rejection surveillance after cardiac transplantation.
Pham, Michael X; Teuteberg, Jeffrey J; Kfoury, Abdallah G; Starling, Randall C; Deng, Mario C; Cappola, Thomas P; Kao, Andrew; Anderson, Allen S; Cotts, William G; Ewald, Gregory A; Baran, David A; Bogaev, Roberta C; Elashoff, Barbara; Baron, Helen; Yee, James; Valantine, Hannah A
2010-05-20
Endomyocardial biopsy is the standard method of monitoring for rejection in recipients of a cardiac transplant. However, this procedure is uncomfortable, and there are risks associated with it. Gene-expression profiling of peripheral-blood specimens has been shown to correlate with the results of an endomyocardial biopsy. We randomly assigned 602 patients who had undergone cardiac transplantation 6 months to 5 years previously to be monitored for rejection with the use of gene-expression profiling or with the use of routine endomyocardial biopsies, in addition to clinical and echocardiographic assessment of graft function. We performed a noninferiority comparison of the two approaches with respect to the composite primary outcome of rejection with hemodynamic compromise, graft dysfunction due to other causes, death, or retransplantation. During a median follow-up period of 19 months, patients who were monitored with gene-expression profiling and those who underwent routine biopsies had similar 2-year cumulative rates of the composite primary outcome (14.5% and 15.3%, respectively; hazard ratio with gene-expression profiling, 1.04; 95% confidence interval, 0.67 to 1.68). The 2-year rates of death from any cause were also similar in the two groups (6.3% and 5.5%, respectively; P=0.82). Patients who were monitored with the use of gene-expression profiling underwent fewer biopsies per person-year of follow-up than did patients who were monitored with the use of endomyocardial biopsies (0.5 vs. 3.0, P<0.001). Among selected patients who had received a cardiac transplant more than 6 months previously and who were at a low risk for rejection, a strategy of monitoring for rejection that involved gene-expression profiling, as compared with routine biopsies, was not associated with an increased risk of serious adverse outcomes and resulted in the performance of significantly fewer biopsies. (ClinicalTrials.gov number, NCT00351559.) 2010 Massachusetts Medical Society
Dieltjes, Patrick; Mieremet, René; Zuniga, Sofia; Kraaijenbrink, Thirsa; Pijpe, Jeroen; de Knijff, Peter
2011-07-01
Exploring technological limits is a common practice in forensic DNA research. Reliable genetic profiling based on only a few cells isolated from trace material retrieved from a crime scene is nowadays more and more the rule rather than the exception. On many crime scenes, cartridges, bullets, and casings (jointly abbreviated as CBCs) are regularly found, and even after firing, these potentially carry trace amounts of biological material. Since 2003, the Forensic Laboratory for DNA Research is routinely involved in the forensic investigation of CBCs in the Netherlands. Reliable DNA profiles were frequently obtained from CBCs and used to match suspects, victims, or other crime scene-related DNA traces. In this paper, we describe the sensitive method developed by us to extract DNA from CBCs. Using PCR-based genotyping of autosomal short tandem repeats, we were able to obtain reliable and reproducible DNA profiles in 163 out of 616 criminal cases (26.5%) and in 283 out of 4,085 individual CBC items (6.9%) during the period January 2003-December 2009. We discuss practical aspects of the method and the sometimes unexpected effects of using cell lysis buffer on the subsequent investigation of striation patterns on CBCs.
ERIC Educational Resources Information Center
Haebig, Eileen; Sterling, Audra
2017-01-01
Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome…
2012-01-01
Background The fetal and adult globin genes in the human β-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle βS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to β-globin (γ/β) switch observed throughout in vitro erythroid differentiation. Results We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/β-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of β-globin expression by day 28 and the γ/β-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kβ, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and β-globin regulation were identified. The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/β-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. Conclusions The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation. PMID:22537182
MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori)
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-01-01
Background MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Results Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). Conclusion We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal. PMID:19785751
MicroRNA expression profiling during the life cycle of the silkworm (Bombyx mori).
Liu, Shiping; Zhang, Liang; Li, Qibin; Zhao, Ping; Duan, Jun; Cheng, Daojun; Xiang, Zhonghuai; Xia, Qingyou
2009-09-28
MicroRNAs (miRNAs) are expressed by a wide range of eukaryotic organisms, and function in diverse biological processes. Numerous miRNAs have been identified in Bombyx mori, but the temporal expression profiles of miRNAs corresponding to each stage transition over the entire life cycle of the silkworm remain to be established. To obtain a comprehensive overview of the correlation between miRNA expression and stage transitions, we performed a whole-life test and subsequent stage-by-stage examinations on nearly one hundred miRNAs in the silkworm. Our results show that miRNAs display a wide variety of expression profiles over the whole life of the silkworm, including continuous expression from embryo to adult (miR-184), up-regulation over the entire life cycle (let-7 and miR-100), down-regulation over the entire life cycle (miR-124), expression associated with embryogenesis (miR-29 and miR-92), up-regulation from early 3rd instar to pupa (miR-275), and complementary pulses in expression between miR-34b and miR-275. Stage-by-stage examinations revealed further expression patterns, such as emergence at specific time-points during embryogenesis and up-regulation of miRNA groups in late embryos (miR-1 and bantam), expression associated with stage transition between instar and molt larval stages (miR-34b), expression associated with silk gland growth and spinning activity (miR-274), continuous high expression from the spinning larval to pupal and adult stages (miR-252 and miR-31a), a coordinate expression trough in day 3 pupae of both sexes (miR-10b and miR-281), up-regulation in pupal metamorphosis of both sexes (miR-29b), and down-regulation in pupal metamorphosis of both sexes (miR-275). We present the full-scale expression profiles of miRNAs throughout the life cycle of Bombyx mori. The whole-life expression profile was further investigated via stage-by-stage analysis. Our data provide an important resource for more detailed functional analysis of miRNAs in this animal.
Relating Androgen Receptor Conformation to Function in Prostate Cancer Cells
2005-01-01
line development , but have made progress towards resolving these issues and in development of alternate strategies. Task 1. Development of AR and...conformation. Task 2. Development of LNCaP Cells to Express Human AR mutants. We experienced unexpected difficulties in Task 2. We transfected the TET...Coactivators in AR Transactivation Summary Androgens drive sex differentiation, bone and muscle development , and promote growth of hormone dependent cancers
Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.
2010-01-01
Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180
Caldas, Cristina; Coelho, Verônica; Kalil, Jorge; Moro, Ana Maria; Maranhão, Andrea Q; Brígido, Marcelo M
2003-05-01
Humanization of monoclonal antibodies by complementary determinant region (CDR)-grafting has become a standard procedure to improve the clinical usage of animal antibodies. However, antibody humanization may result in loss of activity that has been attributed to structural constraints in the framework structure. In this paper, we report the complete humanization of the 6.7 anti-human CD18 monoclonal antibody in a scFv form. We used a germline-based approach to design a humanized VL gene fragment and expressed it together with a previously described humanized VH. The designed humanized VL has only 14 mutations compared to the closest human germline sequence. The resulting humanized scFv maintained the binding capacity and specificity to human CD18 expressed on the cell surface of peripheral blood mononuclear cells (PBMC), and showed the same pattern of staining T-lymphocytes sub-populations, in comparison to the original monoclonal antibody. We observed an unexpected effect of a conserved mouse-human framework position (L37) that hinders the binding of the humanized scFv to antigen. This paper reveals a new framework residue that interferes with paratope and antigen binding and also reinforces the germline approach as a successful strategy to humanize antibodies.
More than just water channels: unexpected cellular roles of aquaporins.
Verkman, A S
2005-08-01
Aquaporins (AQPs) are membrane proteins that transport water and, in some cases, also small solutes such as glycerol. AQPs are expressed in many fluid-transporting tissues, such as kidney tubules and glandular epithelia, as well as in non-fluid-transporting tissues, such as epidermis, adipose tissue and astroglia. Their classical role in facilitating trans-epithelial fluid transport is well understood, as in the urinary concentrating mechanism and gland fluid secretion. AQPs are also involved in swelling of tissues under stress, as in the injured cornea and the brain in stroke, tumor and infection. Recent analysis of AQP-knockout mice has revealed unexpected cellular roles of AQPs. AQPs facilitate cell migration, as manifested by reduced tumor angiogenesis in AQP1-knockout mice, by a mechanism that might involve facilitated water transport in lamellipodia of migrating cells. AQPs that transport both glycerol and water regulate glycerol content in epidermis and fat, and consequently skin hydration/biosynthesis and fat metabolism. AQPs might also be involved in neural signal transduction, cell volume regulation and organellar physiology. The many roles of AQPs could be exploited for clinical benefit; for example, treatments that modulate AQP expression/function could be used as diuretics, and in the treatment of brain swelling, glaucoma, epilepsy, obesity and cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smetanina, Mariya A., E-mail: maria.smetanina@gmail.com; Laboratory of Gene Expression Control, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 10, Novosibirsk 630090; Group of Pharmacogenomics, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, prospekt Lavrentyeva 8, Novosibirsk 630090
2'-3-dimethyl-4-aminoazobenzene (ortho-aminoazotoluene, OAT) is an azo dye and a rodent carcinogen that has been evaluated by the International Agency for Research on Cancer (IARC) as a possible (class 2B) human carcinogen. Its mechanism of action remains unclear. We examined the role of the xenobiotic receptor Constitutive Androstane Receptor (CAR, NR1I3) as a mediator of the effects of OAT. We found that OAT increases mouse CAR (mCAR) transactivation in a dose-dependent manner. This effect is specific because another closely related azo dye, 3'-methyl-4-dimethyl-aminoazobenzene (3'MeDAB), did not activate mCAR. Real-time Q-PCR analysis in wild-type C57BL/6 mice revealed that OAT induces the hepaticmore » mRNA expression of the following CAR target genes: Cyp2b10, Cyp2c29, Cyp3a11, Ugt1a1, Mrp4, Mrp2 and c-Myc. CAR-null (Car{sup -/-}) mice showed no increased expression of these genes following OAT treatment, demonstrating that CAR is required for their OAT dependent induction. The OAT-induced CAR-dependent increase of Cyp2b10 and c-Myc expression was confirmed by Western blotting. Immunohistochemistry analysis of wild-type and Car{sup -/-} livers showed that OAT did not acutely induce hepatocyte proliferation, but at much later time points showed an unexpected CAR-dependent proliferative response. These studies demonstrate that mCAR is an OAT xenosensor, and indicate that at least some of the biological effects of this compound are mediated by this nuclear receptor. - Highlights: > The azo dye and mouse carcinogen OAT is a very effective mCAR activator. > OAT increases mCAR transactivation in a dose-dependent manner. > OAT CAR-dependently increases the expression of a specific subset of CAR target genes. > OAT induces an unexpectedly deferred, but CAR-dependent hepatocyte proliferation.« less
Haberman, Rebecca P; Colantuoni, Carlo; Koh, Ming Teng; Gallagher, Michela
2013-01-01
Aging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally-induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.
Large inserts for big data: artificial chromosomes in the genomic era.
Tocchetti, Arianna; Donadio, Stefano; Sosio, Margherita
2018-05-01
The exponential increase in available microbial genome sequences coupled with predictive bioinformatic tools is underscoring the genetic capacity of bacteria to produce an unexpected large number of specialized bioactive compounds. Since most of the biosynthetic gene clusters (BGCs) present in microbial genomes are cryptic, i.e. not expressed under laboratory conditions, a variety of cloning systems and vectors have been devised to harbor DNA fragments large enough to carry entire BGCs and to allow their transfer in suitable heterologous hosts. This minireview provides an overview of the vectors and approaches that have been developed for cloning large BGCs, and successful examples of heterologous expression.
Questioning the utility of pooling samples in microarray experiments with cell lines.
Lusa, L; Cappelletti, V; Gariboldi, M; Ferrario, C; De Cecco, L; Reid, J F; Toffanin, S; Gallus, G; McShane, L M; Daidone, M G; Pierotti, M A
2006-01-01
We describe a microarray experiment using the MCF-7 breast cancer cell line in two different experimental conditions for which the same number of independent pools as the number of individual samples was hybridized on Affymetrix GeneChips. Unexpectedly, when using individual samples, the number of probe sets found to be differentially expressed between treated and untreated cells was about three times greater than that found using pools. These findings indicate that pooling samples in microarray experiments where the biological variability is expected to be small might not be helpful and could even decrease one's ability to identify differentially expressed genes.
2010-07-28
expression is plotted on Y -axis after normalization to mock-treated samples. Results plotted to compare calculated fold change in expression of each gene ...RESEARCH Open Access Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions Abdulnaser...suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes
Network-Induced Classification Kernels for Gene Expression Profile Analysis
Dror, Gideon; Shamir, Ron
2012-01-01
Abstract Computational classification of gene expression profiles into distinct disease phenotypes has been highly successful to date. Still, robustness, accuracy, and biological interpretation of the results have been limited, and it was suggested that use of protein interaction information jointly with the expression profiles can improve the results. Here, we study three aspects of this problem. First, we show that interactions are indeed relevant by showing that co-expressed genes tend to be closer in the network of interactions. Second, we show that the improved performance of one extant method utilizing expression and interactions is not really due to the biological information in the network, while in another method this is not the case. Finally, we develop a new kernel method—called NICK—that integrates network and expression data for SVM classification, and demonstrate that overall it achieves better results than extant methods while running two orders of magnitude faster. PMID:22697242
Hua, Cheng; Linling, Li; Shuiyuan, Cheng; Fuliang, Cao; Feng, Xu; Honghui, Yuan; Conghua, Wu
2013-01-01
Dihydroflavonol-4-reductase (DFR, EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs) were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.
Hua, Cheng; Linling, Li; Shuiyuan, Cheng; Fuliang, Cao; Feng, Xu; Honghui, Yuan; Conghua, Wu
2013-01-01
Dihydroflavonol-4-reductase (DFR, EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs) were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species. PMID:23991027
Amar, David; Hait, Tom; Izraeli, Shai; Shamir, Ron
2015-09-18
Genome-wide expression profiling has revolutionized biomedical research; vast amounts of expression data from numerous studies of many diseases are now available. Making the best use of this resource in order to better understand disease processes and treatment remains an open challenge. In particular, disease biomarkers detected in case-control studies suffer from low reliability and are only weakly reproducible. Here, we present a systematic integrative analysis methodology to overcome these shortcomings. We assembled and manually curated more than 14,000 expression profiles spanning 48 diseases and 18 expression platforms. We show that when studying a particular disease, judicious utilization of profiles from other diseases and information on disease hierarchy improves classification quality, avoids overoptimistic evaluation of that quality, and enhances disease-specific biomarker discovery. This approach yielded specific biomarkers for 24 of the analyzed diseases. We demonstrate how to combine these biomarkers with large-scale interaction, mutation and drug target data, forming a highly valuable disease summary that suggests novel directions in disease understanding and drug repurposing. Our analysis also estimates the number of samples required to reach a desired level of biomarker stability. This methodology can greatly improve the exploitation of the mountain of expression profiles for better disease analysis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Modelling gene expression profiles related to prostate tumor progression using binary states
2013-01-01
Background Cancer is a complex disease commonly characterized by the disrupted activity of several cancer-related genes such as oncogenes and tumor-suppressor genes. Previous studies suggest that the process of tumor progression to malignancy is dynamic and can be traced by changes in gene expression. Despite the enormous efforts made for differential expression detection and biomarker discovery, few methods have been designed to model the gene expression level to tumor stage during malignancy progression. Such models could help us understand the dynamics and simplify or reveal the complexity of tumor progression. Methods We have modeled an on-off state of gene activation per sample then per stage to select gene expression profiles associated to tumor progression. The selection is guided by statistical significance of profiles based on random permutated datasets. Results We show that our method identifies expected profiles corresponding to oncogenes and tumor suppressor genes in a prostate tumor progression dataset. Comparisons with other methods support our findings and indicate that a considerable proportion of significant profiles is not found by other statistical tests commonly used to detect differential expression between tumor stages nor found by other tailored methods. Ontology and pathway analysis concurred with these findings. Conclusions Results suggest that our methodology may be a valuable tool to study tumor malignancy progression, which might reveal novel cancer therapies. PMID:23721350
Lex-SVM: exploring the potential of exon expression profiling for disease classification.
Yuan, Xiongying; Zhao, Yi; Liu, Changning; Bu, Dongbo
2011-04-01
Exon expression profiling technologies, including exon arrays and RNA-Seq, measure the abundance of every exon in a gene. Compared with gene expression profiling technologies like 3' array, exon expression profiling technologies could detect alterations in both transcription and alternative splicing, therefore they are expected to be more sensitive in diagnosis. However, exon expression profiling also brings higher dimension, more redundancy, and significant correlation among features. Ignoring the correlation structure among exons of a gene, a popular classification method like L1-SVM selects exons individually from each gene and thus is vulnerable to noise. To overcome this limitation, we present in this paper a new variant of SVM named Lex-SVM to incorporate correlation structure among exons and known splicing patterns to promote classification performance. Specifically, we construct a new norm, ex-norm, including our prior knowledge on exon correlation structure to regularize the coefficients of a linear SVM. Lex-SVM can be solved efficiently using standard linear programming techniques. The advantage of Lex-SVM is that it can select features group-wisely, force features in a subgroup to take equal weihts and exclude the features that contradict the majority in the subgroup. Experimental results suggest that on exon expression profile, Lex-SVM is more accurate than existing methods. Lex-SVM also generates a more compact model and selects genes more consistently in cross-validation. Unlike L1-SVM selecting only one exon in a gene, Lex-SVM assigns equal weights to as many exons in a gene as possible, lending itself easier for further interpretation.
Falls Risk and Simulated Driving Performance in Older Adults
Gaspar, John G.; Neider, Mark B.; Kramer, Arthur F.
2013-01-01
Declines in executive function and dual-task performance have been related to falls in older adults, and recent research suggests that older adults at risk for falls also show impairments on real-world tasks, such as crossing a street. The present study examined whether falls risk was associated with driving performance in a high-fidelity simulator. Participants were classified as high or low falls risk using the Physiological Profile Assessment and completed a number of challenging simulated driving assessments in which they responded quickly to unexpected events. High falls risk drivers had slower response times (~2.1 seconds) to unexpected events compared to low falls risk drivers (~1.7 seconds). Furthermore, when asked to perform a concurrent cognitive task while driving, high falls risk drivers showed greater costs to secondary task performance than did low falls risk drivers, and low falls risk older adults also outperformed high falls risk older adults on a computer-based measure of dual-task performance. Our results suggest that attentional differences between high and low falls risk older adults extend to simulated driving performance. PMID:23509627
Regulation and Gene Expression Profiling of NKG2D Positive Human Cytomegalovirus-Primed CD4+ T-Cells
Jensen, Helle; Folkersen, Lasse; Skov, Søren
2012-01-01
NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8+ T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4+ T-cells, however recently a subset of NKG2D+ CD4+ T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D+ CD4+ T-cells possesses effector-like functions, thus resembling the subsets of NKG2D+ CD4+ T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4+ T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D+ CD4+ T-cells, generated from HCMV-primed CD4+ T-cells. We show that the HCMV-primed NKG2D+ CD4+ T-cells possess a higher differentiated phenotype than the NKG2D– CD4+ T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4+ T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4+ T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4+ T-cells, whereas it is produced de novo in resting CD4+ T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D+ CD4+ T-cells, as well as the mechanisms regulating NKG2D cell surface expression. PMID:22870231
Jensen, Helle; Folkersen, Lasse; Skov, Søren
2012-01-01
NKG2D is a stimulatory receptor expressed by natural killer (NK) cells, CD8(+) T-cells, and γδ T-cells. NKG2D expression is normally absent from CD4(+) T-cells, however recently a subset of NKG2D(+) CD4(+) T-cells has been found, which is specific for human cytomegalovirus (HCMV). This particular subset of HCMV-specific NKG2D(+) CD4(+) T-cells possesses effector-like functions, thus resembling the subsets of NKG2D(+) CD4(+) T-cells found in other chronic inflammations. However, the precise mechanism leading to NKG2D expression on HCMV-specific CD4(+) T-cells is currently not known. In this study we used genome-wide analysis of individual genes and gene set enrichment analysis (GSEA) to investigate the gene expression profile of NKG2D(+) CD4(+) T-cells, generated from HCMV-primed CD4(+) T-cells. We show that the HCMV-primed NKG2D(+) CD4(+) T-cells possess a higher differentiated phenotype than the NKG2D(-) CD4(+) T-cells, both at the gene expression profile and cytokine profile. The ability to express NKG2D at the cell surface was primarily determined by the activation or differentiation status of the CD4(+) T-cells and not by the antigen presenting cells. We observed a correlation between CD94 and NKG2D expression in the CD4(+) T-cells following HCMV stimulation. However, knock-down of CD94 did not affect NKG2D cell surface expression or signaling. In addition, we show that NKG2D is recycled at the cell surface of activated CD4(+) T-cells, whereas it is produced de novo in resting CD4(+) T-cells. These findings provide novel information about the gene expression profile of HCMV-primed NKG2D(+) CD4(+) T-cells, as well as the mechanisms regulating NKG2D cell surface expression.
Selfie-Takers Prefer Left Cheeks: Converging Evidence from the (Extended) selfiecity Database
Manovich, Lev; Ferrari, Vera; Bruno, Nicola
2017-01-01
According to previous reports, selfie takers in widely different cultural contexts prefer poses showing the left cheek more than the right cheek. This posing bias may be interpreted as evidence for a right-hemispheric specialization for the expression of facial emotions. However, earlier studies analyzed selfie poses as categorized by human raters, which raises methodological issues in relation to the distinction between frontal and three-quarter poses. Here, we provide converging evidence by analyzing the (extended) selfiecity database which includes automatic assessments of head rotation and of emotional expression. We confirm a culture- and sex-independent left-cheek bias and report stronger expression of negative emotions in selfies showing the left cheek. These results are generally consistent with a psychobiological account of a left cheek bias in self-portraits but reveal possible unexpected facts concerning the relation between side bias and lateralization of emotional expression. PMID:28928683
Changes in gene expression profile following short-term exposure to an environmentally relevant mixture of PHAHs
Polyhalogenated aromatic hydrocarbons (PHAH) including, polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDS) and polychlorinated dibenzofurans...
Wang, Ping; Li, Yong; Nie, Huiqiong; Zhang, Xiaoyan; Shao, Qiongyan; Hou, Xiuli; Xu, Wen; Hong, Weisong; Xu, Aie
2016-10-01
Vitiligo is a common acquired depigmentation skin disease characterized by loss or dysfunction of melanocytes within the skin lesion, but its pathologenesis is far from lucid. The gene expression profiling of segmental vitiligo (SV) and generalized vitiligo (GV) need further investigation. To better understanding the common and distinct factors, especially in the view of gene expression profile, which were involved in the diseases development and maintenance of segmental vitiligo (SV) and generalized vitiligo (GV). Peripheral bloods were collected from SV, GV and healthy individual (HI), followed by leukocytes separation and total RNA extraction. The high-throughput whole genome expression microarrays were used to assay the gene expression profiles between HI, SV and GV. Bioinformatics tools were employed to annotated the biological function of differently expressed genes. Quantitative PCR assay was used to validate the gene expression of array. Compared to HI, 239 over-expressed genes and 175 down-expressed genes detected in SV, 688 over-expressed genes and 560 down-expressed genes were found in GV, following the criteria of log2 (fold change)≥0.585 and P value<0.05. In these differently expressed genes, 60 over-expressed genes and 60 down-expressed genes had similar tendency in SV and GV. Compared to SV, 223 genes were up regulated and 129 genes were down regulated in GV. In the SV with HI as control, the differently expressed genes were mainly involved in the adaptive immune response, cytokine-cytokine receptor interaction, chemokine signaling, focal adhesion and sphingolipid metabolism. The differently expressed genes between GV and HI were mainly involved in the innate immune, autophagy, apoptosis, melanocyte biology, ubiquitin mediated proteolysis and tyrosine metabolism, which was different from SV. While the differently expressed genes between SV and GV were mainly involved in the metabolism pathway of purine, pyrimidine, glycolysis and sphingolipid. Above results suggested that they not only shared part bio-process and signal pathway, but more important, they utilized different biological mechanism in their pathogenesis and maintenance. Our results provide a comprehensive view on the gene expression profiling change between SV and GV especially in the side of leukocytes, and may facilitate the future study on their molecular mechanism and theraputic targets. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Ikoma, Yoshinori; Matsumoto, Hikaru; Kato, Masaya
2016-01-01
Carotenoids are not only important to the plants themselves but also are beneficial to human health. Since citrus fruit is a good source of carotenoids for the human diet, it is important to study carotenoid profiles and the accumulation mechanism in citrus fruit. Thus, in the present paper, we describe the diversity in the carotenoid profiles of fruit among citrus genotypes. In regard to carotenoids, such as β-cryptoxanthin, violaxanthin, lycopene, and β-citraurin, the relationship between the carotenoid profile and the expression of carotenoid-biosynthetic genes is discussed. Finally, recent results of quantitative trait locus (QTL) analyses of carotenoid contents and expression levels of carotenoid-biosynthetic genes in citrus fruit are shown. PMID:27069398
Performance Assessment of Kernel Density Clustering for Gene Expression Profile Data
Zeng, Beiyan; Chen, Yiping P.; Smith, Oscar H.
2003-01-01
Kernel density smoothing techniques have been used in classification or supervised learning of gene expression profile (GEP) data, but their applications to clustering or unsupervised learning of those data have not been explored and assessed. Here we report a kernel density clustering method for analysing GEP data and compare its performance with the three most widely-used clustering methods: hierarchical clustering, K-means clustering, and multivariate mixture model-based clustering. Using several methods to measure agreement, between-cluster isolation, and withincluster coherence, such as the Adjusted Rand Index, the Pseudo F test, the r2 test, and the profile plot, we have assessed the effectiveness of kernel density clustering for recovering clusters, and its robustness against noise on clustering both simulated and real GEP data. Our results show that the kernel density clustering method has excellent performance in recovering clusters from simulated data and in grouping large real expression profile data sets into compact and well-isolated clusters, and that it is the most robust clustering method for analysing noisy expression profile data compared to the other three methods assessed. PMID:18629292
Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile
Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene
2013-01-01
The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148
Decoherence in yeast cell populations and its implications for genome-wide expression noise.
Briones, M R S; Bosco, F
2009-01-20
Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.
Gatta, V; Zizzari, V L; Dd ' Amico, V; Salini, L; D' Aurora, M; Franchi, S; Antonucci, I; Sberna, M T; Gherlone, E; Stuppia, L; Tetè, S
2012-01-01
Dental pulp undergoes a number of changes passing from healthy status to inflammation due to deep decay. These changes are regulated by several genes resulting differently expressed in inflamed and healthy dental pulp, and the knowledge of the processes underlying this differential expression is of great relevance in the identification of the pathogenesis of the disease. In this study, the gene expression profile of inflamed and healthy dental pulps were compared by microarray analysis, and data obtained were analyzed by Ingenuity Pathway Analysis (IPA) software. This analysis allows to focus on a variety of genes, typically expressed in inflamed tissues. The comparison analysis showed an increased expression of several genes in inflamed pulp, among which IL1β and CD40 resulted of particular interest. These results indicate that gene expression profile of human dental pulp in different physiological and pathological conditions may become an useful tool for improving our knowledge about processes regulating pulp inflammation.
Neighboring Genes Show Correlated Evolution in Gene Expression
Ghanbarian, Avazeh T.; Hurst, Laurence D.
2015-01-01
When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543
Zha, Xianfeng; Yin, Qingsong; Tan, Huo; Wang, Chunyan; Chen, Shaohua; Yang, Lijian; Li, Bo; Wu, Xiuli; Li, Yangqiu
2013-05-01
Antigen-specific, T-cell receptor (TCR)-modified cytotoxic T lymphocytes (CTLs) that target tumors are an attractive strategy for specific adoptive immunotherapy. Little is known about whether there are any alterations in the gene expression profile after TCR gene transduction in T cells. We constructed TCR gene-redirected CTLs with specificity for diffuse large B-cell lymphoma (DLBCL)-associated antigens to elucidate the gene expression profiles of TCR gene-redirected T-cells, and we further analyzed the gene expression profile pattern of these redirected T-cells by Affymetrix microarrays. The resulting data were analyzed using Bioconductor software, a two-fold cut-off expression change was applied together with anti-correlation of the profile ratios to render the microarray analysis set. The fold change of all genes was calculated by comparing the three TCR gene-modified T-cells and a negative control counterpart. The gene pathways were analyzed using Bioconductor and Kyoto Encyclopedia of Genes and Genomes. Identical genes whose fold change was greater than or equal to 2.0 in all three TCR gene-redirected T-cell groups in comparison with the negative control were identified as the differentially expressed genes. The differentially expressed genes were comprised of 33 up-regulated genes and 1 down-regulated gene including JUNB, FOS, TNF, INF-γ, DUSP2, IL-1B, CXCL1, CXCL2, CXCL9, CCL2, CCL4, and CCL8. These genes are mainly involved in the TCR signaling, mitogen-activated protein kinase signaling, and cytokine-cytokine receptor interaction pathways. In conclusion, we characterized the gene expression profile of DLBCL-specific TCR gene-redirected T-cells. The changes corresponded to an up-regulation in the differentiation and proliferation of the T-cells. These data may help to explain some of the characteristics of the redirected T-cells.
Roos, Viktoria; Klemm, Per
2006-01-01
Urinary tract infections (UTIs) are an important health problem worldwide, with many million cases each year. Escherichia coli is the most common organism causing UTIs in humans. The asymptomatic bacteriuria E. coli strain 83972 is an excellent colonizer of the human urinary tract, where it causes long-term bladder colonization. The strain has been used for prophylactic purposes in patients prone to more severe and recurrent UTIs. For this study, we used DNA microarrays to monitor the expression profile of strain 83972 in the human urinary tract. Significant differences in expression levels were seen between the in vivo expression profiles of strain 83972 in three patients and the corresponding in vitro expression profiles in lab medium and human urine. The data revealed an in vivo lifestyle of microaerobic growth with respiration of nitrate coupled to degradation of sugar acids and amino acids, with no signs of attachment to host tissues. Interestingly, genes involved in NO protection and metabolism showed significant up-regulation in the patients. This is one of the first studies to address bacterial whole-genome expression in humans and the first study to investigate global gene expression of an E. coli strain in the human urinary tract. PMID:16714589
Rapin, Nicolas; Bagger, Frederik Otzen; Jendholm, Johan; Mora-Jensen, Helena; Krogh, Anders; Kohlmann, Alexander; Thiede, Christian; Borregaard, Niels; Bullinger, Lars; Winther, Ole; Theilgaard-Mönch, Kim; Porse, Bo T
2014-02-06
Gene expression profiling has been used extensively to characterize cancer, identify novel subtypes, and improve patient stratification. However, it has largely failed to identify transcriptional programs that differ between cancer and corresponding normal cells and has not been efficient in identifying expression changes fundamental to disease etiology. Here we present a method that facilitates the comparison of any cancer sample to its nearest normal cellular counterpart, using acute myeloid leukemia (AML) as a model. We first generated a gene expression-based landscape of the normal hematopoietic hierarchy, using expression profiles from normal stem/progenitor cells, and next mapped the AML patient samples to this landscape. This allowed us to identify the closest normal counterpart of individual AML samples and determine gene expression changes between cancer and normal. We find the cancer vs normal method (CvN method) to be superior to conventional methods in stratifying AML patients with aberrant karyotype and in identifying common aberrant transcriptional programs with potential importance for AML etiology. Moreover, the CvN method uncovered a novel poor-outcome subtype of normal-karyotype AML, which allowed for the generation of a highly prognostic survival signature. Collectively, our CvN method holds great potential as a tool for the analysis of gene expression profiles of cancer patients.
Molloy, Timothy J.; Roepman, Paul; Naume, Bjørn; van't Veer, Laura J.
2012-01-01
The detection of circulating tumor cells (CTCs) in the peripheral blood and microarray gene expression profiling of the primary tumor are two promising new technologies able to provide valuable prognostic data for patients with breast cancer. Meta-analyses of several established prognostic breast cancer gene expression profiles in large patient cohorts have demonstrated that despite sharing few genes, their delineation of patients into “good prognosis” or “poor prognosis” are frequently very highly correlated, and combining prognostic profiles does not increase prognostic power. In the current study, we aimed to develop a novel profile which provided independent prognostic data by building a signature predictive of CTC status rather than outcome. Microarray gene expression data from an initial training cohort of 72 breast cancer patients for which CTC status had been determined in a previous study using a multimarker QPCR-based assay was used to develop a CTC-predictive profile. The generated profile was validated in two independent datasets of 49 and 123 patients and confirmed to be both predictive of CTC status, and independently prognostic. Importantly, the “CTC profile” also provided prognostic information independent of the well-established and powerful ‘70-gene’ prognostic breast cancer signature. This profile therefore has the potential to not only add prognostic information to currently-available microarray tests but in some circumstances even replace blood-based prognostic CTC tests at time of diagnosis for those patients already undergoing testing by multigene assays. PMID:22384245
Microarray profiling of gene expression in human adipocytes in response to anthocyanins.
Tsuda, Takanori; Ueno, Yuki; Yoshikawa, Toshikazu; Kojo, Hitoshi; Osawa, Toshihiko
2006-04-14
Adipocyte dysfunction is strongly associated with the development of obesity and insulin resistance. It is accepted that the regulation of adipocytokine secretion or the adipocyte specific gene expression is one of the most important targets for the prevention of obesity and amelioration of insulin sensitivity. Recently, we demonstrated that anthocyanins, which are pigments widespread in the plant kingdom, have the potency of anti-obesity in mice and the enhancement adipocytokine secretion and its gene expression in adipocytes. In this study, we have shown the gene expression profile in human adipocytes treated with anthocyanins (cyanidin 3-glucoside; C3G or cyanidin; Cy). The human adipocytes were treated with 100 microM C3G, Cy or vehicle for 24 h. The total RNA from the adipocytes was isolated and carried out GeneChip microarray analysis. Based on the gene expression profile, we demonstrated the significant changes of adipocytokine expression (up-regulation of adiponectin and down-regulation of plasminogen activator inhibitor-1 and interleukin-6). Some of lipid metabolism related genes (uncoupling protein2, acylCoA oxidase1 and perilipin) also significantly induced in both common the C3G or Cy treatment groups. These studies have provided an overview of the gene expression profiles in human adipocytes treated with anthocyanins and demonstrated that anthocyanins can regulate adipocytokine gene expression to ameliorate adipocyte function related with obesity and diabetes that merit further investigation.
Suda, Yoko; Kokura, Kenji; Kimura, Jun; Kajikawa, Eriko; Inoue, Fumitaka; Aizawa, Shinichi
2010-09-01
We have analyzed Emx2 enhancers to determine how Emx2 functions during forebrain development are regulated. The FB (forebrain) enhancer we identified immediately 3' downstream of the last coding exon is well conserved among tetrapods and unexpectedly directed all the Emx2 expression in forebrain: caudal forebrain primordium at E8.5, dorsal telencephalon at E9.5-E10.5 and the cortical ventricular zone after E12.5. Otx, Tcf, Smad and two unknown transcription factor binding sites were essential to all these activities. The mutant that lacked this enhancer demonstrated that Emx2 expression under the enhancer is solely responsible for diencephalon development. However, in telencephalon, the FB enhancer did not have activities in cortical hem or Cajal-Retzius cells, nor was its activity in the cortex graded. Emx2 expression was greatly reduced, but persisted in the telencephalon of the enhancer mutant, indicating that there exists another enhancer for Emx2 expression unique to mammalian telencephalon.
Tran, Frances; Penniket, Carolyn; Patel, Rohan V; Provart, Nicholas J; Laroche, André; Rowland, Owen; Robert, Laurian S
2013-06-01
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser. © 2013 Her Majesty the Queen in Right of Canada as represented by the Minister of Agriculture and Agri-Food Canada.
Impact of Profiling Technologies in the Understanding of Recombinant Protein Production
NASA Astrophysics Data System (ADS)
Vijayendran, Chandran; Flaschel, Erwin
Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.
Lung tumor diagnosis and subtype discovery by gene expression profiling.
Wang, Lu-yong; Tu, Zhuowen
2006-01-01
The optimal treatment of patients with complex diseases, such as cancers, depends on the accurate diagnosis by using a combination of clinical and histopathological data. In many scenarios, it becomes tremendously difficult because of the limitations in clinical presentation and histopathology. To accurate diagnose complex diseases, the molecular classification based on gene or protein expression profiles are indispensable for modern medicine. Moreover, many heterogeneous diseases consist of various potential subtypes in molecular basis and differ remarkably in their response to therapies. It is critical to accurate predict subgroup on disease gene expression profiles. More fundamental knowledge of the molecular basis and classification of disease could aid in the prediction of patient outcome, the informed selection of therapies, and identification of novel molecular targets for therapy. In this paper, we propose a new disease diagnostic method, probabilistic boosting tree (PB tree) method, on gene expression profiles of lung tumors. It enables accurate disease classification and subtype discovery in disease. It automatically constructs a tree in which each node combines a number of weak classifiers into a strong classifier. Also, subtype discovery is naturally embedded in the learning process. Our algorithm achieves excellent diagnostic performance, and meanwhile it is capable of detecting the disease subtype based on gene expression profile.
mRNA Expression Profiling of Laser Microbeam Microdissected Cells from Slender Embryonic Structures
Scheidl, Stefan J.; Nilsson, Sven; Kalén, Mattias; Hellström, Mats; Takemoto, Minoru; Håkansson, Joakim; Lindahl, Per
2002-01-01
Microarray hybridization has rapidly evolved as an important tool for genomic studies and studies of gene regulation at the transcriptome level. Expression profiles from homogenous samples such as yeast and mammalian cell cultures are currently extending our understanding of biology, whereas analyses of multicellular organisms are more difficult because of tissue complexity. The combination of laser microdissection, RNA amplification, and microarray hybridization has the potential to provide expression profiles from selected populations of cells in vivo. In this article, we present and evaluate an experimental procedure for global gene expression analysis of slender embryonic structures using laser microbeam microdissection and laser pressure catapulting. As a proof of principle, expression profiles from 1000 cells in the mouse embryonic (E9.5) dorsal aorta were generated and compared with profiles for captured mesenchymal cells located one cell diameter further away from the aortic lumen. A number of genes were overexpressed in the aorta, including 11 previously known markers for blood vessels. Among the blood vessel markers were endoglin, tie-2, PDGFB, and integrin-β1, that are important regulators of blood vessel formation. This demonstrates that microarray analysis of laser microbeam micro-dissected cells is sufficiently sensitive for identifying genes with regulative functions. PMID:11891179
NASA Astrophysics Data System (ADS)
Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib
2017-05-01
Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.
Reddy, Jay P; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M; Donehower, Larry A; Li, Yi
2010-02-23
p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.
Synthesis of Mitochondrial DNA Precursors during Myogenesis, an Analysis in Purified C2C12 Myotubes*
Frangini, Miriam; Franzolin, Elisa; Chemello, Francesco; Laveder, Paolo; Romualdi, Chiara; Bianchi, Vera; Rampazzo, Chiara
2013-01-01
During myogenesis, myoblasts fuse into multinucleated myotubes that acquire the contractile fibrils and accessory structures typical of striated skeletal muscle fibers. To support the high energy requirements of muscle contraction, myogenesis entails an increase in mitochondrial (mt) mass with stimulation of mtDNA synthesis and consumption of DNA precursors (dNTPs). Myotubes are quiescent cells and as such down-regulate dNTP production despite a high demand for dNTPs. Although myogenesis has been studied extensively, changes in dNTP metabolism have not been examined specifically. In differentiating cultures of C2C12 myoblasts and purified myotubes, we analyzed expression and activities of enzymes of dNTP biosynthesis, dNTP pools, and the expansion of mtDNA. Myotubes exibited pronounced post-mitotic modifications of dNTP synthesis with a particularly marked down-regulation of de novo thymidylate synthesis. Expression profiling revealed the same pattern of enzyme down-regulation in adult murine muscles. The mtDNA increased steadily after myoblast fusion, turning over rapidly, as revealed after treatment with ethidium bromide. We individually down-regulated p53R2 ribonucleotide reductase, thymidine kinase 2, and deoxyguanosine kinase by siRNA transfection to examine how a further reduction of these synthetic enzymes impacted myotube development. Silencing of p53R2 had little effect, but silencing of either mt kinase caused 50% mtDNA depletion and an unexpected decrease of all four dNTP pools independently of the kinase specificity. We suggest that during development of myotubes the shortage of even a single dNTP may affect all four pools through dysregulation of ribonucleotide reduction and/or dissipation of the non-limiting dNTPs during unproductive elongation of new DNA chains. PMID:23297407
Molina-Infante, Javier; Bredenoord, Albert J.; Cheng, Edaire; Dellon, Evan S.; Furuta, Glenn T.; Gupta, Sandeep K.; Hirano, Ikuo; Katzka, David A.; Moawad, Fouad J.; Rothenberg, Marc E.; Schoepfer, Alain; Spechler, Stuart; Wen, Ting; Straumann, Alex; Lucendo, Alfredo J.
2016-01-01
Consensus diagnostic recommendations to distinguish gastro-oesophageal reflux disease (GORD) from eosinophilic oesophagitis (EoE) by response to a trial of proton pump inhibitors (PPI) unexpectedly uncovered an entity called “PPI-responsive oesophageal eosinophilia” (PPI-REE). PPI-REE refers to patients with clinical and histologic features of EoE that remit with PPI treatment. Recent and evolving evidence, mostly from adults, shows that PPI-REE and EoE patients at baseline are clinically, endoscopically and histologically indistinguishable, and have significant overlap in terms of features of Th2 immune-mediated inflammation and gene expression. Furthermore, PPI therapy restores oesophageal mucosal integrity, reduces Th2 inflammation and reverses the abnormal gene expression signature in PPI-REE patients, similar to the effects of topical steroids in EoE patients. Additionally, recent series have reported that EoE patients responsive to diet/topical steroids may also achieve remission on PPI therapy. This mounting evidence supports the concept that PPI-REE represents a continuum of the same immunologic mechanisms that underlie EoE. Accordingly, it seems counterintuitive to differentiate PPI-REE from EoE based on a differential response to PPI therapy when their phenotypic, molecular, mechanistic, and therapeutic features cannot be reliably distinguished. For patients with symptoms and histologic features of EoE, it is reasonable to consider PPI therapy not as a diagnostic test, but as a therapeutic agent. Due to its safety profile, ease of administration and high response rates (up to 50%), PPI can be considered a first-line treatment, before diet and topical steroids. The reasons why some EoE patients respond to PPI, while others do not, remain to be elucidated. PMID:26685124
Brogden, Kim A; Parashar, Deepak; Hallier, Andrea R; Braun, Terry; Qian, Fang; Rizvi, Naiyer A; Bossler, Aaron D; Milhem, Mohammed M; Chan, Timothy A; Abbasi, Taher; Vali, Shireen
2018-02-27
Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.
Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro
2003-08-01
T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.
Tully, Douglas B; Bao, Wenjun; Goetz, Amber K; Blystone, Chad R; Ren, Hongzu; Schmid, Judith E; Strader, Lillian F; Wood, Carmen R; Best, Deborah S; Narotsky, Michael G; Wolf, Douglas C; Rockett, John C; Dix, David J
2006-09-15
Four triazole fungicides were studied using toxicogenomic techniques to identify potential mechanisms of action. Adult male Sprague-Dawley rats were dosed for 14 days by gavage with fluconazole, myclobutanil, propiconazole, or triadimefon. Following exposure, serum was collected for hormone measurements, and liver and testes were collected for histology, enzyme biochemistry, or gene expression profiling. Body and testis weights were unaffected, but liver weights were significantly increased by all four triazoles, and hepatocytes exhibited centrilobular hypertrophy. Myclobutanil exposure increased serum testosterone and decreased sperm motility, but no treatment-related testis histopathology was observed. We hypothesized that gene expression profiles would identify potential mechanisms of toxicity and used DNA microarrays and quantitative real-time PCR (qPCR) to generate profiles. Triazole fungicides are designed to inhibit fungal cytochrome P450 (CYP) 51 enzyme but can also modulate the expression and function of mammalian CYP genes and enzymes. Triazoles affected the expression of numerous CYP genes in rat liver and testis, including multiple Cyp2c and Cyp3a isoforms as well as other xenobiotic metabolizing enzyme (XME) and transporter genes. For some genes, such as Ces2 and Udpgtr2, all four triazoles had similar effects on expression, suggesting possible common mechanisms of action. Many of these CYP, XME and transporter genes are regulated by xeno-sensing nuclear receptors, and hierarchical clustering of CAR/PXR-regulated genes demonstrated the similarities of toxicogenomic responses in liver between all four triazoles and in testis between myclobutanil and triadimefon. Triazoles also affected expression of multiple genes involved in steroid hormone metabolism in the two tissues. Thus, gene expression profiles helped identify possible toxicological mechanisms of the triazole fungicides.
Dong, Shang-Wen; Li, Dong; Xu, Cong; Sun, Pei; Wang, Yuan-Guo; Zhang, Peng
2013-10-07
To investigate the effect of retinoblastoma protein-interacting zinc finger gene 1 (RIZ1) upregulation in gene expression profile and oncogenicity of human esophageal squamous cell carcinoma (ESCC) cell line TE13. TE13 cells were transfected with pcDNA3.1(+)/RIZ1 and pcDNA3.1(+). Changes in gene expression profile were screened and the microarray results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Nude mice were inoculated with TE13 cells to establish ESCC xenografts. After two weeks, the inoculated mice were randomly divided into three groups. Tumors were injected with normal saline, transfection reagent pcDNA3.1(+) and transfection reagent pcDNA3.1(+)/RIZ1, respectively. Tumor development was quantified, and changes in gene expression of RIZ1 transfected tumors were detected by RT-PCR and Western blotting. DNA microarray data showed that RIZ1 transfection induced widespread changes in gene expression profile of cell line TE13, with 960 genes upregulated and 1163 downregulated. Treatment of tumor xenografts with RIZ1 recombinant plasmid significantly inhibited tumor growth, decreased tumor size, and increased expression of RIZ1 mRNA compared to control groups. The changes in gene expression profile were also observed in vivo after RIZ1 transfection. Most of the differentially expressed genes were associated with cell development, supervision of viral replication, lymphocyte costimulatory and immune system development in esophageal cells. RIZ1 gene may be involved in multiple cancer pathways, such as cytokine receptor interaction and transforming growth factor beta signaling. The development and progression of esophageal cancer are related to the inactivation of RIZ1. Virus infection may also be an important factor.
[Preliminary analysis of retinal gene expression profile of diabetic rat].
Mei, Yan; Zhou, Hong-ying; Xiang, Tao; Lu, You-guang; Li, Ai-dong; Tang, En-jie; Yang, Hui-jun
2005-10-01
Establishing the retinal gene expression profiles of non-diabetic rat and diabetic rat and comparing the profiles in order to analyze the possible genes related with diabetic retinopathy. The whole retinal transcriptional fragments of non-diabetic rat and 8-week diabetic rat were obtained by restriction fragments differential display-PCR (RFDD-PCR). Bioinformatic analysis of retinal gene expression was performed using soft wares, including Fragment Analysis. After comparison of the expression profiles, the related gene fragments of diabetic retinopathy were initially selected as the target gene of further approach. A total of 3639 significant fragments were obtained. By means of more than 3-fold contrast of fluorescent intensity as the differential expression standard, the authors got 840 differential fragments, accounting for 23.08% of the expressed numbers and including 5 visual related genes, 13 excitatory neruotransmitter genes and 3 inhibitory neurotransmitter genes. At the 8th week, the expression of Rhodopsin kinase, beta-arrestin, Phosducinìrod photoreceptor cGMP-gated channel and Rpe65 as well as iGlu R1-4 were down-regulated. mGluRs and GABA-Rs were all up-regulated, whereas the expression of GlyR was unchanged. These results prompt again that the changes in retinal nervous layer of rat have occurred at an early stage of diabetes. The genes expression pattern of visual related genes and excitatory and inhibitory neurotransmitters in rat diabetic retina have been involved in neuro-dysfunctions of diabetic retina.
Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer.
Hannemann, Juliane; Oosterkamp, Hendrika M; Bosch, Cathy A J; Velds, Arno; Wessels, Lodewyk F A; Loo, Claudette; Rutgers, Emiel J; Rodenhuis, Sjoerd; van de Vijver, Marc J
2005-05-20
At present, clinically useful markers predicting response of primary breast carcinomas to either doxorubicin-cyclophosphamide (AC) or doxorubicin-docetaxel (AD) are lacking. We investigated whether gene expression profiles of the primary tumor could be used to predict treatment response to either of those chemotherapy regimens. Within a single-institution, randomized, phase II trial, patients with locally advanced breast cancer received six courses of either AC (n = 24) or AD (n = 24) neoadjuvant chemotherapy. Gene expression profiles were generated from core-needle biopsies obtained before treatment and correlated with the response of the primary tumor to the chemotherapy administered. Additionally, pretreatment gene expression profiles were compared with those in tumors remaining after chemotherapy. Ten (20%) of 48 patients showed a (near) pathologic complete remission of the primary tumor after treatment. No gene expression pattern correlating with response could be identified for all patients or for the AC or AD groups separately. The comparison of the pretreatment biopsy and the tumor excised after chemotherapy revealed differences in gene expression in tumors that showed a partial remission but not in tumors that did not respond to chemotherapy. No gene expression profile predicting the response of primary breast carcinomas to AC- or AD-based neoadjuvant chemotherapy could be detected in this interim analysis. More subtle differences in gene expression are likely to be present but can only be reliably identified by studying a larger group of patients. Response of a breast tumor to neoadjuvant chemotherapy results in alterations in gene expression.
Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai
2015-01-01
MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages. PMID:26396677
Cao, Zhongwei; Yao, Qunyan; Zhang, Shuncai
2015-01-01
MiR-146a has been shown to play a critical role in cell immunity and phagocytosis, processes that require rearrangement of the cytoskeleton. However, the detailed mechanism by which miR-146a regulates these events remains elusive. Here, we used luciferase reporter and protein assays to show that the cytoskeleton-regulatingprotein verprolin-homologous protein 2 (WAVE2), is a direct target of miR-146a. MiR-146a overexpression resulted in a decrease in WAVE2 protein expression under endotoxin-free culture conditions. Unexpectedly, however, miR-146a activated rather than repressed the expression of WAVE2 in macrophage RAW264.7 cells when cultured continuously in the presence of endotoxin. Furthermore, we demonstrated that miR-146a induced WAVE2 expression and enhanced phagocytosis in lipopolysaccharide-stimulated RAW264.7 macrophages. Our study suggests that lipopolysaccharide- induced miR146a indirectly activates WAVE2 expression; thus, facilitating cytoskeletal reorganization and phagocytosis in lipopolysaccharide-stimulated macrophages.
2010-01-01
Background Similar to human breast cancer mammary tumors of the female dog are commonly associated with a fatal outcome due to the development of distant metastases. However, the molecular defects leading to metastasis are largely unknown and the value of canine mammary carcinoma as a model for human breast cancer is unclear. In this study, we analyzed the gene expression signatures associated with mammary tumor metastasis and asked for parallels with the human equivalent. Methods Messenger RNA expression profiles of twenty-seven lymph node metastasis positive or negative canine mammary carcinomas were established by microarray analysis. Differentially expressed genes were functionally characterized and associated with molecular pathways. The findings were also correlated with published data on human breast cancer. Results Metastatic canine mammary carcinomas had 1,011 significantly differentially expressed genes when compared to non-metastatic carcinomas. Metastatic carcinomas had a significant up-regulation of genes associated with cell cycle regulation, matrix modulation, protein folding and proteasomal degradation whereas cell differentiation genes, growth factor pathway genes and regulators of actin organization were significantly down-regulated. Interestingly, 265 of the 1,011 differentially expressed canine genes are also related to human breast cancer and, vice versa, parts of a human prognostic gene signature were identified in the expression profiles of the metastatic canine tumors. Conclusions Metastatic canine mammary carcinomas can be discriminated from non-metastatic carcinomas by their gene expression profiles. More than one third of the differentially expressed genes are also described of relevance for human breast cancer. Many of the differentially expressed genes are linked to functions and pathways which appear to be relevant for the induction and maintenance of metastatic progression and may represent new therapeutic targets. Furthermore, dogs are in some aspects suitable as a translational model for human breast tumors in order to identify prognostic molecular signatures and potential therapeutic targets. PMID:21062462
Uddin, Monica; Wildman, Derek E.; Liu, Guozhen; Xu, Wenbo; Johnson, Robert M.; Hof, Patrick R.; Kapatos, Gregory; Grossman, Lawrence I.; Goodman, Morris
2004-01-01
Gene expression profiles from the anterior cingulate cortex (ACC) of human, chimpanzee, gorilla, and macaque samples provide clues about genetic regulatory changes in human and other catarrhine primate brains. The ACC, a cerebral neocortical region, has human-specific histological features. Physiologically, an individual's ACC displays increased activity during that individual's performance of cognitive tasks. Of ≈45,000 probe sets on microarray chips representing transcripts of all or most human genes, ≈16,000 were commonly detected in human ACC samples and comparable numbers, 14,000–15,000, in gorilla and chimpanzee ACC samples. Phylogenetic results obtained from gene expression profiles contradict the traditional expectation that the non-human African apes (i.e., chimpanzee and gorilla) should be more like each other than either should be like humans. Instead, the chimpanzee ACC profiles are more like the human than like the gorilla; these profiles demonstrate that chimpanzees are the sister group of humans. Moreover, for those unambiguous expression changes mapping to important biological processes and molecular functions that statistically are significantly represented in the data, the chimpanzee clade shows at least as much apparent regulatory evolution as does the human clade. Among important changes in the ancestry of both humans and chimpanzees, but to a greater extent in humans, are the up-regulated expression profiles of aerobic energy metabolism genes and neuronal function-related genes, suggesting that increased neuronal activity required increased supplies of energy. PMID:14976249
Conditional clustering of temporal expression profiles
Wang, Ling; Montano, Monty; Rarick, Matt; Sebastiani, Paola
2008-01-01
Background Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions. Results This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition. Conclusion We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page. PMID:18334028
NASA Astrophysics Data System (ADS)
Suzuki, Kunihiro
2009-04-01
Ion implantation profiles are expressed by the Pearson function with first, second, third, and fourth moment parameters of Rp, ΔRp, γ, and β. We derived an analytical model for these profile moments by solving a Lindhard-Scharf-Schiott (LSS) integration equation using perturbation approximation. This analytical model reproduces Monte Carlo data that were well calibrated to reproduce a vast experimental database. The extended LSS theory is vital for instantaneously predicting ion implantation profiles with any combination of incident ions and substrate atoms including their energy dependence.
SPERM RNA AMPLIFICATION FOR GENE EXPRESSION PROFILING BY DNA MICROARRAY TECHNOLOGY
Sperm RNA Amplification for Gene Expression Profiling by DNA Microarray Technology
Hongzu Ren, Kary E. Thompson, Judith E. Schmid and David J. Dix, Reproductive Toxicology Division, NHEERL, Office of Research and Development, US Environmental Protection Agency, Research Triang...
Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...
GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY
Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
David J. Dix
National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
Ab...
NASA Astrophysics Data System (ADS)
Freitag, Johannes; Schaller, Christoph; Kipfstuhl, Sepp; Hörhold, Maria; Schaidt, Maximilian; Sander, Merle; Moser, Dorothea
2017-04-01
Interpreting polar ice as climate archive requires profound knowledge about the formation of climate-proxies within the upper snow column. In order to investigate different impact factors on signal formation we performed a multiproxy- approach for 2m deep snow profiles by continuously measuring the 3D-microstructure using core-scale X-CT and the isotopic composition and impurity load in discrete samples of 1.1cm spatial resolution. The study includes profiles from a low-accumulation site on the East Antarctic plateau (Kohnen Station, DML), a typical medium-accumulation site on the North-East-Greenland ice sheet (EGRIP drilling camp) and a high-accumulation site on the Renland ice cap (East-coast of Greenland, RECAP drilling camp). Major observations are the tooth-shaped imprint of structural anisotropy and sulfate concentrations at the low accumulation site, the clear isotopic inter-annual variations that are in line with distinct impurity peaks at the high-accumulation site and the unexpected missing footprint of ice crusts and refrozen melt layers within the impurity- and isotope records for all sites.
Gene expression analysis predicts insect venom anaphylaxis in indolent systemic mastocytosis.
Niedoszytko, M; Bruinenberg, M; van Doormaal, J J; de Monchy, J G R; Nedoszytko, B; Koppelman, G H; Nawijn, M C; Wijmenga, C; Jassem, E; Elberink, J N G Oude
2011-05-01
Anaphylaxis to insect venom (Hymenoptera) is most severe in patients with mastocytosis and may even lead to death. However, not all patients with mastocytosis suffer from anaphylaxis. The aim of the study was to analyze differences in gene expression between patients with indolent systemic mastocytosis (ISM) and a history of insect venom anaphylaxis (IVA) compared to those patients without a history of anaphylaxis, and to determine the predictive use of gene expression profiling. Whole-genome gene expression analysis was performed in peripheral blood cells. Twenty-two adults with ISM were included: 12 with a history of IVA and 10 without a history of anaphylaxis of any kind. Significant differences in single gene expression corrected for multiple testing were found for 104 transcripts (P < 0.05). Gene ontology analysis revealed that the differentially expressed genes were involved in pathways responsible for the development of cancer and focal and cell adhesion suggesting that the expression of genes related to the differentiation state of cells is higher in patients with a history of anaphylaxis. Based on the gene expression profiles, a naïve Bayes prediction model was built identifying patients with IVA. In ISM, gene expression profiles are different between patients with a history of IVA and those without. These findings might reflect a more pronounced mast cells dysfunction in patients without a history of anaphylaxis. Gene expression profiling might be a useful tool to predict the risk of anaphylaxis on insect venom in patients with ISM. Prospective studies are needed to substantiate any conclusions. © 2010 John Wiley & Sons A/S.
Rajarapu, Swapna Priya; Shreve, Jacob T; Bhide, Ketaki P; Thimmapuram, Jyothi; Scharf, Michael E
2015-04-22
Second generation lignocellulosic feedstocks are being considered as an alternative to first generation biofuels that are derived from grain starches and sugars. However, the current pre-treatment methods for second generation biofuel production are inefficient and expensive due to the recalcitrant nature of lignocellulose. In this study, we used the lower termite Reticulitermes flavipes (Kollar), as a model to identify potential pretreatment genes/enzymes specifically adapted for use against agricultural feedstocks. Metatranscriptomic profiling was performed on worker termite guts after feeding on corn stover (CS), soybean residue (SR), or 98% pure cellulose (paper) to identify (i) microbial community, (ii) pathway level and (iii) gene-level responses. Microbial community profiles after CS and SR feeding were different from the paper feeding profile, and protist symbiont abundance decreased significantly in termites feeding on SR and CS relative to paper. Functional profiles after CS feeding were similar to paper and SR; whereas paper and SR showed different profiles. Amino acid and carbohydrate metabolism pathways were downregulated in termites feeding on SR relative to paper and CS. Gene expression analyses showed more significant down regulation of genes after SR feeding relative to paper and CS. Stereotypical lignocellulase genes/enzymes were not differentially expressed, but rather were among the most abundant/constitutively-expressed genes. These results suggest that the effect of CS and SR feeding on termite gut lignocellulase composition is minimal and thus, the most abundantly expressed enzymes appear to encode the best candidate catalysts for use in saccharification of these and related second-generation feedstocks. Further, based on these findings we hypothesize that the most abundantly expressed lignocellulases, rather than those that are differentially expressed have the best potential as pretreatment enzymes for CS and SR feedstocks.
Conformational effects on circular dichroism in the photoelectron angular distribution.
Di Tommaso, Devis; Stener, Mauro; Fronzoni, Giovanna; Decleva, Piero
2006-04-10
The B-spline density-functional method has been applied to the conformers of the (1R, 2R)-1,2-dibromo-1,2-dichloro-1,2-difluoroethane molecule. The cross section, asymmetry, and dichroic parameters relative to core and valence orbitals, which do not change their nature along the conformational curve, have been systematically studied. While the cross section and the asymmetry parameter are weakly affected, the dichroic parameter appears to be rather sensitive to the particular conformer of the molecule, suggesting that this dynamical property could be a useful tool for conformational analysis. The computational method has also been applied to methyl rotation in methyloxirane. Unexpected and dramatic sensitivity of the dichroic-parameter profile to the methyl rotation, both in the core and valence states, has been found. Boltzmann averaging over the conformers reproduces quite closely the profiles previously obtained for the minimum-energy conformation, which is in good agreement with the experimental results.
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard
1990-01-01
Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.
Selecting Effective Means to Any End: Futures and Ethics of Persuasion Profiling
NASA Astrophysics Data System (ADS)
Kaptein, Maurits; Eckles, Dean
Interactive persuasive technologies can and do adapt to individuals. Existing systems identify and adapt to user preferences within a specific domain: e.g., a music recommender system adapts its recommended songs to user preferences. This paper is concerned with adaptive persuasive systems that adapt to individual differences in the effectiveness of particular means, rather than selecting different ends. We give special attention to systems that implement persuasion profiling - adapting to individual differences in the effects of influence strategies. We argue that these systems are worth separate consideration and raise unique ethical issues for two reasons: (1) their end-independence implies that systems trained in one context can be used in other, unexpected contexts and (2) they do not rely on - and are generally disadvantaged by - disclosing that they are adapting to individual differences. We use examples of these systems to illustrate some ethically and practically challenging futures that these characteristics make possible.
Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity
Anastassiadis, Theonie; Deacon, Sean W.; Devarajan, Karthik; Ma, Haiching; Peterson, Jeffrey R.
2011-01-01
Small-molecule protein kinase inhibitors are central tools for elucidating cellular signaling pathways and are promising therapeutic agents. Due to evolutionary conservation of the ATP-binding site, most kinase inhibitors that target this site promiscuously inhibit multiple kinases. Interpretation of experiments utilizing these compounds is confounded by a lack of data on the comprehensive kinase selectivity of most inhibitors. Here we profiled the activity of 178 commercially available kinase inhibitors against a panel of 300 recombinant protein kinases using a functional assay. Quantitative analysis revealed complex and often unexpected kinase-inhibitor interactions, with a wide spectrum of promiscuity. Many off-target interactions occur with seemingly unrelated kinases, revealing how large-scale profiling can be used to identify multi-targeted inhibitors of specific, diverse kinases. The results have significant implications for drug development and provide a resource for selecting compounds to elucidate kinase function and for interpreting the results of experiments that use them. PMID:22037377
[Pharmacogenetics in primary health care: implementation and future expectations].
Houwink, Elisa J F; Rigter, Tessel; Swen, Jesse J; Cornel, Martina C; Kienhuis, Anne; Rodenburg, Wendy; Weda, Marjolein
2015-01-01
Personalised medicine is a targeted approach to the prevention, diagnosis and treatment of disorders on the basis of the specific genetic profile of the patient. Pharmacogenetics research shows that differences in the genetic profile of patients explain the interindividual differences in efficacy and side effects of medicines. Although there are high expectations of personalised medicine and pharmacogenetics in healthcare, both are only used to a limited extent to date. Pharmacogenetics seems particularly important in diseases with a poor prognosis and treatments with potentially serious side effects. Pharmacogenetics testing is reimbursed in the case of serious side effects or unexpected ineffectiveness. 95% of patients in the Netherlands have at least one abnormality in the panel of genes for which guidance is available. The KNMP (Royal Dutch Pharmacists' Association) provides dosing advice based on genotype for 80 medicines, 27 of which are regularly prescribed in primary health care.
Taguchi, Y-H
2018-05-08
Even though coexistence of multiple phenotypes sharing the same genomic background is interesting, it remains incompletely understood. Epigenomic profiles may represent key factors, with unknown contributions to the development of multiple phenotypes, and social-insect castes are a good model for elucidation of the underlying mechanisms. Nonetheless, previous studies have failed to identify genes associated with aberrant gene expression and methylation profiles because of the lack of suitable methodology that can address this problem properly. A recently proposed principal component analysis (PCA)-based and tensor decomposition (TD)-based unsupervised feature extraction (FE) can solve this problem because these two approaches can deal with gene expression and methylation profiles even when a small number of samples is available. PCA-based and TD-based unsupervised FE methods were applied to the analysis of gene expression and methylation profiles in the brains of two social insects, Polistes canadensis and Dinoponera quadriceps. Genes associated with differential expression and methylation between castes were identified, and analysis of enrichment of Gene Ontology terms confirmed reliability of the obtained sets of genes from the biological standpoint. Biologically relevant genes, shown to be associated with significant differential gene expression and methylation between castes, were identified here for the first time. The identification of these genes may help understand the mechanisms underlying epigenetic control of development of multiple phenotypes under the same genomic conditions.
Neighboring Genes Show Correlated Evolution in Gene Expression.
Ghanbarian, Avazeh T; Hurst, Laurence D
2015-07-01
When considering the evolution of a gene's expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (<100 kb) but extends much further. Sex-specific expression change is also genomically clustered. As genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Validation of Biomarkers Predictive of Recurrence Following Prostatectomy
2011-04-14
Bergerheim U, Ekman P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically...P, DeMarzo AM, Tibshirani R, Botstein D, Brown PO, Brooks JD, Pollack JR: Gene expression profiling identifies clinically relevant subtypes of
Customizing chemotherapy for colon cancer: the potential of gene expression profiling.
Mariadason, John M; Arango, Diego; Augenlicht, Leonard H
2004-06-01
The value of gene expression profiling, or microarray analysis, for the classification and prognosis of multiple forms of cancer is now clearly established. For colon cancer, expression profiling can readily discriminate between normal and tumor tissue, and to some extent between tumors of different histopathological stage and prognosis. While a definitive in vivo study demonstrating the potential of this methodology for predicting response to chemotherapy is presently lacking, the ability of microarrays to distinguish other subtleties of colon cancer phenotype, as well as recent in vitro proof-of-principle experiments utilizing colon cancer cell lines, illustrate the potential of this methodology for predicting the probability of response to specific chemotherapeutic agents. This review discusses some of the recent advances in the use of microarray analysis for understanding and distinguishing colon cancer subtypes, and attempts to identify challenges that need to be overcome in order to achieve the goal of using gene expression profiling for customizing chemotherapy in colon cancer.
Introducing Cytology-Based Theranostics in Oral Squamous Cell Carcinoma: A Pilot Program.
Patrikidou, Anna; Valeri, Rosalia Maria; Kitikidou, Kyriaki; Destouni, Charikleia; Vahtsevanos, Konstantinos
2016-04-01
We aimed to evaluate the feasibility and reliability of brush cytology in the biomarker expression profiling of oral squamous cell carcinomas within the concept of theranostics, and to correlate this biomarker profile with patient measurable outcomes. Markers representative of prognostic gene expression changes in oral squamous cell carcinoma was selected. These markers were also selected to involve pathways for which commercially available or investigational agents exist for clinical application. A set of 7 markers were analysed by immunocytochemistry on the archival primary tumour material of 99 oral squamous cell carcinoma patients. We confirmed the feasibility of the technique for the expression profiling of oral squamous cell carcinomas. Furthermore, our results affirm the prognostic significance of the epidermal growth factor receptor (EGFR) family and the angiogenic pathway in oral squamous cell carcinoma, confirming their interest for targeted therapy. Brush cytology appears feasible and applicable for the expression profiling of oral squamous cell carcinoma within the concept of theranostics, according to sample availability.
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.
2016-01-01
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072
Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R; Tang, Dean G
2016-02-29
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.
Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes
NASA Astrophysics Data System (ADS)
Ashkani, Jahanshah; Naidoo, Kevin J.
2016-05-01
Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.
The Dynamics and Evolution of Poles and Rogue Waves for Nonlinear Schrödinger Equations*
NASA Astrophysics Data System (ADS)
Chiu, Tin Lok; Liu, Tian Yang; Chan, Hiu Ning; Wing Chow, Kwok
2017-09-01
Rogue waves are unexpectedly large deviations from equilibrium or otherwise calm positions in physical systems, e.g. hydrodynamic waves and optical beam intensities. The profiles and points of maximum displacements of these rogue waves are correlated with the movement of poles of the exact solutions extended to the complex plane through analytic continuation. Such links are shown to be surprisingly precise for the first order rogue wave of the nonlinear Schrödinger (NLS) and the derivative NLS equations. A computational study on the second order rogue waves of the NLS equation also displays remarkable agreements.
Surface Relaxation in Protein Crystals
NASA Technical Reports Server (NTRS)
Boutet, S.; Robinson, I. K.; Hu, Z. W.; Thomas, B. R.; Chernov, A. A.
2002-01-01
Surface X-ray diffraction measurements were performed on (111) growth faces of crystals of the Cellular iron-storage protein horse spleen ferritin. Crystal Trunkation Rods (CTR) were measured. A fit of the measured profile of the CTR revealed a surface roughness of 48 +/- 4.5 A and a top layer spacing contraction of 3.9 +/- 1.5%. In addition to the peak from the CTR, the rocking curves of the crystals displayed unexpected extra peaks. Multiple-scattering is demonstrated to account for them. Future applications of the method could allow the exploration of hydration effects on the growth of protein crystals.
Maxillary advancement using distraction osteogenesis with intraoral device.
Takigawa, Yoko; Uematsu, Setsuko; Takada, Kenji
2010-11-01
This article describes the surgical orthodontic treatment of maxillary hypoplasia in a patient with cleft lip and palate using maxillary distraction osteogenesis with internal maxillary distractors. Maxillary advancement was performed to correct the retrusive maxillary facial profile and Class III malocclusion. Rotational movement of the distraction segment was made to correct the upper dental midline. Although maxillary advancement was insufficient because of unexpected breakage of the intraoral distractor after completion of the distraction, skeletal traction with a face mask compensated for the shortage. Successful esthetic improvement and posttreatment occlusal stability were achieved with no discernible relapse after 2 years of retention.
[Physically-based model of pesticide application for risk assessment of agricultural workers].
Rubino, F M; Mandic-Rajcevic, S; Vianello, G; Brambilla, G; Colosio, C
2012-01-01
Due to their unavoidable toxicity to non-target organisms, including man, the not of Plant Protection Products requires a thorough risk assessment to rationally advise safe use procedures and protection equipment by farmers. Most information on active substances and formulations, such as dermal absorption rates and exposure limits are available in the large body of regulatory data. Physically-based computational models can be used to forecast risk in real-life conditions (preventive assessment by 'exposure profiles'), to drive the cost-effective use of products and equipment and to understand the sources of unexpected exposure.
Experience from one year of operating a boundary-layer profiler in the center of a large city
NASA Astrophysics Data System (ADS)
Rogers, R. R.; Cohn, S. A.; Ecklund, W. L.; Wilson, J. S.; Carter, D. A.
1994-06-01
Since May 1992 a small, 915-MHz profiler has been operated continuously in downtown Montreal. It is a five-beam system employing a microstrip array antenna, located atop a 14-story office building that houses several academic departments of McGill University. The data are used for research on precipitation physics and the clear-air reflectivity in addition to wind profiling. We are especially interested in situations in which the reflectivities of the clear air and the precipitation are comparable. This permits the study of interactions between the precipitation and the clear air, a new area of research made possible by wind profilers. On clear days in the summer, 30-min consensus winds can often be measured to an altitude of 3 km, but ground clutter in the antenna sidelobes interferes with measurements below 600 m. Rain when present often permits wind profiling down to 100 m and up to 6 km or higher. On cold winter days there are some periods when the reflectivity is too weak at all levels to permit wind estimation. Falling snow, however, provides readily detectable echoes and serves as a good tracer of the wind and so allows profiling over its full altitude extent. The best conditions for observing interactions between precipitation and the clear air are when light rain falls through a reflective layer associated with a frontal surface or inversion. Unexpectedly, flocks of migrating birds sometimes completely dominate the signal at night in the spring and fall seasons.
Bradley, S P; Pahari, M; Uknis, M E; Rastellini, C; Cicalese, L
2006-01-01
The cellular and histological events that occur during the regeneration process in invertebrates have been studied in the field of visceral regeneration. We would like to explore the molecular aspects of the regeneration process in the small intestine. The aim of this study was to characterize the gene expression profiles of the intestinal graft to identify which genes may have a role in regeneration of graft tissue posttransplant. In a patient undergoing living related small bowel transplantation (LRSBTx) in our institution, mucosal biopsies were obtained from the recipient intestine and donor graft at the time of transplant and at weeks 1, 2, 3, and 6 posttransplant. Total RNA was isolated from sample biopsies followed by gene expression profiles determined from the replicate samples (n = 3) for each biopsy using the Affymetrix U133 Plus 2.0 Human GeneChip set. Two profiles were obtained from the data. One profile showed rapid increase of 45 genes immediately after transplant by week 1 with significant changes (P < .05) greater than threefold including the chemokine CXC9 and glutathione-related stress factors, GPX2 and GSTA4. The second profile identified 133 genes that were significantly decreased by threefold or greater immediately after transplant week 1, including UCC1, the human homolog of the Ependymin gene. We have identified two gene expression profiles representing early graft responses to small bowel transplantation. These profiles will serve to identify and study those genes whose products may play a role in accelerating tissue regeneration following segmental LRSBTx.
Shvedova, Anna A.; Yanamala, Naveena; Kisin, Elena R.; Khailullin, Timur O.; Birch, M. Eileen; Fatkhutdinova, Liliya M.
2016-01-01
Background As the application of carbon nanotubes (CNT) in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT) could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans. Methods In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8), were compared with expression profiles of non-exposed (n = 7) workers (e.g., professional and/or technical staff) from the same manufacturing facility. Results Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs. Conclusion This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers of MWCNT exposures in humans. PMID:26930275
Comparison of Glomerular and Podocyte mRNA Profiles in Streptozotocin-Induced Diabetes
Fu, Jia; Wei, Chengguo; Lee, Kyung; Zhang, Weijia; He, Wu; Chuang, Peter
2016-01-01
Evaluating the mRNA profile of podocytes in the diabetic kidney may indicate genes involved in the pathogenesis of diabetic nephropathy. To determine if the podocyte-specific gene information contained in mRNA profiles of the whole glomerulus of the diabetic kidney accurately reflects gene expression in the isolated podocytes, we crossed Nos3−/− IRG mice with podocin-rtTA and TetON-Cre mice for enhanced green fluorescent protein labeling of podocytes before diabetic injury. Diabetes was induced by streptozotocin, and mRNA profiles of isolated glomeruli and sorted podocytes from diabetic and control mice were examined 10 weeks later. Expression of podocyte-specific markers in glomeruli was downregulated in diabetic mice compared with controls. However, expression of these markers was not altered in sorted podocytes from diabetic mice. When mRNA levels of glomeruli were corrected for podocyte number per glomerulus, the differences in podocyte marker expression disappeared. Analysis of the differentially expressed genes in diabetic mice also revealed distinct upregulated pathways in the glomeruli (mitochondrial function, oxidative stress) and in podocytes (actin organization). In conclusion, our data suggest reduced expression of podocyte markers in glomeruli is a secondary effect of reduced podocyte number, thus podocyte-specific gene expression detected in the whole glomerulus may not represent that in podocytes in the diabetic kidney. PMID:26264855
Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao
2015-01-01
We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacapala-Gómez, Ana Elvira, E-mail: zak_ana@yahoo.com.mx; Del Moral-Hernández, Oscar, E-mail: odelmoralh@gmail.com; Villegas-Sepúlveda, Nicolás, E-mail: nvillega@cinvestav.mx
We analyzed the effects of the expression of HPV 16 E6 oncoprotein variants (AA-a, AA-c, E-A176/G350, E-C188/G350, E-G350), and the E-Prototype in global gene expression profiles in an in vitro model. E6 gene was cloned into an expression vector fused to GFP and was transfected in C33-A cells. Affymetrix GeneChip Human Transcriptome Array 2.0 platform was used to analyze the expression of over 245,000 coding transcripts. We found that HPV16 E6 variants altered the expression of 387 different genes in comparison with E-Prototype. The altered genes are involved in cellular processes related to the development of cervical carcinoma, such asmore » adhesion, angiogenesis, apoptosis, differentiation, cell cycle, proliferation, transcription and protein translation. Our results show that polymorphic changes in HPV16 E6 natural variants are sufficient to alter the overall gene expression profile in C33-A cells, explaining in part the observed differences in oncogenic potential of HPV16 variants. - Highlights: • Amino acid changes in HPV16 E6 variants modulate the transciption of specific genes. • This is the first comparison of global gene expression profile of HPV 16 E6 variants. • Each HPV 16 E6 variant appears to have its own molecular signature.« less
Sign reversals of the output autocorrelation function for the stochastic Bernoulli-Verhulst equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumi, N., E-mail: Neeme.Lumi@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee
2015-10-28
We consider a stochastic Bernoulli-Verhulst equation as a model for population growth processes. The effect of fluctuating environment on the carrying capacity of a population is modeled as colored dichotomous noise. Relying on the composite master equation an explicit expression for the stationary autocorrelation function (ACF) of population sizes is found. On the basis of this expression a nonmonotonic decay of the ACF by increasing lag-time is shown. Moreover, in a certain regime of the noise parameters the ACF demonstrates anticorrelation as well as related sign reversals at some values of the lag-time. The conditions for the appearance of thismore » highly unexpected effect are also discussed.« less
Lopez-Gomollon, Sara; Mohorianu, Irina; Szittya, Gyorgy; Moulton, Vincent; Dalmay, Tamas
2012-12-01
MicroRNAs negatively regulate the accumulation of mRNAs therefore when they are expressed in the same cells their expression profiles show an inverse correlation. We previously described one positively correlated miRNA/target pair, but it is not known how widespread this phenomenon is. Here, we investigated the correlation between the expression profiles of differentially expressed miRNAs and their targets during tomato fruit development using deep sequencing, Northern blot and RT-qPCR. We found an equal number of positively and negatively correlated miRNA/target pairs indicating that positive correlation is more frequent than previously thought. We also found that the correlation between microRNA and target expression profiles can vary between mRNAs belonging to the same gene family and even for the same target mRNA at different developmental stages. Since microRNAs always negatively regulate their targets, the high number of positively correlated microRNA/target pairs suggests that mutual exclusion could be as widespread as temporal regulation. The change of correlation during development suggests that the type of regulatory circuit directed by a microRNA can change over time and can be different for individual gene family members. Our results also highlight potential problems for expression profiling-based microRNA target identification/validation.
Gene expression profiling of two distinct neuronal populations in the rodent spinal cord.
Ryge, Jesper; Westerdahl, Ann-Charlotte; Alstrøm, Preben; Kiehn, Ole
2008-01-01
In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord.
Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord
Alstrøm, Preben; Kiehn, Ole
2008-01-01
Background In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. Methodology/Principal Findings We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50–250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. Conclusions/Significance We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord. PMID:18923679
Expression of recombinant sea urchin cellulase SnEG54 using mammalian cell lines.
Okumura, Fumihiko; Kameda, Hiroyuki; Ojima, Takao; Hatakeyama, Shigetsugu
2010-05-07
We previously identified the cellulase SnEG54 from Japanese purple sea urchin Strongylocentrotus nudus, the molecular mass of which is about 54kDa on SDS-PAGE. It is difficult to express and purify a recombinant cellulase protein using bacteria such as Escherichia coli or yeast. In this study, we generated mammalian expression vectors encoding SnEG54 to transiently express SnEG54 in mammalian cells. Both SnEG54 expressed in mammalian cells and SnEG54 released into the culture supernatant showed hydrolytic activity toward carboxymethyl cellulose. By using a retroviral expression system, we also established a mammalian cell line that constitutively produces SnEG54. Unexpectedly, SnEG54 released into the culture medium was not stable, and the peak time showing the highest concentration was approximately 1-2days after seeding into fresh culture media. These findings suggest that non-mammalian sea urchin cellulase can be generated in human cell lines but that recombinant SnEG54 is unstable in culture medium due to an unidentified mechanism. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Facial Expression Influences Face Identity Recognition During the Attentional Blink
2014-01-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076
Facial expression influences face identity recognition during the attentional blink.
Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J
2014-12-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Global gene expression profile analysis can be utilized to derive molecular footprints to understand biochemical
pathways implicated in the origin and progression of disease. Functional genomics efforts with tissue-specific focused
genearray appears to be the most...
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
Four triazole fungicides used in agricultural or pharmaceutical applications were examined for hepatotoxic effects in mouse liver. Besides organ weight, histopathology, and cytochrome P450 (CYP) enzyme induction, DNA microarrays were used to generate gene expression profiles and ...
CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERTENSIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE. SS Nadadur UP Kodavanti, Pulmonary Toxicology Branch, ETD, ORD, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711.
Nally, Jarlath E; Grassmann, Andre A; Planchon, Sébastien; Sergeant, Kjell; Renaut, Jenny; Seshu, Janakiram; McBride, Alan J; Caimano, Melissa J
2017-01-01
Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Reservoir hosts of leptospirosis, including rodents, dogs, and cattle, exhibit little to no signs of disease but shed large numbers of organisms in their urine. Transmission occurs when mucosal surfaces or abraded skin come into contact with infected urine or urine-contaminated water or soil. Whilst little is known about how Leptospira adapt to and persist within a reservoir host, in vitro studies suggest that leptospires alter their transcriptomic and proteomic profiles in response to environmental signals encountered during mammalian infection. We applied the dialysis membrane chamber (DMC) peritoneal implant model to compare the whole cell proteome of in vivo derived leptospires with that of leptospires cultivated in vitro at 30°C and 37°C by 2-dimensional difference in-gel electrophoresis (2-D DIGE). Of 1,735 protein spots aligned across 9 2-D DIGE gels, 202 protein spots were differentially expressed ( p < 0.05, fold change >1.25 or < -1.25) across all three conditions. Differentially expressed proteins were excised for identification by mass spectrometry. Data are available via ProteomeXchange with identifier PXD006995. The greatest differences were detected when DMC-cultivated leptospires were compared with IV30- or IV37-cultivated leptospires, including the increased expression of multiple isoforms of Loa22, a known virulence factor. Unexpectedly, 20 protein isoforms of LipL32 and 7 isoforms of LipL41 were uniformly identified by DIGE as differentially expressed, suggesting that unique post-translational modifications (PTMs) are operative in response to mammalian host conditions. To test this hypothesis, a rat model of persistent renal colonization was used to isolate leptospires directly from the urine of experimentally infected rats. Comparison of urinary derived leptospires to IV30 leptospires by 2-D immunoblotting confirmed that modification of proteins with trimethyllysine and acetyllysine occurs to a different degree in response to mammalian host signals encountered during persistent renal colonization. These results provide novel insights into differential protein and PTMs present in response to mammalian host signals which can be used to further define the unique equilibrium that exists between pathogenic leptospires and their reservoir host of infection.
Quan, Yong; Jin, Yisheng; Faria, Teresa N; Tilford, Charles A; He, Aiqing; Wall, Doris A; Smith, Ronald L; Vig, Balvinder S
2012-06-18
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5-7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells.
Quan, Yong; Jin, Yisheng; Faria, Teresa N.; Tilford, Charles A.; He, Aiqing; Wall, Doris A.; Smith, Ronald L.; Vig, Balvinder S.
2012-01-01
The expression levels of genes involved in drug and nutrient absorption were evaluated in the Madin-Darby Canine Kidney (MDCK) in vitro drug absorption model. MDCK cells were grown on plastic surfaces (for 3 days) or on Transwell® membranes (for 3, 5, 7, and 9 days). The expression profile of genes including ABC transporters, SLC transporters, and cytochrome P450 (CYP) enzymes was determined using the Affymetrix® Canine GeneChip®. Expression of genes whose probe sets passed a stringent confirmation process was examined. Expression of a few transporter (MDR1, PEPT1 and PEPT2) genes in MDCK cells was confirmed by RT-PCR. The overall gene expression profile was strongly influenced by the type of support the cells were grown on. After 3 days of growth, expression of 28% of the genes was statistically different (1.5-fold cutoff, p < 0.05) between the cells grown on plastic and Transwell® membranes. When cells were differentiated on Transwell® membranes, large changes in gene expression profile were observed during the early stages, which then stabilized after 5–7 days. Only a small number of genes encoding drug absorption related SLC, ABC, and CYP were detected in MDCK cells, and most of them exhibited low hybridization signals. Results from this study provide valuable reference information on endogenous gene expression in MDCK cells that could assist in design of drug-transporter and/or drug-enzyme interaction studies, and help interpret the contributions of various transporters and metabolic enzymes in studies with MDCK cells. PMID:24300234
Dakshinamurthy, Amirtha Ganesh; Ramesar, Rajkumar; Goldberg, Paul; Blackburn, Jonathan M
2008-11-01
Cancer-testis (CT) antigens are a group of tumor antigens that are expressed in the testis and aberrantly in cancerous tissue but not in somatic tissues. The testis is an immune-privileged site because of the presence of a blood-testis barrier; as a result, CT antigens are considered to be essentially tumor specific and are attractive targets for immunotherapy. CT antigens are classified as the CT-X and the non-X CT antigens depending on the chromosomal location to which the genes are mapped. CT-X antigens are typically highly immunogenic and hence the first step towards tailored immunotherapy is to elucidate the expression profile of CT-X antigens in the respective tumors. In this study we investigated the expression profile of 16 CT-X antigen genes in 34 colorectal cancer (CRC) patients using reverse transcription-polymerase chain reaction. We observed that 12 of the 16 CT-X antigen genes studied did not show expression in any of the CRC samples analyzed. The other 4 CT-X antigen genes showed low frequency of expression and exhibited a highly variable expression profile when compared to other populations. Thus, our study forms the first report on the expression profile of CT-X antigen genes among CRC patients in the genetically diverse South African population. The results of our study suggest that genetic and ethnic variations in population might have a role in the expression of the CT-X antigen genes. Thus our results have significant implications for anti-CT antigen-based immunotherapy trials in this population.
Advancing the use of noncoding RNA in regulatory toxicology: Report of an ECETOC workshop.
Aigner, Achim; Buesen, Roland; Gant, Tim; Gooderham, Nigel; Greim, Helmut; Hackermüller, Jörg; Hubesch, Bruno; Laffont, Madeleine; Marczylo, Emma; Meister, Gunter; Petrick, Jay S; Rasoulpour, Reza J; Sauer, Ursula G; Schmidt, Kerstin; Seitz, Hervé; Slack, Frank; Sukata, Tokuo; van der Vies, Saskia M; Verhaert, Jan; Witwer, Kenneth W; Poole, Alan
2016-12-01
The European Centre for the Ecotoxicology and Toxicology of Chemicals (ECETOC) organised a workshop to discuss the state-of-the-art research on noncoding RNAs (ncRNAs) as biomarkers in regulatory toxicology and as analytical and therapeutic agents. There was agreement that ncRNA expression profiling data requires careful evaluation to determine the utility of specific ncRNAs as biomarkers. To advance the use of ncRNA in regulatory toxicology, the following research priorities were identified: (1) Conduct comprehensive literature reviews to identify possibly suitable ncRNAs and areas of toxicology where ncRNA expression profiling could address prevailing scientific deficiencies. (2) Develop consensus on how to conduct ncRNA expression profiling in a toxicological context. (3) Conduct experimental projects, including, e.g., rat (90-day) oral toxicity studies, to evaluate the toxicological relevance of the expression profiles of selected ncRNAs. Thereby, physiological ncRNA expression profiles should be established, including the biological variability of healthy individuals. To substantiate the relevance of key ncRNAs for cell homeostasis or pathogenesis, molecular events should be dose-dependently linked with substance-induced apical effects. Applying a holistic approach, knowledge on ncRNAs, 'omics and epigenetics technologies should be integrated into adverse outcome pathways to improve the understanding of the functional roles of ncRNAs within a regulatory context. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Li, Xiaoqian; Yow, W Quin
2018-09-01
Prior work has shown that young children trust single accurate and inaccurate individuals to a similar extent in their endorsement of novel information. However, it remains unknown to what extent children trust a credible or noncredible individual when given information that is pitted against their own beliefs. The current study examined whether children, when given unexpected testimony that contradicted their initial beliefs but was not completely unbelievable, would selectively revise their beliefs depending on the informant's past history of accuracy. The participants (3- and 4-year-olds; N = 100) were familiarized with an informant who labeled a series of common objects either accurately or inaccurately. Following that, all children saw a picture of an ambiguous hybrid artifact that consisted of features of two typical common artifacts and were asked to identify the hybrid object with their own label. Subsequently, children watched the previously accurate or inaccurate informant give the same hybrid object a different but plausible label. Children expressed a greater tendency to override their initial judgments and endorse the unexpected testimony from a previously accurate informant than from someone who had consistently made naming errors. The findings provide novel understandings of the circumstances under which 3- and 4-year-old preschoolers may or may not rely on the informant's prior reliability in their selective learning. Copyright © 2018 Elsevier Inc. All rights reserved.
2012-01-01
Background Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, partly due to their ignoring the dependence between the expression measurements over time and the correlation among gene expression profiles. We further investigate the advantages and limitations of available models in the literature and propose a new mixture model with autoregressive random effects of the first order for the clustering of time-course gene-expression profiles. Some simulations and real examples are given to demonstrate the usefulness of the proposed models. Results We illustrate the applicability of our new model using synthetic and real time-course datasets. We show that our model outperforms existing models to provide more reliable and robust clustering of time-course data. Our model provides superior results when genetic profiles are correlated. It also gives comparable results when the correlation between the gene profiles is weak. In the applications to real time-course data, relevant clusters of coregulated genes are obtained, which are supported by gene-function annotation databases. Conclusions Our new model under our extension of the EMMIX-WIRE procedure is more reliable and robust for clustering time-course data because it adopts a random effects model that allows for the correlation among observations at different time points. It postulates gene-specific random effects with an autocorrelation variance structure that models coregulation within the clusters. The developed R package is flexible in its specification of the random effects through user-input parameters that enables improved modelling and consequent clustering of time-course data. PMID:23151154
Aukema, Sietse M; Kreuz, Markus; Kohler, Christian W; Rosolowski, Maciej; Hasenclever, Dirk; Hummel, Michael; Küppers, Ralf; Lenze, Dido; Ott, German; Pott, Christiane; Richter, Julia; Rosenwald, Andreas; Szczepanowski, Monika; Schwaenen, Carsten; Stein, Harald; Trautmann, Heiko; Wessendorf, Swen; Trümper, Lorenz; Loeffler, Markus; Spang, Rainer; Kluin, Philip M; Klapper, Wolfram; Siebert, Reiner
2014-04-01
Chromosomal translocations affecting the MYC oncogene are the biological hallmark of Burkitt lymphomas but also occur in a subset of other mature B-cell lymphomas. If accompanied by a chromosomal break targeting the BCL2 and/or BCL6 oncogene these MYC translocation-positive (MYC(+)) lymphomas are called double-hit lymphomas, otherwise the term single-hit lymphomas is applied. In order to characterize the biological features of these MYC(+) lymphomas other than Burkitt lymphoma we explored, after exclusion of molecular Burkitt lymphoma as defined by gene expression profiling, the molecular, pathological and clinical aspects of 80 MYC-translocation-positive lymphomas (31 single-hit, 46 double-hit and 3 MYC(+)-lymphomas with unknown BCL6 status). Comparison of single-hit and double-hit lymphomas revealed no difference in MYC partner (IG/non-IG), genomic complexity, MYC expression or gene expression profile. Double-hit lymphomas more frequently showed a germinal center B-cell-like gene expression profile and had higher IGH and MYC mutation frequencies. Gene expression profiling revealed 130 differentially expressed genes between BCL6(+)/MYC(+) and BCL2(+)/MYC(+) double-hit lymphomas. BCL2(+)/MYC(+) double-hit lymphomas more frequently showed a germinal center B-like gene expression profile. Analysis of all lymphomas according to MYC partner (IG/non-IG) revealed no substantial differences. In this series of lymphomas, in which immunochemotherapy was administered in only a minority of cases, single-hit and double-hit lymphomas had a similar poor outcome in contrast to the outcome of molecular Burkitt lymphoma and lymphomas without the MYC break. Our data suggest that, after excluding molecular Burkitt lymphoma and pediatric cases, MYC(+) lymphomas are biologically quite homogeneous with single-hit and double-hit lymphomas as well as IG-MYC and non-IG-MYC(+) lymphomas sharing various molecular characteristics.
Bastarrachea, Raúl A.; Gallegos-Cabriales, Esther C.; Nava-González, Edna J.; Haack, Karin; Voruganti, V. Saroja; Charlesworth, Jac; Laviada-Molina, Hugo A.; Veloz-Garza, Rosa A.; Cardenas-Villarreal, Velia Margarita; Valdovinos-Chavez, Salvador B.; Gomez-Aguilar, Patricia; Meléndez, Guillermo; López-Alvarenga, Juan Carlos; Göring, Harald H. H.; Cole, Shelley A.; Blangero, John; Comuzzie, Anthony G.; Kent, Jack W.
2012-01-01
Whole-transcriptome expression profiling provides novel phenotypes for analysis of complex traits. Gene expression measurements reflect quantitative variation in transcript-specific messenger RNA levels and represent phenotypes lying close to the action of genes. Understanding the genetic basis of gene expression will provide insight into the processes that connect genotype to clinically significant traits representing a central tenet of system biology. Synchronous in vivo expression profiles of lymphocytes, muscle, and subcutaneous fat were obtained from healthy Mexican men. Most genes were expressed at detectable levels in multiple tissues, and RNA levels were correlated between tissue types. A subset of transcripts with high reliability of expression across tissues (estimated by intraclass correlation coefficients) was enriched for cis-regulated genes, suggesting that proximal sequence variants may influence expression similarly in different cellular environments. This integrative global gene expression profiling approach is proving extremely useful for identifying genes and pathways that contribute to complex clinical traits. Clearly, the coincidence of clinical trait quantitative trait loci and expression quantitative trait loci can help in the prioritization of positional candidate genes. Such data will be crucial for the formal integration of positional and transcriptomic information characterized as genetical genomics. PMID:22797999
Chen, Chun-Chun; Winkler, Candace M; Pfenning, Andreas R; Jarvis, Erich D
2013-11-01
In our companion study (Jarvis et al. [2013] J Comp Neurol. doi: 10.1002/cne.23404) we used quantitative brain molecular profiling to discover that distinct subdivisions in the avian pallium above and below the ventricle and the associated mesopallium lamina have similar molecular profiles, leading to a hypothesis that they may form as continuous subdivisions around the lateral ventricle. To explore this hypothesis, here we profiled the expression of 16 genes at eight developmental stages. The genes included those that define brain subdivisions in the adult and some that are also involved in brain development. We found that phyletic hierarchical cluster and linear regression network analyses of gene expression profiles implicated single and mixed ancestry of these brain regions at early embryonic stages. Most gene expression-defined pallial subdivisions began as one ventral or dorsal domain that later formed specific folds around the lateral ventricle. Subsequently a clear ventricle boundary formed, partitioning them into dorsal and ventral pallial subdivisions surrounding the mesopallium lamina. These subdivisions each included two parts of the mesopallium, the nidopallium and hyperpallium, and the arcopallium and hippocampus, respectively. Each subdivision expression profile had a different temporal order of appearance, similar in timing to the order of analogous cell types of the mammalian cortex. Furthermore, like the mammalian pallium, expression in the ventral pallial subdivisions became distinct during prehatch development, whereas the dorsal portions did so during posthatch development. These findings support the continuum hypothesis of avian brain subdivision development around the ventricle and influence hypotheses on homologies of the avian pallium with other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.
Leader personality and crew effectiveness - A full-mission simulation experiment
NASA Technical Reports Server (NTRS)
Chidester, Thomas R.; Foushee, H. Clayton
1989-01-01
A full-mission simulation research study was completed to assess the impact of individual personality on crew performance. Using a selection algorithm described by Chidester (1987), captains were classified as fitting one of three profiles along a battery of personality assessment scales. The performances of 23 crews led by captains fitting each profile were contrasted over a one and one-half day simulated trip. Crews led by captains fitting a positive Instrumental-Expressive profile (high achievement motivation and interpersonal skill) were consistently effective and made fewer errors. Crews led by captains fitting a Negative Expressive profile (below average achievement motivation, negative expressive style, such as complaining) were consistently less effective and made more errors. Crews led by captains fitting a Negative Instrumental profile (high levels of competitiveness, Verbal Aggressiveness, and Impatience and Irritability) were less effective on the first day but equal to the best on the second day. These results underscore the importance of stable personality variables as predictors of team coordination and performance.
Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund
2017-05-31
Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.
NASA Technical Reports Server (NTRS)
Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr;
2003-01-01
Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.
Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M
2017-08-01
Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.
Moncrieffe, Halima; Hinks, Anne; Ursu, Simona; Kassoumeri, Laura; Etheridge, Angela; Hubank, Mike; Martin, Paul; Weiler, Tracey; Glass, David N; Thompson, Susan D.; Thomson, Wendy; Wedderburn, Lucy R
2010-01-01
Objectives Little is known about mechanisms of efficacy of methotrexate (MTX) in childhood arthritis, or genetic influences upon response to MTX. The aims of this study were to use gene expression profiling to identify novel pathways/genes altered by MTX and then investigate these genes for genotype associations with response to MTX treatment. Methods Gene expression profiling before and after MTX treatment was performed on 11 children with juvenile idiopathic arthritis (JIA) treated with MTX, in whom response at 6 months of treatment was defined. Genes showing the most differential gene expression after treatment were selected for SNP genotyping. Genotype frequencies were compared between non-responders and responders (ACR-Ped70). An independent cohort was available for validation. Results Gene expression profiling before and after MTX treatment revealed 1222 differentially expressed probes sets (fold change >1.7, p< 0.05) and 1065 when restricted to full responder cases only. Six highly differentially expressed genes were analysed for genetic association to response to MTX. Three SNPs in the SLC16A7 gene showed significant association with MTX response. One SNP showed validated association in an independent cohort. Conclusions This study is the first, to our knowledge, to evaluate gene expression profiles in children with JIA before and after MTX, and to analyse genetic variation in differentially expressed genes. We have identified a gene which may contribute to genetic variability in MTX response in JIA, and established as proof of principle that genes which are differentially expressed at mRNA level after drug administration may also be good candidates for genetic analysis. PMID:20827233
c-kit expression profile and regulatory factors during spermatogonial stem cell differentiation
2013-01-01
Background It has been proven that c-kit is crucial for proliferation, migration, survival and maturation of spermatogenic cells. A periodic expression of c-kit is observed from primordial germ cells (PGCs) to spermatogenetic stem cells (SSCs), However, the expression profile of c-kit during the entire spermatogenesis process is still unclear. This study aims to reveal and compare c-kit expression profiles in the SSCs before and after the anticipated differentiation, as well as to examine its relationship with retinoic acid (RA) stimulation. Results We have found that there are more than 4 transcripts of c-kit expressed in the cell lines and in the testes. The transcripts can be divided into short and long categories. The long transcripts include the full-length canonical c-kit transcript and the 3′ end short transcript. Short transcripts include the 3.4 kb short transcript and several truncated transcripts (1.9-3.2 kb). In addition, the 3.4 kb transcript (starting from intron 9 and covering exons 10 ~ 21) is discovered to be specifically expressed in the spermatogonia. The extracellular domain of Kit is obtained in the spermatogonia stage, but the intracellular domain (50 kDa) is constantly expressed in both SSCs and spermatogonia. The c-kit expression profiles in the testis and the spermatogonial stem cell lines vary after RA stimulation. The wave-like changes of the quantitative expression pattern of c-kit (increase initially and decrease afterwards) during the induction process are similar to that of the in vivo male germ cell development process. Conclusions There are dynamic transcription and translation changes of c-kit before and after SSCs’ anticipated differentiation and most importantly, RA is a significant upstream regulatory factor for c-kit expression. PMID:24161026
Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity.
Cox, Amanda J; Zhang, Ping; Evans, Tiffany J; Scott, Rodney J; Cripps, Allan W; West, Nicholas P
Gene expression data provides one tool to gain further insight into the complex biological interactions linking obesity and metabolic disease. This study examined associations between blood gene expression profiles and metabolic disease in obesity. Whole blood gene expression profiles, performed using the Illumina HT-12v4 Human Expression Beadchip, were compared between (i) individuals with obesity (O) or lean (L) individuals (n=21 each), (ii) individuals with (M) or without (H) Metabolic Syndrome (n=11 each) matched on age and gender. Enrichment of differentially expressed genes (DEG) into biological pathways was assessed using Ingenuity Pathway Analysis. Association between sets of genes from biological pathways considered functionally relevant and Metabolic Syndrome were further assessed using an area under the curve (AUC) and cross-validated classification rate (CR). For OvL, only 50 genes were significantly differentially expressed based on the selected differential expression threshold (1.2-fold, p<0.05). For MvH, 582 genes were significantly differentially expressed (1.2-fold, p<0.05) and pathway analysis revealed enrichment of DEG into a diverse set of pathways including immune/inflammatory control, insulin signalling and mitochondrial function pathways. Gene sets from the mTOR signalling pathways demonstrated the strongest association with Metabolic Syndrome (p=8.1×10 -8 ; AUC: 0.909, CR: 72.7%). These results support the use of expression profiling in whole blood in the absence of more specific tissue types for investigations of metabolic disease. Using a pathway analysis approach it was possible to identify an enrichment of DEG into biological pathways that could be targeted for in vitro follow-up. Copyright © 2017 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Ahn, Suzie E.; Lim, Chul-Hong; Lee, Jin-Young; Bae, Seung-Min; Kim, Jinyoung; Bazer, Fuller W.; Song, Gwonhwa
2013-01-01
The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s) for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels. PMID:24098561
Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
Reproductive Toxicology ...
21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...
21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...
EXPRESSION PROFILING OF ESTROGENIC COMPOUNDS USING A SHEEPSHEAD MINNOW CDNA MACROARRAY
Larkin, Patrick, Leroy C. Folmar, Michael J. Hemmer, Arianna J. Poston and Nancy D. Denslow. 2003. Expression Profiling of Estrogenic Compounds Using a Sheepshead Minnow cDNA Macroarray. Environ. Health Perspect. 111(6):839-846. (ERL,GB 1171).
A variety of anthropogenic c...
Microarray technology is a powerful tool to investigate the gene expression profiles for thousands of genes simultaneously. In recent years, microarrays have been used to characterize environmental pollutants and identify molecular mode(s) of action of chemicals including endocri...
Acute ozone-induced pulmonary injury and inflammation are well characterized. A few studies have used gene expression profiling to determine the types of changes induced by ozone; however the mechanisms or the pathways involved are less well understood. We presumed that robust bi...
Comparison of Non-Human Primate and Human Whole Blood Tissue Gene Expression Profiles
2005-03-01
studies have used rhesus, chimpanzee, gorilla, or orangutan RNA, but to date no gene expression profiling studies are available that use AGM or cynomologus...previous work has been published using human genechips to study NHPs, particularly rhesus, chimpanzee, gorilla, and orangutan (Uddin et al., 2004; Kayo
21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...
21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...
21 CFR 866.6040 - Gene expression profiling test system for breast cancer prognosis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cancer prognosis. 866.6040 Section 866.6040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... cancer prognosis. (a) Identification. A gene expression profiling test system for breast cancer prognosis... previously diagnosed breast cancer. (b) Classification. Class II (special controls). The special control is...
Residual oil fly ash (ROFA) and vanadium-induced gene expression profiles in human vascular endothelial cells.
Srikanth S. Nadadur, Urmila P. Kodavanti, Mary Jane Selgrade and Daniel L. Costa, Pulmonary Toxicology Branch, ETD, NHEERL, ORD, US EPA, Research Triangle Park, N...
Watkin, Levi B.; Jessen, Birthe; Wiszniewski, Wojciech; Vece, Timothy; Jan, Max; Sha, Youbao; Thamsen, Maike; Santos-Cortez, Regie L. P.; Lee, Kwanghyuk; Gambin, Tomasz; Forbes, Lisa; Law, Christopher S.; Stray-Petersen, Asbjørg; Cheng, Mickie H.; Mace, Emily M.; Anderson, Mark S.; Liu, Dongfang; Tang, Ling Fung; Nicholas, Sarah K.; Nahmod, Karen; Makedonas, George; Canter, Debra; Kwok, Pui-Yan; Hicks, John; Jones, Kirk D.; Penney, Samantha; Jhangiani, Shalini N.; Rosenblum, Michael D.; Dell, Sharon D.; Waterfield, Michael R.; Papa, Feroz R.; Muzny, Donna M.; Zaitlen, Noah; Leal, Suzanne M.; Gonzaga-Jauregui, Claudia; Boerwinkle, Eric; Eissa, N. Tony; Gibbs, Richard A.; Lupski, James R.; Orange, Jordan S.; Shum, Anthony K.
2015-01-01
Advances in genomics have allowed unbiased genetic studies of human disease with unexpected insights into the molecular mechanisms of cellular immunity and autoimmunity1. We performed whole exome sequencing (WES) and targeted sequencing in patients with an apparent Mendelian syndrome of autoimmune disease characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease (ILD). In five families, we identified four unique deleterious variants in the Coatomer subunit alpha (COPA) gene all located within the same functional domain. We hypothesized that mutant COPA leads to a defect in intracellular transport mediated by coat protein complex I (COPI)2–4. We show that COPA variants impair binding of proteins targeted for retrograde Golgi to ER transport and demonstrate that expression of mutant COPA leads to ER stress and the upregulation of Th17 priming cytokines. Consistent with this pattern of cytokine expression, patients demonstrated a significant skewing of CD4+ T cells toward a T helper 17 (Th17) phenotype, an effector T cell population implicated in autoimmunity5,6. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease. These findings provide a unique opportunity to understand how alterations in cellular homeostasis caused by a defect in the intracellular trafficking pathway leads to the generation of human autoimmune disease. PMID:25894502
Esibizione, Diana; Cui, Chang-Yi; Schlessinger, David
2009-01-01
EDA, the gene mutated in anhidrotic ectodermal dysplasia, encodes ectodysplasin, a TNF superfamily member that activates NF-kB mediated transcription. To identify EDA target genes, we have earlier used expression profiling to infer genes differentially expressed at various developmental time points in Tabby (Eda-deficient) compared to wild-type mouse skin. To increase the resolution to find genes whose expression may be restricted to epidermal cells, we have now extended studies to primary keratinocyte cultures established from E19 wild-type and Tabby skin. Using microarrays bearing 44,000 gene probes, we found 385 preliminary candidate genes whose expression was significantly affected by Eda loss. By comparing expression profiles to those from Eda-A1 transgenic skin, we restricted the list to 38 “candidate EDA targets”, 14 of which were already known to be expressed in hair follicles or epidermis. We confirmed expression changes for 3 selected genes, Tbx1, Bmp7, and Jag1, both in keratinocytes and in whole skin, by Q-PCR and Western blotting analyses. Thus, by the analysis of keratinocytes, novel candidate pathways downstream of EDA were detected. PMID:18848976
Yuen, Grace J; Ausubel, Frederick M
2018-12-31
The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.
Zhu, Wanqu; Yao, Xiao; Liang, Yan; Liang, Dan; Song, Lu; Jing, Naihe; Li, Jinsong; Wang, Gang
2015-02-01
Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination. © 2015. Published by The Company of Biologists Ltd.
2018-01-01
ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902
Toyoda, Mika; Cho, Tamaki; Kaminishi, Hidenori; Sudoh, Masayuki; Chibana, Hiroji
2004-12-01
By using real-time RT-PCR, we profiled the expression of CGR1, CaMSI3, EFG1, NRG1, and TUP1 in Candida albicans strains JCM9061 and CAI4 under several conditions, including induction of morphological transition, heat shock, and treatment with calcium inhibitors. Expression of CaMSI3 changed under these growth conditions except during heat shock. CGR1 expression increased during the early stages of hyphal growth in JCM9061, while expression was strain-dependent during heat shock. Both EFG1 and NRG1 were similarly expressed under hypha-inducing conditions and heat shock. Expression of TUP1 was slightly different from the expression of EFG1 or NRG1.
Genome-wide Gene Expression Profiling of Acute Metal Exposures in Male Zebrafish
2014-10-23
Data in Brief Genome-wide gene expression profiling of acute metal exposures in male zebrafish Christine E. Baer a,⁎, Danielle L. Ippolito b, Naissan... Zebrafish Whole organism Nickel Chromium Cobalt Toxicogenomics To capture global responses to metal poisoning and mechanistic insights into metal...toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human
Gillet, Jean-Pierre; Andersen, Jesper B; Madigan, James P; Varma, Sudhir; Bagni, Rachel K; Powell, Katie; Burgan, William E; Wu, Chung-Pu; Calcagno, Anna Maria; Ambudkar, Suresh V; Thorgeirsson, Snorri S; Gottesman, Michael M
2016-02-01
Despite improvements in the management of liver cancer, the survival rate for patients with hepatocellular carcinoma (HCC) remains dismal. The survival benefit of systemic chemotherapy for the treatment of liver cancer is only marginal. Although the reasons for treatment failure are multifactorial, intrinsic resistance to chemotherapy plays a primary role. Here, we analyzed the expression of 377 multidrug resistance (MDR)-associated genes in two independent cohorts of patients with advanced HCC, with the aim of finding ways to improve survival in this poor-prognosis cancer. Taqman-based quantitative polymerase chain reaction revealed a 45-gene signature that predicts overall survival (OS) in patients with HCC. Using the Connectivity Map Tool, we were able to identify drugs that converted the gene expression profiles of HCC cell lines from ones matching patients with poor OS to profiles associated with good OS. We found three compounds that convert the gene expression profiles of three HCC cell lines to gene expression profiles associated with good OS. These compounds increase histone acetylation, which correlates with the synergistic sensitization of those MDR tumor cells to conventional chemotherapeutic agents, including cisplatin, sorafenib, and 5-fluorouracil. Our results indicate that it is possible to modulate gene expression profiles in HCC cell lines to those associated with better outcome. This approach also increases sensitization of HCC cells toward conventional chemotherapeutic agents. This work suggests new treatment strategies for a disease for which few therapeutic options exist. U.S. Government work not protected by U.S. copyright.
The influence of high glucose on the Cip/Kip family expression profiles in HRECs.
Tian, Jingyi; Ma, Hongjie; Luo, Yan; Hu, Andina; Lin, Shaofen; Li, Tao; Guo, Kai; Li, Jing; Cai, Meng; Tang, Shibo
2013-12-01
Neovascularization is the main characteristic of the proliferative stage of diabetic retinopathy. It has been proven that cell cycle regulation is involved in angiogenesis. The cell cycle regulators, Cip/Kip protein family, belong to the cyclin-dependent kinase inhibitors, are versatile proteins, and except for their function in cell cycle regulation, they also participate in transcription, apoptosis and migration. The expression profiles of the Cip/Kip family in human retina microvascular endothelial cells (HRECs) under normal or high glucose conditions has not been described before. This study was undertaken to determine the expression profiles of the Cip/Kip family proteins, e.g., proteins which are influenced by high glucose and in what manner. Western blot and immunofluorescence analyses were used to investigate the protein expression profiles. Only p21(cip1) and p27(kip1) were detected in HRECs, and they were located in the nucleus. P21(cip1) protein abundance was higher than p27(kip1) in HRECs. Incubation of HRECs in medium containing 30 mM D-glucose for 48 h resulted in downregulation of p21(cip1) protein expression, but had no influence on p27(kip1) protein levels or p21(cip1) mRNA abundance. These results were accompanied by cell cycle G1 phase exit and a lower cell survival rate. Our data show for the first time that high glucose changes the Cip/Kip family expression profiles in HRECs, which may be the foundation for the investigation of the role of the Cip/Kip family in the pathogenesis of diabetic retinopathy.
A ribonucleotide Origin for Life - Fluctuation and Near-ideal Reactions
NASA Astrophysics Data System (ADS)
Yarus, Michael
2013-02-01
Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.
A ribonucleotide Origin for Life--fluctuation and near-ideal reactions.
Yarus, Michael
2013-02-01
Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.
Abe, Kazuhiro; Takahashi, Toshimitsu; Takikawa, Yoriko; Arai, Hajime; Kitazawa, Shigeru
2011-10-01
Independent component analysis (ICA) can be usefully applied to functional imaging studies to evaluate the spatial extent and temporal profile of task-related brain activity. It requires no a priori assumptions about the anatomical areas that are activated or the temporal profile of the activity. We applied spatial ICA to detect a voluntary but hidden response of silent speech. To validate the method against a standard model-based approach, we used the silent speech of a tongue twister as a 'Yes' response to single questions that were delivered at given times. In the first task, we attempted to estimate one number that was chosen by a participant from 10 possibilities. In the second task, we increased the possibilities to 1000. In both tasks, spatial ICA was as effective as the model-based method for determining the number in the subject's mind (80-90% correct per digit), but spatial ICA outperformed the model-based method in terms of time, especially in the 1000-possibility task. In the model-based method, calculation time increased by 30-fold, to 15 h, because of the necessity of testing 1000 possibilities. In contrast, the calculation time for spatial ICA remained as short as 30 min. In addition, spatial ICA detected an unexpected response that occurred by mistake. This advantage was validated in a third task, with 13 500 possibilities, in which participants had the freedom to choose when to make one of four responses. We conclude that spatial ICA is effective for detecting the onset of silent speech, especially when it occurs unexpectedly. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Pescatori, Mario; Broccolini, Aldobrando; Minetti, Carlo; Bertini, Enrico; Bruno, Claudio; D'amico, Adele; Bernardini, Camilla; Mirabella, Massimiliano; Silvestri, Gabriella; Giglio, Vincenzo; Modoni, Anna; Pedemonte, Marina; Tasca, Giorgio; Galluzzi, Giuliana; Mercuri, Eugenio; Tonali, Pietro A; Ricci, Enzo
2007-04-01
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Chung, Yih-Lin; Pui, Newman N M
2015-01-01
We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.
Boglev, Yeliz; Wilanowski, Tomasz; Caddy, Jacinta; Parekh, Vishwas; Auden, Alana; Darido, Charbel; Hislop, Nikki R; Cangkrama, Michael; Ting, Stephen B; Jane, Stephen M
2011-01-15
The Grainy head-like 3 (Grhl3) gene encodes a transcription factor that plays essential roles in epidermal morphogenesis during embryonic development, with deficient mice exhibiting failed skin barrier formation, defective wound repair, and loss of eyelid fusion. Despite sharing significant sequence homology, overlapping expression patterns, and an identical core consensus DNA binding site, the other members of the Grhl family (Grhl1 and -2) fail to compensate for the loss of Grhl3 in these processes. Here, we have employed diverse genetic models, coupled with biochemical studies, to define the inter-relationships of the Grhl factors in epidermal development. We show that Grhl1 and Grhl3 have evolved complete functional independence, as evidenced by a lack of genetic interactions in embryos carrying combinations of targeted alleles of these genes. In contrast, compound heterozygous Grhl2/Grhl3 embryos displayed failed wound repair, and loss of a single Grhl2 allele in Grhl3-null embryos results in fully penetrant eyes open at birth. Expression of Grhl2 from the Grhl3 locus in homozygous knock-in mice corrects the wound repair defect, but these embryos still display a complete failure of skin barrier formation. This functional dissociation is due to unexpected differences in target gene specificity, as both GRHL2 and GRHL3 bind to and regulate expression of the wound repair gene Rho GEF 19, but regulation of the barrier forming gene, Transglutaminase 1 (TGase1), is unique to GRHL3. Our findings define the mechanisms underpinning the unique and cooperative roles of the Grhl genes in epidermal development. Copyright © 2010 Elsevier Inc. All rights reserved.
Reddy, Jay P.; Peddibhotla, Sirisha; Bu, Wen; Zhao, Jing; Haricharan, Svasti; Du, Yi-Chieh Nancy; Podsypanina, Katrina; Rosen, Jeffrey M.; Donehower, Larry A.; Li, Yi
2010-01-01
p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention. PMID:20133707
Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan
2017-10-01
Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Takizawa, Nobukazu; Miyauchi, Maki; Yanai, Hiromi; Tateishi, Ryosuke; Shinzawa, Miho; Yoshinaga, Riko; Kurihara, Masaaki; Yasuda, Hisataka; Sakamoto, Reiko; Yoshida, Nobuaki
2016-01-01
Medullary thymic epithelial cells (mTECs) expressing autoimmune regulator (Aire) are critical for preventing the onset of autoimmunity. However, the differentiation program of Aire-expressing mTECs (Aire+ mTECs) is unclear. Here, we describe novel embryonic precursors of Aire+ mTECs. We found the candidate precursors of Aire+ mTECs (pMECs) by monitoring the expression of receptor activator of nuclear factor-κB (RANK), which is required for Aire+ mTEC differentiation. pMECs unexpectedly expressed cortical TEC molecules in addition to the mTEC markers UEA-1 ligand and RANK and differentiated into mTECs in reaggregation thymic organ culture. Introduction of pMECs in the embryonic thymus permitted long-term maintenance of Aire+ mTECs and efficiently suppressed the onset of autoimmunity induced by Aire+ mTEC deficiency. Mechanistically, pMECs differentiated into Aire+ mTECs by tumor necrosis factor receptor-associated factor 6-dependent RANK signaling. Moreover, nonclassical nuclear factor-κB activation triggered by RANK and lymphotoxin-β receptor signaling promoted pMEC induction from progenitors exhibiting lower RANK expression and higher CD24 expression. Thus, our findings identified two novel stages in the differentiation program of Aire+ mTECs. PMID:27401343
Serine proteases in rodent hippocampus.
Davies, B J; Pickard, B S; Steel, M; Morris, R G; Lathe, R
1998-09-04
Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.
microRNA expression profiling in fetal single ventricle malformation identified by deep sequencing.
Yu, Zhang-Bin; Han, Shu-Ping; Bai, Yun-Fei; Zhu, Chun; Pan, Ya; Guo, Xi-Rong
2012-01-01
microRNAs (miRNAs) have emerged as key regulators in many biological processes, particularly cardiac growth and development, although the specific miRNA expression profile associated with this process remains to be elucidated. This study aimed to characterize the cellular microRNA profile involved in the development of congenital heart malformation, through the investigation of single ventricle (SV) defects. Comprehensive miRNA profiling in human fetal SV cardiac tissue was performed by deep sequencing. Differential expression of 48 miRNAs was revealed by sequencing by oligonucleotide ligation and detection (SOLiD) analysis. Of these, 38 were down-regulated and 10 were up-regulated in differentiated SV cardiac tissue, compared to control cardiac tissue. This was confirmed by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Predicted target genes of the 48 differentially expressed miRNAs were analyzed by gene ontology and categorized according to cellular process, regulation of biological process and metabolic process. Pathway-Express analysis identified the WNT and mTOR signaling pathways as the most significant processes putatively affected by the differential expression of these miRNAs. The candidate genes involved in cardiac development were identified as potential targets for these differentially expressed microRNAs and the collaborative network of microRNAs and cardiac development related-mRNAs was constructed. These data provide the basis for future investigation of the mechanism of the occurrence and development of fetal SV malformations.
Arita, Adriana; Muñoz, Alexandra; Chervona, Yana; Niu, Jingping; Qu, Qingshan; Zhao, Najuan; Ruan, Ye; Kiok, Kathrin; Kluz, Thomas; Sun, Hong; Clancy, Hailey A.; Shamy, Magdy; Costa, Max
2012-01-01
Background Occupational exposure to nickel (Ni) is associated with an increased risk of lung and nasal cancers. Ni compounds exhibit weak mutagenic activity, alter the cell’s epigenetic homeostasis, and activate signaling pathways. However, changes in gene expression associated with Ni exposure have only been investigated in vitro. This study was conducted in a Chinese population to determine whether occupational exposure to Ni was associated with differential gene expression profiles in the peripheral blood mononuclear cells (PBMCs) of Ni-refinery workers when compared to referents. Methods Eight Ni-refinery workers and ten referents were selected. PBMC RNA was extracted and gene expression profiling was performed using Affymetrix exon arrays. Differentially expressed genes between both groups were identified in a global analysis. Results There were a total of 2756 differentially expressed genes (DEG) in the Ni-refinery workers relative to the control subjects (FDR adjusted p<0.05) with 770 up-regulated genes and 1986 down-regulated genes. DNA repair and epigenetic genes were significantly overrepresented (p< 0.0002) among the DEG. Of 31 DNA repair genes, 29 were repressed in the high exposure group and two were overexpressed. Of the 16 epigenetic genes 12 were repressed in the high exposure group and 4 were overexpressed. Conclusions The results of this study indicate that occupational exposure to Ni is associated with alterations in gene expression profiles in PBMCs of subjects. Impact Gene expression may be useful in identifying patterns of deregulation that precede clinical identification of Ni-induced cancers. PMID:23195993
Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing
2016-11-01
Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhou, Ming; Kort, Eric; Hoekstra, Philip; Westphal, Michael; Magi-Galluzzi, Cristina; Sercia, Linda; Lane, Brian; Rini, Brian; Bukowski, Ronald; Teh, Bin T
2009-01-01
Adult cystic nephroma (CN) and mixed epithelial and stromal tumor of the kidney (MEST) are considered as separate entities in the 2004 World Health Organization classification of renal neoplasms. Recent studies suggested that the two share clinicopathologic features and may represent the same disease process of varying morphology. However, definitive genetic evidence is lacking. We examined their relationship using gene expression profiling and histologic analysis. Gene expression profiles of 3 CN and 3 MEST were analyzed using HGU133 Plus 2.0 microarrays (Affymetrix) and were compared with each other and also with 48 other renal tumors and 13 normal kidneys. Histologic examination of 26 CN and 13 MEST focused on the cystic septal thickness, cyst-to-stroma ratio, stromal cellularity and composition, types of epithelial cells lining cysts and glands, and estrogen and progesterone receptors expression. Patients' age, sex distribution, and tumor size were similar between the two. They also shared many histologic features, including lining epithelium of cysts and glands, stromal cellularity and composition. Unsupervised clustering of mRNA expression profiles demonstrated that they had very similar expression profiles that were distinct from other renal tumors. By microarray analysis, progesterone receptor expression was significantly higher in CN and MEST relative to both normal and other renal tumors, while estrogen receptor expression was not. By immunohistochemistry, expression of both receptors was similar between CN and MEST. This study provides the most convincing molecular evidence that CN and MEST represent different parts of the morphologic spectrum of the same disease.
2014-01-01
Background Our current knowledge of tooth development derives mainly from studies in mice, which have only one set of non-replaced teeth, compared with the diphyodont dentition in humans. The miniature pig is also diphyodont, making it a valuable alternative model for understanding human tooth development and replacement. However, little is known about gene expression and function during swine odontogenesis. The goal of this study is to undertake the survey of differential gene expression profiling and functional network analysis during morphogenesis of diphyodont dentition in miniature pigs. The identification of genes related to diphyodont development should lead to a better understanding of morphogenetic patterns and the mechanisms of diphyodont replacement in large animal models and humans. Results The temporal gene expression profiles during early diphyodont development in miniature pigs were detected with the Affymetrix Porcine GeneChip. The gene expression data were further evaluated by ANOVA as well as pathway and STC analyses. A total of 2,053 genes were detected with differential expression. Several signal pathways and 151 genes were then identified through the construction of pathway and signal networks. Conclusions The gene expression profiles indicated that spatio-temporal down-regulation patterns of gene expression were predominant; while, both dynamic activation and inhibition of pathways occurred during the morphogenesis of diphyodont dentition. Our study offers a mechanistic framework for understanding dynamic gene regulation of early diphyodont development and provides a molecular basis for studying teeth development, replacement, and regeneration in miniature pigs. PMID:24498892
Morimoto, Kinuyo; Satake, Honoo
2013-01-01
Lignans of Forsythia spp. are essential components of various Chinese medicines and health diets. However, the seasonal alteration in lignan amounts and the gene expression profile of lignan-biosynthetic enzymes has yet to be investigated. In this study, we have assessed seasonal alteration in amounts of major lignans, such as pinoresinol, matairesinol, and arctigenin, and examined the gene expression profile of pinoresinol/lariciresinol reductase (PLR), pinoresinol-glucosylating enzyme (UGT71A18), and secoisolariciresinol dehydrogenase (SIRD) in the leaf of Forsythia suspense from April to November. All of the lignans in the leaf continuously increased from April to June, reached the maximal level in June, and then decreased. Ninety percent of pinoresinol and matairesinol was converted into glucosides, while approximately 50% of arctigenin was aglycone. PLR was stably expressed from April to August, whereas the PLR expression was not detected from September to November. In contrast, the UGT71A18 expression was found from August to November, but not from April to July. The SIRD expression was prominent from April to May, not detected in June to July, and then increased again from September to November. These expression profiles of the lignan-synthetic enzymes are largely compatible with the alteration in lignan contents. Furthermore, such seasonal lignan profiles are in good agreement with the fact that the Forsythia leaves for Chinese medicinal tea are harvested in June. This is the first report on seasonal alteration in lignans and the relevant biosynthetic enzyme genes in the leaf of Forsythia species.
Analysis of pressure blips in aft-finocyl solid rocket motor
NASA Astrophysics Data System (ADS)
Di Giacinto, M.; Favini, B.; Cavallini, E.
2016-07-01
Ballistic anomalies have frequently occurred during the firing of several solid rocket motors (SRMs) (Inertial Upper Stage, Space Shuttle Redesigned SRM (RSRM) and Titan IV SRM Upgrade (SRMU)), producing even relevant and unexpected variations of the SRM pressure trace from its nominal profile. This paper has the purpose to provide a numerical analysis of the following possible causes of ballistic anomalies in SRMs: an inert object discharge, a slag ejection, and an unexpected increase in the propellant burning rate or in the combustion surface. The SRM configuration under investigation is an aft-finocyl SRM with a first-stage/small booster design. The numerical simulations are performed with a quasi-one-dimensional (Q1D) unsteady model of the SRM internal ballistics, properly tailored to model each possible cause of the ballistic anomalies. The results have shown that a classification based on the head-end pressure (HEP) signature, relating each other the HEP shape and the ballistic anomaly cause, can be made. For each cause of ballistic anomalies, a deepened discussion of the parameters driving the HEP signatures is provided, as well as qualitative and quantitative assessments of the resultant pressure signals.
Dynamic mesolimbic dopamine signaling during action sequence learning and expectation violation
Collins, Anne L.; Greenfield, Venuz Y.; Bye, Jeffrey K.; Linker, Kay E.; Wang, Alice S.; Wassum, Kate M.
2016-01-01
Prolonged mesolimbic dopamine concentration changes have been detected during spatial navigation, but little is known about the conditions that engender this signaling profile or how it develops with learning. To address this, we monitored dopamine concentration changes in the nucleus accumbens core of rats throughout acquisition and performance of an instrumental action sequence task. Prolonged dopamine concentration changes were detected that ramped up as rats executed each action sequence and declined after earned reward collection. With learning, dopamine concentration began to rise increasingly earlier in the execution of the sequence and ultimately backpropagated away from stereotyped sequence actions, becoming only transiently elevated by the most distal and unexpected reward predictor. Action sequence-related dopamine signaling was reactivated in well-trained rats if they became disengaged in the task and in response to an unexpected change in the value, but not identity of the earned reward. Throughout training and test, dopamine signaling correlated with sequence performance. These results suggest that action sequences can engender a prolonged mode of dopamine signaling in the nucleus accumbens core and that such signaling relates to elements of the motivation underlying sequence execution and is dynamic with learning, overtraining and violations in reward expectation. PMID:26869075
Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake
Fan, Niannian; Nie, Ruihua; Wang, Qiang; Liu, Xingnian
2016-01-01
Changes in river channel erosion or deposition affect the geomorphic evolution, aquatic ecosystems, and river regulation strategies. Fluvial processes are determined by the flow, sediment and boundary conditions, and it has long been expected that increasing sediment supply will induce aggradation. Here, based on thorough field surveys, we show the unexpected undercutting of the piedmont rivers influenced by the 2008 Wenchuan (Ms 8.0) Earthquake. The rivers flow from the Longmen Mountain with significant topographic relief to the flat Chengdu plain. In the upstreams, sediment supply increased because of the landslides triggered by the earthquake, causing deposition in the upstream mountain reaches. However, the downstream plain reaches suffered undercutting instead of deposition, and among those rivers, Shiting River was the most seriously affected, with the largest undercutting depth exceeding 20 m. The reasons for this unexpected undercutting are proposed herein and relate to both natural and anthropogenic causes. In addition, we also demonstrate, at least for certain conditions, such as rivers flowing from large-gradient mountain regions to low-gradient plain regions, that upstream sediment pulses may induce aggradation in upstream and degradation in downstream, causing the longitudinal profile to steepen to accommodate the increasing sediment flux. PMID:27857220
Implementing Reliability Centered Maintenance (RCM) with State of the Art PT&I Technologies
NASA Technical Reports Server (NTRS)
Hollis, Sean; Sasser, Chase
2016-01-01
Building on the work that was started two decades ago, Jacobs Space Operations Group has utilized state of the art PTI technologies to assess the current condition of the assets they manage under the Test and Operations Support Contract (TOSC). Specifically, the Asset Management department leveraged the benefits of ultrasound technology to quantify a motor issue in the Liquid Oxygen Storage Area, and troubleshoot the sources prior to loading the tank to perform Verification and Validation (VV) activities. This technology was efficient, easy to implement, and provided system engineers with data on a possible source of the problem. In situations where legacy motors are exhibiting unexpected noises, it may seem easier to remove and refurbish the motor and replace the bearings because that solution resolves most of the common causes of the noise. However, that solution would have involved additional spending and may not have solved issues stemming from the foundation, if those existed. By utilizing the ultrasound equipment provided by UE Systems, the sound profiles allowed Jacobs TOSC team to determine that the issue resembled a faulty bearing. After replacing the bearing, the unexpected noise ceased.
Background: Gene expression profiling of whole blood may be useful for monitoring toxicological exposure and for diagnosis and monitoring of various diseases. Several methods are available that can be used to transport, store, and extract RNA from whole blood, but it is not clear...
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...
HEPATIC GENE EXPRESSION PROFILES OF RATS EXPOSED TO PERFLUOROOCTANE SULFONATE (PFOS) IN UTERO
Hepatic Gene Expression Profiles of Rats Exposed to Perfluorooctanesulfonate (PFOS) in utero.
J.A. Bjork1, J.M. Berthiaume1, C. Lau2, J. L. Butenhoff3, and K.B. Wallace1
1Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Dulut...
Cognitive Profiles of Finnish Preschool Children with Expressive and Receptive Language Impairment
ERIC Educational Resources Information Center
Saar, Virpi; Levänen, Sari; Komulainen, Erkki
2018-01-01
Purpose: The aim of this study was to compare the verbal and nonverbal cognitive profiles of children with specific language impairment (SLI) with problems predominantly in expressive (SLI-E) or receptive (SLI-R) language skills. These diagnostic subgroups have not been compared before in psychological studies. Method: Participants were…
Abstract - Chronic drinking water exposure to inorganic arsenic and its metabolites increases tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles were characterized fro...
Marques, Márcia M C; Junta, Cristina M; Zárate-Blades, Carlos R; Sakamoto-Hojo, Elza Tiemi; Donadi, Eduardo A; Passos, Geraldo A S
2009-07-01
Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer.
MicroRNA Expression Profile Selection for Cancer Staging Classification Using Backpropagation
NASA Astrophysics Data System (ADS)
Anjarwati; Wibowo, Adi; Adhy, Satriyo; Kusumaningrum, Retno
2018-05-01
Ovarian cancer, breast cancer, and lung cancer are deadly diseases and require serious treatment. The cancers are among the fifth most common causes of cancer-induced deaths especially for woman. The high mortality rate of cancer is caused by the lack of effective strategies for early detection of the cancer, whereas if its detected in the early stages, the life survival of cancer patients will be 90%, otherwise the survival rate only 30% when the cancers detected on metastasis stages or cancer cells have spread from a primary site of cancer. MicroRNAs can be used as potential biomarkers for cancer due to their profile expression on the cancers. In this paper, we proposed the feature selection of microRNA expression profiles for classification of the cancers stages using Backpropagation Neural Network. The Cancer stages are classified into before metastasis and after metastasis. Several combinations of the microRNA expression profiles from medical references are compared to find the best features for the classification. The accuracy and the mean square errors are used as basis testing the comparison.
Rani, Lata; Mathur, Nitin; Gupta, Ritu; Gogia, Ajay; Kaur, Gurvinder; Dhanjal, Jaspreet Kaur; Sundar, Durai; Kumar, Lalit; Sharma, Atul
2017-01-01
In chronic lymphocytic leukemia (CLL), epigenomic and genomic studies have expanded the existing knowledge about the disease biology and led to the identification of potential biomarkers relevant for implementation of personalized medicine. In this study, an attempt has been made to examine and integrate the global DNA methylation changes with gene expression profile and their impact on clinical outcome in early stage CLL patients. The integration of DNA methylation profile ( n = 14) with the gene expression profile ( n = 21) revealed 142 genes as hypermethylated-downregulated and; 62 genes as hypomethylated-upregulated in early stage CLL patients compared to CD19+ B-cells from healthy individuals. The mRNA expression levels of 17 genes identified to be differentially methylated and/or differentially expressed was further examined in early stage CLL patients ( n = 93) by quantitative real time PCR (RQ-PCR). Significant differences were observed in the mRNA expression of MEIS1 , PMEPA1 , SOX7 , SPRY1 , CDK6 , TBX2 , and SPRY2 genes in CLL cells as compared to B-cells from healthy individuals. The analysis in the IGHV mutation based categories (Unmutated = 39, Mutated = 54) revealed significantly higher mRNA expression of CRY1 and PAX9 genes in the IGHV unmutated subgroup ( p < 0.001). The relative risk of treatment initiation was significantly higher among patients with high expression of CRY1 (RR = 1.91, p = 0.005) or PAX9 (RR = 1.87, p = 0.001). High expression of CRY1 (HR: 3.53, p < 0.001) or PAX9 (HR: 3.14, p < 0.001) gene was significantly associated with shorter time to first treatment. The high expression of PAX9 gene (HR: 3.29, 95% CI 1.172-9.272, p = 0.016) was also predictive of shorter overall survival in CLL. The DNA methylation changes associated with mRNA expression of CRY1 and PAX9 genes allow risk stratification of early stage CLL patients. This comprehensive analysis supports the concept that the epigenetic changes along with the altered expression of genes have the potential to predict clinical outcome in early stage CLL patients.
Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.
Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping
2016-11-30
Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.
Bessho-Uehara, Manabu; Konishi, Kaori; Oba, Yuichi
2017-08-09
Two paralogous genes of firefly luciferase, Luc1 and Luc2, have been isolated from the species in two subfamilies, Luciolinae and Photurinae, of the family Lampyridae. The gene expression profiles have previously been examined only in the species of Luciolinae. Here we isolated Luc1 and Luc2 genes from the Japanese firefly Pyrocoelia atripennis. This is the first report of the presence of both Luc1 and Luc2 genes in the species of the subfamily Lampyrinae and of the exon-intron structure of Luc2 in the family Lampyridae. The luminescence of both gene products peaked at 547 nm under neutral buffer conditions, and the spectrum of Luc1, but not Luc2, was red-shifted under acidic conditions, as observed for Luc2 in the Luciolinae species. The semi-quantitative reverse transcription-polymerase chain reaction suggested that Luc1 was expressed in lanterns of all the stages except eggs, while Luc2 was expressed in the non-lantern bodies of eggs, prepupae, pupae, and female adults. These expression profiles are consistent with those in the Luciolinae species. Considering the distant phylogenetic relationship between Lampyrinae and Luciolinae in Lampyridae, we propose that fireflies generally possess two different luciferase genes and the biochemical properties and gene expression profiles for each paralog are conserved among lampyrid species.
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2006-07-01
Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.
Determination of absolute expression profiles using multiplexed miRNA analysis
Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei
2017-01-01
Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432
Rubel, Cory A; Wu, San-Pin; Lin, Lin; Wang, Tianyuan; Lanz, Rainer B; Li, Xilong; Kommagani, Ramakrishna; Franco, Heather L; Camper, Sally A; Tong, Qiang; Jeong, Jae-Wook; Lydon, John P; DeMayo, Francesco J
2016-10-25
Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage. Published by Elsevier Inc.
Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation
Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.
2010-01-01
Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255
Constitutive nitrate reductase expression and inhibition in winged bean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shenchuan; Harper, J.E.
It was found that NO{sub 3}{sup {minus}} had no effect on winged bean nitrate reductase activity (NRA). Similar NRA was expressed in plants grown on NO{sub 3}{sup {minus}}, urea, NH{sub 4}{sup +}, and nil N. This indicated that the primary NR expressed in winged bean was constitutive, rather than substrate-inducible. Maximum NRA in winged bean was obtained in the light. KClO{sub 3} was capable of inhibiting NRA of leaves if added to the root growth medium or to the NR assay medium, indicating possible competition with NO{sub 3}{sup {minus}} at the reduction site. While it has previously been shown thatmore » either cycloheximide alone, or both cycloheximide and chloramphenicol impair the synthesis of NR protein, our data unexpectedly demonstrated that cycloheximide had little effect on NRA, whereas chloramphenicol greatly inhibited the expression of NRA in winged bean. One interpretation is that chloroplasts may influence the activity and/or synthesis of constitutive NR proteins.« less
YAP is essential for Treg mediated suppression of anti-tumor immunity.
Ni, Xuhao; Tao, Jinhui; Barbi, Joseph; Chen, Qian; Park, Benjamin V; Li, Zhiguang; Zhang, Nailing; Lebid, Andriana; Ramaswamy, Anjali; Wei, Ping; Zheng, Ying; Zhang, Xuehong; Wu, Xingmei; Vignali, Paolo D A; Yang, Cuiping; Li, Huabin; Pardoll, Drew; Lu, Ling; Pan, Duojia; Pan, Fan
2018-06-15
Regulatory T cells (Tregs) are critical for maintaining self-tolerance and immune homeostasis, but their suppressive function can impede effective anti-tumor immune responses. Foxp3 is a transcription factor expressed in Tregs that is required for their function. However, the pathways and microenvironmental cues governing Foxp3 expression and Treg function are not completely understood. Herein, we report that Yes-associated protein (YAP), a co-activator of the Hippo pathway, is highly expressed in Tregs and bolsters Foxp3 expression and Treg function in vitro and in vivo. This potentiation stemmed from YAP-dependent upregulation of Activin signaling which amplifies TGFβ/SMAD activation in Tregs. YAP-deficiency resulted in dysfunctional Tregs unable to suppress anti-tumor immunity or promote tumor growth in mice. Chemical YAP antagonism and knockout or blockade of the YAP-regulated Activin Receptor similarly improved anti-tumor immunity. Thus we identify YAP as an unexpected amplifier of a Treg-reinforcing pathway with significant potential as an anti-cancer immunotherapeutic target. Copyright ©2018, American Association for Cancer Research.
Human Neoplasms Elicit Multiple Specific Immune Responses in the Autologous Host
NASA Astrophysics Data System (ADS)
Sahin, Ugur; Tureci, Ozlem; Schmitt, Holger; Cochlovius, Bjorn; Johannes, Thomas; Schmits, Rudolf; Stenner, Frank; Luo, Guorong; Schobert, Ingrid; Pfreundschuh, Michael
1995-12-01
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.
Radzisheuskaya, Aliaksandra; Chia, Gloryn Le Bin; dos Santos, Rodrigo L; Theunissen, Thorold W; Castro, L Filipe C; Nichols, Jennifer; Silva, José C R
2013-06-01
Oct4 is considered a master transcription factor for pluripotent cell self-renewal, but its biology remains poorly understood. Here, we investigated the role of Oct4 using the process of induced pluripotency. We found that a defined embryonic stem cell (ESC) level of Oct4 is required for pluripotency entry. However, once pluripotency is established, the Oct4 level can be decreased up to sevenfold without loss of self-renewal. Unexpectedly, cells constitutively expressing Oct4 at an ESC level robustly differentiated into all embryonic lineages and germline. In contrast, cells with low Oct4 levels were deficient in differentiation, exhibiting expression of naive pluripotency genes in the absence of pluripotency culture requisites. The restoration of Oct4 expression to an ESC level rescued the ability of these to restrict naive pluripotent gene expression and to differentiate. In conclusion, a defined Oct4 level controls the establishment of naive pluripotency as well as commitment to all embryonic lineages.
Non-canonical TAF complexes regulate active promoters in human embryonic stem cells.
Maston, Glenn A; Zhu, Lihua Julie; Chamberlain, Lynn; Lin, Ling; Fang, Minggang; Green, Michael R
2012-11-13
The general transcription factor TFIID comprises the TATA-box-binding protein (TBP) and approximately 14 TBP-associated factors (TAFs). Here we find, unexpectedly, that undifferentiated human embryonic stem cells (hESCs) contain only six TAFs (TAFs 2, 3, 5, 6, 7 and 11), whereas following differentiation all TAFs are expressed. Directed and global chromatin immunoprecipitation analyses reveal an unprecedented promoter occupancy pattern: most active genes are bound by only TAFs 3 and 5 along with TBP, whereas the remaining active genes are bound by TBP and all six hESC TAFs. Consistent with these results, hESCs contain a previously undescribed complex comprising TAFs 2, 6, 7, 11 and TBP. Altering the composition of hESC TAFs, either by depleting TAFs that are present or ectopically expressing TAFs that are absent, results in misregulated expression of pluripotency genes and induction of differentiation. Thus, the selective expression and use of TAFs underlies the ability of hESCs to self-renew.DOI:http://dx.doi.org/10.7554/eLife.00068.001.
Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria
2010-03-04
Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding thatmore » cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.« less
Domingos, Patrícia Luciana Batista; Souza, Marcela Gonçalves; Guimarães, Talita Antunes; Santos, Eliane Sobrinho; Farias, Lucyana Conceição; de Carvalho Fraga, Carlos Alberto; Jones, Kimberly Marie; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena
2017-05-01
The purpose of the current study is to investigate the association between E-cadherin methylation status, hypoxia and OSCC. HaCat and SCC9 cell lines were submitted to hypoxic treatment, followed by methylation profile analysis (MS-PCR) and analysis of the expression of mRNA gene E-cadherin (RT-PCR). Study group samples comprise individuals affected by potentially malignant lesions Potential Malignant Oral Lesion (PMOL, n=18) and oral squamous cell carcinoma (OSCC, n=28). The control group oral mucosa (OM, n=15) of patients with an oral mucocele. Cell migration ability was evaluated a scratch wound assay in SCC9 and HaCat cell lines RESULTS: E-cadherin mRNA expression in the cell lines SCC9 and HaCat was significantly reduced under hypoxia, regardless of the methylation profile, when compared to the control group. No differences in methylation profile of the E-cadherin were observed among the groups OM, PMOL and OSCC. HaCat and SCC9 presented increases in cell migration rates under hypoxia. The current study demonstrates that hypoxia reduces E-cadherin expression and increase cell migration, regardless of the methylation profile. Additionally, no differences in E-cadherin methylation patterns were observed among OM, PMOL and OSCC. Copyright © 2017 Elsevier GmbH. All rights reserved.
Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David
2001-01-01
Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681
Gene Expression Dynamics Inspector (GEDI): for integrative analysis of expression profiles
NASA Technical Reports Server (NTRS)
Eichler, Gabriel S.; Huang, Sui; Ingber, Donald E.
2003-01-01
Genome-wide expression profiles contain global patterns that evade visual detection in current gene clustering analysis. Here, a Gene Expression Dynamics Inspector (GEDI) is described that uses self-organizing maps to translate high-dimensional expression profiles of time courses or sample classes into animated, coherent and robust mosaics images. GEDI facilitates identification of interesting patterns of molecular activity simultaneously across gene, time and sample space without prior assumption of any structure in the data, and then permits the user to retrieve genes of interest. Important changes in genome-wide activities may be quickly identified based on 'Gestalt' recognition and hence, GEDI may be especially useful for non-specialist end users, such as physicians. AVAILABILITY: GEDI v1.0 is written in Matlab, and binary Matlab.dll files which require Matlab to run can be downloaded for free by academic institutions at http://www.chip.org/ge/gedihome.html Supplementary information: http://www.chip.org/ge/gedihome.html.
Chen, Yunshun; Lun, Aaron T L; Smyth, Gordon K
2016-01-01
In recent years, RNA sequencing (RNA-seq) has become a very widely used technology for profiling gene expression. One of the most common aims of RNA-seq profiling is to identify genes or molecular pathways that are differentially expressed (DE) between two or more biological conditions. This article demonstrates a computational workflow for the detection of DE genes and pathways from RNA-seq data by providing a complete analysis of an RNA-seq experiment profiling epithelial cell subsets in the mouse mammary gland. The workflow uses R software packages from the open-source Bioconductor project and covers all steps of the analysis pipeline, including alignment of read sequences, data exploration, differential expression analysis, visualization and pathway analysis. Read alignment and count quantification is conducted using the Rsubread package and the statistical analyses are performed using the edgeR package. The differential expression analysis uses the quasi-likelihood functionality of edgeR.
Activity-based protein profiling for biochemical pathway discovery in cancer
Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.
2011-01-01
Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252
Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J
2016-07-01
The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Michotey, V.; Aigle, A.; Armougom, F.; Mejean, V.; Guasco, S.; Bonin, P.
2016-02-01
In sedimentary systems, the repartition of terminal electron-accepting molecules is often stratified on a permanent or seasonal basis. Just below to oxic zone, the suboxic one is characterized by high concentrations of oxidized inorganic compounds such as nitrate, manganese oxides (MnIII/IV) and iron oxides that are in close vicinity. Several studies have reported unexpected anaerobic nitrite/nitrate production at the expense of ammonium mediated by MnIII/IV, however this transient processes is difficult to discern and poorly understood. In the frame of this study, genes organization of nitrate and MnIII/IV respiration was investigated in S.algae. Additional genes were identified in S. algae compare to S. oneidensis: genes coding for nitrate and nitrite reductase (napA-a and nrfA-2) and an OMC protein (mtrH). In contrast to S. oneidensis, an anaerobic transitory nitrite accumulation at the expense of ammonium was observed in S. algae during growth with MnIII/IV, concomitantly with expression of nitrate/nitrite reductase genes (napA, nrfA, nrfA-2). Among the hypothesis explaining this data, the potential putative expression of unidentified gene able to perform ammonium oxidation was not observed on the global transcriptional level, however several signs of oxidative stress were detected and the existence of a secondary reaction generated by a putative oxidative s could not be excluded. Another option could be the action of reverse reaction by an enzyme such as NrfA or NrfA-2 due to the electron flow equilibrium. Whatever the electron acceptor (Nitrate/ MnIII/IV), the unexpected expression level of of omcA, mtrF, mtrH, mtrC was observed and peaked at the end of the exponential phase. Different expression patterns of the omc genes were observed depending on electron acceptor and growth phase. Only mtrF-2 gene was specifically expressed in Mn(III/IV) condition. Nitrate and Mn(III/IV) respirations seem connected at physiological as well as at transcriptional level
Circulating Long Noncoding RNAs as Potential Biomarkers of Sepsis: A Preliminary Study.
Dai, Yu; Liang, Zhixin; Li, Yulin; Li, Chunsun; Chen, Liangan
2017-11-01
Long noncoding RNAs (lncRNAs) are becoming promising biomarker candidates in various diseases as assessed via sequencing technologies. Sepsis is a life-threatening disease without ideal biomarkers. The aim of this study was to investigate the expression profile of lncRNAs in the peripheral blood of sepsis patients and to find potential biomarkers of sepsis. A lncRNA expression profile was performed using peripheral blood from three sepsis patients and three healthy volunteers using microarray screening. The differentially expressed lncRNAs were validated by real-time quantitative polymerase chain reaction (qRT-PCR) in a further set of 22 sepsis patients and 22 healthy volunteers. Among 1316 differentially expressed lncRNAs, 771 were downregulated and 545 were upregulated. Results of the qRT-PCR were consistent with the microarray data. lncRNA ENST00000452391.1, uc001vji.1, and uc021zxw.1 were significantly differentially expressed between sepsis patients and healthy volunteers. Moreover, lncRNA ENST00000504301.1 and ENST00000452391.1 were significantly differentially expressed between sepsis survivors and nonsurvivors. The lncRNA expression profile in the peripheral blood of sepsis patients significantly differed from that of healthy volunteers. Circulating lncRNAs may be good candidates for sepsis biomarkers.
Merlaen, Britt; De Keyser, Ellen; Van Labeke, Marie-Christine
2018-01-01
The newly identified aquaporin coding sequences presented here pave the way for further insights into the plant-water relations in the commercial strawberry ( Fragaria x ananassa ). Aquaporins are water channel proteins that allow water to cross (intra)cellular membranes. In Fragaria x ananassa , few of them have been identified hitherto, hampering the exploration of the water transport regulation at cellular level. Here, we present new aquaporin coding sequences belonging to different subclasses: plasma membrane intrinsic proteins subtype 1 and subtype 2 (PIP1 and PIP2) and tonoplast intrinsic proteins (TIP). The classification is based on phylogenetic analysis and is confirmed by the presence of conserved residues. Substrate-specific signature sequences (SSSSs) and specificity-determining positions (SDPs) predict the substrate specificity of each new aquaporin. Expression profiling in leaves, petioles and developing fruits reveals distinct patterns, even within the same (sub)class. Expression profiles range from leaf-specific expression over constitutive expression to fruit-specific expression. Both upregulation and downregulation during fruit ripening occur. Substrate specificity and expression profiles suggest that functional specialization exists among aquaporins belonging to a different but also to the same (sub)class.
PmiRExAt: plant miRNA expression atlas database and web applications
Gurjar, Anoop Kishor Singh; Panwar, Abhijeet Singh; Gupta, Rajinder; Mantri, Shrikant S.
2016-01-01
High-throughput small RNA (sRNA) sequencing technology enables an entirely new perspective for plant microRNA (miRNA) research and has immense potential to unravel regulatory networks. Novel insights gained through data mining in publically available rich resource of sRNA data will help in designing biotechnology-based approaches for crop improvement to enhance plant yield and nutritional value. Bioinformatics resources enabling meta-analysis of miRNA expression across multiple plant species are still evolving. Here, we report PmiRExAt, a new online database resource that caters plant miRNA expression atlas. The web-based repository comprises of miRNA expression profile and query tool for 1859 wheat, 2330 rice and 283 maize miRNA. The database interface offers open and easy access to miRNA expression profile and helps in identifying tissue preferential, differential and constitutively expressing miRNAs. A feature enabling expression study of conserved miRNA across multiple species is also implemented. Custom expression analysis feature enables expression analysis of novel miRNA in total 117 datasets. New sRNA dataset can also be uploaded for analysing miRNA expression profiles for 73 plant species. PmiRExAt application program interface, a simple object access protocol web service allows other programmers to remotely invoke the methods written for doing programmatic search operations on PmiRExAt database. Database URL: http://pmirexat.nabi.res.in. PMID:27081157
2017-01-01
Experiments in synthetic biology and microbiology can benefit from protein expression systems with low cell-to-cell variability (noise) and expression levels precisely tunable across a useful dynamic range. Despite advances in understanding the molecular biology of microbial gene regulation, many experiments employ protein-expression systems exhibiting high noise and nearly all-or-none responses to induction. I present an expression system that incorporates elements known to reduce gene expression noise: negative autoregulation and bicistronic transcription. I show by stochastic simulation that while negative autoregulation can produce a more gradual response to induction, bicistronic expression of a repressor and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized a plasmid-based system incorporating these principles and studied its properties in Escherichia coli cells, using flow cytometry and fluorescence microscopy to characterize induction dose-response, induction/repression kinetics and gene expression noise. By varying ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were achieved with noise below the extrinsic limit. Individual strains are inducible across a dynamic range greater than 20-fold. Experimental comparison of different regulatory networks confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly high noise for a conventional expression system with a constitutively expressed transcriptional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic range. PMID:29084263
Comparison of gene expression and fatty acid profiles in concentrate and forage finished beef.
Buchanan, J W; Garmyn, A J; Hilton, G G; VanOverbeke, D L; Duan, Q; Beitz, D C; Mateescu, R G
2013-01-01
Fatty acid profiles and intramuscular expression of genes involved in fatty acid metabolism were characterized in concentrate- (CO) and forage- (FO) based finishing systems. Intramuscular samples from the adductor were taken at slaughter from 99 heifers finished on a CO diet and 58 heifers finished on a FO diet. Strip loins were obtained at fabrication to evaluate fatty acid profiles of LM muscle for all 157 heifers by using gas chromatography fatty acid methyl ester analysis. Composition was analyzed for differences by using the General Linear Model (GLM) procedure in SAS. Differences in fatty acid profile included a greater atherogenic index, greater percentage total MUFA, decreased omega-3 to omega-6 ratio, decreased percentage total PUFA, and decreased percentage omega-3 fatty acids in CO- compared with FO-finished heifers (P<0.05). Fatty acid profiles from intramuscular samples were ranked by the atherogenic index, and 20 heifers with either a high (HAI; n=10) or low (LAI; n=10) atherogenic index were selected for gene expression analysis using real-time PCR (RT-PCR). Gene expression data for the 20 individuals were analyzed as a 2 by 2 factorial arrangement of treatments using the GLM procedure in SAS. There was no significant diet × atherogenic index interaction identified for any gene (P>0.05). Upregulation was observed for PPARγ, fatty acid synthase (FASN), and fatty acid binding protein 4 (FABP4) in FO-finished compared with CO-finished heifers in both atherogenic index categories (P<0.05). Upregulation of diglyceride acyl transferase 2 (DGAT2) was observed in FO-finished heifers with a HAI (P<0.05). Expression of steroyl Co-A desaturase (SCD) was upregulated in CO-finished heifers with a LAI, and downregulated in FO-finished heifers with a HAI (P<0.05). Expression of adiponectin (ADIPOQ) was significantly downregulated in CO-finished heifers with a HAI compared with all other categories (P<0.05). The genes identified in this study which exhibit differential regulation in response to diet or in animals with extreme fatty acid profiles may provide genetic markers for selecting desirable fatty acid profiles in future selection programs.
Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.
2015-01-01
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat.
Cancer therapy based on oncogene addiction.
McCormick, Frank
2011-05-01
Tumor cells contain multiple mutations, yet they often depend on continued expressed of a single oncoprotein for survival. Targeting these proteins has led to dramatic responses. Unfortunately, patients usually progress, through drug resistance or adaptive resistance through reprogramming of signaling networks. The Ras-MAPK pathway provides examples of these successes and failures, and has revealed unexpected degrees of oncogene addiction and signaling complexity that are likely to be useful lessons for the future of targeted therapy. Copyright © 2011 Wiley-Liss, Inc.
Thermostable cellulase from a thermomonospora gene
Wilson, David B.; Walker, Larry P.; Zhang, Sheng
1997-10-14
The invention relates to a gene isolated from Thermomonospora fusca, wherein the gene encodes a thermostable cellulase. Disclosed is the nucleotide sequence of the T. fusca gene; and nucleic acid molecules comprising the gene, or a fragment of the gene, that can be used to recombinantly express the cellulase or a catalytically active polypeptide thereof, respectively. The isolated and purified recombinant cellulase or catalytically active polypeptide may be used to hydrolyze substrate either by itself; or in combination with other cellulases, with the resultant combination having unexpected hydrolytic activity.
2017-01-01
The circadian clock interacts with other regulatory pathways to tune physiology to predictable daily changes and unexpected environmental fluctuations. However, the complexity of circadian clocks in higher organisms has prevented a clear understanding of how natural environmental conditions affect circadian clocks and their physiological outputs. Here, we dissect the interaction between circadian regulation and responses to fluctuating light in the cyanobacterium Synechococcus elongatus. We demonstrate that natural changes in light intensity substantially affect the expression of hundreds of circadian-clock-controlled genes, many of which are involved in key steps of metabolism. These changes in expression arise from circadian and light-responsive control of RNA polymerase recruitment to promoters by a network of transcription factors including RpaA and RpaB. Using phenomenological modeling constrained by our data, we reveal simple principles that underlie the small number of stereotyped responses of dusk circadian genes to changes in light. PMID:29239721
CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.
Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E
2004-04-01
The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.
Kuang, Zheng; Cai, Ling; Zhang, Xuekui; Ji, Hongkai; Tu, Benjamin P.; Boeke, Jef D.
2014-01-01
Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a “just-in-time supply chain” by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and “sharpness” relative to RNA expression both within and between cycle phases. Chromatin modifier occupancy reveals subtly distinct spatial and temporal patterns compared to the modifications themselves. PMID:25173176
Developmental expression of a regulatory gene is programmed at the level of splicing.
Chou, T B; Zachar, Z; Bingham, P M
1987-01-01
We report sequence and transcript structures for a 6191-base chromosomal segment containing the presumptive regulatory gene from Drosophila, suppressor-of-white-apricot [su(wa)]. Our results indicate that su(wa) expression is controlled by regulating occurrence of specific splices. Seven introns are removed from the su(wa) primary transcript during precellular blastoderm development. The sequence of this mature RNA indicates that it is a conventional messenger RNA. In contrast, after cellular blastoderm the first two of these introns cease to be efficiently removed. The mature RNAs resulting from this failure to remove the first two introns have structures quite unexpected of mRNAs. We propose that postcellular blastoderm su(wa) expression is repressed by preventing splices necessary to produce a functional mRNA. Implications and mechanisms are discussed. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:2832151
Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana
2012-12-14
A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.
NASA Astrophysics Data System (ADS)
Manno, Daniela; Carata, Elisabetta; Tenuzzo, Bernadetta A.; Panzarini, Elisa; Buccolieri, Alessandro; Filippo, Emanuela; Rossi, Marco; Serra, Antonio; Dini, Luciana
2012-12-01
A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins.
Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats.
Kohen, R; Kirov, S; Navaja, G P; Happe, H Kevin; Hamblin, M W; Snoddy, J R; Neumaier, J F; Petty, F
2005-01-01
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Gene expression variability in human hepatic drug metabolizing enzymes and transporters.
Yang, Lun; Price, Elvin T; Chang, Ching-Wei; Li, Yan; Huang, Ying; Guo, Li-Wu; Guo, Yongli; Kaput, Jim; Shi, Leming; Ning, Baitang
2013-01-01
Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs) in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.
System Biology Approach: Gene Network Analysis for Muscular Dystrophy.
Censi, Federica; Calcagnini, Giovanni; Mattei, Eugenio; Giuliani, Alessandro
2018-01-01
Phenotypic changes at different organization levels from cell to entire organism are associated to changes in the pattern of gene expression. These changes involve the entire genome expression pattern and heavily rely upon correlation patterns among genes. The classical approach used to analyze gene expression data builds upon the application of supervised statistical techniques to detect genes differentially expressed among two or more phenotypes (e.g., normal vs. disease). The use of an a posteriori, unsupervised approach based on principal component analysis (PCA) and the subsequent construction of gene correlation networks can shed a light on unexpected behaviour of gene regulation system while maintaining a more naturalistic view on the studied system.In this chapter we applied an unsupervised method to discriminate DMD patient and controls. The genes having the highest absolute scores in the discrimination between the groups were then analyzed in terms of gene expression networks, on the basis of their mutual correlation in the two groups. The correlation network structures suggest two different modes of gene regulation in the two groups, reminiscent of important aspects of DMD pathogenesis.
Osmoregulated TAQ polymerase gene expression in Escherichia coli.
Cabrera Artiles, Yeosvany; Martínez García, Duniesky; Pérez Cruz, Enrique R; Márquez Perera, Gabriel J; Feble, Manuel Luis
2002-01-01
The Thermus aquaticus DNA Polymerase I (Taq Pol I) gene was cloned into the pOSEX4 plasmid under the osmo-inducible promoter proU and subsequently expressed into the Escherichia coli MKH13 strain. The suitability of the enzyme in polymerase assays was determined in standard 35S dATP incorporation tests and by PCR. The Taq Pol I expression in this system, which is under the control of the osmotic pressure in the growth medium, was analyzed in different media and in different sodium chloride concentrations. A study of the osmolarity effects in the growth of the strain and in Taq Pol I expression shows that an increase in sodium chloride concentration limits the growth. At 0.25 M of NaCl maximum activity was observed; at higher values of osmolarity, we found an unexpected decline of activity. This is the first report of using the pOSEX vector for the expression of an heterologous protein and it is very advantageous to make a regulated, non toxic, simple and cost-effective manner of induction in a biotechnology process using just NaCl or other non-permeable osmolyte.
Iron restriction and the growth of Salmonella enteritidis.
Chart, H.; Rowe, B.
1993-01-01
Strains of Salmonella enteritidis were examined for their ability to remove ferric-ions from the iron chelating agents ovotransferrin, Desferal and EDDA. Growth of S. enteritidis phage type (PT) 4 (SE4) in trypticase soy broth containing ovotransferrin resulted in the expression of iron regulated outer membrane proteins (OMPs) of 74, 78 and 81 kDa, and unexpectedly the repression of expression of OMP C. The 38 MDa 'mouse virulence' plasmid was not required for the expression of the iron-regulated OMPs (IROMPs). SE4 was able to obtain iron bound to the iron chelator Desferal and EDDA without expressing a high-affinity iron uptake system. Strains of S. enteritidis belonging to PTs 7, 8, 13a, 23, 24 and 30 were also able to remove ferric ions from Desferal and EDDA without expressing a high-affinity iron uptake system. We conclude that strains of SE4 possess a high-affinity iron sequestering mechanism that can readily remove iron from ovotransferrin. It is likely that iron limitation, and not iron restriction, is responsible for the bacteriostatic properties of fresh egg whites. Images Fig. 2 PMID:8432322
Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat
Williams, Ben P.; Pignatta, Daniela; Henikoff, Steven; Gehring, Mary
2015-01-01
Genomes must balance active suppression of transposable elements (TEs) with the need to maintain gene expression. In Arabidopsis, euchromatic TEs are targeted by RNA-directed DNA methylation (RdDM). Conversely, active DNA demethylation prevents accumulation of methylation at genes proximal to these TEs. It is unknown how a cellular balance between methylation and demethylation activities is achieved. Here we show that both RdDM and DNA demethylation are highly active at a TE proximal to the major DNA demethylase gene ROS1. Unexpectedly, and in contrast to most other genomic targets, expression of ROS1 is promoted by DNA methylation and antagonized by DNA demethylation. We demonstrate that inducing methylation in the ROS1 proximal region is sufficient to restore ROS1 expression in an RdDM mutant. Additionally, methylation-sensitive expression of ROS1 is conserved in other species, suggesting it is adaptive. We propose that the ROS1 locus functions as an epigenetic rheostat, tuning the level of demethylase activity in response to methylation alterations, thus ensuring epigenomic stability. PMID:25826366
Gihr, Georg Alexander; Horvath-Rizea, Diana; Garnov, Nikita; Kohlhof-Meinecke, Patricia; Ganslandt, Oliver; Henkes, Hans; Meyer, Hans Jonas; Hoffmann, Karl-Titus; Surov, Alexey; Schob, Stefan
2018-02-01
Presurgical grading, estimation of growth kinetics, and other prognostic factors are becoming increasingly important for selecting the best therapeutic approach for meningioma patients. Diffusion-weighted imaging (DWI) provides microstructural information and reflects tumor biology. A novel DWI approach, histogram profiling of apparent diffusion coefficient (ADC) volumes, provides more distinct information than conventional DWI. Therefore, our study investigated whether ADC histogram profiling distinguishes low-grade from high-grade lesions and reflects Ki-67 expression and progesterone receptor status. Pretreatment ADC volumes of 37 meningioma patients (28 low-grade, 9 high-grade) were used for histogram profiling. WHO grade, Ki-67 expression, and progesterone receptor status were evaluated. Comparative and correlative statistics investigating the association between histogram profiling and neuropathology were performed. The entire ADC profile (p10, p25, p75, p90, mean, median) was significantly lower in high-grade versus low-grade meningiomas. The lower percentiles, mean, and modus showed significant correlations with Ki-67 expression. Skewness and entropy of the ADC volumes were significantly associated with progesterone receptor status and Ki-67 expression. ROC analysis revealed entropy to be the most accurate parameter distinguishing low-grade from high-grade meningiomas. ADC histogram profiling provides a distinct set of parameters, which help differentiate low-grade versus high-grade meningiomas. Also, histogram metrics correlate significantly with histological surrogates of the respective proliferative potential. More specifically, entropy revealed to be the most promising imaging biomarker for presurgical grading. Both, entropy and skewness were significantly associated with progesterone receptor status and Ki-67 expression and therefore should be investigated further as predictors for prognostically relevant tumor biological features. Since absolute ADC values vary between MRI scanners of different vendors and field strengths, their use is more limited in the presurgical setting.
NASA Astrophysics Data System (ADS)
Dräger, Nadine; Brademann, Brian; Theuerkauf, Martin; Wulf, Sabine; Tjallingii, Rik; Słowiński, Michał; Schlaak, Norbert; Błaszkiewicz, Mirosław; Brauer, Achim
2015-04-01
A new finely laminated sediment archive has been recovered from the palaeolake Wukenfurche, NE Germany, comprising the last Glacial to Interglacial transition. The site is located within the Eberswalde ice-marginal valley and south of the terminal moraine that was formed during the Pomeranian phase of the Weichselian glaciation. Two sediment cores were obtained from the presently swampy area in July 2014. From these individual profiles a 14.7 m long continuous composite profile has been compiled by correlation of distinct marker layers. Glacial sand deposits covered by basal peat are found at the base of the cores. A visible volcanic ash layer 6 cm above the transition from basal peat into the overlaying finely laminated lake sediments corresponds most likely to the late Allerød Laacher See Tephra (LST). Preliminary counting on core photographs of the 3.5 m thick package of reddish and black alternating laminae above the LST yields a total of ca. 2500 layer couplets. Further micro-facies analyses on large-scale thin sections will be applied to test if these couplets are of annual origin (i.e. varves). Standard preparation for large-scale thin sections involves freeze-drying (for 48 hours) of 10 cm-long sediment slabs stored in aluminum boxes. Immediately after releasing the vacuum of the freeze-dryer chamber we observed an unexpected spontaneous combustion of the sediment from a particular interval of the profile. The exothermic combustion process lasted for approximately 10 to 20 minutes during which temperatures of up to 350°C have been measured with an infrared camera. Preliminary results suggest that oxidation of iron sulfides contributes to the observed reaction. To our knowledge this is the first time that such spontaneous combustion of lake sediments after freeze-drying has been observed. Details of the combustion process and sediment characteristics will be provided. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association, grant number VH-VI-415.
Guo, Chun Yu; Yin, Hui Jun; Jiang, Yue Rong; Xue, Mei; Zhang, Lu; Shi, Da Zhuo
2008-06-18
To construct the differential genes expressed profile in the ischemic myocardium tissue reduced from acute myocardial infarction(AMI), and determine the biological functions of target genes. AMI model was generated by ligation of the left anterior descending coronary artery in Wistar rats. Total RNA was extracted from the normal and the ischemic heart tissues under the ligation point 7 days after the operation. Differential gene expression profiles of the two samples were constructed using Long Serial Analysis of Gene Expression(LongSAGE). Real time fluorescence quantitative PCR was used to verify gene expression profile and to identify the expression of 2 functional genes. The activities of enzymes from functional genes were determined by histochemistry. A total of 15,966 tags were screened from the normal and the ischemic LongSAGE maps. The similarities of the sequences were compared using the BLAST algebra in NCBI and 7,665 novel tags were found. In the ischemic tissue 142 genes were significantly changed compared with those in the normal tissue (P<0.05). These differentially expressed genes represented the proteins which might play important roles in the pathways of oxidation and phosphorylation, ATP synthesis and glycolysis. The partial genes identified by LongSAGE were confirmed using real time fluorescence quantitative PCR. Two genes related to energy metabolism, COX5a and ATP5e, were screened and quantified. Expression of two functional genes down-regulated at their mRNA levels and the activities of correlative functional enzymes decreased compared with those in the normal tissue. AMI causes a series of changes in gene expression, in which the abnormal expression of genes related to energy metabolism could be one of the molecular mechanisms of AMI. The intervention of the expressions of COX5a and ATP5e may be a new target for AMI therapy.
Pao, Sheng-Ying; Lin, Win-Li; Hwang, Ming-Jing
2006-01-01
Background Screening for differentially expressed genes on the genomic scale and comparative analysis of the expression profiles of orthologous genes between species to study gene function and regulation are becoming increasingly feasible. Expressed sequence tags (ESTs) are an excellent source of data for such studies using bioinformatic approaches because of the rich libraries and tremendous amount of data now available in the public domain. However, any large-scale EST-based bioinformatics analysis must deal with the heterogeneous, and often ambiguous, tissue and organ terms used to describe EST libraries. Results To deal with the issue of tissue source, in this work, we carefully screened and organized more than 8 million human and mouse ESTs into 157 human and 108 mouse tissue/organ categories, to which we applied an established statistic test using different thresholds of the p value to identify genes differentially expressed in different tissues. Further analysis of the tissue distribution and level of expression of human and mouse orthologous genes showed that tissue-specific orthologs tended to have more similar expression patterns than those lacking significant tissue specificity. On the other hand, a number of orthologs were found to have significant disparity in their expression profiles, hinting at novel functions, divergent regulation, or new ortholog relationships. Conclusion Comprehensive statistics on the tissue-specific expression of human and mouse genes were obtained in this very large-scale, EST-based analysis. These statistical results have been organized into a database, freely accessible at our website , for easy searching of human and mouse tissue-specific genes and for investigating gene expression profiles in the context of comparative genomics. Comparative analysis showed that, although highly tissue-specific genes tend to exhibit similar expression profiles in human and mouse, there are significant exceptions, indicating that orthologous genes, while sharing basic genomic properties, could result in distinct phenotypes. PMID:16626500
González-Alvarez, Rafael; Garza-Rodríguez, María de Lourdes; Delgado-Enciso, Iván; Treviño-Alvarado, Víctor Manuel; Canales-Del-Castillo, Ricardo; Martínez-De-Villarreal, Laura Elia; Lugo-Trampe, Ángel; Tejero, María Elizabeth; Schlabritz-Loutsevitch, Natalia E; Rocha-Pizaña, María Del Refugio; Cole, Shelley A; Reséndez-Pérez, Diana; Moises-Alvarez, Mario; Comuzzie, Anthony G; Barrera-Saldaña, Hugo Alberto; Garza-Guajardo, Raquel; Barboza-Quintana, Oralia; Rodríguez-Sánchez, Irám Pablo
2015-06-12
Chemerin, encoded by the retinoic acid receptor responder 2 (RARRES2) gene is an adipocytesecreted protein with autocrine/paracrine functions in adipose tissue, metabolism and inflammation with a recently described function in vascular tone regulation, liver, steatosis, etc. This molecule is believed to represent a critical endocrine signal linking obesity to diabetes. There are no data available regarding evolution of RARRES2 in non-human primates and great apes. Expression profile and orthology in RARRES2 genes are unknown aspects in the biology of this multigene family in primates. Thus; we attempt to describe expression profile and phylogenetic relationship as complementary knowledge in the function of this gene in primates. To do that, we performed A RT-PCR from different tissues obtained during necropsies. Also we tested the hypotheses of positive evolution, purifying selection, and neutrality. And finally a phylogenetic analysis was made between primates RARRES2 protein. RARRES2 transcripts were present in liver, lung, adipose tissue, ovary, pancreas, heart, hypothalamus and pituitary tissues. Expression in kidney and leukocytes were not detectable in either species. It was determined that the studied genes are orthologous. RARRES2 evolution fits the hypothesis of purifying selection. Expression profiles of the RARRES2 gene are similar in baboons and chimpanzees and are also phylogenetically related.
Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi
2006-07-01
To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.
Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May
2015-04-01
The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption.
Dystrophin Immunity in Duchenne’s Muscular Dystrophy
Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao; Samulski, Jade; McPhee, Scott W.; Samulski, R. Jude; Walker, Christopher M.
2010-01-01
SUMMARY We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.) PMID:20925545
Defining the Human Macula Transcriptome and Candidate Retinal Disease Genes UsingEyeSAGE
Rickman, Catherine Bowes; Ebright, Jessica N.; Zavodni, Zachary J.; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P.; Wistow, Graeme; Boon, Kathy; Hauser, Michael A.
2009-01-01
Purpose To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Methods Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Results Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. Conclusions The EyeSAGE database, combining three different gene-profiling platforms including the authors’ multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions. PMID:16723438
Defining the human macula transcriptome and candidate retinal disease genes using EyeSAGE.
Bowes Rickman, Catherine; Ebright, Jessica N; Zavodni, Zachary J; Yu, Ling; Wang, Tianyuan; Daiger, Stephen P; Wistow, Graeme; Boon, Kathy; Hauser, Michael A
2006-06-01
To develop large-scale, high-throughput annotation of the human macula transcriptome and to identify and prioritize candidate genes for inherited retinal dystrophies, based on ocular-expression profiles using serial analysis of gene expression (SAGE). Two human retina and two retinal pigment epithelium (RPE)/choroid SAGE libraries made from matched macula or midperipheral retina and adjacent RPE/choroid of morphologically normal 28- to 66-year-old donors and a human central retina longSAGE library made from 41- to 66-year-old donors were generated. Their transcription profiles were entered into a relational database, EyeSAGE, including microarray expression profiles of retina and publicly available normal human tissue SAGE libraries. EyeSAGE was used to identify retina- and RPE-specific and -associated genes, and candidate genes for retina and RPE disease loci. Differential and/or cell-type specific expression was validated by quantitative and single-cell RT-PCR. Cone photoreceptor-associated gene expression was elevated in the macula transcription profiles. Analysis of the longSAGE retina tags enhanced tag-to-gene mapping and revealed alternatively spliced genes. Analysis of candidate gene expression tables for the identified Bardet-Biedl syndrome disease gene (BBS5) in the BBS5 disease region table yielded BBS5 as the top candidate. Compelling candidates for inherited retina diseases were identified. The EyeSAGE database, combining three different gene-profiling platforms including the authors' multidonor-derived retina/RPE SAGE libraries and existing single-donor retina/RPE libraries, is a powerful resource for definition of the retina and RPE transcriptomes. It can be used to identify retina-specific genes, including alternatively spliced transcripts and to prioritize candidate genes within mapped retinal disease regions.
Weigt, S Samuel; Wang, Xiaoyan; Palchevskiy, Vyacheslav; Patel, Naman; Derhovanessian, Ariss; Shino, Michael Y; Sayah, David M; Lynch, Joseph P; Saggar, Rajan; Ross, David J; Kubak, Bernie M; Ardehali, Abbas; Palmer, Scott; Husain, Shahid; Belperio, John A
2018-06-01
Aspergillus colonization after lung transplant is associated with an increased risk of chronic lung allograft dysfunction (CLAD). We hypothesized that gene expression during Aspergillus colonization could provide clues to CLAD pathogenesis. We examined transcriptional profiles in 3- or 6-month surveillance bronchoalveolar lavage fluid cell pellets from recipients with Aspergillus fumigatus colonization (n = 12) and without colonization (n = 10). Among the Aspergillus colonized, we also explored profiles in those who developed CLAD (n = 6) or remained CLAD-free (n = 6). Transcription profiles were assayed with the HG-U133 Plus 2.0 microarray (Affymetrix). Differential gene expression was based on an absolute fold difference of 2.0 or greater and unadjusted P value less than 0.05. We used NIH Database for Annotation, Visualization and Integrated Discovery for functional analyses, with false discovery rates less than 5% considered significant. Aspergillus colonization was associated with differential expression of 489 probe sets, representing 404 unique genes. "Defense response" genes and genes in the "cytokine-cytokine receptor" Kyoto Encyclopedia of Genes and Genomes pathway were notably enriched in this list. Among Aspergillus colonized patients, CLAD development was associated with differential expression of 69 probe sets, representing 64 unique genes. This list was enriched for genes involved in "immune response" and "response to wounding", among others. Notably, both chitinase 3-like-1 and chitotriosidase were associated with progression to CLAD. Aspergillus colonization is associated with gene expression profiles related to defense responses including cytokine signaling. Epithelial wounding, as well as the innate immune response to chitin that is present in the fungal cell wall, may be key in the link between Aspergillus colonization and CLAD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caba, Octavio, E-mail: ocaba@ujaen.es
Erlotinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that showed activity against pancreatic ductal adenocarcinoma (PDAC). The drug's most frequently reported side effect as a result of EGFR inhibition is skin rash (SR), a symptom which has been associated with a better therapeutic response to the drug. Gene expression profiling can be used as a tool to predict which patients will develop this important cutaneous manifestation. The aim of the present study was to identify which genes may influence the appearance of SR in PDAC patients. The study included 34 PDAC patients treated with erlotinib: 21 patientsmore » developed any grade of SR, while 13 patients did not (controls). Before administering any chemotherapy regimen and the development of SR, we collected RNA from peripheral blood samples of all patients and studied the differential gene expression pattern using the Illumina microarray platform HumanHT-12 v4 Expression BeadChip. Seven genes (FAM46C, IFITM3, GMPR, DENND6B, SELENBP1, NOL10, and SIAH2), involved in different pathways including regulatory, migratory, and signalling processes, were downregulated in PDAC patients with SR. Our results suggest the existence of a gene expression profiling significantly correlated with erlotinib-induced SR in PDAC that could be used as prognostic indicator in this patients. - Highlights: • Skin rash (SR) is the most characteristic side effect of erlotinib in PDAC patients. • Erlotinib-induced SR has been associated with a better clinical outcome. • Gene expression profiling was used to determine who will develop this manifestation. • 7 genes involved in different pathways were downregulated in PDAC patients with SR. • Our profile correlated with erlotinib-induced SR in PDAC could be used for prognosis.« less
Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic
2006-04-27
Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts.
Wang, Hongyang; Owens, James D; Shih, Joanna H; Li, Ming-Chung; Bonner, Robert F; Mushinski, J Frederic
2006-01-01
Background Gene expression profiling by microarray analysis of cells enriched by laser capture microdissection (LCM) faces several technical challenges. Frozen sections yield higher quality RNA than paraffin-imbedded sections, but even with frozen sections, the staining methods used for histological identification of cells of interest could still damage the mRNA in the cells. To study the contribution of staining methods to degradation of results from gene expression profiling of LCM samples, we subjected pellets of the mouse plasma cell tumor cell line TEPC 1165 to direct RNA extraction and to parallel frozen sectioning for LCM and subsequent RNA extraction. We used microarray hybridization analysis to compare gene expression profiles of RNA from cell pellets with gene expression profiles of RNA from frozen sections that had been stained with hematoxylin and eosin (H&E), Nissl Stain (NS), and for immunofluorescence (IF) as well as with the plasma cell-revealing methyl green pyronin (MGP) stain. All RNAs were amplified with two rounds of T7-based in vitro transcription and analyzed by two-color expression analysis on 10-K cDNA microarrays. Results The MGP-stained samples showed the least introduction of mRNA loss, followed by H&E and immunofluorescence. Nissl staining was significantly more detrimental to gene expression profiles, presumably owing to an aqueous step in which RNA may have been damaged by endogenous or exogenous RNAases. Conclusion RNA damage can occur during the staining steps preparatory to laser capture microdissection, with the consequence of loss of representation of certain genes in microarray hybridization analysis. Inclusion of RNAase inhibitor in aqueous staining solutions appears to be important in protecting RNA from loss of gene transcripts. PMID:16643667
Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.
Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping
2011-10-01
In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.
Abnormal gene expression profiles in human ovaries from polycystic ovary syndrome patients.
Jansen, Erik; Laven, Joop S E; Dommerholt, Henri B R; Polman, Jan; van Rijt, Cindy; van den Hurk, Caroline; Westland, Jolanda; Mosselman, Sietse; Fauser, Bart C J M
2004-12-01
Polycystic ovary syndrome (PCOS) represents the most common cause of anovulatory infertility and affects 5-10% of women of reproductive age. The etiology of PCOS is still unknown. The current study is the first to describe consistent differences in gene expression profiles in human ovaries comparing PCOS patients vs. healthy normoovulatory individuals. The microarray analysis of PCOS vs. normal ovaries identifies dysregulated expression of genes encoding components of several biological pathways or systems such as Wnt signaling, extracellular matrix components, and immunological factors. Resulting data may provide novel clues for ovarian dysfunction in PCOS. Intriguingly, the gene expression profiles of ovaries from (long-term) androgen-treated female-to-male transsexuals (TSX) show considerable overlap with PCOS. This observation provides supportive evidence that androgens play a key role in the pathogenesis of PCOS. Presented data may contribute to a better understanding of dysregulated pathways in PCOS, which might ultimately reveal novel leads for therapeutic intervention.