Uniform circular motion in general relativity: existence and extendibility of the trajectories
NASA Astrophysics Data System (ADS)
de la Fuente, Daniel; Romero, Alfonso; Torres, Pedro J.
2017-06-01
The concept of uniform circular motion in a general spacetime is introduced as a particular case of a planar motion. The initial value problem of the corresponding differential equation is analysed in detail. Geometrically, an observer that obeys a uniform circular motion is characterized as a Lorentzian helix. The completeness of inextensible trajectories is studied in generalized Robertson-Walker spacetimes and in a relevant family of pp-wave spacetimes. Under reasonable assumptions, the physical interpretation of such results is that a uniform circular observer lives forever, providing the absence of the singularities defined by these timelike curves.
Uniform circular motion concept attainment through circle share learning model using real media
NASA Astrophysics Data System (ADS)
Ponimin; Suparmi; Sarwanto; Sunarno, W.
2017-01-01
Uniform circular motion is an important concept and has many applications in life. Student’s concept understanding of uniform circular motion is not optimal because the teaching learning is not carried out properly in accordance with the characteristics of the concept. To improve student learning outcomes required better teaching learning which is match with the characteristics of uniform circular motion. The purpose of the study is to determine the effect of real media and circle share model to the understanding of the uniform circular motion concept. The real media was used to visualize of uniform circular motion concept. The real media consists of toy car, round table and spring balance. Circle share model is a learning model through discussion sequentially and programmed. Each group must evaluate the worksheets of another group in a circular position. The first group evaluates worksheets the second group, the second group evaluates worksheets third group, and the end group evaluates the worksheets of the first group. Assessment of learning outcomes includes experiment worksheets and post-test of students. Based on data analysis we obtained some findings. First, students can explain the understanding of uniform circular motion whose angular velocity and speed is constant correctly. Second, students can distinguish the angular velocity and linear velocity correctly. Third, students can explain the direction of the linear velocity vector and the direction of the centripetal force vector. Fourth, the student can explain the influence of the mass, radius, and velocity toward the centripetal force. Fifth, students can explain the principle of combined of wheels. Sixth, teaching learning used circle share, can increase student activity, experimental results and efficiency of discussion time.
NASA Astrophysics Data System (ADS)
Rao, Zhiming; He, Zhifang; Du, Jianqiang; Zhang, Xinyou; Ai, Guoping; Zhang, Chunqiang; Wu, Tao
2012-03-01
This paper applied numerical simulation of temperature by using finite element analysis software Ansys to study a model of drilling on sticking plaster. The continuous CO2 laser doing uniform linear motion and doing uniform circular motion irradiated sticking plaster to vaporize. The sticking plaster material was chosen as the thermal conductivity, the heat capacity and the density. For temperatures above 450 °C, sticking plaster would be vaporized. Based on the mathematical model of heat transfer, the process of drilling sticking plaster by laser beams could be simulated by Ansys. The simulation results showed the distribution of the temperature at the surface of the sticking plaster with the time of vaporizing at CO2 laser to do uniform linear motion and to do uniform circular motion. The temperature of sticking plaster CO2 laser to do uniform linear motion was higher than CO2 laser to do uniform circular motion in the same condition.
Projectile motion of a once rotating object: physical quantities at the point of return
NASA Astrophysics Data System (ADS)
Arabasi, Sameer
2016-09-01
Vertical circular motion is a widely used example to explain non-uniform circular motion in most undergraduate general physics textbooks. However, most of these textbooks do not elaborate on the case when this motion turns into projectile motion under certain conditions. In this paper, we describe thoroughly when a mass attached to a cord, moving in a vertical circular motion, turns into a projectile and its location and velocity when it rejoins the circular orbit. This paper provides an intuitive understanding, supported by basic kinematic equations, to give an interesting elegant connection between circular motion and projectile motion—something lacking in most physics textbooks—and will be very useful to present to an undergraduate class to deepen their understanding of both models of motion.
ERIC Educational Resources Information Center
Duzen, Carl; And Others
1992-01-01
Presents a series of activities that utilizes a leveling device to classify constant and accelerated motion. Applies this classification system to uniform circular motion and motion produced by gravitational force. (MDH)
NASA Astrophysics Data System (ADS)
Hein, Olaf; Mader, Rolf
Nasir al din al-Tusi (1201-1274) was one of the most important universal scholars of Islam. As a convinced Aristotelian, he rejected Ptolemy's modifications of the Aristotelian dogma of uniform circular motion. He created a theory of lunar motion which is only based on uniform circular motion, and which results in the same representation of lunar motion as conceived by Ptolemy. He successfully attempted to consciously preserve, and not to correct, an error of Ptolemy's theory (the doubling of the earth-moon distance in the syzygies as compared to the quadratures). We explain the Tusi mechanism and point out its philosophical consequences (the unwanted dissolution of the difference between the extra- and intralunar world).
Using a Computer Microphone Port to Study Circular Motion: Proposal of a Secondary School Experiment
ERIC Educational Resources Information Center
Soares, A. A.; Borcsik, F. S.
2016-01-01
In this work we present an inexpensive experiment proposal to study the kinematics of uniform circular motion in a secondary school. We used a PC sound card to connect a homemade simple sensor to a computer and used the free sound analysis software "Audacity" to record experimental data. We obtained quite good results even in comparison…
Precise Measurement of Velocity Dependent Friction in Rotational Motion
ERIC Educational Resources Information Center
Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh
2011-01-01
Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…
Biomechanical analysis of the circular friction hand massage.
Ryu, Jeseong; Son, Jongsang; Ahn, Soonjae; Shin, Isu; Kim, Youngho
2015-01-01
A massage can be beneficial to relieve muscle tension on the neck and shoulder area. Various massage systems have been developed, but their motions are not uniform throughout different body parts nor specifically targeted to the neck and shoulder areas. Pressure pattern and finger movement trajectories of the circular friction hand massage on trapezius, levator scapulae, and deltoid muscles were determined to develop a massage system that can mimic the motion and the pressure of the circular friction massage. During the massage, finger movement trajectories were measured using a 3D motion capture system, and finger pressures were simultaneously obtained using a grip pressure sensor. Results showed that each muscle had different finger movement trajectory and pressure pattern. The trapezius muscle experienced a higher pressure, longer massage time (duration of pressurization), and larger pressure-time integral than the other muscles. These results could be useful to design a better massage system simulating human finger movements.
Modification of equation of motion of fluid-conveying pipe for laminar and turbulent flow profiles
NASA Astrophysics Data System (ADS)
Guo, C. Q.; Zhang, C. H.; Païdoussis, M. P.
2010-07-01
Considering the non-uniformity of the flow velocity distribution in fluid-conveying pipes caused by the viscosity of real fluids, the centrifugal force term in the equation of motion of the pipe is modified for laminar and turbulent flow profiles. The flow-profile-modification factors are found to be 1.333, 1.015-1.040 and 1.035-1.055 for laminar flow in circular pipes, turbulent flow in smooth-wall circular pipes and turbulent flow in rough-wall circular pipes, respectively. The critical flow velocities for divergence in the above-mentioned three cases are found to be 13.4%, 0.74-1.9% and 1.7-2.6%, respectively, lower than that with plug flow, while those for flutter are even lower, which could reach 36% for the laminar flow profile. By introducing two new concepts of equivalent flow velocity and equivalent mass, fluid-conveying pipe problems with different flow profiles can be solved with the equation of motion for plug flow.
Implied dynamics biases the visual perception of velocity.
La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo
2014-01-01
We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jing; Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha, Hunan 410081; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn
We study the spontaneous excitation of a detector (modeled by a two-level atom) in circular motion coupled nonlinearly to vacuum massless Rarita–Schwinger fields in the ultrarelativistic limit and demonstrate that the spontaneous excitation occurs for ground-state atoms in circular motion in vacuum but the excitation rate is not of a pure thermal form as that of the atoms in linear uniform acceleration. An interesting feature is that terms of odd powers in acceleration appear in the excitation rate whereas in the linear acceleration case there are only terms of even powers present. On the other hand, what makes the presentmore » case unique in comparison to the atom’s coupling to other fields that are previously studied is the appearance of the terms proportional to the seventh and ninth powers of acceleration in the mean rate of change of atomic energy which are absent in the scalar, electromagnetic and Dirac field cases. -- Highlights: •Circular Unruh effect for detector coupled to Rarita–Schwinger field. •Nonlinear coupling between the detector and the fields. •Detector in circular motion does not feel pure thermal bath. •Excitation rate contains terms of odd powers in acceleration.« less
Unruh effect under non-equilibrium conditions: oscillatory motion of an Unruh-DeWitt detector
NASA Astrophysics Data System (ADS)
Doukas, Jason; Lin, Shih-Yuin; Hu, B. L.; Mann, Robert B.
2013-11-01
The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.
Implied Dynamics Biases the Visual Perception of Velocity
La Scaleia, Barbara; Zago, Myrka; Moscatelli, Alessandro; Lacquaniti, Francesco; Viviani, Paolo
2014-01-01
We expand the anecdotic report by Johansson that back-and-forth linear harmonic motions appear uniform. Six experiments explore the role of shape and spatial orientation of the trajectory of a point-light target in the perceptual judgment of uniform motion. In Experiment 1, the target oscillated back-and-forth along a circular arc around an invisible pivot. The imaginary segment from the pivot to the midpoint of the trajectory could be oriented vertically downward (consistent with an upright pendulum), horizontally leftward, or vertically upward (upside-down). In Experiments 2 to 5, the target moved uni-directionally. The effect of suppressing the alternation of movement directions was tested with curvilinear (Experiment 2 and 3) or rectilinear (Experiment 4 and 5) paths. Experiment 6 replicated the upright condition of Experiment 1, but participants were asked to hold the gaze on a fixation point. When some features of the trajectory evoked the motion of either a simple pendulum or a mass-spring system, observers identified as uniform the kinematic profiles close to harmonic motion. The bias towards harmonic motion was most consistent in the upright orientation of Experiment 1 and 6. The bias disappeared when the stimuli were incompatible with both pendulum and mass-spring models (Experiments 3 to 5). The results are compatible with the hypothesis that the perception of dynamic stimuli is biased by the laws of motion obeyed by natural events, so that only natural motions appear uniform. PMID:24667578
Particle motion around magnetized black holes: Preston-Poisson space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konoplya, R. A.
We analyze the motion of massless and massive particles around black holes immersed in an asymptotically uniform magnetic field and surrounded by some mechanical structure, which provides the magnetic field. The space-time is described by the Preston-Poisson metric, which is the generalization of the well-known Ernst metric with a new parameter, tidal force, characterizing the surrounding structure. The Hamilton-Jacobi equations allow the separation of variables in the equatorial plane. The presence of a tidal force from the surroundings considerably changes the parameters of the test particle motion: it increases the radius of circular orbits of particles and increases the bindingmore » energy of massive particles going from a given circular orbit to the innermost stable orbit near the black hole. In addition, it increases the distance of the minimal approach, time delay, and bending angle for a ray of light propagating near the black hole.« less
Electron kinematics in a plasma focus
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1977-01-01
The results of numerical integrations of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields are presented. Fields due to two different models are studied: (1) a circular distribution of current filaments, and (2) a uniform current distribution; both the collapse and the current reduction phases are studied in each model. Decreasing current in the uniform current model yields 100 keV electrons accelerated toward the anode and, as for earlier ion computations, provides general agreement with experimental results.
Stochastic analysis of pitch angle scattering of charged particles by transverse magnetic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemons, Don S.; Liu Kaijun; Winske, Dan
2009-11-15
This paper describes a theory of the velocity space scattering of charged particles in a static magnetic field composed of a uniform background field and a sum of transverse, circularly polarized, magnetic waves. When that sum has many terms the autocorrelation time required for particle orbits to become effectively randomized is small compared with the time required for the particle velocity distribution to change significantly. In this regime the deterministic equations of motion can be transformed into stochastic differential equations of motion. The resulting stochastic velocity space scattering is described, in part, by a pitch angle diffusion rate that ismore » a function of initial pitch angle and properties of the wave spectrum. Numerical solutions of the deterministic equations of motion agree with the theory at all pitch angles, for wave energy densities up to and above the energy density of the uniform field, and for different wave spectral shapes.« less
TEACHING PHYSICS: Biking around a hollow sphere
NASA Astrophysics Data System (ADS)
Mak, Se-yuen; Yip, Din-yan
1999-11-01
The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.
Orbits of two electrons released from rest in a uniform transverse magnetic field
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2018-03-01
Two identical charged particles released from rest repel each other radially. A uniform perpendicular magnetic field will then cause their trajectories to curve into a flower petal pattern. The orbit of each particle is approximately circular with a long period for a strong magnetic field, whereas it becomes a figure-eight for a weak magnetic field with each lobe completed in a cyclotron period. For example, such radially bound motions arise for two-dimensional electron gases. The level of treatment is appropriate for an undergraduate calculus-based electromagnetism course.
Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation
NASA Astrophysics Data System (ADS)
Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.
2014-03-01
Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.
NASA Astrophysics Data System (ADS)
Kashina, M. A.; Alabuzhev, A. A.
2018-02-01
The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.
Tanaka, Yoshiyuki; Mizoe, Genki; Kawaguchi, Tomohiro
2015-01-01
This paper proposes a simple diagnostic methodology for checking the ability of proprioceptive/kinesthetic sensation by using a robotic device. The perception ability of virtual frictional forces is examined in operations of the robotic device by the hand at a uniform slow velocity along the virtual straight/circular path. Experimental results by healthy subjects demonstrate that percentage of correct answers for the designed perceptual tests changes in the motion direction as well as the arm configuration and the HFM (human force manipulability) measure. It can be supposed that the proposed methodology can be applied into the early detection of neuromuscular/neurological disorders.
NASA Astrophysics Data System (ADS)
Yoder, G.; Cook, J.
2010-12-01
Interactive lecture demonstrations1-6 (ILDs) are a powerful tool designed to help instructors bring state-of-the-art teaching pedagogies into the college-level introductory physics classroom. ILDs have been shown to improve students' conceptual understanding, and many examples have been created and published by Sokoloff and Thornton.6 We have used the new technology of Vernier's Wireless Dynamics Sensor System (WDSS)7 to develop three new ILDs for the first-semester introductory physics (calculus-based or algebra-based) classroom. These three are the Force Board, to demonstrate the vector nature of forces, addition of vectors, and the first condition of equilibrium; the Torque Board, to demonstrate torque and the second condition for equilibrium; and the Circular Motion Board, to discover the nature of the acceleration an object exhibiting uniform circular motion. With the WDSS, all three of these ILDs are easy to set up and use in any classroom or laboratory situation, and allow more instructors to utilize the technique of interactive lecture demonstrations.
Stereoscopic advantages for vection induced by radial, circular, and spiral optic flows.
Palmisano, Stephen; Summersby, Stephanie; Davies, Rodney G; Kim, Juno
2016-11-01
Although observer motions project different patterns of optic flow to our left and right eyes, there has been surprisingly little research into potential stereoscopic contributions to self-motion perception. This study investigated whether visually induced illusory self-motion (i.e., vection) is influenced by the addition of consistent stereoscopic information to radial, circular, and spiral (i.e., combined radial + circular) patterns of optic flow. Stereoscopic vection advantages were found for radial and spiral (but not circular) flows when monocular motion signals were strong. Under these conditions, stereoscopic benefits were greater for spiral flow than for radial flow. These effects can be explained by differences in the motion aftereffects generated by these displays, which suggest that the circular motion component in spiral flow selectively reduced adaptation to stereoscopic motion-in-depth. Stereoscopic vection advantages were not observed for circular flow when monocular motion signals were strong, but emerged when monocular motion signals were weakened. These findings show that stereoscopic information can contribute to visual self-motion perception in multiple ways.
NASA Astrophysics Data System (ADS)
Li, Wangyao; Sebastian, Kunnat
2018-07-01
In this paper we show how the classical result of a charged particle moving in a circle in the xy plane, when a uniform magnetic field is directed along the z-axis, can be derived from the Landau quantum theory using the coherent states of the two-dimensional isotropic harmonic oscillator in the xy plane. The coherent states in this case are the simultaneous eigen vectors of the annihilation operators a + and a ‑. We prove that the time-dependent coordinate space wave packets representing the time-dependent coherent states move in a circle with the cyclotron frequency {ω }c=\\tfrac{| q| B}{m} and with a radius given by the classical expression, but given in terms of the quantum mechanical expectation values. The expectation value of the energy of the particle and of the square of the radius of its circular are proportional to the square of the magnitude of the eigen value of a + in the coherent state, where as the x and y coordinates of the centre of the circle are proportional to the real and the imaginary parts of the eigen value of a ‑. The phase of the circular motion is the same as the phase of the complex eigen value of a +. So for a given energy of the particle or for a given radius of the circular orbit, there are an infinite number of circles which differ from each other by the x and y coordinates of the centre as well as the phase of the circular motion. The infinite degeneracy of the Landau levels is due to the invariance of the energy eigen values under spatial translations in the xy plane and rotations about the z-axis. We also show that as the magnitude of the eigen value of a + becomes much larger than one, the relative uncertainty or fluctuation in the energy and in the radius of the circular orbit becomes negligibly small as we expect for a classical state.
Low-energy Lorentz violation from high-energy modified dispersion in inertial and circular motion
NASA Astrophysics Data System (ADS)
Louko, Jorma; Upton, Samuel D.
2018-01-01
We consider an Unruh-DeWitt detector in inertial and circular motion in Minkowski spacetime of arbitrary dimension, coupled to a quantized scalar field with the Lorentz-violating dispersion relation ω =|k |f (|k |/M⋆) , where M⋆ is the Lorentz-breaking scale. Assuming that f dips below unity somewhere, we show that an inertial detector experiences large low-energy Lorentz violations in all spacetime dimensions greater than two, generalizing previous results in four dimensions. For a detector in circular motion, we show that a similar low-energy Lorentz violation occurs in three spacetime dimensions, and we lay the analytic groundwork for examining circular motion in all dimensions greater than three, generalizing previous work by Stargen, Kajuri and Sriramkumar in four dimensions. The circular motion results may be relevant for the prospects of observing the circular motion Unruh effect in analogue laboratory systems.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Kumar, V. K.; James, P. K.
1978-01-01
The equations of motion of an arbitrary flexible body in orbit were derived. The model includes the effects of gravity with all its higher harmonics. As a specific example, the motion of a long, slender, uniform beam in circular orbit was modelled. The example considers both the inplane and three dimensional motion of the beam in orbit. In the case of planar motion with only flexible vibrations, the pitch motion is not influenced by the elastic motion of the beam. For large values of the square of the ratio of the structural modal frequency to the orbital angular rate the elastic motion was decoupled from the pitch motion. However, for small values of the ratio and small amplitude pitch motion, the elastic motion was governed by a Hill's 3 term equation. Numerical simulation of the equation indicates the possibilities of instability for very low values of the square of the ratio of the modal frequency to the orbit angular rate. Also numerical simulations of the first order nonlinear equations of motion for a long flexible beam in orbit were performed. The effect of varying the initial conditions and the number of modes was demonstrated.
Physics Teacher Demonstrations for the Classroom
NASA Astrophysics Data System (ADS)
Murfee, Lee
2005-04-01
A sharing of physics and physics teaching demonstrations by Lee Murfee, a teacher of students learning physics and mathematics at Berkeley Preparatory School and the United States Military Academy for 21 years, and active member of the Florida Section of American Association of Physics Teachers (AAPT). Presentation is a fast paced array of physics and physics teaching demonstrations. Topics include who and what we teach, a successful science department philosophy, forces, acceleration, impulse, momentum, observations, pendulums, springs, friction, inclined plane, rotational motion, moment of inertia, teaching description of motion with data, equations and graphing, slope, uniform circular motion, derivatives, integrals, PASCO Data Studio sensor applications, students presenting to students, flashboards, sound, pressure, and sensitivity analysis in determining specific heat. Demonstrations apply to high school and college introductory physics teaching; handouts and some door prizes/gifts will be provided.
The conical pendulum: the tethered aeroplane
NASA Astrophysics Data System (ADS)
Mazza, Anthony P.; Metcalf, William E.; Cinson, Anthony D.; Lynch, John J.
2007-01-01
The introductory physics lab curriculum usually has one experiment on uniform circular motion (UCM). Physics departments typically have several variable-speed rotators in storage that, if they work, no longer work well. Replacing these rotators with new ones is costly, especially when they are only used once a year. This article describes how an inexpensive (ap10) tethered aeroplane, powered by a small electric motor, can be used to study UCM. The aeroplane is easy to see and entertaining to watch. For a given string length and air speed, a tethered aeroplane quickly finds a stable, horizontal, circular orbit. Using a digital video (DV) camcorder, VideoPoint Capture, QuickTime player, metre sticks and a stopwatch, data on the aeroplane's motion were obtained. The length of the string was varied from 120 to 340 cm while the air speed ranged from 200 to 480 cm s-1. For each string length and air speed, the period of the orbit and the diameter of the path were carefully measured. Theoretical values of path radii were then calculated using Newton's second law. The agreement between experiment and theory was usually better than 2%.
Circular motion geometry using minimal data.
Jiang, Guang; Quan, Long; Tsui, Hung-Tat
2004-06-01
Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.
Dynamic deformation analysis of light-weight mirror
NASA Astrophysics Data System (ADS)
Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei
2012-10-01
In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.
Philosophical aspects of modern cosmology
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2014-05-01
Cosmology is the attempt to understand in scientific terms the structure and evolution of the universe as a whole. This ambition has been with us since the ancient Greeks, even if the developments in modern cosmology have provided a picture of the universe dramatically different from that of Pythagoras, Plato and Aristotle. The cosmological thinking of these figures, e.g. the belief in uniform circular motion of the heavens, was closely related to their philosophical ideas, and it shaped the field of cosmology at least up to the times of Copernicus and Kepler.
Circular motion of bodies of revolution
NASA Technical Reports Server (NTRS)
Kaplan, Carl
1936-01-01
The circular motion for airship-like bodies has thus far been calculated only for a prolate ellipsoid of revolution (reference 1, p.133 and reference 2). In this paper, however, the circular motion of elongated bodies of revolution more nearly resembling airships will be investigated. The results will give the effect of rotation on the pressure distribution and thus yield some information as to the stresses set up in an airship in circular flight.
Energy buildup in coronal magnetic flux tubes
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Tajima, T.
1987-01-01
A time-dependent two-dimensional MHD simulation is used to study the response of the magnetic field in coronal loops to photospheric motion. From an initially uniform field, circular sections of the ends of the loop are slowly rotated to represent the photospheric motion. The evolution of the field and flow is characterized by three phases: (1) a phase of negligible kinetic energy where the current and field are predominantly parallel; (2) a phase where the field twist increases, the axial field at and near the axis increases, and the axial field decreases in two cylindrical regions away from the axis; and (3) a phase in which a significant portion of the field makes several rotations at large radii, with a corresponding reducton in the axial field to a few percent of the initial value.
Finding the Speed of a Bicycle in Circular Motion by Measuring the Lean Angle of the Bicycle
ERIC Educational Resources Information Center
Ben-Abu, Yuval; Wolfson, Ira; Yizhaq, Hezi
2018-01-01
We suggest an activity for measuring the speed of a bicycle going in circular motion by measuring the bicycle's lean angle. In this activity students will be able to feel the strength that is being activated on their bodies while they are moving in circular motion. They will also understand that it is impossible to ride in a circle without the…
Precession and circularization of elliptical space-tether motion
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Grosserode, Patrick
1993-01-01
In this paper, we present a simplified analytic model for predicting motion of long space tethers. The perturbation model developed here addresses skip rope motion, where each end of the tether is held in place and the middle of the tether swings with a motion similar to that of a child's skip rope. If the motion of the tether midpoint is elliptical rather than circular, precession of the ellipse complicates the procedures required to damp this motion. The simplified analytic model developed in this paper parametrically predicts the precession of elliptical skip rope motion. Furthermore, the model shows that elliptic skip rope motion will circularize when damping is present in the longitudinal direction. Compared with high-fidelity simulation results, this simplified model provides excellent predictions of these phenomena.
Uniform electric field generation in circular multi-well culture plates using polymeric inserts
NASA Astrophysics Data System (ADS)
Tsai, Hsieh-Fu; Cheng, Ji-Yen; Chang, Hui-Fang; Yamamoto, Tadashi; Shen, Amy Q.
2016-05-01
Applying uniform electric field (EF) in vitro in the physiological range has been achieved in rectangular shaped microchannels. However, in a circular-shaped device, it is difficult to create uniform EF from two electric potentials due to different electrical resistances originated from the length difference between the diameter of the circle and the length of any parallel chord of the bottom circular chamber where cells are cultured. To address this challenge, we develop a three-dimensional (3D) computer-aided designed (CAD) polymeric insert to create uniform EF in circular shaped multi-well culture plates. A uniform EF with a coefficient of variation (CV) of 1.2% in the 6-well plate can be generated with an effective stimulation area percentage of 69.5%. In particular, NIH/3T3 mouse embryonic fibroblast cells are used to validate the performance of the 3D designed Poly(methyl methacrylate) (PMMA) inserts in a circular-shaped 6-well plate. The CAD based inserts can be easily scaled up (i.e., 100 mm dishes) to further increase effective stimulation area percentages, and also be implemented in commercially available cultureware for a wide variety of EF-related research such as EF-cell interaction and tissue regeneration studies.
Estimating non-circular motions in barred galaxies using numerical N-body simulations
NASA Astrophysics Data System (ADS)
Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.
2015-12-01
The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.
43 CFR 12.927 - Allowable costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 CFR part 31, Contract Principles and Procedures or uniform cost accounting standards that comply... COST PRINCIPLES FOR ASSISTANCE PROGRAMS Uniform Administrative Requirements for Grants and Agreements... Circular A-87, Cost Principles for State and Local Governments. Non-profit organization OMB Circular A-122...
Calculation of flexoelectric deformations of finite-size bodies
NASA Astrophysics Data System (ADS)
Yurkov, A. S.
2015-03-01
The previously developed approximate theory of flexoelectric deformations of finite-size bodies has been considered as applied to three special cases: a uniformly polarized ball, a uniformly polarized circular rod, and a uniformly polarized thin circular plate of an isotropic material. For these cases simple algebraic formulas have been derived. In the case of the ball, the solution is compared with the previously obtained exact solution.
Finding the speed of a bicycle in circular motion by measuring the lean angle of the bicycle
NASA Astrophysics Data System (ADS)
Ben-Abu, Yuval; Wolfson, Ira; Yizhaq, Hezi
2018-05-01
We suggest an activity for measuring the speed of a bicycle going in circular motion by measuring the bicycle’s lean angle. In this activity students will be able to feel the strength that is being activated on their bodies while they are moving in circular motion. They will also understand that it is impossible to ride in a circle without the bicycle leaning at an angle, an action that is performed intuitively.
ERIC Educational Resources Information Center
Mahoney, Joyce; And Others
1988-01-01
Evaluates 10 courseware packages covering topics for introductory physics. Discusses the price; sub-topics; program type; interaction; possible hardware; time; calculus required; graphics; and comments on each program. Recommends two packages in projectile and circular motion, and three packages in statics and rotational dynamics. (YP)
Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y
2015-02-04
Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.
An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays
2006-03-01
Department of Defense, or the United States Government . AFIT-GE-ENG-06-58 An Airborne Radar Model For Non-Uniformly Spaced Antenna Arrays THESIS Presented...different circular arrays, one containing 24 elements and one containing 15 elements. The circular array per- formance is compared to that of a 6 × 6...model and compared to the radar model of [5, 6, 13]. The two models are mathematically equivalent when the uniformly spaced array is linear. The two
Demonstrating Circular Motion with a Model Satellite/Earth System
ERIC Educational Resources Information Center
Whittaker, Jeff
2008-01-01
A number of interesting demonstrations of circular and satellite motion have been described in this journal. This paper presents a variation of a centripetal force apparatus found in G.D. Freier and F.J. Anderson's "A Demonstration Handbook for Physics," which has been modified in order to demonstrate both centripetal force and satellite motion.…
Determination of the Static Friction Coefficient from Circular Motion
ERIC Educational Resources Information Center
Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.
2014-01-01
This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s[superscript-1], and the…
Determination of the static friction coefficient from circular motion
NASA Astrophysics Data System (ADS)
Molina-Bolívar, J. A.; Cabrerizo-Vílchez, M. A.
2014-07-01
This paper describes a physics laboratory exercise for determining the coefficient of static friction between two surfaces. The circular motion of a coin placed on the surface of a rotating turntable has been studied. For this purpose, the motion is recorded with a high-speed digital video camera recording at 240 frames s-1, and the videos are analyzed using Tracker video-analysis software, allowing the students to dynamically model the motion of the coin. The students have to obtain the static friction coefficient by comparing the centripetal and maximum static friction forces. The experiment only requires simple and inexpensive materials. The dynamics of circular motion and static friction forces are difficult for many students to understand. The proposed laboratory exercise addresses these topics, which are relevant to the physics curriculum.
NASA Astrophysics Data System (ADS)
Ashoori, A. R.; Vanini, S. A. Sadough; Salari, E.
2017-04-01
In the present paper, vibration behavior of size-dependent functionally graded (FG) circular microplates subjected to thermal loading are carried out in pre/post-buckling of bifurcation/limit-load instability for the first time. Two kinds of frequently used thermal loading, i.e., uniform temperature rise and heat conduction across the thickness direction are considered. Thermo-mechanical material properties of FG plate are supposed to vary smoothly and continuously throughout the thickness based on power law model. Modified couple stress theory is exploited to describe the size dependency of microplate. The nonlinear governing equations of motion and associated boundary conditions are extracted through generalized form of Hamilton's principle and von-Karman geometric nonlinearity for the vibration analysis of circular FG plates including size effects. Ritz finite element method is then employed to construct the matrix representation of governing equations which are solved by two different strategies including Newton-Raphson scheme and cylindrical arc-length method. Moreover, in the following a parametric study is accompanied to examine the effects of the several parameters such as material length scale parameter, temperature distributions, type of buckling, thickness to radius ratio, boundary conditions and power law index on the dimensionless frequency of post-buckled/snapped size-dependent FG plates in detail. It is found that the material length scale parameter and thermal loading have a significant effect on vibration characteristics of size-dependent circular FG plates.
Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard
2015-05-20
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.
Comparison of epicardial deformation in passive and active isolated rabbit hearts
NASA Astrophysics Data System (ADS)
Ho, Andrew; Tang, Liang; Chiang, Fu-Pen; Lin, Shien-Fong
2007-02-01
Mechanical deformation of isolated rabbit hearts through passive inflation techniques have been a viable form of replicating heart motion, but its relation to the heart's natural active contractions remain unclear. The mechanical properties of the myocardium may show diverse characteristics while in tension and compression. In this study, epicardial strain was measured with the assistance of computer-aided speckle interferometry (CASI)1. CASI tracks the movement of clusters of particles for measuring epicardial deformation. The heart was cannulated and perfused with Tyrode's solution. Silicon carbide particles were applied onto the myocardium to form random speckle pattern images while the heart was allowed to actively contract and stabilize. High resolution videos (1000x1000 pixels) of the left ventricle were taken with a complementary metal oxide semiconductor (CMOS) camera as the heart was actively contracting through electrical pacing at various cycle lengths between 250-800 ms. A latex balloon was then inserted into the left ventricle via left atrium and videos were taken as the balloon was repeatedly inflated and deflated at controlled volumes (1-3 ml/cycle). The videos were broken down into frames and analyzed through CASI. Active contractions resulted in non-uniform circular epicardial and uniaxial contractions at different stages of the motion. In contrast, the passive heart demonstrated very uniform expansion and contraction originating from the source of the latex balloon. The motion of the active heart caused variations in deformation, but in comparison to the passive heart, had a more enigmatic displacement field. The active heart demonstrated areas of large displacement and others with relatively no displacement. Application of CASI was able to successfully distinguish the motions between the active and passive hearts.
Circular, confined distribution for charged particle beams
Garnett, Robert W.; Dobelbower, M. Christian
1995-01-01
A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.
Circular, confined distribution for charged particle beams
Garnett, R.W.; Dobelbower, M.C.
1995-11-21
A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.
Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard
2015-01-01
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019
Articulated Multimedia Physics, Lesson 10, Circular Motion.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
As the tenth lesson of the Articulated Multimedia Physics Course, instructional materials relating to circular motion are presented in this study guide. The topics are concerned with instantaneous velocity, centripetal force, centrifugal force, and satellite paths. The content is arranged in scrambled form, and the use of matrix transparencies is…
NASA Astrophysics Data System (ADS)
Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori
2017-10-01
Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.
A computational model for reference-frame synthesis with applications to motion perception.
Clarke, Aaron M; Öğmen, Haluk; Herzog, Michael H
2016-09-01
As discovered by the Gestaltists, in particular by Duncker, we often perceive motion to be within a non-retinotopic reference frame. For example, the motion of a reflector on a bicycle appears to be circular, whereas, it traces out a cycloidal path with respect to external world coordinates. The reflector motion appears to be circular because the human brain subtracts the horizontal motion of the bicycle from the reflector motion. The bicycle serves as a reference frame for the reflector motion. Here, we present a general mathematical framework, based on vector fields, to explain non-retinotopic motion processing. Using four types of non-retinotopic motion paradigms, we show how the theory works in detail. For example, we show how non-retinotopic motion in the Ternus-Pikler display can be computed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Topology of the Relative Motion: Circular and Eccentric Reference Orbit Cases
NASA Technical Reports Server (NTRS)
FontdecabaiBaig, Jordi; Metris, Gilles; Exertier, Pierre
2007-01-01
This paper deals with the topology of the relative trajectories in flight formations. The purpose is to study the different types of relative trajectories, their degrees of freedom, and to give an adapted parameterization. The paper also deals with the research of local circular motions. Even if they exist only when the reference orbit is circular, we extrapolate initial conditions to the eccentric reference orbit case.This alternative approach is complementary with traditional approaches in terms of cartesian coordinates or differences of orbital elements.
NASA Technical Reports Server (NTRS)
Bond, Victor R.; Fraietta, Michael F.
1991-01-01
In 1961, Sperling linearized and regularized the differential equations of motion of the two-body problem by changing the independent variable from time to fictitious time by Sundman's transformation (r = dt/ds) and by embedding the two-body energy integral and the Laplace vector. In 1968, Burdet developed a perturbation theory which was uniformly valid for all types of orbits using a variation of parameters approach on the elements which appeared in Sperling's equations for the two-body solution. In 1973, Bond and Hanssen improved Burdet's set of differential equations by embedding the total energy (which is a constant when the potential function is explicitly dependent upon time.) The Jacobian constant was used as an element to replace the total energy in a reformulation of the differential equations of motion. In the process, another element which is proportional to a component of the angular momentum was introduced. Recently trajectories computed during numerical studies of atmospheric entry from circular orbits and low thrust beginning in near-circular orbits exhibited numerical instability when solved by the method of Bond and Gottlieb (1989) for long time intervals. It was found that this instability was due to secular terms which appear on the righthand sides of the differential equations of some of the elements. In this paper, this instability is removed by the introduction of another vector integral called the delta integral (which replaces the Laplace Vector) and another scalar integral which removes the secular terms. The introduction of these integrals requires a new derivation of the differential equations for most of the elements. For this rederivation, the Lagrange method of variation of parameters is used, making the development more concise. Numerical examples of this improvement are presented.
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
Magnetorotational Instability in Eccentric Disks
NASA Astrophysics Data System (ADS)
Chan, Chi-Ho; Krolik, Julian H.; Piran, Tsvi
2018-03-01
Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well. We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén speed {v}{{A}} along an orbit with mean motion n. We find two mode families, one with dominant magnetic components, the other with dominant velocity components. The former is unstable at {(1-e)}3 {f}2≲ 3, where f\\equiv {{kv}}{{A}}/n, and the latter at e ≳ 0.8. For f 2 ≲ 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly with increasing e; for f 2 ≳ 3, modes grow by parametric amplification, which is resonant for 0 < e ≪ 1. MRI growth and the attendant angular momentum and energy transport happen chiefly near pericenter, where orbital shear dominates magnetic tension.
2007-08-01
antiplane eigenstrain . ASME Journal of Applied Mechanics (In press, to appear in the September issue). [4] Wang, X., Pan, E., Roy, A. K, 2007. Three...problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies...strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nOliuniform. This phenomenon differs
Cesium injection system for negative ion duoplasmatrons
Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J
1978-01-01
Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.
Seeing Circles and Drawing Ellipses: When Sound Biases Reproduction of Visual Motion
Aramaki, Mitsuko; Bringoux, Lionel; Ystad, Sølvi; Kronland-Martinet, Richard
2016-01-01
The perception and production of biological movements is characterized by the 1/3 power law, a relation linking the curvature and the velocity of an intended action. In particular, motions are perceived and reproduced distorted when their kinematics deviate from this biological law. Whereas most studies dealing with this perceptual-motor relation focused on visual or kinaesthetic modalities in a unimodal context, in this paper we show that auditory dynamics strikingly biases visuomotor processes. Biologically consistent or inconsistent circular visual motions were used in combination with circular or elliptical auditory motions. Auditory motions were synthesized friction sounds mimicking those produced by the friction of the pen on a paper when someone is drawing. Sounds were presented diotically and the auditory motion velocity was evoked through the friction sound timbre variations without any spatial cues. Remarkably, when subjects were asked to reproduce circular visual motion while listening to sounds that evoked elliptical kinematics without seeing their hand, they drew elliptical shapes. Moreover, distortion induced by inconsistent elliptical kinematics in both visual and auditory modalities added up linearly. These results bring to light the substantial role of auditory dynamics in the visuo-motor coupling in a multisensory context. PMID:27119411
Measuring the circular motion of small objects using laser stroboscopic images.
Wang, Hairong; Fu, Y; Du, R
2008-01-01
Measuring the circular motion of a small object, including its displacement, speed, and acceleration, is a challenging task. This paper presents a new method for measuring repetitive and/or nonrepetitive, constant speed and/or variable speed circular motion using laser stroboscopic images. Under stroboscopic illumination, each image taken by an ordinary camera records multioutlines of an object in motion; hence, processing the stroboscopic image will be able to extract the motion information. We built an experiment apparatus consisting of a laser as the light source, a stereomicroscope to magnify the image, and a normal complementary metal oxide semiconductor camera to record the image. As the object is in motion, the stroboscopic illumination generates a speckle pattern on the object that can be recorded by the camera and analyzed by a computer. Experimental results indicate that the stroboscopic imaging is stable under various conditions. Moreover, the characteristics of the motion, including the displacement, the velocity, and the acceleration can be calculated based on the width of speckle marks, the illumination intensity, the duty cycle, and the sampling frequency. Compared with the popular high-speed camera method, the presented method may achieve the same measuring accuracy, but with much reduced cost and complexity.
Wiimote Experiments: Circular Motion
ERIC Educational Resources Information Center
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-01-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…
Wiimote Experiments: Circular Motion
NASA Astrophysics Data System (ADS)
Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary
2013-03-01
The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.
ERIC Educational Resources Information Center
Geigel, Joan; And Others
A self-paced program designed to integrate the use of computers and physics courseware into the regular classroom environment is offered for physics high school teachers in this module on projectile and circular motion. A diversity of instructional strategies including lectures, demonstrations, videotapes, computer simulations, laboratories, and…
Janus Colloids Actively Rotating on the Surface of Water.
Wang, Xiaolu; In, Martin; Blanc, Christophe; Würger, Alois; Nobili, Maurizio; Stocco, Antonio
2017-12-05
Biological or artificial microswimmers move performing trajectories of different kinds such as rectilinear, circular, or spiral ones. Here, we report on circular trajectories observed for active Janus colloids trapped at the air-water interface. Circular motion is due to asymmetric and nonuniform surface properties of the particles caused by fabrication. Motion persistence is enhanced by the partial wetted state of the Janus particles actively moving in two dimensions at the air-water interface. The slowing down of in-plane and out-of-plane rotational diffusions is described and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing; Hu, Jiawei; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn
We study the spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations by separately calculating the contribution to the excitation rate of vacuum fluctuations and a cross term which involves both vacuum fluctuations and radiation reaction, and demonstrate that although the spontaneous excitation for the atom in its ground state would occur in vacuum, such atoms in circular motion do not perceive a pure thermal radiation as their counterparts in linear acceleration do since the transition rates of the atom do not contain the Planckian factor characterizing a thermal bath. We also find that the contributionmore » of the cross term that plays the same role as that of radiation reaction in the scalar and electromagnetic fields cases differs for atoms in circular motion from those in linear acceleration. This suggests that the conclusion drawn for atoms coupled with the scalar and electromagnetic fields that the contribution of radiation reaction to the mean rate of change of atomic energy does not vary as the trajectory of the atom changes from linear acceleration to circular motion is not a general trait that applies to the Dirac field where the role of radiation reaction is played by the cross term. - Highlights: • Spontaneous excitation of a circularly accelerated atom is studied. • The atom interacts with the Dirac field through nonlinear coupling. • A cross term involving vacuum fluctuations and radiation reaction contributes. • The atom in circular motion does not perceive pure thermal radiation. • The contribution of the cross term changes as the atomic trajectory varies.« less
Circular, explosion-proof lamp provides uniform illumination
NASA Technical Reports Server (NTRS)
1966-01-01
Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.
Image contrast of diffraction-limited telescopes for circular incoherent sources of uniform radiance
NASA Technical Reports Server (NTRS)
Shackleford, W. L.
1980-01-01
A simple approximate formula is derived for the background intensity beyond the edge of the image of uniform incoherent circular light source relative to the irradiance near the center of the image. The analysis applies to diffraction-limited telescopes with or without central beam obscuration due to a secondary mirror. Scattering off optical surfaces is neglected. The analysis is expected to be most applicable to spaceborne IR telescopes, for which diffraction can be the major source of off-axis response.
The effect of transponder motion on the accuracy of the Calypso Electromagnetic localization system.
Murphy, Martin J; Eidens, Richard; Vertatschitsch, Edward; Wright, J Nelson
2008-09-01
To determine position and velocity-dependent effects in the overall accuracy of the Calypso Electromagnetic localization system, under conditions that emulate transponder motion during normal free breathing. Three localization transponders were mounted on a remote-controlled turntable that could move the transponders along a circular trajectory at speeds up to 3 cm/s. A stationary calibration established the coordinates of multiple points on each transponder's circular path. Position measurements taken while the transponders were in motion at a constant speed were then compared with the stationary coordinates. No statistically significant changes in the transponder positions in (x,y,z) were detected when the transponders were in motion. The accuracy of the localization system is unaffected by transponder motion.
Acoustic theory of axisymmetric multisectioned ducts. [reduction of turbofan engine noise
NASA Technical Reports Server (NTRS)
Zorumski, W. E.
1974-01-01
Equations are developed for the acoustic field in a duct system which is made up of a number of connected circular and annular ducts. These equations are suitable for finding the acoustic field inside of and radiated from an aircraft turbofan engine. Acoustic modes are used as generalized coordinates in order to develop a set of matrix equations for the acoustic field. Equations for these modes are given for circular and annular ducts with uniform flow. Modal source equations are derived for point acoustic sources. General equations for mode transmission and reflection are developed and detailed equations are derived for ducts with multiple sections of acoustic treatment and for ducts with circumferential splitter rings. The general theory is applied to the special case of a uniform area circular duct with multisection liners and it is shown that the mode reflection effects are proportional to differences of the acoustic admittances of adjacent liners. A numerical example is given which shows that multisection liners may provide greater noise suppression than uniform liners.
NASA Astrophysics Data System (ADS)
Yang, DeSen; Zhu, ZhongRui
2012-12-01
This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.
NASA Technical Reports Server (NTRS)
Yuan, C.
1982-01-01
Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a sipral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars.
Analytical treatment of particle motion in circularly polarized slab-mode wave fields
NASA Astrophysics Data System (ADS)
Schreiner, Cedric; Vainio, Rami; Spanier, Felix
2018-02-01
Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.
Genealogy and stability of periodic orbit families around uniformly rotating asteroids
NASA Astrophysics Data System (ADS)
Hou, Xiyun; Xin, Xiaosheng; Feng, Jinglang
2018-03-01
Resonance orbits around a uniformly rotating asteroid are studied from the approach of periodic orbits in this work. Three periodic families (denoted as I, II, and III in the paper) are fundamental in organizing the resonance families. For the planar case: (1) Genealogy and stability of Families I, II and the prograde resonance families are studied. For extremely irregular asteroids, family genealogy close to the asteroid is greatly distorted from that of the two body-problem (2BP), indicating that it is inappropriate to treat the orbital motions as perturbed Keplerian orbits. (2) Genealogy and stability of Family III are also studied. Stability of this family may be destroyed by the secular resonance between the orbital ascending node's precession and the asteroid's rotation. For the spatial case: (1) Genealogy of the near circular three-dimensional periodic families are studied. The genealogy may be broken apart by families of eccentric frozen orbits whose argument of perigee is ;frozen; in space. (2) The joint effects between the secular resonance and the orbital resonances may cause instability to three-dimensional orbital motion with orbit inclinations close to the critical values. Applying the general methodology to a case study - the asteroid Eros and also considering higher order non-spherical terms, some extraordinary orbits are found, such as the ones with orbital plane co-rotating with the asteroid, and the stable frozen orbits with argument of perigee librating around values different from 0°, 90°, 180°, 270°.
ECCENTRIC ROLLING OF POWDER AND BONDING AGENT INTO SPHERICAL PELLETS
Patton, G. Jr.; Zirinsky, S.
1961-06-01
A machine is described for pelletizing powder and bonding agent into spherical pellets of high density and uniform size. In this device, the material to be compacted is added to a flat circular pan which is moved in a circular orbit in a horizontal plane about an axis displaced from that of the pan's central axis without rotating the pan about its central axis. This movement causes the material contained therein to roll around the outside wall of the container and build up pellets of uniform shape, size, and density.
Episodes from the Early History of Astronomy
NASA Astrophysics Data System (ADS)
Aaboe, Asger
The author does not attempt to give a general survey of early astronomy; rather, he chooses to present a few "episodes" and treats them in detail. However, first he provides the necessary astronomical background in his descriptive account of what you can see when you look at the sky with the naked eye, unblinkered by received knowledge, but with curiosity and wit. Chapter 1 deals with the arithmetical astronomy of ancient Mesopotamia where astronomy first was made an exact science. Next are treated Greek geometrical models for planetary motion, culminating in Ptolemy's equant models in his Almagest. Ptolemy does not assign them absolute size in this work, but, as is shown here, if we scale the models properly, they will yield good values, not only of the directions to the planets, but of the distances to them, as well. Thus one can immediately find the dimensions of the Copernican System from parameters in the Almagest - we have evidence that Copernicus did just that. Further, Islamic astronomers' modifications of Ptolemy's models by devices using only uniform circular motion are discussed, as are Copernicus's adoption of some of them. finally, it is made precise which bothersome problem was resolved by the heliocentric hypothesis, as it was by the Tychonic arrangement. Next, the Ptolemaic System, the first cosmological scheme to incorporate quantitative models, is described as Ptolemy himself did it in a recenlty recovered passage from his Planetary Hypotheses. Here he does assign absolute size to his models in order to fit them into the snugly nested spherical shells that made up his universe. This much maligned system was, in fact, a harmonious construct that remained the basis for how educated people thought of their world for a millennium and a half. Finally, after a brief review of the geometry of the ellipse, the author gives an elementary derivation of Kepler's equation, and shows how Kepler solved it, and further proves that a planet moves very nearly uniformly around the empty focus of its orbit. Thus an eccentric circular orbit with the empty "focus" as the equant point gives a good approximation to Kepler motions. The result of combining two such motions is then shown to be close to Ptolemy's planetary model. This book provides a fascinating look at the night sky and the techniques that early civilizations, particularly Babylonian and Greek, used to model planetary motions¿Aaboe does a masterful job of covering a wide array of intriguing topics in a relatively short book, and any effort expended on reading it will be well rewarded¿ talented students at the high school age and college students who are interested in these topics would likely find this book very enjoyable and enriching¿Overall, the book is fascinating to read for several reasons, including its observational astronomical viewpoint, its rich historical and cultural content, and, of course, its exposition and explanation of ancient techniques of celestial predictions and modeling. ?MAA ONLINE
Code of Federal Regulations, 2010 CFR
2010-01-01
... Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved UNIFORM ADMINISTRATIVE... ORGANIZATIONS (OMB CIRCULAR A-110) Post Award Requirements Financial and Program Management § 215.22 Payment. (a... management systems that meet the standards for fund control and accountability as established in § 215.21...
22 CFR 214.42 - Uniform pay guidelines.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Uniform pay guidelines. 214.42 Section 214.42... Advisory Committees § 214.42 Uniform pay guidelines. (a) A.I.D. follows OMB/CSC guidelines in section 11 of OMB Circular A-63 in establishing rates of pay for advisory committee members, staffs, and consultants...
NASA Astrophysics Data System (ADS)
Lu, Wei-Tao; Zhang, Hua; Wang, Shun-Jin
2008-07-01
Symplectic algebraic dynamics algorithm (SADA) for ordinary differential equations is applied to solve numerically the circular restricted three-body problem (CR3BP) in dynamical astronomy for both stable motion and chaotic motion. The result is compared with those of Runge-Kutta algorithm and symplectic algorithm under the fourth order, which shows that SADA has higher accuracy than the others in the long-term calculations of the CR3BP.
Calibration of pavement response models for the mechanistic-empirical pavement design method
DOT National Transportation Integrated Search
2007-09-01
Most pavement design methodologies assume that the tire-pavement contact stress is equal to the tire inflation pressure and uniformly distributed over a circular contact area. However, tire-pavement contact area is not in a circular shape and the con...
From Schawlow to Newton: An educational return
NASA Astrophysics Data System (ADS)
Sathe, D.
Newton's laws of motion and his theory of gravitation are known for over 300 years. However, investigations of educators, from various countries and carried out in the last quarter of the 20t h century, show that the Aristotelian ideas keep persisting among students - in spite of learning thes e topics in schools and colleges. In the traditional examinations students do give answers in accordance with Newton's laws but in questionnaires of educators they ignore Newtonian laws unknowingly, and quite naturally give answers along the Aristotelian line of thought. Why do they give such contrasting answers? Should we take for granted that their understanding of Newtonian laws is satisfactory because of their correct answers in traditional exams, though not in questionnaires? Can these contrasting views affect their interest in physics? These are some questions that warrant our attention earnestly, as we gear up for the research and teaching in 21s t century. The author felt the need of focusing attention on the logical aspects of the subject, due to the global character of said problem. His decision was strengthened greatly, in late1970s, by the philosophy of Dennis Sciama and hence author's dedication of a letter to the editor to his memory, in the COSPAR Info. Bulletin /1/. Being a trained biochemist, author started looking for points, missed by the earlier educators - that means author started following the advice of Arthur Schawlow /2/ in late 1970s, though unknowingly. Sadly, author came to know of it after dedicating a lecture to the memory of Abdus Salam in a symposium in Samarkand, Uzbekistan. Therefore he is dedicating this presentation to the memory of Arthur Schawlow. According to the present author, the persistence of Aristotelian ideas and consequent contrasting performances of students are due to the logical conflicts between the basic concepts of physics itself. For example, the conflict between the treatment of uniform circular motion and the concept of work motivate students to ignore the centripetal force as choose the tangential force as the resultant force. This is how the said contrast becomes a logical barrier in the comprehension of uniform circular motion and related topics. More information of work of others will also be provided, for the sake of comparison with author's work - leading to some new directions to be explored in the 21s t century. References: 1. Sathe, Dileep V. [Dec. 2001] COSPAR Information Bulletin #152, p. 53. 2. Chu, Steven, [August 1999] Physics World, V: 12, N: 8, p. 49.
36 CFR 64.6 - Application procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Application procedures. State and local units of government applying for grants under this program will comply... Circulars 74-4 (Cost Principles Applicable to Grants and Contracts with State and Local Governments) and OMB Circular No. A-102 (Uniform Administrative Requirements for Grants-in-Aid to State and local governments...
36 CFR 64.6 - Application procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Application procedures. State and local units of government applying for grants under this program will comply... Circulars 74-4 (Cost Principles Applicable to Grants and Contracts with State and Local Governments) and OMB Circular No. A-102 (Uniform Administrative Requirements for Grants-in-Aid to State and local governments...
36 CFR 64.6 - Application procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Application procedures. State and local units of government applying for grants under this program will comply... Circulars 74-4 (Cost Principles Applicable to Grants and Contracts with State and Local Governments) and OMB Circular No. A-102 (Uniform Administrative Requirements for Grants-in-Aid to State and local governments...
36 CFR 64.6 - Application procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Application procedures. State and local units of government applying for grants under this program will comply... Circulars 74-4 (Cost Principles Applicable to Grants and Contracts with State and Local Governments) and OMB Circular No. A-102 (Uniform Administrative Requirements for Grants-in-Aid to State and local governments...
Relationship between selected orientation rest frame, circular vection and space motion sickness
NASA Technical Reports Server (NTRS)
Harm, D. L.; Parker, D. E.; Reschke, M. F.; Skinner, N. C.
1998-01-01
Space motion sickness (SMS) and spatial orientation and motion perception disturbances occur in 70-80% of astronauts. People select "rest frames" to create the subjective sense of spatial orientation. In microgravity, the astronaut's rest frame may be based on visual scene polarity cues and on the internal head and body z axis (vertical body axis). The data reported here address the following question: Can an astronaut's orientation rest frame be related and described by other variables including circular vection response latencies and space motion sickness? The astronaut's microgravity spatial orientation rest frames were determined from inflight and postflight verbal reports. Circular vection responses were elicited by rotating a virtual room continuously at 35 degrees/s in pitch, roll and yaw with respect to the astronaut. Latency to the onset of vection was recorded from the time the crew member opened their eyes to the onset of vection. The astronauts who used visual cues exhibited significantly shorter vection latencies than those who used internal z axis cues. A negative binomial regression model was used to represent the observed total SMS symptom scores for each subject for each flight day. Orientation reference type had a significant effect, resulting in an estimated three-fold increase in the expected motion sickness score on flight day 1 for astronauts who used visual cues. The results demonstrate meaningful classification of astronauts' rest frames and their relationships to sensitivity to circular vection and SMS. Thus, it may be possible to use vection latencies to predict SMS severity and duration.
Wave drift damping acting on multiple circular cylinders (model tests)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.
1995-12-31
The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less
Closed-Form 3-D Localization for Single Source in Uniform Circular Array with a Center Sensor
NASA Astrophysics Data System (ADS)
Bae, Eun-Hyon; Lee, Kyun-Kyung
A novel closed-form algorithm is presented for estimating the 3-D location (azimuth angle, elevation angle, and range) of a single source in a uniform circular array (UCA) with a center sensor. Based on the centrosymmetry of the UCA and noncircularity of the source, the proposed algorithm decouples and estimates the 2-D direction of arrival (DOA), i.e. azimuth and elevation angles, and then estimates the range of the source. Notwithstanding a low computational complexity, the proposed algorithm provides an estimation performance close to that of the benchmark estimator 3-D MUSIC.
Size-dependent quantum diffusion of Gd atoms within Fe nano-corrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Cao, R. X.; Miao, B. F.
2013-12-01
We systematically studied the size-dependent quantum diffusion of Gd atoms within Fe circular quantum corrals on Ag(111). By varying the size of the quantum corrals, different types of patterns are observed inside the corrals, including a single dot and circular orbits for the diffusion of Gd adatoms. In addition, the motion of the adatoms also forms circular-like orbits outside the corral. Via quantitative analysis, we confirm that the regions with adatoms' high visiting probability are consistent with the positions of the local electronic density-of-states maxima, both inside and outside the corrals within a < 0.2 nm offset. The results agreemore » well with kinetic Monte Carlo simulations that utilize the experimentally determined interaction between Gd and Fe circular corrals. These findings demonstrate that one can engineer adatom motion by controlling the size of the quantum corrals.« less
NASA Astrophysics Data System (ADS)
Lam, K. M.; Liu, P.; Hu, J. C.
2010-07-01
This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.
Inquiry style interactive virtual experiments: a case on circular motion
NASA Astrophysics Data System (ADS)
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-11-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop robust understandings of correct physics concepts, we have developed interactive virtual experiment simulations that have the unique feature of enabling students to experience force and motion via an analogue joystick, allowing them to feel the applied force and simultaneously see its effects. The simulations provide students learning experiences that integrate both scientific representations and low-level sensory cues such as haptic cues under a single setting. In this paper, we introduce a virtual experiment module on circular motion. A controlled study has been conducted to evaluate the impact of using this virtual experiment on students' learning of force and motion in the context of circular motion. The results show that the interactive virtual experiment method is preferred by students and is more effective in helping students grasp the physics concepts than the traditional education method such as problem-solving practices. Our research suggests that well-developed interactive virtual experiments can be useful tools in teaching difficult concepts in science.
Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urrutia, J. M.; Stenzel, R. L.
Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers aremore » shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon “eigenmodes” with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.« less
Covariant Uniform Acceleration
NASA Astrophysics Data System (ADS)
Friedman, Yaakov; Scarr, Tzvi
2013-04-01
We derive a 4D covariant Relativistic Dynamics Equation. This equation canonically extends the 3D relativistic dynamics equation , where F is the 3D force and p = m0γv is the 3D relativistic momentum. The standard 4D equation is only partially covariant. To achieve full Lorentz covariance, we replace the four-force F by a rank 2 antisymmetric tensor acting on the four-velocity. By taking this tensor to be constant, we obtain a covariant definition of uniformly accelerated motion. This solves a problem of Einstein and Planck. We compute explicit solutions for uniformly accelerated motion. The solutions are divided into four Lorentz-invariant types: null, linear, rotational, and general. For null acceleration, the worldline is cubic in the time. Linear acceleration covariantly extends 1D hyperbolic motion, while rotational acceleration covariantly extends pure rotational motion. We use Generalized Fermi-Walker transport to construct a uniformly accelerated family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the Weak Hypothesis of Locality, we obtain local spacetime transformations from a uniformly accelerated frame K' to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. We obtain velocity and acceleration transformations from a uniformly accelerated system K' to an inertial frame K. We introduce the 4D velocity, an adaptation of Horwitz and Piron s notion of "off-shell." We derive the general formula for the time dilation between accelerated clocks. We obtain a formula for the angular velocity of a uniformly accelerated object. Every rest point of K' is uniformly accelerated, and its acceleration is a function of the observer's acceleration and its position. We obtain an interpretation of the Lorentz-Abraham-Dirac equation as an acceleration transformation from K' to K.
NASA Technical Reports Server (NTRS)
Yuan, C.
1983-01-01
Under the influence of a spiral gravitational field, there should be differences among the mean motions of different types of objects with different dispersion velocities in a spiral galaxy. The old stars with high dispersion velocity should have essentially no mean motion normal to the galactic rotation. On the other hand, young objects and interstellar gas may be moving relative to the old stars at a velocity of a few kilometer per second in both the radial (galacto-centric), and circular directions, depending on the spiral model adopted. Such a velocity is usually referred as the systematic motion or the streaming motion. The conventionally adopted local standard of rest is indeed co-moving with the young objects of the solar vicinity. Therefore, it has a net systematic motion with respect to the circular motion of an equilibrium galactic model, defined by the old stars. Previously announced in STAR as N83-24443
Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk
NASA Astrophysics Data System (ADS)
Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua
2018-07-01
We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.
Stop Faking It! Finally Understanding Science So You Can Teach It. Force and Motion.
ERIC Educational Resources Information Center
Robertson, William C.
This book aims to develop an understanding of basic physics concepts among school teachers in grades 3-8. The concepts covered in this book include force, motion, gravity, and circular motion without intimidating detailed units and formulas. Chapters include: (1) "Newton's First One"; (2) "In Which We Describe Motion and Then Change…
Self-Paced Physics, Segment 18.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…
A new statistic for the analysis of circular data in gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Protheroe, R. J.
1985-01-01
A new statistic is proposed for the analysis of circular data. The statistic is designed specifically for situations where a test of uniformity is required which is powerful against alternatives in which a small fraction of the observations is grouped in a small range of directions, or phases.
2 CFR 215.26 - Non-Federal audits.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Non-Federal audits. 215.26 Section 215.26 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, AND OTHER NON-PROFIT ORGANIZATIONS (OMB CIRCULAR A-11...
Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model
NASA Astrophysics Data System (ADS)
Farajpour, A.; Mohammadi, M.; Shahidi, A. R.; Mahzoon, M.
2011-08-01
In this article, the buckling behavior of nanoscale circular plates under uniform radial compression is studied. Small-scale effect is taken into consideration. Using nonlocal elasticity theory the governing equations are derived for the circular single-layered graphene sheets (SLGS). Explicit expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate and mode numbers are investigated.
Shape and Displacement Fluctuations in Soft Vesicles Filled by Active Particles
Paoluzzi, Matteo; Di Leonardo, Roberto; Marchetti, M. Cristina; Angelani, Luca
2016-01-01
We investigate numerically the dynamics of shape and displacement fluctuations of two-dimensional flexible vesicles filled with active particles. At low concentration most of the active particles accumulate at the boundary of the vesicle where positive particle number fluctuations are amplified by trapping, leading to the formation of pinched spots of high density, curvature and pressure. At high concentration the active particles cover the vesicle boundary almost uniformly, resulting in fairly homogeneous pressure and curvature, and nearly circular vesicle shape. The change between polarized and spherical shapes is driven by the number of active particles. The center-of-mass of the vesicle performs a persistent random walk with a long time diffusivity that is strongly enhanced for elongated active particles due to orientational correlations in their direction of propulsive motion. In our model shape-shifting induces directional sensing and the cell spontaneously migrate along the polarization direction. PMID:27678166
NASA Technical Reports Server (NTRS)
Hizanidis, Kyriakos
1989-01-01
The relativistic motion of electrons in an intense electromagnetic wave packet propagating obliquely to a uniform magnetic field is analytically studied on the basis of the Fokker-Planck-Kolmogorov (FPK) approach. The wavepacket consists of circularly polarized electron-cyclotron waves. The dynamical system in question is shown to be reducible to one with three degrees of freedom. Within the framework of the Hamiltonian analysis the nonlinear diffusion tensor is derived, and it is shown that this tensor can be separated into zeroth-, first-, and second-order parts with respect to the relative bandwidth. The zeroth-order part describes diffusive acceleration along lines of constant unperturbed Hamiltonian. The second-order part, which corresponds to the longest time scale, describes diffusion across those lines. A possible transport theory is outlined on the basis of this separation of the time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, M.; Ganesh, R.
The dynamics of cylindrically trapped electron plasma has been investigated using a newly developed 2D Electrostatic PIC code that uses unapproximated, mass-included equations of motion for simulation. Exhaustive simulations, covering the entire range of Brillouin ratio, were performed for uniformly filled circular profiles in rigid rotor equilibrium. The same profiles were then loaded away from equilibrium with an initial value of rigid rotation frequency different from that required for radial force balance. Both these sets of simulations were performed for an initial zero-temperature or cold load of the plasma with no spread in either angular velocity or radial velocity. Themore » evolution of the off-equilibrium initial conditions to a steady state involve radial breathing of the profile that scales in amplitude and algebraic growth with Brillouin fraction. For higher Brillouin fractions, the growth of the breathing mode is followed by complex dynamics of spontaneous hollow density structures, excitation of poloidal modes, leading to a monotonically falling density profile.« less
Uniform circular array for structural health monitoring of composite structures
NASA Astrophysics Data System (ADS)
Stepinski, Tadeusz; Engholm, Marcus
2008-03-01
Phased array with all-azimuth angle coverage would be extremely useful in structural health monitoring (SHM) of planar structures. One method to achieve the 360° coverage is to use uniform circular arrays (UCAs). In this paper we present the concept of UCA adapted for SHM applications. We start from a brief presentation of UCA beamformers based on the principle of phase mode excitation. UCA performance is illustrated by the results of beamformer simulations performed for the narrowband and wideband ultrasonic signals. Preliminary experimental results obtained with UCA used for the reception of ultrasonic signals propagating in an aluminum plate are also presented.
1981-09-01
brittle and photoelastic coatings, gages, grids, holography and speckle to solve two- and three-dimensional problems in elasticity, plasticity...weight by 10%. The efficiency coefficient is increased from 0.59 to 0.95. Tests with 4 brittle material show an increase in strength of 20%. An ideal...particularly useful for components made with brittle materials, or components made with ductile materials subjected to fatigue. Ple I Fa 441 ( .t
A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section
NASA Astrophysics Data System (ADS)
Li, Pu; Zhou, Hongyue
2017-07-01
Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.
Visual perception of axes of head rotation
Arnoldussen, D. M.; Goossens, J.; van den Berg, A. V.
2013-01-01
Registration of ego-motion is important to accurately navigate through space. Movements of the head and eye relative to space are registered through the vestibular system and optical flow, respectively. Here, we address three questions concerning the visual registration of self-rotation. (1) Eye-in-head movements provide a link between the motion signals received by sensors in the moving eye and sensors in the moving head. How are these signals combined into an ego-rotation percept? We combined optic flow of simulated forward and rotational motion of the eye with different levels of eye-in-head rotation for a stationary head. We dissociated simulated gaze rotation and head rotation by different levels of eye-in-head pursuit. We found that perceived rotation matches simulated head- not gaze-rotation. This rejects a model for perceived self-rotation that relies on the rotation of the gaze line. Rather, eye-in-head signals serve to transform the optic flow's rotation information, that specifies rotation of the scene relative to the eye, into a rotation relative to the head. This suggests that transformed visual self-rotation signals may combine with vestibular signals. (2) Do transformed visual self-rotation signals reflect the arrangement of the semi-circular canals (SCC)? Previously, we found sub-regions within MST and V6+ that respond to the speed of the simulated head rotation. Here, we re-analyzed those Blood oxygenated level-dependent (BOLD) signals for the presence of a spatial dissociation related to the axes of visually simulated head rotation, such as have been found in sub-cortical regions of various animals. Contrary, we found a rather uniform BOLD response to simulated rotation along the three SCC axes. (3) We investigated if subject's sensitivity to the direction of the head rotation axis shows SCC axes specifcity. We found that sensitivity to head rotation is rather uniformly distributed, suggesting that in human cortex, visuo-vestibular integration is not arranged into the SCC frame. PMID:23919087
Project Physics Tests 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
Circular chemiresistors for microchemical sensors
Ho, Clifford K [Albuquerque, NM
2007-03-13
A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.
Uniform theory of the boundary diffraction wave
NASA Astrophysics Data System (ADS)
Umul, Yusuf Z.
2009-04-01
A uniform version of the potential function of the Maggi-Rubinowicz boundary diffraction wave theory is obtained by using the large argument expansion of the Fresnel integral. The derived function is obtained for the problem of diffraction of plane waves by a circular edge. The results are plotted numerically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, TK
Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizesmore » with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect.« less
A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber
NASA Astrophysics Data System (ADS)
Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.
2014-08-01
Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.
A novel approach of deposition for uniform diamond films on circular saw blades
NASA Astrophysics Data System (ADS)
Hongxiu, ZHOU; Boya, YUAN; Jilei, LYU; Nan, JIANG
2017-11-01
Uniform diamond films are highly desirable for cutting industries, due to their high performance and long lifetime used on cutting tools. Nevertheless, they are difficult to obtain on cutting tools with complicated shapes, greatly limiting the applications of diamond films. In this study, a novel approach of deposition for uniform diamond films is proposed, on circular saw blades made of cemented carbide using reflectors of brass sheets. Diamond films are deposited using hot filament chemical vapor deposition (HFCVD). A novel concave structure of brass sheets is designed and fabricated, improving the distribution of temperature field, and overcoming the disadvantages of the conventional HFCVD systems. This increases the energy efficiency of use without changing the structure and increasing the cost of HFCVD. The grains are refined and the intensities of diamond peaks are strengthened obviously, which is confirmed by scanning electron microscopy and Raman spectra respectively.
A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber.
Chiang, W Y; Wu, M H; Wu, K L; Lin, M H; Teng, H H; Tsai, Y F; Ko, C C; Yang, E C; Jiang, J A; Barnett, L R; Chu, K R
2014-08-01
Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.
NASA Astrophysics Data System (ADS)
Jain, Anoop; Ghose, Debasish
2018-01-01
This paper considers collective circular motion of multi-agent systems in which all the agents are required to traverse different circles or a common circle at a prescribed angular velocity. It is required to achieve these collective motions with the heading angles of the agents synchronized or balanced. In synchronization, the agents and their centroid have a common velocity direction, while in balancing, the movement of agents causes the location of the centroid to become stationary. The agents are initially considered to move at unit speed around individual circles at different angular velocities. It is assumed that the agents are subjected to limited communication constraints, and exchange relative information according to a time-invariant undirected graph. We present suitable feedback control laws for each of these motion coordination tasks by considering a second-order rotational dynamics of the agent. Simulations are given to illustrate the theoretical findings.
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo; Circi, Christian
2018-05-01
In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account.
NASA Astrophysics Data System (ADS)
Ndaw, Joseph D.; Faye, Andre; Maïga, Amadou S.
2017-05-01
Artificial neural networks (ANN)-based models are efficient ways of source localisation. However very large training sets are needed to precisely estimate two-dimensional Direction of arrival (2D-DOA) with ANN models. In this paper we present a fast artificial neural network approach for 2D-DOA estimation with reduced training sets sizes. We exploit the symmetry properties of Uniform Circular Arrays (UCA) to build two different datasets for elevation and azimuth angles. Linear Vector Quantisation (LVQ) neural networks are then sequentially trained on each dataset to separately estimate elevation and azimuth angles. A multilevel training process is applied to further reduce the training sets sizes.
Identification of Piecewise Linear Uniform Motion Blur
NASA Astrophysics Data System (ADS)
Patanukhom, Karn; Nishihara, Akinori
A motion blur identification scheme is proposed for nonlinear uniform motion blurs approximated by piecewise linear models which consist of more than one linear motion component. The proposed scheme includes three modules that are a motion direction estimator, a motion length estimator and a motion combination selector. In order to identify the motion directions, the proposed scheme is based on a trial restoration by using directional forward ramp motion blurs along different directions and an analysis of directional information via frequency domain by using a Radon transform. Autocorrelation functions of image derivatives along several directions are employed for estimation of the motion lengths. A proper motion combination is identified by analyzing local autocorrelation functions of non-flat component of trial restored results. Experimental examples of simulated and real world blurred images are given to demonstrate a promising performance of the proposed scheme.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... of the Treasury Circular, Public Debt Series No. 1-93] Sale and Issue of Marketable Book-Entry... CFR 356.20(b) of the Uniform Offering Circular for the Sale and Issue of Marketable Book-Entry... conditions for the sale and issuance by the Treasury to the public of marketable book-entry Treasury bills...
Particle Diffusion in Chaotic Magnetic Fields Generated by Asymmetric Current Configurations
NASA Astrophysics Data System (ADS)
Ram, A. K.; Dasgupta, B.
2008-12-01
The observed cross-field diffusion of charged particles in cosmic rays is assumed to be due to the chaotic nature of the interplanetary/intergalactic magnetic fields. Among the classic works on this subject have been those of Parker [1] and Jokipii [2]. Parker considered the passage of cosmic ray particles and energetic solar particles in a large scale magnetic field containing small scale irregularities. In the context of cosmic ray propagation, Jokipii considered a small fluctuating component, added on to a uniform magnetic field, to study the spatial transport of particles. In these studies the irregular component of the magnetic field is prescribed in an ad hoc fashion. In contrast, we consider asymmetric, nonlinear, steady-state magnetic fields, in three spatial dimensions, generated by currents flowing in circular loops and straight lines [3]. These magnetic fields are completely deterministic and, for certain range of parameters, chaotic. We will present analytical and numerical studies on the spatial characteristics of these fields. The motion of charged particles in the nonlinear and chaotic magnetic fields is determined using the Lorentz equation. A particle moving in a deterministic chaotic magnetic field superposed on a uniform background magnetic field is found to undergo spatial transport. This shows that chaotic magnetic fields generated by simple current configurations can produce cross-field diffusion. A detailed analysis of particle motion and diffusion along with application to space plasmas will be presented. [1] E.N. Parker, Planet. Space Sci. 13, 9 (1965). [2] J.R. Jokipii, Astrophys. J. 146, 480 (1966), and J.R. Jokipii, Astrophys. J. 149, 405 (1967). [3] A.K. Ram and B. Dasgupta, Eos Trans. AGU 87 (52), Fall Meet. Suppl. Abstract NG31B-1593 (2006); and Eos Trans. AGU 88 (52), Fall Meet. Suppl. Abstract NG21B-0522 (2007).
A Two-Phase Spherical Electric Machine for Generating Rotating Uniform Magnetic Fields
2007-06-01
data prior to processing in Matlab 65 5-6 Probe and sensor alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be...again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical geometry by the coordinates (r, ¢J, z), due to a circular loop of...alignment apparatus with GMW sensor removed. The circular tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
EFFECTS OF NON-CIRCULAR MOTIONS ON AZIMUTHAL COLOR GRADIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Garcia, Eric E.; Gonzalez-Lopezlira, Rosa A.; Gomez, Gilberto C., E-mail: emartinez@cida.v, E-mail: r.gonzalez@crya.unam.m, E-mail: g.gomez@crya.unam.m
2009-12-20
Assuming that density waves trigger star formation, and that young stars preserve the velocity components of the molecular gas where they are born, we analyze the effects that non-circular gas orbits have on color gradients across spiral arms. We try two approaches, one involving semianalytical solutions for spiral shocks, and another with magnetohydrodynamic (MHD) numerical simulation data. We find that, if non-circular motions are ignored, the comparison between observed color gradients and stellar population synthesis models would in principle yield pattern speed values that are systematically too high for regions inside corotation, with the difference between the real and themore » measured pattern speeds increasing with decreasing radius. On the other hand, image processing and pixel averaging result in systematically lower measured spiral pattern speed values, regardless of the kinematics of stellar orbits. The net effect is that roughly the correct pattern speeds are recovered, although the trend of higher measured OMEGA{sub p} at lower radii (as expected when non-circular motions exist but are neglected) should still be observed. We examine the MartInez-GarcIa et al. photometric data and confirm that this is indeed the case. The comparison of the size of the systematic pattern speed offset in the data with the predictions of the semianalytical and MHD models corroborates that spirals are more likely to end at outer Lindblad resonance, as these authors had already found.« less
NASA Astrophysics Data System (ADS)
Dönmez, Orhan
2004-09-01
In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.
NASA Astrophysics Data System (ADS)
Cronin, V. S.
2012-12-01
First generation ideas of the kinematic stability of triple junctions lead to the common belief that the geometry of ridge-ridge-ridge (RRR) triple junctions remains constant over time under conditions of symmetric spreading. Given constant relative motion between each plate pair -- that is, the pole of plate relative motion is fixed to both plates in each pair during finite motion, as assumed in many accounts of plate kinematics -- there would be no boundary mismatch at the triple junction and no apparent kinematic reason why a microplate might develop there. But if, in a given RRR triple junction, the finite motion of one plate as observed from the other plate is not circular (as is generally the case, given the three-plate problem of plate kinematics), the geometry of the ridges and the triple junction will vary with time (Cronin, 1992, Tectonophys 207, 287-301). To explore the possible consequences of non-circular finite motion between plates at an RRR triple junction, a simple model was coded based on the cycloid finite-motion model (e.g., Cronin, 1987, Geology 15, 1006-1009) using NNR-MORVEL56 velocities for individual plates (Argus et al., 2011, G3 12, doi: 10.1029/2011GC003751). Initial assumptions include a spherical Earth, symmetric spreading, and constant angular velocities during the modeled finite time interval. The assumed-constant angular velocity vectors constitute a reference frame for observing finite plate motion. Typical results are [1] that the triple junction migrates relative to a coordinate system fixed to the angular-velocity vectors, [2] ridge axes rotates relative to each other, and [3] a boundary mismatch develops at the synthetic triple junction that might result in microplate nucleation. In a model simulating the Galapagos triple junction between the Cocos, Nazca and Pacific plates whose initial state did not include the Galapagos microplate, the mismatch gap was as much as ~3.4 km during 3 Myr of model displacement (see figure). The centroid of the synthetic triple junction translates ~81 km toward azimuth ~352° in 3 Myr. Of course, the details will vary as different angular velocity vectors are used; however, modeling indicates that non-circular finite relative motion between adjacent plates generally results in boundary mismatches and rotation of ridge segments relative to each other at RRR triple junctions. Left: synthetic Galapagos triple junction at initial model time, without a microplate. Right: synthetic triple junction after 3 Myr displacement, illustrating the resulting boundary mismatch (gap) and rotated ridge axes.
NASA Technical Reports Server (NTRS)
Leissa, A. W.
1973-01-01
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.
Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls
NASA Technical Reports Server (NTRS)
Rostafinski, W.
1974-01-01
Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.
Circular array of stable atmospheric pressure microplasmas
NASA Astrophysics Data System (ADS)
Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.
2010-12-01
A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.
Orbital stability of compact three-planets systems.
NASA Astrophysics Data System (ADS)
Gavino, Sacha; Lissauer, Jack
2018-04-01
Recent discoveries unveiled a significant number of compact multi-planetary systems, where the adjacent planets orbits are much closer to those found in the Solar System. Studying the orbital stability of such compact systems provides information on how they form and how long they survive. We performed a general study of three Earth-like planets orbiting a Sun-mass star in circular and coplanar prograde orbits. The simulations were performed over a wide range of mutual Hill radii and were conducted for virtual times reaching at most 10 billion years. Both equally-spaced and unequally spaced planet systems are investigated. We recover the results of previous studies done for systems of planets spaced uniformly in mutual Hill radius and we investigate mean motion resonances and test chaos. We also study systems with different initial spacing between the adjacent inner pair of planets and the outer pair of planets and we displayed their lifetime on a grid at different resolution. Over 45000 simulations have been done. We then characterize isochrones for lifetime of systems of equivalent spacing. We find that the stability time increases significantly for values of mutual Hill radii beyond 8. We also study the affects of mean motion resonances, the degree of symmetry in the grid and test chaos.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder
NASA Astrophysics Data System (ADS)
Moshari, Shahab; Nikseresht, Amir Hossein; Mehryar, Reza
2014-06-01
With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.
Evolving geometrical heterogeneities of fault trace data
NASA Astrophysics Data System (ADS)
Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari
2010-08-01
We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.
Zhao, Guanjia; Nguyen, Nam-Trung; Pumera, Martin
2013-08-21
The motion directionality of self-propelled bubble-jet microengines is influenced by their velocities and/or viscosity of the media in which they move. The influence of the fuel concentration from 1 to 3 wt% of H2O2 in 0.5% steps and of the glycerol fraction from 0 to 64% in aqueous solution on the directionality of the microjets motions is examined systematically. We show that with decreasing Reynolds numbers of the system (that is, with increasing viscosity or decreasing velocity of the microjets), the directionality of the motion shifts from circular to linear motion. This translates to a shorter travel time towards a designated target for the microjets despite moving at a slower speed, since the movements are linear instead of circular. We show that such dependence of trajectories of microjets on Re is a general issue. This observation has a strong implication for the real-world applications of microjets.
NASA Astrophysics Data System (ADS)
Wilson, Alpha E.
2011-12-01
To jog around the periphery of a carousel at rest requires that the jogger experience a constant state of acceleration perpendicular to the direction of motion and directed toward the axis of rotation (centripetal). The jogger could achieve this centripetal acceleration by leaning inward, thereby using a horizontal weight component to provide the necessary centripetal force. There are two ordinary cases of circular motion involving the carousel that can be handled by the simple centripetal acceleration formula, where the joggers speed v is squared and then divided by the radius r of the path being followed (a = v2/r). One case would be as above, with the carousel at rest and the jogger moving on a circular path around it. The other case would be the jogger at rest on the carousel at a radial point r while it is moving with linear speed v. The situation can be made significantly more interesting and informative by letting the jogger be in motion while the carousel is in motion.
Restoration of non-uniform exposure motion blurred image
NASA Astrophysics Data System (ADS)
Luo, Yuanhong; Xu, Tingfa; Wang, Ningming; Liu, Feng
2014-11-01
Restoring motion-blurred image is the key technologies in the opto-electronic detection system. The imaging sensors such as CCD and infrared imaging sensor, which are mounted on the motion platforms, quickly move together with the platforms of high speed. As a result, the images become blur. The image degradation will cause great trouble for the succeeding jobs such as objects detection, target recognition and tracking. So the motion-blurred images must be restoration before detecting motion targets in the subsequent images. On the demand of the real weapon task, in order to deal with targets in the complex background, this dissertation uses the new theories in the field of image processing and computer vision to research the new technology of motion deblurring and motion detection. The principle content is as follows: 1) When the prior knowledge about degradation function is unknown, the uniform motion blurred images are restored. At first, the blur parameters, including the motion blur extent and direction of PSF(point spread function), are estimated individually in domain of logarithmic frequency. The direction of PSF is calculated by extracting the central light line of the spectrum, and the extent is computed by minimizing the correction between the fourier spectrum of the blurred image and a detecting function. Moreover, in order to remove the strip in the deblurred image, windows technique is employed in the algorithm, which makes the deblurred image clear. 2) According to the principle of infrared image non-uniform exposure, a new restoration model for infrared blurred images is developed. The fitting of infrared image non-uniform exposure curve is performed by experiment data. The blurred images are restored by the fitting curve.
A Circularly Arranged Sextuple Triptycene Gear Molecule.
Ube, Hitoshi; Yamada, Ryo; Ishida, Jun-Ichi; Sato, Hiroyasu; Shiro, Motoo; Shionoya, Mitsuhiko
2017-11-22
Herein we report the synthesis of a circularly arranged sextuple triptycene gear molecule, hexakis(10-dodecyloxy-9-triptycyl)ethynylbenzene, via the trimerization of the corresponding triyne with a cobalt catalyst. The six triptycene gears are closely engaged with each other as confirmed by single crystal X-ray structure analysis, and their motion in solution was established by NMR spectroscopy. Notably, when one bulky RuCp* complex was attached to one triptycene gear, the whole movement of the six gears was highly restricted via their mechanical engagement. Development of such a multigear molecule would provide a structural basis for molecular motion transmission systems with a switching function.
[Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].
Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei
2012-08-01
The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.
The Perception of the Higher Derivatives of Visual Motion.
1986-06-24
uniform velocity in one run with a target mov- ing with either an accelerating or decelerating motion on another run , and had to decide on which of...the two runs the motion was uniform. It was found that sensitivity to acceleration (as indicated by proportion of correct dis- criminations) decreased...20 subjects had 8 In an experiment by Runeson (1975), one target (the stan- tracking runs with each of the three tvpes of moving target. The third
19. Detail of base of revolving lens assembly, showing bottom ...
19. Detail of base of revolving lens assembly, showing bottom of lamp at center and brass tens framework at edges of circular platform. Mercury float bearing lies in circular well just beneath lens platform. (Blurred due to lens motion.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI
Nonlinear Drift-Kinetic Equation in the Presence of a Circularly Polarized Wave
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Krivorutsky, E. N.; Six, N. Frank (Technical Monitor)
2002-01-01
Equations of the single particle motion and nonlinear kinetic equation for plasma in the presence of a circularly polarized wave of arbitrary frequency in the drift approximation are presented. The nonstationarity and inhomogeneity of the plasma-wave system are taken into account. The time dependent part of the ponderomotive force is discussed.
A counter-rotating vortex pair in inviscid fluid
NASA Astrophysics Data System (ADS)
Habibah, Ummu; Fukumoto, Yasuhide
2017-12-01
We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.
Artificial equilibrium points for a generalized sail in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Aliasi, Generoso; Mengali, Giovanni; Quarta, Alessandro A.
2012-10-01
Different types of propulsion systems with continuous and purely radial thrust, whose modulus depends on the distance from a massive body, may be conveniently described within a single mathematical model by means of the concept of generalized sail. This paper discusses the existence and stability of artificial equilibrium points maintained by a generalized sail within an elliptic restricted three-body problem. Similar to the classical case in the absence of thrust, a generalized sail guarantees the existence of equilibrium points belonging only to the orbital plane of the two primaries. The geometrical loci of existing artificial equilibrium points are shown to coincide with those obtained for the circular three body problem when a non-uniformly rotating and pulsating coordinate system is chosen to describe the spacecraft motion. However, the generalized sail has to provide a periodically variable acceleration to maintain a given artificial equilibrium point. A linear stability analysis of the artificial equilibrium points is provided by means of the Floquet theory.
NASA Technical Reports Server (NTRS)
Collins, T. P.; Witmer, E. A.
1973-01-01
An approximate analysis, termed the Collision Imparted Velocity Method (CIVM), was employed for predicting the transient structural responses of containment rings or deflector rings which are subjected to impact from turbojet-engine rotor burst fragments. These 2-d structural rings may be initially circular or arbitrarily curved and may have either uniform or variable thickness; elastic, strain hardening, and strain rate material properties are accommodated. This approximate analysis utilizes kinetic energy and momentum conservation relations in order to predict the after-impact velocities of the fragment and the impacted ring segment. This information is then used in conjunction with a finite element structural response computation code to predict the transient, large deflection responses of the ring. Similarly, the equations of motion for each fragment are solved in small steps in time. Also, some comparisons of predictions with experimental data for fragment-impacted free containment rings are presented.
Boundary Layer Theory. Part 2; Turbulent Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one oberves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.
Teaching classical mechanics using smartphones
NASA Astrophysics Data System (ADS)
Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad
2013-09-01
A number of articles published in this column have dealt with topics in classical mechanics. This note describes some additional examples employing a smartphone and the new software iMecaProf.4 Steve Jobs presented the iPhone as "perfect for gaming."5 Thanks to its microsensors connected in real time to the numerical world, physics teachers could add that smartphones are "perfect for teaching science." The software iMecaProf displays in real time the measured data on a screen. The visual representation is built upon the formalism of classical mechanics. iMecaProf receives data 100 times a second from iPhone sensors through a Wi-Fi connection using the application Sensor Data.6 Data are the three components of the acceleration vector in the smartphone frame and smartphone's orientation through three angles (yaw, pitch, and roll). For circular motion (uniform or not), iMecaProf uses independent measurements of the rotation angle θ, the angular speed dθ/dt, and the angular acceleration d2θ/dt2.
NASA Astrophysics Data System (ADS)
Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus
2014-11-01
The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.
Horizontally rotated cell culture system with a coaxial tubular oxygenator
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)
1991-01-01
The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.
Demonstrating the Direction of Angular Velocity in Circular Motion
ERIC Educational Resources Information Center
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-01-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics…
Whistler mode refraction in highly nonuniform magnetic fields
NASA Astrophysics Data System (ADS)
Urrutia, J. M.; Stenzel, R.
2016-12-01
In a large laboratory plasma the propagation of whistler modes is measured in highly nonuniform magnetic fields created by a current-carrying wires. Ray tracing is not applicable since the wavelength and gradient scale length are comparable. The waves are excited with a loop antenna near the wire. The antenna launches an m=1 helicon mode in a uniform plasma. The total magnetic field consists of a weak uniform background field and a nearly circular field of a straight wire across the background field. A circular loop produces 3D null points and a 2D null line. The whistler wave propagation will be shown. It is relevant to whistler mode propagation in space plasmas near magnetic null-points, small flux ropes, lunar crustal magnetic fields and active wave injection experiments.
Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion
NASA Astrophysics Data System (ADS)
Poljak, Nikola
2016-11-01
The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.
Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map
NASA Astrophysics Data System (ADS)
Krueger, Wesley
2007-10-01
Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.
ERIC Educational Resources Information Center
Brunkan, Melissa C.
2016-01-01
The purpose of this study was to validate previous research that suggests using movement in conjunction with singing tasks can affect intonation and perception of the task. Singers (N = 49) were video and audio recorded, using a motion capture system, while singing a phrase from a familiar song, first with no motion, and then while doing a low,…
NASA Astrophysics Data System (ADS)
Speetjens, M. F. M.; Meleshko, V. V.; van Heijst, G. J. F.
2014-06-01
The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N\\leqslant 7. Confinement in a circular domain tightens the stability conditions to N\\leqslant 6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. Dedicated to the memory of Slava Meleshko, a dear friend and inspiring colleague.
The Milky Way's Circular Velocity Curve and Its Constraint on the Galactic Mass with RR Lyrae Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablimit, Iminhaji; Zhao, Gang, E-mail: iminhaji@nao.cas.cn, E-mail: gzhao@nao.cas.cn
We present a sample of 1148 ab-type RR Lyrae (RRLab) variables identified from Catalina Surveys Data Release 1, combined with SDSS DR8 and LAMOST DR4 spectral data. We first use a large sample of 860 Galactic halo RRLab stars and derive the circular velocity distributions for the stellar halo. With the precise distances and carefully determined radial velocities (the center-of-mass radial velocities) and by considering the pulsation of the RRLab stars in our sample, we can obtain a reliable and comparable stellar halo circular velocity curve. We follow two different prescriptions for the velocity anisotropy parameter β in the Jeansmore » equation to study the circular velocity curve and mass profile. Additionally, we test two different solar peculiar motions in our calculation. The best result we obtained with the adopted solar peculiar motion 1 of ( U , V , W ) = (11.1, 12, 7.2) km s{sup −1} is that the enclosed mass of the Milky Way within 50 kpc is (3.75 ± 1.33) × 10{sup 11} M {sub ⊙} based on β = 0 and the circular velocity 180 ± 31.92 (km s{sup −1}) at 50 kpc. This result is consistent with dynamical model results, and it is also comparable to the results of previous similar works.« less
The structure and stability of orbits in Hoag-like ring systems
NASA Astrophysics Data System (ADS)
Bannikova, Elena Yu
2018-05-01
Ring galaxies are amazing objects exemplified by the famous case of Hoag's Object. Here the mass of the central galaxy may be comparable to the mass of the ring, making it a difficult case to model mechanically. In a previous paper, it was shown that the outer potential of a torus (ring) can be represented with good accuracy by the potential of a massive circle with the same mass. This approach allows us to simplify the problem of the particle motion in the gravitational field of a torus associated with a central mass by replacing the torus with a massive circle. In such a system, there is a circle of unstable equilibrium that we call `Lagrangian circle' (LC). Stable circular orbits exist only in some region limited by the last possible circular orbit related to the disappearance of the extrema of the effective potential. We call this orbit `the outermost stable circular orbit' (OSCO) by analogy with the innermost stable circular orbit (ISCO) in the relativistic case of a black hole. Under these conditions, there is a region between OSCO and LC where the circular motion is not possible due to the competition between the gravitational forces by the central mass and the ring. As a result, a gap in the matter distribution can form in Hoag-like system with massive rings.
Cyclic and Coherent States in Flocks with Topological Distance
NASA Astrophysics Data System (ADS)
Bhattacherjee, Biplab; Bhattacharya, Kunal; Manna, Subhrangshu
2014-01-01
A simple model of the two dimensional collective motion of a group of mobile agents have been studied. Like birds, these agents travel in open free space where each of them interacts with the first n neighbors determined by the topological distance with a free boundary condition. Using the same prescription for interactions used in the Vicsek model with scalar noise it has been observed that the flock, in absence of the noise, arrives at a number of interesting stationary states. One of the two most prominent states is the `single sink state' where the entire flock travels along the same direction maintaining perfect cohesion and coherence. The other state is the `cyclic state' where every individual agent executes a uniform circular motion, and the correlation among the agents guarantees that the entire flock executes a pulsating dynamics i.e., expands and contracts periodically between a minimum and a maximum size of the flock. We have studied another limiting situation when refreshing rate of the interaction zone is the fastest. In this case the entire flock gets fragmented into smaller clusters of different sizes. On introduction of scalar noise a crossover is observed when the agents cross over from a ballistic motion to a diffusive motion. Expectedly the crossover time is dependent on the strength of the noise η and diverges as η → 0. An even more simpler version of this model has been studied by suppressing the translational degrees of freedom of the agents but retaining their angular motion. Here agents are the spins, placed at the sites of a square lattice with periodic boundary condition. Every spin interacts with its n = 2, 3 or 4 nearest neighbors. In the stationary state the entire spin pattern moves as a whole when interactions are anisotropic with n = 2 and 3; but it is completely frozen when the interaction is isotropic with n=4$. These spin configu
Twisting/Swirling Motions during a Prominence Eruption as Seen from SDO/AIA
NASA Astrophysics Data System (ADS)
Pant, V.; Datta, A.; Banerjee, D.; Chandrashekhar, K.; Ray, S.
2018-06-01
A quiescent prominence was observed at the northwest limb of the Sun using different channels of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. We report and analyze twisting/swirling motions during and after the prominence eruption. We segregate the observed rotational motions into small and large scales. Small-scale rotational motions manifest in the barbs of the prominence, while the large-scale rotation manifests as the roll motion during the prominence eruption. We noticed that both footpoints of the prominence rotate in the counterclockwise direction. We propose that a similar sense of rotation in both footpoints leads to a prominence eruption. The prominence erupted asymmetrically near the southern footpoint, which may be due to an uneven mass distribution and location of the cavity near the southern footpoint. Furthermore, we study the swirling motion of the plasma along different circular paths in the cavity of the prominence after the prominence eruption. The rotational velocities of the plasma moving along different circular paths are estimated to be ∼9–40 km s‑1. These swirling motions can be explained in terms of twisted magnetic field lines in the prominence cavity. Finally we observe the twist built up in the prominence, being carried away by the coronal mass ejection, as seen in the Large Angle Spectrometric Coronagraph on board the Solar and Heliospheric Observatory.
Stress and strain concentration at a circular hole in an infinite plate
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z
1950-01-01
The theory of elasticity shows that the maximum stress at a circular hole in an infinite plate in tension is three times the applied stress when the material remains elastic. The effect of plasticity of the material is to lower this ratio. This paper considers the theoretical problem of the stress distribution in an infinitely large sheet with a circular hole for the general case where the material may have any stress-strain curve. The plate is assumed to be under uniform tension at a large distance from the hole. The material is taken to be isotropic and incompressible. (author)
Method for changing the cross section of a laser beam
Sweatt, W.C.; Seppala, L.
1995-12-05
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser. 4 figs.
Method for changing the cross section of a laser beam
Sweatt, William C.; Seppala, Lynn
1995-01-01
A technique is disclosed herein in which a circular optical beam, for example a copper vapor laser (CVL) beam, is converted to a beam having a profile other than circular, e.g. square or triangular. This is accomplished by utilizing a single optical mirror having a reflecting surface designed in accordance with a specifically derived formula in order to make the necessary transformation, without any substantial light loss and without changing substantially the intensity profile of the circular beam which has a substantially uniform intensity profile. In this way, the output beam can be readily directed into the dye cell of a dye laser.
HDR video synthesis for vision systems in dynamic scenes
NASA Astrophysics Data System (ADS)
Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried
2016-09-01
High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.
Rotating Magnetic Structures Associated with a Quasi-circular Ribbon Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haidong; Jiang, Yunchun; Yang, Jiayan
We present the detection of a small eruption and the associated quasi-circular ribbon flare during the emergence of a bipole occurring on 2015 February 3. Under a fan dome, a sigmoid was rooted in a single magnetic bipole, which was encircled by negative polarity. The nonlinear force-free field extrapolation shows the presence of twisted field lines, which can represent a sigmoid structure. The rotation of the magnetic bipole may cause the twisting of magnetic field lines. An initial brightening appeared at one of the footpoints of the sigmoid, where the positive polarity slides toward a nearby negative polarity field region.more » The sigmoid displayed an ascending motion and then interacted intensively with the spine-like field. This type of null point reconnection in corona led to a violent blowout jet, and a quasi-circular flare ribbon was also produced. The magnetic emergence and rotational motion are the main contributors to the energy buildup for the flare, while the cancellation and collision might act as a trigger.« less
NASA Astrophysics Data System (ADS)
ZHU, C. S.; ROBB, D. A.; EWINS, D. J.
2002-05-01
The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.
Projectile Motion in the "Language" of Orbital Motion
ERIC Educational Resources Information Center
Zurcher, Ulrich
2011-01-01
We consider the orbit of projectiles launched with arbitrary speeds from the Earth's surface. This is a generalization of Newton's discussion about the transition from parabolic to circular orbits, when the launch speed approaches the value [image omitted]. We find the range for arbitrary launch speeds and angles, and calculate the eccentricity of…
Self-similar motion of a Nambu-Goto string
NASA Astrophysics Data System (ADS)
Igata, Takahisa; Houri, Tsuyoshi; Harada, Tomohiro
2016-09-01
We study the self-similar motion of a string in a self-similar spacetime by introducing the concept of a self-similar string, which is defined as the world sheet to which a homothetic vector field is tangent. It is shown that in Nambu-Goto theory, the equations of motion for a self-similar string reduce to those for a particle. Moreover, under certain conditions such as the hypersurface orthogonality of the homothetic vector field, the equations of motion for a self-similar string simplify to the geodesic equations on a (pseudo)Riemannian space. As a concrete example, we investigate a self-similar Nambu-Goto string in a spatially flat Friedmann-Lemaître-Robertson-Walker expanding universe with self-similarity and obtain solutions of open and closed strings, which have various nontrivial configurations depending on the rate of the cosmic expansion. For instance, we obtain a circular solution that evolves linearly in the cosmic time while keeping its configuration by the balance between the effects of the cosmic expansion and string tension. We also show the instability for linear radial perturbation of the circular solutions.
Two Episodes of Magnetic Reconnections during a Confined Circular-ribbon Flare
NASA Astrophysics Data System (ADS)
Li, Ting; Yang, Shuhong; Zhang, Qingmin; Hou, Yijun; Zhang, Jun
2018-06-01
We analyze a unique event with an M1.8 confined circular-ribbon flare on 2016 February 13, with successive formations of two circular ribbons at the same location. The flare had two distinct phases of UV and extreme ultraviolet emissions with an interval of about 270 s, of which the second peak was energetically more important. The first episode was accompanied by the eruption of a mini-filament and the fast elongation motion of a thin circular ribbon (CR1) along the counterclockwise direction at a speed of about 220 km s‑1. Two elongated spine-related ribbons were also observed, with the inner ribbon co-temporal with CR1 and the remote brightenings forming ∼20 s later. In the second episode, another mini-filament erupted and formed a blowout jet. The second circular ribbon and two spine-related ribbons showed similar elongation motions with that during the first episode. The extrapolated three-dimensional coronal magnetic fields reveal the existence of a fan-spine topology, together with a quasi-separatrix layer (QSL) halo surrounding the fan plane and another QSL structure outlining the inner spine. We suggest that continuous null-point reconnection between the filament and ambient open field occurs in each episode, leading to the sequential opening of the filament and significant shifts of the fan plane footprint. For the first time, we propose a compound eruption model of circular-ribbon flares consisting of two sets of successively formed ribbons and eruptions of multiple filaments in a fan-spine-type magnetic configuration.
Resonant absorption and amplification of circularly-polarized waves in inhomogeneous chiral media.
Kim, Seulong; Kim, Kihong
2016-01-25
It has been found that in the media where the dielectric permittivity ε or the magnetic permeability μ is near zero and in transition metamaterials where ε or μ changes from positive to negative values, there occur a strong absorption or amplification of the electromagnetic wave energy in the presence of an infinitesimally small damping or gain and a strong enhancement of the electromagnetic fields. We attribute these phenomena to the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations and its inverse process. In this paper, we study analogous phenomena occurring in chiral media theoretically using the invariant imbedding method. In uniform isotropic chiral media, right-circularly-polarized and left-circularly-polarized waves are the eigen-modes of propagation with different effective refractive indices n(+) and n(-), whereas in the chiral media with a nonuniform impedance variation, they are no longer the eigenmodes and are coupled to each other. We find that both in uniform chiral slabs where either n(+) or n(-) is near zero and in chiral transition metamaterials where n(+) or n(-) changes from positive to negative values, a strong absorption or amplification of circularly-polarized waves occurs in the presence of an infinitesimally small damping or gain. We present detailed calculations of the mode conversion coefficient, which measures the fraction of the electromagnetic wave energy absorbed into the medium, for various configurations of ε and μ with an emphasis on the influence of a nonuniform impedance. We propose possible applications of these phenomena to linear and nonlinear optical devices that react selectively to the helicity of the circular polarization.
Mechanism test bed. Flexible body model report
NASA Technical Reports Server (NTRS)
Compton, Jimmy
1991-01-01
The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.
24 CFR 511.72 - Applicability of uniform Federal administrative requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT... and Federally recognized Indian Tribal Governments,” 1 OMB Circular A-128, “Audits of State and Local...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milant'ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru
2013-04-15
Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive forcemore » in the cases of circularly and linearly polarized waves has been confirmed.« less
Oscillations of a Simple Pendulum with Extremely Large Amplitudes
ERIC Educational Resources Information Center
Butikov, Eugene I.
2012-01-01
Large oscillations of a simple rigid pendulum with amplitudes close to 180[degrees] are treated on the basis of a physically justified approach in which the cycle of oscillation is divided into several stages. The major part of the almost closed circular path of the pendulum is approximated by the limiting motion, while the motion in the vicinity…
LWIR pupil imaging and longer-term calibration stability
NASA Astrophysics Data System (ADS)
LeVan, Paul D.; Sakoglu, Ünal
2016-09-01
A previous paper described LWIR pupil imaging, and an improved understanding of the behavior of this type of sensor for which the high-sensitivity focal plane array (FPA) operated at higher flux levels includes a reversal in signal integration polarity. We have since considered a candidate methodology for efficient, long-term calibration stability that exploits the following two properties of pupil imaging: (1) a fixed pupil position on the FPA, and (2) signal levels from the scene imposed on significant but fixed LWIR background levels. These two properties serve to keep each pixel operating over a limited dynamic range that corresponds to its location in the pupil and to the signal levels generated at this location by the lower and upper calibration flux levels. Exploiting this property for which each pixel of the Pupil Imager operates over its limited dynamic range, the signal polarity reversal between low and high flux pixels, which occurs for a circular region of pixels near the upper edges of the pupil illumination profile, can be rectified to unipolar integration with a two-level non-uniformity correction (NUC). Images corrected real-time with standard non-uniformity correction (NUC) techniques, are still subject to longer-term drifts in pixel offsets between recalibrations. Long-term calibration stability might then be achieved using either a scene-based non-uniformity correction approach, or with periodic repointing for off-source background estimation and subtraction. Either approach requires dithering of the field of view, by sub-pixel amounts for the first method, or by large off-source motions outside the 0.38 milliradian FOV for the latter method. We report on the results of investigations along both these lines.
NASA Astrophysics Data System (ADS)
Uddin, Salah; Mohamad, Mahathir; Khalid, Kamil; Abdulhammed, Mohammed; Saifullah Rusiman, Mohd; Che – Him, Norziha; Roslan, Rozaini
2018-04-01
In this paper, the flow of blood mixed with magnetic particles subjected to uniform transverse magnetic field and pressure gradient in an axisymmetric circular cylinder is studied by using a new trend of fractional derivative without singular kernel. The governing equations are fractional partial differential equations derived based on the Caputo-Fabrizio time-fractional derivatives NFDt. The current result agrees considerably well with that of the previous Caputo fractional derivatives UFDt.
Impulse Response Shaping for Ultra Wide Band SAR in a Circular Flight Path
NASA Technical Reports Server (NTRS)
Jin, Michael Y.
1996-01-01
An ultra wide band SAR (synthetic aperture radar) has potential applications on imaging underground objects. Flying this SAR in a circular flight path is an efficient way to acquire high resolution images from a localized area. This paper characterizes the impulse response of sucha system. The results indicate that to achieve an image with a more uniformed resolution over the entire imaged area, proper weighting coeficients should be applied to both the principle aperture and the complimentary aperture.
Cinematique et dynamique des galaxies spirales barrees
NASA Astrophysics Data System (ADS)
Hernandez, Olivier
The total mass (luminous and dark) of galaxies is derived from their circular velocities. Spectroscopic Fabry-Perot observations of the ionized gas component of spiral galaxies allow one to derive their kinematics. In the case of purely axisymmetric velocity fields--as in non-active and unbarred spirals galaxies-- the circular velocities can be derived directly. However, the velocity fields of barred galaxies (which constitute two thirds of the spirals) exhibit strong non-circular motions and need a careful analysis to retrieve the circular component. This thesis proposes the necessary steps to recover the axisymmetric component of barred spiral galaxies. The first step was to develop the best instrumentation possible for this work. [Special characters omitted.] , which is the most sensitive photon counting camera ever developed, was coupled to a Fabry-Perot interferometer. The observations of a sample of barred spiral galaxies--the BH a BAR sample--was assembled in order to obtain the most rigourous velocity fields. Then, the Tremaine-Weinberg method, which can determine the bar pattern speed and is usually used with the observations of stellar component, has been tested on the ionised gas and gave satisfactory results. Finally, all the above techniques have been applied to the BH a BAR sample in order to study the key parameters of the galaxies' evolution--bar pattern speeds, multiple stationary waves, resonances etc.--which will allow one to use N-body+SPH simulations to model properly the non-circular motions and determine the true total mass of barred spiral galaxies.
Goodworth, Adam D; Paquette, Caroline; Jones, Geoffrey Melvill; Block, Edward W; Fletcher, William A; Hu, Bin; Horak, Fay B
2012-05-01
Linear and angular control of trunk and leg motion during curvilinear navigation was investigated in subjects with cerebellar ataxia and age-matched control subjects. Subjects walked with eyes open around a 1.2-m circle. The relationship of linear to angular motion was quantified by determining the ratios of trunk linear velocity to trunk angular velocity and foot linear position to foot angular position. Errors in walking radius (the ratio of linear to angular motion) also were quantified continuously during the circular walk. Relative variability of linear and angular measures was compared using coefficients of variation (CoV). Patterns of variability were compared using power spectral analysis for the trunk and auto-covariance analysis for the feet. Errors in radius were significantly increased in patients with cerebellar damage as compared to controls. Cerebellar subjects had significantly larger CoV of feet and trunk in angular, but not linear, motion. Control subjects also showed larger CoV in angular compared to linear motion of the feet and trunk. Angular and linear components of stepping differed in that angular, but not linear, foot placement had a negative correlation from one stride to the next. Thus, walking in a circle was associated with more, and a different type of, variability in angular compared to linear motion. Results are consistent with increased difficulty of, and role of the cerebellum in, control of angular trunk and foot motion for curvilinear locomotion.
Acoustic power of a moving point source in a moving medium
NASA Technical Reports Server (NTRS)
Cole, J. E., III; Sarris, I. I.
1976-01-01
The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.
Circular Data Images for Directional Data
NASA Technical Reports Server (NTRS)
Morpet, William J.
2004-01-01
Directional data includes vectors, points on a unit sphere, axis orientation, angular direction, and circular or periodic data. The theoretical statistics for circular data (random points on a unit circle) or spherical data (random points on a unit sphere) are a recent development. An overview of existing graphical methods for the display of directional data is given. Cross-over occurs when periodic data are measured on a scale for the measurement of linear variables. For example, if angle is represented by a linear color gradient changing uniformly from dark blue at -180 degrees to bright red at +180 degrees, the color image will be discontinuous at +180 degrees and -180 degrees, which are the same location. The resultant color would depend on the direction of approach to the cross-over point. A new graphical method for imaging directional data is described, which affords high resolution without color discontinuity from "cross-over". It is called the circular data image. The circular data image uses a circular color scale in which colors repeat periodically. Some examples of the circular data image include direction of earth winds on a global scale, rocket motor internal flow, earth global magnetic field direction, and rocket motor nozzle vector direction vs. time.
Analytical solutions with Generalized Impedance Boundary Conditions (GIBC)
NASA Technical Reports Server (NTRS)
Syed, H. H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristics to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. The diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezler, P.; Hartzman, M.; Reich, M.
1980-08-01
A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.
NASA Astrophysics Data System (ADS)
Il'ichev, A. T.; Savin, A. S.
2017-12-01
We consider a planar evolution problem for perturbations of the ice cover by a dipole starting its uniform rectilinear horizontal motion in a column of an initially stationary fluid. Using asymptotic Fourier analysis, we show that at supercritical velocities, waves of two types form on the water-ice interface. We describe the process of establishing these waves during the dipole motion. We assume that the fluid is ideal and incompressible and its motion is potential. The ice cover is modeled by the Kirchhoff-Love plate.
Loop-the-Loop: An Easy Experiment, A Challenging Explanation
NASA Astrophysics Data System (ADS)
Asavapibhop, B.; Suwonjandee, N.
2010-07-01
A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.
Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth
Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298
Post-Newtonian Circular Restricted 3-Body Problem: Schwarzschild primaries
NASA Astrophysics Data System (ADS)
Dubeibe, F. L.; Lora-Clavijo, F. D.; González, G. A.
2017-07-01
The restricted three-body problem (RTBP) has been extensively studied to investigate the stability of the solar system, extra-solar subsystems, asteroid capture, and the dynamics of two massive black holes orbited by a sun. In the present work, we study the stability of the planar circular restricted three-body problem in the context of post-Newtonian approximations. First of all, we review the results obtained from the post-Newtonian equations of motion calculated in the framework of the Einstein-Infeld-Hoffmann formalism (EIH). Therefore, using the Fodor-Hoenselers-Perjes formalism (FHP), we have performed an expansion of the gravitational potential for two primaries, deriving a new system of equations of motion, which unlike the EIH-approach, preserves the Jacobian integral of motion. Additionally, we have obtained approximate expressions for the Lagrange points in terms of a mass parameter μ, where it is found that the deviations from the classical regime are larger for the FHP than for the EIH equations.
Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.
Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna
2013-01-01
The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.
Xue, Bing; Qu, Xiaodong; Fang, Guangyou; Ji, Yicai
2017-01-01
In this paper, the methods and analysis for estimating the location of a three-dimensional (3-D) single source buried in lossy medium are presented with uniform circular array (UCA). The mathematical model of the signal in the lossy medium is proposed. Using information in the covariance matrix obtained by the sensors’ outputs, equations of the source location (azimuth angle, elevation angle, and range) are obtained. Then, the phase and amplitude of the covariance matrix function are used to process the source localization in the lossy medium. By analyzing the characteristics of the proposed methods and the multiple signal classification (MUSIC) method, the computational complexity and the valid scope of these methods are given. From the results, whether the loss is known or not, we can choose the best method for processing the issues (localization in lossless medium or lossy medium). PMID:28574467
NASA Astrophysics Data System (ADS)
Wang, Y.; Shen, C.; Liu, R.; Zhou, Z.
2014-12-01
Magnetic clouds (MCs) are the interplanetary counterparts of coronal mass ejections (CMEs). Due to the very low value of Can't connect to bucket.int.confex.com:4201 (Connection refused) LWP::Protocol::http::Socket: connect: Connection refused at /usr/local/lib/perl5/site_perl/5.8.8/LWP/Protocol/http.pm line 51. in MCs, they are believed to be in a nearly force-free state and therefore are able to be modeled by a cylindrical force-free flux rope. However, the force-free state only describes the magnetic field topology but not the plasma motion of a MC. For a MC propagating in interplanetary space, the global plasma motion has three possible components: linear propagating motion of a MC away from the Sun, expanding motion and circular motion with respect to the axis of the MC. By assuming the quasi-steady evolution and self-similar expansion, we introduced the three-component motion into the cylindrical force-free flux rope model, and developed a velocity-modified model. Then we applied the model to 73 MCs observed by Wind spacecraft to investigate the properties of the plasma motion of MCs. It is found that (1) some MCs did not propagate along the Sun-Earth line, suggesting the direct evidence of the CME's deflected propagation and/or rotation in interplanetary space, (2) the expansion speed is correlated with the radial propagation speed and 62%/17% of MCs underwent a under/over-expansion at 1 AU, and (3) the circular motion does exists though it is only on the order of 10 km s-1. These findings advance our understanding of the MC's properties at 1 AU as well as the dynamic evolution of CMEs from the Sun to interplanetary space.
Risk-targeted versus current seismic design maps for the conterminous United States
Luco, Nicolas; Ellingwood, Bruce R.; Hamburger, Ronald O.; Hooper, John D.; Kimball, Jeffrey K.; Kircher, Charles A.
2007-01-01
The probabilistic portions of the seismic design maps in the NEHRP Provisions (FEMA, 2003/2000/1997), and in the International Building Code (ICC, 2006/2003/2000) and ASCE Standard 7-05 (ASCE, 2005a), provide ground motion values from the USGS that have a 2% probability of being exceeded in 50 years. Under the assumption that the capacity against collapse of structures designed for these "uniformhazard" ground motions is equal to, without uncertainty, the corresponding mapped value at the location of the structure, the probability of its collapse in 50 years is also uniform. This is not the case however, when it is recognized that there is, in fact, uncertainty in the structural capacity. In that case, siteto-site variability in the shape of ground motion hazard curves results in a lack of uniformity. This paper explains the basis for proposed adjustments to the uniform-hazard portions of the seismic design maps currently in the NEHRP Provisions that result in uniform estimated collapse probability. For seismic design of nuclear facilities, analogous but specialized adjustments have recently been defined in ASCE Standard 43-05 (ASCE, 2005b). In support of the 2009 update of the NEHRP Provisions currently being conducted by the Building Seismic Safety Council (BSSC), herein we provide examples of the adjusted ground motions for a selected target collapse probability (or target risk). Relative to the probabilistic MCE ground motions currently in the NEHRP Provisions, the risk-targeted ground motions for design are smaller (by as much as about 30%) in the New Madrid Seismic Zone, near Charleston, South Carolina, and in the coastal region of Oregon, with relatively little (<15%) change almost everywhere else in the conterminous U.S.
An Inexpensive Mechanical Model for Projectile Motion
ERIC Educational Resources Information Center
Kagan, David
2011-01-01
As experienced physicists, we see the beauty and simplicity of projectile motion. It is merely the superposition of uniform linear motion along the direction of the initial velocity vector and the downward motion due to the constant acceleration of gravity. We see the kinematic equations as just the mathematical machinery to perform the…
NASA Astrophysics Data System (ADS)
Antoniadou, Kyriaki I.; Libert, Anne-Sophie
2018-06-01
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.
Steady vibrations of wing of circular plan form
NASA Technical Reports Server (NTRS)
Kochin, N E
1953-01-01
This paper treats the problem of determining the lift, moment, and induced drag of a thin wing of circular plan form in uniform incompressible flow on the basis of linearized theory. As contrasted to a similar paper by Kinner, in which the acceleration potential method was used, the present paper utilizes the concept of the velocity potential. Calculations of the lift and moment are presented for several deformed shapes. It is shown that considerable deviations exist between the strip theory analysis and the more exact theory. The lift, moment, and induced drag are also determined for a harmonically oscillatory circular plan form wing. As contrasted to a similar paper by Schade, in which the acceleration potential method was used, the present paper utilizes the concept of the velocity potential. Expressions for lift, moment, and induced drag are given and finally specialized to the case of a slowly oscillating circular wing.
Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.
NASA Astrophysics Data System (ADS)
Bardin, B. S.; Chekina, E. A.
2018-05-01
We consider the motion of a satellite about its center of mass in a circular orbit. We study the problem of orbital stability for planar pendulum-like oscillations of the satellite. It is supposed that the satellite is a rigid body whose mass geometry is that of a plate. For the unperturbed motion the plane of the satellite-plate is perpendicular to the plane of the orbit. We perform a nonlinear analysis of the orbital stability of planar pendulum-like oscillations for previously unexplored parameter values corresponding to the combination resonance. It appears that in this case both formal orbital stability and instability can take place. The results of stability study are shown in stability diagrams.
Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing
NASA Technical Reports Server (NTRS)
Vijayaraghavan, D.; Brewe, D. E.; Keith, T. G., Jr.
1993-01-01
In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing.
Effect of out-of-roundness on the performance of a diesel engine connecting-rod bearing
NASA Technical Reports Server (NTRS)
Vijayaraghavan, D.; Brewe, D. E.; Keith, T. G., Jr.
1991-01-01
In this paper, the dynamic performance of the Ruston and Hornsby VEB diesel engine connecting-rod bearing with circular and out-of-round profiles is analyzed. The effect of cavitation is considered by using a cavitation algorithm, which mimics JFO boundary conditions. The effect of mass inertia is accounted for by solving coupled nonlinear equations of motion. The journal profiles considered are circular, elliptical, semi-elliptical, and three lobe epicycloid. The predicted journal trajectory and other performance parameters for one complete load cycle are presented for all of the out-of-round profiles and are also compared with the predictions for the circular bearing.
On low-frequency errors of uniformly modulated filtered white-noise models for ground motions
Safak, Erdal; Boore, David M.
1988-01-01
Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).
To Explain Copernicus: The Islamic Scientific and Religious Contexts
NASA Astrophysics Data System (ADS)
Ragep, F. Jamil
No one seriously disputes the novelty of Copernicus's monumental decision to put the Earth in motion or its importance for the development of modern science. But that decision can appear quite different when viewed from the perspective of a modern scientist versus that of a contextualist historian. In his recent book To Explain the World, Prof. Weinberg places great store on what he calls aesthetic criteria for understanding Copernicus's choice. The historical record, however, is rather ambiguous on the matter, and if anything supports the view that Copernicus came to his aesthetic justifications (such as the beautiful ordering of the planets) after first reaching his heliocentric theory. So if not aesthetics, what did lead him to go against a two-millenium tradition that placed the Earth firmly in the center of the Cosmos? There are no doubt many factors; one of the most intriguing suggestions, well-argued by Noel Swerdlow, is that Copernicus was led to heliocentrism by his rather conservative desire to restore uniform, circular motion to the heavens and remove the irregularities of Ptolemaic astronomy. Swerdlow has also asserted that this has much to do with Islamic predecessors who were attempting to do the same thing, only within a geocentric framework. In this presentation, I will briefly summarize this Islamic scientific context and then explore the religious beliefs that led not only to the questioning of Ptolemaic scientific authority, including his alleged lack of observational diligence, but also ancient philosophical authority, the latter opening up possibilities for alternative cosmologies, at least one of which included the Earth's motion. Finally, evidence will be presented that connects these Islamic contexts with Copernicus's theories and justifications.
NASA Astrophysics Data System (ADS)
Takamura, Yuzuru; Ueno, Kunimitsu; Nagasaka, Wako; Tomizawa, Yuichi; Tamiya, Eiichi
2007-03-01
We have discovered a phenomenon of accumulation of DNA near the constricted position of a microfluidic chip with taper shaped channel when both hydro pressure and electric field are applied in opposite directions. However, RNA has not been able to trap so far, unlike huge and uniformly double stranded DNA molecules, RNAs are smaller in size and single stranded with complicated conformation like blocks in lysed cell solution. In this paper, we will report not only large but also small RNA (100˜10b) are successfully trapped in relatively large microfluidic taper shape channel (width >10um). RNA are trapped in circular motion near the constricted position of taper shape channel, and the position and shape of the trapped RNA are controlled and make mode transition by changing the hydraulic and the electric force. Using this technique, smaller size molecule can be trapped in larger micro fluidic structure compared to the trap using dielectrophoresis. This technique is expected to establish easy and practical device as a direct total RNA extraction tool from living cells or tissues.
Radar imaging using electromagnetic wave carrying orbital angular momentum
NASA Astrophysics Data System (ADS)
Yuan, Tiezhu; Cheng, Yongqiang; Wang, Hongqiang; Qin, Yuliang; Fan, Bo
2017-03-01
The concept of radar imaging based on orbital angular momentum (OAM) modulation, which has the ability of azimuthal resolution without relative motion, has recently been proposed. We investigate this imaging technique further in greater detail. We first analyze the principle of the technique, accounting for its resolving ability physically. The phase and intensity distributions of the OAM-carrying fields produced by phased uniform circular array antenna, which have significant effects on the imaging results, are investigated. The imaging model shows that the received signal has the form of inverse discrete Fourier transform with the use of OAM and frequency diversities. The two-dimensional Fourier transform is employed to reconstruct the target images in the case of large and small elevation angles. Due to the peculiar phase and intensity characteristics, the small elevation is more suitable for practical application than the large one. The minimum elevation angle is then obtained given the array parameters. The imaging capability is analyzed by means of the point spread function. All results are verified through numerical simulations. The proposed staring imaging technique can achieve extremely high azimuthal resolution with the use of plentiful OAM modes.
Electron dynamics in a plasma focus. [electron acceleration
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.; Winters, P. A.
1977-01-01
Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.
... administer the injection, follow these steps: Clean the injection site with an alcohol wipe using a circular motion, ... to pinch a fold of skin at the injection site. Do not lay the syringe down or allow ...
Quantized Rabi oscillations and circular dichroism in quantum Hall systems
NASA Astrophysics Data System (ADS)
Tran, D. T.; Cooper, N. R.; Goldman, N.
2018-06-01
The dissipative response of a quantum system upon periodic driving can be exploited as a probe of its topological properties. Here we explore the implications of such phenomena in two-dimensional gases subjected to a uniform magnetic field. It is shown that a filled Landau level exhibits a quantized circular dichroism, which can be traced back to its underlying nontrivial topology. Based on selection rules, we find that this quantized effect can be suitably described in terms of Rabi oscillations, whose frequencies satisfy simple quantization laws. We discuss how quantized dissipative responses can be probed locally, both in the bulk and at the boundaries of the system. This work suggests alternative forms of topological probes based on circular dichroism.
NASA Technical Reports Server (NTRS)
Bhat, Thonse R. S.; Baty, Roy S.; Morris, Philip J.
1990-01-01
The shock structure in non-circular supersonic jets is predicted using a linear model. This model includes the effects of the finite thickness of the mixing layer and the turbulence in the jet shear layer. A numerical solution is obtained using a conformal mapping grid generation scheme with a hybrid pseudo-spectral discretization method. The uniform pressure perturbation at the jet exit is approximated by a Fourier-Mathieu series. The pressure at downstream locations is obtained from an eigenfunction expansion that is matched to the pressure perturbation at the jet exit. Results are presented for a circular jet and for an elliptic jet of aspect ratio 2.0. Comparisons are made with experimental data.
NASA Technical Reports Server (NTRS)
Hu, Senqi; Stern, Robert M.; Vasey, Michael W.; Koch, Kenneth L.
1989-01-01
Motion sickness symptoms and electrogastrograms (EGGs) were obtained from 60 healthy subjects while they viewed an optokinetic drum rotated at one of four speeds: 15, 30, 60 or 90 deg/s. All subjects experienced vection, illusory self-motion. Motion sickness symptoms increased as drums speed increased up to 60 deg/s. Power, spectral intensity, of the EGG at the tachygastria frequencies (4-9 cpm) was calculated at each drum rotation speed. The correlation between the motion sickness symptoms and the power at 4-9 cpm was significant. Thus, drum rotation speed influenced the spectral power of the EGG at 4-9 cpm, tachygastria, and the intensity of motion sickness symptoms.
The electromagnetic analogy of a ball on a rotating conical turntable
NASA Astrophysics Data System (ADS)
Zengel, Keith
2017-12-01
A ball on a flat rotating turntable executes circular orbits analogous to those of a charged particle in a uniform magnetic field. Stable circular orbits are also possible on rotating conical turntables and are analogous to those of a charged particle in an axial magnetic field superimposed on a radial electric field. The existence and stability of these orbits is derived and discussed. Further, parallels are drawn between the mechanical and electromagnetic cases, with particular attention to the magnetic vector potential. Finally, an experimental confirmation is reported and discussed.
The Oscillating Circular Airfoil on the Basis of Potential Theory
NASA Technical Reports Server (NTRS)
Schade, T.; Krienes, K.
1947-01-01
Proceeding from the thesis by W. Kinner the present report treats the problem of the circular airfoil in uniform airflow executing small oscillations, the amplitudes of which correspond to whole functions of the second degree in x and y. The pressure distribution is secured by means of Prandtl's acceleration potential. It results in a system of linear equations the coefficients of which can be calculated exactly with the aid of exponential functions and Hankel's functions. The equations necessary are derived in part I; the numerical calculation follows in part II.
NASA Technical Reports Server (NTRS)
Matthews, Clarence W
1955-01-01
The equations presented in this report give the interference on the trailing-vortex system of a uniformly loaded finite-span wing in a circular tunnel containing partly open and partly closed walls, with special reference to symmetrical arrangements of the open and closed portions. Methods are given for extending the equations to include tunnel shapes other than circular. The rectangular tunnel is used to demonstrate these methods. The equations are also extended to nonuniformly loaded wings.
NASA Technical Reports Server (NTRS)
Syed, Hasnain H.; Volakis, John L.
1991-01-01
Rigorous uniform geometrical theory of diffraction (UGTD) diffraction coefficients are presented for a coated convex cylinder simulated with generalized impedance boundary conditions. In particular, ray solutions are obtained which remain valid in the transition region and reduce uniformly to those in the deep lit and shadow regions. These involve new transition functions in place of the usual Fock-type integrals, characteristic to the impedance cylinder. A uniform asymptotic solution is also presented for observations in the close vicinity of the cylinder. As usual, the diffraction coefficients for the convex cylinder are obtained via a generalization of the corresponding ones for the circular cylinder.
40 CFR 31.26 - Non-Federal audit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND COOPERATIVE AGREEMENTS TO STATE AND LOCAL GOVERNMENTS Post-Award...-7507) and revised OMB Circular A-133, “Audits of States, Local Governments, and Non-Profit...
Land Acquisition and Relocation Assistance for Airport Improvement Program (AIP) Assisted Projects
DOT National Transportation Integrated Search
2017-07-10
This advisory circular (AC) provides guidance to sponsors of airport projects developed under the Airport Improvement Program (AIP) to meet the requirements of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Pl 9...
50 CFR 82.3 - Supplementary information and procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE... Federal Management Circular 74-7, “Uniform Administrative Requirements for Grants-in-Aid to State and... noted otherwise. The standards and procedures set forth therein, and other referenced Federal management...
50 CFR 82.3 - Supplementary information and procedures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM ADMINISTRATIVE... Federal Management Circular 74-7, “Uniform Administrative Requirements for Grants-in-Aid to State and... noted otherwise. The standards and procedures set forth therein, and other referenced Federal management...
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
NASA Astrophysics Data System (ADS)
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
NASA Astrophysics Data System (ADS)
Waghole, D. R.
2018-06-01
Investigation on heat transfer by generating turbulence in the fluid stream inside the circular tube is an innovative area of research for researchers. Hence, many techniques are been investigated and adopted for enhancement of heat transfer rate to reduce the size and the cost of the heat exchanger/circular tube. In the present study the effect of differential solid ring inserts /turbulators on heat transfer, friction factor of heat exchanger/circular tube was evaluated through experimentally and numerically. The experiments were conducted in range of 3000 ≤Re≤ 6500 and annular blockages 0 ≤ɸ≤50 %. The heat transfer rate was higher for differential combination of inserts as compared to tube fitted with uniform inserts. The maximum heat transfer was obtained by the use of differential metal circular ring inserts/blockages. From this study, Nusselt number, friction factor and enhancement factor are found as 2.5-3.5 times, 12% - 50.5% and 155% - 195%, respectively with water. Finally new possible correlations for predicting heat transfer and friction factor in the flow of water through the circular tube with differential blockages/inserts are proposed.
NASA Astrophysics Data System (ADS)
Chavan, Rutuja; Venkataramana, B.; Acharya, Pratik; Kumar, Bimlesh
2018-06-01
The present study examines scour geometry and turbulent flow characteristics around circular and oblong piers in alluvial channel with downward seepage. Experiments were conducted in plane sand bed of non-uniform sand under no seepage, 10% seepage and 15% seepage conditions. Scour depth at oblong pier is significantly lesser than the scour depth at circular one. However, the scour depth at both piers reduces with downward seepage. The measurements show that the velocity and Reynolds stresses are negative near the bed at upstream of piers where the strong reversal occurs. At downstream of oblong pier near the free surface, velocity and Reynolds stresses are less positive; whereas, they are negative at downstream of circular pier. The streamline shape of oblong pier leads to reduce the strength of wake vortices and consequently reversal flow at downstream of pier. With application of downward seepage turbulent kinetic energy is decreasing. The results show that the wake vortices at oblong pier are weaker than the wake vortices at circular pier. The strength of wake vortices diminishes with downward seepage. The Strouhal number is lesser for oblong pier and decreases with downward seepage for both oblong and circular piers.
Astronaut John Glenn tests balance mechanism performance
1962-02-01
S64-14849 (1962) --- Astronaut John H. Glenn Jr.'s balance mechanism (semi-circular-canals) is tested by running cool water into his ear and measuring effect on eye motions (nystagmus). Photo credit: NASA
ERIC Educational Resources Information Center
Swinson, Derek B.
1992-01-01
Presents examples of physics as applied to the sport of skiing. Examples examine the physics of sliding, unweighting, ski turning, wind resistance, the parabolic and circular motion of aerial skiers, and the aerial maneuvers of ski jumpers. (MDH)
Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit
NASA Astrophysics Data System (ADS)
Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.
2014-10-01
Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Governments. 3015.191 Section 3015.191 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost Principles § 3015.191 Governments. (a) OMB Circular No... be used in determining the allowable costs of activities conducted by governments. (b) Additional...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Governments. 3015.191 Section 3015.191 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost Principles § 3015.191 Governments. (a) OMB Circular No... be used in determining the allowable costs of activities conducted by governments. (b) Additional...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Governments. 3015.191 Section 3015.191 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost Principles § 3015.191 Governments. (a) OMB Circular No... be used in determining the allowable costs of activities conducted by governments. (b) Additional...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Governments. 3015.191 Section 3015.191 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost Principles § 3015.191 Governments. (a) OMB Circular No... be used in determining the allowable costs of activities conducted by governments. (b) Additional...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Governments. 3015.191 Section 3015.191 Agriculture... AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Cost Principles § 3015.191 Governments. (a) OMB Circular No... be used in determining the allowable costs of activities conducted by governments. (b) Additional...
Accounting For Compressibility In Viscous Flow In Pipes
NASA Technical Reports Server (NTRS)
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267
Uniformly Processed Strong Motion Database for Himalaya and Northeast Region of India
NASA Astrophysics Data System (ADS)
Gupta, I. D.
2018-03-01
This paper presents the first uniformly processed comprehensive database on strong motion acceleration records for the extensive regions of western Himalaya, northeast India, and the alluvial plains juxtaposing the Himalaya. This includes 146 three components of old analog records corrected for the instrument response and baseline distortions and 471 three components of recent digital records corrected for baseline errors. The paper first provides a background of the evolution of strong motion data in India and the seismotectonics of the areas of recording, then describes the details of the recording stations and the contributing earthquakes, which is finally followed by the methodology used to obtain baseline corrected data in a uniform and consistent manner. Two different schemes in common use for baseline correction are based on the application of the Ormsby filter without zero pads (Trifunac 1971) and that on the Butterworth filter with zero pads at the start as well as at the end (Converse and Brady 1992). To integrate the advantages of both the schemes, Ormsby filter with zero pads at the start only is used in the present study. A large number of typical example results are presented to illustrate that the methodology adopted is able to provide realistic velocity and displacement records with much smaller number of zero pads. The present strong motion database of corrected acceleration records will be useful for analyzing the ground motion characteristics of engineering importance, developing prediction equations for various strong motion parameters, and calibrating the seismological source model approach for ground motion simulation for seismically active and risk prone areas of India.
Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory
ERIC Educational Resources Information Center
Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.
2009-01-01
Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…
Beating motion of a circular cylinder in vortex-induced vibrations
NASA Astrophysics Data System (ADS)
Shen, Linwei; Chan, Eng-Soon; Wei, Yan
2018-04-01
In this paper, beating phenomenon of a circular cylinder in vortex-induced vibration is studied by numerical simulations in a systematic manner. The cylinder mass coefficients of 2 and 10 are considered, and the Reynolds number is 150. Two distinctive frequencies, namely cylinder oscillation and vortex shedding frequencies, are obtained from the harmonic analysis of the cylinder displacement. The result is consistent with that observed in laboratory experiments. It is found that the cylinder oscillation frequency changes with the natural frequency of the cylinder while the reduced velocity is varied. The added-mass coefficient of the cylinder in beating motion is therefore estimated. Meanwhile, the vortex shedding frequency does not change dramatically in the beating situations. In fact, it is very close to 0.2. Accordingly, the lift force coefficient has two main components associated with these two frequencies. Besides, higher harmonics of the cylinder oscillation frequency appear in the spectrum of the lift coefficient. Moreover, the vortex shedding timing is studied in the beating motion by examining the instantaneous flow fields in the wake, and two scenarios of the vortex formation are observed.
Vection: the contributions of absolute and relative visual motion.
Howard, I P; Howard, A
1994-01-01
Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.
Effect of stationary objects on illusory forward self-motion induced by a looming display.
Ohmi, M; Howard, I P
1988-01-01
It has previously been shown that when a moving and a stationary display are superimposed, illusory self-rotation (circular vection) is induced only when the moving display appears as the background. Three experiments are reported on the extent to which illusory forward self-motion (forward vection) induced by a looming display is inhibited by a superimposed stationary display as a function of the size and location of the stationary display and of the depth between the stationary and looming displays. Results showed that forward vection was controlled by the display that was perceived as the background, and background stationary displays suppressed forward vection by about the same amount whatever their size and eccentricity. Also, the perception of foreground-background properties of competing displays determined which controlled forward vection, and this control was not tied to specific depth cues. The inhibitory effect of a stationary background on forward vection was, however, weaker than that found with circular vection. This difference makes sense because, for forward body motion, the image of a distant scene is virtually stationary whereas, when the body rotates, it is not.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
NASA Astrophysics Data System (ADS)
Wang, Yong-Long; Lai, Meng-Yun; Wang, Fan; Zong, Hong-Shi; Chen, Yan-Feng
2018-04-01
Investigating the geometric effects resulting from the detailed behaviors of the confining potential, we consider square and circular confinements to constrain a particle to a space curve. We find a torsion-induced geometric potential and a curvature-induced geometric momentum just in the square case, while a geometric gauge potential solely in the circular case. In the presence of electromagnetic field, a geometrically induced magnetic moment couples with magnetic field as an induced Zeeman coupling only for the circular confinement also. As spin-orbit interaction is considered, we find some additional terms for the spin-orbit coupling, which are induced not only by torsion, but also curvature. Moreover, in the circular case, the spin also couples with an intrinsic angular momentum, which describes the azimuthal motions mapped on the space curve. As an important conclusion for the thin-layer quantization approach, some substantial geometric effects result from the confinement boundaries. Finally, these results are proved on a helical wire.
NASA Technical Reports Server (NTRS)
Smith, Ralph C.
1994-01-01
A Galerkin method for systems of PDE's in circular geometries is presented with motivating problems being drawn from structural, acoustic, and structural acoustic applications. Depending upon the application under consideration, piecewise splines or Legendre polynomials are used when approximating the system dynamics with modifications included to incorporate the analytic solution decay near the coordinate singularity. This provides an efficient method which retains its accuracy throughout the circular domain without degradation at singularity. Because the problems under consideration are linear or weakly nonlinear with constant or piecewise constant coefficients, transform methods for the problems are not investigated. While the specific method is developed for the two dimensional wave equations on a circular domain and the equation of transverse motion for a thin circular plate, examples demonstrating the extension of the techniques to a fully coupled structural acoustic system are used to illustrate the flexibility of the method when approximating the dynamics of more complex systems.
Photoexcitation circular dichroism in chiral molecules
NASA Astrophysics Data System (ADS)
Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.
2018-05-01
Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.
Optimal rendezvous in the neighborhood of a circular orbit
NASA Technical Reports Server (NTRS)
Jones, J. B.
1975-01-01
The minimum velocity change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples presented.
Velocity Memory Effect for polarized gravitational waves
NASA Astrophysics Data System (ADS)
Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.
2018-05-01
Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.
The strange case of the missing apocentric librators in the 3:2 resonance. [in asteroidal belt
NASA Technical Reports Server (NTRS)
Ip, W.-H.
1976-01-01
From a comparison of the 2:1 and 3:2 resonances (in the asteroidal belt) two possible explanations to the absence of 3:2 apocentric librators are suggested. The first one is that such 3:2 resonant motion is dynamically unstable. The second interpretation requires the absence of near-circular orbits originally at 4 AU. The latter view, if correct, is inconsistent with cosmogonic models which predict the original orbits of the asteroids to be nearly circular.
Spacetime symmetries and Kepler's third law
NASA Astrophysics Data System (ADS)
Le Tiec, Alexandre
2012-11-01
The curved spacetime geometry of a system of two point masses moving on a circular orbit has a helical symmetry. We show how Kepler’s third law for circular motion, and its generalization in post-Newtonian theory, can be recovered from a simple, covariant condition on the norm of the associated helical Killing vector field. This unusual derivation can be used to illustrate some concepts of prime importance in a general relativity course, including those of Killing field, covariance, coordinate dependence and gravitational redshift.
NASA Astrophysics Data System (ADS)
Kolesnikov, E. K.; Chernov, S. V.
2018-05-01
A detailed study of the conditions for the realization of the phenomena of magnetic and gravity capture (MGC) of nanoparticles (NP) injected into the near-Earth space in circular orbits with altitudes and inclinations characteristic for orbits of satellites of navigation systems (GLONASS, GPS, etc.) is carried out. Spherical aluminum oxide particles with radii from 4 to 100 nm were considered as injected particles. It was assumed that injection of NP is performed at various points of circular orbits with a height of 19130 km, an inclination angle to the equatorial plane equal to 64.8 degrees and a longitude of the ascending node of 0, 120 and 240 degrees. Calculations of the motion of nanoparticles in near-Earth space were performed for conditions of low level solar and geomagnetic activity. The results of numerical experiments show that for all the considered spatial orientations of the orbit of the parent body (PB) of the NP motion in the magnetic and gravitational capture mode with extremely long orbital existence times (more than two years) can be realized only for nanoparticles with radii in the narrow gap from 8.6 to 10.2 nm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinouski, M.; Kehr, S.; Finney, L.
2012-04-17
Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts ofmore » the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.« less
28 CFR 70.27 - Allowable costs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Allowable costs. 70.27 Section 70.27 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS... accordance with the provisions of OMB Circular A-21, “Cost Principles for Educational Institutions.” The...
2 CFR 215.52 - Financial reporting.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Grants and Agreements Office of Management and Budget Guidance for Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND... projects or programs. A Federal awarding agency may, however, have the option of not requiring the SF-269...
Properties of tree rings in LSST sensors
Park, H. Y.; Nomerotski, A.; Tsybychev, D.
2017-05-30
Images of uniformly illuminated sensors for the Large Synoptic Survey Telescope have circular periodic patterns with an appearance similar to tree rings. Furthermore, these patterns are caused by circularly symmetric variations of the dopant concentration in the monocrystal silicon boule induced by the manufacturing process. Non-uniform charge density results in the parasitic electric field inside the silicon sensor, which may distort shapes of astronomical sources. Here, we analyzed data from fifteen LSST sensors produced by ITL to determine the main parameters of the tree rings: amplitude and period, and also variability across the sensors tested at Brookhaven National Laboratory. Treemore » ring pattern has a weak dependence on the wavelength. But the ring amplitude gets smaller as wavelength gets longer, since longer wavelengths penetrate deeper into the silicon. Tree ring amplitude gets larger as it gets closer to the outer part of the wafer, from 0.1 to 1.0%, indicating that the resistivity variation is larger for larger radii.« less
NASA Astrophysics Data System (ADS)
Chen, Xin; Wang, Shuhong; Liu, Zhen; Wei, Xizhang
2017-07-01
Localization of a source whose half-wavelength is smaller than the array aperture would suffer from serious phase ambiguity problem, which also appears in recently proposed phase-based algorithms. In this paper, by using the centro-symmetry of fixed uniform circular array (UCA) with even number of sensors, the source's angles and range can be decoupled and a novel ambiguity resolving approach is addressed for phase-based algorithms of source's 3-D localization (azimuth angle, elevation angle, and range). In the proposed method, by using the cosine property of unambiguous phase differences, ambiguity searching and actual-value matching are first employed to obtain actual phase differences and corresponding source's angles. Then, the unambiguous angles are utilized to estimate the source's range based on a one dimension multiple signal classification (1-D MUSIC) estimator. Finally, simulation experiments investigate the influence of step size in search and SNR on performance of ambiguity resolution and demonstrate the satisfactory estimation performance of the proposed method.
Properties of tree rings in LSST sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H. Y.; Nomerotski, A.; Tsybychev, D.
Images of uniformly illuminated sensors for the Large Synoptic Survey Telescope have circular periodic patterns with an appearance similar to tree rings. Furthermore, these patterns are caused by circularly symmetric variations of the dopant concentration in the monocrystal silicon boule induced by the manufacturing process. Non-uniform charge density results in the parasitic electric field inside the silicon sensor, which may distort shapes of astronomical sources. Here, we analyzed data from fifteen LSST sensors produced by ITL to determine the main parameters of the tree rings: amplitude and period, and also variability across the sensors tested at Brookhaven National Laboratory. Treemore » ring pattern has a weak dependence on the wavelength. But the ring amplitude gets smaller as wavelength gets longer, since longer wavelengths penetrate deeper into the silicon. Tree ring amplitude gets larger as it gets closer to the outer part of the wafer, from 0.1 to 1.0%, indicating that the resistivity variation is larger for larger radii.« less
High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators
NASA Astrophysics Data System (ADS)
Feiz Zarrin Ghalam, Ali
Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hoh, H. J.; Xiao, Z. M.; Luo, J.
2010-09-01
An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.
Ogulmus, Cansu; Karacaoglu, Merve; Kafaligonul, Hulusi
2018-03-01
The coordination of intramodal perceptual grouping and crossmodal interactions plays a critical role in constructing coherent multisensory percepts. However, the basic principles underlying such coordinating mechanisms still remain unclear. By taking advantage of an illusion called temporal ventriloquism and its influences on perceived speed, we investigated how audiovisual interactions in time are modulated by the spatial grouping principles of vision. In our experiments, we manipulated the spatial grouping principles of proximity, uniform connectedness, and similarity/common fate in apparent motion displays. Observers compared the speed of apparent motions across different sound timing conditions. Our results revealed that the effects of sound timing (i.e., temporal ventriloquism effects) on perceived speed also existed in visual displays containing more than one object and were modulated by different spatial grouping principles. In particular, uniform connectedness was found to modulate these audiovisual interactions in time. The effect of sound timing on perceived speed was smaller when horizontal connecting bars were introduced along the path of apparent motion. When the objects in each apparent motion frame were not connected or connected with vertical bars, the sound timing was more influential compared to the horizontal bar conditions. Overall, our findings here suggest that the effects of sound timing on perceived speed exist in different spatial configurations and can be modulated by certain intramodal spatial grouping principles such as uniform connectedness.
Polar POLICRYPS diffractive structures generate cylindrical vector beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alj, Domenico; Caputo, Roberto, E-mail: roberto.caputo@fis.unical.it; Umeton, Cesare
2015-11-16
Local shaping of the polarization state of a light beam is appealing for a number of applications. This can be achieved by employing devices containing birefringent materials. In this article, we present one such enables converting a uniformly circularly polarized beam into a cylindrical vector beam (CVB). This device has been fabricated by exploiting the POLICRYPS (POlymer-LIquid CRYstals-Polymer-Slices) photocuring technique. It is a liquid-crystal-based optical diffraction grating featuring polar symmetry of the director alignment. We have characterized the resulting CVB profile and polarization for the cases of left and right circularly polarized incoming beams.
NASA Astrophysics Data System (ADS)
Saroch, Akanksha; Jha, Pallavi
2017-12-01
This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.
Transmission of wave energy in curved ducts
NASA Technical Reports Server (NTRS)
Rostafinski, W.
1973-01-01
A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.
29 CFR 779.107 - Goods defined.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; advertising, motion pictures, newspaper and radio copy; art work and manuscripts for publication; sample books, letterheads, envelopes, shipping tags, labels, checkbooks, blankbooks, book covers, advertising circulars, and... written materials such as newspapers, magazines, brochures, pamphlets, bulletins, and announcements...
2 CFR 215.71 - Closeout procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Closeout procedures. 215.71 Section 215.71 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved UNIFORM... being closed out. (d) The recipient shall promptly refund any balances of unobligated cash that the...
24 CFR 1006.370 - Federal administrative requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Governments.” (b) Non-profit organizations. The requirements of OMB Circular No. A-122, “Cost Principles for Non-profit Organizations,” and the requirements of 24 CFR part 84, “Uniform Administrative Requirements for Grants and Agreements with Institutions of Higher Education, Hospitals, and Other Non-profit...
The mechanics and origin of cometaria
NASA Astrophysics Data System (ADS)
Beech, Martin
2002-12-01
The cometarium, literally a mechanical device for describing the orbit of a comet, had its genesis as a machine for illustrating the observable consequences of Kepler's second law of planetary motion. The device that became known as the cometarium was originally constructed by J.T. Desaguliers in 1732 to demonstrate, in a sensible fashion, the perihelion to aphelion change in velocity of the planet Mercury. It was only with the imminent, first predicted, return of Halley's comet in 1758 that the name cometarium was coined, and subsequent devices so named. Most early cometaria used a pair of elliptical formers joined via a figure-of-eight cord to translate uniform drive motion into the non-uniform motion of an object moving along an elliptic track. It is shown in a series of calculations, however, that two elliptical former cometaria do not actually provide a correct demonstration of Keplerian velocity variations and nor do they actually demonstrate Kepler's second law of planetary motion.
Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ting; Wang, Chuan-Yi
2017-04-01
River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge foundation (Y=+0.2D*) under any steady flows. Opposite results are found for the exposed (Y=-0.2D*) bridge foundation. For the condition non-uniform pier diameter ratio (D/D*=0.3 0.8) scours, when D/D* is equal to 0.4, because pier oncoming flow area is the smallest one so that down flow intensity is less; as non-uniform area is bigger and decrease more down flow energy so that bring smaller scour depth and effect area. Therefore, local scour depth for pier diameter ratio of 0.4 is less than other type of pier. Considering the safety of bridge structure, a non-uniform circular pier with D/D* which equals to 0.4 and initial bed level relative to Y=+0.2D* is the most ideal pier allocations.
Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi
2016-04-15
We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.
Alahautala, Taito; Hernberg, Rolf
2004-02-01
Uniform illumination was generated by use of a large number of diode laser emitters and a single nonimaging paraboloid with a Lambertian scatterer in the truncation plane. Laser light traverses a path toward the Lambertian surface and back by total internal reflection. An overall efficiency of 69% was demonstrated. Improvements that would increase the efficiency to more than 85% are suggested. The illuminated area is circular, with 14-mm diameter. The spatial nonuniformity of the beam profile is less than +/- 2%.
NASA Astrophysics Data System (ADS)
Mize, Johnnie E.
1988-03-01
A computer program is presented which calculates power density in the Fresnel region of circular parabolic reflector antennas. The aperture illumination model is the one-parameter circular distribution developed by Hansen. The program is applicable to the analysis of electrically large, center-fed (or Cassegrain) paraboloids with linearly polarized feeds. The scalar Kirchoff diffraction integral is solved numerically by Romberg integration for points both on and perpendicular to the antenna boresight. Axial results cannot be directly compared to any others obtained with this illumination model, but they are consistent with what is expected in the Fresnel region where a quadratic must be added to the linear phase term of the integral expression. Graphical results are presented for uniform illumination and for cases where the first sidelobe ratio is 20, 25, 30, and 35 dB.
A Tilted Plane as a Gravitational Field Model.
ERIC Educational Resources Information Center
Hale, D. P.
1980-01-01
Describes an experiment for the use of a tilted plane as a two-dimensional uniform gravitational field to demonstrate the motion of projectiles, to determine the fundamental laws of mechanics, or to study the focusing properties of the uniform field. (SK)
Probing Motion of Fast Radio Burst Sources by Timing Strongly Lensed Repeaters
NASA Astrophysics Data System (ADS)
Dai, Liang; Lu, Wenbin
2017-09-01
Given the possible repetitive nature of fast radio bursts (FRBs), their cosmological origin, and their high occurrence, detection of strongly lensed sources due to intervening galaxy lenses is possible with forthcoming radio surveys. We show that if multiple images of a repeating source are resolved with VLBI, using a method independent of lens modeling, accurate timing could reveal non-uniform motion, either physical or apparent, of the emission spot. This can probe the physical nature of FRBs and their surrounding environments, constraining scenarios including orbital motion around a stellar companion if FRBs require a compact star in a special system, and jet-medium interactions for which the location of the emission spot may randomly vary. The high timing precision possible for FRBs (˜ms) compared with the typical time delays between images in galaxy lensing (≳10 days) enables the measurement of tiny fractional changes in the delays (˜ {10}-9) and hence the detection of time-delay variations induced by relative motions between the source, the lens, and the Earth. We show that uniform cosmic peculiar velocities only cause the delay time to drift linearly, and that the effect from the Earth’s orbital motion can be accurately subtracted, thus enabling a search for non-trivial source motion. For a timing accuracy of ˜1 ms and a repetition rate (of detected bursts) of ˜0.05 per day of a single FRB source, non-uniform displacement ≳0.1-1 au of the emission spot perpendicular to the line of sight is detectable if repetitions are seen over a period of hundreds of days.
Method and apparatus for planning motions of robot manipulators
Chen, Pang C.; Hwang, Yong K.
1996-01-01
Method and apparatus for automatically planning motions of robot manipulators. The invention rapidly finds a collision-free path in a cluttered robot environment, if one exists, from any starting configuration of the robot manipulator to any ending configuration. The time to solution of a motion planning problem is not uniform, but proportional to the complexity of the problem.
Covariant Formulation of Hooke's Law.
ERIC Educational Resources Information Center
Gron, O.
1981-01-01
Introducing a four-vector strain and a four-force stress, Hooke's law is written as a four-vector equation. This formulation is shown to clarify seemingly paradoxical results in connection with uniformly accelerated motion, and rotational motion with angular acceleration. (Author/JN)
29 CFR 1470.22 - Allowable costs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 1470.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...
45 CFR 92.22 - Allowable costs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... to that circular 48 CFR Part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 92.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...
13 CFR 143.22 - Allowable costs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to that circular 48 CFR part 31. Contract Cost Principles and Procedures, or uniform cost accounting... Financial Administration § 143.22 Allowable costs. (a) Limitation on use of funds. Grant funds may be used... grantee or subgrantee. (b) Applicable cost principles. For each kind of organization, there is a set of...
2 CFR 215.14 - Special award conditions.
Code of Federal Regulations, 2010 CFR
2010-01-01
....14 Grants and Agreements OFFICE OF MANAGEMENT AND BUDGET CIRCULARS AND GUIDANCE Reserved UNIFORM.... If an applicant or recipient: has a history of poor performance, is not financially stable, has a management system that does not meet the standards prescribed in this part, has not conformed to the terms...
24 CFR 954.502 - Applicability of uniform administrative requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., 85.36, 85.43, 85.44, 85.51, and 85.52. (b) Non-profit organizations. The requirements of OMB Circular... 20 percent of the total contract price, subject to reduction during the warranty period, commensurate... payable upon demand of the grantee, subject to reduction during the warranty period commensurate with...
24 CFR 954.502 - Applicability of uniform administrative requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., 85.36, 85.43, 85.44, 85.51, and 85.52. (b) Non-profit organizations. The requirements of OMB Circular... 20 percent of the total contract price, subject to reduction during the warranty period, commensurate... payable upon demand of the grantee, subject to reduction during the warranty period commensurate with...
75 FR 77721 - Federal Acquisition Regulation; Federal Acquisition Circular 2005-47; Introduction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
...-019 Morgan. Self-Certification (Interim). V Uniform Suspension and 2009-036 Gary. Debarment Requirement (Interim). VI Limitation on Pass-Through 2008-031 Chambers. Charges. VII Technical Amendments....104-1, 5.601, 7.105, and 10.002. Dated: November 24, 2010. Millisa Gary, Acting Director, Acquisition...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-13
... Business 2009-019 Morgan. Self-Certification (Interim). V Uniform Suspension and 2009-036 Gary. Debarment Requirement (Interim). VI Limitation on Pass-Through 2008-031 Chambers. Charges. VII Technical Amendments... 10.002. Dated: November 24, 2010. Millisa Gary, Acting Director, Acquisition Policy Division. [FR Doc...
76 FR 70813 - Privacy Act of 1974, as Amended
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... ensuring uniform and high ethical standards of conduct for paid tax return preparers. The major components... return preparers, extending the ethical rules found in Treasury Department Circular 230 to all paid tax..., fingerprint, and tax compliance checks, and to ethics and other regulatory rules; may be required to take...
The Role of Visual Cues in Microgravity Spatial Orientation
NASA Technical Reports Server (NTRS)
Oman, Charles M.; Howard, Ian P.; Smith, Theodore; Beall, Andrew C.; Natapoff, Alan; Zacher, James E.; Jenkin, Heather L.
2003-01-01
In weightlessness, astronauts must rely on vision to remain spatially oriented. Although gravitational down cues are missing, most astronauts maintain a subjective vertical -a subjective sense of which way is up. This is evidenced by anecdotal reports of crewmembers feeling upside down (inversion illusions) or feeling that a floor has become a ceiling and vice versa (visual reorientation illusions). Instability in the subjective vertical direction can trigger disorientation and space motion sickness. On Neurolab, a virtual environment display system was used to conduct five interrelated experiments, which quantified: (a) how the direction of each person's subjective vertical depends on the orientation of the surrounding visual environment, (b) whether rolling the virtual visual environment produces stronger illusions of circular self-motion (circular vection) and more visual reorientation illusions than on Earth, (c) whether a virtual scene moving past the subject produces a stronger linear self-motion illusion (linear vection), and (d) whether deliberate manipulation of the subjective vertical changes a crewmember's interpretation of shading or the ability to recognize objects. None of the crew's subjective vertical indications became more independent of environmental cues in weightlessness. Three who were either strongly dependent on or independent of stationary visual cues in preflight tests remained so inflight. One other became more visually dependent inflight, but recovered postflight. Susceptibility to illusions of circular self-motion increased in flight. The time to the onset of linear self-motion illusions decreased and the illusion magnitude significantly increased for most subjects while free floating in weightlessness. These decreased toward one-G levels when the subject 'stood up' in weightlessness by wearing constant force springs. For several subjects, changing the relative direction of the subjective vertical in weightlessness-either by body rotation or by simply cognitively initiating a visual reorientation-altered the illusion of convexity produced when viewing a flat, shaded disc. It changed at least one person's ability to recognize previously presented two-dimensional shapes. Overall, results show that most astronauts become more dependent on dynamic visual motion cues and some become responsive to stationary orientation cues. The direction of the subjective vertical is labile in the absence of gravity. This can interfere with the ability to properly interpret shading, or to recognize complex objects in different orientations.
Time-Varying Expression of the Formation Flying along Circular Trajectories
NASA Technical Reports Server (NTRS)
Kawaguchi, Jun'ichiro
2007-01-01
Usually, the formation flying associated with circular orbits is discussed through the well-known Hill s or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller s performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.
Realization of localized Bohr-like wave packets.
Mestayer, J J; Wyker, B; Lancaster, J C; Dunning, F B; Reinhold, C O; Yoshida, S; Burgdörfer, J
2008-06-20
We demonstrate a protocol to create localized wave packets in very-high-n Rydberg states which travel in nearly circular orbits around the nucleus. Although these wave packets slowly dephase and eventually lose their localization, their motion can be monitored over several orbital periods. These wave packets represent the closest analog yet achieved to the original Bohr model of the hydrogen atom, i.e., an electron in a circular classical orbit around the nucleus. The possible extension of the approach to create "planetary atoms" in highly correlated stable multiply excited states is discussed.
Optimal rendezvous in the neighborhood of a circular orbit
NASA Technical Reports Server (NTRS)
Jones, J. B.
1976-01-01
The minimum velocity-change rendezvous solutions, when the motion may be linearized about a circular orbit, fall into two separate regions; the phase-for-free region and the general region. Phase-for-free solutions are derived from the optimum transfer solutions, require the same velocity-change expenditure, but may not be unique. Analytic solutions are presented in two of the three subregions. An algorithm is presented for determining the unique solutions in the general region. Various sources of initial conditions are discussed and three examples are presented.
NASA Astrophysics Data System (ADS)
Sugimoto, N.; Kugo, K.; Watanabe, Y.
2002-07-01
Asymptotic analysis is carried out to derive a nonlinear wave equation for flexural motions of an elastic beam of circular cross-section travelling along the centre-axis of an air-filled, circular tube placed coaxially. Both the beam and tube are assumed to be long enough for end-effects to be ignored and the aerodynamic loading on the lateral surface of the beam is considered. Assuming a compressible inviscid fluid, the velocity potential of the air is sought systematically in the form of power series in terms of the ratios of the tube radius to a wavelength and of a typical deflection to the radius. Evaluating the pressure force acting on the lateral surface of the beam, the aerodynamic loading including the effects of finite deflection as well as of air's compressibility and axial curvature of the beam are obtained. Although the nonlinearity arises from the kinematical condition on the beam surface, it may be attributed to the presence of the tube wall. With the aerodynamic loading thus obtained, a nonlinear wave equation is derived, whereas linear theory is assumed for the flexural motions of the beam. Some discussions are given on the results.
Quantum motion of a point particle in the presence of the Aharonov–Bohm potential in curved space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Edilberto O., E-mail: edilbertoo@gmail.com; Ulhoa, Sérgio C., E-mail: sc.ulhoa@gmail.com; Andrade, Fabiano M., E-mail: f.andrade@ucl.ac.uk
The nonrelativistic quantum dynamics of a spinless charged particle in the presence of the Aharonov–Bohm potential in curved space is considered. We chose the surface as being a cone defined by a line element in polar coordinates. The geometry of this line element establishes that the motion of the particle can occur on the surface of a cone or an anti-cone. As a consequence of the nontrivial topology of the cone and also because of two-dimensional confinement, the geometric potential should be taken into account. At first, we establish the conditions for the particle describing a circular path in suchmore » a context. Because of the presence of the geometric potential, which contains a singular term, we use the self-adjoint extension method in order to describe the dynamics in all space including the singularity. Expressions are obtained for the bound state energies and wave functions. -- Highlights: •Motion of particle under the influence of magnetic field in curved space. •Bound state for Aharonov–Bohm problem. •Particle describing a circular path. •Determination of the self-adjoint extension parameter.« less
Fast, Safe, Propellant-Efficient Spacecraft Motion Planning Under Clohessy-Wiltshire-Hill Dynamics
NASA Technical Reports Server (NTRS)
Starek, Joseph A.; Schmerling, Edward; Maher, Gabriel D.; Barbee, Brent W.; Pavone, Marco
2016-01-01
This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant- optimized rendezvous and proximity operations under the Clohessy-Wiltshire-Hill dynamics model. The approach calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely circularize the spacecraft orbit along its coasting arc under a given set of potential thruster failures. Key features of the proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite servicing to orbital debris removal and autonomous inspection missions.
Scale-by-scale energy budgets which account for the coherent motion
NASA Astrophysics Data System (ADS)
F, Thiesset; L, Danaila; A, Antonia R.; T, Zhou
2011-12-01
Scale-by-scale energy budget equations are written for flows where coherent structures may be prominent. Both general and locally isotropic formulations are provided. In particular, the contribution to the production, diffusion and energy transfer terms associated with the coherent motion is highlighted. Preliminary results are presented in the intermediate wake of a circular cylinder for phase-averaged second-and third-order structure functions. The experimental data provide adequate support for the scale-by-scale budgets.
Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao, E-mail: zhangchao@cqu.edu.cn; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030; Liao, Qiang, E-mail: lqzx@cqu.edu.cn
The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competitionmore » between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. - Highlights: • Study of bacterial locomotion in flow as an early stage in biofilm formation. • Mathematical model combining bacterial swimming and the motion with flow. • Boundary layer plays a key role in bacterial attachment under flow condition. • The competition between bacterial swimming and the motion with flow is evaluated.« less
Stability of a chemically active floating disk
NASA Astrophysics Data System (ADS)
Vandadi, Vahid; Jafari Kang, Saeed; Rothstein, Jonathan; Masoud, Hassan
2017-11-01
We theoretically study the translational stability of a chemically active disk located at a flat liquid-gas interface. The initially immobile circular disk uniformly releases an interface-active agent that locally changes the surface tension and is insoluble in the bulk. If left unperturbed, the stationary disk remains motionless as the agent is discharged. Neglecting the inertial effects, we numerically test whether a perturbation in the translational velocity of the disk can lead to its spontaneous and self-sustained motion. Such a perturbation gives rise to an asymmetric distribution of the released factor that could trigger and sustain the Marangoni propulsion of the disk. An implicit Fourier-Chebyshev spectral method is employed to solve the advection-diffusion equation for the concentration of the active agent. The solution, given a linear equation of state for the surface tension, provides the shear stress distribution at the interface. This and the no-slip condition on the wetted surface of the disk are then used at each time step to semi-analytically determine the Stokes flow in the semi-infinite liquid layer. Overall, the findings of our investigation pave the way for pinpointing the conditions under which interface-bound active particles become dynamically unstable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawahara, Hajime, E-mail: divrot@gmail.com
We consider the effect of planetary spin on the planetary radial velocity (PRV) in dayside spectra of exoplanets. To understand the spin effect qualitatively, we derive an analytic formula of the intensity-weighted radial velocity from the planetary surface on the following assumptions: (1) constant and solid rotation without precession, (2) stable and uniform distribution of molecules/atoms, (3) emission models from the dayside hemisphere, and (4) a circular orbit. On these assumptions, we find that the curve of the PRV is distorted by the planetary spin and this anomaly is characterized by the spin radial velocity at the equator and amore » projected angle on a celestial plane between the spin axis and the axis of orbital motion {lambda}{sub p} in a manner analogous to the Rossiter-McLaughlin effect. The latter can constrain the planetary obliquity. Creating mock PRV data with 3 km s{sup -1} accuracy, we demonstrate how {lambda}{sub p} and the spin radial velocity at the equator are estimated. We find that the stringent constraint of eccentricity is crucial to detect the spin effect. Though our formula is still qualitative, we conclude that the PRV in the dayside spectra will be a powerful means for constraining the planetary spin.« less
Deformation and Flexibility Equations for ARIS Umbilicals Idealized as Planar Elastica
NASA Technical Reports Server (NTRS)
Hampton, R. David; Leamy, Michael J.; Bryant, Paul J.; Quraishi, Naveed
2005-01-01
The International Space Station relies on the active rack isolation system (ARIS) as the central component of an integrated, stationwide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an international standard payload rack from disturbances due to the motion of the Space Station. Disturbances to microgravity experiments on ARIS isolated racks are transmitted primarily via the ARIS power and vacuum umbilicals. Experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller s bandwidth at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This work documents the development and verification of equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, inextensible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially curved (not necessarily circular), cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical slope changes monotonically. The treatment is applicable to the ARIS power and vacuum umbilicals under the indicated assumptions.
Rocking and rolling: A can that appears to rock might actually roll
NASA Astrophysics Data System (ADS)
Srinivasan, Manoj; Ruina, Andy
2008-12-01
A beer bottle or soda can on a table, when slightly tipped and released, falls to an upright position and then rocks up to a somewhat opposite tilt. Superficially this rocking motion involves a collision when the flat circular base of the container slaps the table before rocking up to the opposite tilt. A keen eye notices that the after-slap rising tilt is not generally just diametrically opposite the initial tilt but is veered to one side or the other. Cushman and Duistermaat [Regular Chaotic Dyn. 11, 31 (2006)] recently noticed such veering when a flat disk with rolling boundary conditions is dropped nearly flat. Here, we generalize these rolling disk results to arbitrary axi-symmetric bodies and to frictionless sliding. More specifically, we study motions that almost but do not quite involve a face-down collision of the round container’s bottom with the tabletop. These motions involve a sudden rapid motion of the contact point around the circular base. Surprisingly, similar to the rolling disk, the net angle of motion of this contact point is nearly independent of initial conditions. This angle of turn depends simply on the geometry and mass distribution but not on the moment of inertia about the symmetry axis. We derive simple asymptotic formulas for this “angle of turn” of the contact point and check the result with numerics and with simple experiments. For tall containers (height much bigger than radius) the angle of turn is just over π and the sudden rolling motion superficially appears as a nearly symmetric collision leading to leaning on an almost diametrically opposite point on the bottom rim.
Kennedy, R S; Hettinger, L J; Harm, D L; Ordy, J M; Dunlap, W P
1996-01-01
Vection (V) refers to the compelling visual illusion of self-motion experienced by stationary individuals when viewing moving visual surrounds. The phenomenon is of theoretical interest because of its relevance for understanding the neural basis of ordinary self-motion perception, and of practical importance because it is the experience that makes simulation, virtual reality displays, and entertainment devices more vicarious. This experiment was performed to address whether an optokinetically induced vection illusion exhibits monotonic and stable psychometric properties and whether individuals differ reliably in these (V) perceptions. Subjects were exposed to varying velocities of the circular vection (CV) display in an optokinetic (OKN) drum 2 meters in diameter in 5 one-hour daily sessions extending over a 1 week period. For grouped data, psychophysical scalings of velocity estimates showed that exponents in a Stevens' type power function were essentially linear (slope = 0.95) and largely stable over sessions. Latencies were slightly longer for the slowest and fastest induction stimuli, and the trend over sessions for average latency was longer as a function of practice implying time course adaptation effects. Test-retest reliabilities for individual slope and intercept measures were moderately strong (r = 0.45) and showed no evidence of superdiagonal form. This implies stability of the individual circularvection (CV) sensitivities. Because the individual CV scores were stable, reliabilities were improved by averaging 4 sessions in order to provide a stronger retest reliability (r = 0.80). Individual latency responses were highly reliable (r = 0.80). Mean CV latency and motion sickness symptoms were greater in males than in females. These individual differences in CV could be predictive of other outcomes, such as susceptibility to disorientation or motion sickness, and for CNS localization of visual-vestibular interactions in the experience of self-motion.
Malinouski, Mikalai; Kehr, Sebastian; Finney, Lydia; Vogt, Stefan; Carlson, Bradley A.; Seravalli, Javier; Jin, Richard; Handy, Diane E.; Park, Thomas J.; Loscalzo, Joseph; Hatfield, Dolph L.
2012-01-01
Abstract Aim: Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Results: Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA[Ser]Sec and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. Innovation: We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. Conclusion: XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution. Antioxid. Redox Signal. 16, 185–192. PMID:21854231
Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation
NASA Astrophysics Data System (ADS)
Filik, T.; Tuncer, T. E.
2009-10-01
In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.
Thermocapillary Motion in an Emulsion
NASA Technical Reports Server (NTRS)
Pukhnachov, Vladislav V.; Voinov, Oleg V.
1996-01-01
The phenomenological model for the motion of an emulsion or a gas-liquid mixture exposed to thermocapillary forces and micro-acceleration is formulated. The analytical and numerical investigation of one-dimensional flows for these media is fulfilled, the structure of discontinuous motion is studied. The stability conditions of a space-uniform state and of the interface between an emulsion and a pure liquid are obtained.
Neural mechanism for sensing fast motion in dim light.
Li, Ran; Wang, Yi
2013-11-07
Luminance is a fundamental property of visual scenes. A population of neurons in primary visual cortex (V1) is sensitive to uniform luminance. In natural vision, however, the retinal image often changes rapidly. Consequently the luminance signals visual cells receive are transiently varying. How V1 neurons respond to such luminance changes is unknown. By applying large static uniform stimuli or grating stimuli altering at 25 Hz that resemble the rapid luminance changes in the environment, we show that approximately 40% V1 cells responded to rapid luminance changes of uniform stimuli. Most of them strongly preferred luminance decrements. Importantly, when tested with drifting gratings, the preferred speeds of these cells were significantly higher than cells responsive to static grating stimuli but not to uniform stimuli. This responsiveness can be accounted for by the preferences for low spatial frequencies and high temporal frequencies. These luminance-sensitive cells subserve the detection of fast motion under the conditions of dim illumination.
Numerical characterization of a flexible circular coil for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.
2012-10-01
Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.
A flatfile of ground motion intensity measurements from induced earthquakes in Oklahoma and Kansas
Rennolet, Steven B.; Moschetti, Morgan P.; Thompson, Eric M.; Yeck, William
2018-01-01
We have produced a uniformly processed database of orientation-independent (RotD50, RotD100) ground motion intensity measurements containing peak horizontal ground motions (accelerations and velocities) and 5-percent-damped pseudospectral accelerations (0.1–10 s) from more than 3,800 M ≥ 3 earthquakes in Oklahoma and Kansas that occurred between January 2009 and December 2016. Ground motion time series were collected from regional, national, and temporary seismic arrays out to 500 km. We relocated the majority of the earthquake hypocenters using a multiple-event relocation algorithm to produce a set of near-uniformly processed hypocentral locations. Ground motion processing followed standard methods, with the primary objective of reducing the effects of noise on the measurements. Regional wave-propagation features and the high seismicity rate required careful selection of signal windows to ensure that we captured the entire ground motion record and that contaminating signals from extraneous earthquakes did not contribute to the database. Processing was carried out with an automated scheme and resulted in a database comprising more than 174,000 records (https://dx.doi.org/10.5066/F73B5X8N). We anticipate that these results will be useful for improved understanding of earthquake ground motions and for seismic hazard applications.
NASA Astrophysics Data System (ADS)
Siahaan, P.; Suryani, A.; Kaniawati, I.; Suhendi, E.; Samsudin, A.
2017-02-01
The purpose of this research is to identify the development of students’ science process skills (SPS) on linear motion concept by utilizing simple computer simulation. In order to simplify the learning process, the concept is able to be divided into three sub-concepts: 1) the definition of motion, 2) the uniform linear motion and 3) the uniformly accelerated motion. This research was administered via pre-experimental method with one group pretest-posttest design. The respondents which were involved in this research were 23 students of seventh grade in one of junior high schools in Bandung City. The improving process of students’ science process skill is examined based on normalized gain analysis from pretest and posttest scores for all sub-concepts. The result of this research shows that students’ science process skills are dramatically improved by 47% (moderate) on observation skill; 43% (moderate) on summarizing skill, 70% (high) on prediction skill, 44% (moderate) on communication skill and 49% (moderate) on classification skill. These results clarify that the utilizing simple computer simulations in physics learning is be able to improve overall science skills at moderate level.
Chromatic induction in space and time.
Coia, Andrew J; Shevell, Steven K
2018-04-01
The color appearance of a light depends on variation in the complete visual field over both space and time. In the spatial domain, a chromatic stimulus within a patterned chromatic surround can appear a different hue than the same stimulus within a uniform surround. In the temporal domain, a stimulus presented as an element of a continuously changing chromaticity can appear a different color compared to the identical stimulus, presented simultaneously but viewed alone. This is the flash-lag effect for color, which has an analog in the domain of motion: a pulsed object seen alone can appear to lag behind an identical pulsed object that is an element of a motion sequence. Studies of the flash-lag effect for motion have considered whether it is mediated by a neural representation for the moving physical stimulus or, alternatively, for the perceived motion. The current study addresses this question for the flash-lag effect for color by testing whether the color flash lag depends on a representation of only the changing chromatic stimulus or, alternatively, its color percept, which can be altered by chromatic induction. baseline measurements for spatial chromatic induction determined the chromaticity of a flashed ring within a uniform surround that matched a flashed ring within a patterned surround. Baseline measurements for the color flash-lag effect determined the chromaticity of a pulsed ring presented alone (within a uniform surround) that matched a pulsed ring presented in a sequence of changing chromaticity over time (also within a uniform surround). Finally, the main experiments combined chromatic induction from a patterned surround and the flash-lag effect, in three conditions: (1) both the changing and pulsed rings were within a patterned chromatic surround; (2) the changing ring was within a patterned surround and the pulsed ring within a uniform surround; and (3) the changing ring was within a uniform surround and the pulsed ring within a patterned surround. the flash-lag measurements for a changing chromaticity were affected by perceptual changes induced by the surrounding chromatic pattern. Thus, the color shifts induced by a chromatic surround are incorporated in the neural representation mediating the flash-lag effect for color.
Potential generated inner and outside a circular wire in its plane. Application to Saturn's ring
NASA Astrophysics Data System (ADS)
Najid, N.-E.; Zegoumou, M.; El Ourabi, E. H.
2012-12-01
In this article we derive the development of the potential generated by a homogeneous wire bent into a circular shape (Najid, Jammari & Zegoumou, 2005). We develop the potential as a power series of the distance from an appropriate origin to the test particle. The potential is expressed as a function of Legendre polynomials. We study both, the case where the test particle is inside or outside the circular wire. By Lagrangian formulation, we establish the differential equation of motion. The numerical resolution leads us to different orbits. Outside the wire we get a case where the test particle is confined between a maxima and minima of the radial position; while inner the wire the test particle is subjected to an escape case depending on the time of integration.
Song, Jintong; Wang, Man; Zhou, Xiangge; Xiang, Haifeng
2018-05-17
A series of chiral and helical Pt II -Salen complexes with 1,1'-binaphthyl linkers were synthesized and characterized. Owing to the restriction of intramolecular motions of central 1,1'-binaphthyls, the complexes exhibit unusual near-infrared aggregation-induced phosphorescence (AIP). The (R)/(S) enantiopure complexes were characterized by X-ray diffraction, circular dichroism spectra, time-dependent density functional theory calculations, and circularly polarized luminescence (CPL). The present work explores the use of tetradentate ligands that can be easily prepared from commercially available enantiopure compounds, and the subsequent preparation of stable CPL-active square planar Pt II complexes with AIP effect that may have interest in many applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Water entry and exit of horizontal circular cylinders
NASA Astrophysics Data System (ADS)
Greenhow, M.; Moyo, S.
This paper describes fully nonlinear two-dimensional numerical calculations of the free-surface deformations of initially calm water caused by the forced motion of totally or partially submerged horizontal circular cylinders. The paper considers the following. (i) Totally submerged cylinders moving with constant velocity in vertical, horizontal or combined motions. Results are compared with the small-time asymptotic solution obtained by Tyvand and Milohin 1995. Their results, which are taken to third-order (which is when gravity terms first appear in the expansions), are in excellent agreement with the numerical calculations for small times; beyond this only the numerical method gives accurate results until the free surface breaks or the cylinder emerges from the free surface. Breaking can occur during exit due to strongly negative pressures arising on the cylinder surface, or during the downwards motion causing a free-surface depression which closes up rapidly, forming splashes. Downwards motion is also shown to give rise to high-frequency waves in some cases. (ii) The free-surface deformations, pressures and forces acting on a cylinder in vertical or oblique forced motion during engulfment when it submerges from being initially half-submerged. The initial stages, when the cylinder still pierces the free surface, specify the initial conditions for a separate program for a completely submerged body, thereby allowing complete engulfment to be studied. The free surface closes up violently over the top of the cylinder resulting in jet flow, which, while difficult to handle numerically, has been shown to be insignificant for the bulk flow and the cylinder pressures and forces.
Heat transfer in laminar flow along circular rods in infinite square arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, J.H.; Li, W.H.
1988-02-01
The need to understand heat transfer characteristics over rods or tube bundles often arises in the design of compact heat exchangers and safety analysis of nuclear reactors. In particular, the fuel bundles of typical light water nuclear reactors are composed of a large number of circular rods arranged in square array pattern. The purpose of the present study is to analyze heat transfer characteristics of flow in such a multirod geometric configuration. The analysis given here will follow as closely as possible the method of Sparrow et al. who analyzed a similar problem for circular cylinders arranged in an equilateralmore » triangular array. The following major assumptions are made in the present analysis: (1) Flow is fully developed laminar flow paralleled to the axis of rods. (2) The axial profile of the surface heat flux to the fluid is uniform.(3) Thermodynamic properties are assumed constant.« less
Support apparatus for semiconductor wafer processing
Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.
2003-06-10
A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.
Dumais, Daniel; Prévost, Marcel
2014-02-01
We examined the ecophysiology and growth of 0.3-1.3 m tall advance red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea [L.] Mill.) regeneration during a 5-year period following the application of different harvest types producing three sizes of canopy openings: (i) small gaps (<100 m(2) in area; SMA) created by partial uniform single-tree harvest; (ii) irregular gaps of intermediate size (100-300 m(2); INT) created by group-selection harvest (removal of groups of trees, mainly balsam fir, with uniform partial removal between groups); and (iii) large circular gaps (700 m(2); LAR) created by patch-selection harvest (removal of trees in 30-m diameter circular areas with uniform partial removal between gaps). An unharvested control (CON) was monitored for comparison. At the ecophysiological level, we mainly found differences in light-saturated photosynthesis of red spruce and specific leaf area of balsam fir among treatments. Consequently, we observed good height growth of both species in CON and INT, but fir surpassed spruce in SMA and LAR. Results suggest that intermediate 100-300 m(2) irregular openings create microenvironmental conditions that may promote short-term ecophysiology and growth of red spruce, allowing the species to compete with balsam fir advance regeneration. Finally, results observed for spruce in large 700-m(2) openings confirm its inability to grow as rapidly as fir in comparable open conditions.
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
49 CFR 178.45 - Specification 3T seamless steel cylinder.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., or electric furnace process steel of uniform quality is authorized. The steel analysis must conform... inches in diameter. (4) All openings must be circular. (5) All openings must be threaded. Threads must be in compliance with the following: (i) Each thread must be clean cut, even, without any checks, and to...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
..., Transformer Housings, Junction Boxes, and Accessories Airport Design'' Advisory Circular, AC 150/5345-42G. The... necessary to carry out this subchapter and regulations to be assumed by the sponsor. Uniform design... A307-A) per Engineering Brief (EB) 83, In-Pavement Light Fixture Bolts is introduced where applicable...
Influence of tree spatial pattern and sample plot type and size on inventory
John-Pascall Berrill; Kevin L. O' Hara
2012-01-01
Sampling with different plot types and sizes was simulated using tree location maps and data collected in three even-aged coast redwood (Sequoia sempervirens) stands selected to represent uniform, random, and clumped spatial patterns of tree locations. Fixed-radius circular plots, belt transects, and variable-radius plots were installed by...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... institutions of higher education, hospitals, other non-profit and commercial organizations. The Grants Officer...) Circular A-110, ``Uniform Administrative Requirements for Grants and Agreements with Institutions of Higher Education, Hospitals and Other Non-Profit Organizations.'' This request to the Office of Management and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... of the United States (``HTSUS'') statistical reporting numbers 7306.19.1010, 7306.19.1050, 7306.19... uniform except for the existence of ``introductory'' rates in certain zones. Because Al Jazeera has been located in Sohar Industrial Estate beyond any ``introductory'' period in the other industrial estates, it...
Ketterhagen, William R
2011-05-16
Film coating uniformity is an important quality attribute of pharmaceutical tablets. Large variability in coating thickness can limit process efficiency or cause significant variation in the amount or delivery rate of the active pharmaceutical ingredient to the patient. In this work, the discrete element method (DEM) is used to computationally model the motion and orientation of several novel pharmaceutical tablet shapes in a film coating pan in order to predict coating uniformity. The model predictions are first confirmed with experimental data obtained from an equivalent film coating pan using a machine vision system. The model is then applied to predict coating uniformity for various tablet shapes, pan speeds, and pan loadings. The relative effects of these parameters on both inter- and intra-tablet film coating uniformity are assessed. The DEM results show intra-tablet coating uniformity is strongly influenced by tablet shape, and the extent of this can be predicted by a measure of the tablet shape. The tablet shape is shown to have little effect on the mixing of tablets, and thus, the inter-tablet coating uniformity. The pan rotation speed and pan loading are shown to have a small effect on intra-tablet coating uniformity but a more significant impact on inter-tablet uniformity. These results demonstrate the usefulness of modeling in guiding drug product development decisions such as selection of tablet shape and process operating conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
Numerical Simulation of Particle Motion in a Curved Channel
NASA Astrophysics Data System (ADS)
Liu, Yi; Nie, Deming
2018-01-01
In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.
Mechanics, Waves and Thermodynamics
NASA Astrophysics Data System (ADS)
Ranjan Jain, Sudhir
2016-05-01
Figures; Preface; Acknowledgement; 1. Energy, mass, momentum; 2. Kinematics, Newton's laws of motion; 3. Circular motion; 4. The principle of least action; 5. Work and energy; 6. Mechanics of a system of particles; 7. Friction; 8. Impulse and collisions; 9. Central forces; 10. Dimensional analysis; 11. Oscillations; 12. Waves; 13. Sound of music; 14. Fluid mechanics; 15. Water waves; 16. The kinetic theory of gases; 17. Concepts and laws of thermodynamics; 18. Some applications of thermodynamics; 19. Basic ideas of statistical mechanics; Bibliography; Index.
Parametric design of tri-axial nested Helmholtz coils
NASA Astrophysics Data System (ADS)
Abbott, Jake J.
2015-05-01
This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.
Parametric design of tri-axial nested Helmholtz coils.
Abbott, Jake J
2015-05-01
This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.
Beamforming strategy of ULA and UCA sensor configuration in multistatic passive radar
NASA Astrophysics Data System (ADS)
Hossa, Robert
2009-06-01
A Beamforming Network (BN) concept of Uniform Linear Array (ULA) and Uniform Circular Array (UCA) dipole configuration designed to multistatic passive radar is considered in details. In the case of UCA configuration, computationally efficient procedure of beamspace transformation from UCA to virtual ULA configuration with omnidirectional coverage is utilized. If effect, the idea of the proposed solution is equivalent to the techniques of antenna array factor shaping dedicated to ULA structure. Finally, exemplary results from the computer software simulations of elaborated spatial filtering solutions to reference and surveillance channels are provided and discussed.
Parametric design of tri-axial nested Helmholtz coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbott, Jake J., E-mail: jake.abbott@utah.edu
This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.
NASA Astrophysics Data System (ADS)
Dokumaci, E.
1995-05-01
The theory of Zwikker and Kosten for axisymmetric wave propagation in circular pipes has been extended to include the effect of uniform mean flow. This formulation can be used in acoustical modelling of both the honeycomb pipes in monolithic catalytic converters and the standard pipes in internal combustion engine exhaust lines. The effects of mean flow on the propagation constants are shown. Two-port elements for acoustic modelling of the honeycomb structure of monolithic catalytic converters are developed and applied to the prediction of the transmission loss characteristics.
Phase 2: Array automated assembly task low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Jones, G. T.
1979-01-01
Several microwave systems for use in solar cell fabrication were developed and experimentally tested. The first system used a standing wave rectangular waveguide horn applicator. Satisfactory results were achieved with this system for impedance matching and wafer surface heating uniformity. The second system utilized a resonant TM sub 011 mode cylindrical cavity but could not be employed due to its poor energy coupling efficiency. The third and fourth microwave systems utilized a circular waveguide operating in the TM sub 01 and TM sub 11 but had problems with impedance matching, efficiency, and field uniformity.
Project Physics Handbook 1, Concepts of Motion.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Thirteen experiments and 15 activities are presented in this unit handbook for student use. The experiment sections are concerned with naked-eye observation in astronomy, regularity and time, variations in data, uniform motion, gravitational acceleration, Galileo's experiments, Netson's laws, inertial and gravitational mass, trajectories, and…
NASA Astrophysics Data System (ADS)
Rotenberg, David J.
Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.
Improved moving source photometry with TRIPPy
NASA Astrophysics Data System (ADS)
Alexandersen, Mike; Fraser, Wesley Cristopher
2017-10-01
Photometry of moving sources is more complicated than for stationary sources, because the sources trail their signal out over more pixels than a point source of the same magnitude. Using a circular aperture of same size as would be appropriate for point sources can cut out a large amount of flux if a moving source moves substantially relative to the size of the aperture during the exposure, resulting in underestimated fluxes. Using a large circular aperture can mitigate this issue at the cost of a significantly reduced signal to noise compared to a point source, as a result of the inclusion of a larger background region within the aperture.Trailed Image Photometry in Python (TRIPPy) solves this problem by using a pill-shaped aperture: the traditional circular aperture is sliced in half perpendicular to the direction of motion and separated by a rectangle as long as the total motion of the source during the exposure. TRIPPy can also calculate the appropriate aperture correction (which will depend both on the radius and trail length of the pill-shaped aperture), and has features for selecting good PSF stars, creating a PSF model (convolved moffat profile + lookup table) and selecting a custom sky-background area in order to ensure no other sources contribute to the background estimate.In this poster, we present an overview of the TRIPPy features and demonstrate the improvements resulting from using TRIPPy compared to photometry obtained by other methods with examples from real projects where TRIPPy has been implemented in order to obtain the best-possible photometric measurements of Solar System objects. While TRIPPy has currently mainly been used for Trans-Neptunian Objects, the improvement from using the pill-shaped aperture increases with source motion, making TRIPPy highly relevant for asteroid and centaur photometry as well.
Saikko, Vesa
2015-01-21
The temporal change of the direction of sliding relative to the ultrahigh molecular weight polyethylene (UHMWPE) component of prosthetic joints is known to be of crucial importance with respect to wear. One complete revolution of the resultant friction vector is commonly called a wear cycle. It was hypothesized that in order to accelerate the wear test, the cycle frequency may be substantially increased if the circumference of the slide track is reduced in proportion, and still the wear mechanisms remain realistic and no overheating takes place. This requires an additional slow motion mechanism with which the lubrication of the contact is maintained and wear particles are conveyed away from the contact. A three-station, dual motion high frequency circular translation pin-on-disk (HF-CTPOD) device with a relative cycle frequency of 25.3 Hz and an average sliding velocity of 27.4 mm/s was designed. The pins circularly translated at high frequency (1.0 mm per cycle, 24.8 Hz, clockwise), and the disks at low frequency (31.4mm per cycle, 0.5 Hz, counter-clockwise). In a 22 million cycle (10 day) test, the wear rate of conventional gamma-sterilized UHMWPE pins against polished CoCr disks in diluted serum was 1.8 mg per 24 h, which was six times higher than that in the established 1 Hz CTPOD device. The wear mechanisms were similar. Burnishing of the pin was the predominant feature. No overheating took place. With the dual motion HF-CTPOD method, the wear testing of UHMWPE as a bearing material in total hip arthroplasty can be substantially accelerated without concerns of the validity of the wear simulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Investigation of Synthetic Aperture Radar Autofocus,
1985-04-01
uniform straight line motion of the aircraft. Unknown aircraft motions alter the matched filter required for processing . Autofocussing involves determi...REFERENCES APPENDIX 1 RESOLUTION OF SAR APPENDIX 2 AIRCRAFT MOTION TOLERANCE APPENDIX 3 INITIAL RESOLUTION FOR FOLLOW-DOWN PROCESSING APPENDIX 4 DEPENDENCE OF...Range resolution is achieved using on-board pulse-compression techniques, while azimuth processing is currently done at RSRE on a Marconi hardware
Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K
2010-06-01
Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.
Fundamentals of Physics, Part 1 (Chapters 1-11)
NASA Astrophysics Data System (ADS)
Halliday, David; Resnick, Robert; Walker, Jearl
2003-12-01
Chapter 1.Measurement. How does the appearance of a new type of cloud signal changes in Earth's atmosphere? 1-1 What Is Physics? 1-2 Measuring Things. 1-3 The International System of Units. 1-4 Changing Units. 1-5 Length. 1-6 Time. 1-7 Mass. Review & Summary. Problems. Chapter 2.Motion Along a Straight Line. What causes whiplash injury in rear-end collisions of cars? 2-1 What Is Physics? 2-2 Motion. 2-3 Position and Displacement. 2-4 Average Velocity and Average Speed. 2-5 Instantaneous Velocity and Speed. 2-6 Acceleration. 2-7 Constant Acceleration: A Special Case. 2-8 Another Look at Constant Acceleration. 2-9 Free-Fall Acceleration. 2-10 Graphical Integration in Motion Analysis. Review & Summary. Questions. Problems. Chapter 3.Vectors. How does an ant know the way home with no guiding clues on the deser t plains? 3-2 Vectors and Scalars. 3-3 Adding Vectors Geometrically. 3-4 Components of Vectors. 3-5 Unit Vectors. 3-6 Adding Vectors by Components. 3-7 Vectors and the Laws of Physics. 3-8 Multiplying Vectors. Review & Summary. Questions. Problems. Chapter 4.Motion in Two and Three Dimensions. In a motorcycle jump for record distance, where does the jumper put the second ramp? 4-1 What Is Physics? 4-2 Position and Displacement. 4-3 Average Velocity and Instantaneous Velocity. 4-4 Average Acceleration and Instantaneous Acceleration. 4-5 Projectile Motion. 4-6 Projectile Motion Analyzed. 4-7 Uniform Circular Motion. 4-8 Relative Motion in One Dimension. 4-9 Relative Motion in Two Dimensions. Review & Summary. Questions. Problems. Chapter 5.Force and Motion-I. When a pilot takes off from an aircraft carrier, what causes the compulsion to fly the plane into the ocean? 5-1 What Is Physics? 5-2 Newtonian Mechanics. 5-3 Newton's First Law. 5-4 Force. 5-5 Mass. 5-6 Newton's Second Law. 5-7 Some Particular Forces. 5-8 Newton's Third Law. 5-9 Applying Newton's Laws. Review & Summary. Questions. Problems. Chapter 6.Force and Motion-II. Can a Grand Prix race car be driven upside down on a ceiling? 6-1 What Is Physics? 6-2 Friction. 6-3 Properties of Friction. 6-4 The Drag Force and Terminal Speed. 6-5 Uniform Circular Motion. Review & Summary. Questions. Problems. Chapter 7.Kinetic Energy and Work. In an epidural procedure, what sensations clue a surgeon that the needle has reached the spinal canal? 7-1 What Is Physics? 7-2 What Is Energy? 7-3 Kinetic Energy. 7-4 Work. 7-5 Work and Kinetic Energy. 7-6 Work Done by the Gravitational Force. 7-7 Work Done by a Spring Force. 7-8 Work Done by a General Variable Force. 7-9 Power. Review & Summary. Questions. Problems. Chapter 8.Potential Energy and Conservation of Energy. In rock climbing, what subtle factor determines if a falling climber will snap the rope? 8-1 What Is Physics? 8-2 Work and Potential Energy. 8-3 Path Independence of Conservative Forces. 8-4 Determining Potential Energy Values. 8-5 Conservation of Mechanical Energy. 8-6 Reading a Potential Energy Curve. 8-7 Work Done on a System by an External Force. 8-8 Conservation of Energy. Review & Summary. Questions. Problems. Chapter 9.Center of Mass and Linear Momentum. Does the presence of a passenger reduce the fatality risk in head-on car collisions? 9-1 What Is Physics? 9-2 The Center of Mass. 9-3 Newton's Second Law for a System of Particles. 9-4 Linear Momentum. 9-5 The Linear Momentum of a System of Particles. 9-6 Collision and Impulse. 9-7 Conservation of Linear Momentum. 9-8 Momentum and Kinetic Energy in Collisions. 9-9 Inelastic Collisions in One Dimension. 9-10 Elastic Collisions in One Dimension. 9-11 Collisions in Two Dimensions. 9-12 Systems with Varying Mass: A Rocket. Review & Summary. Questions. Problems. Chapter 10.Rotation. What causes roller-coaster headache? 10-1 What Is Physics? 10-2 The Rotational Variables. 10-3 Are Angular Quantities Vectors? 10-4 Rotation with Constant Angular Acceleration. 10-5 Relating the Linear and Angular Variables. 10-6 Kinetic Energy of Rotation. 10-7 Calculating the Rotational Inertia. 10-8 Torque. 10-9 Newton's Second Law for Rotation. 10-10 Work and Rotational Kinetic Energy. Review & Summary. Questions. Problems. Chapter 11.Rolling, Torque, and Angular Momentum. When a jet-powered car became supersonic in setting the land-speed record, what was the danger to the wheels? 11-1 What Is Physics? 11-2 Rolling as Translation and Rotation Combined. 11-3 The Kinetic Energy of Rolling. 11-4 The Forces of Rolling. 11-5 The Yo-Yo. 11-6 Torque Revisited. 11-7 Angular Momentum. 11-8 Newton's Second Law in Angular Form. 11-9 The Angular Momentum of a System of Particles. 11-10 The Angular Momentum of a Rigid Body Rotating About a Fixed Axis. 11-11 Conservation of Angular Momentum. 11-12 Precession of a Gyroscope. Review & Summary. Questions. Problems. Appendix A: The International System of Units (SI). Appendix B: Some Fundamental Constants of Physics. Appendix C: Some Astronomical Data. Appendix D: Conversion Factors. Appendix E: Mathematical Formulas. Appendix F: Properties of the Elements. Appendix G: Periodic Table of the Elements. Answers to Checkpoints and Odd-Numbered Questions and Problems. Index.
Helicon modes in uniform plasmas. III. Angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenzel, R. L.; Urrutia, J. M.
Helicons are electromagnetic waves with helical phase fronts propagating in the whistler mode in magnetized plasmas and solids. They have similar properties to electromagnetic waves with angular momentum in free space. Helicons are circularly polarized waves carrying spin angular momentum and orbital angular momentum due to their propagation around the ambient magnetic field B{sub 0}. These properties have not been considered in the community of researchers working on helicon plasma sources, but are the topic of the present work. The present work focuses on the field topology of helicons in unbounded plasmas, not on helicon source physics. Helicons are excitedmore » in a large uniform laboratory plasma with a magnetic loop antenna whose dipole axis is aligned along or across B{sub 0}. The wave fields are measured in orthogonal planes and extended to three dimensions (3D) by interpolation. Since density and B{sub 0} are uniform, small amplitude waves from loops at different locations can be superimposed to generate complex antenna patterns. With a circular array of phase shifted loops, whistler modes with angular and axial wave propagation, i.e., helicons, are generated. Without boundaries radial propagation also arises. The azimuthal mode number m can be positive or negative while the field polarization remains right-hand circular. The conservation of energy and momentum implies that these field quantities are transferred to matter which causes damping or reflection. Wave-particle interactions with fast electrons are possible by Doppler shifted resonances. The transverse Doppler shift is demonstrated. Wave-wave interactions are also shown by showing collisions between different helicons. Whistler turbulence does not always have to be created by nonlinear wave-interactions but can also be a linear superposition of waves from random sources. In helicon collisions, the linear and/or orbital angular momenta can be canceled, which results in a great variety of field topologies. The work will be contrasted to the research on helicon plasma sources.« less
NASA Astrophysics Data System (ADS)
Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.
2017-10-01
This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.
Methodology for the regulation of boom sprayers operating in circular trajectories.
Garcia-Ramos, Francisco Javier; Vidal, Mariano; Boné, Antonio; Serreta, Alfredo
2011-01-01
A methodology for the regulation of boom sprayers working in circular trajectories has been developed. In this type of trajectory, the areas of the plots of land treated by the outer nozzles of the boom are treated at reduced rates, and those treated by the inner nozzles are treated in excess. The goal of this study was to establish the methodology to determine the flow of the individual nozzles on the boom to guarantee that the dose of the product applied per surface unit is similar across the plot. This flow is a function of the position of the equipment (circular trajectory radius) and of the displacement velocity such that the treatment applied per surface unit is uniform. GPS technology was proposed as a basis to establish the position and displacement velocity of the tractor. The viability of this methodology was simulated considering two circular plots with radii of 160 m and 310 m, using three sets of equipment with boom widths of 14.5, 24.5 and 29.5 m. Data showed as increasing boom widths produce bigger errors in the surface dose applied (L/m(2)). Error also increases with decreasing plot surface. As an example, considering the three boom widths of 14.5, 24.5 and 29.5 m working on a circular plot with a radius of 160 m, the percentage of surface with errors in the applied surface dose greater than 5% was 30%, 58% and 65% respectively. Considering a circular plot with radius of 310 m the same errors were 8%, 22% and 31%. To obtain a uniform superficial dose two sprayer regulation alternatives have been simulated considering a 14.5 m boom: the regulation of the pressure of each nozzle and the regulation of the pressure of each boom section. The viability of implementing the proposed methodology on commercial boom sprayers using GPS antennas to establish the position and displacement velocity of the tractor was justified with a field trial in which a self-guiding commercial GPS system was used along with three precision GPS systems located in the sprayer boom. The use of an unique central GPS unit should allow the estimation of the work parameters of the boom nozzles (including those located at the boom ends) with great accuracy.
NASA Astrophysics Data System (ADS)
Abdullah, M.; Butt, Asma Rashid; Raza, Nauman; Alshomrani, Ali Saleh; Alzahrani, A. K.
2018-01-01
The magneto hydrodynamic blood flow in the presence of magnetic particles through a circular cylinder is investigated. To calculate the impact of externally applied uniform magnetic field, the blood is electrically charged. Initially the fluid and circular cylinder is at rest but at time t =0+ , the cylinder starts to oscillate along its axis with velocity fsin (Ωt) . To obtain the mathematical model of blood flow with fractional derivatives Caputo fractional operator is employed. The solutions for the velocities of blood and magnetic particles are procured semi analytically by using Laplace transformation method. The inverse Laplace transform has been calculated numerically by using MATHCAD computer software. The obtained results of velocities are presented in Laplace domain in terms of modified Bessel function I0 (·) . The obtained results satisfied all imposed initial and boundary conditions. The hybrid technique that is employed here less computational effort and time cost as compared to other techniques used in literature. As the limiting cases of our results the solutions of the flow model with ordinary derivatives has been procured. Finally, the impact of Reynolds number Re, fractional parameter α and Hartmann number Ha is analyzed and portrayed through graphs. It is worthy to pointing out that fractional derivatives brings remarkable differences as compared to ordinary derivatives. It also has been observed that velocity of blood and magnetic particles is weaker under the effect of transverse magnetic field.
Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street
NASA Astrophysics Data System (ADS)
Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang
1992-03-01
The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Montazeri, M. M.
2018-04-01
Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.
NASA Astrophysics Data System (ADS)
Chizhik, Alexander; Zhukov, Arkady; Gonzalez, Julian; Stupakiewicz, Andrzej
2018-02-01
Magnetization reversal in magnetic microwires was studied in the presence of external mechanical stress and helical magnetic fields using the magneto-optical Kerr effect. It was found that a combination of tuned magnetic anisotropy and a direct current or pulsed circular magnetic field activated different types of magnetization reversal scenarios. The application of the pulsed magnetic field of 10 ns time duration induced a transient controlling action to switch the magnetic states without activating a domain wall motion. This created a promising method for tuning the giant magneto-impedance effect.
Electromagnetic tornado in the vacuum gap of a pulsar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontorovich, V. M., E-mail: vkont1001@yahoo.co
The solution for an electromagnetic tornado that describes the motion in the discharge filament of breakdown in the vacuum gap of a pulsar has been obtained. This solution can serve as an explanation of the observed circular polarization of giant radiation pulses from pulsars.
A Comparison of Averaged and Full Models to Study the Third-Body Perturbation
Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida
2013-01-01
The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made. PMID:24319348
NASA Astrophysics Data System (ADS)
Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi
2016-07-01
Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.
Laser Spot Tracking Based on Modified Circular Hough Transform and Motion Pattern Analysis
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-01-01
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas–Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development. PMID:25350502
Wave Propagation Analysis of Edge Cracked Circular Beams under Impact Force
Akbaş, Şeref Doğuşcan
2014-01-01
This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using reflected waves. PMID:24972050
A comparison of averaged and full models to study the third-body perturbation.
Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida
2013-01-01
The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.
NASA Astrophysics Data System (ADS)
Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.
2017-09-01
Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.
Laser spot tracking based on modified circular Hough transform and motion pattern analysis.
Krstinić, Damir; Skelin, Ana Kuzmanić; Milatić, Ivan
2014-10-27
Laser pointers are one of the most widely used interactive and pointing devices in different human-computer interaction systems. Existing approaches to vision-based laser spot tracking are designed for controlled indoor environments with the main assumption that the laser spot is very bright, if not the brightest, spot in images. In this work, we are interested in developing a method for an outdoor, open-space environment, which could be implemented on embedded devices with limited computational resources. Under these circumstances, none of the assumptions of existing methods for laser spot tracking can be applied, yet a novel and fast method with robust performance is required. Throughout the paper, we will propose and evaluate an efficient method based on modified circular Hough transform and Lucas-Kanade motion analysis. Encouraging results on a representative dataset demonstrate the potential of our method in an uncontrolled outdoor environment, while achieving maximal accuracy indoors. Our dataset and ground truth data are made publicly available for further development.
Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications.
Hidalgo-Bastida, L Araida; Thirunavukkarasu, Sundaramoorthy; Griffiths, Sarah; Cartmell, Sarah H; Naire, Shailesh
2012-04-01
Perfusion bioreactors have been used in different tissue engineering applications because of their consistent distribution of nutrients and flow-induced shear stress within the tissue-engineering scaffold. A widely used configuration uses a scaffold with a circular cross-section enclosed within a cylindrical chamber and inlet and outlet pipes which are connected to the chamber on either side through which media is continuously circulated. However, fluid-flow experiments and simulations have shown that the majority of the flow perfuses through the center. This pattern creates stagnant zones in the peripheral regions as well as in those of high flow rate near the inlet and outlet. This non-uniformity of flow and shear stress, owing to a circular design, results in limited cell proliferation and differentiation in these areas. The focus of this communication is to design an optimized perfusion system using computational fluid dynamics as a mathematical tool to overcome the time-consuming trial and error experimental method. We compared the flow within a circular and a rectangular bioreactor system. Flow simulations within the rectangular bioreactor are shown to overcome the limitations in the circular design. This communication challenges the circular cross-section bioreactor configuration paradigm and provides proof of the advantages of the new design over the existing one. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Singh, Jagadish; Taura, Joel John
2014-06-01
This paper studies the motion of an infinitesimal mass in the framework of the restricted three-body problem (R3BP) under the assumption that the primaries of the system are radiating-oblate spheroids, enclosed by a circular cluster of material points. It examines the effects of radiation and oblateness up to J 4 of the primaries and the potential created by the circular cluster, on the linear stability of the liberation locations of the infinitesimal mass. The liberation points are found to be stable for 0< μ< μ c and unstable for , where μ c is the critical mass value depending on terms which involve parameters that characterize the oblateness, radiation forces and the circular cluster of material points. The oblateness up to J 4 of the primaries and the gravitational potential from the circular cluster of material points have stabilizing propensities, while the radiation of the primaries and the oblateness up to J 2 of the primaries have destabilizing tendencies. The combined effect of these perturbations on the stability of the triangular liberation points is that, it has stabilizing propensity.
A Third Type of Defensive Behavior in the Tenebrionid Beetle Zophobas atratus Pupae
Ichikawa, Toshio; Sakamoto, Hirofumi
2013-01-01
Pupae of the tenebrionid beetle Zophobas atratus Fabricius (Coleoptera: Tenebrionidae) exhibit two types of reflex abdominal motions in response to tactile stimulation: circular rotation and lateral bending to close pinching devices (gin-traps). In the present study, the pupa exhibited novel, sequential abdominal movements at 0.3–2.2 sec after the onset of mechanical stimulation. The most effective stimulation was gentle, double brushing on the ventral surface of an abdominal segment (sternite). The sequential abdominal movements consisted of the following three types of discrete elementary motions (100–350 ms in duration): rapid vibration of 30–40 Hz, circular rotation (or swing), and small wiggling movements. A sequence of abdominal movements generally started with a few bouts of vibration, but the number and order of subsequent motions varied considerably among different sessions and conditions. A restrained pupa often showed a prolonged sequence of many motions, including several rotations, whereas an unrestrained pupa often shortened the sequence by skipping a few rotations after the displacement of its whole body induced by the first abdominal rotation. Stimulation of two types of mechanosensitive sensilla, the hair sensilla (touch sensors) and campaniform sensilla (strain sensors), seemed to be necessary to initiate the defensive response. In natural environments, crawling of a small predator (or parasitoid) on the surface of the abdomen or repeated attacks of a large predator may induce this defensive response in the pupae. PMID:23895506
Study of periodic motions of a satellite with a magnetic damper
NASA Technical Reports Server (NTRS)
Sadov, Y. A.; Teterin, A. D.
1979-01-01
The motion of a satellite with a magnetic damper in the plane of a circular polar orbit is studied. The asymptotics of periodic solutions are constructed for a satellite close to axisymmetric and the radius of convergence is evaluated for the power series obtained. In a broad range of values of parameters, a periodic solution is obtained by numerical integration of equations of motion of the satellite. The asymptotics of a bifurcated curve obtained (the curve on which origin of a pair of periodic solutions occurs) in the space of the parameters agrees well with the results of numerical computation with all physical values of these parameters. A breakdown is made of the space of the initial data of phase variables in the field of effect of different types of periodic motion.
Betatron motion with coupling of horizontal and vertical degrees of freedom
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. A. Bogacz; V. A. Lebedev
2002-11-21
The Courant-Snyder parameterization of one-dimensional linear betatron motion is generalized to two-dimensional coupled linear motion. To represent the 4 x 4 symplectic transfer matrix the following ten parameters were chosen: four beta-functions, four alpha-functions and two betatron phase advances which have a meaning similar to the Courant-Snyder parameterization. Such a parameterization works equally well for weak and strong coupling and can be useful for analysis of coupled betatron motion in circular accelerators as well as in transfer lines. Similarly, the transfer matrix, the bilinear form describing the phase space ellipsoid and the second order moments are related to the eigen-vectors.more » Corresponding equations can be useful in interpreting tracking results and experimental data.« less
First USGS urban seismic hazard maps predict the effects of soils
Cramer, C.H.; Gomberg, J.S.; Schweig, E.S.; Waldron, B.A.; Tucker, K.
2006-01-01
Probabilistic and scenario urban seismic hazard maps have been produced for Memphis, Shelby County, Tennessee covering a six-quadrangle area of the city. The nine probabilistic maps are for peak ground acceleration and 0.2 s and 1.0 s spectral acceleration and for 10%, 5%, and 2% probability of being exceeded in 50 years. Six scenario maps for these three ground motions have also been generated for both an M7.7 and M6.2 on the southwest arm of the New Madrid seismic zone ending at Marked Tree, Arkansas. All maps include the effect of local geology. Relative to the national seismic hazard maps, the effect of the thick sediments beneath Memphis is to decrease 0.2 s probabilistic ground motions by 0-30% and increase 1.0 s probabilistic ground motions by ???100%. Probabilistic peak ground accelerations remain at levels similar to the national maps, although the ground motion gradient across Shelby County is reduced and ground motions are more uniform within the county. The M7.7 scenario maps show ground motions similar to the 5%-in-50-year probabilistic maps. As an effect of local geology, both M7.7 and M6.2 scenario maps show a more uniform seismic ground-motion hazard across Shelby County than scenario maps with constant site conditions (i.e., NEHRP B/C boundary).
12 CFR 308.22 - Consolidation and severance of actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... RULES OF PRACTICE AND PROCEDURE Uniform Rules of Practice and Procedure § 308.22 Consolidation and severance of actions. (a) Consolidation. (1) On the motion of any party, or on the administrative law judge's own motion, the administrative law judge may consolidate, for some or all purposes, any two or...
12 CFR 747.22 - Consolidation and severance of actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATIVE ACTIONS, ADJUDICATIVE HEARINGS, RULES OF PRACTICE AND PROCEDURE, AND INVESTIGATIONS Uniform Rules... the motion of any party, or on the administrative law judge's own motion, the administrative law judge... involves at least one common respondent or a material common question of law or fact, unless such...
12 CFR 747.29 - Summary disposition.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATIVE ACTIONS, ADJUDICATIVE HEARINGS, RULES OF PRACTICE AND PROCEDURE, AND INVESTIGATIONS Uniform Rules... shall recommend that the NCUA Board issue a final order granting a motion for summary disposition if the... motion for summary disposition show that: (1) There is no genuine issue as to any material fact; and (2...
Trajectories of Dop Points on a Machining Wheel During Grinding of High Quality Plane Surfaces
NASA Astrophysics Data System (ADS)
Petrikova, I.; Vrzala, R.; Kafka, J.
The basic requirement for plane grinding synthetic monocrystals is uniform wear of the grinding tool. This article deals with the case where the grinding process is carried out by relative motion between the front faces of rotating wheels with parallel axes. The dop is attached by the end of the pendulous arm, which movement is controlled by a cam. Kinematic relations have been drawn for the relative motion of the dop points in the reference to the abrasive wheel. The aim of the work is set the methodology for finding out of uniformity respectively nonuniformity of the motion of dop points on the abrasive wheel. The computational program was compiled in MATLAB. The sums of the number of passes were performed in the transmission range of 0.4-1. The number of passes of selected points on the dop passed over areas of the square mash was computed. The density of trajectory passes depends on four factors: the speed of both wheels, the number of arm operating cycles, the angle of the arm swings and the cam shape. All these dependencies were investigated. The uniformity the density of passes is one of the criteria for setting the grinding machine.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-14
... Regulatory Circular the required layout for the data that would be submitted to the Exchange.\\7\\ \\5\\ See... Section 6(b)(5) of the Act,\\10\\ which requires, among other things, that the Exchange's rules be designed... that CBOE's proposed rule change is designed to facilitate the production of uniform data by TPHs...
Contributions to the theory of the spreading of a free jet issuing from a nozzle
NASA Technical Reports Server (NTRS)
Szablewski, W
1951-01-01
For the flow field of a free jet leaving a nozzle of circular cross section in a medium with a straight uniform flow field, approximate formulas are presented for the calculation of the velocity distribution and the dimensions of the core region. The agreement with measured results is satisfactory.
AMD-stability in the presence of first-order mean motion resonances
NASA Astrophysics Data System (ADS)
Petit, A. C.; Laskar, J.; Boué, G.
2017-11-01
The angular momentum deficit (AMD)-stability criterion allows to discriminate between a priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the AMD in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first-order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first-order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first-order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopædia.
Lee, Dong-Jin; Lee, Sun-Kyu
2015-01-01
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of a nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.
Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields
Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong
2014-01-01
Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia. PMID:24777360
Computational predictions of flame spread over alcohol pools
NASA Technical Reports Server (NTRS)
Schiller, D. N.; Ross, H. D.; Sirignano, W. A.
1993-01-01
The effects of buoyancy and thermocapillarity on pulsating and uniform flame spread above n-propanol fuel pools have been studied using a numerical model. Data obtained indicate that the existence of pulsating flame spread is dependent upon the formation of a gas-phase recirculation cell which entrains evaporating fuel vapor in front of the leading edge of the flame. The size of the recirculation cell which is affected by the extent of liquid motion ahead of the flame, is shown to dictate whether flame spread is uniform or pulsating. The amplitude and period of the flame pulsations are found to be proportional to the maximum extent of the flow head. Under conditions considered, liquid motion was not affected appreciably by buoyancy. Horizontal convection in the liquid is the dominant mechanism for transporting heat ahead of the flame for both the pulsating and uniform regimes.
Response of a thin airfoil encountering strong density discontinuity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, F.E.
1993-12-01
Airfoil theory for unsteady motion has been developed extensively assuming the undisturbed medium to be of uniform density, a restriction accurate for motion in the atmosphere. In some instances, notably for airfoil comprising fan, compressor and turbine blade rows, the undisturbed medium may carry density variations or ``spots``, resulting from non-uniformities in temperature or composition, of a size comparable to the blade chord. This condition exists for turbine blades, immediately downstream of the main burner of a gas turbine engine where the density fluctuations of the order of 50 percent may occur. Disturbances of a somewhat smaller magnitude arise frommore » the ingestion of hot boundary layers into fans, and exhaust into hovercraft. Because these regions of non-uniform density convect with the moving medium, the airfoil experiences a time varying load and moment which the authors calculate.« less
Security Applications Of Computer Motion Detection
NASA Astrophysics Data System (ADS)
Bernat, Andrew P.; Nelan, Joseph; Riter, Stephen; Frankel, Harry
1987-05-01
An important area of application of computer vision is the detection of human motion in security systems. This paper describes the development of a computer vision system which can detect and track human movement across the international border between the United States and Mexico. Because of the wide range of environmental conditions, this application represents a stringent test of computer vision algorithms for motion detection and object identification. The desired output of this vision system is accurate, real-time locations for individual aliens and accurate statistical data as to the frequency of illegal border crossings. Because most detection and tracking routines assume rigid body motion, which is not characteristic of humans, new algorithms capable of reliable operation in our application are required. Furthermore, most current detection and tracking algorithms assume a uniform background against which motion is viewed - the urban environment along the US-Mexican border is anything but uniform. The system works in three stages: motion detection, object tracking and object identi-fication. We have implemented motion detection using simple frame differencing, maximum likelihood estimation, mean and median tests and are evaluating them for accuracy and computational efficiency. Due to the complex nature of the urban environment (background and foreground objects consisting of buildings, vegetation, vehicles, wind-blown debris, animals, etc.), motion detection alone is not sufficiently accurate. Object tracking and identification are handled by an expert system which takes shape, location and trajectory information as input and determines if the moving object is indeed representative of an illegal border crossing.
Evaluation of motion artifact metrics for coronary CT angiography.
Ma, Hongfeng; Gros, Eric; Szabo, Aniko; Baginski, Scott G; Laste, Zachary R; Kulkarni, Naveen M; Okerlund, Darin; Schmidt, Taly G
2018-02-01
This study quantified the performance of coronary artery motion artifact metrics relative to human observer ratings. Motion artifact metrics have been used as part of motion correction and best-phase selection algorithms for Coronary Computed Tomography Angiography (CCTA). However, the lack of ground truth makes it difficult to validate how well the metrics quantify the level of motion artifact. This study investigated five motion artifact metrics, including two novel metrics, using a dynamic phantom, clinical CCTA images, and an observer study that provided ground-truth motion artifact scores from a series of pairwise comparisons. Five motion artifact metrics were calculated for the coronary artery regions on both phantom and clinical CCTA images: positivity, entropy, normalized circularity, Fold Overlap Ratio (FOR), and Low-Intensity Region Score (LIRS). CT images were acquired of a dynamic cardiac phantom that simulated cardiac motion and contained six iodine-filled vessels of varying diameter and with regions of soft plaque and calcifications. Scans were repeated with different gantry start angles. Images were reconstructed at five phases of the motion cycle. Clinical images were acquired from 14 CCTA exams with patient heart rates ranging from 52 to 82 bpm. The vessel and shading artifacts were manually segmented by three readers and combined to create ground-truth artifact regions. Motion artifact levels were also assessed by readers using a pairwise comparison method to establish a ground-truth reader score. The Kendall's Tau coefficients were calculated to evaluate the statistical agreement in ranking between the motion artifacts metrics and reader scores. Linear regression between the reader scores and the metrics was also performed. On phantom images, the Kendall's Tau coefficients of the five motion artifact metrics were 0.50 (normalized circularity), 0.35 (entropy), 0.82 (positivity), 0.77 (FOR), 0.77(LIRS), where higher Kendall's Tau signifies higher agreement. The FOR, LIRS, and transformed positivity (the fourth root of the positivity) were further evaluated in the study of clinical images. The Kendall's Tau coefficients of the selected metrics were 0.59 (FOR), 0.53 (LIRS), and 0.21 (Transformed positivity). In the study of clinical data, a Motion Artifact Score, defined as the product of FOR and LIRS metrics, further improved agreement with reader scores, with a Kendall's Tau coefficient of 0.65. The metrics of FOR, LIRS, and the product of the two metrics provided the highest agreement in motion artifact ranking when compared to the readers, and the highest linear correlation to the reader scores. The validated motion artifact metrics may be useful for developing and evaluating methods to reduce motion in Coronary Computed Tomography Angiography (CCTA) images. © 2017 American Association of Physicists in Medicine.
Chang, Guoping; Chang, Tingting; Pan, Tinsu; Clark, John W; Mawlawi, Osama R
2010-12-01
Respiratory motion artifacts and partial volume effects (PVEs) are two degrading factors that affect the accuracy of image quantification in PET/CT imaging. In this article, the authors propose a joint motion and PVE correction approach (JMPC) to improve PET quantification by simultaneously correcting for respiratory motion artifacts and PVE in patients with lung/thoracic cancer. The objective of this article is to describe this approach and evaluate its performance using phantom and patient studies. The proposed joint correction approach incorporates a model of motion blurring, PVE, and object size/shape. A motion blurring kernel (MBK) is then estimated from the deconvolution of the joint model, while the activity concentration (AC) of the tumor is estimated from the normalization of the derived MBK. To evaluate the performance of this approach, two phantom studies and eight patient studies were performed. In the phantom studies, two motion waveforms-a linear sinusoidal and a circular motion-were used to control the motion of a sphere, while in the patient studies, all participants were instructed to breathe regularly. For the phantom studies, the resultant MBK was compared to the true MBK by measuring a correlation coefficient between the two kernels. The measured sphere AC derived from the proposed method was compared to the true AC as well as the ACs in images exhibiting PVE only and images exhibiting both PVE and motion blurring. For the patient studies, the resultant MBK was compared to the motion extent derived from a 4D-CT study, while the measured tumor AC was compared to the AC in images exhibiting both PVE and motion blurring. For the phantom studies, the estimated MBK approximated the true MBK with an average correlation coefficient of 0.91. The tumor ACs following the joint correction technique were similar to the true AC with an average difference of 2%. Furthermore, the tumor ACs on the PVE only images and images with both motion blur and PVE effects were, on average, 75% and 47.5% (10%) of the true AC, respectively, for the linear (circular) motion phantom study. For the patient studies, the maximum and mean AC/SUV on the PET images following the joint correction are, on average, increased by 125.9% and 371.6%, respectively, when compared to the PET images with both PVE and motion. The motion extents measured from the derived MBK and 4D-CT exhibited an average difference of 1.9 mm. The proposed joint correction approach can improve the accuracy of PET quantification by simultaneously compensating for the respiratory motion artifacts and PVE in lung/thoracic PET/CT imaging.
Ozasa, Kazunari; Won, June; Song, Simon; Tamaki, Shun; Ishikawa, Takahiro; Maeda, Mizuo
2017-01-01
The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light. PMID:28234984
Demonstrating the Direction of Angular Velocity in Circular Motion
NASA Astrophysics Data System (ADS)
Demircioglu, Salih; Yurumezoglu, Kemal; Isik, Hakan
2015-09-01
Rotational motion is ubiquitous in nature, from astronomical systems to household devices in everyday life to elementary models of atoms. Unlike the tangential velocity vector that represents the instantaneous linear velocity (magnitude and direction), an angular velocity vector is conceptually more challenging for students to grasp. In physics classrooms, the direction of an angular velocity vector is taught by the right-hand rule, a mnemonic tool intended to aid memory. A setup constructed for instructional purposes may provide students with a more easily understood and concrete method to observe the direction of the angular velocity. This article attempts to demonstrate the angular velocity vector using the observable motion of a screw mounted to a remotely operated toy car.
Diffusion of isolated DNA molecules: dependence on length and topology.
Robertson, Rae M; Laib, Stephan; Smith, Douglas E
2006-05-09
The conformation and dynamics of circular polymers is a subject of considerable theoretical and experimental interest. DNA is an important example because it occurs naturally in different topological states, including linear, relaxed circular, and supercoiled circular forms. A fundamental question is how the diffusion coefficients of isolated polymers scale with molecular length and how they vary for different topologies. Here, diffusion coefficients D for relaxed circular, supercoiled, and linear DNA molecules of length L ranging from approximately 6 to 290 kbp were measured by tracking the Brownian motion of single molecules. A topology-independent scaling law D approximately L(-nu) was observed with nu(L) = 0.571 +/- 0.014, nu(C) = 0.589 +/- 0.018, and nu(S) = 0.571 +/- 0.057 for linear, relaxed circular, and supercoiled DNA, respectively, in good agreement with the scaling exponent of nu congruent with 0.588 predicted by renormalization group theory for polymers with significant excluded volume interactions. Our findings thus provide evidence in support of several theories that predict an effective diameter of DNA much greater than the Debye screening length. In addition, the measured ratio D(Circular)/D(Linear) = 1.32 +/- 0.014 was closer to the value of 1.45 predicted by using renormalization group theory than the value of 1.18 predicted by classical Kirkwood hydrodynamic theory and agreed well with a value of 1.31 predicted when incorporating a recently proposed expression for the radius of gyration of circular polymers into the Zimm model.
Analytic theory of orbit contraction
NASA Technical Reports Server (NTRS)
Vinh, N. X.; Longuski, J. M.; Busemann, A.; Culp, R. D.
1977-01-01
The motion of a satellite in orbit, subject to atmospheric force and the motion of a reentry vehicle are governed by gravitational and aerodynamic forces. This suggests the derivation of a uniform set of equations applicable to both cases. For the case of satellite motion, by a proper transformation and by the method of averaging, a technique appropriate for long duration flight, the classical nonlinear differential equation describing the contraction of the major axis is derived. A rigorous analytic solution is used to integrate this equation with a high degree of accuracy, using Poincare's method of small parameters and Lagrange's expansion to explicitly express the major axis as a function of the eccentricity. The solution is uniformly valid for moderate and small eccentricities. For highly eccentric orbits, the asymptotic equation is derived directly from the general equation. Numerical solutions were generated to display the accuracy of the analytic theory.
Self-Paced Physics, Segments 6-10.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Five segments of the Self-Paced Physics Course materials are presented in this problems and solutions book for use as the second part of student course work. The subject-matter topics are related to circular motion, work, power, kinetic energy, potential energy, conservative forces, conservation of energy, spring problems, center of mass, and…
Pendulum Rides, Rotations and the Coriolis Effect
ERIC Educational Resources Information Center
Pendrill, Ann-Marie; Modig, Conny
2018-01-01
An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving…
From Concept to Reality in Implementing the Knowledge Triangle
ERIC Educational Resources Information Center
Sjoer, Ellen; Nørgaard, Bente; Goossens, Marc
2016-01-01
The concept of Knowledge Triangle (KT) links together research, education and innovation and replaces the traditional "one way" flow of knowledge, essentially from research to education, by a "both ways" circular motion between all the corners of a triangle that, besides research and education, also includes innovation, the…
Perceived Shrinkage of Motion Paths
ERIC Educational Resources Information Center
Sinico, Michele; Parovel, Giulia; Casco, Clara; Anstis, Stuart
2009-01-01
We show that human observers strongly underestimate a linear or circular trajectory that a luminous spot follows in the dark. At slow speeds, observers are relatively accurate, but, as the speed increases, the size of the path is progressively underestimated, by up to 35%. The underestimation imposes little memory load and does not require…
Teacher's Guide for Spinning Tables. Elementary Science Study.
ERIC Educational Resources Information Center
Hein, George E.; And Others
This teacher's guide suggests a number of ways to use a spinning table to explore circular motion. Activities are described which are appropriate for children in kindergarten through third grade. Suggestions are made for exploratory activities using the equipment rather than supplying detailed instructions for formal activities. Equipment and…
DIMENSION MEASURING OPTICAL SIGHTING DEVICE
Kerr, G.E.
1959-08-01
A sighting device to check the uniformity of thickness of a lining applied to a container is presented. The sighting devlce comprises two tubular members having their ends in threaded connection with one another and a lens lying within the outer end of one of the tubular members. A ground glass inscribed with two concentric circles is located at the outer end of the other tubular section so that the image of the circular junctures, with and without the lining at the closed end of the container, can be focused on the proper circle inscribed in the ground glass so as to determine whether the lining has uniformity and whether there are thin spots.
Response of moderately thick laminated cross-ply composite shells subjected to random excitation
NASA Technical Reports Server (NTRS)
Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu
1989-01-01
This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schäfer, Gerhard
The current knowledge in the post-Newtonian (PN) dynamics and motion of non-spinning and spinning compact binaries will be presented based on the Arnowitt-Deser-Misner Hamiltonian approach to general relativity. The presentation will cover the binary dynamics with non-spinning components up to the 4PN order and for spinning binaries up to the next-to-next-to-leading order in the spin-orbit and spin-spin couplings. Radiation reaction will be treated for both non-spinning and spinning binaries. Explicit analytic expressions for the motion will be given, innermost stable circular orbits will be discussed.
Time variation in the reaction-zone structure of two-phase spray detonations.
NASA Technical Reports Server (NTRS)
Pierce, T. H.; Nicholls, J. A.
1973-01-01
A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.
Investigation of the Observability of a Satellite Cluster in a Near Circular Orbit
1989-12-01
investigation involved the use of dynamics based on the Clohessy - Wiltshire equa- tions and an on-board estimator based on the U-D covariance factorization...vectors were determined from the Clohessy - Wiltshire equations (10:80). These equations have the following * form: I I4 I I I sat i , ref pointI S iA lll ri... Clohessy - Wiltshire equations of motion, with 77 representing the mean motion (10:80). These equations are: 1 11I ;i - 2 )- 3 T12 X = 0 (27) +21 =0 (28
12 CFR 19.22 - Consolidation and severance of actions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Consolidation and severance of actions. 19.22... AND PROCEDURE Uniform Rules of Practice and Procedure § 19.22 Consolidation and severance of actions. (a) Consolidation. (1) On the motion of any party, or on the administrative law judge's own motion...
Squirming motion of baby skyrmions in nematic fluids.
Ackerman, Paul J; Boyle, Timothy; Smalyukh, Ivan I
2017-09-22
Skyrmions are topologically protected continuous field configurations that cannot be smoothly transformed to a uniform state. They behave like particles and give origins to the field of skyrmionics that promises racetrack memory and other technological applications. Unraveling the non-equilibrium behavior of such topological solitons is a challenge. We realize skyrmions in a chiral liquid crystal and, using numerical modeling and polarized video microscopy, demonstrate electrically driven squirming motion. We reveal the intricate details of non-equilibrium topology-preserving textural changes driving this behavior. Direction of the skyrmion's motion is robustly controlled in a plane orthogonal to the applied field and can be reversed by varying frequency. Our findings may spur a paradigm of soliton dynamics in soft matter, with a rich interplay between topology, chirality, and orientational viscoelasticity.A skyrmion is a topological object originally introduced to model elementary particles and a baby skyrmion is its two-dimensional counterpart which can be realized as a defect in liquid crystals. Here the authors show that an electric field can drive uniform motion of baby skyrmions in liquid crystals.
NASA Astrophysics Data System (ADS)
Brun, Pierre-Thomas
2014-03-01
Trick roping evolved from humble origins as a cattle-catching tool into a sport that delights audiences the world over with its complex patterns or ``tricks,'' such as the Merry-Go-Round , the Wedding-Ring, the Spoke-Jumping, the Texas Skip... Its implement is the lasso, a length of rope with a small loop (``honda'') at one end through which the other end is passed to form a large loop. Here, we study the physics of the simplest rope trick, the Flat Loop, in which the motion of the lasso is forced by a uniform circular motion of the cowboy's/cowgirl's hand in a horizontal plane. To avoid accumulating twist in the rope, the cowboy/cowgirl rolls it between his/her thumb and forefinger while spinning it. The configuration of the rope is stationary in a reference frame that rotates with the hand. Exploiting this fact we derive a dynamical ``string'' model in which line tension is balanced by the centrifugal force and the rope's weight. Using a numerical continuation method, we calculate the steady shapes of a lasso with a fixed honda, examine their stability, and determine a bifurcation diagram exhibiting coat-hanger shapes and whirling modes in addition to flat loops. We then extend the model to a honda with finite sliding friction by using matched asymptotic expansions to determine the structure of the boundary layer where bending forces are significant, thereby obtaining a macroscopic criterion for frictional sliding of the honda. We compare our theoretical results with high-speed videos of a professional trick roper and experiments performed using a laboratory ``robo-cowboy.'' Finally, we conclude with a practical guidance on how to spin a lasso in the air based on the results of our analysis. With the support of Univ. Paris Sud (Lab. FAST/CNRS) and UPMC (d'Alembert/CNRS).
Media additives to promote spheroid circularity and compactness in hanging drop platform.
Leung, Brendan M; Lesher-Perez, Sasha Cai; Matsuoka, Toshiki; Moraes, Christopher; Takayama, Shuichi
2015-02-01
Three-dimensional spheroid cultures have become increasingly popular as drug screening platforms, especially with the advent of different high throughput spheroid forming technologies. However, comparing drug efficacy across different cell types in spheroid culture can be difficult due to variations in spheroid morphologies and transport characteristics. Improving the reproducibility of compact, circular spheroids contributes to standardizing and increasing the fidelity of the desired gradient profiles in these drug screening three-dimensional tissue cultures. In this study we discuss the role that circularity and compaction has on spheroids, and demonstrate the impact methylcellulose (MethoCel) and collagen additives in the culture media can contribute to more compact and circular spheroid morphology. We demonstrate that improved spheroid formation is not a simple function of increased viscosity of the different macromolecule additives, suggesting that other macromolecular characteristics contribute to improved spheroid formation. Of the various macromolecular additives tested for hanging drop culture, MethoCel provided the most desirable spheroid formation. Additionally, the higher viscosity of MethoCel-containing media improved the ease of imaging of cellular spheroids within hanging drop cultures by reducing motion-induced image blur.
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.
Transonic shock-induced dynamics of a flexible wing with a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Bennett, Robert M.; Dansberry, Bryan E.; Farmer, Moses G.; Eckstrom, Clinton V.; Seidel, David A.; Rivera, Jose A., Jr.
1991-01-01
Transonic shock boundary layer oscillations occur on rigid models over a small range of Mach numbers on thick circular-arc airfoils. Extensive tests and analyses of this phenomena have been made in the past but essentially all of them were for rigid models. A simple flexible wing model with an 18 pct. circular arc airfoil was constructed and tested in the Langley Transonic Dynamics Tunnel to study the dynamic characteristics that a wing might have under these circumstances. In the region of shock boundary layer oscillations, buffeting of the first bending mode was obtained. This mode was well separated in frequency from the shock boundary layer oscillations. A limit cycle oscillation was also measured in a third bending like mode, involving wind vertical bending and splitter plate motion, which was in the frequency range of the shock boundary layer oscillations. Several model configurations were tested, and a few potential fixes were investigated.
Minimal energy configurations of gravitationally interacting rigid bodies
NASA Astrophysics Data System (ADS)
Moeckel, Richard
2017-05-01
Consider a collection of n rigid, massive bodies interacting according to their mutual gravitational attraction. A relative equilibrium motion is one where the entire configuration rotates rigidly and uniformly about a fixed axis in R^3. Such a motion is possible only for special positions and orientations of the bodies. A minimal energy motion is one which has the minimum possible energy in its fixed angular momentum level. While every minimal energy motion is a relative equilibrium motion, the main result here is that a relative equilibrium motion of n≥3 disjoint rigid bodies is never an energy minimizer. This generalizes a known result about point masses to the case of rigid bodies.
A GIS System for Inferring Subsurface Geology and Material Properties: Proof of Concept
2006-09-01
geologic structure. For example, interbedded sedimentary rocks comprise significant proportions of the Appalachian Mountains as well as various mountain ...Pitted surfaces a. Shallow, rounded, non-uniform b. More or less circular Hills and Mountains … Drainage...pear-shaped ap - pendages; talus common at bases of slopes along boundaries; strongly verti- cally jointed; vertical escarpments; co- lumnar jointing
Stress singularities in a model of a wood disk under sinusoidal pressure
Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson
2005-01-01
A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...
Modeling hardwood crown radii using circular data analysis
Paul F. Doruska; Hal O. Liechty; Douglas J. Marshall
2003-01-01
Cylindrical data are bivariate data composed of a linear and an angular component. One can use uniform, first-order (one maximum and one minimum) or second-order (two maxima and two minima) models to relate the linear component to the angular component. Crown radii can be treated as cylindrical data when the azimuths at which the radii are measured are also recorded....
24 CFR 1003.501 - Applicability of uniform administrative requirements and cost principles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Indian Tribal Governments”, OMB Circular A-128, “Audits of State and Local Governments” (implemented at... income,” except as modified by § 1003.503. (8) Section 85.26, “Non-federal audits”. (9) Section 85.32... assurance may include: (i) Deposit with the grantee of a cash escrow of not less than 20 percent of the...
Turbulence modeling and surface heat transfer in a stagnation flow region
NASA Technical Reports Server (NTRS)
Wang, C. R.; Yeh, F. C.
1987-01-01
Analysis for the turbulent flow field and the effect of freestream turbulence on the surface heat transfer rate of a stagnation flow is presented. The emphasis is on modeling and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow.
Fermat's Principle of Least Time in the Presence of Uniformly Moving Boundaries and Media
ERIC Educational Resources Information Center
Gjurchinovski, Aleksandar; Skeparovski, Aleksandar
2007-01-01
The refraction of a light ray by a homogeneous, isotropic and non-dispersive transparent material half-space in uniform rectilinear motion is investigated theoretically. The approach is an amalgamation of the original Fermat's principle and the fact that an isotropic optical medium at rest becomes optically anisotropic in a frame where the medium…
Orbital Motion of Electrically Charged Spheres in Microgravity
ERIC Educational Resources Information Center
Banerjee, Shubho; Andring, Kevin; Campbell, Desmond; Janeski, John; Keedy, Daniel; Quinn, Sean; Hoffmeister, Brent
2008-01-01
The similar mathematical forms of Coulomb's law and Newton's law of gravitation suggest that two uniformly charged spheres should be able to orbit each other just as two uniform spheres of mass are known to do. In this paper we describe an experiment that we performed to demonstrate such an orbit. This is the first published account of a…
Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž
2016-03-01
The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.
A Baroclinic Eddy Mixer: Supercritical Transformation of Compensated Eddies
NASA Astrophysics Data System (ADS)
Sutyrin, G.
2016-02-01
In contrast to many real-ocean rings and eddies, circular vortices with initial lower layer at rest tend to be highly unstable in idealized two-layer models, unless their radius is made small or the lower layer depth is made artificially large. Numerical simulations of unstable vortices with parameters typical for ocean eddies revealed strong deformations and pulsations of the vortex core in the two-layer setup due to development of corotating tripolar structures in the lower layer during their supercritical transformation. The addition of a middle layer with the uniform potential vorticity weakens vertical coupling between the upper and lower layer that enhances vortex stability and makes the vortex lifespan more realistic. Such a three-layer vortex model possesses smaller lower interface slope than the two-layer model that reduces the potential vorticity gradient in the lower layer and provides with less unstable configurations. While cyclonic eddies become only slightly deformed and look nearly circular when the middle layer with uniform potential vorticity is added, anticyclonic eddies tend to corotating and pulsating elongated states through potential vorticity stripping and stirring. Enhanced vortex stability in such three-layer setup has important implications for adequate representation of the energy transfer across scales.
Ambiguity Resolution for Phase-Based 3-D Source Localization under Fixed Uniform Circular Array.
Chen, Xin; Liu, Zhen; Wei, Xizhang
2017-05-11
Under fixed uniform circular array (UCA), 3-D parameter estimation of a source whose half-wavelength is smaller than the array aperture would suffer from a serious phase ambiguity problem, which also appears in a recently proposed phase-based algorithm. In this paper, by using the centro-symmetry of UCA with an even number of sensors, the source's angles and range can be decoupled and a novel algorithm named subarray grouping and ambiguity searching (SGAS) is addressed to resolve angle ambiguity. In the SGAS algorithm, each subarray formed by two couples of centro-symmetry sensors can obtain a batch of results under different ambiguities, and by searching the nearest value among subarrays, which is always corresponding to correct ambiguity, rough angle estimation with no ambiguity is realized. Then, the unambiguous angles are employed to resolve phase ambiguity in a phase-based 3-D parameter estimation algorithm, and the source's range, as well as more precise angles, can be achieved. Moreover, to improve the practical performance of SGAS, the optimal structure of subarrays and subarray selection criteria are further investigated. Simulation results demonstrate the satisfying performance of the proposed method in 3-D source localization.
NASA Astrophysics Data System (ADS)
Gelikonov, V. M.; Romashov, V. N.; Shabanov, D. V.; Ksenofontov, S. Yu.; Terpelov, D. A.; Shilyagin, P. A.; Gelikonov, G. V.; Vitkin, I. A.
2018-05-01
We consider a cross-polarization optical coherence tomography system with a common path for the sounding and reference waves and active maintenance of the circular polarization of a sounding wave. The system is based on the formation of birefringent characteristics of the total optical path, which are equivalent to a quarter-wave plate with a 45° orientation of its optical axes with respect to the linearly polarized reference wave. Conditions under which any light-polarization state can be obtained using a two-element phase controller are obtained. The dependence of the local cross-scattering coefficient of light in a model medium and biological tissue on the sounding-wave polarization state is demonstrated. The necessity of active maintenance of the circular polarization of a sounding wave in this common path system (including a flexible probe) is shown to realize uniform optimal conditions for cross-polarization studies of biological tissue.
Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes
NASA Astrophysics Data System (ADS)
Stuchlík, Z.; Slaný, P.; Hledík, S.
2000-11-01
The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.
A multi-slot surface coil for MRI of dual-rat imaging at 4 T
NASA Astrophysics Data System (ADS)
Solis, S. E.; Wang, R.; Tomasi, D.; Rodriguez, A. O.
2011-06-01
A slotted surface coil inspired by the hole-and-slot cavity magnetron was developed for magnetic resonance imaging of obese rats at 4 T. Full-wave analysis of the magnetic field was carried out at 170 MHz for both the slotted and circular-shaped coils. The noise figure values of two coils were investigated via the numerical calculation of the quality factors. Fat simulated phantoms to mimic overweight rats were included in the analysis with weights ranging from 300 to 900 g. The noise figures were 1.2 dB for the slotted coil and 2.4 dB for the circular coil when loaded with 600 g of simulated phantom. A slotted surface coil with eight circular slots and a circular coil with similar dimensions were built and operated in the transceiver mode, and their performances were experimentally compared. The imaging tests in phantoms demonstrated that the slotted surface coil has a deeper RF-sensitivity and better field uniformity than the single-loop RF-coil. High quality images of two overweight Zucker rats were acquired simultaneously with the slotted surface coil using standard spin-echo pulse sequences. Experimental results showed that the slotted surface coil outperformed the circular coil for imaging considerably overweight rats. Thus, the slotted surface coil can be a good tool for MRI experiments in rats on a human whole-body 4 T scanner.
Collisional Transfer of Population and Orientation in NaK
NASA Astrophysics Data System (ADS)
Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.
2010-03-01
We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser- induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v'=16, J') <- X^1&+circ;(v''=0, J'±1) transition, creating an orientation (non-uniform MJ' level distribution) in both levels. The linearly polarized probe laser is scanned over various 3^1π(v, J'±1) <- A^1&+circ;(v'=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). Using both spectroscopic methods, analysis of weak collisional satellite lines adjacent to these directly populated lines, as a function of argon buffer gas pressure and cell temperature, allows us to discern separately the effects collisions with argon atoms and potassium atoms have on the population and orientation of the molecule. In addition, code has been written which provides a theoretical analysis of the process, through a solution of the density matrix equations of motion for the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...
2016-07-11
For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu
2016-08-28
The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μmmore » cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.« less
Free in-plane vibration of circular arches.
NASA Technical Reports Server (NTRS)
Veletsos, A. S.; Austin, W. J.; Lopes Pereira, C. A.; Wung, S.-J.
1972-01-01
Numerical data are presented for the natural frequencies and modes of vibration of hinged and fixed, uniform, circular arches vibrating in their own plane, and the effects of the various parameters affecting the response are analyzed. It is shown that the vibrational modes may be almost purely flexural, or almost purely extensional, or the extensional and flexural actions may be strongly coupled. The conditions of occurrence of each type of behavior are defined, and simple approximate formulas are derived; using these formulas, the free vibrational characteristics of arches may be estimated to a satisfactory degree of accuracy for most practical applications. The approach used to derive the approximate formulas may also be applied to arches having other boundary conditions, shapes, or distributions of stiffness and mass.
Spatiotemporal Filter for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys
Liu, Bing
2017-01-01
Despite the enduring interest in motion integration, a direct measure of the space–time filter that the brain imposes on a visual scene has been elusive. This is perhaps because of the challenge of estimating a 3D function from perceptual reports in psychophysical tasks. We take a different approach. We exploit the close connection between visual motion estimates and smooth pursuit eye movements to measure stimulus–response correlations across space and time, computing the linear space–time filter for global motion direction in humans and monkeys. Although derived from eye movements, we find that the filter predicts perceptual motion estimates quite well. To distinguish visual from motor contributions to the temporal duration of the pursuit motion filter, we recorded single-unit responses in the monkey middle temporal cortical area (MT). We find that pursuit response delays are consistent with the distribution of cortical neuron latencies and that temporal motion integration for pursuit is consistent with a short integration MT subpopulation. Remarkably, the visual system appears to preferentially weight motion signals across a narrow range of foveal eccentricities rather than uniformly over the whole visual field, with a transiently enhanced contribution from locations along the direction of motion. We find that the visual system is most sensitive to motion falling at approximately one-third the radius of the stimulus aperture. Hypothesizing that the visual drive for pursuit is related to the filtered motion energy in a motion stimulus, we compare measured and predicted eye acceleration across several other target forms. SIGNIFICANCE STATEMENT A compact model of the spatial and temporal processing underlying global motion perception has been elusive. We used visually driven smooth eye movements to find the 3D space–time function that best predicts both eye movements and perception of translating dot patterns. We found that the visual system does not appear to use all available motion signals uniformly, but rather weights motion preferentially in a narrow band at approximately one-third the radius of the stimulus. Although not universal, the filter predicts responses to other types of stimuli, demonstrating a remarkable degree of generalization that may lead to a deeper understanding of visual motion processing. PMID:28003348
Exploration of bounded motion near binary systems comprised of small irregular bodies
NASA Astrophysics Data System (ADS)
Chappaz, Loic; Howell, Kathleen C.
2015-10-01
To investigate the behavior of a spacecraft near a pair of irregular bodies, consider a three-body configuration (one massless). Two massive bodies, P_1 and P_2, form the primary system; each primary is modeled as a sphere or an ellipsoid. Two primary configurations are addressed: `synchronous' and `non-synchronous'. Concepts and tools similar to those applied in the circular restricted three-body problem are exploited to construct periodic trajectories for a third body in synchronous systems. In non-synchronous systems, however, the search for third body periodic orbits is complicated by several factors. The mathematical model for the third-body motion is now time-variant and the motion of P_2 is not trivial.
Surface viscosity effects on the motion of self-propelling boat in a channel
NASA Astrophysics Data System (ADS)
Aliperio, M. G.; Nolan Confesor, Mark
2015-06-01
Self-propelled droplets have been conceived as simple chemical toy models to mimic motile biological samples such as bacteria. The motion of these droplets is believe to be due to the surface tension gradient in the boundary of the droplet. We performed experiments to look at the effect of varying the medium viscosity to the speed of a circular boat that was soaked in Pentanol. We found that the boats undergo oscillatory type of motion inside a channel. Moreover we found the maximum speed of the boat is independent on the viscosity of the medium. On the other a time scale describing the width of the velocity profile of the boat was found to increase with increasing viscosity.
An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.
1993-01-01
We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.
Forced Convection Heat Transfer in Circular Pipes
ERIC Educational Resources Information Center
Tosun, Ismail
2007-01-01
One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…
Inquiry Style Interactive Virtual Experiments: A Case on Circular Motion
ERIC Educational Resources Information Center
Zhou, Shaona; Han, Jing; Pelz, Nathaniel; Wang, Xiaojun; Peng, Liangyu; Xiao, Hua; Bao, Lei
2011-01-01
Interest in computer-based learning, especially in the use of virtual reality simulations is increasing rapidly. While there are good reasons to believe that technologies have the potential to improve teaching and learning, how to utilize the technology effectively in teaching specific content difficulties is challenging. To help students develop…
Loop-the-Loop: Bringing Theory into Practice
ERIC Educational Resources Information Center
Suwonjandee, N.; Asavapibhop, B.
2012-01-01
During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…
Luo, Yamei; Gao, Zenghui; Tang, Bihua; Lü, Baida
2013-08-01
Based on the vector Fresnel diffraction integrals, analytical expressions for the electric and magnetic components of first-order Laguerre-Gaussian beams diffracted at a half-plane screen are derived and used to study the electric and magnetic polarization singularities in the diffraction field for both two- and three-dimensional (2D and 3D) cases. It is shown that there exist 2D and 3D electric and magnetic polarization singularities in the diffraction field, which do not coincide each other in general. By suitably varying the waist width ratio, off-axis displacement parameter, amplitude ratio, or propagation distance, the motion, pair-creation, and annihilation of circular polarization singularities, and the motion of linear polarization singularities take place in 2D and 3D electric and magnetic fields. The V point, at which two circular polarization singularities with the same topological charge but opposite handedness collide, appears in the 2D electric field under certain conditions in the diffraction field and free-space propagation. A comparison with the free-space propagation is also made.
Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.
Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun
2015-06-12
The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.
Optimal viscous damping of vibrating porous cylinders
NASA Astrophysics Data System (ADS)
Jafari Kang, Saeed; Masoud, Hassan
2017-11-01
We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of permeability and oscillation frequency on the damping coefficient, which is proportional to the power required to sustain the vibrations. Cylinders of both circular and non-circular cross-sections undergoing transverse and rotational vibrations are considered. Our calculations indicate that the damping coefficient often varies non-monotonically with the permeability. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first since generally the power it takes to steadily drag a permeable object through the fluid is less than the power needed to drive the steady motion of the same but impermeable object. However, the driving power (or damping coefficient) for oscillating bodies is determined by not only the amplitude of the cyclic fluid force experienced by them but also by the phase shift between the force and their periodic motion. An increase in the latter is responsible for excess damping coefficient of vibrating porous cylinders.
Isola, A A; Schmitt, H; van Stevendaal, U; Begemann, P G; Coulon, P; Boussel, L; Grass, M
2011-09-21
Large area detector computed tomography systems with fast rotating gantries enable volumetric dynamic cardiac perfusion studies. Prospectively, ECG-triggered acquisitions limit the data acquisition to a predefined cardiac phase and thereby reduce x-ray dose and limit motion artefacts. Even in the case of highly accurate prospective triggering and stable heart rate, spatial misalignment of the cardiac volumes acquired and reconstructed per cardiac cycle may occur due to small motion pattern variations from cycle to cycle. These misalignments reduce the accuracy of the quantitative analysis of myocardial perfusion parameters on a per voxel basis. An image-based solution to this problem is elastic 3D image registration of dynamic volume sequences with variable contrast, as it is introduced in this contribution. After circular cone-beam CT reconstruction of cardiac volumes covering large areas of the myocardial tissue, the complete series is aligned with respect to a chosen reference volume. The results of the registration process and the perfusion analysis with and without registration are evaluated quantitatively in this paper. The spatial alignment leads to improved quantification of myocardial perfusion for three different pig data sets.
On-line damage detection in rotating machinery
NASA Astrophysics Data System (ADS)
Alkhalifa, Tareq Jawad
This work is concerned with a set of techniques to detect internal defects in uniform circular discs (rotors). An internal defect is intentionally manufactured in stereolithographic discs by a rapid prototyping process using cured resin SL 5170 material. The analysis and results presented here are limited to a uniform circular disc, with internal defects, mounted on a uniform flexible circular shaft. The setup is comprised of a Bently Nevada rotor kit connected to a data acquisition system. The rotor consists of a disc and shaft that is supported by journal bearings and is coupled to a motor by a rubber joint. Damage produces localized changes in the strain energy, which is quantified to characterize the damage. Based on previous research, the Strain Energy Damage Index (SEDI) is utilized to localize the damage due to strain energy differences between damaged and undamaged modes. To accomplish the objective, this work covers three types of analysis: finite element analysis, vibration analysis, and experimental modal analysis. Finite element analysis (using SDRC Ideas software) is performed to develop a multi-degree-of-freedom (MDOF) rotor system with internal damage, and its dynamic characteristics are investigated. The analysis is performed for two different types damage cases: radial damage and circular damage. Parametric study for radial damage and random noise to undamaged disc have been investigated to predict the effect of noise in the damage detection. The developed on-line damage detection technique for rotating equipment incorporates and couples both vibration analysis and experimental modal analysis. The dynamic investigation of the rotating discs (with and without defect) is conducted by vibration signal analysis (using proximity sensors, data acquisition and LabView). The vibration analysis provides a unique vibration signature for the damaged disc, which indicates the existence of the damage. The vibration data are acquired at different running speeds (1000, 2500, 5000 rpm). Then the dynamic investigation of non-rotating discs (with and without defect) is conducted by experimental modal analysis (using STAR software). While the vibration analysis detects and indicates the existence of damage while the disc is rotating, experimental modal analysis (using STAR and MATLAB software) provides the localization of damage through the modal parameters for a non-rotating disc. Both of the experimental diagnostic algorithms are based on measurement of the dynamic behavior of the damaged disc. The results are compared with the reference, or baseline, one, obtained initially for an undamaged disc. (Abstract shortened by UMI.)
HelioTrope: An innovative and efficient prototype for solar power production
NASA Astrophysics Data System (ADS)
Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros
2014-12-01
The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.
NASA Astrophysics Data System (ADS)
Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei
2017-08-01
Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.
Repeating firing fields of CA1 neurons shift forward in response to increasing angular velocity.
Cowen, Stephen L; Nitz, Douglas A
2014-01-01
Self-motion information influences spatially-specific firing patterns exhibited by hippocampal neurons. Moreover, these firing patterns can repeat across similar subsegments of an environment, provided that there is similarity of path shape and head orientations across subsegments. The influence of self-motion variables on repeating fields remains to be determined. To investigate the role of path shape and angular rotation on hippocampal activity, we recorded the activity of CA1 neurons from rats trained to run on spiral-shaped tracks. During inbound traversals of circular-spiral tracks, angular velocity increases continuously. Under this condition, most neurons (74%) exhibited repeating fields across at least three adjacent loops. Of these neurons, 86% exhibited forward shifts in the angles of field centers relative to centers on preceding loops. Shifts were absent on squared-spiral tracks, minimal and less reliable on concentric-circle tracks, and absent on outward-bound runs on circular-spiral tracks. However, outward-bound runs on the circular-spiral track in the dark were associated with backward shifts. Together, the most parsimonious interpretation of the results is that continuous increases or decreases in angular velocity are particularly effective at shifting the center of mass of repeating fields, although it is also possible that a nonlinear integration of step counts contributes to the shift. Furthermore, the unexpected absence of field shifts during outward journeys in light (but not darkness) suggests visual cues around the goal location anchored the map of space to an allocentric reference frame.
NASA Astrophysics Data System (ADS)
Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.
2009-06-01
Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.
Exact Fan-Beam Reconstruction With Arbitrary Object Translations and Truncated Projections
NASA Astrophysics Data System (ADS)
Hoskovec, Jan; Clackdoyle, Rolf; Desbat, Laurent; Rit, Simon
2016-06-01
This article proposes a new method for reconstructing two-dimensional (2D) computed tomography (CT) images from truncated and motion contaminated sinograms. The type of motion considered here is a sequence of rigid translations which are assumed to be known. The algorithm first identifies the sufficiency of angular coverage in each 2D point of the CT image to calculate the Hilbert transform from the local “virtual” trajectory which accounts for the motion and the truncation. By taking advantage of data redundancy in the full circular scan, our method expands the reconstructible region beyond the one obtained with chord-based methods. The proposed direct reconstruction algorithm is based on the Differentiated Back-Projection with Hilbert filtering (DBP-H). The motion is taken into account during backprojection which is the first step of our direct reconstruction, before taking the derivatives and inverting the finite Hilbert transform. The algorithm has been tested in a proof-of-concept study on Shepp-Logan phantom simulations with several motion cases and detector sizes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Jin; Lee, Sun-Kyu, E-mail: skyee@gist.ac.kr
2015-01-15
This paper presents a design and control system for an XY stage driven by an ultrasonic linear motor. In this study, a hybrid bolt-clamped Langevin-type ultrasonic linear motor was manufactured and then operated at the resonance frequency of the third longitudinal and the sixth lateral modes. These two modes were matched through the preload adjustment and precisely tuned by the frequency matching method based on the impedance matching method with consideration of the different moving weights. The XY stage was evaluated in terms of position and circular motion. To achieve both fine and stable motion, the controller consisted of amore » nominal characteristics trajectory following (NCTF) control for continuous motion, dead zone compensation, and a switching controller based on the different NCTFs for the macro- and micro-dynamics regimes. The experimental results showed that the developed stage enables positioning and continuous motion with nanometer-level accuracy.« less
Brownian motion in non-equilibrium systems and the Ornstein-Uhlenbeck stochastic process.
Donado, F; Moctezuma, R E; López-Flores, L; Medina-Noyola, M; Arauz-Lara, J L
2017-10-03
The Ornstein-Uhlenbeck stochastic process is an exact mathematical model providing accurate representations of many real dynamic processes in systems in a stationary state. When applied to the description of random motion of particles such as that of Brownian particles, it provides exact predictions coinciding with those of the Langevin equation but not restricted to systems in thermal equilibrium but only conditioned to be stationary. Here, we investigate experimentally single particle motion in a two-dimensional granular system in a stationary state, consisting of 1 mm stainless balls on a plane circular surface. The motion of the particles is produced by an alternating magnetic field applied perpendicular to the surface of the container. The mean square displacement of the particles is measured for a range of low concentrations and it is found that following an appropriate scaling of length and time, the short-time experimental curves conform a master curve covering the range of particle motion from ballistic to diffusive in accordance with the description of the Ornstein-Uhlenbeck model.
Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point
NASA Technical Reports Server (NTRS)
Segerman, Alan M.; Zedd, Michael F.
2005-01-01
This Memorandum Report consists of a compilation of three individual reports, of increasing complexity, describing investigations of formation flight of spacecraft in the vicinity of the L2 Sun-Earth 1ibration point. The individual reports form the following parts of this compilation: - Introduction to the relative motion of spacecraft about the Sun-Earth L2 Point - Linear and quadratic modelling and solution of the relative motion - Modelling the Perturbations - Elliptical Earth Orbit, Lunar Gravity, Solar Radiation Pressure, Thrusters. The three parts are self-contained, with somewhat, varying notation and terminology. After fair1y significant literature searches: this new work (of Parts 2 and 3) is deemed to be unique because it describes the primary perturbations to the description of relative motion between nearby spacecraft. The effect of the elliptical motion of the Earth about the Sun was verified to be the dominant perturbation to the circular restricted three body problem. Contributions due to lunar gravity and solar radiation pressure are seen to have much smaller effect.
Acoustic resonances in cylinder bundles oscillating in a compressibile fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.H.; Raptis, A.C.
1984-12-01
This paper deals with an analytical study on acoustic resonances of elastic oscillations of a group of parallel, circular, thin cylinders in an unbounded volume of barotropic, compressible, inviscid fluid. The perturbed motion of the fluid is assumed due entirely to the flexural oscillations of the cylinders. The motion of the fluid disturbances is first formulated in a three-dimensional wave form and then casted into a two-dimensional Helmholtz equation for the harmonic motion in time and in axial space. The acoustic motion in the fluid and the elastic motion in the cylinders are solved simultaneously. Acoustic resonances were approximately determinedmore » from the secular (eigenvalue) equation by the method of successive iteration with the use of digital computers for a given set of the fluid properties and the cylinders' geometry and properties. Effects of the flexural wavenumber and the configuration of and the spacing between the cylinders on the acoustic resonances were thoroughly investigated.« less
Motions of Kepler circumbinary planets in restricted three-body problem under radiating primaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dermawan, B., E-mail: budider@as.itb.ac.id; Hidayat, T., E-mail: taufiq@as.itb.ac.id; Huda, I. N., E-mail: ibnu.nurul@students.itb.ac.id
2015-09-30
By observing continuously a single field of view in the sky, Kepler mission reveals outstanding results on discoveries of exoplanets. One of its recent progress is the discoveries of circumbinary planets. A circumbinary planet is an exoplanet that moves around a binary system. In this study we investigate motions of Kepler circumbinary planets belong to six binary systems, namely Kepler-16, -34, -35, -38, -47, and -413. The motions are considered to follow the Restricted Three-Body Problem (RTBP). Because the primaries (central massive objects) are stars, they are both radiatives, while the planet is an infinitesimal object. The primaries move inmore » nearly circular and elliptic orbits with respect to their center of masses. We describe, in general, motions of the circumbinary planets in RTBP under radiating primaries. With respect to the averaged zero velocity curves, we show that motions of the exoplanets are stable, in accordance with their Hill stabilities.« less
Patient-specific dosimetry based on quantitative SPECT imaging and 3D-DFT convolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akabani, G.; Hawkins, W.G.; Eckblade, M.B.
1999-01-01
The objective of this study was to validate the use of a 3-D discrete Fourier Transform (3D-DFT) convolution method to carry out the dosimetry for I-131 for soft tissues in radioimmunotherapy procedures. To validate this convolution method, mathematical and physical phantoms were used as a basis of comparison with Monte Carlo transport (MCT) calculations which were carried out using the EGS4 system code. The mathematical phantom consisted of a sphere containing uniform and nonuniform activity distributions. The physical phantom consisted of a cylinder containing uniform and nonuniform activity distributions. Quantitative SPECT reconstruction was carried out using the Circular Harmonic Transformmore » (CHT) algorithm.« less
NASA Astrophysics Data System (ADS)
Hossa, Robert; Górski, Maksymilian
2010-09-01
In the paper we analyze the influence of RF channels mismatch and mutual coupling effect on the performance of the multistatic passive radar with Uniform Circular Array (UCA) configuration. The problem was tested intensively in numerous different scenarios with a reference virtual multistatic passive radar. Finally, exemplary results of the computer software simulations are provided and discussed.
Pressure fluctuations on the surface of a cylinder in uniform flow
NASA Technical Reports Server (NTRS)
Ayoub, A.; Karamcheti, K.
1976-01-01
The problem of determining the pressure fluctuations induced on the surface of a cylinder by the fluctuating wake behind it is formulated. A formal solution relating the unsteady surface pressure field to the velocity field in the wake is derived and used to obtain general results independent of cylinder shape and Reynolds number. The case of the circular cylinder is then examined in detail.
Laser Stimulated Thermoluminescence
NASA Astrophysics Data System (ADS)
Abtahi, Abdollah
Techniques for localized heating of semi-infinite single-layer and two-layer structures are investigated theoretically and experimentally, motivated by applications in thermoluminescence (TL) dosimetry of ionizing radiation. The heat-conduction equations are solved by the Green's function technique to obtain the transient temperature distribution caused by exposure to laser beams of Gaussian and uniform circular intensity profiles. It is shown that the spatio-temporal temperature response is readily monitored by the TL response that results when layer configuration contains a thermoluminescent phosphor. The experiments for the verification of the developed theory are performed with two specially constructed TL detection systems, one featuring a laser beam of Gaussian profile and the other a uniform circular laser beam. Measurements of the thermoluminescent emission from a number of different TL systems are performed and compared with computed responses on the basis of simple electron kinetics. We experiment exclusively with the commercial TL phosphor LiF:Mg,Ti(TLD-100, Harshaw), the most widely used material in thermoluminescence dosimetry. We study in detail localized Gaussian beam heating of it in the form of 0.9 mm thick slabs, self-supporting firms of fine-grain powder in a polyimide (Kapton) matrix, and on substrates of LiF single crystals or borosilicate glass. Thermoluminescent layers on glass substrates have been heated with Gaussian and uniform circular intensity profiles in two different modes: the laser beam impinges onto (a) the phosphor layer, and (b) the glass substrate. It is demonstrated that the optical and thermal behavior of the dosimeters can be determined by these methods and that, furthermore, the thermoluminescence response of a given configuration can be simulated as a function of a number of experimental parameters such as laser power, beam size, substrate and TL-layer thicknesses, and configuration of the dosimeters. In addition, we have investigated the dependence of the luminous efficiency (normalized thermoluminescence yield) and peak heights on heating rates in the range from 4 K/s to 5500 K/s. The efficiency values obtained are then included in the comparison of experimental and theoretical TL responses curves for various laser powers.
NASA Astrophysics Data System (ADS)
Šedivý, Dominik; Ferfecki, Petr; Fialová, Simona
2018-06-01
This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.
Experimentally Building a Qualitative Understanding of Newton's Second Law
NASA Astrophysics Data System (ADS)
Gates, Joshua
2014-12-01
Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving1 and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for lab activities addressing the functional relationship among net force, mass, and acceleration, the qualitative understanding of the connection between forces and acceleration can still be lacking,2 leading to poor performance in problem solving and in assessments such as the Force Concept Inventory3 and Force and Motion Conceptual Evaluation.4 There is a need for strong conceptual understanding of the relationships between net force and acceleration and between acceleration and velocity in order to effectively address common force-motion misconceptions;5 there is a large literature concerning student understanding of force and motion.6
NASA Astrophysics Data System (ADS)
Sakaguchi, Hidetsugu; Ishibashi, Kazuya
2018-06-01
We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.
A molecular propeller effect for chiral separation and analysis
Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas
2015-01-01
Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved. PMID:26216219
Parametric control of maneuver of a space tether system
NASA Astrophysics Data System (ADS)
Bezglasnyi, S. P.; Piyakina, E. E.
2015-07-01
Planar motion of a space tether system (STS) simulated by a massless rod with two masses fixed on its edges and a third mass moving along the rod is considered. An equation of the pendulum-controlled motion of the system in an elliptical orbit is obtained. Problems of parametric control that takes the STS from one stable radial equilibrium state to another and stabilizes it with respect to planar excitations of two diametrically opposite positions of the relative equilibrium of the STS in a circular orbit are investigated. The control is a continuous law of motion for a moving mass along the tether on the swing principle. The solution is obtained in a closed form based on the second method of the classical stability theory by the construction of the corresponding Lyapunov functions. Asymptotic convergence of solutions is confirmed by the results of numerical modeling of the system motion.
Manufacturing in space: Fluid dynamics numerical analysis
NASA Technical Reports Server (NTRS)
Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.
1982-01-01
Numerical computations were performed for natural convection in circular enclosures under various conditions of acceleration. It was found that subcritical acceleration vectors applied in the direction of the temperature gradient will lead to an eventual state of rest regardless of the initial state of motion. Supercritical acceleration vectors will lead to the same steady state condition of motion regardless of the initial state of motion. Convection velocities were computed for acceleration vectors at various angles of the initial temperature gradient. The results for Rayleigh numbers of 1000 or less were found to closely follow Weinbaum's first order theory. Higher Rayleigh number results were shown to depart significantly from the first order theory. Supercritical behavior was confirmed for Rayleigh numbers greater than the known supercritical value of 9216. Response times were determined to provide an indication of the time required to change states of motion for the various cases considered.
A molecular propeller effect for chiral separation and analysis
NASA Astrophysics Data System (ADS)
Clemens, Jonathon B.; Kibar, Osman; Chachisvilis, Mirianas
2015-07-01
Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.
Colliding Stellar Wind Models with Orbital Motion
NASA Astrophysics Data System (ADS)
Wilkin, Francis P.; O'Connor, Brendan
2018-01-01
We present thin-shell models for the collision between two ballistic stellar winds, including orbital motion.The stellar orbits are assumed circular, so that steady-state solutions exist in the rotating frame, where we include centrifugal and Coriolis forces. Exact solutions for the pre-shock winds are incorporated. Here we discuss 2-D model results for equal wind momentum-loss rates, although we allow for the winds to have distinct speeds and mass loss rates. For these unequal wind conditions, we obtain a clear violation of skew-symmetry, despite equal momentum loss rates, due to the Coriolis force.
Plasmonic rack-and-pinion gear with chiral metasurface
NASA Astrophysics Data System (ADS)
Gorodetski, Yuri; Karabchevsky, Alina
2016-04-01
The effect of circularly polarized beaming excited by traveling surface plasmons, via chiral metasurface is experimentally studied. Here we show that the propagation direction of the plasmonic wave, evanescently excited on the thin gold film affects the handedness of the scattered beam polarization. Nanostructured metasurface leads to excitation of localized plasmonic modes whose relative spatial orientation induces overall spin-orbit interaction. This effect is analogical to the rack-and-pinion gear: the rotational motion into the linear motion converter. From the practical point of view, the observed effect can be utilized in integrated optical circuits for communication systems, cyber security and sensing.
NASA Astrophysics Data System (ADS)
Jiang, Leishan; Li, Tim
2017-11-01
Why rainfall response to El Niño is uniform and stronger over the Maritime Continent (MC) during El Niño developing summer and fall but is weaker and non-uniform during El Niño mature winter is investigated through the diagnosis of anomalous large-scale circulation patterns and a local moisture budget analysis. It is found that when anomalous Walker cells across the equatorial Pacific and Indian Ocean are strengthened toward El Niño mature winter, a low-level ascending motion anomaly starts to develop over western MC in northern fall due to topographic lifting (near Sumatra) and anomalous wind convergence (near west Kalimantan). Easterly anomalies, as a part of an anomalous anticyclone in South China Sea (SCS) that is developed during El Niño and a part of the south-easterly from Java Sea associated with anomalous Walker Circulation, bump into the mountain ridge of Sumatra and induce ascending motion anomalies near Sumatra. Meanwhile, the anomalous north-easterly in the southern flank of the anomalous anticyclone over SCS and south-easterly over Java Sea converge into west Kalimantan, leading to ascending motion there. The anomalous ascending motion tend to advect mean moisture upward to moisten lower troposphere in situ. This low-level moistening eventually sets up a convectively unstable stratification and induces a positive precipitation anomaly in the western MC. How the mechanism discussed here is relevant to previous hypotheses and how processes during El Niño might differ during La Niña are discussed.
Preliminary Planar Formation: Flight Dynamics Near Sun-Earth L2 Point
NASA Technical Reports Server (NTRS)
Segerman, Alan M.; Zedd, Michael F.
2003-01-01
NASA's Goddard Space Flight Center is planning a series of missions in the vicinity of the Sun-Earth L2 libration point. Some of these projects will involve a distributed space system of telescope spacecraft acting together as a single telescope for high-resolution. The individual telescopes will be configured in a plane, surrounding a hub, where the telescope plane can be aimed toward various astronomical targets of interest. In preparation for these missions, it is necessary to develop an improved understanding of the dynamical behavior of objects in a planar configuration near L2. The classical circular restricted three body problem is taken as the basis for the analysis. At first order, the motion of such a telescope relative to the hub is described by a system of linear second order differential equations. These equations are identical to the circular restricted problem's linear equations describing the hub motion about L2. Therefore, the fundamental frequencies, both parallel to and normal to the ecliptic plane, are the same for the relative telescope motion as for the hub motion. To maintain the telescope plane for the duration necessary for the planned observations, a halo-type orbit of the telescopes about the hub is investigated. By using a halo orbit, the individual telescopes remain in approximately the same plane over the observation duration. For such an orbit, the fundamental periods parallel to and normal to the ecliptic plane are forced to be the same by careful selection of the initial conditions in order to adjust the higher order forces. The relative amplitudes of the resulting oscillations are associated with the orientation of the telescope plane relative to the ecliptic. As in the circular restricted problem, initial conditions for the linearized equations must be selected so as not to excite the convergent or divergent linear modes. In a higher order analysis, the telescope relative motion equations include the effects of the position of the hub relative to L2. In this paper, the differential equations are developed through second order in the distance of the hub from the libration point. A modified Lindstedt-Poincad perturbation method is employed to construct the solution of these differential equations through that same order of magnitude. In the course of the solution process, relationships are determined between the initial conditions of the telescopes, selected in order to avoid resonance excitation. As the differential equations include the hub position, it is necessary to simultaneously develop the solution for the hub. As has been done in past analyses of the circular restricted problem, the hub position is written in a power series formulation in terms of its distance from L2. Then, in order to be included in the telescope equations, the hub solution is cast in terms of the nonlinear frequency of the relative telescope motion. In the course of the analysis, it is determined that the hub should also maintain a halo orbit - about L2. Additionally, relationships are formed between the initial conditions of the telescopes and the hub. These relationships may be used to associate sets of initial conditions with particular orientations of the telescope plane. The accuracy of the analytical solution is verified through various simulations and comparison to numerical integration of the differential equations. The results of the simulations are presented, along with a graphical representation of the relationships between the initial conditions of the telescopes and hub.
Manipulating particles for micro- and nano-fluidics via floating electrodes and diffusiophoresis
NASA Astrophysics Data System (ADS)
Yalcin, Sinan Eren
The ability to accurately control micro- and nano-particles in a liquid is fundamentally useful for many applications in biology, medicine, pharmacology, tissue engineering, and microelectronics. Therefore, first particle manipulations are experimentally studied using electrodes attached to the bottom of a straight microchannel under an imposed DC or AC electric field. In contrast to a dielectric microchannel possessing a nearly-uniform surface charge, a floating electrode is polarized under the imposed electric field. The purpose is to create a non-uniform distribution of the induced surface charge, with a zero-net-surface charge along the floating electrode's surface. Such a field, in turn, generates an induced-charge electro-osmotic (ICED) flow near the metal strip. The demonstrations by using single and multiple floating electrodes at the bottom of a straight microchannel, with induced DC electric field, include particle enrichment, movement, trapping, reversal of motion, separation, and particle focusing. A flexible strategy for the on-demand control of the particle enrichment and positioning is also proposed and demonstrated by using a locally-controlled floating metal electrode. Then, under an externally imposed AC electric field, the particle deposition onto a floating electrode, which is placed in a closed circular cavity, has been experimentally investigated. In the second part of the study, another particle manipulation method was computationally investigated. The diffusiophoretic and electrodiffusiophoretic motion of a charged spherical particle in a nanopore is subjected to an axial electrolyte concentration gradient. The charged particle experiences electrophoresis because of the imposed electric field and the diffusiophoresis is caused solely by the imposed concentration gradient. Depending on the magnitude and direction of the imposed concentration gradient, the particle's electrophoretic motion can be accelerated, decelerated, and even reversed in a nanopore by the superimposed diffusiophoresis. Based on the results demonstrated in the present study, it is entirely conceivable to extend the development to design devices for the following objectives: (1) to enrich the concentration of, say, DNA or RNA, and to increase their concentrations at a desired location. (2) to act as a filtration device, wherin the filtration can be achieved without blocking the microfluidic channel and without any porous material. (3) to act as a microfluidic valve, where the particles can be locally trapped in any desired location and the direction can be switched as desired. (4) to create nanocomposite material formation or even a thin nanocomposite film formation on the floating electrode. (5) to create a continuous concentration-gradient-generator nanofluidic device that may be obtained for nanoparticle translocation process. This may achieve nanometer-scale spatial accuracy sample sequencing by simultaneously controlling the electric field and concentration gradient.
Unconfined aquifer response to infiltration basins and shallow pump tests
NASA Astrophysics Data System (ADS)
Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.
2007-05-01
SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.
LED backlight system with fiber-optic red, green, blue to white color combiner
NASA Astrophysics Data System (ADS)
Kim, Hye R.; Jeong, Yunsong; Lee, Jhang-Woo; Oh, Kyunghwan
2006-09-01
As an application in the backlight system of small LCD display, we realized a pure white light source by mixing red, green, blue (RGB) lights using a 3 X 3 Hard Plastic Cladding Fiber (HPCF) coupler. We also proposed the 0.44 inch LED backlight system with these fiber-optic pure white sources and characterized its illumination characteristics. Using optimized fusion-tapering technique, we fabricated HPCF coupler which combines three input lights over the circularly formed waist. HPCF has the core diameter of 200 μm and clad diameter of 230 μm. The fabricated 3 X 3 HPCF coupler has the perfect uniformity of about 0.3 dB, low insertion loss of 5.5 dB, and low excess loss of 0.8 dB, which shows excellent uniform power splitting ratio. In order to improve the transmission performance, The RGB chip LEDs were butt-coupled directly to the ferruled input ports of the coupler and packaged by TO46-can type. In the produced white color by HPCF coupler, the photometric brightness at the circular endface of outputs of HPCF coupler was in a rage of 10062 ~ 10094 cd/m2. The fiber optic white color combiner provides tunable white sources excluding heat source and having thickness of 200 μm. We also proposed a 0.44 inch LED backlight system with these fiber-optic pure white sources. With the proposed device, we obtain the improved uniformity in luminance distribution and wide color gamut by using the white light mixing red, green and blue lights.
Spherical Pendulum Small Oscillations for Slewing Crane Motion
Perig, Alexander V.; Stadnik, Alexander N.; Deriglazov, Alexander I.
2014-01-01
The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies' problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown. PMID:24526891
Schwalbe, Jonathan T; Vlahovska, Petia M; Miksis, Michael J
2011-04-01
A small amplitude perturbation analysis is developed to describe the effect of a uniform electric field on the dynamics of a lipid bilayer vesicle in a simple shear flow. All media are treated as leaky dielectrics and fluid motion is described by the Stokes equations. The instantaneous vesicle shape is obtained by balancing electric, hydrodynamic, bending, and tension stresses exerted on the membrane. We find that in the absence of ambient shear flow, it is possible that an applied stepwise uniform dc electric field could cause the vesicle shape to evolve from oblate to prolate over time if the encapsulated fluid is less conducting than the suspending fluid. For a vesicle in ambient shear flow, the electric field damps the tumbling motion, leading to a stable tank-treading state.
Elasticity effects on cavitation in a squeeze film damper undergoing noncentered circular whirl
NASA Technical Reports Server (NTRS)
Brewe, David E.
1988-01-01
Elasticity of the liner and its effects on cavitation were numerically determined for a squeeze film damper subjected to dynamic loading. The loading was manifested as a prescribed motion of the rotor undergoing noncentered circular whirl. The boundary conditions were implemented using Elrod's algorithm which conserves lineal mass flux through the moving cavitation bubble as well as the oil film region of the damper. Computational movies were used to analyze the rapidly changing pressures and vapor bubble dynamics throughout the dynamic cycle for various flexibilities in the damper liner. The effects of liner elasticity on cavitation were only noticeable for the intermediate and high values of viscosity used in this study.
Spectral methods in edge-diffraction theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.M.
Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less
Rotational Motion of Axisymmetric Marangoni Swimmers
NASA Astrophysics Data System (ADS)
Rothstein, Jonathan; Uvanovic, Nick
2017-11-01
A series of experiments will be presented investigating the motion of millimeter-sized particles on the surface of water. The particles were partially coated with ethanol and carefully placed on a water interface in a series of Petri dishes with different diameters. High speed particle motion was driven by strong surface tension gradients as the ethanol slowly diffuses from the particles into the water resulting in a Marangoni flow. The velocity and acceleration of the particles where measured. In addition to straight line motion, the presence of the bounding walls of the circular Petri dish was found to induce an asymmetric, rotational motion of the axisymmetric Marangoni swimmers. The rotation rate and radius of curvature was found to be a function of the size of the Petri dish and the curvature of the air-water interface near the edge of the dish. For large Petri dishes or small particles, rotation motion was observed far from the bounding walls. In these cases, the symmetry break appears to be the result of the onset of votex shedding. Finally, multiple spherical particles were observed to undergo assembly driven by capillary forces followed by explosive disassembly.
Second-order motions contribute to vection.
Gurnsey, R; Fleet, D; Potechin, C
1998-09-01
First- and second-order motions differ in their ability to induce motion aftereffects (MAEs) and the kinetic depth effect (KDE). To test whether second-order stimuli support computations relating to motion-in-depth we examined the vection illusion (illusory self motion induced by image flow) using a vection stimulus (V, expanding concentric rings) that depicted a linear path through a circular tunnel. The set of vection stimuli contained differing amounts of first- and second-order motion energy (ME). Subjects reported the duration of the perceived MAEs and the duration of their vection percept. In Experiment 1 both MAEs and vection durations were longest when the first-order (Fourier) components of V were present in the stimulus. In Experiment 2, V was multiplicatively combined with static noise carriers having different check sizes. The amount of first-order ME associated with V increases with check size. MAEs were found to increase with check size but vection durations were unaffected. In general MAEs depend on the amount of first-order ME present in the signal. Vection, on the other hand, appears to depend on a representation of image flow that combines first- and second-order ME.
Planar dynamics of a uniform beam with rigid bodies affixed to the ends
NASA Technical Reports Server (NTRS)
Storch, J.; Gates, S.
1983-01-01
The planar dynamics of a uniform elastic beam subject to a variety of geometric and natural boundary conditions and external excitations were analyzed. The beams are inextensible and capable of small transverse bending deformations only. Classical beam vibration eigenvalue problems for a cantilever with tip mass, a cantilever with tip body and an unconstrained beam with rigid bodies at each are examined. The characteristic equations, eigenfunctions and orthogonality relations for each are derived. The forced vibration of a cantilever with tip body subject to base acceleration is analyzed. The exact solution of the governing nonhomogeneous partial differential equation with time dependent boundary conditions is presented and compared with a Rayleigh-Ritz approximate solution. The arbitrary planar motion of an elastic beam with rigid bodies at the ends is addressed. Equations of motion are derived for two modal expansions of the beam deflection. The motion equations are cast in a first order form suitable for numerical integration. Selected FORTRAN programs are provided.
Vernon, Stephen P.; Ceglio, Natale M.
2000-01-01
The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.
The Falling Chain of Hopkins, Tait, Steele and Cayley
ERIC Educational Resources Information Center
Wong, Chun Wa; Youn, Seo Ho; Yasui, Kosuke
2007-01-01
A uniform, flexible and frictionless chain falling link by link from a heap by the edge of a table falls with an acceleration g/3 if the motion is nonconservative, but g/2 if the motion is conservative, g being the acceleration due to gravity. Unable to construct such a falling chain, we use instead higher-dimensional versions of it. A home…
Motion of a Charged Particle in a Constant and Uniform Electromagnetic Field
ERIC Educational Resources Information Center
Ladino, L. A.; Rondón, S. H.; Orduz, P.
2015-01-01
This paper focuses on the use of software developed by the authors that allows the visualization of the motion of a charged particle under the influence of magnetic and electric fields in 3D, at a level suitable for introductory physics courses. The software offers the possibility of studying a great number of physical situations that can…
Secondary motion in three-dimensional branching networks
NASA Astrophysics Data System (ADS)
Guha, Abhijit; Pradhan, Kaustav
2017-06-01
A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity | v → S | , streamwise vorticity ω S , and λ 2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δ S F , and δ G n ) for a quantitative description of the overall features of the secondary flow field. δ S F represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δ G n provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δ S F are found to lie within a small range ( 0.37 ≤ δ S F ≤ 0.66 ) for the six-generation networks studied. It is shown that δ G n grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δ S F ), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δ G n ), as compared to the in-plane arrangement of the same branches.
Secondary motion in three-dimensional branching networks
Guha, Abhijit; Pradhan, Kaustav
2017-01-01
A major aim of the present work is to understand and thoroughly document the generation, the three-dimensional distribution, and the evolution of the secondary motion as the fluid progresses downstream through a branched network. Six generations (G0-G5) of branches (involving 63 straight portions and 31 bifurcation modules) are computed in one go; such computational challenges are rarely taken in the literature. More than 30 × 106 computational elements are employed for high precision of computed results and fine quality of the flow visualization diagrams. The study of co-planar vis-à-vis non-planar space-filling configurations establishes a quantitative evaluation of the dependence of the fluid dynamics on the three-dimensional arrangement of the same individual branches. As compared to the secondary motion in a simple curved pipe, three distinctive features, viz., the change of shape and size of the flow-cross-section, the division of non-uniform primary flow in a bifurcation module, and repeated switchover from clockwise to anticlockwise curvature and vice versa in the flow path, make the present situation more complex. It is shown that the straight portions in the network, in general, attenuate the secondary motion, while the three-dimensionally complex bifurcation modules generate secondary motion and may alter the number, arrangement, and structure of vortices. A comprehensive picture of the evolution of quantitative flow visualizations of the secondary motion is achieved by constructing contours of secondary velocity v→S, streamwise vorticity ωS, and λ2 iso-surfaces. It is demonstrated, for example, that for in-plane configuration, the vortices on any plane appear in pair (i.e., for each clockwise rotating vortex, there is an otherwise identical anticlockwise vortex), whereas the vortices on a plane for the out-of-plane configuration may be dissimilar, and there may even be an odd number of vortices. We have formulated three new parameters (ES/P, δSF, and δGn) for a quantitative description of the overall features of the secondary flow field. δSF represents a non-uniformity index of the secondary flow in an individual branch, ES/P represents the mass-flow-averaged relative kinetic energy of the secondary motion in an individual branch, and δGn provides a measure of the non-uniformity of the secondary flow between various branches of the same generation Gn. The repeated enhancement of the secondary kinetic energy in the bifurcation modules is responsible for the occurrence of significant values of ES/P even in generation G5. For both configurations, it is found that for any bifurcation module, the value of ES/P is greater in that daughter branch in which the mass-flow rate is greater. Even though the various contour plots of the complex secondary flow structure appear visually very different from one another, the values of δSF are found to lie within a small range (0.37≤δSF≤0.66) for the six-generation networks studied. It is shown that δGn grows as the generation number Gn increases. It is established that the out-of-plane configuration, in general, creates more secondary kinetic energy (higher ES/P), a similar level of non-uniformity in the secondary flow in an individual branch (similar δSF), and a significantly lower level of non-uniformity in the distribution of secondary motion among various branches of the same generation (much lower δGn), as compared to the in-plane arrangement of the same branches. PMID:28713213
Physical optics in a uniform gravitational field
NASA Astrophysics Data System (ADS)
Hacyan, Shahen
2012-01-01
The motion of a (quasi-)plane wave in a uniform gravitational field is studied. It is shown that the energy of an elliptically polarized wave does not propagate along a geodesic, but in a direction that is rotated with respect to the gravitational force. The similarity with the walk-off effect in anisotropic crystals or the optical Magnus effect in inhomogeneous media is pointed out.
NASA Technical Reports Server (NTRS)
Siegel, R.; Sparrow, E. M.
1960-01-01
The purpose of this note is to examine in a more precise way how the Nusselt numbers for turbulent heat transfer in both the fully developed and thermal entrance regions of a circular tube are affected by two different wall boundary conditions. The comparisons are made for: (a) Uniform wall temperature (UWT); and (b) uniform wall heat flux (UHF). Several papers which have been concerned with the turbulent thermal entrance region problem are given. 1 Although these analyses have all utilized an eigenvalue formulation for the thermal entrance region there were differences in the choices of eddy diffusivity expressions, velocity distributions, and methods for carrying out the numerical solutions. These differences were also found in the fully developed analyses. Hence when making a comparison of the analytical results for uniform wall temperature and uniform wall heat flux, it was not known if differences in the Nusselt numbers could be wholly attributed to the difference in wall boundary conditions, since all the analytical results were not obtained in a consistent way. To have results which could be directly compared, computations were carried out for the uniform wall temperature case, using the same eddy diffusivity, velocity distribution, and digital computer program employed for uniform wall heat flux. In addition, the previous work was extended to a lower Reynolds number range so that comparisons could be made over a wide range of both Reynolds and Prandtl numbers.
ERIC Educational Resources Information Center
Wagon, Stan; Cox, Barry
2009-01-01
A technique discovered in 1939 can be used to build a device that is driven by standard circular motion (as in a drill press) and drills exact square holes. This device is quite different from the classic design by Watts, which uses a Reuleaux triangle and drills a hole that is almost, but not exactly, square. We describe the device in detail,…
Experimentally Building a Qualitative Understanding of Newton's Second Law
ERIC Educational Resources Information Center
Gates, Joshua
2014-01-01
Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for…
Nonstationarity in timing of extreme precipitation across China and impact of tropical cyclones
NASA Astrophysics Data System (ADS)
Gu, Xihui; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun
2017-02-01
This study examines the seasonality and nonstationarity in the timing of extreme precipitation obtained by annual maximum (AM) sampling and peak-over-threshold (POT) sampling techniques using circular statistics. Daily precipitation data from 728 stations with record length of at least 55 years across China were analyzed. In general, the average seasonality is subject mainly to summer season (June-July - August), which is potentially related to East Asian monsoon and Indian monsoon activities. The strength of precipitation seasonality varied across China with the highest strength being in northeast, north, and central-north China; whereas the weakest seasonality was found in southeast China. There are three seasonality types: circular uniform, reflective symmetric, and asymmetric. However, the circular uniform seasonality of extreme precipitation was not detected at stations across China. The asymmetric distribution was observed mainly in southeast China, and the reflective distribution of precipitation extremes was also identified the other regions besides the above-mentioned regions. Furthermore, a strong signal of nonstationarity in the seasonality was detected at half of the weather stations considered in the study, exhibiting a significant shift in the timing of extreme precipitation, and also significant trends in the average and strength of seasonality. Seasonal vapor flux and related delivery pathways and also tropical cyclones (TCs) are most probably the driving factors for the shifts or changes in the seasonality of extreme precipitation across China. Timing of precipitation extremes is closely related to seasonal shifts of floods and droughts and which means much for management of agricultural irrigation and water resources management. This study sheds new light on nonstationarity in timing of precipitation extremes which differs from existing ones which focused on precipitation extremes from perspective of magnitude and intensity.
ASI aurora search: an attempt of intelligent image processing for circular fisheye lens.
Yang, Xi; Gao, Xinbo; Song, Bin; Wang, Nannan; Yang, Dong
2018-04-02
The circular fisheye lens exhibits an approximately 180° angular field-of-view (FOV), which is much larger than that of an ordinary lens. Thus, images captured with a circular fisheye lens are distributed non-uniformly with spherical deformation. Along with the fast development of deep neural networks for normal images, how to apply it to achieve intelligent image processing for a circular fisheye lens is a new task of significant importance. In this paper, we take the aurora images captured with all-sky-imagers (ASI) as a typical example. By analyzing the imaging principle of ASI and the magnetic characteristics of the aurora, a deformed region division (DRD) scheme is proposed to replace the region proposals network (RPN) in the advanced mask regional convolutional neural network (Mask R-CNN) framework. Thus, each image can be regarded as a "bag" of deformed regions represented with CNN features. After clustering all CNN features to generate a vocabulary, each deformed region is quantified to its nearest center for indexing. On the stage of an online search, a similarity score is computed by measuring the distances between regions in the query image and all regions in the data set, and the image with the highest value is outputted as the top rank search result. Experimental results show that the proposed method greatly improves the search accuracy and efficiency, demonstrating that it is a valuable attempt of intelligent image processing for circular fisheye lenses.
Knee arthrodesis with circular external fixation.
Garberina, M J; Fitch, R D; Hoffmann, E D; Hardaker, W T; Vail, T P; Scully, S P
2001-01-01
Knee arthrodesis can enable limb salvage in patients with disability secondary to trauma, infected total knee arthroplasty, pyarthrosis, and other complications. Historically, intramedullary nailing has resulted in the highest overall knee fusion rates. However, intramedullary nailing is relatively contraindicated in the presence of active infection. Nineteen patients who underwent knee arthrodesis with circular external fixation were studied retrospectively. Postoperative radiographs were evaluated for evidence of bony fusion, which was defined as trabecular bridging between the femur and tibia. Patients were interviewed and graded using the functional assessment portion of the Knee Society clinical rating system. Fusion was successful in 13 of 19 (68%) patients. Overall, patients spent an average of 4 months 8 days wearing the circular external fixator. Average time to radiographic and clinical evidence of arthrodesis (defined as lack of motion across the fusion site) was 4 months 18 days. No patient with successful fusion considered himself or herself housebound. All but one of these patients require some form of assistive device for ambulation. Complications occurred in 16 of 19 (84%) patients overall. Superficial pin tract infection (55%) and nonunion (32%) were the most common. Circular external fixation is an effective method for obtaining knee arthrodesis in patients who are not good candidates for intramedullary nailing.
A simplified model of biosonar echoes from foliage and the properties of natural foliages.
Ming, Chen; Zhu, Hongxiao; Müller, Rolf
2017-01-01
Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage.
A simplified model of biosonar echoes from foliage and the properties of natural foliages
Zhu, Hongxiao; Müller, Rolf
2017-01-01
Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage. PMID:29240840
Elliptic jets, part 2. Dynamics of coherent structures: Pairing
NASA Technical Reports Server (NTRS)
Husain, Hyder S.; Hussain, Fazle
1992-01-01
The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neilson, Jeffrey M.
A cylindrical waveguide with a mode converter transforms a whispering gallery mode from a gyrotron cylindrical waveguide with a helical cut launch edge to a quasi-Gaussian beam suitable for conveyance through a corrugated waveguide. This quasi-Gaussian beam is radiated away from the waveguide using a spiral cut launch edge, which is in close proximity to a first mode converting reflector. The first mode converting reflector is coupled to a second mode converting reflector which provides an output free-space HE11 mode wave suitable for direct coupling into a corrugated waveguide. The radiated beam produced at the output of the second modemore » converting reflector is substantially circular.« less
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1982-01-01
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.
Effects of the circularly polarized beam of linearized gravitational waves
NASA Astrophysics Data System (ADS)
Barker, W.
2017-08-01
Solutions of the linearized Einstein equations are found that describe a transversely confined beam of circularly polarized gravitational waves on a Minkowski backdrop. By evaluating the cycle-averaged stress-energy-momentum pseudotensor of Landau & Lifshitz it is found that the angular momentum density is concentrated in the ‘skin’ at the edge of the beam where the intensity falls, and that the ratio of angular momentum to energy per unit length of the beam is 2/ω , where ω is the wave frequency, as expected for a beam of spin-2 gravitons. For sharply-defined, uniform, axisymmetric beams, the induced background metric is shown to produce the gravitomagnetic field and frame-dragging effects of a gravitational solenoid, whilst the angular momentum current helically twists the space at infinite radius along the beam axis.
Calculation of precision satellite orbits with nonsingular elements /VOP formulation/
NASA Technical Reports Server (NTRS)
Velez, C. E.; Cefola, P. J.; Long, A. C.; Nimitz, K. S.
1974-01-01
Review of some results obtained in an effort to develop efficient, high-precision trajectory computation processes for artificial satellites by optimum selection of the form of the equations of motion of the satellite and the numerical integration method. In particular, the matching of a Gaussian variation-of-parameter (VOP) formulation is considered which is expressed in terms of equinoctial orbital elements and partially decouples the motion of the orbital frame from motion within the orbital frame. The performance of the resulting orbit generators is then compared with the popular classical Cowell/Gauss-Jackson formulation/integrator pair for two distinctly different orbit types - namely, the orbit of the ATS satellite at near-geosynchronous conditions and the near-circular orbit of the GEOS-C satellite at 1000 km.
Carman, Christián Carlos
2015-12-01
In Ancient Greek two models were proposed for explaining the planetary motion: the homocentric spheres of Eudoxus and the Epicycle and Deferent System. At least in a qualitative way, both models could explain the retrograde motion, the most challenging phenomenon to be explained using circular motions. Nevertheless, there is another explanandum: during retrograde motion the planets increase their brightness. It is natural to interpret a change of brightness, i.e., of apparent size, as a change in distance. Now, while according to the Eudoxian model the planet is always equidistant from the earth, according to the epicycle and deferent system, the planet changes its distance from the earth, approaching to it during retrograde motion, just as observed. So, it is usually affirmed that the main reason for the rejection of Eudoxus' homocentric spheres in favor of the epicycle and deferent system was that the first cannot explain the manifest planetary increase of brightness during retrograde motion, while the second can. In this paper I will show that this historical hypothesis is not as firmly founded as it is usually believed to be. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models
Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet
2009-01-01
The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674
Global motions of the nuclear pore complex: insights from elastic network models.
Lezon, Timothy R; Sali, Andrej; Bahar, Ivet
2009-09-01
The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.
Evidence against the temporal subsampling account of illusory motion reversal
Kline, Keith A.; Eagleman, David M.
2010-01-01
An illusion of reversed motion may occur sporadically while viewing continuous smooth motion. This has been suggested as evidence of discrete temporal sampling by the visual system in analogy to the sampling that generates the wagon–wheel effect on film. In an alternative theory, the illusion is not the result of discrete sampling but instead of perceptual rivalry between appropriately activated and spuriously activated motion detectors. Results of the current study demonstrate that illusory reversals of two spatially overlapping and orthogonal motions often occur separately, providing evidence against the possibility that illusory motion reversal (IMR) is caused by temporal sampling within a visual region. Further, we find that IMR occurs with non-uniform and non-periodic stimuli—an observation that is not accounted for by the temporal sampling hypothesis. We propose, that a motion aftereffect is superimposed on the moving stimulus, sporadically allowing motion detectors for the reverse direction to dominate perception. PMID:18484852
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, C.
2012-05-01
In recent studies by Pariat, Antiochos and DeVore (2009, 2010), fan-separatrix topology and magnetic reconnection at the null-point were simulated and found to produce homologous jets. This motivates us to search for axisymmetric magnetic structure and associated flaring/jetting activity. Using high-resolution ( 0.15" per pixel) and high-cadence ( 15 s) H-alpha center/offband observations obtained from the recently digitized films of Big Bear Solar Observatory, we were able to identify five large circular flares with associated surges. All the events exhibit a central parasite magnetic field surrounded by opposite polarity, forming a circular polarity inversion line (PIL). Consequently, a compact flare kernel at the center is surrounded by a circular ribbon, and together with the upward ejecting dark surge, these seem to depict a dome-like magnetic structure. Very interestingly, (1) the circular ribbon brightens sequentially rather than simultaneously, (2) the central compact flare kernel shows obvious motion, and (3) a remote elongated, co-temporal flare ribbon at a region with the same polarity as the central parasite site is seen in the series of four homologous events on 1991 March 17 and 18. The remote ribbon is 120" away from the jet location. Moreover, magnetic reconnection across the circular PIL is evident from the magnetic flux cancellation. These rarely observed homologous surges with circular as well as central and remote flare ribbons provide valuable evidence concerning the dynamics of magnetic reconnection in a null-point topology. This study is dedicated to Professor Hal Zirin, the founder of Big Bear Solar Observatory, who passed away on January 3, 2012.
Casimir energy in Kerr space-time
NASA Astrophysics Data System (ADS)
Sorge, F.
2014-10-01
We investigate the vacuum energy of a scalar massless field confined in a Casimir cavity moving in a circular equatorial orbit in the exact Kerr space-time geometry. We find that both the orbital motion of the cavity and the underlying space-time geometry conspire in lowering the absolute value of the (renormalized) Casimir energy ⟨ɛvac⟩ren , as measured by a comoving observer, with respect to whom the cavity is at rest. This, in turn, causes a weakening in the attractive force between the Casimir plates. In particular, we show that the vacuum energy density ⟨ɛvac⟩ren→0 when the orbital path of the Casimir cavity comes close to the corotating or counter-rotating circular null orbits (possibly geodesic) allowed by the Kerr geometry. Such an effect could be of some astrophysical interest on relevant orbits, such as the Kerr innermost stable circular orbits, being potentially related to particle confinement (as in some interquark models). The present work generalizes previous results obtained by several authors in the weak field approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Lu, B; Samant, S
2014-06-01
Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500,more » The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall agreement with the 4D-CBCT image quality results only using sinusoidal breathings. Conclusion: This information can be used to determine the appropriate acquisition parameters of 4D-CBCT imaging for registration accuracy and target trajectory measurements in a clinical setting.« less
Increasing circular synthetic aperture sonar resolution via adapted wave atoms deconvolution.
Pailhas, Yan; Petillot, Yvan; Mulgrew, Bernard
2017-04-01
Circular Synthetic Aperture Sonar (CSAS) processing computes coherently Synthetic Aperture Sonar (SAS) data acquired along a circular trajectory. This approach has a number of advantages, in particular it maximises the aperture length of a SAS system, producing very high resolution sonar images. CSAS image reconstruction using back-projection algorithms, however, introduces a dissymmetry in the impulse response, as the imaged point moves away from the centre of the acquisition circle. This paper proposes a sampling scheme for the CSAS image reconstruction which allows every point, within the full field of view of the system, to be considered as the centre of a virtual CSAS acquisition scheme. As a direct consequence of using the proposed resampling scheme, the point spread function (PSF) is uniform for the full CSAS image. Closed form solutions for the CSAS PSF are derived analytically, both in the image and the Fourier domain. The thorough knowledge of the PSF leads naturally to the proposed adapted atom waves basis for CSAS image decomposition. The atom wave deconvolution is successfully applied to simulated data, increasing the image resolution by reducing the PSF energy leakage.
NASA Astrophysics Data System (ADS)
Yao, Jianhua; Zhang, Jie; Wu, Guolong; Wang, Liang; Zhang, Qunli; Liu, Rong
2018-05-01
The distribution of WC particles in laser cladded composite coatings can significantly affect the wear resistance of the coatings under aggressive environments. In this study, pre-alloyed WC-NiCrMo powder is deposited on SS316L via laser cladding with circular spot and wide-band spot, respectively. The microstructure and WC distribution of the coatings are investigated with optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray diffraction (XRD). The wear behavior of the coatings is investigated under dry sliding-wear test. The experimental results show that the partially dissolved WC particles are uniformly distributed in both coatings produced with circular spot and wide-band spot, respectively, and the microstructures consist of WC and M23C6 carbides and γ-(Ni, Fe) solid solution matrix. However, due to Fe dilution, the two coatings have different microstructural characteristics, resulting in different hardness and wear resistance. The wide-band spot laser prepared coating shows better performance than the circular spot laser prepared coating.
Chemical Gradients on Graphene to Drive Droplet Motion
2013-05-09
the flexibility of carbon chemistry, graphene provides many options in designing such gradients. Moreover, to effectively move a liquid droplet, the...surface chemistry gradientmust be both continuous (x and y direction) and uniform in the direc - tion perpendicular to the droplet motion (y direction) to...directing the transport of liquid droplets. This work demonstrates that with careful consideration of the surface chem- istry, electron beam-generated
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space
NASA Astrophysics Data System (ADS)
Hong, S.-M.; Jung, B.-H.; Ruan, D.
2011-03-01
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Real-time prediction of respiratory motion based on a local dynamic model in an augmented space.
Hong, S-M; Jung, B-H; Ruan, D
2011-03-21
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the tumor target with minimal normal tissue exposure, by accounting for real-time target movement. In practice, prediction is usually necessary to compensate for system latency induced by measurement, communication and control. This work focuses on predicting respiratory motion, which is most dominant for thoracic and abdominal tumors. We develop and investigate the use of a local dynamic model in an augmented space, motivated by the observation that respiratory movement exhibits a locally circular pattern in a plane augmented with a delayed axis. By including the angular velocity as part of the system state, the proposed dynamic model effectively captures the natural evolution of respiratory motion. The first-order extended Kalman filter is used to propagate and update the state estimate. The target location is predicted by evaluating the local dynamic model equations at the required prediction length. This method is complementary to existing work in that (1) the local circular motion model characterizes 'turning', overcoming the limitation of linear motion models; (2) it uses a natural state representation including the local angular velocity and updates the state estimate systematically, offering explicit physical interpretations; (3) it relies on a parametric model and is much less data-satiate than the typical adaptive semiparametric or nonparametric method. We tested the performance of the proposed method with ten RPM traces, using the normalized root mean squared difference between the predicted value and the retrospective observation as the error metric. Its performance was compared with predictors based on the linear model, the interacting multiple linear models and the kernel density estimator for various combinations of prediction lengths and observation rates. The local dynamic model based approach provides the best performance for short to medium prediction lengths under relatively low observation rate. Sensitivity analysis indicates its robustness toward the choice of parameters. Its simplicity, robustness and low computation cost makes the proposed local dynamic model an attractive tool for real-time prediction with system latencies below 0.4 s.
Demonstration of motion control of ZrO2 microparticles in uniform/non-uniform electric field
NASA Astrophysics Data System (ADS)
Onishi, Genki; Trung, Ngo Nguyen Chi; Matsutani, Naoto; Nakayama, Tadachika; Suzuki, Tsuneo; Suematsu, Hisayuki; Niihara, Koichi
2018-02-01
This study aims to elucidate the mechanism that drives dielectric microparticles under an electric field. The driving of microstructures is affected by various electrical phenomena occurring at the same time such as surface potential, polarization, and electrostatic force. It makes the clarification of the driving mechanism challenging. A simple experimental system was used to observe the behavior of spherical ZrO2 microparticles in a nonaqueous solution under an electric field. The results suggest that the mechanism that drives the ZrO2 microparticles under an electric field involved the combination of an electric image force, a gradient force, and the contact charging phenomenon. A method is proposed to control the motion of micro- and nanostructures in further study and applications.
Corkscrew Motion of an Electron Beam due to Coherent Variations in Accelerating Potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August
2016-09-13
Corkscrew motion results from the interaction of fluctuations of beam electron energy with accidental magnetic dipoles caused by misalignment of the beam transport solenoids. Corkscrew is a serious concern for high-current linear induction accelerators (LIA). A simple scaling law for corkscrew amplitude derived from a theory based on a constant-energy beam coasting through a uniform magnetic field has often been used to assess LIA vulnerability to this effect. We use a beam dynamics code to verify that this scaling also holds for an accelerated beam in a non-uniform magnetic field, as in a real accelerator. Results of simulations with thismore » code are strikingly similar to measurements on one of the LIAs at Los Alamos National Laboratory.« less
Inclined asymmetric librations in exterior resonances
NASA Astrophysics Data System (ADS)
Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.
2018-04-01
Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.
NASA Astrophysics Data System (ADS)
Batha, S. H.; Levinton, F. M.; Bell, M. G.; Wieland, R. M.; Hirschman, S. P.
1995-01-01
The magnetic-field pitch-angle profile, γp(R)≡arctan(Bpol/Btor), is measured on the TFTR tokamak using a motional Stark effect (MSE) polarimeter. Measured profiles are converted to q profiles with the equilibrium code vmec. Uncertainties in the q profile due to uncertainties in the γp(R), magnetics, and kinetic measurements are quantified. Subsequent uncertainties in the vmec-calculated profiles of current density and shear, both of which are important for stability and transport analyses, are also quantified. Examples of circular plasmas under various confinement modes, including the supershot and L mode, will be given.
Effects of solar radiation pressure torque on the rotational motion of an artificial satellite
NASA Technical Reports Server (NTRS)
Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho
1992-01-01
The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.
Perturbed Equations of Motion for Formation Flight Near the Sun-Earth L2 Point
NASA Technical Reports Server (NTRS)
Luquette, Richard; Segerman, A. M.; Zedd, M. F.
2005-01-01
NASA is planning missions to the vicinity of the Sun-Earth L(sub 2) point, some involving a distributed system of telescope spacecraft, configured in a plane about a hub. Several sets of differential equations are written for the formation flight of such telescopes relative to the hub, with varying levels of fidelity. Effects are cast as additive perturbations to the circular restricted three-body problem, expanded in terms of the system distanced, to an accuracy of 10-20 m. These include Earth's orbital eccentricity, lunar motion, solar radiation pressure, and small thrusting forces. Simulations validating the expanded differential equations are presented.
Projection-based circular constrained state estimation and fusion over long-haul links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qiang; Rao, Nageswara S.
In this paper, we consider a scenario where sensors are deployed over a large geographical area for tracking a target with circular nonlinear constraints on its motion dynamics. The sensor state estimates are sent over long-haul networks to a remote fusion center for fusion. We are interested in different ways to incorporate the constraints into the estimation and fusion process in the presence of communication loss. In particular, we consider closed-form projection-based solutions, including rules for fusing the estimates and for incorporating the constraints, which jointly can guarantee timely fusion often required in realtime systems. We test the performance ofmore » these methods in the long-haul tracking environment using a simple example.« less
Surface coil proton MR imaging at 2 T.
Röschmann, P; Tischler, R
1986-10-01
We describe the design and application of surface coils for magnetic resonance (MR) imaging at high resonance frequencies (85 MHz). Circular, rectangular-frame, and reflector-type surface coils were used in the transmit-and-receive mode. With these coils, the required radio frequency power is reduced by factors of two up to 100 with respect to head and body coils. With the small, circular coils, high-resolution images of a small region of interest can be obtained that are free of foldback and motion artifacts originating outside the field of interest. With the rectangular-frame and reflector coils, large fields of view are also accessible. As examples of applications, single- and multiple-section images of the eye, knee, head and shoulder, and spinal cord are provided.
NASA Astrophysics Data System (ADS)
Rodríguez, J. F.; Rueda, J. A.; Ruffini, R.
2018-01-01
We have used the perturbations of the exact solutions of the Einstein equations to estimate the relativistic wave emission of a test particle orbiting around a black hole. We show how the hamiltonian equations of motion of a test particle augmented with the radiation-reaction force can establish a priori constraints on the possible phenomena occurring in the merger of compact objects. The dynamical evolution consists of a helicoidal sequence of quasi-circular orbits, induced by the radiation-reaction and the background spacetime. Near the innermost stable circular orbit the evolution is followed by a smooth transition and finally plunges geodesically into the black hole horizon. This analysis gives physical insight of the merger of two equal masses objects.
Centripetal force draws the eyes, not memory of the target, toward the center.
Kerzel, Dirk
2003-05-01
Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.
2013-08-14
Time-Varying (LTV); Clohessy - Wiltshire -Hill (CWH) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF...linearized Hill- Clohessy - Wiltshire (HCW) equations [15] approximate the relative motion of the spacecraft on a circular orbit as ẍ− 3n2x− 2nẏ = Fx mc
NASA Astrophysics Data System (ADS)
González Cornejo, Felipe A.; Cruchaga, Marcela A.; Celentano, Diego J.
2017-11-01
The present work reports a fluid-rigid solid interaction formulation described within the framework of a fixed-mesh technique. The numerical analysis is focussed on the study of a vortex-induced vibration (VIV) of a circular cylinder at low Reynolds number. The proposed numerical scheme encompasses the fluid dynamics computation in an Eulerian domain where the body is embedded using a collection of markers to describe its shape, and the rigid solid's motion is obtained with the well-known Newton's law. The body's velocity is imposed on the fluid domain through a penalty technique on the embedded fluid-solid interface. The fluid tractions acting on the solid are computed from the fluid dynamic solution of the flow around the body. The resulting forces are considered to solve the solid motion. The numerical code is validated by contrasting the obtained results with those reported in the literature using different approaches for simulating the flow past a fixed circular cylinder as a benchmark problem. Moreover, a mesh convergence analysis is also done providing a satisfactory response. In particular, a VIV problem is analyzed, emphasizing the description of the synchronization phenomenon.
NASA Astrophysics Data System (ADS)
Chen, Duxin; Xu, Bowen; Zhu, Tao; Zhou, Tao; Zhang, Hai-Tao
2017-08-01
Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal groups. However, revealing the underlying interaction rules and decision-making strategies governing highly coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability has an inflection point at pairwise distance of 3-4 m closer than the average maximum interindividual distance, after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction and decision-making principle during circular flights of pigeon flocks.
Dispersion of aerosol particles undergoing Brownian motion
NASA Astrophysics Data System (ADS)
Alonso, Manuel; Endo, Yoshiyuki
2001-12-01
The variance of the position distribution for a Brownian particle is derived in the general case where the particle is suspended in a flowing medium and, at the same time, is acted upon by an external field of force. It is shown that, for uniform force and flow fields, the variance is equal to that for a free particle. When the force field is not uniform but depends on spatial location, the variance can be larger or smaller than that for a free particle depending on whether the average motion of the particles takes place toward, respectively, increasing or decreasing absolute values of the field strength. A few examples concerning aerosol particles are discussed, with especial attention paid to the mobility classification of charged aerosols by a non-uniform electric field. As a practical application of these ideas, a new design of particle-size electrostatic classifier differential mobility analyser (DMA) is proposed in which the aerosol particles migrate between the electrodes in a direction opposite to that for a conventional DMA, thereby improving the resolution power of the instrument.
Helicon waves in uniform plasmas. II. High m numbers
NASA Astrophysics Data System (ADS)
Stenzel, R. L.; Urrutia, J. M.
2015-09-01
Helicons are whistler modes with azimuthal wave numbers. They have been studied in solids and plasmas where boundaries play a role. The present work shows that very similar modes exist in unbounded gaseous plasmas. Instead of boundaries, the antenna properties determine the topology of the wave packets. The simplest antenna is a magnetic loop which excites m = 0 or m = 1 helicons depending on whether the dipole moment is aligned parallel or perpendicular to the ambient background magnetic field B0. While these low order helicons have been described by J. M. Urrutia and R. L. Stenzel ["Helicon modes in uniform plasmas. I. Low m modes," Phys. Plasmas 22, 092111 (2015)], the present work focuses on high order modes up to m = 8. These are excited by antenna arrays forming magnetic multipoles. Their wave magnetic field has been measured in space and time in a large and uniform laboratory plasma free of boundary effects. The observed wave topology exhibits m pairs of unique field line spirals which may have inspired the name "helicon" to this mode. All field lines converge into these nested spirals which propagate like corkscrews along B0. The field lines near the axis of helicons are perpendicular to B0 and circularly polarized as in parallel whistlers. Helical antennas couple to these transverse fields but not to the spiral fields of helicons. Using a circular antenna array of phased m = 0 loops, right or left rotating or non-rotating multipole antenna fields are generated. They excite m < 0 and m > 0 modes, showing that the plasma supports both modes equally well. The poor excitation of m < 0 modes is a characteristic of loops with dipole moment across B0. The radiation efficiency of multipole antennas has been found to decrease with m.
Motion and collision of particles in a rotating linear dilaton black hole
NASA Astrophysics Data System (ADS)
González, P. A.; Olivares, Marco; Papantonopoulos, Eleftherios; Vásquez, Yerko
2018-03-01
We study the motion of particles in the background of a four-dimensional linear dilaton black hole. We solve analytically the equations of motion of the test particles, and we describe their motion. We show that the dilaton black hole acts as a particle accelerator by analyzing the energy in the center of mass frame of two colliding particles in the vicinity of its horizon. In particular, we find that there is a critical value of the angular momentum, which depends on the string coupling, and a particle with this critical angular momentum can reach the inner horizon with an arbitrarily high c.m. energy. This is known as the Bañados, Silk, and West process. We also show that the motion and collisions of particles have behavior similar to the three-dimensional Bañados-Teitelboim-Zanelli black hole. In fact, the photons can plunge into the horizon or escape to infinity, and they cannot be deflected, while for massive particles there are no confined orbits of the first kind, like planetary or circular orbits.
Spontaneous emergence of milling (vortex state) in a Vicsek-like model
NASA Astrophysics Data System (ADS)
Costanzo, A.; Hemelrijk, C. K.
2018-04-01
Collective motion is of interest to laymen and scientists in different fields. In groups of animals, many patterns of collective motion arise such as polarized schools and mills (i.e. circular motion). Collective motion can be generated in computational models of different degrees of complexity. In these models, moving individuals coordinate with others nearby. In the more complex models, individuals attract each other, aligning their headings, and avoiding collisions. Simpler models may include only one or two of these types of interactions. The collective pattern that interests us here is milling, which is observed in many animal species. It has been reproduced in the more complex models, but not in simpler models that are based only on alignment, such as the well-known Vicsek model. Our aim is to provide insight in the minimal conditions required for milling by making minimal modifications to the Vicsek model. Our results show that milling occurs when both the field of view and the maximal angular velocity are decreased. Remarkably, apart from milling, our minimal model also exhibits many of the other patterns of collective motion observed in animal groups.
Hydrodynamic interaction of two deformable drops in confined shear flow.
Chen, Yongping; Wang, Chengyao
2014-09-01
We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.
In-situ shear stress indicator using heated strain gages at the flow boundary
NASA Astrophysics Data System (ADS)
Yeh, Chi-An; Yang, Fuling
2011-11-01
This work borrows the concept of hot-wire anemometry and sketch a technique that uses local heat transfer to infer the flow field and the corresponding stress. Conventional strain gages were mounted at the flow solid boundary as the heat source and acrylic boundary was chosen for its low thermal conductivity ensuring heat accumulation when a gage is energized. The gage would now work in slightly overheated state and its self-heating leads to an additional thermal strain. When exposed to a flow field, heat is brought away by local forced convection, resulting in deviations in gage signal from that developed in quiescent liquid. We have developed a facility to achieve synchronous gage measurements at different locations on a solid boundary. Three steady flow motions were considered: circular Couette flow, rectilinear uniform flow, and rectilinear oscillating flow. Preliminary tests show the gage reading does respond to the imposed flow through thermal effects and greater deviation was measured in flows of higher shear strain rates. The correlation between the gage signals and the imposed flow field is further examined by theoretical analysis. We also introduced a second solid boundary to the vicinity of the gage in the two rectilinear flows. The gage readings demonstrate rises in its magnitudes indicating wall amplification effect on the local shear strain, agreeing to the drag augmentation by a second solid boundary reported in many multiphase flow literatures.
Vortex-induced vibrations of a flexible cylinder at large inclination angle
Bourguet, Rémi; Triantafyllou, Michael S.
2015-01-01
The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586
Medical Surveillance Monthly Report (MSMR). Volume 2, Number 7, September 1996
1996-09-01
in the use of permethrin-impregnated uniforms. Three soldiers had a febrile illness associated with a petechial rash resembling Rocky Mountain...Spotted Fever (RMSF) and the remaining 25 soldiers had a rash described as a localized, expanding circular rash, similar to erythema migrans (EM). The...Carolina, and Texas and has been implicated as the possible infectious agent.¹ Ticks were also screened for the spotted fever group and one D