Sample records for uniform disk diameter

  1. Axially uniform resonant cavity modes for potential use in electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Froncisz, Wojciech; Hyde, James S.

    2001-11-01

    This article is concerned with cylindrical transverse electric TE011 and rectangular TE102 microwave cavity resonators commonly used in electron paramagnetic resonance (EPR) spectroscopy. In the cylindrical mode geometry considered here, the sample is along the z axis of the cylinder, dielectric disks of 1/4 wavelength thickness are placed at each end wall, and the diameter of the cylinder is set at the cutoff condition for propagation of microwave energy in a cylindrical waveguide at the desired microwave frequency. The microwave magnetic field is exactly uniform along the sample in the region between the dielectric disks and the resonant frequency is independent of the length of the cylinder without limit. The rectangular TE102 geometry is analogous, but here the microwave magnetic field is exactly uniform in a plane. A uniform microwave field along a line sample is highly advantageous in EPR spectroscopy compared with the usual sinusoidal variation, and these geometries are called "uniform field" modes. Extensive theoretical analysis as well as finite element calculation of field patterns are presented. The perturbation of field patterns caused by sample insertion as functions of the overall length of the resonator and diameter of the sample is analyzed. The article is intended to provide a basis for design of practical structures in the range of 10 to 100 GHz.

  2. Effects of different operating parameters on the particle size of silver chloride nanoparticles prepared in a spinning disk reactor

    NASA Astrophysics Data System (ADS)

    Dabir, Hossein; Davarpanah, Morteza; Ahmadpour, Ali

    2015-07-01

    The aim of this research was to present an experimental method for large-scale production of silver chloride nanoparticles using spinning disk reactor. Silver nitrate and sodium chloride were used as the reactants, and the protecting agent was gelatin. The experiments were carried out in a continuous mode by injecting the reactants onto the surface of the spinning disk, where a chemical precipitation reaction took place to form AgCl particles. The effects of various operating variables, including supersaturation, disk rotational speed, reactants flow rate, disk diameter, and excess ions, on the particle size of products were investigated. In addition, the AgCl nanoparticles were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. According to the results, smaller AgCl particles are obtained under higher supersaturations and also higher disk rotation speeds. Moreover, in the range of our investigation, the use of lower reactants flow rates and larger disk diameter can reduce the particle size of products. The non-stoichiometric condition of reactants has a significant influence on the reduction in particle aggregation. It was also found that by optimizing the operating conditions, uniform AgCl nanoparticles with the mean size of around 37 nm can be produced.

  3. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  4. VizieR Online Data Catalog: JMDC : JMMC Measured Stellar Diameters Catalogue (Duvert, 2016)

    NASA Astrophysics Data System (ADS)

    Duvert, G.

    2016-11-01

    Several star diameter compilations exist that contain a fair amount of stellar angular diameter measurements. The CADARS (2011, Cat. II/224) has entries for 6888 stars and claims completeness up to 1997. CHARM2 (2005, Cat. J/A+A/431/773) lists 8231 measurements of 3243 stars, up to 2005. However all these catalogs mix results from very direct methods, such as intensity interferometry, with indirect methods, or spectrophotometric estimates of various kind (always including some model of the star), or linear diameters from eclipsing binaries (1600 entries in CADARS), which need some modelling of the two stars, as well as a good estimate of the distance to be converted into an angular diameter. In contrary, the present catalogue, called JMDC (for JMMC Measured stellar Diameters Catalog) is focussed on direct methods only, and selects only one value of the uniform-disk diameter (UDD) and limb-darkened diameter (LDD) for each historical measurement. It should be regularly updated via a specialized submission tool that will be made available on the JMMC website (www.jmmc.fr). The current version gathers 1478 measurements that have been published since the first experiments by Michelson. Prior to 1997, our bibliography relies only on the reference list of CADARS, carefully reviewed. After this date we used NASA's ADS hosted at CDS. We retained only the measurements obtained from visible/IR interferometry, intensity interferometry and lunar occultation in the database. We always retrieved the values in the original text and used SIMBAD to properly and uniquely identify the stars. The three techniques retained share the same method of converting the measurements (squared visibilities for optical interferometry, correlation of photon-counts for intensity interferometry, fast photometry for lunar occultations) into an angular diameter: fitting a geometrical function into the values, in many cases a uniform disk, which provides a uniform disk diameter (UDD) value. This UDD is wavelength-dependent owing to the limb-darkening effect of the upper layers of a star's photosphere, and JMDC retains the wavelength or photometric band at which the observation was made. To measure a star's apparent diameter consistently, i.e., with the same meaning as our Sun's well-resolved apparent diameter, it was necessary for the authors of these measurements to take into account the star's limb-darkening, for which only theoretical estimates exist as yet. They chose one of the various limb-darkening parameters available in the literature, either by multiplying the UDD by a coefficient function of the wavelength and the star's adopted effective temperature, or directly fitting a limb-darkened disk model in the data. Of course this adds some amount of theoretical bias in the published measurements, which however diminishes as the wavelength increases. An additional difficulty for the lunar occultations is that the result depends on the exact geometry of the occulting portion of the lunar limb, which can, more or less, be correctly estimated. To deal with the limb-darkening problem as efficiently as possible, in the publications where reported diameters are measured in several optical/IR bands, we retain the measurement with the best accuracy and favor the measurement at the longest wavelength to minimize the effect of limb-darkening correction. When the publication include both LDD and UDD values, we report both, and, if available, the conversion coefficient used. We provide in the Notes additional information, such as the eventual binarity of the star, possible erroneous measurements, origin the of limb-darkening factor used, duplication with other publications etc... as weel as more "in-house" comments related to the proper use of this database in the companion publication 2016A&A...589A.112C. In the paper 2016A&A...589A.112C, we further use the published UDD measurement, or retrieve the original, unpublished UDD measurement from the LDD value and the limb-darkening coefficient used by the authors. We then convert these UDD values into limb-darkened angular diameters using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report JMMC-MEM-2610-001 (http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf) in all other cases. As the limb-darkening coefficients depend on the effective temperature and surface gravity as well as some model of the stellar photosphere, these "revised" LDDs are not part of the present catalog. (2 data files).

  5. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  6. Mid-Infrared Interferometric Monitoring of Evolved Stars: The Dust Shell Around the Mira Variable RR Aquilae at 13 Epochs

    DTIC Science & Technology

    2011-01-01

    photometric and interferometric data. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF...λ = 2.2 μm, Δλ = 0.4 μm) angular size with the Infrared Optical Telescope Array ( IOTA ). The uniform disk diameter (UD) of θUD = 10.73 ± 0.66 mas at...with IOTA in the H-band, and classified RR Aql as a target with no detectable asymmetries. The IRAS flux at 12 μm is 332 Jy. The light curve in the V

  7. Atomistic Tight-Binding Theory Applied to Structural and Optical Properties of Silicon Nanodisks

    NASA Astrophysics Data System (ADS)

    Sukkabot, Worasak

    2018-05-01

    The use of ultrathin crystalline silicon (c-Si) wafers in solar cells necessitates a highly effective light absorber to compensate for poor light absorption. One route to overcoming this problem is to use a periodic array of Si nanodisks on ultrathin c-Si. In the present manuscript, we numerically investigate the effects of the geometrical parameters of the Si nanodisks, including disk diameter (D) and length (L), on the structural and optical properties, using atomistic tight-binding theory. These computations confirm that the electronic structure and optical properties are sensitive to the structural parameters. As the disk diameter and length increase, the single-electron energies decrease, and the single-hole energies increase. These calculations also reveal that, because of the quantum confinement effect, the optical band gaps gradually decrease independently of the increasing disk diameter and length. The optical spectra can be tuned across the visible region by varying the disk diameter and length, which is a useful feature for optimizing light absorption in solar cell applications. As the disk diameter and length increased, the optical intensities also increased; however, the atomistic electron-hole interactions and ground electron-hole wave function overlap progressively decreased. The ground electron-hole wave function overlap, Stokes shift, and fine structure splitting decreased as the disk diameter and length were increased. Thus, Si nanodisks with a large diameter and length might be a suitable candidate source of entangled photons. The Si nanodisks in this study also show promise for applications to solar cells based on ultrathin c-Si wafers.

  8. Finite-element analysis of vibrational modes in piezoelectric ceramic disks.

    PubMed

    Kunkel, H A; Locke, S; Pikeroen, B

    1990-01-01

    The natural vibrational modes of axially symmetric piezoelectric ceramic disks have been calculated by the finite-element method. The disks are of the type used as active elements in compressional wave ultrasonic transducers, and are electrically polarized in thickness with full electrodes on the disk's major faces. To optimize disk geometry for ultrasonic transducer application, the dependence of the vibrational modes on the disk diameter-to-thickness ratio for ratios from 0.2 (a tall cylinder) to 10.0 (a thin disk) has been studied. Series and parallel resonance frequencies for each of the modes are determined through an eigenfrequency analysis, and effective electromechanical coupling coefficients are calculated. The modal displacement fields in the disk are calculated to determine the physical nature of each mode. An analysis of the complete spectrum of piezoelectrically active modes as a function of diameter-thickness ratio is presented for the ceramic PZT-5H, including and identification of radial, edge, length expander, thickness shear, and thickness extensional vibrations. From this analysis, optimal diameter-to-thickness ratios for good transducer performance are discussed.

  9. A Radial Age Gradient in the Geometrically Thick Disk of the Milky Way

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Minchev, Ivan; Ness, Melissa; Fouesneau, Morgan; Rix, Hans-Walter

    2016-11-01

    In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age, or geometrically, as stars high above the midplane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to have large radial scale lengths, and their red colors suggest that they are uniformly old. The Milky Way’s geometrically thick disk is also radially extended, but it is far from chemically uniform: α-enhanced stars are confined within the inner Galaxy. In simulated galaxies, where old stars are centrally concentrated, geometrically thick disks are radially extended, too. Younger stellar populations flare in the simulated disks’ outer regions, bringing those stars high above the midplane. The resulting geometrically thick disks therefore show a radial age gradient, from old in their central regions to younger in their outskirts. Based on our age estimates for a large sample of giant stars in the APOGEE survey, we can now test this scenario for the Milky Way. We find that the geometrically defined thick disk in the Milky Way has indeed a strong radial age gradient: the median age for red clump stars goes from ∼9 Gyr in the inner disk to 5 Gyr in the outer disk. We propose that at least some nearby galaxies could also have thick disks that are not uniformly old, and that geometrically thick disks might be complex structures resulting from different formation mechanisms in their inner and outer parts.

  10. Detection of relatively penicillin G-resistant Neisseria meningitidis by disk susceptibility testing.

    PubMed Central

    Campos, J; Mendelman, P M; Sako, M U; Chaffin, D O; Smith, A L; Sáez-Nieto, J A

    1987-01-01

    Beginning in 1985, relatively penicillin G-resistant (Penr) meningococci which did not produce beta-lactamase were isolated from the blood and cerebrospinal fluid of patients in Spain. We identified 16 Penr (mean MIC, 0.3 microgram/ml; range, 0.1 to 0.7 microgram/ml) and 12 penicillin-susceptible (Pens; mean MIC, less than or equal to 0.06 microgram/ml) strains of Neisseria meningitidis by the agar dilution technique using an inoculum of 10(4) CFU and questioned which disk susceptibility test would best differentiate these two populations. We compared the disk susceptibility of these strains using disks containing 2 (P2) and 10 (P10) U of penicillin G, 2 (Am2) and 10 (Am10) micrograms of ampicillin, and 1 microgram of oxacillin (OX1). We also investigated susceptibility with disks containing 30 micrograms of each of cephalothin (CF30), cefoxitin (FOX30), cefuroxime (CXM30), and cefotaxime (CTX30) and 75 micrograms of cefoperazone (CFP75) and determined by cluster analysis any correlation with the zone diameters obtained with P2 disks. Using the P2 and AM2 disks (in contrast to the P10 and AM10 disks), we correctly differentiated all the Penr from Pens isolates. In addition, the zone diameters with the P2 disk gave the best correlation with the penicillin G MIC determinations. All 16 Penr strains and 3 of 12 Pens strains showed zone diameters of 6 mm around OX1 disks, limiting the usefulness of OX1 disks. The zone diameters obtained with CF30, CXM30, and OX1 disks correlated with those obtained with the P2 disk, which suggests that these antibiotics have similar effects on these strains. In contrast, the data obtained with FOX30, CTX30, and CFP75 disks did not cluster with those obtained with the P2 disk, which suggests that there was a difference in the bacterial target or reflects their greater activity. We conclude that the P2 disk tests more readily identify Penr meningococci than do the standard P10 disk tests. PMID:3124729

  11. Modeling Circumstellar Disks of B-Type Stars with Observations from the Palomar Testbed Interferometer

    NASA Technical Reports Server (NTRS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Rinehart, S. A.; vanBelle, G. T.; Sigut, T. A. A.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  12. A mid-IR interferometric survey with MIDI/VLTI: resolving the second-generation protoplanetary disks around post-AGB binaries

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.

    2017-03-01

    Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB binaries. The grid of protoplanetary disk models covers very well the observed objects. Much like for young stars, the spatially resolved N-band emission region is determined by the hot inner rim of the disk. Continued comparisons between post-AGB and protoplanetary disks will help to understand grain growth and disk evolution processes, and to constrain planet formation theories. These second-generation disks are an important missing ingredient in binary evolution theory of intermediate-mass stars. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 073.A-9002, 073.A-9014, 073.D-0610, 075.D-0605, 077.D-0071, 078.D-0113, 079.D-0013, 080.D-0059, 081.D-0089, 082.D-0066, 083.D-0011, 083.D-0013, 084.D-0009, 093.D-0914, and 094.D-0778. Some observations were obtained in the framework of the Belgian Guaranteed Time allocation on VISA.

  13. Advanced manufacturing of microdisk vaccines for uniform control of material properties and immune cell function.

    PubMed

    Zeng, Qin; Zhang, Peipei; Zeng, Xiangbin; Tostanoski, Lisa H; Jewell, Christopher M

    2017-12-19

    The continued challenges facing vaccines in infectious disease and cancer highlight a need for better control over the features of vaccines and the responses they generate. Biomaterials offer unique advantages to achieve this goal through features such as controlled release and co-delivery of antigens and adjuvants. However, many synthesis strategies lead to particles with heterogeneity in diameter, shape, loading level, or other properties. In contrast, advanced manufacturing techniques allow precision control of material properties at the micro- and nano-scale. These capabilities in vaccines and immunotherapies could allow more rational design to speed efficient design and clinical translation. Here we employed soft lithography to generate polymer microdisk vaccines with uniform structures and tunable compositions of vaccine antigens and toll like receptor agonists (TLRas) that serve as molecular adjuvants. Compared to conventional PLGA particles formed by emulsion, microdisks provided a dramatic improvement in the consistency of properties such as diameter. During culture with primary dendritic cells (DCs) from mice, microdisks were internalized by the cells without toxicity, while promoting co-delivery of antigen and TLRa to the same cell. Analysis of DC surface activation markers by flow cytometry revealed microdisk vaccines activated dendritic cells in a manner that depended on the level of TLRa, while antigen processing and presentation depended on the amount of antigen in the microdisks. Together, this work demonstrates the use of advanced manufacturing techniques to produce uniform vaccines that direct DC function depending on the composition in the disks.

  14. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.

    2007-11-01

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument within the framework of the Science Demonstration Time (SDT) program in February 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m. All visibility measurements show a distinct wavelength dependence: a rather steep decrease between 8 and 10 μm, and a shallower monotonic increase longward of 10 μm. For the corresponding uniform disk diameter, this visibility shape translates into a diameter increase by a factor of 2 from 25 to 50 mas between 8 and 10 μm and an almost wavelength-independent diameter between 10 and 13 μm. As we show by means of radiative transfer modeling with the code dusty, this wavelength dependence measured with VLTI/MIDI can be interpreted as the mid-infrared signature of a circumstellar dust shell which is dominated by silicate dust.

  15. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Diederen, Bram M W; Ijzerman, Ed P F; Den Boer, Jeroen W; Mouton, Johan W

    2013-07-01

    Routine use of disk diffusion tests for detecting antibiotic resistance in Legionella pneumophila has not been described. The goal of this study was to determine the correlation of MIC values and inhibition zone diameter (MDcorr) in clinical L. pneumophila isolates. Inhibition zone diameter of 183 L. pneumophila clinical isolates were determined for ten antimicrobials. Disk diffusion results were correlated with MICs as determined earlier with E-tests. Overall the correlation of MIC values and inhibition zone diameters (MDcorr) of the tested antimicrobials is good, and all antimicrobials showed a WT distribution. Of the tested fluoroquinolones levofloxacin showed the best MDcorr. All macrolides showed a wide MIC distribution and good MDcorr. The MDcorr for cefotaxim, doxycycline and tigecycline was good, while for rifampicin and moxifloxacin, they were not. Overall good correlation between MIC value and disk inhibition zone were found for the fluoroquinolones, macrolides and cefotaxim. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Blade loss transient dynamics analysis with flexible bladed disk

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Black, G.; Bach, L.; Cline, S.; Storace, A.

    1983-01-01

    The transient dynamic response of a flexible bladed disk on a flexible rotor in a two rotor system is formulated by modal synthesis and a Lagrangian approach. Only the nonequilibrated one diameter flexible mode is considered for the flexible bladed disk, while the two flexible rotors are represented by their normal modes. The flexible bladed disk motion is modeled as a combination of two one diameter standing waves, and is coupled inertially and gyroscopically to the flexible rotors. Application to a two rotor model shows that a flexible bladed disk on one rotor can be driven into resonance by an unbalance in the other rotor, and at a frequency equal to the difference in the rotor speeds.

  17. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  18. Footprint Reduction for the Acoustic Electric Feedthrough Technique

    DTIC Science & Technology

    2010-03-01

    input current measured using a 1 Ω sense resistor . Modulation depth of the peak- to-peak input current was 2Δ ~ 20...behaviour of an AEF arrangement formed using piezo -ceramic disks with diameter 38 mm and thickness 2 mm, across an aluminium plate with thickness 1.6 to 5...the 38 mm diameter piezo -ceramic disks. In an attempt to resolve this matter, the DSTO has examined an AEF system formed using disks with 10 mm

  19. Main rotor-body action for virtual blades model

    NASA Astrophysics Data System (ADS)

    Kusyumov, Alexander; Kusyumov, Sergey; Mikhailov, Sergey; Romanova, Elena; Phayzullin, Konstantin; Lopatin, Evgeny; Barakos, G.

    2018-06-01

    This research aims to investigate a virtual blade model and assess rotor influence on helicopter fuselage aerodynamics. The rotor disk is discretized in the azimuthal direction, and a time-varied pressure jump is applied in regions occupied by the blades. To obtain the pressure jump, an actuator disk is employed using uniform and non-uniform blade load distribution, based on momentum theory.

  20. Thermal Management Investigations in Ceramic Thin Disk Lasers

    DTIC Science & Technology

    2011-01-14

    techniques. 10-14mm diameter 0.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a larger platform, more than 6kW...along with various cooling techniques. 10-14mm diameter O.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a...assemblies are either attached to heat sinks or directly to the Cu W cooling mount, see Fig. I (c) & (d). The heat sinks tested are SiC , sapphire, and

  1. Evidence of Asymmetries in the Aldebaran Photosphere from Multi-Wavelength Lunar Occultations

    NASA Astrophysics Data System (ADS)

    Dyachenko, V.; Richichi, A.; Pandey, A.; Sharma, S.; Tasuya, O.; Balega, Yu.; Beskakotov, A.; Rastegaev, D.

    2017-06-01

    We present the results of three lunar occultations of the K5 giant Aldebaran, observed in late 2015 and early 2016. The 6-m SAO, 1.3-m Devasthal, and 2.4-m TNT telescopes were used to obtain light curves with few ms sampling and at wavelengths ranging from the ultraviolet to the red. These were fitted using uniform -disk (UD) models and then converted to limb-darkened (LD) models using Kurucz's atmospheric models. The resulting diameter values are in good agreement with previous determinations, with an average LD diameter of 20.3 milliseconds of arc. We have also been able to use model-independent methods to reconstruct the star's brightness profile and have found indications that the photospheric brightness profile of Aldebaran may not have been symmetric, a finding already reported by other authors for this and for similar late-type stars. The presence of surface spots on a scale of a few milliarcseconds is a likely explanation of the observed asymmetries.

  2. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Generation of doubly charged vortex beam by concentrated loading of glass disks along their diameter.

    PubMed

    Skab, Ihor; Vasylkiv, Yuriy; Krupych, Oleh; Savaryn, Viktoriya; Vlokh, Rostyslav

    2012-04-10

    We show that a system of glass disks compressed along their diameters enables one to induce a doubly charged vortex beam in the emergent light when the incident light is circularly polarized. Using such a disk system, one can control the efficiency of conversion of the spin angular momentum to the orbital angular momentum by a loading force. The consideration presented here can be extended for the case of crystalline materials with high optical damage thresholds in order to induce high-power vortex beams.

  4. Stress singularities in a model of a wood disk under sinusoidal pressure

    Treesearch

    Jay A. Johnson; John C. Hermanson; Steven M. Cramer; Charles Amundson

    2005-01-01

    A thin, solid, circular wood disk, cut from the transverse plane of a tree stem, can be modeled as a cylindrically orthotropic elastic material. It is known that a stress singularity can occur at the center of a cylindrically orthotropic disk subjected to uniform pressure. If a solid cylindrically orthotropic disk is subjected to sinusoidal pressure distributions, then...

  5. High angular resolution N-band observation of the silicate carbon star IRAS08002-3803 with the VLTI/MIDI instrument . Dusty environment spatially resolved

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Driebe, T.; Hofmann, K.-H.; Leinert, Ch.; Morel, S.; Paresce, F.; Preibisch, Th.; Richichi, A.; Schertl, D.; Schöller, M.; Waters, L. B. F. M.; Weigelt, G.; Wittkowski, M.

    2006-01-01

    We present the results of N-band spectro-interferometric observations of the silicate carbon star IRAS08002-3803 with the MID-infrared Interferometric instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO). The observations were carried out using two unit telescopes (UT2 and UT3) with projected baseline lengths ranging from 39 to 47 m. Our observations of IRAS08002-3803 have spatially resolved the dusty environment of a silicate carbon star for the first time and revealed an unexpected wavelength dependence of the angular size in the N band: the uniform-disk diameter is found to be constant and 36 mas (72 Rstar) between 8 and 10 μm, while it steeply increases longward of 10 μm to reach 53 mas (106 Rstar) at 13 μm. Model calculations with our Monte Carlo radiative transfer code show that neither spherical shell models nor axisymmetric disk models consisting of silicate grains alone can simultaneously explain the observed wavelength dependence of the visibility and the spectral energy distribution (SED). We propose that the circumstellar environment of IRAS08002-3803 may consist of two grain species coexisting in the disk: silicate and a second grain species, for which we consider amorphous carbon, large silicate grains, and metallic iron grains. Comparison of the observed visibilities and SED with our models shows that such disk models can fairly - though not entirely satisfactorily - reproduce the observed SED and N-band visibilities. Our MIDI observations and the radiative transfer calculations lend support to the picture where oxygen-rich material around IRAS08002-3803 is stored in a circumbinary disk surrounding the carbon-rich primary star and its putative low-luminosity companion.

  6. Characterization of plastic deformation in a disk bend test

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Lee, E. H.; Hunn, J. D.; Farrell, K.; Mansur, L. K.

    2001-04-01

    A disk bend test technique has been developed to study deformation mechanisms as well as mechanical properties. In the disk bend test, a transmission electron microscopy (TEM) disk size specimen of 3 mm diameter ×0.25 mm thick is clamped around its rim in a circular holder and indented with a tungsten carbide ball of 1 mm diameter on its back face. AISI 316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel were selected as test materials. A model was developed to determine the average plastic strain and surface plastic strain in the disk bend test. The deformation regimes of the plastic strain versus deflection curves corresponded to those of the load versus deflection curves. The stress state of the disk bend deformation was analyzed for the two test materials and compared with those of other mechanical tests such as uniaxial tensile, compact tension, and ball indentation tests. Slip line features at the deformed surface and the corresponding TEM microstructures were examined for both tensile and disk bend specimens. Differences and similarities in deformation between the disk bend and the tensile tests are described.

  7. The gravitational potential due to uniform disks and rings

    NASA Astrophysics Data System (ADS)

    Lass, H.; Blitzer, L.

    1983-07-01

    The gravitational potential of bodies possessing axial symmetry can be expressed as a power series in distance, with the Legendre polynomials as coefficients. Such series, however, converge so slowly in the neighborhood of thin, uniform disks and rings that too many series terms must be summed in order to obtain an accurate field measure. A gravitational potential expression is presently obtained in closed form, in terms of complete elliptic integrals.

  8. Uniform discotic wax particles via electrospray emulsification.

    PubMed

    Mejia, Andres F; He, Peng; Luo, Dawei; Marquez, Manuel; Cheng, Zhengdong

    2009-06-01

    We present a novel colloidal discotic system: the formation and self-assembling of wax microdisks with a narrow size distribution. Uniform wax emulsions are first fabricated by electrospraying of melt alpha-eicosene. The size of the emulsions can be flexibly tailored by varying the flow rate of the discontinuous phase, its electric conductivity, and the applied voltage. The process of entrainment of wax droplets, vital for obtaining uniform emulsions, is facilitated by the reduction of air-water surface tension and the density of the continuous phase. Then uniform wax discotic particles are produced via phase transition, during which the formation of a layered structure of the rotator phase of wax converts the droplets, one by one, into oblate particles. The time span for the conversion from spherical emulsions to disk particles is linearly dependent on the size of droplets in the emulsion, indicating the growth of a rotator phase from surface to the center is the limiting step in the shape transition. Using polarized light microscopy, the self-assembling of wax disks is observed by increasing disk concentration and inducing depletion attraction among disks, where several phases, such as isotropic, condensed, columnar stacking, and self-assembly of columnar rods are present sequentially during solvent evaporation of a suspension drop.

  9. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  10. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki

    2018-04-01

    We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.

  11. Diameter-tailored telecom-band luminescence in InP/InAs heterostructure nanowires grown on InP (111)B substrate with continuously-modulated diameter from microscale to nanoscale.

    PubMed

    Zhang, Guoqiang; Tateno, Kouta; Sogawa, Tetsuomi; Gotoh, Hideki

    2018-04-02

    We report diameter-tailored luminescence in telecom band of InP/InAs multi-heterostructure nanowires with continuously-modulated diameter from microscale to nanoscale. By using the self-catalyzed vapor-solid-liquid approach, we tune the indium particle size, and consequently the InP/InAs nanowire diameter, during growth by modulating the flow rate of the indium source material. This technique allows a high degree of continuous tuning in a wide scale from microscale to nanoscale. Hence it offers an original way to bridge the gap between microscale-featured photolithographic and nanoscale-featured nanolithographic processes and to incorporate InAs quantum disks with tunable diameters into a single InP/InAs quantum heterostructure nanowire. We realized site-defined nanowires with nanoscale diameters initiated from site-defined microscale-diameter particles made with a conventional photolithographic process. The luminescence wavelength from InAs quantum disks is directly connected to the nanowire diameter, by which the strain in the InAs quantum disks is tailored. This work provides new opportunities in the fabrication and design of nanowire devices that extends beyond what is achievable with the current technologies and enables the nanowire shape to be engineered thus offering the potential to broaden the application range of nanowire devices.

  12. The Primordial Origin Model of Magnetic Fields in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro

    2010-10-01

    We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.

  13. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  14. Characterization of high speed synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets, having a 160 mm cavity diameter, yielded jet velocities greater than 300 m/s. Altering the clamping conditions, at which the disks are clamped, showed that increasing the number of clamping points where the disks are clamped, improved the performance of the jet. Coupling this with a flexible clamping boundary condition yielded the best performing jets. Fatigue tests were conducted for both apparatuses using several different disk designs. These tests showed that there is a degradation of the disks that causes the jet performance to decay and eventually cause a fracture in the disk. It is apparent from this work that, though the conditions at which the disks are manufactured have a small effect on performance, the disks do exhibit a threshold where beyond it the performance decays. Though desired jet velocities and momentums are achievable, the abnormality of the disks needs to be addressed before applying the actuator to practical situations. As this research continues, the synthetic jet actuator will become more robust and reliable to be an effective and reliable source of active flow control.

  15. Improved design of a cone-shaped rotating disk for shear force loading in a cell culture plate

    NASA Astrophysics Data System (ADS)

    Keawprachum, Boonrit; Limjeerajarus, Nuttapol; Nakalekha Limjeerajarus, Chalida; Srisungsitthisunti, Pornsak

    2018-01-01

    In our previous study, a cone-shaped rotating disk had been designed and proposed for generating shear force on the cell in a cell culture plate. This study aims to improve the design of the rotating disk that could provide a better uniformity of shear stress distribution. The top of the cone was designed to be trimmed off to obtain a flat head area. The effect of tilt angle (θ) was numerically studied using computational fluid dynamics (CFD) technique in ANSYS-Fluent software. The results revealed that for 500 rpm, the new designed rotating disk with a height of cone-shaped top to the plate bottom h = 1 mm and θ = 25° provided the best uniformity of 0.820 which was better than that of the previously designed.

  16. Butterfly-valve inductive orientation detector

    NASA Astrophysics Data System (ADS)

    Garrett, Steven

    1980-04-01

    Relative changes of inductance ΔL/L of a single layer coil surrounding a thin electrically conducting disk which can rotate about an axis perpendicular to the coil axis are studied experimentally as a means of measuring angular displacements. ΔL/L is found to be a strong function of disk diameter and is weakly dependent on the ratio of disk thickness to electromagnetic skin depth when this ratio is of the order unity. Values of ΔL/L as a function of disk diameter are given for lead, brass and copper. Detection sensitivities using a resonant tank circuit or an astatic transformer are given in terms of ΔL/L and it is shown that sensitivities of the order of 10-3 to 10-4 deg are practical. Application of this system to the Rayleigh disk and cryogenic environments are emphasized and an expression for the magnetic torque due to detection currents is given.

  17. Reevaluation of interpretive criteria for Haemophilus influenzae by using meropenem (10-microgram), imipenem (10-microgram), and ampicillin (2- and 10-microgram) disks.

    PubMed Central

    Zerva, L; Biedenbach, D J; Jones, R N

    1996-01-01

    A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892

  18. Tutorial: Performance and reliability in redundant disk arrays

    NASA Technical Reports Server (NTRS)

    Gibson, Garth A.

    1993-01-01

    A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.

  19. Fabrication of Large YBCO Superconducting Disks

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  20. Assessment of Metronidazole Susceptibility in Helicobacter pylori: Statistical Validation and Error Rate Analysis of Breakpoints Determined by the Disk Diffusion Test

    PubMed Central

    Chaves, Sandra; Gadanho, Mário; Tenreiro, Rogério; Cabrita, José

    1999-01-01

    Metronidazole susceptibility of 100 Helicobacter pylori strains was assessed by determining the inhibition zone diameters by disk diffusion test and the MICs by agar dilution and PDM Epsilometer test (E test). Linear regression analysis was performed, allowing the definition of significant linear relations, and revealed correlations of disk diffusion results with both E-test and agar dilution results (r2 = 0.88 and 0.81, respectively). No significant differences (P = 0.84) were found between MICs defined by E test and those defined by agar dilution, taken as a standard. Reproducibility comparison between E-test and disk diffusion tests showed that they are equivalent and with good precision. Two interpretative susceptibility schemes (with or without an intermediate class) were compared by an interpretative error rate analysis method. The susceptibility classification scheme that included the intermediate category was retained, and breakpoints were assessed for diffusion assay with 5-μg metronidazole disks. Strains with inhibition zone diameters less than 16 mm were defined as resistant (MIC > 8 μg/ml), those with zone diameters equal to or greater than 16 mm but less than 21 mm were considered intermediate (4 μg/ml < MIC ≤ 8 μg/ml), and those with zone diameters of 21 mm or greater were regarded as susceptible (MIC ≤ 4 μg/ml). Error rate analysis applied to this classification scheme showed occurrence frequencies of 1% for major errors and 7% for minor errors, when the results were compared to those obtained by agar dilution. No very major errors were detected, suggesting that disk diffusion might be a good alternative for determining the metronidazole sensitivity of H. pylori strains. PMID:10203543

  1. Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite.

    PubMed

    Shao, Wei; Liu, Xiufeng; Min, Huihua; Dong, Guanghui; Feng, Qingyuan; Zuo, Songlin

    2015-04-01

    In this work, we report a facile and green approach to prepare a uniform silver nanoparticles (AgNPs) decorated graphene oxide (GO) nanocomposite (GO-Ag). The nanocomposite was fully characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, and X-ray photoelectron spectroscopy (XPS), which demonstrated that AgNPs with a diameter of approximately 22 nm were uniformly and compactly deposited on GO. To investigate the silver ion release behaviors, HEPES buffers with different pH (5.5, 7, and 8.5) were selected and the mechanism of release actions was discussed in detail. The cytotoxicity of GO-Ag nanocomposite was also studied using HEK 293 cells. GO-Ag nanocomposite displayed good cytocompatibility. Furthermore, the antibacterial properties of GO-Ag nanocomposite were studied using Gram-negative E. coli ATCC 25922 and Gram-positive S. aureus ATCC 6538 by both the plate count method and disk diffusion method. The nanocomposite showed excellent antibacterial activity. These results demonstrated that GO-Ag nanocomposite, as a kind of antibacterial material, had a great promise for application in a wide range of biomedical applications.

  2. Method and apparatus for reducing the drag of flows over surfaces

    NASA Technical Reports Server (NTRS)

    Keefe, Laurence R. (Inventor)

    1998-01-01

    An apparatus, and its accompanying method, for reducing the drag of flows over a surface includes arrays of small disks and sensors. The arrays are embedded in the surface and may extend above, or be depressed below, the surface, provided they remain hydraulically smooth either when operating or when inactive. The disks are arranged in arrays of various shapes, and spaced according to the cruising speed of the vehicle on which the arrays are installed. For drag reduction at speeds of the order of 30 meters/second, preferred embodiments include disks that are 0.2 millimeter in diameter and spaced 0.4 millimeter apart. For drag reduction at speeds of the order of 300 meters/second, preferred embodiments include disks that are 0.045 millimeter in diameter and spaced 0.09 millimeter apart. Smaller and larger dimensions for diameter and spacing are also possible. The disks rotate in the plane of the surface, with their rotation axis substantially perpendicular to the surface. The rotating disks produce velocity perturbations parallel to the surface in the overlying boundary layer. The sensors sense the flow at the surface and connect to control circuitry that adjusts the rotation rates and duty cycles of the disks accordingly. Suction and blowing holes can be interspersed among, or made coaxial with, the disks for creating general three-component velocity perturbations in the near-surface region. The surface can be a flat, planar surface or a nonplanar surface, such as a triangular riblet surface. The present apparatus and method have potential applications in the field of aeronautics for improving performance and efficiency of commercial and military aircraft, and in other industries where drag is an obstacle, including gas and oil delivery through long-haul pipelines.

  3. Apparatus in the form of a disk for the separation of oxygen from other gases and/or for the pumping of oxygen and the method of removing the oxygen

    NASA Technical Reports Server (NTRS)

    Suitor, Jerry W. (Inventor); Berdahl, C. Martin (Inventor); Marner, Wilbur J. (Inventor)

    1989-01-01

    An apparatus in the form of a disk for the separation of oxygen from gases, or for the pumping of oxygen, uses a substantially circular disk geometry for the solid electrolyte with radial flow of gas from the outside edge of the disk to the center of the disk. The reduction in available surface area as the gas flows toward the center of the disk reduces the oxygen removal area proportionally to provide for a more uniform removal of oxygen.

  4. Apparatus and method for plasma processing of SRF cavities

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Im, Do; Peshl, J.; Bašović, M.; Popović, S.; Valente-Feliciano, A.-M.; Phillips, L.; Vušković, L.

    2016-05-01

    An apparatus and a method are described for plasma etching of the inner surface of superconducting radio frequency (SRF) cavities. Accelerator SRF cavities are formed into a variable-diameter cylindrical structure made of bulk niobium, for resonant generation of the particle accelerating field. The etch rate non-uniformity due to depletion of the radicals has been overcome by the simultaneous movement of the gas flow inlet and the inner electrode. An effective shape of the inner electrode to reduce the plasma asymmetry for the coaxial cylindrical rf plasma reactor is determined and implemented in the cavity processing method. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise way to establish segmented plasma columns. The test structure was a pillbox cavity made of steel of similar dimension to the standard SRF cavity. This was adopted to experimentally verify the plasma surface reaction on cylindrical structures with variable diameter using the segmented plasma generation approach. The pill box cavity is filled with niobium ring- and disk-type samples and the etch rate of these samples was measured.

  5. Comparison of model and human observer performance in FFDM, DBT, and synthetic mammography

    NASA Astrophysics Data System (ADS)

    Ikejimba, Lynda; Glick, Stephen J.; Samei, Ehsan; Lo, Joseph Y.

    2016-03-01

    Reader studies are important in assessing breast imaging systems. The purpose of this work was to assess task-based performance of full field digital mammography (FFDM), digital breast tomosynthesis (DBT), and synthetic mammography (SM) using different phantom types, and to determine an accurate observer model for human readers. Images were acquired on a Hologic Selenia Dimensions system with a uniform and anthropomorphic phantom. A contrast detail insert of small, low-contrast disks was created using an inkjet printer with iodine-doped ink and inserted in the phantoms. The disks varied in diameter from 210 to 630 μm, and in contrast from 1.1% contrast to 2.2% in regular increments. Human and model observers performed a 4-alternative forced choice experiment. The models were a non-prewhitening matched filter with eye model (NPWE) and a channelized Hotelling observer with either Gabor channels (Gabor-CHO) or Laguerre-Gauss channels (LG-CHO). With the given phantoms, reader scores were higher in FFDM and DBT than SM. The structure in the phantom background had a bigger impact on outcome for DBT than for FFDM or SM. All three model observers showed good correlation with humans in the uniform background, with ρ between 0.89 and 0.93. However, in the structured background, only the CHOs had high correlation, with ρ=0.92 for Gabor-CHO, 0.90 for LG-CHO, and 0.77 for NPWE. Because results of any analysis can depend on the phantom structure, conclusions of modality performance may need to be taken in the context of an appropriate model observer and a realistic phantom.

  6. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  7. Three-dimensional organization of nascent rod outer segment disk membranes.

    PubMed

    Volland, Stefanie; Hughes, Louise C; Kong, Christina; Burgess, Barry L; Linberg, Kenneth A; Luna, Gabriel; Zhou, Z Hong; Fisher, Steven K; Williams, David S

    2015-12-01

    The vertebrate photoreceptor cell contains an elaborate cilium that includes a stack of phototransductive membrane disks. The disk membranes are continually renewed, but how new disks are formed remains poorly understood. Here we used electron microscope tomography to obtain 3D visualization of the nascent disks of rod photoreceptors in three mammalian species, to gain insight into the process of disk morphogenesis. We observed that nascent disks are invariably continuous with the ciliary plasma membrane, although, owing to partial enclosure, they can appear to be internal in 2D profiles. Tomographic analyses of the basal-most region of the outer segment show changes in shape of the ciliary plasma membrane indicating an invagination, which is likely a first step in disk formation. The invagination flattens to create the proximal surface of an evaginating lamella, as well as membrane protrusions that extend between adjacent lamellae, thereby initiating a disk rim. Immediately distal to this initiation site, lamellae of increasing diameter are evident, indicating growth outward from the cilium. In agreement with a previous model, our data indicate that mature disks are formed once lamellae reach full diameter, and the growth of a rim encloses the space between adjacent surfaces of two lamellae. This study provides 3D data of nascent and mature rod photoreceptor disk membranes at unprecedented z-axis depth and resolution, and provides a basis for addressing fundamental questions, ranging from protein sorting in the photoreceptor cilium to photoreceptor electrophysiology.

  8. Large format silicon immersion gratings for high resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Dan; Zhao, Bo; Miller, Shane

    2006-06-01

    We report progress on development of large format silicon immersion gratings (SIG) at UF. Currently SIGs on 4 inch diameter thick silicon disks can be routinely produced with groove periods from 7 microns to 250 microns and blaze angles from 20 degrees to 76 degrees. A new capability of making SIGs from 6 inch diameter silicon disks has also been demonstrated. A new Space Astronomy Instrumentation Lab (SAIL) facility is being established at UF to have a capability of fabricating SIGs on 8 inch diameter silicon disks with up to 4 inch thickness. Our prototype SIG with an 85x50 mm2 etched grating area and a 54.7 deg blaze angle has produced a nearly diffraction-limited wavefront, less than 1% integrated scattered light and ghost intensity, a 74% peak blaze efficiency and a R = 55,000 resolving power at 1.55 μm.

  9. [Meningococcus profilaxis (author's transl)].

    PubMed

    Pérez Trallero, E; Pérez-Yarza, E; Ruíz Benito, C; Muñóz Baroja, I

    1979-11-25

    In a General Hospital in San Sebastian, 96 cases of Neisseria meningitidis infections were detected in a two years period. By the use of the disk diffusion method, we found that all causative meningococcal strains but 4 were resistant to sulfonamide (with a 300 microgram sulfadiazine disk, all isolates with a zone diameter of less than 20 mm were considered to be resistant of sulfadiazine, whereas those with zone diameters of greater than 30 mm were considered susceptible). No rifampin nor minocycline-resistant meningococci were isolated. All strains had a disk zone diameter (30 micrograms rifampin and 30 micrograms tetracycline) of greater than 20 mm. The serogroups of meningococcal strains were as follows: group A, 1; group B, 67; group C, 5 and 23 were no typed. Children less than four years of age were most frequently attacked (67,7%). The attack rate was only slightly higher in males than in females (52 and 44).

  10. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521

  11. Wave excitation at Lindblad resonances using the method of multiple scales

    NASA Astrophysics Data System (ADS)

    Horák, Jiří

    2017-12-01

    In this note, the method of multiple scales is adopted to the problem of excitation of non–axisymmetric acoustic waves in vertically integrated disk by tidal gravitational fields. We derive a formula describing a waveform of exited wave that is uniformly valid in a whole disk as long as only a single Lindblad resonance is present. Our formalism is subsequently applied to two classical problems: trapped p–mode oscillations in relativistic accretion disks and the excitation of waves in infinite disks.

  12. Tests of stellar model atmospheres by optical interferometry. VLTI/VINCI limb-darkening measurements of the M4 giant ψ Phe

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Aufdenberg, J. P.; Kervella, P.

    2004-01-01

    We present K-band interferometric measurements of the limb-darkened (LD) intensity profile of the M 4 giant star ψ Phoenicis obtained with the Very Large Telescope Interferometer (VLTI) and its commissioning instrument VINCI. High-precision squared visibility amplitudes in the second lobe of the visibility function were obtained employing two 8.2 m Unit Telescopes (UTs). This took place one month after light from UTs was first combined for interferometric fringes. In addition, we sampled the visibility function at small spatial frequencies using the 40 cm test siderostats. Our measurement constrains the diameter of the star as well as its center-to-limb intensity variation (CLV). We construct a spherical hydrostatic PHOENIX model atmosphere based on spectrophotometric data from the literature and compare its CLV prediction with our interferometric measurement. We compare as well CLV predictions by plane-parallel hydrostatic PHOENIX, ATLAS 9, and ATLAS 12 models. We find that the Rosseland angular diameter as predicted by comparison of the spherical PHOENIX model with spectrophotometry is in good agreement with our interferometric diameter measurement. The shape of our measured visibility function in the second lobe is consistent with all considered PHOENIX and ATLAS model predictions, and is significantly different to uniform disk (UD) and fully darkened disk (FDD) models. We derive high-precision fundamental parameters for ψ Phe, namely a Rosseland angular diameter of 8.13 ± 0.2 mas, with the Hipparcos parallax corresponding to a Rosseland linear radius R of 86 ± 3 R⊙, and an effective temperature of 3550 ± 50 K, with R corresponding to a luminosity of \\log L/L⊙=3.02 ± 0.06. Together with evolutionary models, these values are consistent with a mass of 1.3 ± 0.2 M⊙, and a surface gravity of \\log g = 0.68 ± 0.11. Based on public data released from the European Southern Observatory VLTI obtained from the ESO/ST-ECF Science Archive Facility. The VLTI was operated with the commissioning instrument VINCI and the MONA beam combiner.

  13. Disk Susceptibility Studies with Cefazolin and Cephalothin

    PubMed Central

    Actor, Paul; Guarini, Joseph; Uri, Joseph; Dickson, Judith; Pauls, John F.; Weisbach, Jerry A.

    1974-01-01

    Cefazolin and cephalothin disk susceptibility and minimal inhibitory concentration determinations were conducted on 591 clinical isolates. Cefazolin demonstrated superior activity, as shown by lower minimal inhibitory concentrations, and a greater percentage of isolates inhibited in the disk susceptibility test. The cephalothin antibiotic class disk by the standard Bauer-Kirby method failed to detect susceptibility to cefazolin in a significant percentage of Escherchia coli, Enterobacter species, and Enterococcus isolates. A separate cefazolin disk with a susceptibility cut-off point of 18 mm is recommended. An alternative to a separate cefazolin disk would be a reinterpretation of the cephalothin susceptibility disk zone diameters so that it would more adequately predict cefazolin activity. PMID:4840450

  14. Grinding Glass Disks On A Belt Sander

    NASA Technical Reports Server (NTRS)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  15. Optical Coronagraphic Spectroscopy of AU Mic: Evidence of Time Variable Colors?

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Roberge, Aki; Donaldson, Jessica K.; Debes, John H.; Malumuth, Eliot M.; Weinberger, Alycia J.

    2018-02-01

    We present coronagraphic long slit spectra of AU Mic’s debris disk taken with the STIS instrument aboard the Hubble Space Telescope. Our spectra are the first spatially-resolved, scattered light spectra of the system’s disk, which we detect at projected distances between approximately 10 and 45 au. Our spectra cover a wavelength range between 5200 and 10200 Å. We find that the color of AU Mic’s debris disk is bluest at small (12–17 au) projected separations. These results both confirm and quantify the findings qualitatively noted by Krist et al. and are different than IR observations that suggested a uniform blue or gray color as a function of projected separation in this region of the disk. Unlike previous literature, which reported that the color of AU Mic’s disk became increasingly more blue as a function of projected separation beyond ∼30 au, we find the disk’s optical color between 35 and 45 au to be uniformly blue on the southeast side of the disk and decreasingly blue on the northwest side. We note that this apparent change in disk color at larger projected separations coincides with several fast, outward moving “features” that are passing through this region of the southeast side of the disk. We speculate that these phenomenon might be related and that the fast moving features could be changing the localized distribution of sub-micron-sized grains as they pass by, thereby reducing the blue color of the disk in the process. We encourage follow-up optical spectroscopic observations of AU Mic to both confirm this result and search for further modifications of the disk color caused by additional fast moving features propagating through the disk.

  16. Micromagnetic structure in Co-alloy thin films and its correlation with microstructure

    NASA Astrophysics Data System (ADS)

    Tang, Kai

    The development of magnetic hard disk recording has resulted in an increase of recording density in an accelerated pace. How to maintain the increasingly smaller bits with low noise presents a tremendous challenge to the recording media, which requires detailed study of micromagnetic structure of the media to understand the noise mechanism, and elucidation of the correlation between the micromagnetic structure and microstructure to systematically develop media materials and tailor their microstructure. Lorentz transmission electron microscopy (LTEM) is a high-resolution magnetic imaging technique. However, it requires uniformly thin specimens, which cannot be produced by conventional TEM specimen preparation methods. Consequently, its application to real computer magnetic hard disks has been limited. In this dissertation, a combined dimpling and chemical etching method is introduced to prepare specimens directly from the unmodified hard disks with the typical C/Co alloy/Cr/NiP/Al (substrate) structure. The specimens typically have 2000 μmsp2 or larger electron transparent areas of Co alloy/Cr films with uniform thickness, which are suitable for LTEM observation. This method is applicable to disks with both smooth and mechanically textured substrates. In this work, LTEM has been employed to study recorded patterns in real hard disks. Magnetic recording was performed on a standard spin stand. Bits of densities from 15 to 100 kfci were examined with head skew angles of 0sp° and 20sp°, respectively. We also compared tracks recorded on dc-erased disks with those on as-deposited disks. We observed magnetic ripples within the tracks and the inter-track regions, magnetic vortices of 0.1-0.2 mum in diameter at the bit-transitions, and curved magnetic domain walls in the track-edge regions resulting from the "dog-bone" shaped head field profile. Our results also indicate that the micromagnetic structure at the track edges is influenced by head skew and magnetization direction in the inter-track regions. The LTEM results are combined with MFM observations to provide further understanding. The study has concentrated on isotropic media on smooth substrates since low head-to-medium spacing required by high recording density demonstrates the need for this type of media. The recorded tracks are remanent magnetic states after a strong (head) magnetic field was applied. We also examined an ac-erased state, in which the effect of external field is removed. Magnetic vortices are identified, in which small crystal grains form magnetic clusters and these clusters then form closed-fluxed vortices. The size of these vortices is estimated to be around 1.0-1.5 mum, about 10 times larger than that found in the bit-transition regions. The smaller vortex sizes in the bit-transition regions may result from constraints from adjacent bits as well as the difference in magnetic processes generating these states. (Abstract shortened by UMI.)

  17. Disk diffusion quality control guidelines for NVP-PDF 713: a novel peptide deformylase inhibitor.

    PubMed

    Anderegg, Tamara R; Jones, Ronald N

    2004-01-01

    NVP-PDF713 is a peptide deformylase inhibitor that has emerged as a candidate for treating Gram-positive infections and selected Gram-negative species that commonly cause community-acquired respiratory tract infections. This report summarizes the results of a multi-center (seven participants) disk diffusion quality control (QC) investigation for NVP PDF-713 using guidelines of the National Committee for Clinical Laboratory Standards and the standardized disk diffusion method. A total of 420 NVP-PDF 713 zone diameter values were generated for each QC organism. The proposed zone diameter ranges contained 97.6-99.8% of the reported participant results and were: Staphylococcus aureus ATCC 25923 (25-35 mm), Streptococcus pneumoniae ATCC 49619 (30-37 mm), and Haemophilus influenzae ATCC 49247 (24-32 mm). These QC criteria for the disk diffusion method should be applied during the NVP-PDF 713 clinical trials to maximize test accuracy.

  18. Characteristics of the mach disk in the underexpanded jet in which the back pressure continuously changes with time

    NASA Astrophysics Data System (ADS)

    Irie, T.; Yasunobu, T.; Kashimura, H.; Setoguchi, T.

    2003-05-01

    When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation. The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.

  19. RX GEMINORUM: PHOTOMETRIC SOLUTIONS, (NEARLY UNIFORM) GAINER ROTATION, DONOR RADIAL VELOCITY SOLUTION, NON-LTE ACCRETION DISK MODELS OF Hα EMISSION PROFILES, AND SECULAR LIGHT CURVE CHANGES IN THE 20TH CENTURY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Edward C.; Etzel, Paul B., E-mail: olsoneco@aol.com, E-mail: pbetzel@mail.sdsu.edu

    We obtained full-orbit Iybvu intermediate-band photometry and CCD spectroscopy of the long-period Algol eclipsing binary RX Geminorum. Photometric solutions using the Wilson–Devinney code give a gainer rotation (hotter, mass-accreting component) about 15 times the synchronous rate. We describe a simple technique to detect departures from uniform rotation of the hotter component. These binaries radiate double-peaked Hα emission from a low-mass accretion disk around the gainer. We used an approximate non-LTE disk code to predict models in fair agreement with observations, except in the far wings of the emission profile, where the star–inner disk boundary layer emits extra radiation. Variations inmore » Hα emission derive from modulations in the transfer rate. A study of times of minima during the 20th century suggests that a perturbing third body is present near RX Gem.« less

  20. Effect of design factors on surface temperature and wear in disk brakes

    NASA Technical Reports Server (NTRS)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  1. Detection of SO towards the transitional disk AB Auriga: the sulfur chemistry in a proto-solar nebula

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.

    2017-03-01

    The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.

  2. The study of shielding influence of the disks placed coaxially on rotational oscillations of the cylinder in the airflow

    NASA Astrophysics Data System (ADS)

    Kiselev, Nikolay; Ryabinin, Anatoly

    2018-05-01

    The experimental study of shielding effects of the disk placed upstream of a cylinder is described. The disk reduces the drag of the cylinder and changes its dynamic characteristics. Two cylinders with different aspect ratio are studied. Without a disk, an elastically fixed cylinder in the airflow performs rotational oscillations with constant amplitude. The influence of the aerodynamic force on the damping of the oscillations depends on the disk diameter, the gap between disk and cylinder and aspect ratio of the cylinder. The disk reduces the amplitude of steady rotational oscillations or causes the damped rotational oscillations. A mathematical model is proposed for describing the rotational steady and damped oscillations of a cylinder with the disk.

  3. Method for preparing spherical thermoplastic particles of uniform size

    DOEpatents

    Day, J.R.

    1975-11-17

    Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

  4. Cyclic Spin Testing of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2005-01-01

    An aggressive cyclic spin test program was run to verify the reliability of superalloy disks with a dual grain structure, fine grain bore and coarse grain rim, utilizing a disk design with web holes bisecting the grain size transition zone. Results of these tests were compared with conventional disks with uniform grain structures. Analysis of the test results indicated the cyclic performance of disks with a dual grain structure could be estimated to a level of accuracy which does not appear to prohibit the use of this technology in advanced gas turbine engines, although further refinement of lifing methodology is clearly warranted.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummel, Andrew John

    A multitude of critical experiments with highly enriched uranium metal were conducted in the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. These experiments served to evaluate the storage, casting, and handling limits for the Y-12 Plant while also providing data for verification of different calculation methods and associated cross-sections for nuclear criticality safety applications. These included both solid cylinders and annuli of various diameters, interacting cylinders of various diameters, parallelepipeds, and reflected cylinders and annuli. The experiments described here involve a series of delayed critical stacksmore » of bare oralloy HEU annuli and disks. Three of these experiments consist of stacking bare HEU annuli of varying diameters to obtain critical configurations. These annuli have nominal inner and outer diameters (ID/OD) including: 7 inches (") ID – 9" OD, 9" ID – 11" OD, 11" ID – 13" OD, and 13? ID – 15" OD. The nominal heights range from 0.125" to 1.5". The three experiments themselves range from 7" – 13", 7" – 15", and 9" – 15" in diameter, respectively. The fourth experiment ranges from 7" – 11", and along with different annuli, it also includes an 11" disk and several 7" diameter disks. All four delayed critical experiments were configured and evaluated by J. T. Mihalczo, J. J. Lynn, and D. E. McCarty from December of 1962 to February 1963 with additional information in their corresponding logbook.« less

  6. Stress intensity factors in a hollow cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Delale, F.

    1980-01-01

    An exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero and the normal traction is an arbitrary function of r. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.

  7. Stress intensity factors in a hollow cylinder containing a radial crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    In this paper, an exact formulation of the plane elasticity problem for a hollow cylinder or a disk containing a radial crack is given. The crack may be an external edge crack, an internal edge crack, or an embedded crack. It is assumed that on the crack surfaces the shear traction is zero, and the normal traction is an arbitrary function of radius. For various crack geometries and radius ratios, the numerical results are obtained for a uniform crack surface pressure, for a uniform pressure acting on the inside wall of the cylinder, and for a rotating disk.

  8. Melanocytoma of the optic disk in the Korean population.

    PubMed

    Lee, Christopher S; Bae, Jeong H; Jeon, Ik H; Byeon, Suk H; Koh, Hyoung J; Lee, Sung C

    2010-01-01

    To report on the clinical features and the natural course of optic disk melanocytoma in the Korean population. A retrospective review of medical records was performed on 27 consecutive patients with optic disk melanocytoma. In cases with tumor enlargement, surface area and diameter of tumors were measured from fundus images using computer software. The median age at diagnosis was 46 years with a slight female predominance (63%). The median tumor diameter and height were 3.1 mm and 1.9 mm, respectively. There were no cases with tumor-related visual loss for a median follow-up of 2 years. Tumor enlargement was observed in 4 of 21 patients (19%) that had follow-up of 1 year or more with no malignant transformation. The mean change of tumor surface area was 2.4 mm (52% increase), and the mean change of tumor diameter was 1.8 mm over a mean follow-up of 53 months in 4 cases with tumor growth. Only tumor vascularization on fluorescent angiography correlated with tumor growth (Log-rank test; P = 0.049). Kaplan-Meier survival estimated that the tumor growth was 0% at 1 year, 14% at 5 years, and 57% at 8 years. Optic disk melanocytoma in the Korean population tends to be superiorly located in the optic disk, and visual prognosis was excellent. Periodic ocular examination is warranted because 57% of patients were estimated to show tumor enlargement by 8 years of follow-up.

  9. The effects of a uniform axial magnetic field on the global stability of the rotating-disk boundary-layer

    NASA Astrophysics Data System (ADS)

    Davies, Christopher; Thomas, Christian

    2006-11-01

    Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.

  10. 29 mm Diameter Target Test Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    After numerous delays, the test of the 29 mm diameter target was conducted on 8/18/2017. The complete target design report, dated 8/15/2016, is reproduced below for completeness. This describes in detail the 10 disk target with varying thickness disks. The report presents and discusses the test results. In brief summary, there appears to have been multiple instrumentation errors. Measured temperatures, pressures and IR camera window temperature measurement are all suspect. All tests were done at 35 MeV, with 171 μA current, or 6 kW of beam power.

  11. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    PubMed

    Kabei, N; Tuichiya, K; Sakurai, Y

    1994-09-01

    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal-Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  13. Production of monodisperse cerium oxide microspheres with diameters near 100 µm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Cerium dioxide microspheres with uniform diameters between 65 – 211 µm were fabricated using internal gelation sol-gel methods. Although uniform microspheres are produced for nuclear fuel applications with diameters above 300 µm, sol-gel microspheres with diameters of 50 - 200 µm have historically been made by emulsion techniques and had poor size uniformity [1, 2]. An internal gelation, sol-gel apparatus was designed and constructed to accommodate the production of small, uniform microspheres whereby cerium-containing solutions were dispersed into flowing silicone oil and heated in a gelation column to initiate solidification [3, 4]. Problems with premature feed gelation and microsphere coalescencemore » were overcome by equipment modifications unique among known internal gelation setups. Microspheres were fabricated and sized in batches as a function of dispersing needle diameter and silicone oil flow rate in the two-fluid nozzle in order to determine the range of sizes possible and corresponding degree of monodispersity. Initial experiments with poor size uniformity were linked to microsphere coalescence in the gelation column prior to solidification as well as excessive flow rates for the cerium feed solution. Average diameter standard deviations as low as 2.23% were observed after optimization of flow rates and minimization of coalescence reactions.« less

  14. The effect of operative fit and hydroxyapatite coating on the mechanical and biological response to porous implants.

    PubMed

    Dalton, J E; Cook, S D; Thomas, K A; Kay, J F

    1995-01-01

    Femoral intramedullary implants were constructed by threading 4.0-millimeter-thick disks with a titanium-alloy (Ti-6Al-4V) porous bead coating onto a two-millimeter-diameter threaded rod. Each porous-coated disk, which was 6.0, 8.0, 9.0, or 10.0 millimeters in diameter, was separated by a two-millimeter-thick acrylic disk with a diameter of ten millimeters. Implants with and without a hydroxyapatite coating of twenty-five micrometers were inserted into fifteen skeletally mature adult mongrel dogs. The femoral canal was sequentially reamed bilaterally to a ten-millimeter diameter, resulting in uniform initial implant-bone interface gaps of 0.0, 0.5, 1.0, and 2.0 millimeters. Each animal received paired hydroxyapatite-coated and uncoated implants. Three animals each were killed at four, eight, twelve, twenty-four, and fifty-two weeks after the implantation. The harvested femora were sectioned through the acrylic spacers, transverse to the long axis, to produce individual push-out test specimens for mechanical testing. Characteristics of interface attachment were determined with test fixtures that supported the surrounding bone to within 150 micrometers of the interface. Histological sections were prepared, and the amount of bone within the porous structure and the amount of the original gap that was filled with new bone were quantified with a computerized video image-analysis system. Mechanical attachment strength and bone ingrowth were found to increase with the time after implantation and with a decrease in the size of the gap. Placement of the implant in proximal (cancellous) compared with distal (cortical) locations had no significant effect on the strength of attachment, bone ingrowth, or gap-filling. However, implants with a large initial gap (1.0 or 2.0 millimeters) demonstrated greater attachment strength in cancellous bone than in cortical bone. With a few exceptions, hydroxyapatite-coated implants with an initial gap of 1.0 millimeter or less demonstrated significantly increased mechanical attachment strength and bone ingrowth at all time-periods. Interface attachment strengths were positively correlated with bone ingrowth, the time after implantation, the use of a hydroxyapatite coating, and decreasing initial gap size. Initial implant-bone apposition is thought to be a prerequisite for good biological fixation. This apposition is often not achieved because of the design of the implant or instruments and the operative technique. Poor initial fit during the operation may decrease the longevity of the implant. The results of the present study indicate that attachment strength and bone ingrowth are significantly affected by gaps in the interface, particularly those of more than 1.0 millimeter.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218

    NASA Astrophysics Data System (ADS)

    Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.

    2018-04-01

    Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its spatial extent. Based on spatial and spectroscopic considerations as well as on qualitative comparison with IRS 48 and HD 97048, we favor a scenario in which PAHs extend out to large radii across the flared disk surface and are at the same time predominantly in an ionized charge state due to the strong UV radiation field of the 180 L⊙ central star.

  16. Gradient-index phononic crystal lens-based enhancement of elastic wave energy harvesting

    NASA Astrophysics Data System (ADS)

    Tol, S.; Degertekin, F. L.; Erturk, A.

    2016-08-01

    We explore the enhancement of structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate, where the blind hole distribution is tailored to obtain a hyperbolic secant gradient profile of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart.

  17. A three-dimensional finite element evaluation of magnetic attachment attractive force and the influence of the magnetic circuit.

    PubMed

    Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-01-01

    The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.

  18. Burst Testing and Analysis of Superalloy Disks With a Dual Grain Microstructure

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete

    2006-01-01

    Elastic-plastic finite element analyses of room temperature burst tests on four superalloy disks were conducted and reported in this paper. Two alloys, Rene 104 (General Electric Aircraft Engines) and Alloy 10 (Honeywell Engines & Systems), were studied. For both alloys an advanced dual microstructure disk, fine grain bore and coarse grain rim, were analyzed and compared with conventional disks with uniform microstructures, coarse grain for Rene 104 and fine grain for Alloy 10. The analysis and experimental data were in good agreement up to burst. At burst, the analysis underestimated the speed and growth of the Rene 104 disks, but overestimated the speed and growth of the Alloy 10 disks. Fractography revealed that the Alloy 10 disks displayed significant surface microcracking and coalescence in comparison to Rene 104 disks. This phenomenon may help explain the differences between the Alloy 10 disks and the Rene 104 disks, as well as the observed deviations between analytical and experimental data at burst.

  19. 14 CFR 25 - Traffic and Capacity Elements

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS... forth in section 19—Uniform Classification of Operating Statistics. (b) Carriers submitting Schedule T-100 shall use magnetic computer tape or IBM compatible disk for transmitting the prescribed data to...

  20. 14 CFR Section 25 - Traffic and Capacity Elements

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS UNIFORM SYSTEM OF ACCOUNTS AND REPORTS FOR LARGE CERTIFICATED AIR CARRIERS... forth in section 19—Uniform Classification of Operating Statistics. (b) Carriers submitting Schedule T-100 shall use magnetic computer tape or IBM compatible disk for transmitting the prescribed data to...

  1. The broad applicability of the disk laser principle: from CW to ps

    NASA Astrophysics Data System (ADS)

    Killi, Alexander; Stolzenburg, Christian; Zawischa, Ivo; Sutter, Dirk; Kleinbauer, Jochen; Schad, Sven; Brockmann, Rüdiger; Weiler, Sascha; Neuhaus, Jörg; Kalfhues, Steffen; Mehner, Eva; Bauer, Dominik; Schlueter, Holger; Schmitz, Christian

    2009-02-01

    The quasi two-dimensional geometry of the disk laser results in conceptional advantages over other geometries. Fundamentally, the thin disk laser allows true power scaling by increasing the pump spot diameter on the disk while keeping the power density constant. This scaling procedure keeps optical peak intensity, temperature, stress profile, and optical path differences in the disk nearly unchanged. The required pump beam brightness - a main cost driver of DPSSL systems - also remains constant. We present these fundamental concepts and present results in the wide range of multi kW-class CW-sources, high power Q-switched sources and ultrashort pulsed sources.

  2. Biology of a deep-water sea anemone (Anthozoa: Actiniidae) from eastern Canada: Spawning, development, and growth

    NASA Astrophysics Data System (ADS)

    Mercier, Annie; Baillon, Sandrine; Daly, Marymegan; Macrander, Jason; Hamel, Jean-François

    2017-03-01

    Knowledge of the general biology and reproductive ecology of deep-water species can help predict their resilience to environmental and anthropogenic disturbances. The present study centers on live specimens of a deep-water sea anemone which were collected at bathyal depths between 1100 and 1400 m and kept in a mesocosm for over 6 years. Morphology and DNA sequencing confirmed that the species belongs to the genus Urticina. Male and female (9-10 cm pedal disk diameter, 90 tentacles) spawned 4 years post collection, in early spring (March). Both sexes released gametes through the mouth. The negatively buoyant oocytes (550-600 μm in diameter) quickly settled on the rocks and soft sediments surrounding the female. Lecithotrophic embryonic and larval development occurred on the substratum. Fully developed planula larvae were detected after 17-21 days. Planulae started to crawl and swim around but remained demersal. Metamorphosis and settlement occurred after 30-35 days, exclusively on hard substrata and preferentially on undersurfaces. Offspring grew slowly, developing 8 tentacles after 5 months and 24 tentacles after 12 months (3-4 mm pedal disk diameter). After 2.6 years of growth, the captive-born sea anemones reached 12-16 mm in pedal disk diameter and possessed 48-54 tentacles.

  3. IR-camera methods for automotive brake system studies

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  4. Levofloxacin susceptibility testing against Helicobacter pylori: evaluation of a modified disk diffusion method compared to E test.

    PubMed

    Boyanova, Lyudmila; Ilieva, Juliana; Gergova, Galina; Mitov, Ivan

    2016-01-01

    We compared levofloxacin (1 μg/disk) disk diffusion method to E test against 212 Helicobacter pylori strains. Using diameter breakpoints for susceptibility (≥15 mm) and resistance (≤9 mm), very major error, major error rate, and categoric agreement were 0.0%, 0.6%, and 93.9%, respectively. The method may be useful in low-resource laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Size Constancy in Infants: 4-Month-Olds' Responses to Physical versus Retinal Image Size

    ERIC Educational Resources Information Center

    Granrud, Carl E.

    2006-01-01

    This study tested whether 4-month-old infants respond primarily to objects' physical or retinal image sizes. In the study's main experiment, infants were habituated to either a 6-cm-diameter disk at a distance of 18 cm or a 10-cm disk at 50 cm. They were then given 2 test trials in which the 6- and 10-cm disks were presented side by side at a…

  6. Parallel Readout of Optical Disks

    DTIC Science & Technology

    1992-08-01

    r(x,y) is the apparent reflectance function of the disk surface including the phase error. The illuminat - ing optics should be chosen so that Er(x,y...of the light uniformly illuminat - ing the chip, Ap = 474\\im 2 is the area of photodiode, and rs is the time required to switch the synapses. Figure...reference beam that is incident from the right. Once the hologram is recorded the input is blocked and the disk is illuminat - ed. Lens LI takes the

  7. Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure

    NASA Astrophysics Data System (ADS)

    Avetissov, I.; Kostikov, V.; Meshkov, V.; Sukhanova, E.; Grishechkin, M.; Belov, S.; Sadovskiy, A.

    2014-01-01

    A VGF growth setup assisted by axial vibrations of baffle submerged into CdTe melt with controlled Cd partial pressure was designed. An influence of baffle shape on flow velocity map, temperature distribution in CdTe melt and interface shape of growing crystal was analyzed by numerical simulation and physical modeling. To produce the desirable shape of crystal melt interface we slant under different angles vertical generatrix in a cylindrical disk and made chasing on faceplates of a disk. It was ascertained that a disk with conical generatrix formed more intensive convective flows from a faceplate with larger diameter. It was shown that at CdTe VGF crystal growth rate about 10 mm/h application of AVC technique made it possible to produce convex interface for 2 in. crystal diameter.

  8. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  9. Rotating flexible drag mill

    DOEpatents

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  10. Practical Disk Diffusion Test for Detecting Group B Streptococcus with Reduced Penicillin Susceptibility▿

    PubMed Central

    Kimura, Kouji; Wachino, Jun-ichi; Kurokawa, Hiroshi; Suzuki, Satowa; Yamane, Kunikazu; Shibata, Naohiro; Arakawa, Yoshichika

    2009-01-01

    Although group B streptococcus (GBS) has been considered to be uniformly susceptible to β-lactams, the presence of GBS with reduced penicillin susceptibility (PRGBS) was recently confirmed genetically. We developed a feasible and reliable method for screening PRGBS in clinical microbiology laboratories using a combination of ceftibuten, oxacillin, and ceftizoxime disks. PMID:19812274

  11. Practical disk diffusion test for detecting group B streptococcus with reduced penicillin susceptibility.

    PubMed

    Kimura, Kouji; Wachino, Jun-Ichi; Kurokawa, Hiroshi; Suzuki, Satowa; Yamane, Kunikazu; Shibata, Naohiro; Arakawa, Yoshichika

    2009-12-01

    Although group B streptococcus (GBS) has been considered to be uniformly susceptible to beta-lactams, the presence of GBS with reduced penicillin susceptibility (PRGBS) was recently confirmed genetically. We developed a feasible and reliable method for screening PRGBS in clinical microbiology laboratories using a combination of ceftibuten, oxacillin, and ceftizoxime disks.

  12. The variability of software scoring of the CDMAM phantom associated with a limited number of images

    NASA Astrophysics Data System (ADS)

    Yang, Chang-Ying J.; Van Metter, Richard

    2007-03-01

    Software scoring approaches provide an attractive alternative to human evaluation of CDMAM images from digital mammography systems, particularly for annual quality control testing as recommended by the European Protocol for the Quality Control of the Physical and Technical Aspects of Mammography Screening (EPQCM). Methods for correlating CDCOM-based results with human observer performance have been proposed. A common feature of all methods is the use of a small number (at most eight) of CDMAM images to evaluate the system. This study focuses on the potential variability in the estimated system performance that is associated with these methods. Sets of 36 CDMAM images were acquired under carefully controlled conditions from three different digital mammography systems. The threshold visibility thickness (TVT) for each disk diameter was determined using previously reported post-analysis methods from the CDCOM scorings for a randomly selected group of eight images for one measurement trial. This random selection process was repeated 3000 times to estimate the variability in the resulting TVT values for each disk diameter. The results from using different post-analysis methods, different random selection strategies and different digital systems were compared. Additional variability of the 0.1 mm disk diameter was explored by comparing the results from two different image data sets acquired under the same conditions from the same system. The magnitude and the type of error estimated for experimental data was explained through modeling. The modeled results also suggest a limitation in the current phantom design for the 0.1 mm diameter disks. Through modeling, it was also found that, because of the binomial statistic nature of the CDMAM test, the true variability of the test could be underestimated by the commonly used method of random re-sampling.

  13. Evaluation of an Automated System for Reading and Interpreting Disk Diffusion Antimicrobial Susceptibility Testing of Fastidious Bacteria.

    PubMed

    Idelevich, Evgeny A; Becker, Karsten; Schmitz, Janne; Knaack, Dennis; Peters, Georg; Köck, Robin

    2016-01-01

    Results of disk diffusion antimicrobial susceptibility testing depend on individual visual reading of inhibition zone diameters. Therefore, automated reading using camera systems might represent a useful tool for standardization. In this study, the ADAGIO automated system (Bio-Rad) was evaluated for reading disk diffusion tests of fastidious bacteria. 144 clinical isolates (68 β-haemolytic streptococci, 28 Streptococcus pneumoniae, 18 viridans group streptococci, 13 Haemophilus influenzae, 7 Moraxella catarrhalis, and 10 Campylobacter jejuni) were tested on Mueller-Hinton agar supplemented with 5% defibrinated horse blood and 20 mg/L β-NAD (MH-F, Oxoid) according to EUCAST. Plates were read manually with a ruler and automatically using the ADAGIO system. Inhibition zone diameters, indicated by the automated system, were visually controlled and adjusted, if necessary. Among 1548 isolate-antibiotic combinations, comparison of automated vs. manual reading yielded categorical agreement (CA) without visual adjustment of the automatically determined zone diameters in 81.4%. In 20% (309 of 1548) of tests it was deemed necessary to adjust the automatically determined zone diameter after visual control. After adjustment, CA was 94.8%; very major errors (false susceptible interpretation), major errors (false resistant interpretation) and minor errors (false categorization involving intermediate result), calculated according to the ISO 20776-2 guideline, accounted to 13.7% (13 of 95 resistant results), 3.3% (47 of 1424 susceptible results) and 1.4% (21 of 1548 total results), respectively, compared to manual reading. The ADAGIO system allowed for automated reading of disk diffusion testing in fastidious bacteria and, after visual validation of the automated results, yielded good categorical agreement with manual reading.

  14. FIGGS 2: An HI survey of extremely faint irregular galaxies

    NASA Astrophysics Data System (ADS)

    Patra, N. N.; Chengalur, J. N.; Karachentsev, I. D.; Sharina, M. E.

    2016-10-01

    We present observations and first results from the FIGGS2 survey. FIGGS2 is an extension of the earlier Faint Irregular Galaxies GMRT survey (FIGGS) towards faint luminosity end. The sample consists of 20 galaxies, 15 of which were detected in HI 21 cm line using the Giant Meterwave Radio Telescope (GMRT). The median blue band magnitude of our sample is approximately -11.m 6, which is more than one magnitude fainter than earlier FIGGS survey. From our GMRT observations we found that, for many of our sample galaxies, the HI disks are offset from their optical disks. The HI diameters of the FIGGS2 galaxies show a tight correlation with their HI mass. The slope of the correlation is 2.08 ± 0.20 similar to what is found for FIGGS galaxies. We also found that for almost all galaxies, the HI disks are larger than the optical disks which is a common trend for dwarf or spiral galaxies. The mean value of the ratio of HI to optical diameter is about 1.54.

  15. HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Gould, Carolina; Williams, Hayley; Duchene, Gaspard

    2017-10-01

    In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.

  16. Optical Tip Clearance Measurements as a Tool for Rotating Disk Characterization

    PubMed Central

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Durana, Gaizka; Aldabaldetreku, Gotzon

    2017-01-01

    An experimental investigation on the vibrational behavior of a rotating disk by means of three optical fiber sensors is presented. The disk, which is a scale model of the real disk of an aircraft engine, was assembled in a wind tunnel in order to simulate real operation conditions. The pressure difference between the upstream and downstream sides of the disk causes an airflow that might force the disk to vibrate. To characterize this vibration, a set of parameters was determined by measuring the tip clearance of the disk: the amplitude, the frequency and the number of nodal diameters in the disk. All this information allowed the design of an upgraded prototype of the disk, whose performance was also characterized by the same method. An optical system was employed for the measurements, in combination with a strain gauge mounted on the disk surface, which served to confirm the results obtained. The data of the strain gauge coincided closely with those provided by the optical fiber sensors, thus demonstrating the suitability of this innovative technique to evaluate the vibrational behavior of rotating disks. PMID:28098845

  17. Comparison of disk diffusion and agar dilution methods for gentamicin susceptibility testing of Neisseria gonorrhoeae.

    PubMed

    Gianecini, Ricardo; Oviedo, Claudia; Irazu, Lucia; Rodríguez, Marcelo; Galarza, Patricia

    2018-03-29

    Gentamicin is a promising antibiotic for the treatment of multidrug-resistant gonorrhea. The aim of this study was to analyze the suitability and reliably of disk diffusion to monitor the susceptibility to gentamicin. We studied 237 Neisseria gonorrhoeae isolates obtained in 2013 and 2015. Reference MICs were correlated with inhibition zone diameters (in millimeters) of gentamicin 10 µg disks manufactured by BBL and Oxoid. The Pearson correlation between disk diffusion and agar dilution was r = -.68 (P < 0.001) for BBL disk and r = -.71 (P < 0.001) for Oxoid disk. No very major or major discrepancies were detected. However, a high percentage of minor discrepancies was observed (44.7%, BBL disk) and (21.9%, Oxoid disk). By adjusting the susceptible breakpoint to S ≥ 17 mm, the minor discrepancies rate was reduced to 19.4% (BBL disk) and 10.1% (Oxoid disk). The disk diffusion may be a screening method in clinical laboratories to detect the gentamicin susceptibility of N. gonorrhoeae. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. In-plane inertial coupling in tuned and severely mistuned bladed disks

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.

    1982-01-01

    A model has been developed and verified for blade-disk-shaft coupling in rotors due to the in-plane rigid body modes of the disk. An analytic model has been developed which couples the in-plane rigid body modes of the disk on an elastic shaft with the blade bending modes. Bench resonance test were carried out on the M.I.T. Compressor Rotor, typical of research rotors with flexible blades and a thick rigid disk. When the rotor was carefully tuned, the structural coupling of the blades by the disks was confined to zero and one nodal diameter modes, whose modal frequencies were greater than the blade cantilever frequency. In the case of the tuned rotor, and in two cases where severe mistuning was intentionally introduced, agreement between the predicted and observed natural frequencies is excellent. The analytic model was then extended to include the effects of constant angular rotation of the disk.

  19. Free-fall dynamics of a pair of rigidly linked disks

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Chang, Jaehyeock; Kim, Daegyoum

    2018-03-01

    We investigate experimentally the free-fall motion of a pair of identical disks rigidly connected to each other. The three-dimensional coordinates of the pair of falling disks were constructed to quantitatively describe its trajectory, and the flow structure formed by the disk pair was identified by using dye visualization. The rigidly linked disk pair exhibits a novel falling pattern that creates a helical path with a conical configuration in which the lower disk rotates in a wider radius than the upper disk with respect to a vertical axis. The helical motion occurs consistently for the range of disk separation examined in this study. The dye visualization reveals that a strong, noticeable helical vortex core is generated from the outer tip of the lower disk during the helical motion. With an increasing length ratio, which is the ratio of the disk separation to the diameter of the disks, the nutation angle and the rate of change in the precession angle that characterize the combined helical and conical kinematics decrease linearly, whereas the pitch of the helical path increases linearly. Although all disk pairs undergo this helical motion, the horizontal-drift patterns of the disk pair depend on the length ratio.

  20. Development and characterization of a round hand-held silicon photomultiplier based gamma camera for intraoperative imaging

    PubMed Central

    Popovic, Kosta; McKisson, Jack E.; Kross, Brian; Lee, Seungjoon; McKisson, John; Weisenberger, Andrew G.; Proffitt, James; Stolin, Alexander; Majewski, Stan; Williams, Mark B.

    2017-01-01

    This paper describes the development of a hand-held gamma camera for intraoperative surgical guidance that is based on silicon photomultiplier (SiPM) technology. The camera incorporates a cerium doped lanthanum bromide (LaBr3:Ce) plate scintillator, an array of 80 SiPM photodetectors and a two-layer parallel-hole collimator. The field of view is circular with a 60 mm diameter. The disk-shaped camera housing is 75 mm in diameter, approximately 40.5 mm thick and has a mass of only 1.4 kg, permitting either hand-held or arm-mounted use. All camera components are integrated on a mobile cart that allows easy transport. The camera was developed for use in surgical procedures including determination of the location and extent of primary carcinomas, detection of secondary lesions and sentinel lymph node biopsy (SLNB). Here we describe the camera design and its principal operating characteristics, including spatial resolution, energy resolution, sensitivity uniformity, and geometric linearity. The gamma camera has an intrinsic spatial resolution of 4.2 mm FWHM, an energy resolution of 21.1 % FWHM at 140 keV, and a sensitivity of 481 and 73 cps/MBq when using the single- and double-layer collimators, respectively. PMID:28286345

  1. Experimental characterization of HOTNES: A new thermal neutron facility with large homogeneity area

    NASA Astrophysics Data System (ADS)

    Bedogni, R.; Sperduti, A.; Pietropaolo, A.; Pillon, M.; Pola, A.; Gómez-Ros, J. M.

    2017-01-01

    A new thermal neutron irradiation facility, called HOTNES (HOmogeneous Thermal NEutron Source), was established in the framework of a collaboration between INFN-LNF and ENEA-Frascati. HOTNES is a polyethylene assembly, with about 70 cmx70 cm square section and 100 cm height, including a large, cylindrical cavity with diameter 30 cm and height 70 cm. The facility is supplied by a 241Am-B source located at the bottom of this cavity. The facility was designed in such a way that the iso-thermal-fluence surfaces, characterizing the irradiation volume, coincide with planes parallel to the cavity bottom. The thermal fluence rate across a given isofluence plane is as uniform as 1% on a disk with 30 cm diameter. Thermal fluence rate values from about 700 cm-2 s-1 to 1000 cm-2 s-1 can be achieved. The facility design, previously optimized by Monte Carlo simulation, was experimentally verified. The following techniques were used: gold activation foils to assess the thermal fluence rate, semiconductor-based active detector for mapping the irradiation volume, and Bonner Sphere Spectrometer to determine the complete neutron spectrum. HOTNES is expected to be attractive for the scientific community involved in neutron metrology, neutron dosimetry and neutron detector testing.

  2. A simplified model of biosonar echoes from foliage and the properties of natural foliages.

    PubMed

    Ming, Chen; Zhu, Hongxiao; Müller, Rolf

    2017-01-01

    Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage.

  3. A simplified model of biosonar echoes from foliage and the properties of natural foliages

    PubMed Central

    Zhu, Hongxiao; Müller, Rolf

    2017-01-01

    Foliage echoes could play an important role in the sensory ecology of echolocating bats, but many aspects of their sensory information content remain to be explored. A realistic numerical model for these echoes could support the development of hypotheses for the relationship between foliage properties and echo parameters. In prior work by the authors, a simple foliage model based on circular disks distributed uniformly in space has been developed. In the current work, three key simplifications used in this model have been examined: (i) representing leaves as circular disks, (ii) neglecting shading effects between leaves, and (iii) the uniform spatial distribution of the leaves. The target strengths of individual leaves and shading between them have been examined in physical experiments, whereas the impact of the spatial leaf distribution has been studied by modifying the numerical model to include leaf distributions according to a biomimetic model for natural branching patterns (L-systems). Leaf samples from a single species (leatherleaf arrowwood) were found to match the relationship between size and target strength of the disk model fairly well, albeit with a large variability part of which could be due to unaccounted geometrical features of the leaves. Shading between leaf-sized disks did occur for distances below 50 cm and could hence impact the echoes. Echoes generated with L-system models in two distinct tree species (ginkgo and pine) showed consistently more temporal inhomogeneity in the envelope amplitudes than a reference with uniform distribution. However, these differences were small compared to effects found in response to changes in the relative orientation of simulated sonar beam and foliage. These findings support the utility of the uniform leaf distribution model and suggest that bats could use temporal inhomogeneities in the echoes to make inferences regarding the relative positioning of their sonar and a foliage. PMID:29240840

  4. Modeling the X-Ray Timing Properties of Cygnus X-1 Caused by Waves Propagating in a Transition Disk

    NASA Astrophysics Data System (ADS)

    Misra, R.

    2000-02-01

    We show that waves propagating in a transition disk can explain the short-term temporal behavior of Cygnus X-1. In the transition-disk model, the spectrum is produced by saturated Comptonization within the inner region of the accretion disk where the temperature varies rapidly with radius. Recently, the spectrum from such a disk has been shown to fit the average broadband spectrum of this source better than that predicted by the soft-photon Comptonization model. Here we consider a simple model in which waves are propagating cylindrically symmetrically in the transition disk with a uniform propagation speed (cp). We show that this model can qualitatively explain (1) the variation of the power spectral density with energy, (2) the hard lags as a function of frequency, and (3) the hard lags as a function of energy for various frequencies. Thus, the transition-disk model can explain the average spectrum and the short-term temporal behavior of Cyg X-1.

  5. Cultural Treatments Influence Hardwood Growth and Foliar Nutrient Concentration on a Minor Stream Bottom Site

    Treesearch

    Harvey E. Kennedy

    1985-01-01

    Seedlings or cuttings of nine species of hardwoods were planted on a minor stream bottom (Aeric Fluvaquents) in southeast Arkansas and mowed or disked several times annually for 4 years. Disking to eliminate competition significantly increased heights and diameters of all, and survival of some, species. Soil nitrogen, organic matter, and pH were significantly lowered...

  6. Evaluation of the vibrational behaviour of a rotating disk by optical tip-clearance measurements

    NASA Astrophysics Data System (ADS)

    García, Iker; Zubia, Joseba; Beloki, Josu; Arrue, Jon; Villatoro, Joel

    2015-05-01

    The results of an experimental investigation on the vibrational behaviour of a rotating disk are reported. This disk is a prototype that simulates a component of an aircraft engine. The air flow through the gap between the edge of the disk and the casing, produced because of the pressure difference between the upstream and downstream parts of the disk, might force the disk to flutter under certain circumstances. This situation is simulated in a wind tunnel. The main goal of the tests is to evaluate the vibrational behaviour of a rotating disk, obtaining the correspondence between the vibration frequencies of the disk and the pressure differences when the disk is rotating at diverse speeds. An innovative noncontact technique is utilised, which employs three optical sensors that are angularly equidistributed on the casing of the wind tunnel. In order to verify the results given by the optical sensors, a strain gauge was mounted on the surface of the rotating disk. The results show a perfect agreement between the vibration frequencies detected by both kinds of sensors, proving that the combination of both allows the calculation of the nodal diameter corresponding to the vibration of the disk.

  7. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  8. Performance evaluation for pinhole collimators of small gamma camera by MTF and NNPS analysis: Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Kim, Hyunduk; Cha, Bo Kyung; Kim, Jong Yul; Cho, Gyuseong; Chung, Yong Hyun; Yun, Jong-Il

    2009-06-01

    Presently, the gamma camera system is widely used in various medical diagnostic, industrial and environmental fields. Hence, the quantitative and effective evaluation of its imaging performance is essential for design and quality assurance. The National Electrical Manufacturers Association (NEMA) standards for gamma camera evaluation are insufficient to perform sensitive evaluation. In this study, modulation transfer function (MTF) and normalized noise power spectrum (NNPS) will be suggested to evaluate the performance of small gamma camera with changeable pinhole collimators using Monte Carlo simulation. We simulated the system with a cylinder and a disk source, and seven different pinhole collimators from 1- to 4-mm-diameter pinhole with lead. The MTF and NNPS data were obtained from output images and were compared with full-width at half-maximum (FWHM), sensitivity and differential uniformity. In the result, we found that MTF and NNPS are effective and novel standards to evaluate imaging performance of gamma cameras instead of conventional NEMA standards.

  9. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Moreno, R.; Moullet, A.; Lellouch, E.; Fouchet, T.

    2015-08-01

    Millimeter and submillimeter heterodyne spectroscopy offers the possibility of probing the mesosphere of Venus and monitoring minor species and winds. ALMA presents a unique opportunity to map mesospheric species of Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11″ and the illumination factor was about 90%. Maps of CO, SO, SO2 and HDO have been built from transitions recorded in the 335-347 GHz frequency range. A mean mesospheric thermal profile has been inferred from the analysis of the CO transition at the disk center, to be used in support of minor species retrieval. Maps of SO and SO2 abundance show significant local variations over the disk and contrast variations by as much as a factor 4. In the case of SO2, the spatial distribution appears more "patchy", i.e. shows short-scale structures apparently disconnected from day-side and latitudinal variations. For both molecules, significant changes occur over a timescale of one day. From the disk averaged spectrum of SO recorded on November 14 at 346.528 GHz, we find that the best fit is obtained with a cutoff in the SO vertical distribution at 88±2 km and a uniform mixing ratio of 8.0±2.0 ppb above this level. The SO2 map of November 14, derived from the weaker transition at 346.652 GHz, shows a clear maximum in the morning side at low latitudes, which is less visible in the map of November 15. We find that the best fit for SO2 is obtained for a cutoff in the vertical distribution at 88±3 km and a uniform mixing ratio of 12.0±3.5 ppb above this level. The HDO maps retrieved from the 335.395 GHz show some enhancement in the northern hemisphere, but less contrasted variations than for the sulfur species maps, with little change between November 14 and 15. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is best fitted with a uniform H2O mixing ratio of 2.5±0.6 ppm (corresponding to a HDO mixing ratio of 0.165±0.040 ppm). We note that our spectrum is also compatible with a H2O mixing ratio of 1.5 ppm in the 80-90 km altitude range, and a mixing ratio of 3 ppm outside this range, as suggested by the photochemical model of Zhang et al. (2012, Icarus, vol. 217, pp. 714-739). Our results are in good general agreement with previous single dish submillimeter observations of Sandor and Clancy (2005, Icarus, vol. 177, pp. 129-143), Gurwell et al. (2007, Icarus, vol. 188, p. 288), and Sandor et al. (2010, Icarus, vol. 208, pp. 49-60; 2012, Icarus, vol. 217, pp. 839-844) and with SPICAV/Venus Express results of Fedorova et al. (2008, J. Geophys. Res., vol. 113, p. E00B25) and Belyaev et al. (2012).

  10. Improvement of Output Power of ECF Micromotor

    NASA Astrophysics Data System (ADS)

    Yokota, Shinichi; Kawamura, Kiyomi; Takemura, Kenjiro; Edamura, Kazuya

    Electro-conjugate fluid (ECF) is a kind of dielectric fluids, which produces jet-flow (ECF jet) when subjected to a high DC voltage. By using the ECF jet, a new type of micromotor with simple structure and lightweight can be realized. Up to now, we developed a disk-plate type ECF micromotor with inner diameter of 9 mm. In this study, we develope novel ECF micromotors with inner diameter of 5 mm in order to improve the output power density. First, we designed and produced the ECF micromotors with 4-layered and 8-layered disk plate rotors. Then, the performances of the motors are measured. The experimental results confirm the motor developed has a higher performance than the previous ones.

  11. Scattering from a random layer of leaves in the physical optics limit

    NASA Technical Reports Server (NTRS)

    Lang, R. H.; Seker, S. S.; Le Vine, D. M.

    1982-01-01

    Backscatter of electromagnetic radiation from a layer of vegetation over flat lossy ground has been studied in collaborative research at the George Washingnton University and the Goddard Space Flight Center. In this work the vegetation is composed of leaves which are modeled by a random collection of lossy dielectric disks. Backscattering coefficients for the vegetation layer have been calculated in the case of disks whose diameter is large compared to wavelength. These backscattering coefficients are obtained in terms of the scattering amplitude of an individual disk by employing the distorted Born procedure. The scattering amplitude for a disk which is large compared to wavelength is then found by physical optic techniques. Computed results are interpreted in terms of dominant reflected and transmitted contributions from the disks and ground.

  12. Dissolution kinetics of soluble nondisintegrating disks.

    PubMed

    de Blaey, C J; van der Graaff, H

    1977-12-01

    An equation describing the isotropical dissolution of soluble nondisintegrating disks was developed. It was equivalent to the cube root law only if the height and diameter of the disk were equal. The dissolution kinetics of sodium chloride disks were examined, using a beaker equipped with a centrifugal stirrer as the dissolution chamber. The fit of the experimental data to the cube root law had a coefficient of variation of about 4-5%. It was demonstrated statistically that a fit to a square root of mass versus time relation was significantly better. With increasing porosity, the dissolution process proceeded faster than predicted on the basis of the diffusion-convection model. An explanation is proposed by assuming an increased effective dissolution surface.

  13. A radio frequency coaxial feedthrough

    DOEpatents

    Owens, T.L.

    1987-12-07

    An improved radio frequency coaxial transmission line vacuum feedthrough is provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflection from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits the voltage and power handling capabilities of a feedthrough.

  14. Radio frequency coaxial feedthrough

    DOEpatents

    Owens, Thomas L.

    1989-01-17

    An improved radio frequency coaxial transmission line vacuum feed-through provided based on the use of a half-wavelength annular dielectric pressure barrier disk, or multiple disks comprising an effective half wavelength structure to eliminate reflections from the barrier surfaces. Gas-tight seals are formed about the outer and inner diameter surfaces of the barrier disk using a sealing technique which generates radial forces sufficient to form seals by forcing the conductor walls against the surfaces of the barrier disks in a manner which does not deform the radii of the inner and outer conductors, thereby preventing enhancement of the electric field at the barrier faces which limits voltage and power handling capabilities of a feedthrough.

  15. Performance and wake conditions of a rotor located in the wake of an obstacle

    NASA Astrophysics Data System (ADS)

    Naumov, I. V.; Kabardin, I. K.; Mikkelsen, R. F.; Okulov, V. L.; Sørensen, J. N.

    2016-09-01

    Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio λ = 5, was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to '6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

  16. Elastin in the human intervertebral disk. A histological and biochemical study comparing it with elastin in the human yellow ligament.

    PubMed

    Mikawa, Y; Hamagami, H; Shikata, J; Yamamuro, T

    1986-01-01

    The elastic fiber and elastin in the human yellow ligament and intervertebral disk were studied histologically and biochemically. The elastic fiber in the human intervertebral disk, which until now had not been clearly identified microscopically, was observed clearly. We found the distribution of the elastic fiber in the intervertebral disk to be very sparse and irregular, and its diameter was small, being about one-tenth of that found in the yellow ligament. The elastin contents of the yellow ligament and intervertebral disk were 46.7% +/- 0.9% and 1.7% +/- 0.2% respectively (mean +/- SE) of the total dry weight. The amino acid composition of elastin in the yellow ligament is similar to that of other tissue, as reported in the literature; however, that found in the intervertebral disk is significantly different. It would appear, therefore, that the elastin in the intervertebral disk is of a different type from that found elsewhere.

  17. Mo100 to Mo99 Target Cooling Enhancements Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    2016-02-16

    Target design requirements changed significantly over the past year to a much higher beam current on larger diameter disks, and with a beam impingement on both ends of the target. Scaling from the previous design, that required significantly more mass flow rate of helium coolant, and also thinner disks. A new Aerzen GM12.4 blower was selected that can deliver up to 400 g/s at 400 psi, compared to about 100 g/s possible with the Tuthill blower previously selected.Further, to accommodate the 42 MeV, 2.7 mA beam on each side of the target, the disk thickness and the coolant gaps weremore » halved to create the current baseline design: 0.5 mm disk thickness (at 29 mm diameter) and 0.25 mm coolant gap. Thermal-hydraulic analysis of this target, presented below for reference, gave very good results, suggesting that the target could be improved with fewer, thicker disks and with disk thickness increasing toward the target center. The total thickness of Mo100 in the target remaining the same, that reduces the number of coolant gaps. This allows for the gap width to be increased, increasing the mass flow in each gap and consequently increasing heat transfer. A preliminary geometry was selected and analyzed with variable disk thickness and wider coolant gaps. The result of analysis of this target shows that disk thickness increase near the window was too aggressive and further resizing of the disks is necessary, but it does illustrate the potential improvements that are possible. Experimental and analytical study of diffusers on the target exit has been done. This shows modest improvement in requcing pressure drop, as will be summarized below. However, the benefit is not significant, and implementation becomes problematic when disk thickness is varying. A bull nose at the entrance does offer significant benefit and is relatively easy to incorporate. A bull nose on both ends is now a feature of the baseline design, and will be a feature of any redesign or enhanced designs that follow.« less

  18. Accretion rates of protoplanets 2: Gaussian distribution of planestesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1991-01-01

    The growth rate of a protoplanet embedded in a uniform surface density disk of planetesimals having a triaxial Gaussian velocity distribution was calculated. The longitudes of the aspses and nodes of the planetesimals are uniformly distributed, and the protoplanet is on a circular orbit. The accretion rate in the two body approximation is enhanced by a factor of approximately 3, compared to the case where all planetesimals have eccentricity and inclination equal to the root mean square (RMS) values of those variables in the Gaussian distribution disk. Numerical three body integrations show comparable enhancements, except when the RMS initial planetesimal eccentricities are extremely small. This enhancement in accretion rate should be incorporated by all models, analytical or numerical, which assume a single random velocity for all planetesimals, in lieu of a Gaussian distribution.

  19. ACS Imaging of beta Pic: Searching for the origin of rings and asymmetry in planetesimal disks

    NASA Astrophysics Data System (ADS)

    Kalas, Paul

    2003-07-01

    The emerging picture for planetesimal disks around main sequence stars is that their radial and azimuthal symmetries are significantly deformed by the dynamical effects of either planets interior to the disk, or stellar objects exterior to the disk. The cause of these structures, such as the 50 AU cutoff of our Kuiper Belt, remains mysterious. Structure in the beta Pic planetesimal disk could be due to dynamics controlled by an extrasolar planet, or by the tidal influence of a more massive object exterior to the disk. The hypothesis of an extrasolar planet causing the vertical deformation in the disk predicts a blue color to the disk perpendicular to the disk midplane. The hypothesis that a stellar perturber deforms the disk predicts a globally uniform color and the existence of ring-like structure beyond 800 AU radius. We propose to obtain deep, multi-color images of the beta Pic disk ansae in the region 15"-220" {200-4000 AU} radius with the ACS WFC. The unparalleled stability of the HST PSF means that these data are uniquely capable of delivering the color sensitivity that can distinguish between the two theories of beta Pic's disk structure. Ascertaining the cause of such structure provide a meaningful context for understanding the dynamical history of our early solar system, as well as other planetesimal systems imaged around main sequence stars.

  20. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    PubMed

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  1. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    PubMed Central

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found. PMID:24719582

  2. Variations in morphology and PSII photosynthetic capabilities during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta)

    PubMed Central

    2010-01-01

    Background Red algae are primitive photosynthetic eukaryotes, whose spores are ideal subjects for studies of photosynthesis and development. Although the development of red alga spores has received considerable research attention, few studies have focused on the detailed morphological and photosynthetic changes that occur during the early development of tetraspores of Gracilaria vermiculophylla (Ohmi) Papenfuss (Gracilariales, Rhodophyta). Herein, we documented these changes in this species of red algae. Results In the tetraspores, we observed two types of division, cruciate and zonate, and both could develop into multicellular bodies (disks). During the first 84 hours, tetraspores divided several times, but the diameter of the disks changed very little; thereafter, the diameter increased significantly. Scanning electron microscopy observations and analysis of histological sections revealed that the natural shape of the disk remains tapered over time, and the erect frond grows from the central protrusion of the disk. Cultivation of tissue from excised disks demonstrated that the central protrusion of the disk is essential for initiation of the erect frond. Photosynthetic (i.e., PSII) activities were measured using chlorophyll fluorescence analysis. The results indicated that freshly released tetraspores retained limited PSII photosynthetic capabilities; when the tetraspores attached to a substrate, those capabilities increased significantly. In the disk, the PSII activity of both marginal and central cells was similar, although some degree of morphological polarity was present; the PSII photosynthetic capabilities in young germling exhibited an apico-basal gradient. Conclusions Attachment of tetraspores to a substrate significantly enhanced their PSII photosynthetic capabilities, and triggered further development. The central protrusion of the disk is the growth point, may have transfer of nutritive material with the marginal cells. Within the young germling, the hetero-distribution of PSII photosynthetic capabilities might be due to the differences in cell functions. PMID:20426804

  3. Evaluation of CLSI M44-A2 Disk Diffusion and Associated Breakpoint Testing of Caspofungin and Micafungin Using a Well-Characterized Panel of Wild-Type and fks Hot Spot Mutant Candida Isolates▿

    PubMed Central

    Arendrup, Maiken Cavling; Park, Steven; Brown, Steven; Pfaller, Michael; Perlin, David S.

    2011-01-01

    Disk diffusion testing has recently been standardized by the CLSI, and susceptibility breakpoints have been established for several antifungal compounds. For caspofungin, 5-μg disks are approved, and for micafungin, 10-μg disks are under evaluation. We evaluated the performances of caspofungin and micafungin disk testing using a panel of Candida isolates with and without known FKS echinocandin resistance mechanisms. Disk diffusion and microdilution assays were performed strictly according to CLSI documents M44-A2 and M27-A3. Eighty-nine clinical Candida isolates were included: Candida albicans (20 isolates/10 mutants), C. glabrata (19 isolates/10 mutants), C. dubliniensis (2 isolates/1 mutant), C. krusei (16 isolates/3 mutants), C. parapsilosis (14 isolates/0 mutants), and C. tropicalis (18 isolates/4 mutants). Quality control strains were C. parapsilosis ATCC 22019 and C. krusei ATCC 6258. The correlations between zone diameters and MIC results were good for both compounds, with identical susceptibility classifications for 93.3% of the isolates by applying the current CLSI breakpoints. However, the numbers of fks hot spot mutant isolates misclassified as being susceptible (S) (very major errors [VMEs]) were high (61% for caspofungin [S, ≥11 mm] and 93% for micafungin [S, ≥14 mm]). Changing the disk diffusion breakpoint to S at ≥22 mm significantly improved the discrimination. For caspofungin, 1 VME was detected (a C. tropicalis isolate with an F76S substitution) (3.5%), and for micafungin, 10 VMEs were detected, the majority of which were for C. glabrata (8/10). The broadest separation between zone diameter ranges for wild-type (WT) and mutant isolates was seen for caspofungin (6 to 12 mm versus −4 to 7 mm). In conclusion, caspofungin disk diffusion testing with a modified breakpoint led to excellent separation between WT and mutant isolates for all Candida species. PMID:21357293

  4. Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Isella, Andrea; Ricci, Luca

    2017-12-01

    We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at submillimeter wavelengths. We fit power-law models to the dust surface density and CO J = 3–2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an {R}-1 dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to the higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be approximately three times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.

  5. Lamina cribrosa position and Bruch's membrane opening differences between anterior ischemic optic neuropathy and open-angle glaucoma.

    PubMed

    Rebolleda, Gema; Pérez-Sarriegui, Ane; Díez-Álvarez, Laura; De Juan, Victoria; Muñoz-Negrete, Francisco J

    2018-06-01

    To compare the optic nerve head morphology among primary open-angle glaucoma, non-arteritic anterior ischemic optic neuropathy eyes, their fellow healthy eyes and control eyes, using spectral-domain optical coherence tomography with enhanced depth imaging. Observational cross-sectional study including 88 eyes of 68 patients. In this study, 23 non-arteritic anterior ischemic optic neuropathy eyes, 17 fellow unaffected eyes, 25 primary open-angle glaucoma eyes, and 23 age-matched control eyes were included. Peripapillary retinal nerve fiber layer thickness and optic disk area were evaluated. Bruch's membrane opening diameter, optic cup depth, anterior lamina cribrosa depth, and prelaminar tissue thickness were assessed. Non-arteritic anterior ischemic optic neuropathy and primary open-angle glaucoma eyes had similar visual field mean deviation and peripapillary retinal nerve fiber layer thickness (P = 0.6 and P = 0.56, respectively). Bruch's membrane opening diameter was significantly larger in primary open-angle glaucoma eyes than in control eyes (P = 0.02). Lamina cribrosa and disk cup were deeper in eyes with primary open-angle glaucoma than both control and non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Prelaminar tissue thickness was significantly thinner in primary open-angle glaucoma eyes than in non-arteritic anterior ischemic optic neuropathy eyes (P < 0.001). Lamina cribrosa was shallower in both non-arteritic anterior ischemic optic neuropathy and unaffected fellow eyes compared to healthy eyes (P < 0.001 and P = 0.04, respectively). No differences were found in the optic disk area. A forward lamina cribrosa placement and not a smaller disk could be involved in the pathogenesis of non-arteritic anterior ischemic optic neuropathy. A significantly larger Bruch's membrane opening diameter was found in primary open-angle glaucoma eyes compared with control eyes. This issue has clinical implications because Bruch's membrane opening has been considered a stable reference for disk-related measures.

  6. Study on compensation algorithm of head skew in hard disk drives

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Ge, Xiaoyu; Sun, Jingna; Wang, Xiaoyan

    2011-10-01

    In hard disk drives (HDDs), head skew among multiple heads is pre-calibrated during manufacturing process. In real applications with high capacity of storage, the head stack may be tilted due to environmental change, resulting in additional head skew errors from outer diameter (OD) to inner diameter (ID). In case these errors are below the preset threshold for power on recalibration, the current strategy may not be aware, and drive performance under severe environment will be degraded. In this paper, in-the-field compensation of small DC head skew variation across stroke is proposed, where a zone table has been equipped. Test results demonstrating its effectiveness to reduce observer error and to enhance drive performance via accurate prediction of DC head skew are provided.

  7. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment

    NASA Technical Reports Server (NTRS)

    Gayda, John (Technical Monitor); Lemsky, Joe

    2004-01-01

    NASA dual microstructure heat treatment technology previously demonstrated on single forging heat treat batches of a generic disk shape was successfully demonstrated on a multiple disk batch of a production shape component. A group of four Rolls-Royce Corporation 3rd Stage AE2100 forgings produced from alloy ME209 were successfully dual microstructure heat treated as a single heat treat batch. The forgings responded uniformly as evidenced by part-to-part consistent thermocouple recordings and resultant macrostructures, and from ultrasonic examination. Multiple disk DMHT processing offers a low cost alternative to other published dual microstructure processing techniques.

  8. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  9. Comparison of pressure-strain correlation models for the flow behind a disk

    NASA Technical Reports Server (NTRS)

    Amano, R. S.

    1986-01-01

    Attention is given to the behavior of Reynolds stresses in the separated wake region behind a disk that is attached in a normal fashion to a long cylinder of small diameter. Computations of the turbulent flow were made in a region beyond a disk by using the second-order closure model of turbulence. It is found that the models of Naot et al. (1970) and Launder et al. (1975) yield similar results and are reliable; the energy distribution may nevertheless be improved for the case of reattaching shear flows by taking the effects of mean strain into account.

  10. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  11. Near-field phase-change recording using a GaN laser diode

    NASA Astrophysics Data System (ADS)

    Kishima, Koichiro; Ichimura, Isao; Yamamoto, Kenji; Osato, Kiyoshi; Kuroda, Yuji; Iida, Atsushi; Saito, Kimihiro

    2000-09-01

    We developed a 1.5-Numerical-Aperture optical setup using a GaN blue-violet laser diode. We used a 1.0 mm-diameter super-hemispherical solid immersion lens, and optimized a phase-change disk structure including the cover layer by the method of MTF simulation. The disk surface was polished by tape burnishing technique. An eye-pattern of (1-7)-coded data at the linear density of 80 nm/bit was demonstrated on the phase-change disk below a 50 nm gap height, which was realized through our air-gap servo mechanism.

  12. Proof of the Feasibility of Coherent and Incoherent Schemes for Pumping a Gamma-ray Laser

    DTIC Science & Technology

    1992-12-31

    the Texas-X was investigated by using metallic indium disks 1.0 cm in diameter and 0.127 mm thick as well as plastic planchettes 5.0 cm in diameter and...Spectral Distribution The spectral distribution was examined by irradiating the full set of the calibration nuclides listed in Table 1. Planchettes

  13. Effects of rolling friction on a spinning coin or disk

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2018-05-01

    Experimental and theoretical results are presented concerning the motion of a spinning disk on a horizontal surface. The disk precesses about a vertical axis while falling either quickly or slowly onto the surface depending on the coefficient of rolling friction. The rate of fall also depends on the offset distance, in the rolling direction, between the centre of mass and the line of action of the normal reaction force. Euler’s angular momentum equations are solved to obtain estimates of both the coefficient of friction and the offset distance for a 50.6 mm diameter brass disk spinning on three different surfaces. The fall times varied from about 3 s on P800 emery paper to about 30 s on glass.

  14. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  15. Metallic nanospheres embedded in nanowires initiated on nanostructures and methods for synthesis thereof

    DOEpatents

    Zaidi, Saleem [Albuquerque, NM; Tringe, Joseph W [Walnut Creek, CA; Vanamu, Ganesh [Sunnyvale, CA; Prinja, Rajiv [Albuquerque, NM

    2012-01-10

    A nanostructure includes a nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A nanostructure in another embodiment includes a substrate having an area with a nanofeature; and a nanowire extending from the nanofeature, the nanowire having metallic spheres formed therein, the spheres being characterized as having at least one of about a uniform diameter and about a uniform spacing there between. A method for forming a nanostructure is also presented. A method for reading and writing data is also presented. A method for preparing nanoparticles is also presented.

  16. Dynamic characteristics of two new vibration modes of the disk-shell shaped gear

    NASA Astrophysics Data System (ADS)

    Yan, Litang; Qiu, Shijung; Gao, Xiangqung

    1992-10-01

    Two new vibration modes of the disk-shell-shaped big medium gears placed on three separate medium shafts of a turboprop engine have been found. They have the same nodal diameters as the conventional ones, but their frequencies are higher. The tooth ring vibrates both radially and axially and has greater deflection than the gear hub. The resonance of these two new nodal diameter modes is much more dangerous than that of the conventional nodal diameter modes. Moreover, they occur nearly at the upper and the lower bounds of the gear operating speed range. A special detuning method is developed for removing the resonance of these two new modes out of the upper and the lower bounds, respectively, and the effectiveness of the damping rings in this case has been researched. The vibration responses measured on the reductor casing have been then reduced to a quite low level after the damping rings were applied to the three big medium gears.

  17. Rapidly-Indexing Incremental-Angle Encoder

    NASA Technical Reports Server (NTRS)

    Christon, Philip R.; Meyer, Wallace W.

    1989-01-01

    Optoelectronic system measures relative angular position of shaft or other device to be turned, also measures absolute angular position after device turned through small angle. Relative angular position measured with fine resolution by optoelectronically counting finely- and uniformly-spaced light and dark areas on encoder disk as disk turns past position-sensing device. Also includes track containing coarsely- and nonuniformly-spaced light and dark areas, angular widths varying in proportion to absolute angular position. This second track provides gating and indexing signal.

  18. Impact of Distance Determinations on Galactic Structure. I. Young and Intermediate-Age Tracers

    NASA Astrophysics Data System (ADS)

    Matsunaga, Noriyuki; Bono, Giuseppe; Chen, Xiaodian; de Grijs, Richard; Inno, Laura; Nishiyama, Shogo

    2018-06-01

    Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, ˜40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. We'll review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolution of the disk.

  19. Modeling of the heat distribution in the intervertebral disk.

    PubMed

    Persson, Johan; Hansen, Eskil; Lidgren, Lars; McCarthy, Ian

    2005-05-01

    The heat transfer equation was used to model the heat distribution in an intervertebral disk during ultrasound (US) exposure. The influence of thermal and acoustic parameters was studied to get a quantitative understanding of the heat transfer in the system. Heating of collagen to 65 degrees C or above will lead to denaturation and is believed to stabilize and contract the outer part of the disk in a herniated disk. In our model, the US intensity was approximated by a Gaussian distribution and nonlinear propagation was excluded. The effect of self-heating and cooling of the transducer was also studied. The simulations were performed using the finite element method. From this model, it can be concluded that it is possible to heat parts of the disk to treatment temperature using a focused 5-mm diameter US probe. The physical constraints on the piezocrystal set the limit of the size of the treatment volume.

  20. Rotation of melting ice disks due to melt fluid flow.

    PubMed

    Dorbolo, S; Adami, N; Dubois, C; Caps, H; Vandewalle, N; Darbois-Texier, B

    2016-03-01

    We report experiments concerning the melting of ice disks (85 mm in diameter and 14 mm in height) at the surface of a thermalized water bath. During the melting, the ice disks undergo translational and rotational motions. In particular, the disks rotate. The rotation speed has been found to increase with the bath temperature. We investigated the flow under the bottom face of the ice disks by a particle image velocimetry technique. We find that the flow goes downwards and also rotates horizontally, so that a vertical vortex is generated under the ice disk. The proposed mechanism is the following. In the vicinity of the bottom face of the disk, the water eventually reaches the temperature of 4 °C for which the water density is maximum. The 4 °C water sinks and generates a downwards plume. The observed vertical vorticity results from the flow in the plume. Finally, by viscous entrainment, the horizontal rotation of the flow induces the solid rotation of the ice block. This mechanism seems generic: any vertical flow that generates a vortex will induce the rotation of a floating object.

  1. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    PubMed

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  2. Influence of process conditions during impulsed electrostatic droplet formation on size distribution of hydrogel beads.

    PubMed

    Lewińska, Dorota; Rosiński, Stefan; Weryński, Andrzej

    2004-02-01

    In the medical applications of microencapsulation of living cells there are strict requirements concerning the high size uniformity and the optimal diameter, the latter dependent on the kind of therapeutic application, of manufactured gel beads. The possibility of manufacturing small size gel bead samples (diameter 300 microm and below) with a low size dispersion (less than 10%), using an impulsed voltage droplet generator, was examined in this work. The main topic was the investigation of the influence of values of electric parameters (voltage U, impulse time tau and impulse frequency f) on the quality of obtained droplets. It was concluded that, owing to the implementation of the impulse mode and regulation of tau and f values, it is possible to work in a controlled manner in the jet flow regime (U> critical voltage UC). It is also possible to obtain uniform bead samples with the average diameter, deff, significantly lower than the nozzle inner diameter dI (bead diameters 0.12-0.25 mm by dI equal to 0.3 mm, size dispersion 5-7%). Alterations of the physical parameters of the process (polymer solution physico-chemical properties, flow rate, distance between nozzle and gellifying bath) enable one to manufacture uniform gel beads in the wide range of diameters using a single nozzle.

  3. Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

    DTIC Science & Technology

    2006-01-01

    3896. Gordon, H.R. and Tao Du., 2001, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi ... huxleyi using disk-like shapes. Gordon and Du [2001] and Gordon [2004] found that the shape of the backscattering spectrum of detached coccoliths...from E. huxleyi could be well reproduced using a shape consisting of two parallel disks (diameter ~ 2.75 μm and thickness 0.05 μm) separated by 0.3

  4. Benefits of Two Turbine Rotor Diameters and Hub Heights in the Same Wind Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Stanley, Andrew P. J.; Ning, Andrew

    Significant turbine-wake interactions greatly reduce power output in a wind farm. If different turbine hub heights and rotor diameters are included in the same wind farm, the wake interference in the farm will be reduced, resulting in a lower cost of energy (COE) than a farm with identical turbines. In this paper, we present a method to model wind farm COE in farms with hub heights and rotor diameters that vary across the wind farm. We also demonstrate how to optimize these wind farms to minimize COE. The results show that COE can be greatly reduced in wind farms withmore » non-homogeneous turbines, especially when the turbines are spaced close together. For a unidirectional wind rose, including different turbine design in the wind farm has a similar decrease in COE to spreading the wind turbines farther apart. When the rotor diameter and hub height of the wind turbines in a farm are optimized uniformly, a COE decrease of 4% to 13% (depending on the grid spacing and wind shear exponent) is achieved compared to the baseline. When the rotor diameter and turbine heights are optimized non-uniformly, with two different diameters and heights throughout the farm, there is a COE decrease of 22% to 41% compared to the baseline. For a more spread wind rose with a dominant probability from the west, there is a COE decrease between 3% and 10% for uniformly optimized rotor diameter and height compared to the baseline. With two optimized rotor diameters and heights through the farm, a COE decrease of 3% to 19% is achieved. For a similar wind rose shifted such that the dominant wind direction is from the northwest, a COE decrease between 3% and 10% results from uniformly optimized wind turbines compared to the baseline. A COE decrease of 3% to 17% compared to the baseline occurs with two different turbines are optimized throughout the wind farm.« less

  5. A rocket observation of the far-ultraviolet spectrum of Saturn

    NASA Technical Reports Server (NTRS)

    Weiser, H.; Moos, H. W.

    1978-01-01

    Far-ultraviolet (1160-1750 A) spectra of the Saturnian disk and the ring system have been obtained by using a very sensitive rocket-borne spectrograph with a microchannel plate detector. The use of two apertures of different diameter in the telescope focal plane permitted the separation of the contribution of the planetary disk from that of the rings. H I lambda 1216 was the only atomic spectral line emission detected in the planet and the rings. A weak signal from the disk between 1300 A and 1500 A was observed. Geometric disk albedos, averaged over 50 A, were determined from 1500 A to 1700 A. Measurements of the ring reflectivity longward of 1650 A are compatible with H2O frost but not NH3 frost.

  6. Magnetorotational Instability in Eccentric Disks

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.; Piran, Tsvi

    2018-03-01

    Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well. We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén speed {v}{{A}} along an orbit with mean motion n. We find two mode families, one with dominant magnetic components, the other with dominant velocity components. The former is unstable at {(1-e)}3 {f}2≲ 3, where f\\equiv {{kv}}{{A}}/n, and the latter at e ≳ 0.8. For f 2 ≲ 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly with increasing e; for f 2 ≳ 3, modes grow by parametric amplification, which is resonant for 0 < e ≪ 1. MRI growth and the attendant angular momentum and energy transport happen chiefly near pericenter, where orbital shear dominates magnetic tension.

  7. Wind turbine rotor simulation using the actuator disk and actuator line methods

    NASA Astrophysics Data System (ADS)

    Tzimas, M.; Prospathopoulos, J.

    2016-09-01

    The present paper focuses on wind turbine rotor modeling for loads and wake flow prediction. Two steady-state models based on the actuator disk approach are considered, using either a uniform thrust or a blade element momentum calculation of the wind turbine loads. A third model is based on the unsteady-state actuator line approach. Predictions are compared with measurements in wind tunnel experiments and in atmospheric environment and the capabilities and weaknesses of the different models are addressed.

  8. Stability of a chemically active floating disk

    NASA Astrophysics Data System (ADS)

    Vandadi, Vahid; Jafari Kang, Saeed; Rothstein, Jonathan; Masoud, Hassan

    2017-11-01

    We theoretically study the translational stability of a chemically active disk located at a flat liquid-gas interface. The initially immobile circular disk uniformly releases an interface-active agent that locally changes the surface tension and is insoluble in the bulk. If left unperturbed, the stationary disk remains motionless as the agent is discharged. Neglecting the inertial effects, we numerically test whether a perturbation in the translational velocity of the disk can lead to its spontaneous and self-sustained motion. Such a perturbation gives rise to an asymmetric distribution of the released factor that could trigger and sustain the Marangoni propulsion of the disk. An implicit Fourier-Chebyshev spectral method is employed to solve the advection-diffusion equation for the concentration of the active agent. The solution, given a linear equation of state for the surface tension, provides the shear stress distribution at the interface. This and the no-slip condition on the wetted surface of the disk are then used at each time step to semi-analytically determine the Stokes flow in the semi-infinite liquid layer. Overall, the findings of our investigation pave the way for pinpointing the conditions under which interface-bound active particles become dynamically unstable.

  9. First L-Band Interferometric Observations of a Young Stellar Object: Probing the Circumstellar Environment of MWC 419

    NASA Astrophysics Data System (ADS)

    Ragland, S.; Akeson, R. L.; Armandroff, T.; Colavita, M. M.; Danchi, W. C.; Hillenbrand, L. A.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W. A.; Vasisht, G.; Wizinowich, P. L.

    2009-09-01

    We present spatially resolved K- and L-band spectra (at spectral resolution R = 230 and R = 60, respectively) of MWC 419, a Herbig Ae/Be star. The data were obtained simultaneously with a new configuration of the 85 m baseline Keck Interferometer. Our observations are sensitive to the radial distribution of temperature in the inner region of the disk of MWC 419. We fit the visibility data with both simple geometric and more physical disk models. The geometric models (uniform disk and Gaussian) show that the apparent size increases linearly with wavelength in the 2-4 μm wavelength region, suggesting that the disk is extended with a temperature gradient. A model having a power-law temperature gradient with radius simultaneously fits our interferometric measurements and the spectral energy distribution data from the literature. The slope of the power law is close to that expected from an optically thick disk. Our spectrally dispersed interferometric measurements include the Br γ emission line. The measured disk size at and around Br γ suggests that emitting hydrogen gas is located inside (or within the inner regions) of the dust disk.

  10. Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping

    DOE PAGES

    Pekin, Thomas C.; Gammer, Christoph; Ciston, Jim; ...

    2017-01-28

    Scanning nanobeam electron diffraction strain mapping is a technique by which the positions of diffracted disks sampled at the nanoscale over a crystalline sample can be used to reconstruct a strain map over a large area. However, it is important that the disk positions are measured accurately, as their positions relative to a reference are directly used to calculate strain. Here in this study, we compare several correlation methods using both simulated and experimental data in order to directly probe susceptibility to measurement error due to non-uniform diffracted disk illumination structure. We found that prefiltering the diffraction patterns with amore » Sobel filter before performing cross correlation or performing a square-root magnitude weighted phase correlation returned the best results when inner disk structure was present. Lastly, we have tested these methods both on simulated datasets, and experimental data from unstrained silicon as well as a twin grain boundary in 304 stainless steel.« less

  11. Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures

    NASA Astrophysics Data System (ADS)

    Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.

    2018-01-01

    ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.

  12. Predicting the flow & noise of a rotor in a turbulent boundary layer using an actuator disk -- RANS approach

    NASA Astrophysics Data System (ADS)

    Buono, Armand C.

    The numerical method presented in this study attempts to predict the mean, non-uniform flow field upstream of a propeller partially immersed in a thick turbulent boundary layer with an actuator disk using CFD based on RANS in ANSYS FLUENT. Three different configurations, involving an infinitely thin actuator disk in the freestream (Configuration 1), an actuator disk near a wall with a turbulent boundary layer (Configuration 2), and an actuator disk with a hub near a wall with a turbulent boundary layer (Configuration 3), were analyzed for a variety of advance ratios ranging from J = 0.48 to J =1.44. CFD results are shown to be in agreement with previous works and validated with experimental data of reverse flow occurring within the boundary layer above the flat plate upstream of a rotor in the Virginia Tech's Stability Wind Tunnel facility. Results from Configuration 3 will be used in future aero-acoustic computations.

  13. Fatigue Failure Modes of the Grain Size Transition Zone in a Dual Microstructure Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Kantzos, Pete T.; Palsa, Bonnie; Telesman, Jack; Gayda, John; Sudbrack, Chantal K.

    2012-01-01

    Mechanical property requirements vary with location in nickel-based superalloy disks. In order to maximize the associated mechanical properties, heat treatment methods have been developed for producing tailored grain microstructures. In this study, fatigue failure modes of a grain size transition zone in a dual microstructure disk were evaluated. A specialized heat treatment method was applied to produce varying grain microstructure in the bore to rim portions of a powder metallurgy processed nickel-based superalloy disk. The transition in grain size was concentrated in a zone of the disk web, between the bore and rim. Specimens were extracted parallel and transversely across this transition zone, and multiple fatigue tests were performed at 427 C and 704 C. Grain size distributions were characterized in the specimens, and related to operative failure initiation modes. Mean fatigue life decreased with increasing maximum grain size, going out through the transition zone. The scatter in limited tests of replicates was comparable for failures of uniform gage specimens in all transition zone locations examined.

  14. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles.

    PubMed

    Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru

    2014-01-22

    It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.

  15. Windage Heating in a Shrouded Rotor-Stator System.

    PubMed

    Tao, Zhi; Zhang, Da; Luo, Xiang; Xu, Guoqiang; Han, Jianqiao

    2014-06-01

    This paper has experimentally and numerically studied the windage heating in a shrouded rotor-stator disk system with superimposed flow. Temperature rise in the radius direction on the rotating disk is linked to the viscous heating process when cooling air flows through the rotating component. A test rig has been developed to investigate the effect of flow parameters and the gap ratio on the windage heating, respectively. Experimental results were obtained from a 0.45 m diameter disk rotating at up to 12,000 rpm with gap ratio varying from 0.02 to 0.18 and a stator of the same diameter. Infrared temperature measurement technology has been proposed to measure the temperature rise on the rotor surface directly. The PIV technique was adapted to allow for tangential velocity measurements. The tangential velocity data along the radial direction in the cavity was compared with the results obtained by CFD simulation. The comparison between the free disk temperature rise data and an associated theoretical analysis for the windage heating indicates that the adiabatic disk temperature can be measured by infrared method accurately. For the small value of turbulence parameter, the gap ratio has limited influence on the temperature rise distribution along the radius. As turbulence parameter increases, the temperature rise difference is independent of the gap ratio, leaving that as a function of rotational Reynolds number and throughflow Reynolds number only. The PIV results show that the swirl ratio of the rotating core between the rotor and the stator has a key influence on the windage heating.

  16. External Photoevaporation of the Solar Nebula. II. Effects on Disk Structure and Evolution with Non-uniform Turbulent Viscosity due to the Magnetorotational Instability

    NASA Astrophysics Data System (ADS)

    Kalyaan, A.; Desch, S. J.; Monga, N.

    2015-12-01

    The structure and evolution of protoplanetary disks, especially the radial flows of gas through them, are sensitive to a number of factors. One that has been considered only occasionally in the literature is external photoevaporation by far-ultraviolet (FUV) radiation from nearby, massive stars, despite the fact that nearly half of disks will experience photoevaporation. Another effect apparently not considered in the literature is a spatially and temporally varying value of α in the disk (where the turbulent viscosity ν is α times the sound speed C times the disk scale height H). Here we use the formulation of Bai & Stone to relate α to the ionization fraction in the disk, assuming turbulent transport of angular momentum is due to the magnetorotational instability. We calculate the ionization fraction of the disk gas under various assumptions about ionization sources and dust grain properties. Disk evolution is most sensitive to the surface area of dust. We find that typically α ≲ 10-5 in the inner disk (<2 AU), rising to ˜10-1 beyond 20 AU. This drastically alters the structure of the disk and the flow of mass through it: while the outer disk rapidly viscously spreads, the inner disk hardly evolves; this leads to a steep surface density profile ({{Σ }}\\propto {r}-< p> with < p> ≈ 2-5 in the 5-30 AU region) that is made steeper by external photoevaporation. We also find that the combination of variable α and external photoevaporation eventually causes gas as close as 3 AU, previously accreting inward, to be drawn outward to the photoevaporated outer edge of the disk. These effects have drastic consequences for planet formation and volatile transport in protoplanetary disks.

  17. Dose and detectability for a cone-beam C-arm CT system revisited

    PubMed Central

    Ganguly, Arundhuti; Yoon, Sungwon; Fahrig, Rebecca

    2010-01-01

    Purpose: The authors had previously published measurements of the detectability of disk-shaped contrast objects in images obtained from a C-arm CT system. A simple approach based on Rose’s criterion was used to scale the date, assuming the threshold for the smallest diameter detected should be inversely proportional to (dose)1∕2. A more detailed analysis based on recent theoretical modeling of C-arm CT images is presented in this work. Methods: The signal and noise propagations in a C-arm based CT system have been formulated by other authors using cascaded systems analysis. They established a relationship between detectability and the noise equivalent quanta. Based on this model, the authors obtained a relation between x-ray dose and the diameter of the smallest disks detected. A closed form solution was established by assuming no rebinning and no resampling of data, with low additive noise and using a ramp filter. For the case when no such assumptions were made, a numerically calculated solution using previously reported imaging and reconstruction parameters was obtained. The detection probabilities for a range of dose and kVp values had been measured previously. These probabilities were normalized to a single dose of 56.6 mGy using the Rose-criteria-based relation to obtain a universal curve. Normalizations based on the new numerically calculated relationship were compared to the measured results. Results: The theoretical and numerical calculations have similar results and predict the detected diameter size to be inversely proportional to (dose)1∕3 and (dose)1∕2.8, respectively. The normalized experimental curves and the associated universal plot using the new relation were not significantly different from those obtained using the Rose-criterion-based normalization. Conclusions: From numerical simulations, the authors found that the diameter of detected disks depends inversely on the cube root of the dose. For observer studies for disks larger than 4 mm, the cube root as well as square root relations appear to give similar results when used for normalization. PMID:20527560

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhukov, A. E., E-mail: zhukale@gmail.com; Kryzhanovskaya, N. V.; Maximov, M. V.

    The thermal resistance of AlGaAs/GaAs microlasers of the suspended-disk type with a diameter of 1.7–4 μm and InAs/InGaAs quantum dots in the active region is inversely proportional to the squared diameter of the microdisk. The proportionality factor is 3.2 × 10{sup −3} (K cm{sup 2})/W, and the thermal resistance is 120–20°C/mW.

  19. Method for mounting laser fusion targets for irradiation

    DOEpatents

    Fries, R. Jay; Farnum, Eugene H.; McCall, Gene H.

    1977-07-26

    Methods for preparing laser fusion targets of the ball-and-disk type are disclosed. Such targets are suitable for irradiation with one or two laser beams to produce the requisite uniform compression of the fuel material.

  20. Forging of Advanced Disk Alloy LSHR

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Falsey, John

    2005-01-01

    The powder metallurgy disk alloy LSHR was designed with a relatively low gamma precipitate solvus temperature and high refractory element content to allow versatile heat treatment processing combined with high tensile, creep and fatigue properties. Grain size can be chiefly controlled through proper selection of solution heat treatment temperatures relative to the gamma precipitate solvus temperature. However, forging process conditions can also significantly influence solution heat treatment-grain size response. Therefore, it is necessary to understand the relationships between forging process conditions and the eventual grain size of solution heat treated material. A series of forging experiments were performed with subsequent subsolvus and supersolvus heat treatments, in search of suitable forging conditions for producing uniform fine grain and coarse grain microstructures. Subsolvus, supersolvus, and combined subsolvus plus supersolvus heat treatments were then applied. Forging and subsequent heat treatment conditions were identified allowing uniform fine and coarse grain microstructures.

  1. Linear laser diode arrays for improvement in optical disk recording

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.; Carlin, D. B.; Connolly, J. C.

    1990-01-01

    The development of individually addressable laser diode arrays for multitrack magneto-optic recorders for space stations is discussed. Three multi-element channeled substrate planar (CSP) arrays with output power greater than 30 mW with linear light vs current characteristics and stable single mode spectra were delivered to NASA. These devices have been used to demonstrate for the first time the simultaneous recording of eight data tracks on a 14-inch magneto-optic erasable disk. The yield of these devices is low, mainly due to non-uniformities inherent to the LPE growth that was used to fabricate them. The authors have recently developed the inverted CSP, based on the much more uniform MOCVD growth techniques, and have made low threshold quantum well arrays requiring about three times less current than the CSP to deliver 30 mW CW in a single spatial mode. The inverted CSP is very promising for use in space flight recorder applications.

  2. Analytical exploration of a TiO2 nanofluid along a rotating disk with homogeneous-heterogeneous chemical reactions and non-uniform heat source/sink

    NASA Astrophysics Data System (ADS)

    Das, Kalidas; Chakraborty, Tanmoy; Kumar Kundu, Prabir

    2017-12-01

    Comparative flow features of two different nanofluids containing TiO2 nanoparticles along a rotating disk near a stagnation point are theoretically addressed here. The primary fluids are presumed as ethylene glycol and water. The influences of non-uniform heat absorption/generation with homogeneous and heterogeneous chemical reactions have been integrated to modify the energy and concentration profiles. By virtue of similarity conversions, the leading partial differential system has been standardized into non-linear ODEs and then cracked analytically by NDM and numerically by RK-4 based shooting practice. Impressions of emerging parameters on the flow regime have been reported by tables and graphs coupled with required discussions. One of our results predicts that, with the augmentation of TiO2 nanoparticles concentration, the rate of heat transport for ethylene glycol nanofluid becomes 30-36% higher compared to that of a water nanofluid.

  3. Light Scattering by Marine Particles: Modeling with Non-Spherical Shapes

    DTIC Science & Technology

    2007-09-30

    huxleyi using disk-like shapes. Gordon and Du [2001] and Gordon [2004] found that the shape of the backscattering spectrum of detached coccoliths...from E. huxleyi could be well reproduced using a shape consisting of two parallel disks (diameter ~ 2.75 μm and thickness 0.05 μm) separated by 0.3...3886−3896. Gordon, H.R. and Tao Du., 2001, Light scattering by nonspherical particles: application to coccoliths detached from Emiliania

  4. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    NASA Technical Reports Server (NTRS)

    Baker, P. L.; Burton, W. B.

    1975-01-01

    High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.

  5. SiO Masers in Asymmetric Miras. IV. χ Cygni, R Aquilae, R Leo Minoris, Ru Herculis, U Herculis, and U Orionis

    NASA Astrophysics Data System (ADS)

    Cotton, W. D.; Ragland, S.; Pluzhnik, E. A.; Danchi, W. C.; Traub, W. A.; Willson, L. A.; Lacasse, M. G.

    2010-06-01

    This is the fourth paper in a series of multi-epoch observations at 7 mm wavelength of the SiO masers in several asymptotic giant branch stars from a sample of Mira variable stars showing evidence of asymmetric structure in the infrared. These stars have been observed interferometrically in the infrared by IOTA and with VLBA measurements of the SiO masers. In this paper, we present the observations of χ Cygni (χ Cyg), R Aquilae (R Aql), R Leo Minoris (R LMi), RU Herculis (RU Her), U Herculis (U Her), and U Orionis (U Ori). Several radial features with velocity gradients were observed, all with velocities close to systemic furthest from the star and redshifted closer to the stellar surface. Systemic velocities are estimated for several of the stars. No compelling evidence of asymmetry is seen in the maser distributions. All maser rings are approximately twice the near-IR uniform disk diameter and are comparable in size to the extended molecular envelope when such measurements are available.

  6. The structural coloration of textile materials using self-assembled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-09-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.

  7. The structural coloration of textile materials using self-assembled silica nanoparticles.

    PubMed

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  8. Are Phobos and Deimos the result of a giant impact?

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.

    2011-02-01

    Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the martian satellites may have been the result of giant impact. Similar to the Earth-Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate (Dones, L., Tremaine, S. [1993]. Science 259, 350-354). Although subject to considerable error, current crater-scaling laws and an analysis of the largest known impact basins on the martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8500-km-diameter Borealis basin, the 4970-km-diameter Elysium basin, the 4500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed—and preserved—beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.

  9. Plasma and Shock Generation by Indirect Laser Pulse Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasperczuk, A.; Borodziuk, S.; Pisarczyk, T.

    2006-01-15

    In the paper the results of our experiment with flyer disks, accelerated to high velocities by the PALS iodine laser and subsequently creating craters when hitting massive targets , are presented. We have carried out experiments with the double targets consisted of a disk placed in front of a massive target part at distances of either 200 or 500 {mu}m. Both elements of the targets were made of Al. The following disk irradiation conditions were used: laser energy of 130 J, laser wavelength of 1.315 {mu}m, pulse duration of 0.4 ns, and laser spot diameter of 250 {mu}m. To measuremore » some plasma parameters and accelerated disk velocity a three frame interferometric system was used. Efficiency of crater creation by a disk impact was determined from the crater parameters, which were obtained by means of a crater replica technique. The experimental results concern two main stages: (a) ablative plasma generation and disk acceleration and (b) disk impact and crater creation. Spatial density distributions at different moments of plasma generation and expansion are shown. Discussion of the experimental results on the basis of a 2-D theoretical model of the laser -- solid target interaction is carried out.« less

  10. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  11. Zombie Vortex Instability: Effects of Non-uniform Stratification & Thermal Cooling

    NASA Astrophysics Data System (ADS)

    Barranco, Joseph; Pei, Suyang; Marcus, Phil; Jiang, Chung-Hsiang

    2015-11-01

    The Zombie Vortex Instability (ZVI) is a nonlinear instability in rotating, stratified, shear flows, such as in protoplanetary disks (PPD) of gas and dust orbiting new stars. The instability mechanism is the excitation of baroclinic critical layers, leading to vorticity amplification and nonlinear evolution into anticyclonic vortices and cyclonic sheets. ZVI is most robust when the Coriolis frequency, shear rate, and Brunt-Väisälä (BV) frequency are of the same order. Previously, we investigated ZVI with uniform stratification and without thermal cooling. Here, we explore the role of non-uniform stratification as would be found in PPDs in which the BV frequency is zero in the disk midplane, and increases away from the midplane. We find that ZVI is vigorous 1-3 pressure scale heights away from the midplane, but the non-isotropic turbulence generated by ZVI can penetrate into the midplane. We also explore the effect of thermal cooling and find that ZVI is still robust for cooling times as short as 5 orbital periods. ZVI may play important roles in transporting angular momentum in PPDs, and in trapping dust grains, which may trigger gravitational clumping into planetesimals.

  12. High-Resolution, Large-Area, Nano Imprint Lithography

    DTIC Science & Technology

    2009-08-27

    oxides as the seed layers can provide implication as the general synthetic route for the spontaneous growth of metal - silicide nanowires in large...nano-island array preparation , we have successfully fabricated patterned magnetic recording media as described in Fig. 2. About ~30 nm diameter Si...that we fabricated at UCSD with 5-50 nm diameter magnetic islands was used, since a large- area, hard disk size preparation was necessary, and since a

  13. Traveling Wave Amplifier Driven by a Large Diameter Annular Electron Beam in a Disk-Loaded Structure

    DTIC Science & Technology

    2015-10-30

    IV MARY LOU ROBINSON, DR-IV Project Officer Chief, High Power Electromagnetics Division This report is published in the interest of scientific and...unlimited. 13. SUPPLEMENTARY NOTES OPS-15-9244 14. ABSTRACT This project studies the viability of a high - power traveling wave tube (TWT) using a novel...CHRISTINE codes. Fair agreement was observed. The preliminary conclusion is that the disk-on-rod TWT is a viable, high - power extension to the conventional

  14. TSDC (Thermally Stimulated Depolarization Current) Studies of PEO (Poly(Ethylene Oxide)) and PEO Complexed with KSCN.

    DTIC Science & Technology

    1985-06-01

    evaporated onto the resulting films. These films were then cut to form disks about 8 mm in diameter and 0.7 mm thick. While one electrode covered the full...surrounded by a heating coil, inside an airtight chamber. A spring loaded brass electrode presses the sample and the other electrode ." down onto the copper...cylinder. A sapphire disk insulates the lower " lectrodh( from the copper. This arrangement guarantees good thermal contact, arid electrical

  15. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-09-01

    Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  16. Rayleigh wave effects in an elastic half-space.

    NASA Technical Reports Server (NTRS)

    Aggarwal, H. R.

    1972-01-01

    Consideration of Rayleigh wave effects in a homogeneous isotropic linearly elastic half-space subject to an impulsive uniform disk pressure loading. An approximate formula is obtained for the Rayleigh wave effects. It is shown that the Rayleigh waves near the center of loading arise from the portion of the dilatational and shear waves moving toward the axis, after they originate at the edge of the load disk. A study is made of the vertical displacement due to Rayleigh waves at points on the axis near the surface of the elastic half-space.

  17. An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-03-08

    Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  18. RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu

    2012-09-10

    From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less

  19. In Vitro Evaluation of Dentin Tubule Occlusion for Novel Calcium Lactate Phosphate (CLP) Paste

    PubMed Central

    Yang, Jen-Chang; Hu, Hsin-Tai; Lee, Sheng-Yang; Hsieh, Sung-Chih; Huang, Pei-Chi; Ma, Chen-Feng; Ji, Dian-Yu; Chang, Liang-Yu; Teng, Nai-Chia

    2017-01-01

    Introduction: The objective of this in vitro study is to evaluate the effective and long-term occlusion of dentinal tubules using a novel calcium lactate phosphate (CLP) based desensitizing agent. Methods: Dentin disks (n = 9) were pre-etched using 1 M lactic acid for 30 s and individually treated with Colgate® Pro-Relief™ paste, CLP paste, and double distilled water (ddH2O) by a rubber-cupped handpiece. Dentin disks were analyzed under optical micrographs for pre-treatment, directly after treatment, and 14 days post-treatment. One-way ANOVA and post-hoc Tukey’s test were used to determine whether there were any statistically significant differences in dentinal tubule diameter. Results: A significant decrease occurred in the mean tubule diameter for dentin disks treated with CLP paste. A decrease was observed from 3.52 ± 0.83 µm to 2.62 ± 0.42 µm right after treatment, further decreasing to 1.71 ± 0.45 µm after immersion in artificial saliva for 14 days (p < 0.05). Conclusions: The results suggest that the CLP based desensitizing paste has remineralization properties and provides instant and lasting effectiveness in dentinal tubule occlusion. PMID:28772594

  20. Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-04-01

    Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.

  1. The Mass Evolution of Protostellar Disks and Envelopes in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Andersen, Bridget; Stephens, Ian; Dunham, Michael; Pokhrel, Riwaj; Jørgensen, Jes; Frimann, Søren

    2018-01-01

    In the standard picture for low-mass star formation, a dense molecular cloud undergoes gravitational collapse to form a protostellar system consisting of a new central star, a circumstellar disk, and a surrounding envelope of remaining material. The mass distribution of the system evolves as matter accretes from the large-scale envelope through the disk and onto the protostar. While this general picture is supported by simulations and indirect observational measurements, the specific timescales related to disk growth and envelope dissipation remain poorly constrained. We present a rigorous test of a method introduced by Jørgensen et al. (2009) to obtain observational mass measurements of disks and envelopes around embedded protostars from unresolved (resolution of ~1000 AU) observations. Using data from the recent Mass Assembly of Stellar Systems and their Evolution with the SMA (MASSES) survey, we derive disk and envelope mass estimates for 59 protostellar systems in the Perseus molecular cloud. We compare our results to independent disk mass measurements from the VLA Nascent Disk and Multiplicity (VANDAM) survey and find a strong linear correlation. Then, leveraging the size and uniformity of our sample, we find no significant trend in protostellar mass distribution as a function of age, as approximated from bolometric temperatures. These results may indicate that the disk mass of a protostar is set near the onset of the Class 0 protostellar stage and remains roughly constant throughout the Class I protostellar stage.

  2. CENTAURUS A: THE INSIDE STORY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used NASA's Hubble Space Telescope to probe the core of the nearest active galaxy to Earth, Centaurus A. [UPPER LEFT] - A close-up high resolution Wide Field Planetary Camera 2 image of the dramatic dust disk which is thought to be the remnant of a smaller spiral galaxy that merged with the large elliptical galaxy. The shock of the collision compressed interstellar gas, precipitating a flurry of star formation and giving the material a fleecy pattern. Dark filaments of dust mixed with cold hydrogen gas are silhouetted against the incandescent yellow-orange glow from stars behind it. [LOWER RIGHT] - Hubble's Near Infrared Camera and Multi-Object Spectrometer was used to peer past the dust to discover a tilted disk of hot gas at the galaxy's center (white bar running diagonally across image center). This 130 light-year diameter disk encircles a suspected black hole which may be one billion times the mass of our Sun. The disk feeds material to presumably an inner, unresolved accretion disk that is made up of gas entrapped by the black hole. The red blobs near the disk are glowing gas clouds which have been heated up and ionized by the powerful radiation from the active nucleus. The false-color NICMOS image was taken on Aug. 11, 1997 at a wavelength of 1.87 microns ('Paschen alpha'), characteristic of ionized Hydrogen. Centaurus A (NGC 5128) Fast Facts Right Ascension: 13 : 25.5 (hours : minutes) Declination: -43 : 01 (degrees : minutes) Apparent Magnitude: 7.0 Apparent Diameter: 18.2 (arc minutes) Distance: 10 million light-years Constellation: Centaurus (southern sky) Credit: E.J. Schreier, (STScI) and NASA Team members are: Ethan J. Schreier, Alessandro Marconi, David J. Axon, Nicola Caon, Duccio Macchetto ( STScI), Alessandro Capetti - (Osservatorio Astronomico di Torino, Italy), James H. Hough, Stuart Young ( University of Hertfordshire, UK), and Chris Packham (Isaac Newton Group, Islas Canarias, SPAIN)

  3. Laboratory Comparison of the Anti-Bacterial Effects of Spearmint Extract and Hypochlorite Sodium on Enterococcus Faecalis Bacteria.

    PubMed

    S, Hajimaghsoodi; H, Zandi; M, Bahrami; R, Hakimian

    2016-12-01

    It is necessary to use irrigation solutions during cleaning and shaping of root canals to efficiently reduce the number of micro organisms. Sodium hypochlorite is used as an effective antibacterial endodontic irrigants. However, the extract of pennyroyal plant has also shown anti-bacterial characteristics comparable with antibacterial drugs. To compare the anti-bacterial effect of spearmint extract on Enterococcus faecalis bacteria with that of sodium hypochlorite 5.25%. In this experimental study, Muller Hinton medium, including 5% sheep blood was prepared. The two solutions used including sodium hypochlorite 5.25% and spearmint extracts were put adjacent to Enterococcus faecalis bacteria after preparing. Two groups, each containing 10 samples, with the total of 20 samples were used. The disks, including each solution were placed 2 cm apart on a plate containing Muller Hinton medium and the bacteria. The plate was subsequently incubated at 37°C for 48 hours. After incubation, the mean diameter of the halo around each disk, which represents the lack of bacterial growth, was measured and compared using a ruler. Penicillin disk was used for positive control and a sterile blank disk containing physiologic serum was utilized as the negative control. This process was repeated 10 times for each solution. Data were analyzed in SPSS 17 statistical software using t -test. The results showed that the mean diameter of halo in the spearmint extract group was zero and in the sodium hypochlorite group it was 23.7 ± 1.49 mm. There was a significant difference between the mean diameter of the lack of growth halo of the spearmint extract and that of hypochlorite sodium 5.25% on Enterococcus faecalis bacteria ( p ≤ 0.001). Considering the limitations of an experimental study, it seems that spearmint extract does not have any anti-bacterial effect against Enterococcus faecalis bacteria, in contrast to hypochlorite sodium 5.25%.

  4. Rheology of dilute cohesive granular gases

    NASA Astrophysics Data System (ADS)

    Takada, Satoshi; Hayakawa, Hisao

    2018-04-01

    Rheology of a dilute cohesive granular gas is theoretically and numerically studied. The flow curve between the shear viscosity and the shear rate is derived from the inelastic Boltzmann equation for particles having square-well potentials in a simple shear flow. It is found that (i) the stable uniformly sheared state only exists above a critical shear rate and (ii) the viscosity in the uniformly sheared flow is almost identical to that for uniformly sheared flow of hard core granular particles. Below the critical shear rate, clusters grow with time, in which the viscosity can be approximated by that for the hard-core fluids if we replace the diameter of the particle by the mean diameter of clusters.

  5. Premixed direct injection disk

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  6. Factors affecting power requirements for chipping whole trees

    Treesearch

    Bryce J. Stokes; William F. Watson; Donald L. Sirois

    1987-01-01

    Large and small in-woods disk chippers were used in field tests to determine the power requirements for chipping whole trees. Hardwood and softwood species were evaluated over a range of diameter classes and moisture contents.

  7. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    PubMed

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  8. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy

    PubMed Central

    Sredar, Nripun; Fagbemi, Oladipo E.

    2018-01-01

    Purpose To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. Methods The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. Results The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. Conclusions The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Translational Relevance Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers. PMID:29629239

  9. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  10. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    PubMed

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  11. First Keck Nulling Observations of a Young Stellar Object: Probing the Circumstellar Environment of the Herbig Ae star MWC 325

    NASA Technical Reports Server (NTRS)

    Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.; hide

    2012-01-01

    We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

  12. Fabrication of universal serial bus flash disk type microfluidic chip electrophoresis and application for protein analysis under ultra low voltage

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei

    2016-01-01

    A simple and effective universal serial bus (USB) flash disk type microfluidic chip electrophoresis (MCE) was developed by using poly(dimethylsiloxane) based soft lithography and dry film based printed circuit board etching techniques in this paper. The MCE had a microchannel diameter of 375 μm and an effective length of 25 mm. Equipped with a conventional online electrochemical detector, the device enabled effectively separation of bovine serum albumin, lysozyme, and cytochrome c in 80 s under the ultra low voltage from a computer USB interface. Compared with traditional capillary electrophoresis, the USB flash disk type MCE is not only portable and inexpensive but also fast with high separation efficiency. PMID:27042249

  13. Insulation disks on the skin to estimate muscle temperature.

    PubMed

    Brajkovic, Dragan; Ducharme, Michel B; Webb, Paul; Reardon, Frank D; Kenny, Glen P

    2006-08-01

    This study examined the use of insulation disks placed on the skin to estimate muscle temperature in resting subjects exposed to a thermoneutral (28 degrees C) ambient environment. The working hypothesis was that the skin temperature under each insulation disk would increase to a value corresponding to a specific muscle temperature measured by a control probe at 0.8+/-0.2, 1.3+/-0.2, 1.8+/-0.2, 2.3+/-0.2, and 2.8+/-0.2 cm below the skin surface. Eight subjects sat for 120 min while lateral thigh skin temperatures and vastus lateralis muscle temperature were directly measured. Vastus lateralis temperature was estimated non-invasively using two 5 cm diameter foam neoprene disks which were placed on top of the skin temperature probes (from time 60 to 120 min) located at 15.3 and 26.3 cm superior to the patella. The disks at the two locations were 3.2 and 4.8 mm thick, respectively. The placement of the 3.2- and 4.8-mm disks on the thigh for a minimum of 15 and 20 min, respectively, resulted in an increase in skin temperature under the disks which corresponded to the lateral thigh muscle temperature measured directly and invasively at 0.8+/-0.2 and 1.3+/-0.2 cm, respectively, below the skin.

  14. 12CO(J = 1 \\to 0) On-the-fly Mapping Survey of the Virgo Cluster Spirals. II. Molecular Gas Properties in Different Density Environments

    NASA Astrophysics Data System (ADS)

    Chung, Eun Jung; Yun, Min S.; Verheijen, Marc A. W.; Chung, Aeree

    2017-07-01

    This study investigated the properties of the molecular gas content and star formation activity of 17 Virgo spirals, 21 Ursa Major (UMa) spirals, 13 Pisces spiral galaxies, and a comparison sample of 11 field spiral galaxies with a spatially resolved gas and stellar distribution. The H I-deficient galaxies with a defH I > 0.4 have a similar range of CO luminosity normalized by the K-band luminosity (L CO/L K) like the field spirals, although their CO content can be smaller by up to a factor of 2. The CO, H I, and stellar disk diameters are closely related to each other for both cluster and field galaxies, and the relative diameters of the CO and H I disks grow monotonically and smoothly as the H I-to-stellar disk diameter ratio decreases. Cluster galaxies have a molecular gas consumption time up to 10 times shorter than that of the field comparison sample, suggesting a significant change in the molecular gas content and star formation activity among all the cluster galaxies, even when they do not show any sign of H I stripping. The strongly H I-stripped Virgo cluster galaxies show only a modestly reduced total gas consumption time, indicating that the star formation activity and gas consumption are a highly local (rather than global) phenomenon. Our finding is that the depletion of cold gas by ram-pressure stripping and/or starvation caused by preprocessing in each cluster environment makes galaxies evolve passively.

  15. The Attributes of a Variable-Diameter Rotor System Applied to Civil Tiltrotor Aircraft

    NASA Technical Reports Server (NTRS)

    Brender, Scott; Mark, Hans; Aguilera, Frank

    1996-01-01

    The attributes of a variable diameter rotor concept applied to civil tiltrotor aircraft are investigated using the V/STOL aircraft sizing and performance computer program (VASCOMP). To begin, civil tiltrotor viability issues that motivate advanced rotor designs are discussed. Current work on the variable diameter rotor and a theoretical basis for the advantages of the rotor system are presented. The size and performance of variable diameter and conventional tiltrotor designs for the same baseline mission are then calculated using a modified NASA Ames version of VASCOMP. The aircraft are compared based on gross weight, fuel required, engine size, and autorotative performance for various hover disk loading values. Conclusions about the viability of the resulting designs are presented and a program for further variable diameter rotor research is recommended.

  16. Method to produce large, uniform hollow spherical shells

    DOEpatents

    Hendricks, C.D.

    1983-09-26

    The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.

  17. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    NASA Astrophysics Data System (ADS)

    Desai, Karna M.

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In this dissertation, I analyze GIs by inserting different objects in a disk by employing 3D hydrodynamics simulations. GIs in a circumbinary disks are studied to determine how the presence of the companion affects the nature and strength of GIs in the disk. The circumbinary disk achieves a state of sustained marginal instability similar to an identical disk without the companion. A realistic evolution of the binary is detected. Planet and disk interactions play an important role in the evolution of planetary systems. To study this interaction during the early phases of planet formation, a migration study of Jovian planets in a GI-active disk is conducted. I find the migration timescales to be longer in a GI-active disk, when compared to laminar disks. The 3 MJupiter planet controls its own orbital evolution, while the migration of a 0.3 MJupiter planet is stochastic in nature. I define a 'critical mass' as the mass of an arm of the dominant two-armed spiral density wave within the planet's Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks. To understand the stochastic migration of low-mass planets, I perform a simulation of 240 zero-mass planet-tracers by inserting these at a range of locations in the disk. A Diffusion Coefficient is calculated to characterize the stochastic migration of low-mass objects. The eccentricity dispersion for the sample is also studied. I find that the diffusion of planets can be a slow process, resulting in the survival of small planetary cores.

  18. Water Powered Tools

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space Spin-Offs, Inc. under a contract with Lewis Research Center and Marshall Space Flight Center produced a new water-powered saw that cuts through concrete and steel plate reducing danger of explosion or electric shock in rescue and other operations. In prototype unit efficient water-powered turbine drives an 8 inch diameter grinding disk at 6,600 rpm. Exhaust water cools disk and workpiece quenching any sparks produced by cutting head. At maximum power, tool easily cuts through quarter inch steel plate. Adapter heads for chain saws, impact wrenches, heavy duty drills, and power hack saws can be fitted.

  19. Electrostatic placement of single ferritin molecules

    NASA Astrophysics Data System (ADS)

    Kumagai, Shinya; Yoshii, Shigeo; Yamada, Kiyohito; Matsukawa, Nozomu; Fujiwara, Isamu; Iwahori, Kenji; Yamashita, Ichiro

    2006-04-01

    We electrostatically placed a single ferritin molecule on a nanometric 3-aminopropyltriethoxysilane (APTES) pattern that was on an oxidized Si substrate. The numerical analysis of the total interaction free energy for ferritin predicted that a quadrilateral array of 15nm diameter APTES nanodisks placed at intervals of 100nm would accommodate a single molecule of ferritin in each disk under a Debye length of 14nm. The experiments we conducted conformed to theoretical predictions and we successfully placed a single ferritin molecule on each ATPES disk without ferritin adsorbing on the SiO2 substrate surface.

  20. Cool circumstellar matter around nearby main-sequence stars

    NASA Technical Reports Server (NTRS)

    Walker, H. J.; Wolstencroft, R. D.

    1988-01-01

    Stars are presented which have characteristics similar to Vega and other main-sequence stars with cool dust disks, based on the IRAS Point Source Catalog fluxes. The objects are selected to have a 60-micron/100-micron ratio similar to Vega, Beta Pic, Alpha PsA, and Epsilon Eri, and they are also required to show evidence of extension in the IRAS Working Survey Database. The fluxes are modeled using a blackbody energy distribution. The temperatures derived range from 50 to 650 K. The diameters of the dust disks observed by IRAS are estimated.

  1. Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer

    NASA Technical Reports Server (NTRS)

    Evans, D. G.

    1973-01-01

    The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.

  2. Refractive index sensing with Fano resonances in silicon oligomers

    PubMed Central

    Chong, Katie E.; Orton, Henry W.; Decker, Manuel; Miroshnichenko, Andrey E.; Brener, Igal; Kivshar, Yuri S.

    2017-01-01

    We demonstrate experimentally refractive index sensing with localized Fano resonances in silicon oligomers, consisting of six disks surrounding a central one of slightly different diameter. Owing to the low absorption and narrow Fano-resonant spectral features appearing as a result of the interference of the modes of the outer and the central disks, we demonstrate refractive index sensitivity of more than 150 nm RIU−1 with a figure of merit of 3.8. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220001

  3. Coupled Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    NASA Technical Reports Server (NTRS)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2000-01-01

    A procedure that models coupled thermo-mechanical deformations of viscoelastic rubber cylinders by employing the ABAQUS finite element code is described. Computational simulations of hysteretic heating are presented for several tall and short rubber cylinders both with and without a steel disk at their centers. The cylinders are compressed axially and are then cyclically loaded about the compressed state. The non-uniform hysteretic heating of the rubber cylinders containing a steel disk is presented. The analyses performed suggest that the coupling procedure should be considered for further development as a design tool for rubber degradation studies.

  4. Clogging and depinning of ballistic active matter systems in disordered media

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Reichhardt, C. J. O.

    2018-05-01

    We numerically examine ballistic active disks driven through a random obstacle array. Formation of a pinned or clogged state occurs at much lower obstacle densities for the active disks than for passive disks. As a function of obstacle density, we identify several distinct phases including a depinned fluctuating cluster state, a pinned single-cluster or jammed state, a pinned multicluster state, a pinned gel state, and a pinned disordered state. At lower active disk densities, a drifting uniform liquid forms in the absence of obstacles, but when even a small number of obstacles are introduced, the disks organize into a pinned phase-separated cluster state in which clusters nucleate around the obstacles, similar to a wetting phenomenon. We examine how the depinning threshold changes as a function of disk or obstacle density and find a crossover from a collectively pinned cluster state to a disordered plastic depinning transition as a function of increasing obstacle density. We compare this to the behavior of nonballistic active particles and show that as we vary the activity from completely passive to completely ballistic, a clogged phase-separated state appears in both the active and passive limits, while for intermediate activity, a readily flowing liquid state appears and there is an optimal activity level that maximizes the flux through the sample.

  5. Fabrication and electrorotation of a novel epoxy based micromotor working in a uniform DC electric field

    NASA Astrophysics Data System (ADS)

    Bauer, Rita A.; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi; Zrínyi, Miklós

    2015-10-01

    We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications.

  6. Some calculated effects of non-uniform inflow on the radiated noise of a large wind turbine

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Hubbard, H. H.

    1980-01-01

    Far field computations were performed for a large wind turbine to evaluate the effects of non-uniform aerodynamic loading over the rotor disk. A modified version of the Farassat/Nystrom propeller noise prediction program was applied to account for the variations in loading due to inflow interruption by the upstream support tower. The computations indicate that for the uniform inflow case, relatively low noise levels are generated and the first rotational harmonic dominated the spectrum. For cases representing wake flow deficiences due to the tower structure, subtantially increased noise levels for all harmonics are indicated, the greatest increases being associated with the higher order harmonics.

  7. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    PubMed Central

    2008-01-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10−5(Ω·cm)−1.

  8. Facile Fabrication of Uniform Polyaniline Nanotubes with Tubular Aluminosilicates as Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Liu, Peng

    2008-08-01

    The uniform polyaniline (PANI) nanotubes, with inner diameter, outer diameter, and tubular thickness of 40, 60, and 10 nm, respectively, were prepared successfully by using natural tubular aluminosilicates as templates. The halloysite nanotubes were coated with PANI via the in situ chemical oxidation polymerization. Then the templates were etched with HCl/HF solution. The PANI nanotubes were characterized using FTIR, X-ray diffraction, and transmission electron microscopy. The conductivity of the PANI nanotubes was found to be 1.752 × 10-5 (Ω·cm)-1.

  9. Compact Packaging of Photonic Millimeter-Wave Receiver

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.

    2007-01-01

    A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.

  10. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  11. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    NASA Technical Reports Server (NTRS)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  12. A vacuum (10 exp -9 torr) friction apparatus for determining friction and endurance life of MoS(x) films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Honecy, Frank S.; Abel, Phillip B.; Pepper, Stephen V.; Spalvins, Talivaldis; Wheeler, Donald R.

    1993-01-01

    An ultrahigh-vacuum tribometer for use in a ball-on-disk configuration was specially designed for measuring the friction and endurance life of magnetron-sputtered solid lubricating MoS(x) films deposited on sputter-cleaned 400 C stainless-steel disks, when slid against a 6-mm-diameter 440 C stainless-steel ball. The results of tests showed that the tribometer performs satisfactorily in unidirectional rotation in vacuum at a pressure of 10 exp -7 Pa, 10 exp -9 torr. Similarities are observed in the life cycle friction behavior and the coefficient of friction as a function of the number of disk revolutions, for MoS(x) films at average Hertzian contact from 0.33 to 0.69 GPa.

  13. Specimen Holder for Analytical Electron Microscopes

    NASA Technical Reports Server (NTRS)

    Clanton, U. S.; Isaacs, A. M.; Mackinnon, I.

    1985-01-01

    Reduces spectral contamination by spurious X-ray. Specimen holder made of compressed carbon, securely retains standard electron microscope grid (disk) 3 mm in diameter and absorbs backscattered electrons that otherwise generate spurious X-rays. Since holder inexpensive, dedicated to single specimen when numerous samples examined.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buta, R.; de Vaucouleurs, G.

    The diameters d/sub r/ of inner ring structures in disk galaxies are used as geometric distance indicators to derive the distances of 453 spiral and lenticular galaxies, mainly in the distance interval 4<..delta..<63 Mpc. The diameters are weighted means from the catalogs to Kormendy, Pedreros and Madore, and the authors. The distances are calculated by means of the two- and three-parameter formulae of Paper II; the adopted mean distance moduli ..mu../sub 0/(r) have mean errors from all sources of 0.6--0.7 mag for the well-observed galaxies.

  15. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  16. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; hide

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  17. Uniform Interfaces for Distributed Systems.

    DTIC Science & Technology

    1980-05-01

    in data str ’.ctures on stable storage (such as disk). The Virtual Terminals associated with a particular user (i.e., rM display terminal) are all...vec MESSAGESIZE let error = nil [S ReceiveAny (msg) // The copy is made so that lower-level routines may // munge the message template without losing

  18. TLA — markers and nuclear scanning method for wear rate monitoring

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Ivanov, E.; Dudu, D.; Catana, M.; Roman, M.

    1994-08-01

    Two new extensions of the TLA-direct measuring method are presented: the TLA-markers for wear control and the nuclear scanning method for monitoring wear non-uniformity on large surfaces. Both methods were applied to measure the material loss on the surface of railway car brake disks.

  19. Thermal Test on Target with Pressed Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    A thorough test of the thermal performance of a target for Mo 99 production using solid Mo 100 target to produce the Mo 99 via a gamma-n reaction has previously been conducted at Argonne National Laboratory (ANL). The results are reported in “Zero Degree Line Mo Target Thermal Test Results and Analysis,” LANL report Number LA-UR-15-23134 dated 3/27/15. This target was comprised of 25 disks 1 mm thick and 12 mm in diameter, separated by helium coolant gaps 0.5 mm wide. The test reported in the above referenced report was conducted with natural Mo disks all cut from commercial rod.more » The production plant will have Mo 100 disks pressed and sintered using a process being developed at Oak Ridge National Laboratory (ORNL). The structural integrity of press-and-sinter disks is of some concern. The test reported herein included 4 disks made by the ORNL process and placed in the high heat, and therefore high thermal stress, region of the target. The electron beam energy was 23 MeV for these tests. Beam spot size was 3.5 mm horizontal and 3 mm vertical, FWHM. The thermal stress test of pressed-and-sintered disks resulted in no mechanical failures. The induced thermal stresses were below yield stress for natural Mo, indicating that up to that stress state no inherent deficiencies in the mechanical properties of the fabricated disks were evident.« less

  20. Clinical microbiology laboratories do not always detect resistance of Haemophilus influenzae with disk or tablet diffusion methods. Finnish Study Group for Antimicrobial Resistance (FiRe).

    PubMed

    Manninen, R; Huovinen, P; Nissinen, A

    1998-04-01

    The performance of disk diffusion testing of Haemophilus influenzae was evaluated in 20 laboratories. Thirteen disk-medium-breakpoint-inoculum modifications were used in Finnish clinical microbiology laboratories. The performance of various methods was evaluated by testing a susceptible control strain and one with non-beta-lactamase-mediated ampicillin resistance 10 times in 16 laboratories. Gaps in millimeters were measured between these two groups of results. The strains were separated by a gap of at least 5 mm in 8/16 laboratories testing ampicillin, in 7/15 laboratories testing cefaclor, in 5/ 16 laboratories testing cefuroxime, and in 15/16 laboratories testing trimethoprim-sulfa. Detection of ampicillin resistance was better with 2.5 microg tablets than with 10 microg disks or 33 microg tablets. For MIC-determinations, 785 isolates and their disk diffusion results were collected. None of the 12 clinical isolates with non-beta-lactamase-mediated ampicillin resistance was detected as resistant in the participating laboratories. The ampicillin and cefaclor results of the isolates were no better even when a laboratory was able to separate the control strains. Cefaclor results were unreliable because of poor disk diffusion-MIC correspondence and incoherent breakpoint references. Interlaboratory variation of the zone diameters caused false intermediate results of cefuroxime-susceptible strains. When ampicillin, cefaclor and cefuroxime were tested, the discrimination of laboratories using disks and tablets was equal, whereas the laboratories using paper disks were better able to detect trimethoprim-sulfa resistance.

  1. Gaussian Beam Intensity Flattener

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon W.

    1998-01-01

    The goal of this investigation was to use commercial elements and extend the correction to a 1/e(sup 2) diameter of 3 mm over long propagation distances. Shafer discussed the use of spherical elements to generate a uniform beam to the 1/e diameter.

  2. The dynamics of a flexible bladed disc on a flexible rotor in a two-rotor system

    NASA Technical Reports Server (NTRS)

    Gallardo, V. C.; Stallone, M. J.

    1984-01-01

    This paper describes the development of the analysis of the transient dynamic response of a bladed disk on a flexible rotor. The rotating flexible bladed disk is considered as a module in a complete turbine engine structure. The analysis of the flexible bladed disk (FBD) module is developed for the non-equilibrated one-diameter axial mode. The FBD motion is considered as a sum of two standing axial waves constrained to the rotor. The FBD is coupled inertially and gyroscopically to its rotor support, and indirectly through connecting elements, to the adjacent rotor and/or other supporting structures. Incorporated in the basic Turbine Engine Transient Response Analysis program (TETRA), the FBD module is demonstrated with a two-rotor model where the FBD can be excited into resonance by an unbalance in the adjacent rotor and at a frequency equal to the differential rotor speed. The FBD module also allows the analysis of two flexible bladed disks in the same rotor.

  3. Coupling of lithium niobate disk resonators to integrated waveguides

    NASA Astrophysics Data System (ADS)

    Berneschi, S.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G. C.; Dispenza, M.; Secchi, A.

    2011-01-01

    Whispering gallery mode (WGM) disk resonators fabricated in single crystals can have high Q factors within their transparency bandwidth and may have application both in fundamental and applied optics. Lithium niobate (LN) resonators thanks to their electro-optical properties may be used in particular as tunable filters, modulators, and delay lines. A critical step toward the actual application of these devices is the implementation of a robust and efficient coupling system. High index prisms are typically used for this purpose. In this work we demonstrate coupling to high-Q WGM LN disks from an integrated optical LN waveguide. The waveguides are made by proton exchange in X-cut LN. The disks with diameters of about 5 mm and thickness of 1 mm are made from commercial Z-cut LN wafers by core drilling a cylinder and thereafter polishing the edges into a spheroidal profile. Both resonance linewidth and cavity photon lifetime measurements were performed to calculate the Q factor of the resonator, which is in excess of 108.

  4. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry.

    PubMed

    Johnson, B R; Columbro, F; Araujo, D; Limon, M; Smiley, B; Jones, G; Reichborn-Kjennerud, B; Miller, A; Gupta, S

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  5. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry

    NASA Astrophysics Data System (ADS)

    Johnson, B. R.; Columbro, F.; Araujo, D.; Limon, M.; Smiley, B.; Jones, G.; Reichborn-Kjennerud, B.; Miller, A.; Gupta, S.

    2017-10-01

    In this paper, we present the design and measured performance of a novel cryogenic motor based on a superconducting magnetic bearing (SMB). The motor is tailored for use in millimeter-wave half-wave plate (HWP) polarimeters, where a HWP is rapidly rotated in front of a polarization analyzer or polarization-sensitive detector. This polarimetry technique is commonly used in cosmic microwave background polarization studies. The SMB we use is composed of fourteen yttrium barium copper oxide (YBCO) disks and a contiguous neodymium iron boron (NdFeB) ring magnet. The motor is a hollow-shaft motor because the HWP is ultimately installed in the rotor. The motor presented here has a 100 mm diameter rotor aperture. However, the design can be scaled up to rotor aperture diameters of approximately 500 mm. Our motor system is composed of four primary subsystems: (i) the rotor assembly, which includes the NdFeB ring magnet, (ii) the stator assembly, which includes the YBCO disks, (iii) an incremental encoder, and (iv) the drive electronics. While the YBCO is cooling through its superconducting transition, the rotor is held above the stator by a novel hold and release mechanism. The encoder subsystem consists of a custom-built encoder disk read out by two fiber optic readout sensors. For the demonstration described in this paper, we ran the motor at 50 K and tested rotation frequencies up to approximately 10 Hz. The feedback system was able to stabilize the rotation speed to approximately 0.4%, and the measured rotor orientation angle uncertainty is less than 0.15°. Lower temperature operation will require additional development activities, which we will discuss.

  6. Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors.

    PubMed

    Wang, Jing; Zuo, Zhili; Huang, Liang; Warsi, Muhammad Asif; Xiao, John Q; Hu, Jun

    2018-06-21

    Fe-Co-Ni gradient-diameter magnetic nanowire arrays were fabricated via direct-current electrodeposition into a tapered anodic aluminium oxide template. In contrast to the magnetic behaviors of uniform-diameter nanowire arrays, these arrays exhibited tailorable magnetic anisotropy that can be used to switch magnetic nanowires easily and unconventional temperature-dependent coercivity with much better thermal stability.

  7. The Cluster Population of UGC 2885

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    UGC 2885 was discoverd to be the most extended disk galaxy [250 kpc diameter] by Vera Rubin in the 1980's. We ask for HST observations of UGC 2885 as it is close enough to resolve the GC population with HST but it is a substantially more extended disk than any studied before. LCDM galaxy assembly implies that the GC population comes from small accreted systems and the disk -and the clusters associated with it- predominantly from gas accretion (matching angular momentum to the disk). Several scaling relations between the GC population and parent galaxy have been observed but these differ for disk and spheroidal (massive) galaxies.We propose to observe this galaxy with HST in 4 point WFC3 mosaic with coordinated ACS parallels to probe both the disk and outer halo component of the GC population. GC populations have been studied extensively using HST color mosaics of local disk galaxies and these can serve as comparison samples. How UGC 2885 cluster populations relate to its stellar and halo mass, luminosity and with radius will reveal the formation history of extra-ordinary disk.Our goals are twofold: our science goal is to map the luminosity, (some) size, and color distributions of the stellar and globular clusters in and around this disk. In absolute terms, we expect to find many GC but the relative relation of the GC population to this galaxy's mass (stellar and halo) and size will shed light on its formation history; similar to a group or cluster central elliptical or to a field galaxy (albeit one with a disk 10x the Milky Way's size)? Our secondary motive is to make an HST tribute image to the late Vera Rubin.

  8. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  9. Heat flux limiting sleeves

    DOEpatents

    Harris, William G.

    1985-01-01

    A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

  10. Performance Characterization of the Production Facility Prototype Helium Flow System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Dalmas, Dale Allen

    2015-12-16

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. Blower performance (mass flow rate as a function of loop pressure drop) was measured at 4 blower speeds. Results are reported below.« less

  11. In vitro antibacterial activity of adhesive systems on Streptococcus mutans.

    PubMed

    Paradella, Thaís Cachuté; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso

    2009-04-01

    To evaluate the antibacterial activity of three adhesive systems -- Prime & Bond 2.1 (PB), Clearfil SE Bond (CS) and One Up Bond F (OU) -- on Streptococcus mutans in vitro. Adherence and agar disk-diffusion tests were performed. For the adherence testing, 40 human enamel specimens (4 mm2) were sterilized and the adhesive sytems were applied (n = 10). The control group did not receive the application of any adhesive system. Specimens were immersed in brain heart infusion broth (BHI) inoculated with S. mutans standardized suspension (10(6) cells/ml) for 48 h at 37 degrees C and 5% CO2. The number of S. mutans cells adhered to each specimen was evaluated by the plating method on BHI agar. For agar disk-diffusion testing, adhesive disks and disks soaked in distilled water (negative control) or 0.2% chlorexidine (positive control) were incubated with S. mutans for 48 h. The diameters of the zones of bacterial inhibition were measured. Adherence data were transformed in logarithms of base 10 (log10). Data were submitted to Kruskal-Wallis and Student-Neuman-Keuls tests at the 5% level of significance. The results of the adherence test showed that One Up Bond F (OU) and Clearfil SE Bond (CS) did not differ significantly from one another, but allowed significantly less adherence than Prime & Bond 2.1 (PB) and control [mean log10 (standard deviation) values: PB 6.10 (0.19); CS primer 4.55 (0.98); OU 4.65 (0.54); control group 6.34 (0.27)]. The disk-diffusion test showed no significant difference between OU (diameter in mm: 3.02 +/- 0.13) and CS (3.0 +/- 0.12), but both were significantly more effective in inhibiting bacterial growth than PB (1.0 +/- 0.10). The self-etching systems Clearfil SE Bond and One Up Bond F presented a greater inhibitory effect against S. mutans, also in terms of adherence, than did the conventional system, Prime & Bond 2.1.

  12. Uniformity of dc and rf performance of MBE-grown AlGaN/GaN HEMTS on HVPE-grown buffers

    NASA Astrophysics Data System (ADS)

    Gillespie, J. K.; Fitch, R. C.; Moser, N.; Jenkins, T.; Sewell, J.; Via, D.; Crespo, A.; Dabiran, A. M.; Chow, P. P.; Osinsky, A.; Mastro, M. A.; Tsvetkov, D.; Soukhoveev, V.; Usikov, A.; Dmitriev, V.; Luo, B.; Pearton, S. J.; Ren, F.

    2003-10-01

    AlGaN/GaN high electron mobility transistors (HEMTs) were grown by molecular beam epitaxy (MBE) on 2 in. diameter GaN buffer layers grown by hydride vapor epitaxy (HVPE) on sapphire substrates. HEMTs with 1 μm gate length displayed excellent dc and rf performance uniformity with up to 258 separate devices measured for each parameter. The drain-source saturation current was 561 mA with a standard deviation of 1.9% over the 2 in. diameter, with a corresponding transconductance of 118 ± 3.9 mS/mm. The threshold voltage was -5.3 ± 0.07 V. The rf performance uniformity was equally good, with an fT of 8.6 ± 0.8 GHz and fmax of 12.8 ± 2.5 GHz. The results show the excellent uniformity of the MBE technique for producing AlGaN/GaN HEMTs and also the ability of HVPE to provide high quality buffers at low cost.

  13. Production of monodisperse cerium oxide microspheres with diameters near 100 μm by internal-gelation sol–gel methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce D.

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  14. Production of Monodisperse Cerium Oxide Microspheres with Diameters near 100 µm by Internal Gelation Sol-Gel Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katalenich, Jeffrey A.; Kitchen, Brian B.; Pierson, Bruce

    2018-05-01

    Internal gelation sol-gel methods have used a variety of sphere forming methods in the past to produce metal oxide microspheres, but typically with poor control over the size uniformity at diameters near 100 µm. This work describes efforts to make and measure internal gelation, sol-gel microspheres with very uniform diameters in the 100 – 200 µm size range using a two-fluid nozzle. A custom apparatus was used to form aqueous droplets of sol-gel feed solutions in silicone oil and heat them to cause gelation of the spheres. Gelled spheres were washed, dried, and sintered prior to mounting on glass slidesmore » for optical imaging and analysis. Microsphere diameters and shape factors were determined as a function of silicone oil flow rate in a two-fluid nozzle and the size of a needle dispensing the aqueous sol-gel solution. Nine batches of microspheres were analyzed and had diameters ranging from 65.5 ± 2.4 µm for the smallest needle and fastest silicone oil flow rate to 211 ± 4.7 µm for the largest needle and slowest silicone oil flow rate. Standard deviations for measured diameters were less than 8% for all samples and most were less than 4%. Microspheres had excellent circularity with measured shape factors of 0.9 – 1. However, processing of optical images was complicated by shadow effects in the photoresist layer on glass slides and by overlapping microspheres. Based on calculated flow parameters, microspheres were produced in a simple dripping mode in the two-fluid nozzle. Using flow rates consistent with a simple dripping mode in a two-fluid nozzle configuration allows for very uniform oxide microspheres to be produced using the internal-gelation sol-gel method.« less

  15. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  16. Accretion rates of protoplanets. II - Gaussian distributions of planetesimal velocities

    NASA Technical Reports Server (NTRS)

    Greenzweig, Yuval; Lissauer, Jack J.

    1992-01-01

    In the present growth-rate calculations for a protoplanet that is embedded in a disk of planetesimals with triaxial Gaussian velocity dispersion and uniform surface density, the protoplanet is on a circular orbit. The accretion rate in the two-body approximation is found to be enhanced by a factor of about 3 relative to the case where all planetesimals' eccentricities and inclinations are equal to the rms values of those disk variables having locally Gaussian velocity dispersion. This accretion-rate enhancement should be incorporated by all models that assume a single random velocity for all planetesimals in lieu of a Gaussian distribution.

  17. A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth

    We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less

  18. Spitzer observations of NGC 2264: the nature of the disk population

    NASA Astrophysics Data System (ADS)

    Teixeira, P. S.; Lada, C. J.; Marengo, M.; Lada, E. A.

    2012-04-01

    Aims: NGC 2264 is a young cluster with a rich circumstellar disk population which makes it an ideal target for studying the evolution of stellar clusters. Our goal is to study the star formation history of NGC 2264 and to analyse the primordial disk evolution of its members. Methods: The study presented is based on data obtained with the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer for Spitzer (MIPS) on board the Spitzer Space Telescope, combined with deep near-infrared (NIR) ground-based FLAMINGOS imaging and previously published optical data. Results: We build NIR dust extinction maps of the molecular cloud associated with the cluster, and determine it to have a mass of 2.1 × 103 M⊙ above an AV of 7 mag. Using a differential Ks-band luminosity function (KLF) of the cluster, we estimate the size of the population of NGC 2264, within the area observed by FLAMINGOS, to be 1436 ± 242 members. The star formation efficiency is ≥ ~25%. We identify the disk population and divide it into 3 groups based on their spectral energy distribution slopes from 3.6 μm to 8 μm and on the 24 μm excess emission: (i) optically thick inner disks, (ii) anaemic inner disks, and (iii) disks with inner holes, or transition disks. We analyse the spatial distribution of these sources and find that sources with thick disks segregate into sub-clusterings, whereas sources with anaemic disks do not. Furthermore, sources with anaemic disks are found to be unembedded (i.e., with AV < 3 mag), whereas the clustered sources with thick disks are still embedded within the parental cloud. Conclusions: NGC 2264 has undergone more than one star-forming event, where the anaemic and extincted thick disk population appear to have formed in separate episodes: the sources with anaemic disks are more evolved and have had time to disperse and populate a halo of the cluster. We also find tentative evidence of triggered star-formation in the Fox Fur Nebula. In terms of disk evolution, our findings support the emerging disk evolution paradigm of two distinct evolutionary paths for primordial optically thick disks: a homologous one where the disk emission decreases uniformly at NIR and mid-infrared (MIR) wavelengths, and a radially differential one where the emission from the inner region of the disk decreases more rapidly than from the outer region (forming transition disks).

  19. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope -

    NASA Astrophysics Data System (ADS)

    Tamura, M.

    2016-02-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  20. SEEDS - Strategic explorations of exoplanets and disks with the Subaru Telescope.

    PubMed

    Tamura, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years.

  1. Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk

    NASA Astrophysics Data System (ADS)

    Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.

    2018-03-01

    An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.

  2. Sonic boom generated by a slender body aerodynamically shaded by a disk spike

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2018-03-01

    The sonic boom generated by a slender body of revolution aerodynamically shaded by another body is numerically investigated. The aerodynamic shadow is created by a disk placed upstream of the slender body across a supersonic free-stream flow. The disk size and its position upstream of the body are chosen in such a way that the aerodynamically shaded flow is quasi-stationary. A combined method of phantom bodies is used for sonic boom calculations. The method is tested by calculating the sonic boom generated by a blunted body and comparing the results with experimental investigations of the sonic boom generated by spheres of various diameters in ballistic ranges and wind tunnels. The test calculations show that the method of phantom bodies is applicable for calculating far-field parameters of shock waves generated by both slender and blunted bodies. A possibility of reducing the shock wave intensity in the far field by means of the formation of the aerodynamic shadow behind the disk placed upstream of the body is estimated. The calculations are performed for the incoming flow with the Mach number equal to 2. The effect of the disk size on the sonic boom level is calculated.

  3. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    PubMed

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle formation from the as-deposited Au film. The byproduct of self-catalyzed In 2 Se 3 nanoplates can be inhibited by lowering the precursors and growth temperatures.

  4. RadioAstron Science Program Five Years after Launch: Main Science Results

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Alakoz, A. V.; Andrianov, A. S.; Artyukhov, M. I.; Baan, W.; Babyshkin, V. E.; Bartel, N.; Bayandina, O. S.; Val'tts, I. E.; Voitsik, P. A.; Vorobyov, A. Z.; Gwinn, C.; Gomez, J. L.; Giovannini, G.; Jauncey, D.; Johnson, M.; Imai, H.; Kovalev, Y. Y.; Kurtz, S. E.; Lisakov, M. M.; Lobanov, A. P.; Molodtsov, V. A.; Novikov, B. S.; Pogodin, A. V.; Popov, M. V.; Privesenzev, A. S.; Rudnitski, A. G.; Rudnitski, G. M.; Savolainen, T.; Smirnova, T. V.; Sobolev, A. M.; Soglasnov, V. A.; Sokolovsky, K. V.; Filippova, E. N.; Khartov, V. V.; Churikova, M. E.; Shirshakov, A. E.; Shishov, V. I.; Edwards, P.

    2017-12-01

    The RadioAstron ground-space interferometer provides the highest angular resolution achieved now in astronomy. The detection of interferometric fringes from quasars with this angular resolution on baselines of 100-200 thousand km suggests the brightness temperatures which exceed the Compton limit by two orders of magnitude. Polarimetric measurements on ground-space baselines have revealed fine structure testifying to recollimation shocks on scales of 100-250 μas and a helical magnetic field near the base of radio emission in BL Lacertae. Substructure within a the scattering disk of pulsar emission on interferometer baselines (from 60000 to 250000 km) was discovered. This substructure is produced by action of the interstellar interferometer with an effective baseline of about 1 AU and the effective angular resolution of better than 1 μas. Diameters of scattering disks were measured for several pulsars, and distances to diffusing screens were evaluated. The ground-space observations of sources of the maser radiation in lines of water and hydroxyl have shown that the maser sources in star-forming regions remain unresolved on baselines, which considerably exceed the Earth diameter. These very compact and bright features with angular sizes of about 20-60 μas correspond to linear sizes of about 5-10 million km (several solar diameters).

  5. Modal forced vibration analysis of aerodynamically excited turbosystems

    NASA Technical Reports Server (NTRS)

    Elchuri, V.

    1985-01-01

    Theoretical aspects of a new capability to determine the vibratory response of turbosystems subjected to aerodynamic excitation are presented. Turbosystems such as advanced turbopropellers with highly swept blades, and axial-flow compressors and turbines can be analyzed using this capability. The capability has been developed and implemented in the April 1984 release of the general purpose finite element program NASTRAN. The dynamic response problem is addressed in terms of the normal modal coordinates of these tuned rotating cyclic structures. Both rigid and flexible hubs/disks are considered. Coriolis and centripetal accelerations, as well as differential stiffness effects are included. Generally non-uniform steady inflow fields and uniform flow fields arbitrarily inclined at small angles with respect to the axis of rotation of the turbosystem are considered sources of aerodynamic excitation. The spatial non-uniformities are considered to be small deviations from a principally uniform inflow. Subsonic and supersonic relative inflows are addressed, with provision for linearly interpolating transonic airloads.

  6. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica.

    PubMed

    He, Shengguan; Chen, Feng; Liu, Keyin; Yang, Qing; Liu, Hewei; Bian, Hao; Meng, Xiangwei; Shan, Chao; Si, Jinhai; Zhao, Yulong; Hou, Xun

    2012-09-15

    We demonstrate an improved femtosecond laser irradiation followed by chemical etching process to create complex three-dimensional (3D) microchannels with arbitrary length and uniform diameter inside fused silica. A segmented chemical etching method of introducing extra access ports and a secondary power compensation is presented, which enables the fabrication of uniform 3D helical microchannels with length of 1.140 cm and aspect-ratio of 522. Based on this method, a micromixer which consists of a long helical microchannel and a y-tape microchannel was created inside the fused silica. We measured the mixing properties of the micromixer by injecting the phenolphthalein and NaOH solution through the two inlets of the y-tape microchannel. A rapid and efficient mixing was achieved in the 3D micromixer at a low Reynolds number.

  7. Instability of Non-uniform Toroidal Magnetic Fields in Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2016-05-01

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of this growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.

  8. INSTABILITY OF NON-UNIFORM TOROIDAL MAGNETIC FIELDS IN ACCRETION DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    We present a new type of instability that is expected to drive magnetohydrodynamic (MHD) turbulence from a purely toroidal magnetic field in an accretion disk. It is already known that in a differentially rotating system, the uniform toroidal magnetic field is unstable due to magnetorotational instability (MRI) under a non-axisymmetric and vertical perturbation, while it is stable under a purely vertical perturbation. Contrary to the previous study, this paper proposes an unstable mode completely confined to the equatorial plane, driven by the expansive nature of the magnetic pressure gradient force under a non-uniform toroidal field. The basic nature of thismore » growing eigenmode, which we name “magneto-gradient driven instability,” is studied using linear analysis, and the corresponding nonlinear evolution is then investigated using two-dimensional ideal MHD simulations. Although a single localized magnetic field channel alone cannot provide sufficient Maxwell stress to contribute significantly to the angular momentum transport, we find that the mode coupling between neighboring toroidal fields under multiple localized magnetic field channels drastically generates a highly turbulent state and leads to the enhanced transport of angular momentum, which is comparable to the efficiency seen in previous studies on MRIs. This horizontally confined mode may play an important role in the saturation of an MRI through complementray growth with the toroidal MRIs and coupling with magnetic reconnection.« less

  9. Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsing-Ting; Wang, Chuan-Yi

    2017-04-01

    River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge foundation (Y=+0.2D*) under any steady flows. Opposite results are found for the exposed (Y=-0.2D*) bridge foundation. For the condition non-uniform pier diameter ratio (D/D*=0.3 0.8) scours, when D/D* is equal to 0.4, because pier oncoming flow area is the smallest one so that down flow intensity is less; as non-uniform area is bigger and decrease more down flow energy so that bring smaller scour depth and effect area. Therefore, local scour depth for pier diameter ratio of 0.4 is less than other type of pier. Considering the safety of bridge structure, a non-uniform circular pier with D/D* which equals to 0.4 and initial bed level relative to Y=+0.2D* is the most ideal pier allocations.

  10. VizieR Online Data Catalog: JMMC Stellar Diameters Catalogue - JSDC. Version 2 (Bourges+, 2017)

    NASA Astrophysics Data System (ADS)

    Bourges, L.; Mella, G.; Lafrasse, S.; Duvert, G.; Chelli, A.; Le Bouquin, J.-B.; Delfosse, X.; Chesneau, O.

    2017-01-01

    The JMMC (Jean-Marie Mariotti Center) Calibrator Workgroup has long developed methods to estimate the angular diameter of stars, and provides this expertise in the SearchCal tool (http://www.jmmc.fr/searchcal). SearchCal creates a dynamical catalogue of stars suitable to calibrate Optical Long-Baseline Interferometry (OLBI) observations from on-line queries of CDS catalogues, according to observational parameters. In essence, SearchCal is limited only by the completeness of the stellar catalogues it uses, and in particular is not limited in magnitude. SearchCal being an application centered on the somewhat restricted OLBI observational purposes, it appeared useful to make our angular diameter estimates available for other purposes through a CDS-based catalog, the JMMC Stellar Diameters Catalogue (JSDC, II/300). This second version of the catalog represents a tenfold improvement both in terms of the number of objects and on the precision of the estimates. This is due to a new algorithm using reddening-free quantities -- the pseudomagnitudes, allied to a new database of all the measured stellar angular diameters -- the JMDC (II/345/jmdc), and a rigorous error propagation at all steps of the processing. All this is described in the associated publication by Chelli et al. (2016A&A...589A.112C). The catalog reports the Limb-Darkened Diameter (LDD) and error for 465877 stars, as well as their BVRIJHKLMN magnitudes, Uniform Disk Diameters (UDD) in these same photometric bands, Spectral Type, and two supplementary quality indicators: - the mean-diameter chi-square (see Appendix A.2 of Chelli et al., 2016A&A...589A.112C). - a flag indicating some degree of caution in choosing this star as an OLBI calibrator: known spectroscopic binaries, Algol type stars, etc, see Note (1). The conversion from LDD to UDD in each spectral band is made using mainly the coefficients from J/A+A/556/A86/table16 and J/A+A/554/A98/table16 when possible (compatible spectral types) and following the prescriptions of the JMMC report at http://www.mariotti.fr/doc/approved/JMMC-MEM-2610-0001.pdf in all other cases. The errors on UDD values are omitted as they are similar to the LDD error. Instead of using this catalog to find a suitable OLBI calibrator, the reader is invited to use the SearchCal tool at JMMC (http://www.jmmc.fr/searchcal) which permits a refined search, give access to other possible calibrators (faint stars not in the Tycho catalog) and benefits from the maintainance of JMMC and CDS databases. This catalog replaces the previous JSDC (II/300/jsdc). Almost all stars in II/300/jsdc are found in II/346 with a consistent diameter, with the exception of 1935 stars whose estimated diameter differs from more than 2 sigmas between the two catalogs. The associated file JSDCv2v1 dis.vot (jsdc dis.dat) summarizes this difference. (5 data files).

  11. Flight Test of a 40-Foot Nominal Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 3.31 and a Dynamic Pressure of 10.6 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.

    1969-01-01

    A 40-foot-nominal-diameter (12.2 meter) disk-gap-band parachute was flight tested as part of the NASA supersonic high altitude parachute experiment (SHAPE) program. The test parachute (which included an experimental energy absorber in the attachment riser) was deployed from an instrumented payload by means of a deployment mortar when the payload was at a Mach number of 3.31 and a free-stream dynamic pressure of 10.6 pounds per square foot (508 newtons per square meter). The parachute deployed properly, the canopy inflating to a full-open condition at 1.03 seconds after mortar firing. The first full inflation of the canopy was immediately followed by a partial collapse with subsequent oscillations of the frontal area from about 30 to 75 percent of the full-open frontal area. After 1.07 seconds of operation, a large tear appeared in the cloth near the canopy apex. This tear was followed by two additional tears shortly thereafter. It was later determined that a section of the canopy cloth was severely weakened by the effects of aerodynamic heating. As a result of the damage to the disk area of the canopy, the parachute performance was significantly reduced; however, the parachute remained operationally intact throughout the flight test and the instrumented payload was recovered undamaged.

  12. Correlation of phenotypic tests with the presence of the blaZ gene for detection of beta-lactamase.

    PubMed

    Ferreira, Adriano Martison; Martins, Katheryne Benini; Silva, Vanessa Rocha da; Mondelli, Alessandro Lia; Cunha, Maria de Lourdes Ribeiro de Souza da

    Staphylococcus aureus and Staphylococcus saprophyticus are the most common and most important staphylococcal species associated with urinary tract infections. The objective of the present study was to compare and to evaluate the accuracy of four phenotypic methods for the detection of beta-lactamase production in Staphylococcus spp. Seventy-three strains produced a halo with a diameter ≤28mm (penicillin resistant) and all of them were positive for the blaZ gene. Among the 28 susceptible strain (halo ≥29mm), 23 carried the blaZ gene and five did not. The zone edge test was the most sensitive (90.3%), followed by MIC determination (85.5%), but the specificity of the former was low (40.0%). The nitrocefin test was the least sensitive (28.9%). However, the nitrocefin test together with the disk diffusion method showed the highest specificity (100%). The present results demonstrated that the zone edge test was the most sensitive phenotypic test for detection of beta-lactamase, although it is still not an ideal test to detect this type of resistance since its specificity was low. However, the inhibition halo diameter of the penicillin disk can be used together with the zone edge test since the same disk is employed in the two tests. Combined analysis of the two tests shows a sensitivity of 90.3% and specificity of 100%, proving better sensitivity, especially for S. saprophyticus. This is a low-cost test of easy application and interpretation that can be used in small and medium-sized laboratories where susceptibility testing is usually performed by the disk diffusion method. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Note: Making tens of centimeter long uniform microfluidic channels using commercial glass pipette

    NASA Astrophysics Data System (ADS)

    Ou, Neil; Lee, Huang-Ming; Wu, Jong-Ching

    2018-03-01

    Producing microchannels with diameters between 10 and 20 μm and with lengths in the tens of centimeters is reported. The method can be modified to obtain diameters as narrow as 350 nm. Length-to-diameter aspect ratios that surpass 104 can be produced for a fraction of current production costs. The controllable channel is produced by applying a flame to the narrow end of a commercial pipette that is made from a soda-lime silicate. In combination with a pulling mechanism, applying heat to the composite material lengthens the pipette in a highly uniform way. Given that the materials and methods in this research are cost-effective when compared to femtosecond laser micromachining on 2D silicon-based surfaces, further research into producing microchannels from soda-lime silicates may revolutionize access to 3D controllable microchannels.

  14. Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires

    NASA Astrophysics Data System (ADS)

    Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un

    2015-12-01

    Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.

  15. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    NASA Astrophysics Data System (ADS)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other similar disks suggest that the size of the stellar orbits has significantly decreased as a consequence of disk formation.

  16. Computational and theoretical analysis of free surface flow in a thin liquid film under zero and normal gravity

    NASA Technical Reports Server (NTRS)

    Faghri, Amir; Swanson, Theodore D.

    1988-01-01

    The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.

  17. The mixing of rain with near-surface water

    Treesearch

    Dennis F. Houk

    1976-01-01

    Rain experiments were run with various temperature differences between the warm rain and the cool receiving water. The rain intensities were uniform and the raindrop sizes were usually uniform (2.2 mm, 3.6 mm, and 5.5 mm diameter drops). Two drop size distributions were also used.

  18. Unraveling the Helix Nebula: Its Structure and Knots

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; McCullough, Peter R.; Meixner, Margaret

    2004-11-01

    Through Hubble Space Telescope (HST) imaging of the inner part of the main ring of the Helix Nebula, together with CTIO 4 m images of the fainter outer parts, we have a view of unprecedented quality of the nearest bright planetary nebula. These images have allowed us to determine that the main ring of the nebula is composed of an inner disk of about 499" diameter (0.52 pc) surrounded by an outer ring (in reality a torus) of 742" diameter (0.77 pc) whose plane is highly inclined to the plane of the disk. This outer ring is surrounded by an outermost ring of 1500" (1.76 pc) diameter, which is flattened on the side colliding with the ambient interstellar medium. The inner disk has an extended distribution of low-density gas along its rotational axis of symmetry, and the disk is optically thick to ionizing radiation, as is the outer ring. Published radial velocities of the knots provide support for the two-component structure of the main ring of the nebula and for the idea that the knots found there are expanding along with the nebular material from which they recently originated. These velocities indicate a spatial expansion velocity of the inner disk of 40 and 32 km s-1 for the outer ring, which yields expansion ages of 6560 and 12,100 yr, respectively. The outermost ring may be partially ionized through scattered recombination continuum from the inner parts of the nebula, but shocks certainly are occurring in it. This outermost ring probably represents a third period of mass loss by the central star. There is one compact, outer object that is unexplained, showing shock structures indicating a different orientation of the gas flow from that of the nebula. There is a change in the morphology of the knots as a function of the distance from the local ionization front. This supports a scenario in which the knots are formed in or near the ionization front and are then sculpted by the stellar radiation from the central star as the ionization front advances beyond them. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Based in part on observations obtained at the Cerro Tololo Inter-American Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a Cooperative Agreement with the National Science Foundation.

  19. Determination of wear metals in engine oil by mild acid digestion and energy dispersive X-ray fluorescence spectrometry using solid phase extraction disks.

    PubMed

    Yang, Zheng; Hou, Xiandeng; Jones, Bradley T

    2003-03-10

    A simple, particle size-independent spectrometric method has been developed for the multi-element determination of wear metals in used engine oil. A small aliquot (0.5 ml) of an acid-digested oil sample is spotted onto a C-18 solid phase extraction disk to form a uniform thin film. The dried disk is then analyzed directly by energy dispersive X-ray fluorescence spectrometry. This technique provides a homogeneous and reproducible sample surface to the instrument, thus overcoming the typical problems associated with uneven particle size distribution and sedimentation. As a result, the method provides higher precision and accuracy than conventional methods. Furthermore, the disk sample may be stored and re-analyzed or extracted at a later date. The signals arising from the spotted disks, and the calibration curves constructed from them, are stable for at least 2 months. The limits of detection for Fe, Cu, Zn, Pb, and Cr are 5, 1, 4, 2, and 4 microg g(-1), respectively. Recoveries of these elements from spiked oil samples range from 92 to 110%. The analysis of two standard reference materials and a used oil sample produced results comparable to those found by inductively coupled plasma atomic emission spectrometry.

  20. Synthesis and characterization of silver/diatomite nanocomposite by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Quoc, Le Anh; Hien, Nguyen Quoc

    2017-10-01

    Silver nanoparticles (AgNPs) with diameter about 9 nm were deposited on diatomite by irradiation under electron beam of diatomite suspension containing 10 mM AgNO3 in 1% chitosan solution, at the dose of 20.2 kGy. The AgNPs/diatomite nanocomposite was characterized by UV-Vis spectroscopy, TEM image and energy dispersive X-ray spectroscopy (EDX). The antibacterial activity of the AgNPs/diatomite against E. coli and S. aureus was evaluated by reduction of bacterial colonies on spread plates and inhibition zone diameter on diffusion disks.

  1. A Variable Diameter Short Haul Civil Tiltrotor

    NASA Technical Reports Server (NTRS)

    Wang, James M.; Jones, Christopher T.; Nixon, Mark W.

    1999-01-01

    The Short-Haul-Civil-tiltrotor (SHCT) component of the NASA Aviation System Capacity Program is an effort to develop the technologies needed for a potential 40-passenger civil tiltrotor. The variable diameter tiltrotor (VDTR) is a Sikorsky concept aimed at improving tiltrotor hover and cruise performance currently limited by disk loading that is much higher in hover than conventional helicopter, and much lower in cruise than turbo-prop systems. This paper describes the technical merits of using a VDTR on a SHCT aircraft. The focus will be the rotor design.

  2. High Temperature, Slow Strain Rate Forging of Advanced Disk Alloy ME3

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; OConnor, Kenneth

    2001-01-01

    The advanced disk alloy ME3 was designed in the HSR/EPM disk program to have extended durability at 1150 to 1250 F in large disks. This was achieved by designing a disk alloy and process producing balanced monotonic, cyclic, and time-dependent mechanical properties. combined with robust processing and manufacturing characteristics. The resulting baseline alloy, processing, and supersolvus heat treatment produces a uniform, relatively fine mean grain size of about ASTM 7, with as-large-as (ALA) grain size of about ASTM 3. There is a long term need for disks with higher rim temperature capabilities than 1250 F. This would allow higher compressor exit (T3) temperatures and allow the full utilization of advanced combustor and airfoil concepts under development. Several approaches are being studied that modify the processing and chemistry of ME3, to possibly improve high temperature properties. Promising approaches would be applied to subscale material, for screening the resulting mechanical properties at these high temperatures. n obvious path traditionally employed to improve the high temperature and time-dependent capabilities of disk alloys is to coarsen the grain size. A coarser grain size than ASTM 7 could potentially be achieved by varying the forging conditions and supersolvus heat treatment. The objective of this study was to perform forging and heat treatment experiments ("thermomechanical processing experiments") on small compression test specimens of the baseline ME3 composition, to identify a viable forging process allowing significantly coarser grain size targeted at ASTM 3-5, than that of the baseline, ASTM 7.

  3. Development of Ordered, Porous (Sub-25 nm Dimensions) Surface Membrane Structures Using a Block Copolymer Approach.

    PubMed

    Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A

    2018-05-08

    In an effort to develop block copolymer lithography to create high aspect vertical pore arrangements in a substrate surface we have used a microphase separated poly(ethylene oxide) -b- polystyrene (PEO-b-PS) block copolymer (BCP) thin film where (and most unusually) PS not PEO is the cylinder forming phase and PEO is the majority block. Compared to previous work, we can amplify etch contrast by inclusion of hard mask material into the matrix block allowing the cylinder polymer to be removed and the exposed substrate subject to deep etching thereby generating uniform, arranged, sub-25 nm cylindrical nanopore arrays. Briefly, selective metal ion inclusion into the PEO matrix and subsequent processing (etch/modification) was applied for creating iron oxide nanohole arrays. The oxide nanoholes (22 nm diameter) were cylindrical, uniform diameter and mimics the original BCP nanopatterns. The oxide nanohole network is demonstrated as a resistant mask to fabricate ultra dense, well ordered, good sidewall profile silicon nanopore arrays on substrate surface through the pattern transfer approach. The Si nanopores have uniform diameter and smooth sidewalls throughout their depth. The depth of the porous structure can be controlled via the etch process.

  4. Gardner Transition in Physical Dimensions

    NASA Astrophysics Data System (ADS)

    Hicks, C. L.; Wheatley, M. J.; Godfrey, M. J.; Moore, M. A.

    2018-06-01

    The Gardner transition is the transition that at mean-field level separates a stable glass phase from a marginally stable phase. This transition has similarities with the de Almeida-Thouless transition of spin glasses. We have studied a well-understood problem, that of disks moving in a narrow channel, which shows many features usually associated with the Gardner transition. We show that some of these features are artifacts that arise when a disk escapes its local cage during the quench to higher densities. There is evidence that the Gardner transition becomes an avoided transition, in that the correlation length becomes quite large, of order 15 particle diameters, even in our quasi-one-dimensional system.

  5. Powder Metallurgy Fabrication of Molybdenum Accelerator Target Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowden, Richard Andrew; Kiggans Jr., James O.; Nunn, Stephen D.

    2015-07-01

    Powder metallurgy approaches for the fabrication of accelerator target disks are being examined to support the development of Mo-99 production by NorthStar Medical Technologies, LLC. An advantage of powder metallurgy is that very little material is wasted and, at present, dense, quality parts are routinely produced from molybdenum powder. The proposed targets, however, are thin wafers, 29 mm in diameter with a thickness of 0.5 mm, with very stringent dimensional tolerances. Although tooling can be machined to very high tolerance levels, the operations of powder feed, pressing and sintering involve complicated mechanisms, each of which affects green density and shrinkage,more » and therefore the dimensions and shape of the final product. Combinations of powder morphology, lubricants and pressing technique have been explored to produce target disks with minimal variations in thickness and little or no distortion. In addition, sintering conditions that produce densities for optimum target dissolvability are being determined.« less

  6. Fluorescence enhancement near single TiO2 nanodisks

    NASA Astrophysics Data System (ADS)

    Lin, H.-J.; de Oliveira Lima, K.; Gredin, P.; Mortier, M.; Billot, L.; Chen, Z.; Aigouy, L.

    2017-12-01

    We present a near-field optical study of TiO2 nanodisks by fluorescence scanning near-field optical microscopy. The localization of light and the fluorescence enhancement near the dielectric structures are visualized with a lateral resolution of ˜λ/5 using an Er/Yb-codoped fluorescent nanocrystal glued at the end of a sharp scanning tip. We observed that the intensity patterns strongly depend on the disk size, forming lobes for a diameter close to the wavelength and a single bright spot for smaller structures. Although the experiments were performed out of resonance, a maximum fluorescence enhancement of 2.3 was observed near 700 nm-wide disks. The evolution of the fluorescence pattern as a function of the disk size is in good agreement with the near-field maps calculated by the finite-difference time-domain method, in both two and three dimensions above the structures.

  7. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    PubMed

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  8. Comparison between Disk Diffusion and Microdilution Methods for Determining Susceptibility of Clinical Fungal Isolates to Caspofungin▿

    PubMed Central

    Milici, Maria Eleonora; Maida, Carmelo Massimo; Spreghini, Elisabetta; Ravazzolo, Barbara; Oliveri, Salvatore; Scalise, Giorgio; Barchiesi, Francesco

    2007-01-01

    We compared the caspofungin (CAS) susceptibility testing results generated by the disk diffusion (DD) assay with the results of the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BD) reference method for 106 yeast isolates. The isolates represented 11 different fungal species, including Candida albicans (n = 50), C. parapsilosis (n = 10), C. glabrata (n = 10), C. tropicalis (n = 10), C. guillermondii (n = 6), C. rugosa (n = 5), C. krusei (n = 5), C. kefyr (n = 2), C. pelliculosa (n = 2), Saccharomyces cerevisiae (n = 3), and Geotrichum candidum (n = 3). The DD assay was performed in supplemented Mueller-Hinton agar with CAS, which was tested at concentrations of 2, 10, and 25 μg per disk. MICs and inhibition zone diameters were evaluated at 24 and 48 h. In general, the results obtained by the DD assay correlated well with those obtained by the BD method. In particular, a significant correlation between methods was observed when CAS was used at concentration of 2 μg/disk at a reading time of either 24 or 48 h. PMID:17728477

  9. Modeling distortion of HIT by an Actuator Disk in a periodic domain

    NASA Astrophysics Data System (ADS)

    Ghate, Aditya; Ghaisas, Niranjan; Lele, Sanjiva

    2017-11-01

    We study the distortion of incompressible, homogeneous isotropic turbulence (HIT) by a dragging actuator disk with a fixed thrust coefficient (under the large Reynolds number limit), using Large Eddy Simulation (LES). The HIT inflow is tailored to ensure that the largest length scales in the flow are smaller than the actuator disk diameter in order to minimize the meandering of the turbulent wake and isolate the length scales that undergo distortion. The numerical scheme (Fourier collocation with dealiasing) and the SGS closure (anisotropic minimum dissipation model) are carefully selected to minimize numerical artifacts expected due to the inviscid assumption. The LES is used to characterize the following 3 properties of the flow a) distortion of HIT due to the expanding streamtube resulting in strong anisotropy, b) turbulent pressure modulation across the actuator disk, and the c) turbulent wake state. Finally, we attempt to model the initial distortion and the pressure modulation using a WKB variant of RDT solved numerically using a set of discrete Gabor modes. Funding provided by Precourt Institute for Energy at Stanford University.

  10. Coherent structures in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Xue, Jingyu; Mao, Xuerui; Caulfield, C. P.

    2017-02-01

    We investigate experimentally the nonlinear structures that develop from interacting vortex rings induced by a sinusoidally oscillating ellipsoidal disk in fluid at rest. We vary the scaled amplitude or Keulegan-Carpenter number 0.3

  11. Measuring the Accelerations of Water Megamasers in Active Galaxy J0437+2456

    NASA Astrophysics Data System (ADS)

    Turner, Jeremy; Jeremy Turner

    2018-01-01

    The Megamaser Cosmology Project is measuring the Hubble constant using observations of 22 GHz water megamasers in the accretion disks of active galaxies within the Hubble flow. This approach uses the dynamics of the megamaser disks to determine their physical sizes and thereby find the angular-diameter distances to galaxies without relying on the cosmic distance ladder. We present Green Bank Telescope observations and analysis of the maser disk in the galaxy J0437+2456, which encircles a 2.9×106 M⊙ supermassive black hole. With spectral monitoring observations spanning over four years, we measure the centripetal acceleration of each individual maser component by tracking its velocity drift over time. These accelerations will be used in later work to model the maser disk and determine the distance to the galaxy. Our acceleration measurements use an iterative least squares fitting technique. For the systemic maser features, we find a mean acceleration of 1.87 ± 0.47 km/s/yr. This project was completed as part of the NSF REU program at NRAO.

  12. A battery-run pulsed motor with inherent dynamic electronic switch control

    NASA Astrophysics Data System (ADS)

    Tripathi, K. C.; Lal, P.; Sarma, P. R.; Sharma, A. K.; Prakash, V.

    1980-02-01

    A new type of battery-run brushless ferrite-magnet dc motor system is described. Its rotor part consists of a few permanent ceramic (ferrite) magnets uniformly spread on the rim of a disk (wheel) and the stator part consists of electromagnets placed in such a way that when energized, they always form a repulsive couple to rotate the disk. A sensor coil is placed to give an induced pulse signal, which acts as an inherent dynamic switching time control for the automatic electronic control system. Control of speed, brake system, and safety measures are also discussed. Experimental values for the present system are given. Some possible applications are suggested.

  13. Uniformly sized gold nanoparticles derived from PS-b-P2VP block copolymer templates for the controllable synthesis of Si nanowires.

    PubMed

    Lu, Jennifer Q; Yi, Sung Soo

    2006-04-25

    A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.

  14. Novel cylindrical illuminator tip for ultraviolet light delivery

    NASA Astrophysics Data System (ADS)

    Shangguan, HanQun; Haw, Thomas E.; Gregory, Kenton W.; Casperson, Lee W.

    1993-06-01

    The design, processing, and sequential testing of a novel cylindrical diffusing optical fiber tip for ultraviolet light delivery is described. This device has been shown to uniformly (+/- 15%) illuminate angioplasty balloons, 20 mm in length, that are used in an experimental photochemotherapeutic treatment of swine intimal hyperplasia. Our experiments show that uniform diffusing tips of < 400 micron diameter can be reliably constructed for this and other interstitial applications. Modeling results indicate that this design is scalable to smaller diameters. The diffusing tips are made by stripping the protective buffer and etching away the cladding over a length of 20 mm from the fiber tip and replacing it with a thin layer of optical epoxy mixed with Al2O3 powder. To improve the uniformity and ease of fabrication, we have evaluated a new device configuration where the tip is etched into a modified conical shape, and the distal end face is polished and then coated with an optically opaque epoxy. This is shown to uniformly scatter approximately 70% of the light launched into the fiber without forward transmission.

  15. Aurora and Non-Auroral X-ray Emissions from Jupiter: A Comparative View

    NASA Technical Reports Server (NTRS)

    Bhardwal, Anil; Elsner, Ron; Gladstone, Randy; Waite, Hunter, Jr.; Lugaz, Noe; Cravens, Tom; Branduardi-Raymont, Graziella; Ramsay, Gavin; Soria, Rob; Ford, Peter

    2004-01-01

    Jovian X-rays can be broadly classified into two categories: (1) auroral emission, which is confined to high-latitudes (approximately greater than 60 deg.) at both polar regions, and (2) dayglow emission, which originates from the sunlit low-latitude (approximately less than 50 deg.) regions of the disk (hereafter called disk emissions). Recent X-ray observations of Jupiter by chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the approximately 40 plus or minus 20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them.

  16. The Stationary Condensation and Radial Outflow of a Liquid Film on a Horizontal Disk

    NASA Technical Reports Server (NTRS)

    Bolshinskiy, Leonid; Frenkel, Alexander

    2008-01-01

    The application of capillary screen liquid acquisition devices to space-based cryogenic propulsion systems is expected to necessitate thermodynamic conditioning in order to stabilize surface tension retention characteristics. The present results have been obtained in the framework of the research of low gravity condensation-flow processes for conditioning cryogenic liquid acquisition devices. The following system is studied: On the top of a subcooled horizontal disk, a liquid film condenses from the ambient saturated vapor. The liquid is forcedly removed at the disk edge, and there is an outward radial flow of the film. Stationary regimes of the flow are uncovered such that (i) the gravity is negligible, being eclipsed by the capillary forces; (ii) the film thickness is everywhere much smaller than the disk radius; and (iii) the slow-flow lubrication approximation is valid. A nonlinear differential equation for the film thickness as a function of the radial coordinate is obtained. The (two-dimensional) fields of velocities, temperature and pressure in the film are explicitly determined by the radial profile of its thickness. The equilibrium is controlled by two parameters: (i) the vapor-disk difference of temperatures and (ii) the liquid exhaust rate. For the flow regimes with a nearly uniform film thickness, the governing equation linearizes, and the film interface is analytically predicted to have a concave-up quartic parabola profile. Thus, perhaps counter-intuitively, the liquid film is thicker at the edge and thinner at the center of the disk.

  17. NuSTAR Observations of Water Megamaser AGN

    NASA Technical Reports Server (NTRS)

    Masini, A.; Comastri, A.; Balokvic, M.; Zaw, I.; Puccetti, S.; Ballantyne, D. R.; Bauer, F. E.; Boggs, S. E.; Brandt, W. N.; Zhang, William W.

    2016-01-01

    Aims. We study the connection between the masing disk and obscuring torus in Seyfert 2 galaxies. Methods. We present a uniform X-ray spectral analysis of the high energy properties of 14 nearby megamaser active galactic nuclei observed by NuSTAR. We use a simple analytical model to localize the maser disk and understand its connection with the torus by combining NuSTAR spectral parameters with the available physical quantities from VLBI mapping.Results. Most of the sources that we analyzed are heavily obscured, showing a column density in excess of approx.10(exp 23) cm(exp -2); in particular, 79% are Compton-thick [NH is greater than 1.5 x 10(exp 24) cm(exp -2)]. When using column densities measured by NuSTAR with the assumption that the torus is the extension of the maser disk, and further assuming a reasonable density profile, we can predict the torus dimensions. They are found to be consistent with mid-IR interferometry parsec-scale observations of Circinus and NGC 1068. In this picture, the maser disk is intimately connected to the inner part of the torus. It is probably made of a large number of molecular clouds that connect the torus and the outer part of the accretion disk, giving rise to a thin disk rotating in most cases in Keplerian or sub-Keplerian motion. This toy model explains the established close connection between water megamaser emission and nuclear obscuration as a geometric effect.

  18. Elastomeric member for energy storage device

    DOEpatents

    Hoppie, Lyle O.; Chute, Richard

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16), disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section, transition end sections, and is attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the member, a substantially uniform diameter assembly results to minimize the required volume of the surrounding housing (14). During manufacture, woven wire mesh sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle. Each sleeve (26, 28) contracts with the contraction of the associated transition section to maintain the bond therebetween.

  19. Superparamagnetic properties of carbon nanotubes filled with NiFe{sub 2}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stojak Repa, K.; Israel, D.; Phan, M. H., E-mail: phanm@usf.edu, E-mail: sharihar@usf.edu

    2015-05-07

    Multi walled carbon nanotubes (MWCNTs) were successfully synthesized using custom-made 80 nm pore-size alumina templates, and were uniformly filled with nickel ferrite (NFO) nanoparticles of 7.4 ± 1.7 nm diameter using a novel magnetically assisted capillary action method. X-ray diffraction confirmed the inverse spinel phase for the synthesized NFO. Transmission electron microscopy confirms spherical NFO nanoparticles with an average diameter of 7.4 nm inside MWCNTs. Magnetometry indicates that both NFO and NFO-filled MWCNTs present a blocking temperature around 52 K, with similar superparamagnetic-like behavior, and weak dipolar interactions, giving rise to a super-spin-glass-like behavior at low temperatures. These properties along with the uniformity of sub-100 nm structuresmore » and the possibility of tunable magnetic response in variable diameter carbon nanotubes make them ideal for advanced biomedical and microwave applications.« less

  20. Field emitter arrays and displays produced by ion tracking lithography

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Musket, R. G.; Bernhardt, A. F.

    2005-12-01

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter (∼10 nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters (∼100 nm diameter electron guns) for CTC's Thin CRTTM displays, which have been fabricated to diagonal dimensions >13 in. Additional technological applications of ion tracking lithography will be briefly covered.

  1. HUBBLE SEES DISKS AROUND YOUNG STARS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left]: This Wide Field and Planetary Camera 2 (WFPC2) image shows Herbig-Haro 30 (HH 30), the prototype of a young star surrounded by a thin, dark disk and emitting powerful gaseous jets. The disk extends 40 billion miles from left to right in the image, dividing the nebula in two. The central star is hidden from direct view, but its light reflects off the upper and lower surfaces of the disk to produce the pair of reddish nebulae. The gas jets are shown in green. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Top right]: DG Tauri B appears very similar to HH 30, with jets and a central dark lane with reflected starlight at its edges. In this WFPC2 image, the dust lane is much thicker than seen in HH 30, indicating that dusty material is still in the process of falling onto the hidden star and disk. The bright jet extends a distance of 90 billion miles away from the system. Credit: Chris Burrows (STScI), the WFPC2 Science Team and NASA [Lower left]: Haro 6-5B is a nearly edge-on disk surrounded by a complex mixture of wispy clouds of dust and gas. In this WFPC2 image, the central star is partially hidden by the disk, but can be pinpointed by the stubby jet (shown in green), which it emits. The dark disk extends 32 billion miles across at a 90-degree angle to the jet. Credit: John Krist (STScI), the WFPC2 Science Team and NASA [Lower right]: HK Tauri is the first example of a young binary star system with an edge-on disk around one member of the pair. The thin, dark disk is illuminated by the light of its hidden central star. The absence of jets indicates that the star is not actively accreting material from this disk. The disk diameter is 20 billion miles. The brighter primary star appears at top of the image. Credit: Karl Stapelfeldt (JPL) and colleagues, and NASA

  2. Tetracycline impregnation affects degradation of porcine collagen matrix in healthy and diabetic rats.

    PubMed

    Tal, Haim; Weinreb, Miron; Shely, Asaf; Nemcovsky, Carlos E; Moses, Ofer

    2016-07-01

    The present study evaluated the degradation of collagen matrix (CM) immersed in tetracycline (TTC) or phosphate-buffered saline (PBS) in diabetic and normoglycemic rats. Diabetes was induced in 15 rats by systemic streptozotocin (STZ) (experimental); 15 healthy rats served as controls. One day before implantation 60 CM disks, 5 mm in diameter, were labeled with biotin: 30 were immersed in tetracycline (TTC) and 30 in PBS. One disk of each type was implanted subdermally in each rat. Animals were euthanized after 3 weeks, and tissue specimens containing the disks were prepared for histologic analysis. Horseradish peroxidase (HRP)-conjugated streptavidin was used to detect the remaining biotinylated collagen. Residual collagen area within the CM disks was analyzed and compared to baseline. Diabetes significantly increased the CM degradation. Immersion of the CM disks in a 50-mg/mL TTC solution before implantation decreased its degradation both in diabetic and normoglycemic rats. Diabetes significantly increases collagen matrix degradation; immersion of collagen matrix in TTC before implantation decreases its degradation in both diabetic and normoglycemic conditions. Immersion of medical collagen devices in TTC may be an effective means to decrease their resorption rate and increase their effectiveness, especially in situations with increased degradation such as diabetes.

  3. Visual stimuli that elicit appetitive behaviors in three morphologically distinct species of praying mantis.

    PubMed

    Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole

    2011-09-01

    We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.

  4. A Simple and Low-Cost Ultramicroelectrode Fabrication and Characterization Method for Undergraduate Students

    ERIC Educational Resources Information Center

    Sur, Ujjal Kumar; Dhason, A.; Lakshminarayanan, V.

    2012-01-01

    A laboratory experiment is described in which students fabricate disk-shaped gold and platinum microelectrodes with diameters of 10-50 [mu]m by sealing sodalime glass with metal microwires. The electrodes are characterized by performing cyclic voltammetry in aqueous and acetonitrile solution. Commercial microelectrodes are expensive (cost depends…

  5. Glass Frit Filters for Collecting Metal Oxide Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John

    2005-01-01

    Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.

  6. Two-Stage Centrifugal Fan

    NASA Technical Reports Server (NTRS)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  7. Computations for nanofluid flow near a stretchable rotating disk with axial magnetic field and convective conditions

    NASA Astrophysics Data System (ADS)

    Mushtaq, A.; Mustafa, M.

    In this paper, the classical Von Kármán problem of infinite disk is extended when an electrically conducting nanofluid fills the space above the rotating disk which also stretches uniformly in the radial direction. Buongiorno model is considered in order to incorporate the novel Brownian motion and thermophoresis effects. Heat transport mechanism is modeled through more practically feasible convective conditions while Neumann type condition for nanoparticle concentration is adopted. Modified Von Kármán transformations are utilized to obtain self-similar differential system which is treated through a numerical method. Stretching phenomenon yields an additional parameter c which compares the stretch rate with the swirl rate. The effect of parameter c is to reduce the temperature and nanoparticle concentration profiles. Torque required to main steady rotation of the disk increases for increasing values of c while an improvement in cooling rate is anticipated in case of radial stretching, which is important in engineering processes. Brownian diffusion does not influence the heat flux from the stretching wall. Moreover, the wall heat flux has the maximum value for the situation in which thermoporetic force is absent.

  8. Two generations of the tongue and gustatory organs in the development of Hynobius dunni Tago

    PubMed Central

    Żuwała, K; Kato, S; Jakubowski, M

    2002-01-01

    In the development of Hynobius dunni there are two consecutive generations of the tongue and two generations of gustatory organs (taste buds and taste disks). The anlage of the developing secondary tongue appears just in front of the free ending of the primary tongue beginning at the larval developmental stage 62. From stage 67, a gradual reduction in the anterior part of the gill skeleton that supports the primary tongue occurs as the developing secondary tongue replaces the primary one. The lining of the entire oropharyngeal cavity of larvae contains only gustatory organs of the taste bud (TB) type. In younger larvae, the sensory area of a TB has a diameter of between 10 and 13 μm, while in older larvae, TBs reach 16–18 μm in diameter. After metamorphosis, some gustatory organs in the secondary tongue with a sensory area of 26–36 μm in diameter appear. In older animals they may reach as much as 56–71 μm. In other regions of the oropharyngeal epithelium than the tongue, these organs have an ellipsoid shape with a major axis of about 50 μm. On the basis of the cytomorphological criteria established previously, these organs were designated as taste disks. Thus, the presence of two generations of gustatory organs is characteristic of some urodeles, as well as frogs. PMID:12171480

  9. Pressure loss modulus correlation for Delta p across uniformly distributed-loss devices

    NASA Technical Reports Server (NTRS)

    Nunz, Gregory J.

    1994-01-01

    A dimensionless group, called a pressure loss modulus (N(sub PL)), is introduced that, in conjunction with an appropriately defined Reynolds number, is of considerable engineering utility in correlating steady-state Delta p vs flow calibration data and subsequently as a predictor, using the same or a different fluid, in uniformly distributed pressure loss devices. It is particularly useful under operation in the transition regime. Applications of this simple bivariate correlation to three diverse devices of particular interest for small liquid rocket engine fluid systems are discussed: large L/D capillary tube restrictors, packed granular catalyst beds, and stacked vortex-loss disk restrictors.

  10. Discovery and physical characterization of a large scattered disk object at 92 au

    DOE PAGES

    Gerdes, D. W.; Sako, M.; Hamilton, S.; ...

    2017-04-10

    We report the observation and physical characterization of the possible dwarf planet 2014 UZmore » $$_{224}$$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $$(a,e,i) = (109~\\mathrm{AU},2 0.54, 26.8^{\\circ})$$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. As a result, the signal is detected at 7$$\\sigma$$ significance, from which we determine a $V$-band albedo of $$18.0^{+4.0}_{-2.9}\\mathrm{(stat)}^{+1.5}_{-1.2}\\mathrm{(sys)}$$ percent and a diameter of $$541^{+47}_{-51}\\mathrm{(stat)}^{+19}_{-20}\\mathrm{(sys)}$$~km, assuming a spherical body with uniform surface properties.« less

  11. Discovery and physical characterization of a large scattered disk object at 92 au

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, D. W.; Sako, M.; Hamilton, S.

    We report the observation and physical characterization of the possible dwarf planet 2014 UZmore » $$_{224}$$ ("DeeDee"), a dynamically detached trans-Neptunian object discovered at 92 AU. This object is currently the second-most distant known trans-Neptunian object with reported orbital elements, surpassed in distance only by the dwarf planet Eris. The object was discovered with an $r$-band magnitude of 23.0 in data collected by the Dark Energy Survey between 2014 and 2016. Its 1140-year orbit has $$(a,e,i) = (109~\\mathrm{AU},2 0.54, 26.8^{\\circ})$$. It will reach its perihelion distance of 38 AU in the year 2142. Integrations of its orbit show it to be dynamically stable on Gyr timescales, with only weak interactions with Neptune. We have performed followup observations with ALMA, using 3 hours of on-source integration time to measure the object's thermal emission in the Rayleigh-Jeans tail. As a result, the signal is detected at 7$$\\sigma$$ significance, from which we determine a $V$-band albedo of $$18.0^{+4.0}_{-2.9}\\mathrm{(stat)}^{+1.5}_{-1.2}\\mathrm{(sys)}$$ percent and a diameter of $$541^{+47}_{-51}\\mathrm{(stat)}^{+19}_{-20}\\mathrm{(sys)}$$~km, assuming a spherical body with uniform surface properties.« less

  12. Solar System Research with the Spacewatch 1.8-m Telescope

    NASA Technical Reports Server (NTRS)

    McMillan, Robert S.

    2001-01-01

    During this grant period, the 1.8-m Spacewatch telescope was put into routine operation to search for asteroids and comets ranging in location from near-Earth space to regions beyond the orbit of Neptune. All of these classes of objects can be detected simultaneously with our uniform scanning procedures. We are studying near Earth objects (NEOs), main belt asteroids, comets, Centaurs, and trans-Neptunian objects (TNOs), as well as the interrelationships of these classes and their bearing on the origin and evolution of the solar system. The Spacewatch 1.8-meter telescope is sensitive to V(mag) < 22.6 in sidereal scanning mode and is able to reach even fainter in longer 'staring' exposures, with a field of view 0.5 degrees square. These faint limits make the operation of the Spacewatch 1.8-m telescope complementary to asteroid surveys being done by other groups. Specifically, EAs smaller than 100 m in diameter and small main belt asteroids can be found, as well as more distant objects such as Centaurs/Scattered Disk Objects (SDOs) and TNOs. The 1.8-m telescope is also being used to do recoveries and astrometry of recently-discovered asteroids that subsequently become too faint for the other groups before good orbits are established.

  13. Extinction in SC galaxies

    NASA Astrophysics Data System (ADS)

    Giovanelli, Riccardo; Haynes, Martha P.; Salzer, John J.; Wegner, Gary; da Costa, Luiz N.; Freudling, Wolfram

    1994-06-01

    We analyze the photometric properties of a sample of Sbc-Sc galaxies with known redshifts, single-dish H I profiles, and Charge Coupled Device (CCD) I band images. We derive laws that relate the measured isophotal radius at muI = 23.5, magnitude, scale length, and H I flux to the face-on aspect. We find spiral galaxies to be substantially less transparent than suggested in most previous determinations, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modeling exercise that utilizes the 'triplex' model of Disney et al. (1989) to obtain upper limits of the disk opacity. Within the framework of that model, and with qualitative consideration of the effects of scattering on extinction, we estimate late spiral disks at I band to have central optical depths tauI(0) less than 5 and dust absorbing layers with scale heights on the order of half that of the stellar component or less. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully-Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO-Uppsala) are nearly proportional to face-on isophotal diameters.

  14. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  15. The stability of perfect elliptic disks. 1: The maximum streaming case

    NASA Technical Reports Server (NTRS)

    Levine, Stephen E.; Sparke, Linda S.

    1994-01-01

    Self-consistent distribution functions are constructed for two-dimensional perfect elliptic disks (for which the potential is exactly integrable) in the limit of maximum streaming; these are tested for stability by N-body integration. To obtain a discrete representation for each model, simulated annealing is used to choose a set of orbits which sample the distribution function and reproduce the required density profile while carrying the greatest possible amount of angular momentum. A quiet start technique is developed to place particles on these orbits uniformly in action-angle space, making the initial conditions as smooth as possible. The roundest models exhibit spiral instabilities similar to those of cold axisymmetric disks; the most elongated models show bending instabilities like those seen in prolate systems. Between these extremes, there is a range of axial ratios 0.25 approximately less than b/a approximately less than 0.6 within which these models appear to be stable. All the methods developed in this investigation can easily be extended to integrable potentials in three dimensions.

  16. Kinematics in the Circumnuclear Disk

    NASA Astrophysics Data System (ADS)

    Mills, Elisabeth; Casey-Clyde, J. Andrew; Rodriguez, Julio; Kruijssen, Diederik; Martin, Sergio; Moser, Lydia; Riquelme, Denise; Harada, Nanase; Zhao, Jun-Hui; Lu, Hauyu

    2018-01-01

    The Circumnuclear Disk (CND) extends from 1.5-5pc in radius around our Galaxy's central supermassive black hole, Sagittarius A*. New ALMA observations reveal that the CND is a more complex system than previously thought, containing multiple streams, filaments and other structures inconsistent with the uniform circular rotation that is typically assumed for this source. We will present position-position-velocity maps of this region using the HNC 3-2 and HCN 3-2 transitions, which reveal line of sight velocities that are highly discontinuous in several regions, suggesting the CND consists of several overlapping and possibly interacting clouds, rather than one continuous and circularized disk. In particular, we single out a uniquely linear stream on the eastern side of this region, which is continuous in both position and velocity, with a size of 3 x 0.1 pc and velocities ranging from -50 to 100 km/s. For this stream, we will also present the results of recently performed orbital fitting, establishing its 3 dimensional position in the central potential around Sagittarius A*.

  17. Equilibrium configurations of perfect fluid orbiting Schwarzschild-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Stuchlík, Z.; Slaný, P.; Hledík, S.

    2000-11-01

    The hydrodynamical structure of perfect fluid orbiting Schwarzschild-de Sitter black holes is investigated for configurations with uniform distribution of angular momentum density. It is shown that in the black-hole backgrounds admitting the existence of stable circular geodesics, closed equipotential surfaces with a cusp, allowing the existence of toroidal accretion disks, can exist. Two surfaces with a cusp exist for the angular momentum density smaller than the one corresponding to marginally bound circular geodesics; the equipotential surface corresponding to the marginally bound circular orbit has just two cusps. The outer cusp is located nearby the static radius where the gravitational attraction is compensated by the cosmological repulsion. Therefore, due to the presence of a repulsive cosmological constant, the outflow from thick accretion disks can be driven by the same mechanism as the accretion onto the black hole. Moreover, properties of open equipotential surfaces in vicinity of the axis of rotation suggest a strong collimation effects of the repulsive cosmological constant acting on jets produced by the accretion disks.

  18. SEEDS — Strategic explorations of exoplanets and disks with the Subaru Telescope —

    PubMed Central

    TAMURA, Motohide

    2016-01-01

    The first convincing detection of planets orbiting stars other than the Sun, or exoplanets, was made in 1995. In only 20 years, the number of the exoplanets including promising candidates has already accumulated to more than 5000. Most of the exoplanets discovered so far are detected by indirect methods because the direct imaging of exoplanets needs to overcome the extreme contrast between the bright central star and the faint planets. Using the large Subaru 8.2-m Telescope, a new high-contrast imager, HiCIAO, and second-generation adaptive optics (AO188), the most ambitious high-contrast direct imaging survey to date for giant planets and planet-forming disks has been conducted, the SEEDS project. In this review, we describe the aims and results of the SEEDS project for exoplanet/disk science. The completeness and uniformity of this systematic survey mean that the resulting data set will dominate this field of research for many years. PMID:26860453

  19. A new small-sized Theloderma (Anura: Rhacophoridae) from Laos.

    PubMed

    Sivongxay, Niane; Davankham, Monekham; Phimmachak, Somphouthone; Phoumixay, Keochay; Stuart, Bryan L

    2016-08-05

    A new species of the rhacophorid frog genus Theloderma is described from the forested shoreline of the Nam Lik Reservoir, Vientiane Province, Laos. The new species differs from its congeners by having the combination of males with SVL 17.0-20.6; pearly asperities on dorsum; no vomerine teeth; disc diameter of finger III ca. 40% of tympanum diameter; uniformly gray venter; light brown dorsum with darker brown and black markings; and a uniformly bronze iris with small black reticulations. Molecular phylogenetic analysis of mitochondrial DNA sequence data infers that the new species is most closely related to T. lateriticum from northern Vietnam. Evidence for the monophyly of Theloderma is reviewed.

  20. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  1. The Origin Of Phobos And Deimos By A Giant Impact

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.

    2011-10-01

    Despite many efforts an adequate theory describing the origin of Phobos and Deimos has not been realized. In recent years a number of separate observations suggest the possibility that the Martian satellites may have been the result of giant impact [1]. Similar to the Earth-Moon system, Mars has too much angular momentum. A planetesimal with 0.02 Mars masses must have collided with that planet early in its history in order for Mars to spin at its current rate [2]. Although subject to considerable error, current crater scaling laws and an analysis of the largest known impact basins on the Martian surface suggest that this planetesimal could have formed either the proposed 10,600 by 8,500-kmdiameter Borealis basin, the 4,970-km-diameter Elysium basin, the 4,500-km-diameter Daedalia basin or, alternatively, some other basin that is no longer identifiable. It is also probable that this object impacted Mars at a velocity great enough to vaporize rock (>7 km/s), which is necessary to place large amounts of material into orbit. If material vaporized from the collision with the Mars-spinning planetesimal were placed into orbit, an accretion disk would have resulted. It is possible that as material condensed and dissipated beyond the Roche limit forming small, low-mass satellites due to gravity instabilities within the disk. Once the accretion disk dissipated, tidal forces and libration would have pulled these satellites back down toward the Martian surface. In this scenario, Phobos and Deimos would have been among the first two satellites to form, and Deimos the only satellite formed--and preserved-- beyond synchronous rotation. The low mass of Phobos and Deimos is explained by the possibility that they are composed of loosely aggregated material from the accretion disk, which also implies that they do not contain any volatile elements. Their orbital eccentricity and inclination, which are the most difficult parameters to explain easily with the various capture scenarios, are the natural result of accretion from a circum-planetary disk.

  2. A combined compensation method for the output voltage of an insulated core transformer power supply

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.

    2014-06-15

    An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from themore » primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.« less

  3. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-03-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. We address experimentally how reducing friction affects shear jamming by using either teflon disks of teflon wrapped photoelastic particles. The teflon disks were placed in a wall driven 2D shear apparatus, in which we can probe shear stresses mechanically. Teflon-wrapped disks were placed in a bottom driven 2D shear apparatus (Ren et al., PRL 2013). Both apparatuses provide uniform simple shear. In all low- μ experiments, the shear jamming occurred, as observed through stress increases on the packing. However, the low- μ differences observed for ϕJ -ϕS were smaller than for higher friction particles. Ongoing work is studying systems using hydrogel disks, which have a lower friction coefficient than teflon. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  4. First VLTI/MIDI observations of a Be star: Alpha Arae

    NASA Astrophysics Data System (ADS)

    Chesneau, O.; Meilland, A.; Rivinius, T.; Stee, Ph.; Jankov, S.; Domiciano de Souza, A.; Graser, U.; Herbst, T.; Janot-Pacheco, E.; Koehler, R.; Leinert, C.; Morel, S.; Paresce, F.; Richichi, A.; Robbe-Dubois, S.

    2005-05-01

    We present the first VLTI/MIDI observations of the Be star alpha Ara (HD 158 427), showing a nearly unresolved circumstellar disk in the N band. The interferometric measurements made use of the UT1 and UT3 telescopes. The projected baselines were 102 and 74 meters with position angles of 7 ° and 55°, respectively. These measurements put an upper limit on the envelope size in the N band under the uniform disk approximation of φmax= 4±1.5 mas, corresponding to 14 R*, assuming R*=4.8 R⊙ and the Hipparcos distance of 74 pc. On the other hand the disk density must be large enough to produce the observed strong Balmer line emission. In order to estimate the possible circumstellar and stellar parameters we have used the SIMECA code developed by Stee et al. (1995, A&A, 300, 219) and Stee & Bittar (2001, A&A, 367, 532). Optical spectra taken with the échelle instrument Heros and the ESO-50 cm telescope, as well as infrared ones from the 1.6m Brazilian telescope were used together with the MIDI spectra and visibilities. These observations place complementary constraints on the density and geometry of the alpha Ara circumstellar disk. We discuss the potential truncation of the disk by a companion and we present spectroscopic indications of a periodic perturbation of some Balmer lines.

  5. A Demonstration of an Intelligent Control System for a Reusable Rocket Engine

    DTIC Science & Technology

    1992-06-01

    Research Center Cleveland, Ohio 44135 ABSTRACT DTIC QUALrI’ ’illE ,;TED 3 An Intelligent Control System for reusable rocket engines is under development at...through the ring seal may be written as rh,i,,g - 0.685 It Co d c~iiPexi g ( 3 )VRTIprt( where d. and cri6t now correspond to the shaft diameter and the ring...discharge coefficient of 0.9 for both seals and disk and shaft diameters of 6.0 and 2.0 inches respectively, equations I and 3 may be equated and the

  6. Solar oblateness from Archimedes to Dicke

    NASA Astrophysics Data System (ADS)

    Sigismondi, C.; Oliva, P.

    2005-10-01

    The non-spherical shape of the Sun has been invoked to explain the anomalous precession of Mercury. A brief history of some methods for measuring the solar diameter is presented. Archimedes was the first to give upper and lower values for the solar diameter in the third century before Christ. Then there followed the method of total eclipses, used after Halley's observative campaign of 1715 eclipse. We will also discuss the variant of partial eclipses, useful to measure different chords of the solar disk and the method of Dicke, which correlates oblateness with luminous excess in the equatorial zone.

  7. Dark zone in the centre of the Arago-Poisson diffraction spot of a helical laser beam

    NASA Astrophysics Data System (ADS)

    Emile, O.; Voisin, A.; Niemiec, R.; Viaris de Lesegno, B.; Pruvost, L.; Ropars, G.; Emile, J.; Brousseau, C.

    2013-03-01

    We report on the diffraction of non-zero Laguerre Gaussian laser beams by an opaque disk. We observe a tiny circular dark zone at the centre of the usual Arago-Poisson diffraction bright spot. For such non-diffracting dark hollow beams, we have measured diameters as small as 20 μm on distances of the order of ten metres, without focalization. Diameters depend on the diffracting object size and on the topological charge of the input Laguerre Gaussian beam. These results are in good agreement with theoretical considerations. Potential applications are then discussed.

  8. Starting characteristics and combustion performance of magnesium slurry in 6.5-inch-diameter ram-jet engine mounted in connected-pipe facility

    NASA Technical Reports Server (NTRS)

    Gibbs, James B

    1954-01-01

    The starting characteristics and combustion performance of slurry type fuels, consisting of 50 percent magnesium powder in a hydrocarbon carrier, have been investigated in a flight-type, 6.5-inch-diameter ram-jet engine in a connected-pipe facility. Quick, dependable starting of the engine was obtained by the use of a disk which blocked part of the combustor area downstream of the flame holder. Acceptable performance was achieved with a short fuel-air mixing length by the development of a fuel-distribution control sleeve.

  9. Aerodynamic Characterization of New Parachute Configurations for Low-Density Deceleration

    NASA Technical Reports Server (NTRS)

    Tanner, Christopher L.; Clark, Ian G.; Gallon, John C.; Rivellini, Tommaso P.; Witkowski, Allen

    2013-01-01

    The Low Density Supersonic Decelerator project performed a wind tunnel experiment on the structural design and geometric porosity of various sub-scale parachutes in order to inform the design of the 110ft nominal diameter flight test canopy. Thirteen different parachute configurations, including disk-gap-band, ring sail, disk sail, and star sail canopies, were tested at the National Full-scale Aerodynamics Complex 80- by 120-foot Wind Tunnel at NASA Ames Research Center. Canopy drag load, dynamic pressure, and canopy position data were recorded in order to quantify there lative drag performance and stability of the various canopies. Desirable designs would yield increased drag above the disk-gap-band with similar, or improved, stability characteristics. Ring sail parachutes were tested at geometric porosities ranging from 10% to 22% with most of the porosity taken from the shoulder region near the canopy skirt. The disk sail canopy replaced the rings lot portion of the ring sail canopy with a flat circular disk and wastested at geometric porosities ranging from 9% to 19%. The star sail canopy replaced several ringsail gores with solid gores and was tested at 13% geometric porosity. Two disk sail configurations exhibited desirable properties such as an increase of 6-14% in the tangential force coefficient above the DGB with essentially equivalent stability. However, these data are presented with caveats including the inherent differences between wind tunnel and flight behavior and qualitative uncertainty in the aerodynamic coefficients.

  10. Plasmonic graded nano-disks as nano-optical conveyor belt.

    PubMed

    Kang, Zhiwen; Lu, Haifei; Chen, Jiajie; Chen, Kun; Xu, Fang; Ho, Ho-Pui

    2014-08-11

    We propose a plasmonic system consisting of nano-disks (NDs) with graded diameters for the realization of nano-optical conveyor belt. The system contains a couple of NDs with individual elements coded with different resonant wavelengths. By sequentially switching the wavelength and polarization of the excitation source, optically trapped target nano-particle can be transferred from one ND to another. The feasibility of such function is verified based on the three-dimensional finite-difference time-domain technique and the Maxwell stress tensor method. Our design may provide an alternative way to construct nano-optical conveyor belt with which target molecules can be delivered between trapping sites, thus enabling many on-chip optofluidic applications.

  11. Low-β magnetic reconnection driven by the intense lasers with a double-turn capacitor-coil

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaoxia; Zhong, Jiayong; Zhang, Zhe; Zhou, Weimin; Teng, Jian; Li, Yutong; Han, Bo; Yuan, Dawei; Lin, Jun; Liu, Chang; Li, Yanfei; Zhu, Baojun; Wei, Huigang; Liang, Guiyun; Hong, Wei; He, Shukai; Yang, Siqian; Zhao, Yongqiang; Deng, Zhigang; Lu, Feng; Zhang, Zhimeng; Zhu, Bin; Zhou, Kainan; Su, Jingqin; Zhao, Zongqing; Gu, Yuqiu; Zhao, Gang; Zhang, Jie

    2018-06-01

    A double-turn capacitor-coil is used to produce a magnetic field (38.5 T) and construct a topology of magnetic reconnection in a low-β (β < 1) plasma environment. The device is constructed with two metallic U-turn coils connecting two parallel metallic disks. High energy lasers are employed to ablate one disk spontaneously driving two currents in the two coils, which produces an interactive magnetic field topology. We demonstrated through experiments and numerical simulations that the reconnection process takes place between two non-uniform magnetic fields created by the coils, and that the plasma state and the associated magnetic topology in the process can be seen via the technology of the optical probe beam and the proton backlight.

  12. Resolving the Nuclear Obscuring Disk in the Compton-thick Seyfert Galaxy NGC 5643 with ALMA

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; Pereira-Santaella, M.; García-Burillo, S.; Davies, R. I.; Combes, F.; Asmus, D.; Bunker, A.; Díaz-Santos, T.; Gandhi, P.; González-Martín, O.; Hernán-Caballero, A.; Hicks, E.; Hönig, S.; Labiano, A.; Levenson, N. A.; Packham, C.; Ramos Almeida, C.; Ricci, C.; Rigopoulou, D.; Rosario, D.; Sani, E.; Ward, M. J.

    2018-06-01

    We present ALMA Band 6 12CO(2–1) line and rest-frame 232 GHz continuum observations of the nearby Compton-thick Seyfert galaxy NGC 5643 with angular resolutions 0.″11–0.″26 (9–21 pc). The CO(2–1) integrated line map reveals emission from the nuclear and circumnuclear region with a two-arm nuclear spiral extending ∼10″ on each side. The circumnuclear CO(2–1) kinematics can be fitted with a rotating disk, although there are regions with large residual velocities and/or velocity dispersions. The CO(2–1) line profiles of these regions show two different velocity components. One is ascribed to the circular component and the other to the interaction of the AGN outflow, as traced by the [O III]λ5007 Å emission, with molecular gas in the disk a few hundred parsecs from the AGN. On nuclear scales, we detected an inclined CO(2–1) disk (diameter 26 pc, FWHM) oriented almost in a north–south direction. The CO(2–1) nuclear kinematics can be fitted with a rotating disk that appears to be tilted with respect to the large-scale disk. There are strong non-circular motions in the central 0.″2–0.″3 with velocities of up to 110 km s‑1. In the absence of a nuclear bar, these motions could be explained as radial outflows in the nuclear disk. We estimate a total molecular gas mass for the nuclear disk of M(H2) = 1.1 × 107 M ⊙ and an H2 column density toward the location of the AGN of N(H2) ∼ 5 × 1023 cm‑2, for a standard CO-to-H2 conversion factor. We interpret this nuclear molecular gas disk as the obscuring torus of NGC 5643 as well as the collimating structure of the ionization cone.

  13. Thick Disks in the Hubble Space Telescope Frontier Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Tompkins, Brittany

    Thick disk evolution is studied using edge-on galaxies in two Hubble Space Telescope Frontier Field Parallels. The galaxies were separated into 72 clumpy types and 35 spiral types with bulges. Perpendicular light profiles in F435W, F606W, and F814W ( B , V , and I ) passbands were measured at 1 pixel intervals along the major axes and fitted to sech{sup 2} functions convolved with the instrument line spread function (LSF). The LSF was determined from the average point spread function of ∼20 stars in each passband and field, convolved with a line of uniform brightness to simulate disk blurring.more » A spread function for a clumpy disk was also used for comparison. The resulting scale heights were found to be proportional to galactic mass, with the average height for a 10{sup 10±0.5} M {sub ⊙} galaxy at z = 2 ± 0.5 equal to 0.63 ± 0.24 kpc. This value is probably the result of a blend between thin and thick disk components that cannot be resolved. Evidence for such two-component structure is present in an inverse correlation between height and midplane surface brightness. Models suggest that the thick disk is observed best between the clumps, and there the average scale height is 1.06 ± 0.43 kpc for the same mass and redshift. A 0.63 ± 0.68 mag V − I color differential with height is also evidence for a mixture of thin and thick components.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Amy; Hughes, A. Meredith; Carpenter, John

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less

  15. Manual for Calculating the Seepage Strength of Earthfill Dams,

    DTIC Science & Technology

    1976-07-01

    gravity of material of soil particles; d--diameter of soil particles; dio...d 17 ...dsr-diameters of soil particles, the smallest of which in its...compcsition may be present as 10... 17 ...60% by weight; dci--diameter of (piping) particles of soil which may be carried away by the seepage flow; -dso Y1 d...should, however, be reduced, assuming: k" onnfrmsi S(Jk)dnonuniform soil = [(Jk)d]uniform soil ( 17 ) where 7is the coefficient of reduction (less than

  16. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NASA Astrophysics Data System (ADS)

    Wang, K.-S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    2012-07-01

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion process. Aims: This paper explores the kinematics of the gas around a young massive star with millimeter-wave interferometry to improve our understanding of the formation of massive stars though accretion. Methods: We use Plateau de Bure interferometric images to probe the environment of the nearby (~1 kpc) and luminous (~20 000 L⊙) high-mass (10-16 M⊙) young star AFGL 2591-VLA3 in continuum and in lines of HDO, H_218O and SO2 in the 115 and 230 GHz bands. Radiative transfer calculations are employed to investigate the kinematics of the source. Results: At ~0.5″ (500 AU) resolution, the line images clearly resolve the velocity field of the central compact source (diameter of ~800 AU) and show linear velocity gradients in the northeast-southwest direction. Judging from the disk-outflow geometry, the observed velocity gradient results from rotation and radial expansion in the equatorial region of VLA3. Radiative transfer calculations suggest that the velocity field is consistent with sub-Keplerian rotation plus Hubble-law like expansion. The line profiles of the observed molecules suggest a layered structure, with HDO emission arising from the disk mid-plane, H_218O from the warm mid-layer, and SO2 from the upper disk. Conclusions: We propose AFGL 2591-VLA3 as a new massive disk candidate, with peculiar kinematics. The rotation of this disk is sub-Keplerian, probably due to magnetic braking, while the stellar wind may be responsible for the expansion of the disk. The expansion motion may also be an indirect evidence of disk accretion in the very inner region because of the conservation of angular momentum. The sub-Keplerian rotation discovered in our work suggests that AFGL 2591-VLA3 may be a special case linking transition of velocity field of massive disks from pure Keplerian rotation to solid-body rotation though definitely more new detections of circumstellar disks around high-mass YSOs are required to examine this hypothesis. Our results support the idea that early B-type stars could be formed with a circumstellar disk from the point of view of the disk-outflow geometry, though the accretion processes in the disk need to be further investigated.

  17. Alightment of Spotted Wing Drosophila (Diptera: Drosophilidae) on Odorless Disks Varying in Color.

    PubMed

    Kirkpatrick, D M; McGhee, P S; Hermann, S L; Gut, L J; Miller, J R

    2016-02-01

    Methods for trapping spotted wing drosophila, Drosophila suzukii (Matsmura) (Diptera: Drosophilidae), have not yet been optimized for detecting this devastating pest of soft-skinned fruits. Here, we report outcomes of choice and no-choice laboratory bioassays quantifying the rates of spotted wing drosophila alightment on 5-cm-diameter sticky disks of various colors, but no fruit odors. Red, purple, and black disks captured the most spotted wing drosophila when presented against a white background. Male and female spotted wing drosophila responded identically in these tests. Significantly more D. suzukii were captured on the red and yellow disks than those presenting the corresponding grayscale for that color, proving that D. suzukii perceives colors and not just the level of target brightness. Fluorescent red is the best candidate for trap color, while clear and white are the least desirable. However, when the background was switched to black, all nonfluorescent colors were equally acceptable to spotted wing drosophila, suggesting that background must be specified when reporting spotted wing drosophila color preference. Additional spotted wing drosophila research is justified on the effects of target color against natural backgrounds. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.

  18. Non-LTE spectral models for the gaseous debris-disk component of Ton 345

    NASA Astrophysics Data System (ADS)

    Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.

    2014-11-01

    Context. For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. Aims: The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca ii infrared emission triplet, hallmark of the gas disk. Methods: We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared with the observed line profiles of the Ca ii infrared triplet. Results: Our models suggest that the Ca ii emission stems from a rather narrow gas ring with a radial extent of R = 0.44-0.94 R⊙, a uniform surface density Σ = 0.3 g cm-2, and an effective temperature of Teff ≈ 6000 K. The often assumed chemical mixtures derived from photospheric abundances in polluted white dwarfs - similar to a chondritic or bulk-Earth composition - produce unobserved emission lines in the model and therefore have to be altered. We do not detect any line-profile variability on timescales of hours, but we confirm the long-term trend over the past decade for the red-blue asymmetry of the double-peaked lines. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  19. Exo-comet Detection in Debris Disks Around Young A-type Stars

    NASA Astrophysics Data System (ADS)

    Welsh, Barry; Montgomery, S. L.

    2013-01-01

    We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.

  20. Size dependence of vortex-type spin torque oscillation in a Co2Fe0.4Mn0.6Si Heusler alloy disk

    NASA Astrophysics Data System (ADS)

    Seki, T.; Kubota, T.; Yamamoto, T.; Takanashi, K.

    2018-02-01

    This paper reports the systematic investigation of vortex-type spin torque oscillation in circular disks of highly spin-polarized Co2Fe0.4Mn0.6Si (CFMS) Heusler alloys. We fabricated the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices with various disk diameters (D) using the layer stack of CFMS/Ag3Mg/CFMS. The gyrotropic motion of the vortex core was successfully excited for the CFMS circular disks with 0.2 µm  ⩽  D  ⩽  0.3 µm. The CPP-GMR device with D  =  0.2 µm exhibited the Q factor of more than 5000 and the large output power of 0.4 nW owing to the high coherency of vortex dynamics and the high spin-polarization of CFMS. However, the Q factor was remarkably decreased as D was reduced from 0.2 µm to 0.14 µm. The comparison with the calculated resonance frequencies suggested that this degradation of the Q factor was due to the transition of the oscillation mode from the vortex mode to other modes such as the low-coherent out-of-plane precession mode. The present experimental results also suggest that there exists an adequate disk size for the enhanced Q factor of the vortex-type spin torque oscillation.

  1. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, L.O.

    1985-12-10

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  2. Elastomeric member

    DOEpatents

    Hoppie, L.O.

    1985-07-30

    An energy storage device is disclosed consisting of a stretched elongated elastomeric member disposed within a tubular housing, which elastomeric member is adapted to be torsionally stressed to store energy. The elastomeric member is configured in the relaxed state with a uniform diameter body section, and transition end sections, attached to rigid end piece assemblies of a lesser diameter. The profile and deflection characteristic of the transition sections are such that upon stretching of the elastomeric member, a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing. Each of the transition sections are received within and bonded to a woven wire mesh sleeve having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve also contracts with the contraction of the associated transition section to maintain the bond there between. During manufacture, the sleeves are forced against a forming surface and bonded to the associated transition section to provide the correct profile and helix angle. 12 figs.

  3. Properties of the smallest solar magnetic elements. I - Facular contrast near sun center

    NASA Technical Reports Server (NTRS)

    Topka, K. P.; Tarbell, T. D.; Title, A. M.

    1992-01-01

    Measurements are presented which indicate that the continuum intensity of facular areas in solar active regions, outside sunspots and pores, is less than that of the quiet sun very near disk center. It is shown that the observed continuum intensity of faculae at disk center near 5000 A is nearly 3 percent less than that of the quiet sun. The continuum contrast increases rapidly away from disk center, reaching +2 percent at 45 deg. The zero-crossing point, where the contrast changes sign, occurs at 20-degree heliocentric angle. This is contrary to many earlier observations. The constraint these observations place on the size of flux tubes depends upon the value of the zero-crossing point. It is proposed that most of the flux tubes in solar faculae may be very small, in the range 50-100 km in diameter, and that inclination from local vertical of about 10 deg at the photosphere is common on the sun. Footpoints of opposite polarity tend to tilt toward one another.

  4. STS-48 ESC image of the MODE-01 Fluid Test Article (FTA) on OV-103's middeck

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An electronic still camera (ESC) closeup shows the STS-48 Middeck Zero ('0') Gravity Dynamics Experiment 01 (MODE-01) Fluid Test Article (FTA) attached to an experimental support module (ESM) located in a forward middeck locker onboard the earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The FTA is a 3.1-cm diameter cylindrical sealed Lexan tank. The FTA electromagnetic actuator has excited the test article sinusoidally, which causes the fluid inside the tank to slosh. These slosh forces, along with other data such as acceleration levels of the entire assembly, are measured by the force balance and recorded in digital form on an optical disk for later ground analysis. Crewmembers were testing the ESC as part of Development Test Objective (DTO) 648, Electronic Still Photography. The digital image was stored on a removable hard disk or small optical disk, and could be converted to a format suitable for downlink transmission. The ESC is making its initial appearance on this Space Shutt

  5. A gold hybrid structure as optical coupler for quantum well infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Jiayi; Li, Qian; Jing, Youliang

    2014-08-28

    A hybrid structure consisting of a square lattice of gold disk arrays and an overlaying gold film is proposed as an optical coupler for a backside-illuminated quantum well infrared photodetector (QWIP). Finite difference time-domain method is used to numerically simulate the reflection spectra and the field distributions of the hybrid structure combined with the QWIP device. The results show that the electric field component perpendicular to the quantum well is strongly enhanced when the plasmonic resonant wavelength of the hybrid structure coincides with the response one of the quantum well infrared photodetector regardless of the polarization of the incident light.more » The effect of the diameter and thickness of an individual gold disk on the resonant wavelength is also investigated, which indicates that the localized surface plasmon also plays a role in the light coupling with the hybrid structure. The coupling efficiency can exceed 50 if the structural parameters of the gold disk arrays are well optimized.« less

  6. Spontaneous emission inhibition of telecom-band quantum disks inside single nanowire on different substrates.

    PubMed

    Birowosuto, M D; Zhang, G; Yokoo, A; Takiguchi, M; Notomi, M

    2014-05-19

    We investigate the inhibited spontaneous emission of telecom-band InAs quantum disks (Qdisks) in InP nanowires (NWs). We have evaluated how the inhibition is affected by different disk diameter and thickness. We also compared the inhibition in standing InP NWs and those NWs laying on silica (SiO(2)), and silicon (Si) substrates. We found that the inhibition is altered when we put the NW on the high-refractive-index materials of Si. Experimentally, the inhibition factor ζ of the Qdisk emission at 1,500 nm decreases from 4.6 to 2.5 for NW on SiO(2) and Si substrates, respectively. Those inhibitions are even much smaller than that of 6.4 of the standing NW. The inhibition factors well agree with those calculated from the coupling of the Qdisk to the fundamental guided mode and the continuum of radiative modes. Our observation can be useful for the integration of the NW as light sources in the photonic nanodevices.

  7. Nickel-63 microirradiators.

    PubMed

    Steeb, Jennifer; Josowicz, Mira; Janata, Jiri

    2009-03-01

    Here we report the fabrication of two types of microirradiators, consisting of a recessed disk and protruding wire with low-beta-energy radionuclide Ni-63 electrodeposited onto a 25 microm diameter Pt wire. Ni-63 is constricted to a small surface area of the microelectrode; hence, this tool provides a means of delivery of localized, large dose density of beta radiation to the object but a minimal dose exposure to the user. The activity levels of Ni-63 emitted from the recessed disk and protruding wire are 0.25 and 1 Bq, respectively. The corresponding beta particles flux levels emitted from the recessed disk and protruding wire are 51 and 11 kBq/cm(2), respectively. These values, measured experimentally using liquid scintillation counting, fit very well the expected values of activity for each microirradiator, calculated considering the self-absorption effect, typical for low-energy beta particles. In order to determine the optimal configuration the dose rates for varying distances from the object were calculated.

  8. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability

    NASA Astrophysics Data System (ADS)

    Liu, Hairui; Zhai, Haifa; Hu, Chunjie; Yang, Jien; Liu, Zhiyong

    2017-07-01

    In2O3 nanoparticles hybrid twins hexagonal disk (THD) ZnO with different ratios were fabricated by a hydrothermal method. The as-obtained ZnO/In2O3 composites are constituted by hexagonal disks ZnO with diameters of about 1 μm and In2O3 nanoparticles with sizes of about 20-50 nm. With the increase of In2O3 content in ZnO/In2O3 composites, the absorption band edges of samples shifted from UV to visible light region. Compared with pure ZnO, the ZnO/In2O3 composites show enhanced photocatalytic activities for degradation of methyl orange (MO) and 4-nitrophenol (4-NP) under solar light irradiation. Due to suitable alignment of their energy band-gap structure of the In2O3 and ZnO, the formation of type п heterostructure can enhance efficient separation of photo-generate electro-hole pairs and provides convenient carrier transfer paths.

  9. Understanding Longitudinal Wood Fiber Ultra-structure for Producing Cellulose Nanofibrils Using Disk Milling with Diluted Acid Prehydrolysis

    NASA Astrophysics Data System (ADS)

    Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.

    2016-10-01

    Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.

  10. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-06-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.

  11. Characterization of microtopography and its influence on vegetation patterns in created wetlands

    USGS Publications Warehouse

    Moser, K.; Ahn, C.; Noe, G.

    2007-01-01

    Created wetlands are increasingly used to mitigate wetland loss. Thus, identifying wetland creation methods that enhance ecosystem development might increase the likelihood of mitigation success. Noting that the microtopographic variation found in natural wetland settings may not commonly be found in created wetlands, this study explores relationships between induced microtopography, hydrology, and plant species richness/ diversity in non-tidal freshwater wetlands, comparing results from two created wetland complexes with those from a mature reference wetland complex in northern Virginia. Elevation, steel rod oxidation depth, and species cover were measured along replicate multiscale (0.5 m-, 1 m-, 2 m-, and 4 m-diameter) tangentially conjoined circular transects in each wetland. Microtopography was surveyed using a total station and results used to derive three roughness indices: tortuosity, limiting slope, and limiting elevation difference. Steel rod oxidation depth was used to estimate water table depth, with data collected four times during the growing season for each study site. Plant species cover was estimated visually in 0.2 m2 plots surveyed at peak growth and used to assess species richness, diversity, and wetland prevalence index. Differences in each attribute were examined among disked and non-disked created wetlands and compared to a natural wetland as a reference. Disked and non-disked created wetlands differed in microtopography, both in terms of limiting elevation difference and tortuosity. However, both were within the range of microtopography encompassed by natural wetlands. Disked wetlands supported higher plant diversity and species richness than either natural or non-disked wetlands, as well as greater within-site species assemblage variability than non-disked wetlands. Irrespective of creation method, plant diversity in created wetlands was correlated with tortuosity and limiting elevation difference, similar to correlations observed for natural wetlands. Vegetation was more hydrophytic at disked sites than at non-disked sites, and of equivalent wetland indicator status to natural sites, even though all sites appeared comparable in terms of hydrology. Results suggest that disking may enhance vegetation community development, thus better supporting the goals of wetland mitigation. ?? 2007, The Society of Wetland Scientists.

  12. Piezoelectric effect in non-uniform strained carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ilina, M. V.; Blinov, Yu F.; Ilin, O. I.; Rudyk, N. N.; Ageev, O. A.

    2017-10-01

    The piezoelectric effect in non-uniform strained carbon nanotubes (CNTs) has been studied. It is shown that the magnitude of strained CNTs surface potential depends on a strain value. It is established that the resistance of CNT also depends on the strain and internal electric field, which leads to the hysteresis in the current-voltage characteristics. Analysis of experimental studies of the non-uniform strained CNT with a diameter of 92 nm and a height of 2.1 μm allowed us to estimate the piezoelectric coefficient 0.107 ± 0.032 C/m2.

  13. Laser pulse stacking method

    DOEpatents

    Moses, Edward I.

    1992-01-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter.

  14. Laser pulse stacking method

    DOEpatents

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  15. Comparison of the antibacterial activity of an ozonated oil with chlorhexidine digluconate and povidone-iodine. A disk diffusion test.

    PubMed

    Montevecchi, Marco; Dorigo, Antonio; Cricca, Monica; Checchi, Luigi

    2013-07-01

    Ozonated oils are antiseptics obtained from the chemical reaction between ozone and unsaturated fatty acids of vegetable oils. The aim of this study was to investigate the antimicrobial effectiveness of a commercially available ozonated oil (O3-Oil), in comparison with 0.2% chlorhexidine digluconate (CHX) and 10% povidone-iodine (PVP-I) through a disk diffusion test. For each antiseptic a series of two-fold dilutions was made, obtaining seven dilutions: 1:2, 1:4, 1:8, 1:16, 1:32, 1:64 and 1:128. The undiluted antiseptics and the seven dilutions were tested against two freeze-dried bacterial strains: Staphylococcus aureus (Sa) and Porphyromonas gingivalis (Pg). O3-Oil showed significantly greater diameters of growth inhibition (p<0.01) than CHX and PVP-I in all dilutions for both tested strains. CHX lost any antibacterial efficacy when diluted more than 1:32. At the highest dilution, the diameters of growth inhibition against Sa were 20.67±0.58 mm and 15.33±0.58 mm, for O3-Oil and PVP-I, respectively. At the same dilution, the diameters of growth inhibition against Pg were: 19.00 mm for O3-Oil and 13.67±0.58 mm for PVP-I. The promising results obtained for the O3-Oil, against the opportunistic Sa, and Pg, one of the main periodontal pathogens, suggest its potential applicability for periodontal treatment. Further preclinical and clinical investigations are warranted.

  16. High Altitude Flight Test of a Reefed 12.2 Meter Diameter Disk-Gap-Band Parachute with Deployment at Mach Number of 2.58

    NASA Technical Reports Server (NTRS)

    Grow, R. Bruce; Preisser, John S.

    1971-01-01

    A reefed 12.2-meter nominal-diameter (40-ft) disk-gap-band parachute was flight tested as part of the NASA Supersonic High Altitude Parachute Experiment (SHAPE) program. A three-stage rocket was used to drive the instrumented payload to an altitude of 43.6 km (143,000 ft), a Mach number of 2.58, and a dynamic pressure of 972 N/m(exp 2) (20.3 lb/ft(exp 2)) where the parachute was deployed by means of a mortar. The parachute deployed satisfactorily and reached a partially inflated condition characterized by irregular variations in parachute projected area. A full, stable reefed inflation was achieved when the system had decelerated to a Mach number of about 1.5. The steady, reefed projected area was 49 percent of the steady, unreefed area and the average drag coefficient was 0.30. Disreefing occurred at a Mach number of 0.99 and a dynamic pressure of 81 N/m(exp 2) (1.7 lb/ft(exp 2)). The parachute maintained a steady inflated shape for the remainder of the deceleration portion of the flight and throughout descent. During descent, the average effective drag coefficient was 0.57. There was little, if any, coning motion, and the amplitude of planar oscillations was generally less than 10 degrees. The film also shows a wind tunnel test of a 1.7-meter-diameter parachute inflating at Mach number 2.0.

  17. The Design and Construction of the MICE Spectrometer Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bert; Wahrer, Bob; Taylor, Clyde

    2008-08-02

    The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field.more » The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.« less

  18. The effect of oblateness and gravity darkening on the radiation driving in winds from rapidly rotating B stars

    NASA Technical Reports Server (NTRS)

    Cranmer, Steven R.; Owocki, Stanley P.

    1995-01-01

    We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.

  19. Bacterial adhesion affinities of various implant abutment materials.

    PubMed

    Yamane, Koichi; Ayukawa, Yasunori; Takeshita, Toru; Furuhashi, Akihiro; Yamashita, Yoshihisa; Koyano, Kiyoshi

    2013-12-01

    To investigate bacterial adhesion to various abutment materials. Thirty volunteers participated in this study. Resin splints were fabricated, and five types of disks were fabricated from pure titanium, gold-platinum alloy, zirconia, alumina, and hydroxyapatite with uniform surface roughness and attached to the buccal surface of each splint. After 4 days of use by the subjects, the plaque accumulated on the disk surfaces was analyzed. The bacterial community structure was evaluated using 16S rRNA gene profiling with terminal restriction fragment length polymorphism analysis. The total bacterial count on each disk was estimated using quantitative polymerase chain reaction. Terminal restriction fragment length polymorphism profiles were more similar between tested materials than between subjects, suggesting that the bacterial community structures on the abutment material were influenced more by the individuals than by the type of material. However, the total number of bacteria attached to a disk was significantly different among five materials (P < 0.001, Brunner-Langer test for longitudinal data). Fewer bacteria were attached to the gold-platinum alloy than to the other materials. Gold-platinum alloy appears to be useful material for abutments when considering the accumulation of plaque. However, alternative properties of the abutment material, such as effects on soft tissue healing, should also be taken into consideration when choosing an abutment material. © 2012 John Wiley & Sons A/S.

  20. Three-dimensional rotational plasma flows near solid surfaces in an axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshunov, N. M., E-mail: gorshunov-nm@nrcki.ru; Potanin, E. P., E-mail: potanin45@yandex.ru

    2016-11-15

    A rotational flow of a conducting viscous medium near an extended dielectric disk in a uniform axial magnetic field is analyzed in the magnetohydrodynamic (MHD) approach. An analytical solution to the system of nonlinear differential MHD equations of motion in the boundary layer for the general case of different rotation velocities of the disk and medium is obtained using a modified Slezkin–Targ method. A particular case of a medium rotating near a stationary disk imitating the end surface of a laboratory device is considered. The characteristics of a hydrodynamic flow near the disk surface are calculated within the model ofmore » a finite-thickness boundary layer. The influence of the magnetic field on the intensity of the secondary flow is studied. Calculations are performed for a weakly ionized dense plasma flow without allowance for the Hall effect and plasma compressibility. An MHD flow in a rotating cylinder bounded from above by a retarding cap is considered. The results obtained can be used to estimate the influence of the end surfaces on the main azimuthal flow, as well as the intensities of circulating flows in various devices with rotating plasmas, in particular, in plasma centrifuges and laboratory devices designed to study instabilities of rotating plasmas.« less

  1. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monga, Nikhil; Desch, Steven

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. Asmore » the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.« less

  2. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  3. Three-phase boundary length in solid-oxide fuel cells: A mathematical model

    NASA Astrophysics Data System (ADS)

    Janardhanan, Vinod M.; Heuveline, Vincent; Deutschmann, Olaf

    A mathematical model to calculate the volume specific three-phase boundary length in the porous composite electrodes of solid-oxide fuel cell is presented. The model is exclusively based on geometrical considerations accounting for porosity, particle diameter, particle size distribution, and solids phase distribution. Results are presented for uniform particle size distribution as well as for non-uniform particle size distribution.

  4. Foliar Nutrient Concentrations and Hardwood Growth Influenced by Cultural Treatments

    Treesearch

    Harvey E. Kennedy

    1981-01-01

    Six species of hardwoods were planted at a 3 by 3 m spacing on a slackwater clay soil (Vertic Haplaquept) in western Mississippi and subjected to three intensities of cultural treatments. Periodic disking- significantly increased heights, diameters, and survival of trees. Cultural treatments during the 4 years of the study did not cause any significant changes in soil...

  5. THERMAL COUPLE FOR MEASURING TEMPERATURE IN A REACTOR

    DOEpatents

    Kanne, W.

    1959-11-24

    A thermocouple device for measuring the temperature of a flowing fluid in a conduit within which is positioned a metallic rod is presented. A thermocouple junction is secured to the rod centrally, and thermal insulating support disks having a diameter greater than the rod are secured to the end portions of the rod and adapted to fit transversely in the conduit.

  6. Rotational microfluidic motor for on-chip microcentrifugation

    NASA Astrophysics Data System (ADS)

    Shilton, Richie J.; Glass, Nick R.; Chan, Peggy; Yeo, Leslie Y.; Friend, James R.

    2011-06-01

    We report on the design of a surface acoustic wave (SAW) driven fluid-coupled micromotor which runs at high rotational velocities. A pair of opposing SAWs generated on a lithium niobate substrate are each obliquely passed into either side of a fluid drop to drive rotation of the fluid, and the thin circular disk set on the drop. Using water for the drop, a 5 mm diameter disk was driven with rotation speeds and start-up torques up to 2250 rpm and 60 nN m, respectively. Most importantly for lab-on-a-chip applications, radial accelerations of 172 m/s2 was obtained, presenting possibilities for microcentrifugation, flow sequencing, assays, and cell culturing in truly microscale lab-on-a-chip devices.

  7. Large Parachute for NASA Mars Science Laboratory

    NASA Image and Video Library

    2009-04-22

    The parachute for NASA Mars Science Laboratory mission opens to a diameter of nearly 16 meters 51 feet. This image shows a duplicate qualification-test parachute inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, Calif. The Mars Science Laboratory will be launched in 2011 for a landing on Mars in 2012. Its parachute is the largest ever built to fly on an extraterrestrial mission. The parachute uses a configuration called disk-gap-band, with 80 suspension lines. Most of the orange and white fabric is nylon, though a small disk of heavier polyester is used near the vent in the apex of the canopy due to higher stresses there. http://photojournal.jpl.nasa.gov/catalog/PIA11994

  8. Effects of higher order aberrations on beam shape in an optical recording system

    NASA Technical Reports Server (NTRS)

    Wang, Mark S.; Milster, Tom D.

    1992-01-01

    An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.

  9. Accretion Disks around Young Stars: An Observational Perspective

    NASA Astrophysics Data System (ADS)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today to understand the mechanism leading to the formation of planets.

  10. Leakproof Swaged Joints in Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  11. Effect of Initial Conditions on Gas-Puff Z-Pinch Dynamics.

    NASA Astrophysics Data System (ADS)

    Peterson, Gus Gordon

    This dissertation concerns the effects initial conditions have on the dynamics of an imploded, annular gas-puff z-pinch. The influence of axial magnetic fields, nozzle size and composition, different gases, pre-ionization, and electrode design on pinch quality and x-ray yield is investigated. The experiment uses a 5-kJ capacitor bank to deliver 0.35 MA to the pinch load in 1.4 mu rm s. This research establishes parameters important to increasing the x-ray yield of dense z-pinches. The initial stage of the implosion is diagnosed with a framing camera that photographs visible light emitted from z-pinch gas breakdown. Data from subsequent stages of the pinch is recorded with a B-dot probe, filtered x-ray diodes, an x-ray filtered pinhole camera, and a nitrogen laser interferometer. Applied axial magnetic fields of ~100 gauss increase average x-ray yield by more than 20%. A substantial increase of K-shell x -ray yield of more than 200% was obtained by increasing the energy delivered to the plasma by enlarging the nozzle diameter from 4 to 5 cm. The use of a Teflon outer-mantle for the nozzle resulted in less uniform gas breakdown as compared to graphite and copper outer-mantles, but x-ray yield and final state uniformity were not reduced. Lower Z gases showed poorer breakdown uniformity. Pre-ionization improved the uniformity of helium and neon breakdown but did not appear to affect subsequent dynamics. X-ray yield was significantly higher using a knife-edge annular anode, as opposed to a flat stainless steel honeycomb anode. Annular anodes with diameters more than a few millimeters different than the nozzle diameter produced low quality pinches with substantially lower x-ray yield.

  12. Measuring Submicron-Sized Fractionated Particulate Matter on Aluminum Impactor Disks

    PubMed Central

    Buchholz, Bruce A.; Zermeño, Paula; Hwang, Hyun-Min; Young, Thomas M.; Guilderson, Thomas P.

    2011-01-01

    Sub-micron sized airborne particulate matter (PM) is not collected well on regular quartz or glass fiber filter papers. We used a micro-orifice uniform deposit impactor (MOUDI) to fractionate PM into six size fractions and deposit it on specially designed high purity thin aluminum disks. The MOUDI separated PM into fractions 56–100 nm, 100–180 nm, 180–320 nm, 320–560 nm, 560–1000 nm, and 1000–1800 nm. Since the MOUDI has a low flow rate (30 L/min), it takes several days to collect sufficient carbon on 47 mm foil disks. The small carbon mass (20–200 microgram C) and large aluminum substrate (~25 mg Al) present several challenges to production of graphite targets for accelerator mass spectrometry (AMS) analysis. The Al foil consumes large amounts of oxygen as it is heated and tends to melt into quartz combustion tubes, causing gas leaks. We describe sample processing techniques to reliably produce graphitic targets for 14C-AMS analysis of PM deposited on Al impact foils. PMID:22228915

  13. Generation of multiple toroidal dust vortices by a non-monotonic density gradient in a direct current glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Manjit, E-mail: manjit@ipr.res.in; Bose, Sayak; Chattopadhyay, P. K.

    2015-09-15

    Observation of two well-separated dust vortices in an unmagnetized parallel plate DC glow discharge plasma is reported in this paper. A non-monotonic radial density profile, achieved by an especially designed cathode structure using a concentric metallic disk and ring of different radii, is observed to produce double dust tori between cathode and anode. PIV analysis of the still images of the double tori shows oppositely rotating dust structures between the central disk and the ring. Langmuir probe measurements of background plasma shows a non-uniform plasma density profile between the disk and the ring. Location and sense of rotation of themore » dust vortices coincides with the location and direction of the radial gradient in the ion drag force caused by the radial density gradient. The experimentally observed dust vorticity matches well with the calculated one using hydrodynamic formulations with shear in ion drag dominating over the dust charge gradient. These results corroborate that a radial gradient in the ion drag force directed towards cathode is the principal cause of dust rotation.« less

  14. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  15. Chemistry of a newly detected circumbinary disk in Ophiuchus

    NASA Astrophysics Data System (ADS)

    Artur de la Villarmois, Elizabeth; Kristensen, Lars E.; Jørgensen, Jes K.; Bergin, Edwin A.; Brinch, Christian; Frimann, Søren; Harsono, Daniel; Sakai, Nami; Yamamoto, Satoshi

    2018-06-01

    Context. Astronomers recently started discovering exoplanets around binary systems. Therefore, understanding the formation and evolution of circumbinary disks and their environment is crucial for a complete scenario of planet formation. Aims: The purpose of this paper is to present the detection of a circumbinary disk around the system Oph-IRS67 and analyse its chemical and physical structure. Methods: We present high-angular-resolution (0.''4, 60 AU) observations of C17O, H13CO+, C34S, SO2, C2H and c-C3H2 molecular transitions with the Atacama Large Millimeter/submillimeter Array (ALMA) at wavelengths of 0.8 mm. The spectrally and spatially resolved maps reveal the kinematics of the circumbinary disk as well as its chemistry. Molecular abundances are estimated using the non-local thermodynamic equilibrium (LTE) radiative-transfer tool RADEX. Results: The continuum emission agrees with the position of Oph-IRS67 A and B, and reveals the presence of a circumbinary disk around the two sources. The circumbinary disk has a diameter of 620 AU and is well traced by C17O and H13CO+ emission. Two further molecular species, C2H and c-C3H2, trace a higher-density region which is spatially offset from the sources ( 430 AU). Finally, SO2 shows compact and broad emission around only one of the sources, Oph-IRS67 B. The molecular transitions which trace the circumbinary disk are consistent with a Keplerian profile on smaller disk scales (≲200 AU) and an infalling profile for larger envelope scales (≳200 AU). The Keplerian fit leads to an enclosed mass of 2.2 M⊙. Inferred CO abundances with respect to H2 are comparable to the canonical ISM value of 2.7 × 10-4, reflecting that freeze-out of CO in the disk midplane is not significant. Conclusions: Molecular emission and kinematic studies prove the existence and first detection of the circumbinary disk associated with the system Oph-IRS67. The high-density region shows a different chemistry than the disk, being enriched in carbon chain molecules. The lack of methanol emission agrees with the scenario where the extended disk dominates the mass budget in the innermost regions of the protostellar envelope, generating a flat density profile where less material is exposed to high temperatures, and thus, complex organic molecules would be associated with lower column densities. Finally, Oph-IRS67 is a promising candidate for proper motion studies and the detection of both circumstellar disks with higher-angular-resolution observations.

  16. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE PAGES

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta; ...

    2017-08-28

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  17. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S., E-mail: shailesh.sharma6@mail.dcu.ie; National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9; Gahan, D., E-mail: david.gahan@impedans.com

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placedmore » directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.« less

  18. Magnetic vortex nucleation/annihilation in artificial-ferrimagnet microdisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapa, Pavel N.; Ding, Junjia; Phatak, Charudatta

    The topological nature of magnetic-vortex state gives rise to peculiar magnetization reversal observed in magnetic microdisks. Interestingly, magnetostatic and exchange energies which drive this reversal can be effectively controlled in artificial ferrimagnet heterostructures composed of rare-earth and transition metals. [Py(t)/Gd(t)] 25 (t=1 or 2 nm) superlattices demonstrate a pronounced change of the magnetization and exchange stiffness in a 10–300 K temperature range as well as very small magnetic anisotropy. Due to these properties, the magnetization of cylindrical microdisks composed of these artificial ferrimagnets can be transformed from the vortex to uniformly-magnetized states in a permanent magnetic field by changing themore » temperature. We explored the behavior of magnetization in 1.5-µm [Py(t)/Gd(t)] 25 (t=1 or 2 nm) disks at different temperatures and magnetic fields and observed that due to the energy barrier separating vortex and uniformly-magnetized states, the vortex nucleation and annihilation occur at different temperatures. This causes the temperature dependences of the Py/Gd disks magnetization to demonstrate unique hysteretic behavior in a narrow temperature range. It was discovered that for the [Py(2 nm)/Gd(2 nm)] 25 microdisks the vortex can be metastable at a certain temperature range.« less

  19. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    NASA Astrophysics Data System (ADS)

    Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    2018-01-01

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is dynamically similar to the radial migration of stars in the Milky Way (MW). In MW, the CR of transient spiral arms can cause radial migration of stars.Also, to determine the effects of a companion, I studied GIs in a circumbinary disk with a 0.2 M⊙ brown dwarf companion.

  20. Evaluation of the effectiveness of different brands' disks in antimicrobial disk susceptibility tests.

    PubMed

    Lam, C P; Tsai, W C

    1989-08-01

    A total of 813 routine isolates of aerobic and facultatively anaerobic bacteria were employed to determine the efficacy of different branded (Oxoid, Difco, BBL) antimicrobial disks, using disk antimicrobial susceptibility tests, for a total of 22 kinds of antimicrobial disks and 10,740 antibiotic-organism comparisons. Major positive and major negative discrepancies in results were defined as a change from "susceptible" to "both resistant", and a change from "resistant" to "both susceptible" according to the National Committee for Clinical Laboratory Standards' interpretive standards for zone diameters. Minor positive and minor negative discrepancies were defined as a change from "susceptible" to "both intermediate", or "intermediate" to "both resistant"; and a change from "resistant" to "both intermediate", or "intermediate" to "both susceptible". The overall agreements of Oxoid, Difco, and BBL systems were 98%, 98.7%, and 98.4% respectively, and their differences are not statistically significant. Different kinds of antimicrobial disks' representative patterns of these three brands are further analyzed: (A) In the Oxoid series, there were 220 discrepancies. Minor negative discrepancy is predominant, most frequently related to carbenicillin (25), gentamicin (13) and cephalothin (10). Besides minor negative discrepancy, carbenicillin also had six minor positive discrepancies. Tetracyclin had ten minor positive discrepancies. (B) In the Difco series, there were 137 discrepancies. The majority of them are minor positive discrepancies. Moxalactam (11) and cefotaxime (10) are the most common antibiotics involved. (C) In the BBL series, there were 170 discrepancies. Minor positive discrepancy was the predominant one, which mostly related to carbenicillin (24), amikacin (13), and ceftizoxime (12). In addition, tetracyclin had 24 times minor negative discrepancies. Laboratory workers must pay attention to these different patterns of representation. In order to evaluate the quality of 11 pairs of the give-away and the purchased BBL disks, we also compared the results for these 813 routine isolates (a total of 5,482 antibiotic-organism comparisons). The giveaway disks demonstrated 99.1% overall agreement with the purchased disks. There were 48 minor discrepancies [26 (0.47%) minor positive discrepancies and 22 (0.4%) minor negative discrepancies]. These results allow this study to emphasize the followings in order to raise the awareness of the laboratory workers: (i) alteration of disk efficacy during transportation and storage; (ii) major considerations in choosing different brands' antimicrobial disks, and (iii) the important roles played by salespersons and pharmaceutical companies in achieving sound results.

  1. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the photomicrographs. The fine grain size in the bore can be contrasted with the coarse grain size in the rim. Testing (at NASA Glenn) of coupons machined from these disks showed that the DMHT approach did indeed produce a high-strength, fatigue resistant bore and a creep-resistant rim. This combination of properties was previously unobtainable using conventional heat treatments, which produced disks with a uniform grain size. Future plans are in place to spin test a DMHT disk under the Ultra Safe Propulsion Project to assess the viability of this technology at the component level. This testing will include measurements of disk growth at a high temperature as well as the determination of burst speed at an intermediate temperature.

  2. Influence of a non-uniform free stream velocity distribution on performance/acoustics of counterrotating propeller configurations

    NASA Astrophysics Data System (ADS)

    Allen, C. S.; Korkan, K. D.

    1991-01-01

    A methodology for predicting the performance and acoustics of counterrotating propeller configurations was modified to take into account the effects of a non-uniform free stream velocity distribution entering the disk plane. The method utilizes the analytical techniques of Lock and Theodorson as described by Davidson to determine the influence of the non-uniform free stream velocity distribution in the prediction of the steady aerodynamic loads. The unsteady load contribution is determined according to the procedure of Leseture with rigid helical tip vortices simulating the previous rotations of each propeller. The steady and unsteady loads are combined to obtain the total blade loading required for acoustic prediction employing the Ffowcs Williams-Hawking equation as simplified by Succi with the assumption of compact sources. The numerical method is used to redesign the previous commuter class counterrotating propeller configuration of Denner. The specifications, performance, and acoustics of the new design are compared with the results of Denner thereby determining the influence of the non-uniform free stream velocity distribution on these metrics.

  3. Magnetostatic Field System for Uniform Cell Cultures Exposure

    PubMed Central

    Vergallo, Cristian; Piccoli, Claudia; Romano, Alberto; Panzarini, Elisa; Serra, Antonio; Manno, Daniela; Dini, Luciana

    2013-01-01

    The aim of the present work has been the design and the realization of a Magnetostatic Field System for Exposure of Cell cultures (MaFiSEC) for the uniform and the reproducible exposure of cell cultures to static magnetic fields (SMFs) of moderate magnetic induction. Experimental and computer-simulated physical measurements show that MaFiSEC: i) generates a SMF with magnetic induction that can be chosen in the range of 3 to 20 mT; ii) allows the uniform SMF exposure of cells growing in adhesion and in suspension; iii) is cheap and easy to use. The efficacy and reproducibility of MaFiSEC has been tested by comparing the biological effects exerted on isolated human lymphocytes by 72 h of exposure to a magnet (i.e. Neodymium Magnetic Disk, NMD) placed under the culture Petri dish. Lymphocytes morphology, viability, cell death, oxidative stress and lysosomes activity were the parameters chosen to evaluate the SMF biological effects. The continuous exposure of cells to a uniform SMF, achieved with MaFiSEC, allows highly reproducible biochemical and morphological data. PMID:23977284

  4. Experimental investigation of an axisymmetric free jet with an initially uniform velocity profile

    NASA Technical Reports Server (NTRS)

    Labus, T. L.; Symons, E. P.

    1972-01-01

    An experimental investigation was conducted to determine the flow characteristics of a circular free helium jet having an initially uniform velocity profile. Complete velocity profiles are presented at Reynolds numbers of 1027 and 4571 at 0, 3, 6, 10, 15, and 20 nozzle diameters (where possible) from the nozzle exit. Centerline velocity decay and potential core length were obtained over a range of Reynolds numbers from 155 to 5349 at distances up to and including 25 nozzle diameters from the nozzle exit. The angles of spread associated with the diffusion of the jet downstream of the nozzle are also given. Axial jet momentum flux and entrained mass flux, at various distances downstream of the nozzle, are presented as a function of the jet Reynolds number.

  5. Ultra-low-loss optical fiber nanotapers.

    PubMed

    Brambilla, Gilberto; Finazzi, Vittoria; Richardson, David

    2004-05-17

    Optical fiber tapers with a waist size larger than 1microm are commonplace in telecommunications and sensor applications. However the fabrication of low-loss optical fiber tapers with subwavelength diameters was previously thought to be impractical due to difficulties associated with control of the surface roughness and diameter uniformity. In this paper we show that very-long ultra-low-loss tapers can in fact be produced using a conventional fiber taper rig incorporating a simple burner configuration. For single-mode operation, the optical losses we achieve at 1.55microm are one order of magnitude lower than losses previously reported in the literature for tapers of a similar size. SEM images confirm excellent taper uniformity. We believe that these low-loss structures should pave the way to a whole range of fiber nanodevices.

  6. Outer-disk reddening and gas-phase metallicities: The CALIFA connection

    NASA Astrophysics Data System (ADS)

    Marino, R. A.; Gil de Paz, A.; Sánchez, S. F.; Sánchez-Blázquez, P.; Cardiel, N.; Castillo-Morales, A.; Pascual, S.; Vílchez, J.; Kehrig, C.; Mollá, M.; Mendez-Abreu, J.; Catalán-Torrecilla, C.; Florido, E.; Perez, I.; Ruiz-Lara, T.; Ellis, S.; López-Sánchez, A. R.; González Delgado, R. M.; de Lorenzo-Cáceres, A.; García-Benito, R.; Galbany, L.; Zibetti, S.; Cortijo, C.; Kalinova, V.; Mast, D.; Iglesias-Páramo, J.; Papaderos, P.; Walcher, C. J.; Bland-Hawthorn, J.

    2016-01-01

    We study, for the first time in a statistically significant and well-defined sample, the relation between the outer-disk ionized-gas metallicity gradients and the presence of breaks in the surface brightness profiles of disk galaxies. Sloan Digital Sky Survey (SDSS) g'- and r'-band surface brightness, (g' - r') color, and ionized-gasoxygen abundance profiles for 324 galaxies within the Calar Alto Legacy Integral Field Area (CALIFA) survey are used for this purpose. We perform a detailed light-profile classification, finding that 84% of our disks show down- or up-bending profiles (Type II and Type III, respectively), while the remaining 16% are well fitted by one single exponential (Type I). The analysis of the color gradients at both sides of this break shows a U-shaped profile for most Type II galaxies with an average minimum (g' - r') color of ~0.5 mag and an ionized-gas metallicity flattening associated with it only in the case of low-mass galaxies. Comparatively, more massive systems show a rather uniform negative metallicity gradient. The correlation between metallicity flattening and stellar mass for these systems results in p-values as low as 0.01. Independent of the mechanism having shaped the outer light profiles of these galaxies, stellar migration or a previous episode of star formation in a shrinking star-forming disk, it is clear that the imprint in their ionized-gas metallicity was different for low- and high-mass Type II galaxies. In the case of Type III disks, a positive correlation between the change in color and abundance gradient is found (the null hypothesis is ruled out with a p-value of 0.02), with the outer disks of Type III galaxies with masses ≤1010 M⊙ showing a weak color reddening or even a bluing. This is interpreted as primarily due to a mass downsizing effect on the population of Type III galaxies that recently experienced an enhanced inside-out growth.

  7. The formation of protostellar disks. 2: Disks around intermediate-mass stars

    NASA Technical Reports Server (NTRS)

    Yorke, Harold W.; Bodenheimer, Peter; Laughlin, G.

    1995-01-01

    Hydrodynamical calculations of the evolution of a collapsing, rotating axisymmetric 10 solar masses molecular clump, including the effects of radiative acceleration but without magnetic fields, are represented. The initial cloud is assumed to be uniformly rotating, centrally condensed sphere with rho is proportional to r(exp -2). Several cases are considered, in which both the overall clump size and the total amount of angular momentum are varied. The calculations show how a warm, quasi-hydrostatic disk surrounding a central unresolved core of only a few solar masses forms and grows in size and mass. The disk is encased in two distinct accretion shock fronts, both of which are several scale heights above the equatorial plane. At the end of the calculation of our standard case, the central unresolved region is found to have a mass of 2.7 solar masses and a ratio of rotational to gravitational energy of approximately 0.45, sufficiently large to be unstable to nonaxisymmetric perturbations. In addition, the inner portions of the disk containing most of the mass are unstable according to the local Toomre criterion, implying that also in this region nonaxisymmetric perturbations will lead to rapid evolution. Under the assumption that gravitational torques would transport angular momentum out of this region, a central core of less than or approximately 8 solar masses with a stable disk of greater than or approximately = 2 solar masses should result. Frequency-dependent radiative transfer calculations of the standard case at selected ages show how the continuum spectrum of the structure depends on the disk's orientation and age and how the observed isophotal contours vary with wavelength. Because of the strong dependence on viewing angle, continuum spectra alone should not be used to estimate the evolutionary stage of development of these objects. Comparable results were obtained for the other cases considered.

  8. All-metal, compact heat exchanger for space cryocoolers

    NASA Technical Reports Server (NTRS)

    Swift, Walter L.; Valenzuela, Javier; Sixsmith, Herbert

    1990-01-01

    This report describes the development of a high performance, all metal compact heat exchanger. The device is designed for use in a reverse Brayton cryogenic cooler which provides five watts of refrigeration at 70 K. The heat exchanger consists of a stainless steel tube concentrically assembled within a second stainless steel tube. Approximately 300 pairs of slotted copper disks and matching annular slotted copper plates are positioned along the centerline axis of the concentric tubes. Each of the disks and plates has approximately 1200 precise slots machined by means of a special electric discharge process. Positioning of the disk and plate pairs is accomplished by means of dimples in the surface of the tubes. Mechanical and thermal connections between the tubes and plate/disk pairs are made by solder joints. The heat exchanger assembly is 9 cm in diameter by 50 cm in length and has a mass of 10 kg. The predicted thermal effectiveness is greater than 0.985 at design conditions. Pressure loss at design conditions is less than 5 kPa in both fluid passages. Tests were performed on a subassembly of plates integrally soldered to two end headers. The measured thermal effectiveness of the test article exceeded predicted levels. Pressure losses were negligibly higher than predictions.

  9. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    NASA Astrophysics Data System (ADS)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  10. FERMI large area telescope observations of the vela-x pulsar wind nebula

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-18

    Here, we report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833–45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8° diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2° × 3° area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0°more » $$_.$$88 ± 0°$$_.$$12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 ± 0.09 ± 0.15 and integral flux above 100 MeV of (4.73 ± 0.63 ± 1.32) × 10 –7 cm –2 s –1. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.« less

  11. Measuring wind turbine wakes and unsteady loading in a micro wind farm model

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Meneveau, Charles; Meyers, Johan

    2014-11-01

    Very large wind farms, approximating the ``infinite'' asymptotic limit, are often studied with LES using periodic boundary conditions. In order to create an experimental realization of such large wind-turbine arrays in a wind tunnel experiment including over 100 turbines, a very small-scale turbine model based on a 3 cm diameter porous disk is designed. The porous disc matches a realistic thrust coefficient between 0.75--0.85, and the far wake flow characteristics of a rotating wind turbine. As a first step, we characterize the properties of a single model turbine. Hot-wire measurements are performed for uniform inflow conditions with different background turbulence intensity levels. Strain gage measurements are used to measure the mean value and power spectra of the thrust force, power output and wind velocity in front of the turbine. The dynamics of the wind turbine are modeled making it possible to measure force spectra at least up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow and the vortex shedding signatures of an upstream obstruction. An array with a large number of these instrumented model turbines is placed in JHU's Corrsin wind tunnel, to study effects of farm layout on total power output and turbine loading. Work supported by ERC (ActiveWindFarms, Grant No: 306471), and by NSF (CBET-113380 and IIA-1243482).

  12. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12–3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO3. The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller–Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications. PMID:21383858

  13. Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity.

    PubMed

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa

    2011-01-01

    Using the chemical reduction method, silver nanoparticles (Ag NPs) were effectively synthesized into the zeolite framework in the absence of any heat treatment. Zeolite, silver nitrate, and sodium borohydride were used as an inorganic solid support, a silver precursor, and a chemical reduction agent, respectively. Silver ions were introduced into the porous zeolite lattice by an ion-exchange path. After the reduction process, Ag NPs formed in the zeolite framework, with a mean diameter of about 2.12-3.11 nm. The most favorable experimental condition for the synthesis of Ag/zeolite nanocomposites (NCs) is described in terms of the initial concentration of AgNO(3). The Ag/zeolite NCs were characterized by ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, and Fourier transform infrared. The results show that Ag NPs form a spherical shape with uniform homogeneity in the particle size. The antibacterial activity of Ag NPs in zeolites was investigated against Gram-negative bacteria (ie, Escherichia coli and Shigella dysentriae) and Gram-positive bacteria (ie, Staphylococcus aureus and methicillin-resistant Staphylococcus aureus) by disk diffusion method using Mueller-Hinton agar at different sizes of Ag NPs. All of the synthesized Ag/zeolite NCs were found to have antibacterial activity. These results show that Ag NPs in the zeolite framework can be useful in different biological research and biomedical applications.

  14. Infrared Imaging of Capella with the IOTA Closure Phase Interferometer

    NASA Astrophysics Data System (ADS)

    Kraus, S.; Schloerb, F. P.; Traub, W. A.; Carleton, N. P.; Lacasse, M.; Pearlman, M.; Monnier, J. D.; Millan-Gabet, R.; Berger, J.-P.; Haguenauer, P.; Perraut, K.; Kern, P.; Malbet, F.; Labeye, P.

    2005-07-01

    We present infrared aperture synthesis maps produced with the upgraded Infrared Optical Telescope Array interferometer. Michelson interferograms on the close binary system Capella (α Aur) were obtained in the H band between 2002 November 12 and 16 using the IONIC3 beam combiner. With baselines of 15m<=B<=38 m, we were able to determine the relative position of the binary components with milliarcsecond precision and to track their movement along the ~14° arc covered by our observation run. We briefly describe the algorithms used for visibility and closure phase estimation. Three different hybrid mapping and bispectrum fitting techniques were implemented within one software framework and used to reconstruct the source brightness distribution. By dividing our data into subsets, the system could be mapped at three epochs, revealing the motion of the stars. The precise position of the binary components was also determined with model fits, which in addition revealed IAa/IAb=1.49+/-0.10 and apparent stellar uniform-disk diameters of ΘAa=8.9+/-0.6 mas and ΘAb=5.8+/-0.8 mas. To improve the (u,v)-plane coverage, we compensated this orbital motion by applying a rotation-compensating coordinate transformation. The resulting model-independent map with a beam size of 5.4mas×2.6 mas allows the resolution of the stellar surfaces of the Capella giants themselves.

  15. Inertial particle focusing in serpentine channels on a centrifugal platform

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Mashhadian, Ali

    2018-01-01

    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated accurately through implementation of 3D Direct Numerical Solution (DNS) method. The particle focusing in three serpentine channels with different corner angles of 75°, 85°, and 90° is investigated for three polystyrene particles with diameters of 8 μm, 9.9 μm, and 13 μm. To show the simulation reliability, the results obtained from the simulations of two examples, namely, particle focusing and centrifugal platform, are verified against experimental counterparts. The effects of angular velocity of disk on the fluid velocity and on the focusing parameters are studied. Fluid velocity in a channel with corner angle of 75° is greater than two other channels. Furthermore, the particle equilibrium positions at the cross section of channel are obtained at the outlet. There are two equilibrium positions located at the centers of the long walls. Finally, the effect of particle density on the focusing length is investigated. A particle with a higher density and larger diameter is focused in a shorter length of the channel compared to its counterpart with a lower density and shorter diameter. The channel with a corner angle of 90° has better focusing efficiency compared to other channels. This design focuses particles without using any pump or sheath flow. Inertial particle focusing on centrifugal platform, which rarely has been studied, can be used for a wide range of diagnostic lab-on-a-disk device.

  16. Towards spatially constrained gust models

    NASA Astrophysics Data System (ADS)

    Bos, René; Bierbooms, Wim; van Bussel, Gerard

    2014-06-01

    With the trend of moving towards 10-20 MW turbines, rotor diameters are growing beyond the size of the largest turbulent structures in the atmospheric boundary layer. As a consequence, the fully uniform transients that are commonly used to predict extreme gust loads are losing their connection to reality and may lead to gross overdimensioning. More suiting would be to represent gusts by advecting air parcels and posing certain physical constraints on size and position. However, this would introduce several new degrees of freedom that significantly increase the computational burden of extreme load prediction. In an attempt to elaborate on the costs and benefits of such an approach, load calculations were done on the DTU 10 MW reference turbine where a single uniform gust shape was given various spatial dimensions with the transverse wavelength ranging up to twice the rotor diameter (357 m). The resulting loads displayed a very high spread, but remained well under the level of a uniform gust. Moving towards spatially constrained gust models would therefore yield far less conservative, though more realistic predictions at the cost of higher computation time.

  17. Fabrication of dense wavelength division multiplexing filters with large useful area

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Chung; Chen, Sheng-Hui; Hsu, Jin-Cherng; Kuo, Chien-Cheng

    2006-08-01

    Dense Wavelength Division Multiplexers (DWDM), a kind of narrow band-pass filter, are extremely sensitive to the optical thickness error in each composite layer. Therefore to have a large useful coating area is extreme difficult because of the uniformity problem. To enlarge the useful coating area it is necessary to improve their design and their fabrication. In this study, we discuss how the tooling factors at different positions and for different materials are related to the optical performance of the design. 100GHz DWDM filters were fabricated by E-gun evaporation with ion-assisted deposition (IAD). To improve the coating uniformity, an analysis technique called shaping tooling factor (STF) was used to analyze the deviation of the optical thickness in different materials so as to enlarge the useful coating area. Also a technique of etching the deposited layers with oxygen ions was introduced. When the above techniques were applied in the fabrication of 100 GHz DWDM filters, the uniformity was better than +/-0.002% over an area of 72 mm in diameter and better than +/-0.0006% over 20mm in diameter.

  18. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, T.R.

    1983-07-05

    A method and a cutter are disclosed for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head has a hollow body with a generally circular base and sloping upper surface. A hollow shaft extends from the hollow body. Cutter teeth are mounted on the upper surface of the body and relatively small holes are formed in the body between the cutter teeth. Relatively large peripheral flutes around the body allow material to drop below the drill head. A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale. 4 figs.

  19. Method for forming a thermocouple

    DOEpatents

    Metz, Hugh J.

    1979-01-01

    A method is provided for producing a fast response, insulated junction thermocouple having a uniform diameter outer sheath in the region of the measuring junction. One step is added to the usual thermocouple fabrication process that consists in expanding the thermocouple sheath following the insulation removal step. This makes it possible to swage the sheath back to the original diameter and compact the insulation to the desired high density in the final fabrication step.

  20. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and in good balance. There shall be no rough surfaces or sharp edges. (4) Uniformity of diameter. (i... Structural steel (min. tensile strength 60,000 p.s.i.) 1/2 inch or less 14,200 SFPM 1/16 1/16 3/32 3/32 1/8 1... for Straight Flanges—for Mechanical Grinders 12,500 S.F.P.M. to 16,5 S.F.P.M. 1 Wheel diameter Wheel...

  1. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and in good balance. There shall be no rough surfaces or sharp edges. (4) Uniformity of diameter. (i... Structural steel (min. tensile strength 60,000 p.s.i.) 1/2 inch or less 14,200 SFPM 1/16 1/16 3/32 3/32 1/8 1... for Straight Flanges—for Mechanical Grinders 12,500 S.F.P.M. to 16,5 S.F.P.M. 1 Wheel diameter Wheel...

  2. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and in good balance. There shall be no rough surfaces or sharp edges. (4) Uniformity of diameter. (i... Structural steel (min. tensile strength 60,000 p.s.i.) 1/2 inch or less 14,200 SFPM 1/16 1/16 3/32 3/32 1/8 1... for Straight Flanges—for Mechanical Grinders 12,500 S.F.P.M. to 16,5 S.F.P.M. 1 Wheel diameter Wheel...

  3. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and in good balance. There shall be no rough surfaces or sharp edges. (4) Uniformity of diameter. (i... Structural steel (min. tensile strength 60,000 p.s.i.) 1/2 inch or less 14,200 SFPM 1/16 1/16 3/32 3/32 1/8 1... for Straight Flanges—for Mechanical Grinders 12,500 S.F.P.M. to 16,5 S.F.P.M. 1 Wheel diameter Wheel...

  4. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and in good balance. There shall be no rough surfaces or sharp edges. (4) Uniformity of diameter. (i... Structural steel (min. tensile strength 60,000 p.s.i.) 1/2 inch or less 14,200 SFPM 1/16 1/16 3/32 3/32 1/8 1... for Straight Flanges—for Mechanical Grinders 12,500 S.F.P.M. to 16,5 S.F.P.M. 1 Wheel diameter Wheel...

  5. Shortening the incubation time for antimicrobial susceptibility testing by disk diffusion for Enterobacteriaceae: how short can it be and are the results accurate?

    PubMed

    van den Bijllaardt, Wouter; Buiting, Anton G; Mouton, Johan W; Muller, Anouk E

    2017-05-01

    The standard incubation time for antimicrobial susceptibility testing (AST) by disk diffusion is primarily based on laboratory working hours rather than growth and kill characteristics of bacteria. Faster AST results could result in better patient outcomes and reduced costs by initiating earlier appropriate therapy. The earliest possible reading moment for disk diffusion using established disk zone diameter breakpoints for Enterobacteriaceae was determined with a special focus on the accuracy of the results. A total of 88 Enterobacteriaceae challenge isolates, including isolates with specific resistance mechanisms such as extended-spectrum β-lactamase (ESBL), were subjected to disk diffusion with 15 antibiotics. Hourly images were automatically produced by an incubator/camera combination from 1 h to 20 h. Disk zones were plotted over time for all combinations. Essential and categorical agreement rates using the final reading after 20 h of incubation as a reference were calculated for every hour. In total, 1320 antibiotic-micro-organism combinations were tested. Clear growth with readable inhibition zones was visible after 6 h of incubation for the majority (95.8%) of plates and after 7 h for all incubated plates. However, zone sizes changed significantly after those time points for a number of strains. After 10 h of incubation, minor, major and very major error rates were 1.6% (n = 21), 0.2% (n = 1) and 0.7% (n = 4), respectively. The results of this study clearly indicate that early reading of inhibition zones to 10 h after incubation is feasible and accurate and thus may save significantly on turnaround time. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  6. Elastomeric member and method of manufacture therefor

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  7. Elastomeric member

    DOEpatents

    Hoppie, Lyle O.

    1985-01-01

    An energy storage device (10) is disclosed consisting of a stretched elongated elastomeric member (16) disposed within a tubular housing (14), which elastomeric member (16) is adapted to be torsionally stressed to store energy. The elastomeric member (16) is configured in the relaxed state with a uniform diameter body section (74), and transition end sections (76, 78), attached to rigid end piece assemblies (22, 24) of a lesser diameter. The profile and deflection characteristic of the transition sections (76, 78) are such that upon stretching of the elastomeric member (16), a substantially uniform diameter assembly results, to minimize the required volume of the surrounding housing (14). Each of the transition sections (76, 78) are received within and bonded to a woven wire mesh sleeve (26, 28) having helical windings at a particular helix angle to control the deflection of the transition section. Each sleeve (26, 28) also contracts with the contraction of the associated transition section to maintain the bond therebetween. During manufacture, the sleeves (26, 28) are forced against a forming surface and bonded to the associated transition section (76, 78) to provide the correct profile and helix angle.

  8. A molecular Einstein ring: imaging a starburst disk surrounding a quasi-stellar object.

    PubMed

    Carilli, C L; Lewis, G F; Djorgovski, S G; Mahabal, A; Cox, P; Bertoldi, F; Omont, A

    2003-05-02

    Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.

  9. Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished nickel, and evaporated gold surfaces. [for telescope mirrors

    NASA Technical Reports Server (NTRS)

    Malina, R. F.; Cash, W.

    1978-01-01

    Measured reflection efficiencies are presented for flat samples of diamond-turned aluminum, nickel, and evaporated gold surfaces fabricated by techniques suited for EUV telescopes. The aluminum samples were 6.2-cm-diameter disks of 6061-T6, the electroless nickel samples were formed by plating beryllium disks with 7.5-microns of Kanigen. Gold samples were produced by coating the aluminum and nickel samples with 5 strips of evaporated gold. Reflection efficiencies are given for grazing angles in the 5-75 degree range. The results indicate that for wavelengths over about 100 A, the gold-coated nickel samples yield highest efficiencies. For shorter wavelengths, the nickel samples yield better efficiencies. 500 A is found to be the optimal gold thickness.

  10. THE PHOTOMETRIC AND KINEMATIC STRUCTURE OF FACE-ON DISK GALAXIES. III. KINEMATIC INCLINATIONS FROM H{alpha} VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, David R.; Bershady, Matthew A., E-mail: david.andersen@nrc-cnrc.gc.ca, E-mail: mab@astro.wisc.edu

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained H{alpha} velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i{sub kin} = 23 Degree-Sign for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20 Degree-Sign and 6% at 30 Degree-Sign . Kinematic inclinations are consistent with photometricmore » and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical ''face-on'' Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15 Degree-Sign and 5% at 30 Degree-Sign . This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.« less

  11. Major Effects of Nonmetallic Inclusions on the Fatigue Life of Disk Superalloy Demonstrated

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Kantzos, Peter T.; Bonacuse, Peter J.; Barrie, Robert L.

    2002-01-01

    The fatigue properties of modern powder metallurgy disk alloys can vary because of the different steps of materials and component processing and machining. Among these variables, the effects of nonmetallic inclusions introduced during the powder atomization and handling processes have been shown to significantly degrade low-cycle fatigue life. The levels of inclusion contamination have, therefore, been reduced to less than 1 part per million in state-of-the-art nickel disk powder-processing facilities. Yet the large quantities of compressor and turbine disks weighing from 100 to over 1000 lb have enough total volume and surface area for these rare inclusions to still be present and limit fatigue life. The objective of this study was to investigate the effects on fatigue life of these inclusions, as part of the Crack Resistant Disk Materials task within the Ultra Safe Propulsion Project. Inclusions were carefully introduced at elevated levels in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were then performed on extracted test specimens at 650 C. Analyses were performed to compare the low-cycle fatigue lives and failure initiation sites as functions of inclusion content and fatigue conditions. Powder of the nickel-base superalloy U720 was atomized in argon at Special Metals Corporation, Inc., using production-scale high-cleanliness powder-processing facilities and handling practices. The powder was then passed through a 270-mesh screen. One portion of this powder was set aside for subsequent consolidation without introduced inclusions. Two other portions of this powder were seeded with alumina inclusions. Small, polycrystalline soft (Type 2) inclusions of about 50 mm diameter were carefully prepared and blended into one powder lot, and larger hard (Type 1) inclusions of about 150 mm mean diameter were introduced into the other seeded portion of powder. All three portions of powder were then sealed in separate containers, hot isostatically pressurized, extruded, forged into subscale disks, and heat treated. Low-cycle-fatigue specimens were then extracted, machined, and tested. Fatigue tests were performed at 650 C in closed-loop servohydraulic testing machines using induction heating and axial extensometers. All tests were continued to failure, and fractographic evaluations were performed on all specimens to determine the crack initiation sites. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface, as shown for each type of inclusion in the following bar chart. The inclusions significantly reduced fatigue life from unseeded material levels, as shown in the bar chart. These effects were found to depend on the strain range, strain ratio, and inclusion size. Tests at lower strain ranges and higher strain ratios resulted in larger effects of inclusions on life. Inclusion effects on life were thereby maximized in tests at the lowest strain range of 0.6 percent and the most positive strain ratio of 0.5. Under these conditions, small Type 2 inclusions reduced life substantially-- about 20 times, whereas large Type 1 inclusions dramatically reduced life 100 times. These results clearly demonstrate that it is essential to include the effects of inclusions for realistic predictions of disk fatigue life. Important issues, including temperature dependence, crack initiation versus propagation, surface treatments, realistic disk features and machining, and realistic disk spin testing will be addressed to accurately model inclusion effects on disk fatigue life. Fatigue life varied from well over 105 cycles for no inclusions to a little over 103 cycles for 100-micrometer inclusions. A single crack initiating at a surface-connected seeded inclusion caused failure in each case.

  12. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE PAGES

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana; ...

    2015-09-17

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  13. Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique: II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinozaki, Kazuma; Zack, Jason W.; Pylypenko, Svitlana

    Platinum electrocatalysts supported on high surface area and Vulcan carbon blacks (Pt/HSC, Pt/V) were characterized in rotating disk electrode (RDE) setups for electrochemical area (ECA) and oxygen reduction reaction (ORR) area specific activity (SA) and mass specific activity (MA) at 0.9 V. Films fabricated using several ink formulations and film-drying techniques were characterized for a statistically significant number of independent samples. The highest quality Pt/HSC films exhibited MA 870 ± 91 mA/mgPt and SA 864 ± 56 μA/cm 2 Pt while Pt/V had MA 706 ± 42 mA/mgPt and SA 1120 ± 70 μA/cm 2 Pt when measured in 0.1more » M HClO 4, 20 mV/s, 100 kPa O 2 and 23±2°C. An enhancement factor of 2.8 in themeasured SA was observable on eliminating Nafion ionomer and employing extremely thin, uniform films (~4.5 μg/cm 2 Pt) of Pt/HSC. The ECA for Pt/HSC (99 ± 7 m2/gPt) and Pt/V (65 ± 5 m 2/gPt) were statistically invariant and insensitive to film uniformity/thickness/fabrication technique; accordingly, enhancements in MA are wholly attributable to increases in SA. Impedance measurements coupled with scanning electron microscopy were used to de-convolute the losses within the catalyst layer and ascribed to the catalyst layer resistance, oxygen diffusion, and sulfonate anion adsorption/blocking. The ramifications of these results for proton exchange membrane fuel cells have also been examined.« less

  14. Enhancing the Bounce of a Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2010-10-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of restitution (COR) and the spin of a golf ball, I conducted several experiments to see what would happen when a 45-g, 42.8-mm diameter golf ball bounced on: (a) a 58-mm diameter, 103-g Super Ball®; (b) an 8-mm thick, 56-mm diameter circular disk of Super Ball material cut from a large Super Ball and glued to a 3.4-kg lead brick; and (c) a 3-mm thick sheet of rubber glued to a 3.4-kg lead brick. (See Fig. 1.)

  15. Taking the Measure of Massive Stars and their Environments with the CHARA Array Long-baseline Interferometer

    NASA Astrophysics Data System (ADS)

    Gies, Douglas R.

    2017-11-01

    Most massive stars are so distant that their angular diameters are too small for direct resolution. However, the observational situation is now much more favorable, thanks to new opportunities available with optical/IR long-baseline interferometry. The Georgia State University Center for High Angular Resolution Astronomy Array at Mount Wilson Observatory is a six-telescope instrument with a maximum baseline of 330 meters, which is capable of resolving stellar disks with diameters as small as 0.2 milliarcsec. The distant stars are no longer out of range, and many kinds of investigations are possible. Here we summarize a number of studies involving angular diameter measurements and effective temperature estimates for OB stars, binary and multiple stars (including the σ Orionis system), and outflows in Luminous Blue Variables. An enlarged visitors program will begin in 2017 that will open many opportunities for new programs in high angular resolution astronomy.

  16. Near-infrared observations of galaxies in Pisces-Perseus. I. vec H-band surface photometry of 174 spiral

    NASA Astrophysics Data System (ADS)

    Moriondo, G.; Baffa, C.; Casertano, S.; Chincarini, G.; Gavazzi, G.; Giovanardi, C.; Hunt, L. K.; Pierini, D.; Sperandio, M.; Trinchieri, G.

    1999-05-01

    We present near-infrared, H-band (1.65 $() μm), surface photometry of 174 spiral galaxies in the area of the Pisces-Perseus supercluster. The images, acquired with the ARNICA camera mounted on various telescopes, are used to derive radial profiles of surface brightness, ellipticities, and position angles, together with global parameters such as H-band magnitudes and diameters Radial profiles in tabular form and images FITS files are also available upon request from gmorio@arcetri.astro.it.}. The mean relation between H-band isophotal diameter D_{21.5} and the B-band D25 implies a B-H color of the outer disk bluer than 3.5; moreover, D_{21.5}/D25 depends on (global) color and absolute luminosity. The correlations among the various photometric parameters suggest a ratio between isophotal radius D_{21.5}/2 and disk scale length of ~ m3.5 and a mean disk central brightness ~ meq 17.5 H-mag arcsec^{-2}. We confirm the trend of the concentration index C31$ with absolute luminosity and, to a lesser degree, with morphological type. We also assess the influence of non-axisymmetric structures on the radial profiles and on the derived parameters. Based on observations at the TIRGO, NOT, and VATT telescopes. TIRGO (Gornergrat, CH) is operated by CAISMI-CNR, Arcetri, Firenze. NOT (La Palma, Canary Islands) is operated by NOTSA, the Nordic Observatory Scientific Association. VATT (Mt. Graham, Az) is operated by VORG, the Vatican Observatory Research Group Table 3 and Fig. 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  17. Optotech 5984 Drive Overview

    NASA Astrophysics Data System (ADS)

    Lee, Tzuo-Chang; Chen, Di

    1987-01-01

    We present in this paper an overview of Optotech's 5984 Optical Disk Drive. Key features such as the modulation code, the disk format, defect mapping scheme and the optical head and servo subsystem will be singled out for discussion. Description of Optotech's 5984 disk drive The Optotech 5984 optical disk drive is a write-once-read-mostly (WORM) rotating optical memory with 200 Megabyte capacity on each side of the disk. It has a 5 1/4 inch form factor that will fit into any personal computer full-height slot. The drive specification highlights are given in Table 1. A perspective view of the drive mechanical assembly is shown in Figure 1. The spindle that rotates the disk has a runout of less than 10 um. The rotational speed at 1200 revolutions per minute (rpm) is held to an accuracy of 10-3. The total angular tolerance from perfect perpendicular alignment between the rotating disk and the incident optical beam axis is held to less than 17 milliradians. The coarse seek is accomplished through a stepping motor driving the optical head with 1.3 milliseconds per step or 32 tracks per step. The analog channels including read/write, the phase lock loop and the servo loops for focus and track control are contained on one surface mount pc board while the digital circuitry that interfaces with the drive and the controller is on a separate pc board. A microprocessor 8039 is used to control the handshake and the sequence of R/W commands. A separate power board is used to provide power to the spindle and the stepping motors. In the following we will discuss some of the salient features in the drive and leave the details to three accompanying Optotech papers. These salient features are derived from a design that is driven by three major considerations. One is precise control of the one micron diameter laser spot to any desired location on the disk. The second consideration is effective management of media defects. Given the state of the art of the Te-based disk technology with an average raw defect density of approximately 10-5(compared to 10-draw error rate in high density magnetic hard disks), elaborate defect management tools are required to assure data integrity. The last consideration is, needless to say, low cost and high reliability.

  18. Effect of friction on shear jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Behringer, Robert

    2014-11-01

    Shear Jamming of granular materials was first found for systems of frictional disks, with a static friction coefficients μs ~= 0 . 6 . Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕS <= ϕ <=ϕJ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of ``force chains,'' which are stabilized and/or enhanced by the presence of friction. The issue that we address experimentally is how reducing friction affects shear jamming. We use photoelastic disks that have been wrapped with Teflon, lowering the friction coefficient substantially from previous experiments. The Teflon-wrapped disks were placed in a well-studied 2D shear apparatus (Ren et al., PRL, 110, 018302 (2013)), which provides uniform simple shear without generating shear bands. Shear jamming is still observed, but the difference ϕJ -ϕS is smaller than for higher friction particles. With Teflon-wrapped disks, we observe larger anisotropies compared to the previous experiment with higher friction particles at the same packing fraction, which indicates force chains tending to be straight in the low friction system. We acknowledge support from NSF Grant No. DMR12-06351, ARO Grant No. W911NF-1-11-0110, and NASA Grant No. NNX10AU01G.

  19. Wind tunnel measurements of wake structure and wind farm power for actuator disk model wind turbines in yaw

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Kang, Justin; Meyers, Johan; Meneveau, Charles

    2016-11-01

    Reducing wake losses in wind farms by deflecting the wakes through turbine yawing has been shown to be a feasible wind farm control approach. In this work, the deflection and morphology of wakes behind a wind turbine operating in yawed conditions are studied using wind tunnel experiments of a wind turbine modeled as a porous disk in a uniform inflow. First, by measuring velocity distributions at various downstream positions and comparing with prior studies, we confirm that the nonrotating wind turbine model in yaw generates realistic wake deflections. Second, we characterize the wake shape and make observations of what is termed a "curled wake," displaying significant spanwise asymmetry. Through the use of a 100 porous disk micro-wind farm, total wind farm power output is studied for a variety of yaw configurations. Strain gages on the tower of the porous disk models are used to measure the thrust force as a substitute for turbine power. The frequency response of these measurements goes up to the natural frequency of the model and allows studying the spatiotemporal characteristics of the power output under the effects of yawing. This work has been funded by the National Science Foundation (Grants CBET-113380 and IIA-1243482, the WINDINSPIRE project). JB and JM are supported by ERC (ActiveWindFarms, Grant No. 306471).

  20. Nonlinear THz Plamonic Disk Resonators

    NASA Astrophysics Data System (ADS)

    Seren, Huseyin; Zhang, Jingdi; Keiser, George; Maddox, Scott; Fan, Kebin; Cao, Lingyue; Bank, Seth; Zhang, Xin; Averitt, Richard

    2013-03-01

    Particle surface plasmons (PPSs) at visible wavelengths continue to be actively investigated with the goal of nanoscale control of light. In contrast, terahertz (THz) surface plasmon experiments are at a nascent stage of investigation. Doped semiconductors with proper carrier density and mobility support THz PSPs. One approach is to utilize thick doped films etched into subwavelength disks. Given the ease of tuning the semiconductor carrier density, THz PSPs are tunable and exhibit interesting nonlinear THz plasmonic effects. We created THz PSP structures using MBE grown 2um thick InAs films with a doping concentration of 1e17cm-3 on 500um thick semi-insulating GaAs substrate. We patterned 40um diameter disks with a 60um period by reactive ion etching. Our THz time-domain measurements reveal a resonance at 1.1THz which agrees well with simulation results using a Drude model. A nonlinear response occurs at high THz electric field strengths (>50kV/cm). In particular, we observed a redshift and quenching of the resonance due to impact ionization which resulted in changes in the carrier density and effective mass due to inter-valley scattering.

  1. Measurement of unsteady loading and power output variability in a micro wind farm model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Bossuyt, Juliaan; Howland, Michael F.; Meneveau, Charles; Meyers, Johan

    2017-01-01

    Unsteady loading and spatiotemporal characteristics of power output are measured in a wind tunnel experiment of a microscale wind farm model with 100 porous disk models. The model wind farm is placed in a scaled turbulent boundary layer, and six different layouts, varied from aligned to staggered, are considered. The measurements are done by making use of a specially designed small-scale porous disk model, instrumented with strain gages. The frequency response of the measurements goes up to the natural frequency of the model, which corresponds to a reduced frequency of 0.6 when normalized by the diameter and the mean hub height velocity. The equivalent range of timescales, scaled to field-scale values, is 15 s and longer. The accuracy and limitations of the acquisition technique are documented and verified with hot-wire measurements. The spatiotemporal measurement capabilities of the experimental setup are used to study the cross-correlation in the power output of various porous disk models of wind turbines. A significant correlation is confirmed between streamwise aligned models, while staggered models show an anti-correlation.

  2. Velocity Data in a Fully Developed Wind Turbine Array Boundary Layer

    NASA Astrophysics Data System (ADS)

    Turner, John; Wosnik, Martin

    2016-11-01

    Results are reported from an experimental study of an array of porous disks simulating offshore wind turbines. The disks mimic power extraction of similarly scaled wind turbines via drag matching, and the array consists of 19x5 disks of 0.25 m diameter. The study was conducted in the UNH Flow Physics Facility (FPF), which has test section dimensions of 6.0 m wide, 2.7 m high and 72.0 m long. The FPF can achieve a boundary layer height on the order of 1 m at the entrance of the wind turbine array which puts the model turbines in the bottom third of the boundary layer, which is typical of field application. Careful consideration was given to an expanded uncertainty analysis, to determine possible measurements in this type of flow. For a given configuration (spacing, initial conditions, etc.), the velocity levels out and the wind farm approaches fully developed behavior, even within the maintained growth of the simulated atmospheric boundary layer. Benchmark pitot tube data was acquired in vertical profiles progressing streamwise behind the centered column at every row in the array.

  3. Variations in optical coherence tomography resolution and uniformity: a multi-system performance comparison

    PubMed Central

    Fouad, Anthony; Pfefer, T. Joshua; Chen, Chao-Wei; Gong, Wei; Agrawal, Anant; Tomlins, Peter H.; Woolliams, Peter D.; Drezek, Rebekah A.; Chen, Yu

    2014-01-01

    Point spread function (PSF) phantoms based on unstructured distributions of sub-resolution particles in a transparent matrix have been demonstrated as a useful tool for evaluating resolution and its spatial variation across image volumes in optical coherence tomography (OCT) systems. Measurements based on PSF phantoms have the potential to become a standard test method for consistent, objective and quantitative inter-comparison of OCT system performance. Towards this end, we have evaluated three PSF phantoms and investigated their ability to compare the performance of four OCT systems. The phantoms are based on 260-nm-diameter gold nanoshells, 400-nm-diameter iron oxide particles and 1.5-micron-diameter silica particles. The OCT systems included spectral-domain and swept source systems in free-beam geometries as well as a time-domain system in both free-beam and fiberoptic probe geometries. Results indicated that iron oxide particles and gold nanoshells were most effective for measuring spatial variations in the magnitude and shape of PSFs across the image volume. The intensity of individual particles was also used to evaluate spatial variations in signal intensity uniformity. Significant system-to-system differences in resolution and signal intensity and their spatial variation were readily quantified. The phantoms proved useful for identification and characterization of irregularities such as astigmatism. Our multi-system results provide evidence of the practical utility of PSF-phantom-based test methods for quantitative inter-comparison of OCT system resolution and signal uniformity. PMID:25071949

  4. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00331h

  5. Longitudinal wave propagation in multi cylindrical viscoelastic matching layers of airborne ultrasonic transducer: new method to consider the matching layer's diameter (frequency <100 kHz).

    PubMed

    Saffar, Saber; Abdullah, Amir

    2013-08-01

    Wave propagation in viscoelastic disk layers is encountered in many applications including studies of airborne ultrasonic transducers. For viscoelastic materials, both material and geometric dispersion are possible when the diameter of the matching layer is of the same order as the wavelength. Lateral motions of the matching layer(s) that result from the Poisson effect are accounted by using a new concept called the "effective-density". A new wave equation is derived for both metallic and non-metallic (polymeric) materials, usually employed for the matching layers of airborne ultrasonic transducer. The material properties are modeled by using the Kelvin model for metals and Linear Solid Standard model for non-metallic (polymeric) matching layers. The utilized model of the material of the matching layers has influence on amount and trend of variation in speed ratio. In this regard, 60% reduction in speed ratio is observed for Kelvin model for aluminum with diameter of 80 mm at 100 kHz while for a similar diameter but Standard Linear Model, the speed ratio increase to twice value at 15 kHz, and then reduced until 70% at 67 kHz for Polypropylene. The new wave theory simplifies to the one-dimensional solution for waves in metallic or polymeric matching layers if the Poisson ratio is set to zero. The predictions simplify to Love's equation for stress waves in elastic disks when loss term is removed from equations for both models. Afterwards, the new wave theory is employed to determine the airborne ultrasonic matching layers to maximize the energy transmission to the air. The optimal matching layers are determined by using genetic algorithm theory for 1, 2 and 3 airborne matching layers. It has been shown that 1-D equation is useless at frequencies less than 100 kHz and the effect of diameter of the matching layers must be considered to determine the acoustic impedances (matching layers) to design airborne ultrasonic transducers. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Antifungal activity of geldanamycin alone or in combination with fluconazole against Candida species.

    PubMed

    Zhang, Jinqing; Liu, Wei; Tan, Jingwen; Sun, Yi; Wan, Zhe; Li, Ruoyu

    2013-04-01

    A standardized broth microdilution method was used to test the antifungal activity of geldanamycin (GA), an inhibitor of heat shock protein 90 (Hsp90), alone or in combination with the antifungal agent fluconazole (FLC) against 32 clinical isolates of Candida spp. In addition, a disk diffusion test was also used to evaluate the antifungal effect of these two drugs against Candida spp. by measuring the inhibition zone diameters. We found that the range of minimal inhibitory concentrations (MICs) for GA alone against Candida spp. was 3.2-12.8 mg/L and the geometric mean of MICs was 6.54 mg/L. In addition, the combination of GA with FLC showed synergistic effects in vitro against 2 FLC-susceptible and 6 FLC-resistant isolates of C. albicans. As for the other isolates, indifference but no antagonism was observed. In the disk diffusion assay, the diameter of inhibition zones for FLC combined with GA against FLC-resistant C. albicans isolates was 30 mm, while no inhibition was observed with FLC alone. These results demonstrate that GA possesses antifungal activity against Candida spp., and the combination of GA with FLC shows in vitro synergistic activity against some C. albicans isolates, especially those resistant to FLC.

  7. Production Facility Prototype Blower Installation Report with 1000 Hr Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Olivas, Eric Richard; Dale, Gregory E.

    2016-09-23

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long-term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced.« less

  8. Production Facility Prototype Blower Installation Report with 1000 Hour Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Romero, Frank Patrick

    2016-04-01

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was needed for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GMmore » 12.4 blower was selected, and is currently being installed at the LANL facility for target and component flow testing. This report describes this blower/motor/pressure vessel package and the status of the facility preparations. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are reported.« less

  9. [Scanning electron microscopy observation of the growth of osteoblasts on Ti-24Nb-4Zr-8Sn modified by micro-arc oxidation and alkali-heat treatment and implant-bone interface].

    PubMed

    Han, Xue; Liu, Hong-Chen; Wang, Dong-Sheng; Li, Shu-Jun; Yang, Rui

    2011-01-01

    To observe the efficacy of micro-arc oxidation and alkali-heat treatment (MAH) on Ti-24Nb-4Zr-8Sn (Ti2448). Disks (diameter of 14.5 mm, thickness of 1 mm) and cylinders (diameter of 3 mm, height of 10 mm) were fabricated from Ti2448 alloy. Samples were divided into three groups: polished (Ti2448), micro-arc oxidation(MAO-Ti2448), micro-arc oxidation and alkali-heat treatment (MAH-Ti2448). MC3T3-E1 osteoblastic cells were cultured on the disks and cell morphology was observed with scanning electron microscopy (SEM) aftre 3 days. The cylinder samples were implanted in the tibia of dogs and implant-bone interface was observed with SEM after 3 months. A rough and porous structure was shown in both MAO and MAH group. The MC3T3-E1 cells on the MAH-Ti2448 discs spread fully in intimate contact with the underlying coarse surface through active cytoskeletal extentions. Osseointegration was formed in the implant-bone interface in MAH samples. MAH treatment can provide a more advantageous Ti2448 surface to osteoblastic cells than MAO treatment does, and the former can improve the implant-bone integration.

  10. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic

    PubMed Central

    Scoles, Drew; Sulai, Yusufu N.; Dubra, Alfredo

    2013-01-01

    Non-invasive reflectance imaging of the human RPE cell mosaic is demonstrated using a modified confocal adaptive optics scanning light ophthalmoscope (AOSLO). The confocal circular aperture in front of the imaging detector was replaced with a combination of a circular aperture 4 to 16 Airy disks in diameter and an opaque filament, 1 or 3 Airy disks thick. This arrangement reveals the RPE cell mosaic by dramatically attenuating the light backscattered by the photoreceptors. The RPE cell mosaic was visualized in all 7 recruited subjects at multiple retinal locations with varying degrees of contrast and cross-talk from the photoreceptors. Various experimental settings were explored for improving the visualization of the RPE cell boundaries including: pinhole diameter, filament thickness, illumination and imaging pupil apodization, unmatched imaging and illumination focus, wavelength and polarization. None of these offered an obvious path for enhancing image contrast. The demonstrated implementation of dark-field AOSLO imaging using 790 nm light requires low light exposures relative to light safety standards and it is more comfortable for the subject than the traditional autofluorescence RPE imaging with visible light. Both these factors make RPE dark-field imaging appealing for studying mechanisms of eye disease, as well as a clinical tool for screening and monitoring disease progression. PMID:24049692

  11. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  12. Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M.

    2012-04-01

    Aims: We investigate the atmospheric structure and fundamental properties of the red supergiant VY CMa. Methods: We obtained near-infrared spectro-interferometric observations of VY CMa with spectral resolutions of 35 and 1500 using the AMBER instrument at the VLTI. Results: The visibility data indicate the presence of molecular layers of water vapor and CO in the extended atmosphere with an asymmetric morphology. The uniform disk diameter in the water band around 2.0 μm is increased by ~20% compared to the near-continuum bandpass at 2.20-2.25 μm, and in the CO band at 2.3-2.5 μm it is increased by up to ~50%. The closure phases indicate relatively small deviations from point symmetry close to the photospheric layer, and stronger deviations in the extended H2O and CO layers. Making use of the high spatial and spectral resolution, a near-continuum bandpass can be isolated from contamination by molecular and dusty layers, and the Rosseland-mean photospheric angular diameter is estimated to 11.3 ± 0.3 mas based on a PHOENIX atmosphere model. Together with recent high-precision estimates of the distance and spectro-photometry, this estimate corresponds to a radius of 1420 ± 120 R⊙ and an effective temperature of 3490 ± 90 K. Conclusions: VY CMa exhibits asymmetric, possibly clumpy, atmospheric layers of H2O and CO, which are not co-spatial, within a larger elongated dusty envelope. Our revised fundamental parameters put VY CMa close to the Hayashi limit of recent evolutionary tracks of initial mass 25 M⊙ with rotation or 32 M⊙ without rotation, shortly before evolving blueward in the HR-diagram. Based on observations made with the VLT Interferometer (VLTI) at Paranal Observatory under programme ID 386.D-0012.Figures 2, 3 and 5 are available in electronic form at http://www.aanda.org

  13. [Development of a simultaneous strain and temperature sensor with small-diameter FBG].

    PubMed

    Liu, Rong-mei; Liang, Da-kai

    2011-03-01

    Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.

  14. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratiosin uniform and shear currents

    NASA Astrophysics Data System (ADS)

    Duanmu, Yu; Zou, Lu; Wan, De-cheng

    2017-12-01

    This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.

  15. Structural control in the synthesis of inorganic porous materials

    NASA Astrophysics Data System (ADS)

    Holland, Brian Thomas

    Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals, porous electrodes, electrochemical capacitors, etc. One of the more interesting macroporous materials takes advantage of having silicalite as the framework. This bimodal pore material may find use as an acid catalyst as aluminum is doped into the framework.

  16. Workshop II On Unsteady Separated Flow Proceedings

    DTIC Science & Technology

    1988-07-28

    was static stall angle of 12 ° . achieved by injecting diluted food coloring at the apex through a 1.5 mm diameter tube placed The response of the wing...differences with uniform step size in q, and trailing -. 75 three- pront differences with uniform step size in ,, ,,as used The nonlinearity of the...flow prop- "Kutta condition." erties for slender 3D wings are addressed. To begin the The present paper emphasizes recent progress in the de- study

  17. Frequency response of a thermocouple wire: Effects of axial conduction

    NASA Technical Reports Server (NTRS)

    Forney, L. J.; Fralick, G. C.

    1990-01-01

    Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties.

  18. High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.

    2015-11-01

    In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.

  19. Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties

    PubMed Central

    Park, Won Il; Zheng, Gengfeng; Jiang, Xiaocheng; Tian, Bozhi; Lieber, Charles M.

    2009-01-01

    We report the nanocluster-catalyzed growth of ultra-long and highly-uniform single-crystalline silicon nanowires (SiNWs) with millimeter-scale lengths and aspect ratios up to ca. 100,000. The average SiNW growth rate using disilane (Si2H6) at 400 °C was 31 µm/min, while the growth rate determined for silane (SiH4) reactant under similar growth conditions was 130 times lower. Transmission electron microscopy studies of millimeter-long SiNWs with diameters of 20–80 nm show that the nanowires grow preferentially along the <110> direction independent of diameter. In addition, ultra-long SiNWs were used as building blocks to fabricate one-dimensional arrays of field-effect transistors (FETs) consisting of ca. 100 independent devices per nanowire. Significantly, electrical transport measurements demonstrated that the millimeter-long SiNWs had uniform electrical properties along the entire length of wires, and each device can behave as a reliable FET with an on-state current, threshold voltage, and transconductance values (average ± 1 standard deviation) of 1.8 ± 0.3 µA, 6.0 ± 1.1 V, 210 ± 60 nS, respectively. Electronically-uniform millimeter-long SiNWs were also functionalized with monoclonal antibody receptors, and used to demonstrate multiplexed detection of cancer marker proteins with a single nanowire. The synthesis of structurally- and electronically-uniform ultra-long SiNWs may open up new opportunities for integrated nanoelectronics, and could serve as unique building blocks linking integrated structures from the nanometer through millimeter length scales. PMID:18710294

  20. Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures.

    PubMed

    Percec, Virgil; Wilson, Daniela A; Leowanawat, Pawaret; Wilson, Christopher J; Hughes, Andrew D; Kaucher, Mark S; Hammer, Daniel A; Levine, Dalia H; Kim, Anthony J; Bates, Frank S; Davis, Kevin P; Lodge, Timothy P; Klein, Michael L; DeVane, Russell H; Aqad, Emad; Rosen, Brad M; Argintaru, Andreea O; Sienkowska, Monika J; Rissanen, Kari; Nummelin, Sami; Ropponen, Jarmo

    2010-05-21

    Self-assembled nanostructures obtained from natural and synthetic amphiphiles serve as mimics of biological membranes and enable the delivery of drugs, proteins, genes, and imaging agents. Yet the precise molecular arrangements demanded by these functions are difficult to achieve. Libraries of amphiphilic Janus dendrimers, prepared by facile coupling of tailored hydrophilic and hydrophobic branched segments, have been screened by cryogenic transmission electron microscopy, revealing a rich palette of morphologies in water, including vesicles, denoted dendrimersomes, cubosomes, disks, tubular vesicles, and helical ribbons. Dendrimersomes marry the stability and mechanical strength obtainable from polymersomes with the biological function of stabilized phospholipid liposomes, plus superior uniformity of size, ease of formation, and chemical functionalization. This modular synthesis strategy provides access to systematic tuning of molecular structure and of self-assembled architecture.

  1. Exact calculations of survival probability for diffusion on growing lines, disks, and spheres: The role of dimension.

    PubMed

    Simpson, Matthew J; Baker, Ruth E

    2015-09-07

    Unlike standard applications of transport theory, the transport of molecules and cells during embryonic development often takes place within growing multidimensional tissues. In this work, we consider a model of diffusion on uniformly growing lines, disks, and spheres. An exact solution of the partial differential equation governing the diffusion of a population of individuals on the growing domain is derived. Using this solution, we study the survival probability, S(t). For the standard non-growing case with an absorbing boundary, we observe that S(t) decays to zero in the long time limit. In contrast, when the domain grows linearly or exponentially with time, we show that S(t) decays to a constant, positive value, indicating that a proportion of the diffusing substance remains on the growing domain indefinitely. Comparing S(t) for diffusion on lines, disks, and spheres indicates that there are minimal differences in S(t) in the limit of zero growth and minimal differences in S(t) in the limit of fast growth. In contrast, for intermediate growth rates, we observe modest differences in S(t) between different geometries. These differences can be quantified by evaluating the exact expressions derived and presented here.

  2. Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt

    NASA Astrophysics Data System (ADS)

    Lee, J. E.; Kim, Y. S.; Kim, T. W.

    Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.

  3. Calibration Tunnel for High Speed

    NASA Technical Reports Server (NTRS)

    Pretsch, J.

    1946-01-01

    For the nvestigation of measuring instruments at higher speeds up to a Mach number 0.7 a tunnel with closed test section was built in 1942 which was as simple and cheap as possble. The blower was a radial blower with straight sheet vanes of 800-millimeter diameter the tips of which were bent backward a little. The blower sucks the air through a honeycomb of diameter 1.2 neter with wide meshes. The air is then accelerated in a short cone with smooth transition to the test section. The cylindrical test section of 200-milimeter diameter has two windows (which are displaced 180 deg from each other. The instruments may be introduced and observed through and observed through these windows. . The cross section is then enlarged by a straight diffuser 3.5 meters long and reaches the ninefold cross section. The air flows back into the room through a disk diffuser of 2-meter diameter. The maximum speed in the jet is 250 m/s for a drive power of 35 kT., if there are no installations in the jet. The velocity is determined by pressure holed along the test section.

  4. A facile method for the preparation of monodisperse beads with uniform pore sizes for cell culture.

    PubMed

    Moon, Seung-Kwan; Oh, Myeong-Jin; Paik, Dong-Hyun; Ryu, Tae-Kyung; Park, Kyeongsoon; Kim, Sung-Eun; Park, Jong-Hoon; Kim, Jung-Hyun; Choi, Sung-Wook

    2013-03-12

    This paper describes a facile method for the preparation of porous gelatin beads with uniform pore sizes using a simple fluidic device and their application as supporting materials for cell culture. An aqueous gelatin droplet containing many uniform toluene droplets, produced in the fluidic device, is dropped into liquid nitrogen for instant freezing and the small toluene droplets evolve into pores in the gelatin beads after removal of toluene and then freeze-drying. The porous gelatin beads exhibit a uniform pore size and monodisperse diameter as well as large open pores at the surface. Fluorescence microscopy images of fibroblast-loaded gelatin beads confirm the attachment and proliferation of the cells throughout the porous gelatin beads. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts

    NASA Astrophysics Data System (ADS)

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-01

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a

  6. Development of a phantom and a methodology for evaluation of depth kerma and kerma index for dental cone beam computed tomography.

    PubMed

    Batista, W O; Navarro, M V T; Maia, A F

    2013-12-01

    Basically, all modalities of diagnostic radiology require phantoms suitable for dosimetric evaluations. New technologies frequently arise unaccompanied of tools for dosimetric evaluations and quality control. In this study, a low-cost phantom and a consequent proposed methodology for dosimetric evaluations in cone beam computed tomography (CBCT) were presented. The developed phantom has typical dimensions of the human face, was built in polymethyl methacrylate and filled with water. Three devices with different technological concepts were evaluated and a proposed index, kerma index-height product (PKIH), was defined as an option to the use of air kerma-area product. The results of this study show relatively uniform kerma profiles for scanners with field of views (FOVs) of large diameters and non-uniform for FOVs of small diameters. With regard to the values obtained for the kerma indexes, much higher values were found for the equipment FOVs with small diameter compared with the values of the two other equipment that have larger diameters. The results indicate that (1) there is a need for special phantoms for use in CBCT, (2) the use of P(KA) in the evaluation of protocols on different equipment can lead to false interpretations and (3) the new index is a suitable alternative for the use of P(KA) in CBCT.

  7. ISLES: Probing Extra Dimensions Using a Superconducting Accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung; Moody, M. Vol; Prieto-Gortcheva, Violeta A.

    2003-01-01

    In string theories, extra dimensions must be compactified. The possibility that gravity can have large radii of compactification leads to a violation of the inverse square law at submillimeter distances. The objective of ISLES is to perform a null test of Newton s law in space with a resolution of one part in 10(exp 5) or better at 100 microns. The experiment will be cooled to less than or equal to 2 K, which permits superconducting magnetic levitation of the test masses. To minimize Newtonian errors, ISLES employs a near null source, a circular disk of large diameter-to-thickness ratio. Two test masses, also disk-shaped, are suspended on the two sides of the source mass at a nominal distance of 100 microns. The signal is detected by a superconducting differential accelerometer. A ground test apparatus is under construction.

  8. Preparation of porous hollow silica spheres via a layer-by-layer process and the chromatographic performance

    NASA Astrophysics Data System (ADS)

    Wei, Xiaobing; Gong, Cairong; Chen, Xujuan; Fan, Guoliang; Xu, Xinhua

    2017-03-01

    Hollow silica spheres possessing excellent mechanical properties were successfully prepared through a layer-by-layer process using uniform polystyrene (PS) latex fabricated by dispersion polymerization as template. The formation of hollow SiO2 micro-spheres, structures and properties were observed in detail by zeta potential, SEM, TEM, FTIR, TGA and nitrogen sorption porosimetry. The results indicated that the hollow spheres were uniform with particle diameter of 1.6 μm and shell thickness of 150 nm. The surface area was 511 m2/g and the pore diameter was 8.36 nm. A new stationary phase for HPLC was obtained by using C18-derivatized hollow SiO2 micro-spheres as packing materials and the chromatographic properties were evaluated for the separation of some regular small molecules. The packed column showed low column pressure, high values of efficiency (up to about 43 000 plates/m) and appropriate asymmetry factors.

  9. Method and apparatus for constructing an underground barrier wall structure

    DOEpatents

    Dwyer, Brian P.; Stewart, Willis E.; Dwyer, Stephen F.

    2002-01-01

    A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

  10. Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method

    NASA Astrophysics Data System (ADS)

    Hoseinzadeh, T.; Ghorannevis, Z.; Ghoranneviss, M.; Sari, A. H.; Salem, M. K.

    2017-09-01

    Three steps anodization process is used to synthesize highly ordered and uniform multilayered titanium oxide (TiO2) nanotubes and effect of different anodization voltages are studied on their physical properties such as structural, morphological and optical. The crystalized structure of the synthesized tubes is investigated by X-ray diffractometer analysis. To study the morphology of the tubes, field emission scanning electron microscopy is used, which showed that the wall thicknesses and the diameters of the tubes are affected by the different anodization voltages. Moreover, optical studies performed by diffuse reflection spectra suggested that band gap of the TiO2 nanotubes are also changed by applying different anodization voltages. In this study using physical investigations, an optimum anodization voltage is obtained to synthesize the uniform crystalized TiO2 nanotubes with suitable diameter, wall thickness and optical properties.

  11. System for producing a uniform rubble bed for in situ processes

    DOEpatents

    Galloway, Terry R.

    1983-01-01

    A method and a cutter for producing a large cavity filled with a uniform bed of rubblized oil shale or other material, for in situ processing. A raise drill head (72) has a hollow body (76) with a generally circular base and sloping upper surface. A hollow shaft (74) extends from the hollow body (76). Cutter teeth (78) are mounted on the upper surface of the body (76) and relatively small holes (77) are formed in the body (76) between the cutter teeth (78). Relatively large peripheral flutes (80) around the body (76) allow material to drop below the drill head (72). A pilot hole is drilled into the oil shale deposit. The pilot hole is reamed into a large diameter hole by means of a large diameter raise drill head or cutter to produce a cavity filled with rubble. A flushing fluid, such as air, is circulated through the pilot hole during the reaming operation to remove fines through the raise drill, thereby removing sufficient material to create sufficient void space, and allowing the larger particles to fill the cavity and provide a uniform bed of rubblized oil shale.

  12. Particle tracking experiments in match-index-refraction porous media.

    PubMed

    Lachhab, Ahmed; Zhang, You-Kuan; Muste, Marian V I

    2008-01-01

    A low-cost, noninvasive, three-dimensional (3D), particle tracking velocimetry system was designed and built to investigate particle movement in match-index-refraction porous media. Both a uniform load of the glass beads of the same diameter and a binary load of the glass beads of two diameters were used. The purpose of the experiments is to study the effect of the two loads on the trajectories, velocity distribution, and spreading of small physical particles. A total of 35 particles were released and tracked in the uniform load and 46 in the binary load. The 3D trajectory of each particle was recorded with two video camcorders and analyzed. It is found that the particle's velocity, trajectory, and spreading are very sensitive to its initial location and that the smaller pore size or heterogeneity in the binary load increases the particles' velocity and enhances their spreading as compared with the uniform load. The experiments also verified the previous finding that the distribution of the particle velocities are lognormal in the longitudinal direction and Gaussian in two transverse directions and that the particle spreading is much larger along the longitudinal direction than along the traverse directions.

  13. A Complete ALMA Map of the Fomalhaut Debris Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, Meredith A.; Wilner, David J.; Matrà, Luca

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12more » ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.« less

  14. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  15. Isotopic Dichotomy among Meteorites and Its Bearing on the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Scott, Edward R. D.; Krot, Alexander N.; Sanders, Ian S.

    2018-02-01

    Whole rock Δ17O and nucleosynthetic isotopic variations for chromium, titanium, nickel, and molybdenum in meteorites define two isotopically distinct populations: carbonaceous chondrites (CCs) and some achondrites, pallasites, and irons in one and all other chondrites and differentiated meteorites in the other. Since differentiated bodies accreted 1–3 Myr before the chondrites, the isotopic dichotomy cannot be attributed to temporal variations in the disk. Instead, the two populations were most likely separated in space, plausibly by proto-Jupiter. Formation of CCs outside Jupiter could account for their characteristic chemical and isotopic composition. The abundance of refractory inclusions in CCs can be explained if they were ejected by disk winds from near the Sun to the disk periphery where they spiraled inward due to gas drag. Once proto-Jupiter reached 10–20 M ⊕, its external pressure bump could have prevented millimeter- and centimeter-sized particles from reaching the inner disk. This scenario would account for the enrichment in CCs of refractory inclusions, refractory elements, and water. Chondrules in CCs show wide ranges in Δ17O as they formed in the presence of abundant 16O-rich refractory grains and 16O-poor ice particles. Chondrules in other chondrites (ordinary, E, R, and K groups) show relatively uniform, near-zero Δ17O values as refractory inclusions and ice were much less abundant in the inner solar system. The two populations were plausibly mixed together by the Grand Tack when Jupiter and Saturn migrated inward emptying and then repopulating the asteroid belt with roughly equal masses of planetesimals from inside and outside Jupiter’s orbit (S- and C-type asteroids).

  16. Disk-integrated reflection light curves of planets

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.

    2014-03-01

    The light scattered by a planet atmosphere contains valuable information on the planet's composition and aerosol content. Typically, the interpretation of that information requires elaborate radiative transport models accounting for the absorption and scattering processes undergone by the star photons on their passage through the atmosphere. I have been working on a particular family of algorithms based on Backward Monte Carlo (BMC) integration for solving the multiple-scattering problem in atmospheric media. BMC algorithms simulate statistically the photon trajectories in the reverse order that they actually occur, i.e. they trace the photons from the detector through the atmospheric medium and onwards to the illumination source following probability laws dictated by the medium's optical properties. BMC algorithms are versatile, as they can handle diverse viewing and illumination geometries, and can readily accommodate various physical phenomena. As will be shown, BMC algorithms are very well suited for the prediction of magnitudes integrated over a planet's disk (whether uniform or not). Disk-integrated magnitudes are relevant in the current context of exploration of extrasolar planets because spatial resolution of these objects will not be technologically feasible in the near future. I have been working on various predictions for the disk-integrated properties of planets that demonstrate the capacities of the BMC algorithm. These cases include the variability of the Earth's integrated signal caused by diurnal and seasonal changes in the surface reflectance and cloudiness, or by sporadic injection of large amounts of volcanic particles into the atmosphere. Since the implemented BMC algorithm includes a polarization mode, these examples also serve to illustrate the potential of polarimetry in the characterization of both Solar System and extrasolar planets. The work is complemented with the analysis of disk-integrated photometric observations of Earth and Venus drawn from various sources.

  17. Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

    PubMed

    Ye, Zhibin; Liu, Chong; Tu, Bo; Wang, Ke; Gao, Qingsong; Tang, Chun; Cai, Zhen

    2016-01-25

    A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

  18. Period Ratio Distribution of Near-Resonant Planets Indicates Planetesimal Scattering

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Krantzler, Seth O.; Ford, Eric B.

    2016-10-01

    An intriguing trend among it Kepler's multi-planet systems is an overabundance of planet pairs with period ratios just wide of mean motion resonances (MMR) and a dearth of systems just narrow of them. In a recently published paper Chatterjee & Ford (2015; henceforth CF15) has proposed that gas-disk migration traps planets in a MMR. After gas dispersal, orbits of these trapped planets are altered through interaction with a residual planetesimal disk. They found that for massive enough disks planet-planetesimal disk interactions can break resonances and naturally create moderate to large positive offsets from the initial period ratio for large ranges of planetesimal disk and planet properties. Divergence from resonance only happens if the mass of planetesimals that interact with the planets is at least a few percent of the total planet mass. This threshold, above which resonances are broken and the offset from resonances can grow, naturally explains why the asymmetric large offsets were not seen in more massive planet pairs found via past radial velocity surveys. In this article we will highlight some of the key findings of CF15. In addition, we report preliminary results from an extension of this study, that investigates the effects of planet-planetesimal disk interactions on initially non-resonant planet pairs. We find that planetesimal scattering typically increases period ratios of non-resonant planets. If the initial period ratios are below and in proximity of a resonance, under certain conditions, this increment in period ratios can create a deficit of systems with period ratios just below the exact integer corresponding to the MMR and an excess just above. From an initially uniform distribution of period ratios just below a 2:1 MMR, planetesimal interactions can create an asymmetric distribution across this MMR similar to what is observed for the kepler planet pairs.

  19. Real-time radiography at the NECTAR facility

    NASA Astrophysics Data System (ADS)

    Bücherl, T.; Lierse von Gostomski, Ch.

    2011-09-01

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Bücherl et al., 2009 [1]). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  20. Fabrication of precision glass shells by joining glass rods

    DOEpatents

    Gac, Frank D.; Blake, Rodger D.; Day, Delbert E.; Haggerty, John S.

    1988-01-01

    A method for making uniform spherical shells. The present invention allows niform hollow spheres to be made by first making a void in a body of material. The material is heated so that the viscosity is sufficiently low so that the surface tension will transform the void into a bubble. The bubble is allowed to rise in the body until it is spherical. The excess material is removed from around the void to form a spherical shell with a uniform outside diameter.

  1. Fabrication of nylon/fullerene polymer memory

    NASA Astrophysics Data System (ADS)

    Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.

    2017-06-01

    Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.

  2. Abundances of disk and bulge giants from high-resolution optical spectra. I. O, Mg, Ca, and Ti in the solar neighborhood and Kepler field samples

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Nordlander, T.; Pehlivan Rhodin, A.; Hartman, H.; Jönsson, P.; Eriksson, K.

    2017-02-01

    Context. The Galactic bulge is an intriguing and significant part of our Galaxy, but it is hard to observe because it is both distant and covered by dust in the disk. Therefore, there are not many high-resolution optical spectra of bulge stars with large wavelength coverage, whose determined abundances can be compared with nearby, similarly analyzed stellar samples. Aims: We aim to determine the diagnostically important alpha elements of a sample of bulge giants using high-resolution optical spectra with large wavelength coverage. The abundances found are compared to similarly derived abundances from similar spectra of similar stars in the local thin and thick disks. In this first paper we focus on the solar neighborhood reference sample. Methods: We used spectral synthesis to derive the stellar parameters as well as the elemental abundances of both the local and bulge samples of giants. We took special care to benchmark our method of determining stellar parameters against independent measurements of effective temperatures from angular diameter measurements and surface gravities from asteroseismology. Results: In this first paper we present the method used to determine the stellar parameters and elemental abundances, evaluate them, and present the results for our local disk sample of 291 giants. Conclusions: When comparing our determined spectroscopic temperatures to those derived from angular diameter measurements, we reproduce these with a systematic difference of +10 K and a standard deviation of 53 K. The spectroscopic gravities reproduce those determined from asteroseismology with a systematic offset of +0.10 dex and a standard deviation of 0.12 dex. When it comes to the abundance trends, our sample of local disk giants closely follows trends found in other works analyzing solar neighborhood dwarfs, showing that the much brighter giant stars are as good abundance probes as the often used dwarfs. Based on observations made with the Nordic Optical Telescope (programs 51-018 and 53-002), operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias, and on spectral data retrieved from PolarBase at Observatoire Midi Pyrénées.Full Tables A.1 and A.3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A100

  3. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  4. Shaft/shaft-seal interface characteristics of a multiple disk centrifugal blood pump.

    PubMed

    Manning, K B; Miller, G E

    1999-06-01

    A multiple disk centrifugal pump (MDCP) is under investigation as a potential left ventricular assist device. As is the case with most shaft driven pumps, leakage problems around the shaft/shaft seal interface are of major interest. If leakage were to occur during or after implantation, potential events such as blood loss, clotting, blood damage, and/or infections might result in adverse effects for the patient. Because these effects could be quite disastrous, potential shaft and shaft seal materials have been investigated to determine the most appropriate course to limit these effects. Teflon and nylon shaft seals were analyzed as potential candidates along with a stainless steel shaft and a Melonite coated shaft. The materials and shafts were evaluated under various time durations (15, 30, 45, and 60 min), motor speeds (800, 1,000, 1,200, and 1,400 rpm), and outer diameters (1/2 and 3/4 inches). The motor speed and geometrical configurations were typical for the MDCP under normal physiologic conditions. An air and water study was conducted to analyze the inner diameter wear, the inner temperature values, and the outer temperature values. Statistical comparisons were computed for the shaft seal materials, the shafts, and the outer diameters along with the inner and outer temperatures. The conclusions made from the results indicate that both the tested shaft seal materials and shaft materials are not ideal candidates to be used for the MDCP. Teflon experienced a significant amount of wear in air and water studies. Nylon did experience little wear, but heat generation was an evident problem. A water study on nylon was not conducted because of its molecular structure.

  5. Effect of External Photoevaporation on the Radial Transport of Volatiles and the Water Snowline in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Kalyaan, Anusha; Desch, Steven

    2017-01-01

    The Sun was likely born in a high mass star forming region [1]. Such a birth environment with a proximity to a nearby O or B star would photoevaporate the sun’s protoplanetary disk and cause an outward mass flow from the outer edge, as well as truncation of the disk, as seen in the Orion proplyds (although not as intensely)[2]. Photoevaporation likely explains the currently observed ~47 AU edge of the Kuiper Belt in our solar system [3], and more compellingly, the origin of certain short-lived radionuclides (such as Fe60), which cannot be successfully explained by a nebular origin [4][5]. Such a mass loss mechanism should affect the radial transport processes in the snowline region and along with temperature, has the potential to alter the location of the snowline.In this context, and in the light of recent ALMA observational results indicative of non-traditional behavior of snowlines and volatile transport in disks [6][7], this work studies what effect a photoevaporative mass loss from the outer disk may have on the volatile transport around the snowline region between ~1-10 AU in the disk. We build on the model of [8] and explore the effects of a steep photoevaporated non-uniform $\\alpha$ disk on radial transport of volatiles and small icy solids by incorporating the advection-diffusion equations as in [9] and condensation/evaporation of volatiles. We present results of these simulations, including volatile mass fluxes, ice/rock ratios, and snow line locations, in protoplanetary disks like the solar nebula.References: [1] Adams, F.C., 2010, ARAA 48,47 [2] Henney, W.J., & O’Dell, C.R., 1999, AJ, 118, 2350 [3] Trujillo,C.A. & Brown,M.E., 2001, ApJL,554,L95 [4] Hester, J.J., & Desch, S.J., 2005,ASPC, 341,107 [5] Wadhwa, M. et al. , 2007, Protostars & Planets V, 835 [5 [6] Cieza, L.A., et al., 2016, Nature,535,258 [7] Huang, J, et al. et al., 2016, ApJL, 823, L18 [8] Kalyaan, A., et al., 2015, ApJ, 815, 112 [9] Desch, S.J., et al., (in review).

  6. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less

  7. The effect of precursor types on the magnetic properties of Y-type hexa-ferrite composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chin Mo; Na, Eunhye; Kim, Ingyu

    2015-05-07

    With magnetic composite including uniform magnetic particles, we expect to realize good high-frequency soft magnetic properties. We produced needle-like (α-FeOOH) nanoparticles with nearly uniform diameter and length of 20 and 500 nm. Zn-doped Y-type hexa-ferrite samples were prepared by solid state reaction method using the uniform goethite and non-uniform hematite (Fe{sub 2}O{sub 3}) with size of <1 μm, respectively. The micrographs observed by scanning electron microscopy show that more uniform hexagonal plates are observed in ZYG-sample (Zn-doped Y-type hexa-ferrite prepared with non-uniform hematite) than in ZYH-sample (Zn-doped Y-type hexa-ferrite prepared with uniform goethite). The permeability (μ′) and loss tangent (δ) atmore » 2 GHz are 2.31 and 0.07 in ZYG-sample and 2.0 and 0.07 in ZYH sample, respectively. We can observe that permeability and loss tangent are strongly related to the particle size and uniformity based on the nucleation, growth, and two magnetizing mechanisms: spin rotation and domain wall motion. The complex permeability spectra also can be numerically separated into spin rotational and domain wall resonance components.« less

  8. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE PAGES

    Prime, Michael B.

    2017-07-01

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  9. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael B.

    Axisymmetric indentation of a geometrically axisymmetric disk produced residual stresses by non-uniform plastic deformation. The 2024 aluminum plate used to make the disk exhibited mild plastic anisotropy with about 10% lower strength in the transverse direction compared to the rolling and through-thickness directions. Residual stresses and strains in the disk were measured with neutron diffraction, slitting, the contour method, x-ray diffraction and hole drilling. Surprisingly, the residual-stress anisotropy measured in the disk was about 40%, the residual-strain anisotropy was an impressive 100%, and the residual stresses were higher in the weaker direction. The high residual stress anisotropy relative to themore » mild plastic anisotropy and the direction of the highest stress are explained by considering the mechanics of indentation: constraint on deformation provided by the material surrounding the indentation and preferential deformation in the most compliant direction for incremental deformation. By contrast, the much larger anisotropy in residual strain compared to that in residual stress is independent of the fabrication process and is instead explained by considering Hookean elasticity. For Poisson's ratio of 1/3, the relationship simplifies to the residual strain anisotropy equaling the square of the residual stress anisotropy, which matches the observed results (2 ≈ 1.4^2). Furthermore, a lesson from this study is that to accurately predict residual stresses and strains, one must be wary of seemingly reasonable simplifying assumptions such as neglecting mild plastic anisotropy.« less

  10. ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canup, Robin M., E-mail: robin@boulder.swri.edu

    It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less

  11. The Galactic Nova Rate Revisited

    NASA Astrophysics Data System (ADS)

    Shafter, A. W.

    2017-01-01

    Despite its fundamental importance, a reliable estimate of the Galactic nova rate has remained elusive. Here, the overall Galactic nova rate is estimated by extrapolating the observed rate for novae reaching m≤slant 2 to include the entire Galaxy using a two component disk plus bulge model for the distribution of stars in the Milky Way. The present analysis improves on previous work by considering important corrections for incompleteness in the observed rate of bright novae and by employing a Monte Carlo analysis to better estimate the uncertainty in the derived nova rates. Several models are considered to account for differences in the assumed properties of bulge and disk nova populations and in the absolute magnitude distribution. The simplest models, which assume uniform properties between bulge and disk novae, predict Galactic nova rates of ˜50 to in excess of 100 per year, depending on the assumed incompleteness at bright magnitudes. Models where the disk novae are assumed to be more luminous than bulge novae are explored, and predict nova rates up to 30% lower, in the range of ˜35 to ˜75 per year. An average of the most plausible models yields a rate of {50}-23+31 yr-1, which is arguably the best estimate currently available for the nova rate in the Galaxy. Virtually all models produce rates that represent significant increases over recent estimates, and bring the Galactic nova rate into better agreement with that expected based on comparison with the latest results from extragalactic surveys.

  12. Optical, near, infrared and ultraviolet monitoring of the Seyfert 1 galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Shrader, Chris R.; Sun, W.-H.; Turner, T. J.; Hintzen, P. M.

    1990-01-01

    Preliminary results of a multifrequency monitoring campaign for the bright, Seyfert 1 galactic nuclei Mkn335 are presented. Nearly uniform sampling at 3 day intervals is achieved quasi simultaneously at each wavelength band. Wavelength dependent variability is seen at the 20 to 30 percent level. Interpretation of variability in terms of geometrically thin, optically thick accretion disk models is discussed. The inferred blackhole masses and accretion rates are discussed. Possible correlation between continuum and emission line variations is discussed.

  13. 100 mm diameter rod laser amplifiers made of different Nd:glasses

    NASA Astrophysics Data System (ADS)

    Shaykin, A. A.; Kuzmin, A. A.; Shaikin, I. A.; Potemkin, A. K.; Arbuzov, V. I.; Hu, Lili; Wen, Lei; Khazanov, Е A.

    2018-03-01

    We measured the dependence of the weak signal gain of 100 mm diameter rod amplifiers on pump energy and transverse coordinates for four neodymium glass grades. The highest gain was obtained in N31-05 (China), and the highest radial gain uniformity in KGSS-0180 glass (Russia). The data obtained enable the optimal glass grade to be chosen for each specific problem by finding a compromise between maximum output energy and minimum distortion of beam profile.

  14. Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say

    NASA Astrophysics Data System (ADS)

    2000-01-01

    A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline Array (VLBA) radio telescope in 1995. Further VLBA observations of NGC 4258 allowed astronomers to calculate an extremely accurate distance to that galaxy last year. "We're excited to find this phenomenon in a second galaxy, but we're also tantalized by the evidence that these masers respond to variations of the central engine," Gallimore said. In order to amplify radio signals, masers, like their visible-light counterparts, lasers, require a source of energy, called the pumping energy. The scientists believe the masers in NGC 1068 get that pumping energy from a highly-energetic, superhot disk of material that is being pulled into the black hole. That disk, called an accretion disk, emits X-rays that the astronomers think start a chain of events that powers the masers. Such accretion disks can be unstable, dramatically changing their energy output from time to time. "When the accretion disk puts out more energy, the masers should brighten, and when it puts out less energy, they should get fainter. If the accretion disk gets too bright, however, water molecules are destroyed and the masers turn off. We think that's what we're seeing in this galaxy," Gallimore said. "We want to watch this in the future to learn more, not only about the masers, but also about the accretion disk itself," he said. The strongest evidence that the masers are responding to variations in the output of the central engine came from watching variations in the brightness of masers on opposite sides of the water molecule disk. The masers on both sides of the molecular disk, some 5 light-years across, brightened within about two weeks of each other. "If this were caused by something within that molecular disk itself, it would take about 10,000 years to affect both sides of the disk, because of the orbital times involved. However, both sides of the disk are the same distance from the central engine, so they can both respond to the central engine simultaneously," Gallimore explained. The black hole at NGC 1068's center, the scientists say, is about 10 million times more massive than the Sun. NGC 1068 also is known as Messier 77 (M77), one of the objects listed in French astronomer Charles Messier's catalog of non-stellar objects. First observed in 1780, it appeared in the version of Messier's catalog published in 1781. In 1914, Lowell Observatory astronomer Vesto Slipher measured the Doppler shift in the galaxy's light, showing that the galaxy is receding from Earth at a speed of about 1,100 kilometers per second. The galaxy's water masers, which amplify radio signals at a frequency of 22 GHz, were discovered in 1984. The galaxy is visible in moderate-sized amateur telescopes. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  15. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

    DOE PAGES

    Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph; ...

    2016-02-03

    The hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. We report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Furthermore, image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocitymore » on the film uniformity. The data were then used to demonstrate the fabrication of uniform sol–gel chemistry derived porous polymer films inside 2 mm inner diameter diamond shells.« less

  16. In Situ Real-Time Radiographic Study of Thin Film Formation Inside Rotating Hollow Spheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Tom; Walton, Christopher C.; Dawedeit, Christoph

    2016-02-03

    Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in-situ real-time radiography experiments that provide critical spatio-temporal information about the distribution of fluids inside hollow spheres during uniaxial rotation. Image analysis and computer fluid dynamics simulations were used to explore the effect of liquid viscosity and rotational velocity onmore » the film uniformity. The data were then used to demonstrate the fabrication of uniform sol-gel chemistry derived porous polymer films inside 2mm inner diameter diamond shells.« less

  17. Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks.

    PubMed

    Shih, Wei-Chuan; Santos, Greggy M; Zhao, Fusheng; Zenasni, Oussama; Arnob, Md Masud Parvez

    2016-07-13

    Near-infrared (NIR) absorption spectroscopy provides molecular and chemical information based on overtones and combination bands of the fundamental vibrational modes in the infrared wavelengths. However, the sensitivity of NIR absorption measurement is limited by the generally weak absorption and the relatively poor detector performance compared to other wavelength ranges. To overcome these barriers, we have developed a novel technique to simultaneously obtain chemical and refractive index sensing in 1-2.5 μm NIR wavelength range on nanoporous gold (NPG) disks, which feature high-density plasmonic hot-spots of localized electric field enhancement. For the first time, surface-enhanced near-infrared absorption (SENIRA) spectroscopy has been demonstrated for high sensitivity chemical detection. With a self-assembled monolayer (SAM) of octadecanethiol (ODT), an enhancement factor (EF) of up to ∼10(4) has been demonstrated for the first C-H combination band at 2400 nm using NPG disk with 600 nm diameter. Together with localized surface plasmon resonance (LSPR) extinction spectroscopy, simultaneous sensing of sample refractive index has been achieved for the first time. The performance of this technique has been evaluated using various hydrocarbon compounds and crude oil samples.

  18. Spectral Photometric Properties of the Moon

    NASA Technical Reports Server (NTRS)

    Dominque, D.; Vilas, F.

    2005-01-01

    We modeled the solar phase curves of the moon at a series of wavelengths using the full disk telescopic observations [1]. We endeavored to keep the database self-contained, that is, to use the values derived for the solar magnitude and phase curves of the disk-integrated [1]. These observations were made in a suite of 10 narrowband filters between 0.315 microns and 1.06 microns, and in the broad band Johnson UBV filters, as part of a larger program to obtain photoelectric photometry of the larger planets. Two aspects of the lunar observations are unique. First, the observations cover phase angles from 6deg through 120deg. More importantly, the observers used a special 20-mm diameter f/15 fused quartz lens constructed solely for this purpose. The lens reduced the whole lunar image in the focal plane to a size comparable to the planets observed as part of the same program. This image was fed directly into the photometer. Thus, these observations constitute the only existing set of phase curves of the entire lunar disk over a range of wavelengths. Table 1 lists the values of the Hapke model parameters which fit the data. Figure 1 is an example of the model fits to the data.

  19. The Radio Jets and Accretion Disk in NGC 4261

    NASA Astrophysics Data System (ADS)

    Jones, Dayton L.; Wehrle, Ann E.; Meier, David L.; Piner, B. Glenn

    2000-05-01

    The structure of active galactic nucleus (AGN) accretion disks on subparsec scales can be probed through free-free absorption of synchrotron emission from the base of symmetric radio jets. For objects in which both jet and counterjet are detectable with very long baseline interferometry (VLBI), the accretion disk will cover part of the counterjet and produce diminished brightness whose angular size and depth as a function of frequency can reveal the radial distribution of free electrons in the disk. The nearby (41 Mpc, independent of H0) FR I radio galaxy NGC 4261 contains a pair of symmetric kiloparsec-scale jets. On parsec scales, radio emission from the nucleus is strong enough for detailed imaging with VLBI. We present new Very Long Baseline Array (VLBA) observations of NGC 4261 at 22 and 43 GHz, which we combine with previous observations at 1.6 and 8.4 GHz to map absorption caused by an inner accretion disk. The relative closeness of NGC 4261 combined with the high angular resolution provided by the VLBA at 43 GHz gives us a very high linear resolution, approximately 2×10-2 pc ~4000 AU ~400 Schwarzschild radii for a 5×108 Msolar black hole. The jets appear more symmetric at 1.6 GHz because of the low angular resolution available. The jets are also more symmetric at 22 and 43 GHz, presumably because the optical depth of free-free absorption is small at high frequencies. At 8.4 GHz, neither confusion effect is dominant and absorption of counterjet emission by the presumed disk is detectable. We find that the orientation of the radio jet axis is the same on parsec and kiloparsec scales, indicating that the spin axis of the inner accretion disk and black hole has remained unchanged for at least 106 (and more likely >107) yr. This suggests that a single merger event may be responsible for the supply of gas in the nucleus of NGC 4261. The jet opening angle is between 0.3d and 20° during the first 0.2 pc of the jet and must be less than 5° during the first 0.8 pc. Assuming that the accretion disk is geometrically and optically thin and composed of a uniform 104 K plasma, the average electron density in the inner 0.1 pc of the disk is 103-108 cm-3. The mass of ionized gas in the inner pc of the disk is 101-103 Msolar, sufficient to power the radio source for ~104-106 yr. Equating thermal gas pressure and magnetic field strength gives a disk magnetic field of ~10-4 to 10-2 gauss at 0.1 pc. We include an appendix containing expressions for a simple, optically thin, gas-pressure-dominated accretion disk model that may be applicable to other galaxies in addition to NGC 4261.

  20. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  1. Concept definition study for an extremely large aerophysics range facility

    NASA Technical Reports Server (NTRS)

    Swift, Hallock F.

    1993-01-01

    A conceptual design of a very large aeroballistic range is presented, as are its operational characteristics and procedures. The proposed model launcher is a two-stage light-gas gun, having a launch tube diameter of 254 mm, and the capability of accelerating a 14 kg launch mass to 6.1 km/sec. The gun's 91.4 cm diameter piston is driven by pressurized helium. High pressures in the central breech are contained by a multiple disk arrangement. The blast tank and sabot separation tank are described, as are methods for arresting sabot segments. The conceptual design of the range itself includes a 3.3 m diameter test or flight chamber some 330 m in length. Provisions are made for testing of free flight models and tests in which the model is confined by a track system. Methods for model deceleration and recovery are described. Provisions required for future addition of advanced model launchers such as an electromagnetic launcher or ram accelerator are addressed. Siting and safety issues are also addressed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert; Dale, Gregory E.; Olivas, Eric Richard

    The Northstar target for Mo99 production is made up of Mo100 disks in a stack separated by coolant gaps for helium flow. A number of targets have been tested at ANL for both production of Mo99 and for thermal-hydraulic performance. These have all been with a 12 mm diameter target, even while the production goals have increased the diameter to now 29 mm. A 29 mm diameter target has been designed that is consistent with the ANL beam capabilities and the capabilities of the helium circulation system currently in use at ANL. This target is designed for 500 μA atmore » 35 MeV electrons. While the plant design calls for 42 MeV, the chosen design point is more favorable and higher power given the limits of the ANL accelerator. The intended beam spot size is 12 mm FWHM, but the thermal analysis presented herein conservatively assumed a 10 mm FWHM beam, which results in a 44% higher beam current density at beam center.« less

  3. Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts.

    PubMed

    Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo

    2016-01-21

    We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.

  4. A SCUBA-2 850-micron Survey of Circumstellar Disks in the λ Orionis Cluster

    NASA Astrophysics Data System (ADS)

    Ansdell, Megan; Williams, Jonathan P.; Cieza, Lucas A.

    2015-06-01

    We present results from an 850 μm survey of the ˜5 Myr old λ Orionis star-forming region. We used the SCUBA-2 camera on the James Clerk Maxwell Telescope to survey a ˜0.°5-diameter circular region containing 36 (out of 59) cluster members with infrared excesses indicative of circumstellar disks. We detected only one object at \\gt 3σ significance, the Herbig Ae star HD 245185, with a flux density of ˜74 mJy beam-1 corresponding to a dust mass of ˜150 {M}\\oplus . Stacking the individually undetected sources did not produce a significant mean signal but gives an upper limit on the average dust mass for λ Orionis disks of ˜3 {M}\\oplus . Our follow-up observations of HD 245185 with the Submillimeter Array found weak CO 2-1 line emission with an integrated flux of ˜170 mJy km s-1 but no 13CO or C18O isotopologue emission at 30 mJy km s-1 sensitivity, suggesting a gas mass of ≲ 1 M{}{Jup}. The implied gas-to-dust ratio is thus ≳ 50 times lower than the canonical interstellar medium value, setting HD 245185 apart from other Herbig Ae disks of similar age, which have been found to be gas rich; as HD 245185 also shows signs of accretion, we may be catching it in the final phases of disk clearing. Our study of the λ Orionis cluster places quantitative constraints on planet formation timescales, indicating that at ˜5 Myr the average disk no longer has sufficient dust and gas to form giant planets and perhaps even super-Earths; the bulk material has been mostly dispersed or is locked in pebbles/planetesimals larger than a few mm in size.

  5. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis

    PubMed Central

    Khattree, Nidhi; Ritter, Linda M.; Goldberg, Andrew F. X.

    2013-01-01

    Summary Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally. PMID:23886945

  6. Antibiogramj: A tool for analysing images from disk diffusion tests.

    PubMed

    Alonso, C A; Domínguez, C; Heras, J; Mata, E; Pascual, V; Torres, C; Zarazaga, M

    2017-05-01

    Disk diffusion testing, known as antibiogram, is widely applied in microbiology to determine the antimicrobial susceptibility of microorganisms. The measurement of the diameter of the zone of growth inhibition of microorganisms around the antimicrobial disks in the antibiogram is frequently performed manually by specialists using a ruler. This is a time-consuming and error-prone task that might be simplified using automated or semi-automated inhibition zone readers. However, most readers are usually expensive instruments with embedded software that require significant changes in laboratory design and workflow. Based on the workflow employed by specialists to determine the antimicrobial susceptibility of microorganisms, we have designed a software tool that, from images of disk diffusion tests, semi-automatises the process. Standard computer vision techniques are employed to achieve such an automatisation. We present AntibiogramJ, a user-friendly and open-source software tool to semi-automatically determine, measure and categorise inhibition zones of images from disk diffusion tests. AntibiogramJ is implemented in Java and deals with images captured with any device that incorporates a camera, including digital cameras and mobile phones. The fully automatic procedure of AntibiogramJ for measuring inhibition zones achieves an overall agreement of 87% with an expert microbiologist; moreover, AntibiogramJ includes features to easily detect when the automatic reading is not correct and fix it manually to obtain the correct result. AntibiogramJ is a user-friendly, platform-independent, open-source, and free tool that, up to the best of our knowledge, is the most complete software tool for antibiogram analysis without requiring any investment in new equipment or changes in the laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Potential of Self-assembling Peptides for Enhancement of In Vitro Remineralisation of White Spot Lesions as Measured by Quantitative Laser Fluorescence.

    PubMed

    Golland, Luca; Schmidlin, Patrick R; Schätzle, Marc

    To test the remineralisation potential of a single application of self-assembling peptides or acidic fluoride solution using quantitative light-induced fluorescence (QLF) in vitro. Bovine enamel disks were prepared, and white spot lesions were created on one half of the disk with an acidic buffer solution. After demineralisation, disks were allocated into three groups of 11 specimens each. Group A served as a control group and received no treatment. Group B had a single application of fluoride, and group C was treated once with self-assembling peptides. All disks were embedded in a plastic mold (diameter 15 mm, height 9 mm) with an a-silicone, and remineralisation was initiated using a pH-cycling protocol for five days. Four experimental regions on each disk were measured prior to the start of the study (T0), after demineralisation (T1) and after the remineralisation process (T2) using QLF. After demineralisation, all areas showed a distinct loss of fluorescence, with no statistically significant difference between the groups (ΔF from -69.3 to -10.2). After remineralisation, samples of group B (treated with fluoride) showed a statistically significant fluorescence increase (ΔF from T1 to T2 15.2 ± 7.3) indicating remineralisation, whereas the samples of control group A and group C (treated with self-assembling peptides) showed no significant changes in ΔF of 1.1 ± 1.9 and 2.5 ± 1.9, respectively. Application of self-assembling peptides on demineralised bovine enamel did not lead to increased fluorescence using QLF, indicating either lack of remineralisation or irregular crystals. Increased fluorescence using QLF indicated mineral gain following a single application of a highly concentrated fluoride.

  8. HUBBLE UNCOVERS DUST DISK AROUND A MASSIVE BLACK HOLE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling a gigantic hubcap in space, a 3,700 light-year-diameter dust disk encircles a 300 million solar-mass black hole in the center of the elliptical galaxy NGC 7052. The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. Because the front end of the disk eclipses more stars than the back, it appears darker. Also, because dust absorbs blue light more effectively than red light, the disk is redder than the rest of the galaxy (this same phenomenon causes the Sun to appear red when it sets in a smoggy afternoon). This NASA Hubble Space Telescope image was taken with the Wide Field and Planetary Camera 2, in visible light. Details as small as 50 light-years across can be seen. Hubble's Faint Object Spectrograph (replaced by the STIS spectrograph in 1997) was used to observe hydrogen and nitrogen emission lines from gas in the disk. Hubble measurements show that the disk rotates like an enormous carousel, 341,000 miles per hour (155 kilometers per second) at 186 light-years from the center. The rotation velocity provides a direct measure of the gravitational force acting on the gas by the black hole. Though 300 million times the mass of our Sun, the black hole is still only 0.05 per cent of the total mass of the NGC 7052 galaxy. Despite its size, the disk is 100 times less massive than the black hole. Still, it contains enough raw material to make three million sun-like stars. The bright spot in the center of the disk is the combined light of stars that have crowded around the black hole due to its strong gravitational pull. This stellar concentration matches theoretical models linking stellar density to a central black hole's mass. NGC 7052 is a strong source of radio emission and has two oppositely directed `jets' emanating from the nucleus. (The jets are streams of energetic electrons moving in a strong magnetic field and unleashing radio energy). Because the jets in NGC 7052 are not perpendicular to the disk, it may indicate that the black hole and the dust disk in NGC 7052 do not have a common origin. One possibility is that the dust was acquired from a collision with a small neighboring galaxy, after the black hole had already formed. NGC 7052 is located in the constellation of Vulpecula, 191 million light-years from Earth. Credit: Roeland P. van der Marel (STScI), Frank C. van den Bosch (Univ. of Washington), and NASA. A caption and image files are available via the Internet at http://oposite.stsci.edu/pubinfo/1998/22.html.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamberger, Judith A.; Enderlin, Carl W.

    Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less

  10. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2013-09-30

    motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully

  11. Further development of an electroosmotic medium pump system for preparative disk gel electrophoresis.

    PubMed

    Hayakawa, Mitsuo; Hosogi, Yumiko; Takiguchi, Hisashi; Shiroza, Teruaki; Shibata, Yasuko; Hiratsuka, Koichi; Kiyama-Kishikawa, Michiko; Hamajima, Susumu; Abiko, Yoshimitsu

    2003-02-01

    A simple and practical 6.8-cm-diameter (36.30-cm(2) cross-sectional-area) preparative disk gel electrophoresis device, based on the design of M. Hayakawa et al. (Anal. Biochem. 288 (2001) 168), in which the elution buffer is driven by an electroosmotic buffer flow through the membrane into the elution chamber from the anode chamber was constructed. We have found that the dialysis membranes employed provide suitable flow rates for the elution buffer, similar to those of an earlier 3.6-cm-diameter device, resulting in the prevention of excess eluate dilution. The efficiency of this device was demonstrated by the fractionation of a bovine serum albumin (BSA) Cohn V fraction into monomer, dimer, and oligomer components using nondenaturing polyacrylamide gel electrophoresis (native-PAGE). The maximum protein concentration of the eluate achieved was 133 mg/ml of BSA monomer, which required a dilution of the eluate for subsequent analytical PAGE performance. As a practical example, the two-dimensional fractionation of soluble dipeptidyl peptidase IV (sDPP IV) from 50 ml fetal bovine serum (3.20 g protein) per gel is presented. The sDPP IV enzyme protein was recovered in a relatively short time, utilizing a 6.5% T native-PAGE and subsequential sodium dodecyl sulfate-PAGE system. This device enhances the possibility of continuous electrophoretic fractionation of complex protein mixtures on a preparative scale. Copyright 2003 Elsevier Science (USA)

  12. Redshift--Independent Distances of Spiral Galaxies: II. Internal Extinction at I Band

    NASA Astrophysics Data System (ADS)

    Giovanelli, R.; Haynes, M. P.; Salzer, J. J.; Wegner, G.; Dacosta, L. N.; Freudling, W.; Chamaraux, P.

    1993-12-01

    We analyze the photometric properties of a sample of 1450 Sbc--Sc galaxies with known redshifts, single--dish HI profiles and CCD I band images to derive laws that relate the measured isophotal radius at mu_I =23.5, magnitude, scale length and HI flux to the face--on aspect. Our results show that the central regions of spiral galaxies are substantially less transparent than most previous determinations suggest, but not as opaque as claimed by Valentijn (1990). Regions in the disk farther than two or three scale lengths from the center are close to completely transparent. In addition to statistically derived relations for the inclination dependence of photometric parameters, we present the results of a modelling exercise that utilizes the ``triplex'' model of Disney et al. (1989). Within the framework of that model, late spiral disks at I band have central optical depths on the order of tau_I ~ 5 and dust absorbing layers with scale heights on the order of half that of the stellar component. We discuss our results in light of previous determinations of internal extinction relations and point out the substantial impact of internal extinction on the scatter of the Tully--Fisher relation. We also find that the visual diameters by which large catalogs are constructed (UGC, ESO--Uppsala) are nearly proportional to face--on isophotal diameters.

  13. Physical properties of the ionized gas and brightness distribution in NGC4736

    NASA Astrophysics Data System (ADS)

    Rodrigues, I.; Dottori, H.; Cepa, J.; Vilchez, J.

    1998-03-01

    In this work we study the galaxy NGC4736, using narrow band interference filters imaging centered at the emission lines {Oii} {3727+3729}, Hβ, {Oiii} {5007}, Hα, {Sii} {6716+6730} and {Siii} {9070} and nearby continua. We have obtained sizes, positions, emission line absolute fluxes, and continua intensities for 90 Hii regions, mainly distributed in a ring-like structure of 3.2kpc in diameter. The Hα luminosities are in the range 37.3 <= log L_Hα <= 39.4 ergs(-1) . The Hii regions size distribution presents a characteristic diameter D_0 = 115pc and verifies the relation log (L_Hα ) ~D(3) . The temperature of the ionizing sources and the metallicity of the Hii regions are respectively in the ranges 3.410(4) <~T_⋆ <~ 4.010(4) K and 8.5 <~12 + log (O/H) <~9.3. The masses of the ionizing clusters are in the range 510(3) <~M_T/M_sun <~210(5) . The continua radial surface brightness distribution is better fitted by the superposition of a de Vaucouleurs', a thin and a thick exponential disk laws. The monochromatic colors show that outside the star forming ring the disk presents a younger stellar population than inside it. Tables 3 and 4 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  14. Unconventional spin distributions in thick Ni{sub 80}Fe{sub 20} nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, D.; Lupo, P.; Haldar, A.

    2016-05-09

    We study the spin distributions in permalloy (Py: Ni{sub 80}Fe{sub 20}) nanodisks as a function of diameter D (300 nm ≤ D ≤ 1 μm) and thickness L (30 nm ≤ L ≤ 100 nm). We observed that beyond a certain thickness, for a fixed disk diameter, an unconventional spin topology precipitates which is marked by the presence of a divergence field within the magnetic vortex curl. The strength of this divergence changes anti-symmetrically from negative to positive—depending on the core polarity—along the axis of the cylindrical nanodisk. This is also accompanied by a skyrmion-like out-of-plane bending of the spin vectors farther away from the disk center. Additionally, the vortex core dilatesmore » significantly when compared to its typical size. This has been directly observed using magnetic force microscopy. We determined from the ferromagnetic resonance spectroscopy measurements that the unconventional topology in the thicker nanodisks gyrated at a frequency, which is significantly lower than what is predicted by a magnetic vortex based analytical model. Micromagnetic simulations involving dipolar and exchange interactions appear to satisfactorily reproduce the experimentally observed static and dynamic behaviors. Besides providing a physical example of an unconventional topology, these results can also aid the design of topologically protected memory elements.« less

  15. Antimicrobial susceptibility and distribution of inhibition zone diameters of bovine mastitis pathogens in Flanders, Belgium.

    PubMed

    Supré, K; Lommelen, K; De Meulemeester, L

    2014-07-16

    In dairy farms, antimicrobial drugs are frequently used for treatment of (sub)clinical mastitis. Determining the antimicrobial susceptibility of mastitis pathogens is needed to come to a correct use of antimicrobials. Strains of Staphylococcus aureus (n=768), Streptococcus uberis (n=939), Streptococcus dysgalactiae (n=444), Escherichia coli (n=563), and Klebsiella species (n=59) originating from routine milk samples from (sub)clinical mastitis were subjected to the disk diffusion method. Disks contained representatives of frequently used antibiotics in dairy. A limited number of clinical breakpoints were available through CLSI, and showed that susceptibility of Staph. aureus, E. coli, and Klebsiella was moderate to high. For streptococcal species however, a large variation between the tested species and the different antimicrobials was observed. In a next step, wild type populations were described based on epidemiological cut off values (EUCAST). Because of the limited number of official cut off values, the data were observed as a mastitis subpopulation and self-generated cut off values were created and a putative wild type population was suggested. The need for accurate clinical breakpoints for veterinary pathogens is high. Despite the lack of these breakpoints, however, a population study can be performed based on the distribution of inhibition zone diameters on the condition that a large number of strains is tested. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Flight Test of a 40-Foot Nominal-Diameter Disk-Gap-Band Parachute Deployed at a Mach Number of 1.91 and a Dynamic Pressure of 11.6 Pounds per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Preisser, John S.

    1968-01-01

    A 40-foot (12.2 meter) nominal-diameter disk-gap-band parachute was flight tested as part of the NASA Supersonic Planetary Entry Decelerator Program (SPED-I). The test parachute was ejected by a deployment mortar from an instrumented payload at an altitude of 140,000 feet (42.5 kilometers). The payload was at a Mach number of 1.91 and the dynamic pressure was 11.6 pounds per square foot (555 newtons per square meter) at the time the parachute deployment mortar was fired. The parachute reached suspension line stretch in 0.43 second with a resultant snatch force loading of 1990 pounds (8850 newtons). The maximum parachute opening load of 6500 pounds (28,910 newtons) came 0.61 second later at a total elapsed time from mortar firing of 1.04 seconds. The first full inflation occurred at 1.12 seconds and stable inflation was achieved at approximately 1.60 seconds. The parachute had an average axial-force coefficient of 0.53 during the deceleration period. During the steady-state descent portion of the flight test, the average effective drag coefficient was also 0.53 and pitch-yaw oscillations of the canopy averaged less than 10 degrees in the altitude region above 100,000 feet (30.5 meters).

  17. Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    Subwavelength micro-disk lasers (MDLs) as small as 1 μm in diameter on exact (001) silicon were fabricated using colloidal lithography. The micro-cavity gain medium incorporating five-stacked InAs quantum dot layers was grown on a high crystalline quality GaAs-on-V-grooved-Si template with no absorptive intermediate buffers. Under continuous-wave optical pumping, the MDLs on silicon exhibit lasing in the 1.2-μm wavelength range with low thresholds down to 35 μW at 10 K. The MDLs compare favorably with devices fabricated on native GaAs substrates and state-of-the-art work reported elsewhere. Feasibility of device miniaturization can be projected by size-dependent lasing characteristics. The results show a promising path towardsmore » dense integration of photonic components on the mainstream complementary metal–oxide–semiconductor platform.« less

  18. Lunar occultation of Saturn. II - The normal reflectance of Rhea, Titan, and Iapetus

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Dunham, E. W.; Veverka, J.; Goguen, J.

    1978-01-01

    An inversion procedure to obtain the reflectance of the central region of a satellite's disk from lunar occultation data is presented. The scheme assumes that the limb darkening of the satellite depends only on the radial distance from the center of the disk. Given this assumption, normal reflectances can be derived that are essentially independent of the limb darkening and the diameter of the satellite. The procedure has been applied to our observations of the March 1974 lunar occultation of Tethys, Dione, Rhea, Titan, and Iapetus. In the V passband we derive the following normal reflectances: Rhea (0.97 plus or minus 0.20), Titan (0.24 plus or minus 0.03), Iapetus, bright face (0.60 plus or minus 0.14). For Tethys and Dione the values derived have large uncertainties, but are consistent with our result for Rhea.

  19. On the stability of a quasicrystal and its crystalline approximant in a system of hard disks with a soft corona

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Gantapara, Anjan P.; Dijkstra, Marjolein

    2015-10-01

    Using computer simulations, we study the phase behavior of a model system of colloidal hard disks with a diameter σ and a soft corona of width 1.4σ. The particles interact with a hard core and a repulsive square-shoulder potential. We calculate the free energy of the random-tiling quasicrystal and its crystalline approximants using the Frenkel-Ladd method. We explicitly account for the configurational entropy associated with the number of distinct configurations of the random-tiling quasicrystal. We map out the phase diagram and find that the random tiling dodecagonal quasicrystal is stabilised by entropy at finite temperatures with respect to the crystalline approximants that we considered, and its stability region seems to extend to zero temperature as the energies of the defect-free quasicrystal and the crystalline approximants are equal within our statistical accuracy.

  20. The galaxy NGC 1566 - Distribution and kinematics of the ionized gas

    NASA Astrophysics Data System (ADS)

    Comte, G.; Duquennoy, A.

    1982-10-01

    H-alpha narrowband observations are the basis of a study of ionized hydrogen in the large spiral galaxy NGC 1566 which has yielded a catalog of 418 H II regions covering the main body of the galaxy, supplemented by 59 positions and estimated H-alpha luminosities for regions located in the pseudo-outer ring where no H-alpha plate is available. A discussion of luminosity function, diameter distribution and spiral structure notes evidence for a double two-armed spiral pattern. The plane of the galaxy appears warped, and the efficiency of the two different spiral patterns in star formation is different. A preliminary radial velocity field is determined from three interferograms in H-alpha light, and is found to be acceptably fitted by a simple bulge-plus-disk dynamical model in which the apparent disk mass-to-light ratio sharply increases from center to edge.

  1. Electroluminescence from InGaN/GaN multi-quantum-wells nanorods light-emitting diodes positioned by non-uniform electric fields.

    PubMed

    Park, Hyunik; Kim, Byung-Jae; Kim, Jihyun

    2012-11-05

    We report that the nanorod light-emitting diodes (LEDs) with InGaN/GaN multi-quantum-wells (MQWs) emitted bright electroluminescence (EL) after they were positioned and aligned by non-uniform electric fields. Firstly, thin film LED structures with MQWs on sapphire substrate were coated with SiO(2) nanospheres, followed by inductively-coupled plasma etch to create nanorod-shapes with MQWs, which were transferred to the pre-patterned SiO(2)/Si wafer. This method allowed us to obtain nanorod LEDs with uniform length, diameter and qualities. Dielectrophoretic force created by non-uniform electric field was very effective at positioning the processed nanorods on the pre-patterned contacts. After aligned by non-uniform electric field, we observed bright EL from many nanorods, which had both cases (p-GaN/MQWs/n-GaN or n-GaN/MQWs/p-GaN). Therefore, bright ELs at different locations were observed under the various bias conditions.

  2. Transverse Coefficient of Thermal Expansion Measurements of Carbon Fibers Using ESEM at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ochoa, O.; Jiang, J.; Putnam, D.; Lo, Z.; Ellis, A.; Effinger, Michael

    2003-01-01

    The transverse coefficient of thermal expansion (CTE) of single IM7, T1000, and P55 carbon fibers are measured at elevated temperatures. The specimens are prepared by press-fitting fiber tows into 0.7mm-diameter cavity in a graphite disk of 5mm in diameter and 3mm high. The specimens are placed on a crucible in an ESEM, and images of the fiber cross section are taken as the fibers are heated up to 800 C. Holding time, heating and cool down cycles are also introduced. The geometrical changes are measured using a graphics tablet. The change in area/perimeter is calculated to determine the strain and transverse CTE for each fiber. In a complimentary computational effort, displacements and stresses are calculated with finite element models.

  3. Large-scale production of kappa-carrageenan droplets for gel-bead production: theoretical and practical limitations of size and production rate.

    PubMed

    Hunik, J H; Tramper, J

    1993-01-01

    Immobilization of biocatalysts in kappa-carrageenan gel beads is a widely used technique nowadays. Several methods are used to produce the gel beads. The gel-bead production rate is usually sufficient to make the relatively small quantities needed for bench-scale experiments. The droplet diameter can, within limits, be adjusted to the desired size, but it is difficult to predict because of the non-Newtonian fluid behavior of the kappa-carrageenan solution. Here we present the further scale-up of the extrusion technique with the theory to predict the droplet diameters for non-Newtonian fluids. The emphasis is on the droplet formation, which is the rate-limiting step in this extrusion technique. Uniform droplets were formed by breaking up a capillary jet with a sinusoidal signal of a vibration exciter. At the maximum production rate of 27.6 dm3/h, uniform droplets with a diameter of (2.1 +/- 0.12) x 10(-3) m were obtained. This maximum flow rate was limited by the power transfer of the vibration exciter to the liquid flow. It was possible to get a good prediction of the droplet diameter by estimating the local viscosity from shear-rate calculations and an experimental relation between the shear rate and viscosity. In this way the theory of Newtonian fluids could be used for the non-Newtonian kappa-carrageenan solution. The calculated optimal break-up frequencies and droplet sizes were in good agreement with those found in the experiments.

  4. Materials for Advanced Ultrasupercritical Steam Turbines Task 3: Materials for Non-Welded Rotors, Buckets, and BoltingMaterials for Advanced Ultrasupercritical Steam Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Deepak

    The primary objective of the task was to characterize the materials suitable for mechanically coupled rotor, buckets and bolting operating with an inlet temperature of 760°C (1400°F). A previous study DOE-FC26-05NT42442, identified alloys such as Haynes®282®, Nimonic 105, Inconel 740, Waspaloy, Nimonic 263, and Inconel 617 as potential alloys that met the requirements for the necessary operating conditions. Of all the identified materials, Waspaloy has been widely utilized in the aviation industry in the form of disk and other smaller forgings, and sufficient material properties and vendor experience exist, for the design and manufacture of large components. The European programmore » characterizing materials for A-USC conditions are evaluating Nimonic 263 and Inconel 617 for large components. Inconel 740 has been studied extensively as a part of the boiler consortium and is code approved. Therefore, the consortium focused efforts in the development of material properties for Haynes®282® and Nimonic 105 to avoid replicative efforts and provide material choices/trade off during the detailed design of large components. Commercially available Nimonic 105 and Haynes®282® were evaluated for microstructural stability by long term thermal exposure studies. Material properties requisite for design such as tensile, creep / rupture, low cycle fatigue, high cycle fatigue, fatigue crack growth rate, hold-time fatigue, fracture toughness, and stress relaxation are documented in this report. A key requisite for the success of the program was a need demonstrate the successful scale up of the down-selected alloys, to large components. All property evaluations in the past were performed on commercially available bar/billet forms. Components in power plant equipment such as rotors and castings are several orders in magnitude larger and there is a real need to resolve the scalability issue. Nimonic 105 contains high volume fraction y’ [>50%], and hence the alloy is best suited for smaller forging and valve internals, bolts, smaller blades. Larger Nimonic 105 forgings, would precipitate y’ during the surface cooling during forging, leading to surface cracks. The associate costs in forging Nimonic 105 to larger sizes [hotter dies, press requirements], were beyond the scope of this task and not investigated further. Haynes®282® has 20 - 25% volume fraction y’ was a choice for large components, albeit untested. A larger ingot diameter is pre-requisite for a larger diameter forging and achieves the “typically” accepted working ratio of 2.5-3:1. However, Haynes®282® is manufactured via a double melt process [VIM-ESR] limited by size [<18-16” diameter], which limited the maximum size of the final forging. The report documents the development of a 24” diameter triple melt ingot, surpassing the current available technology. A second triple melt ingot was manufactured and successfully forged into a 44” diameter disk. The successful developments in triple melting process and the large diameter forging of Haynes®282® resolved the scalability issues and involved the first of its kind attempt in the world for this alloy. The complete characterization of Haynes®282® forging was performed and documented in this report. The dataset from the commercially available Haynes®282® [grain size ASTM 3-4] and the finer grain size disk forging [ASTM 8-9] offer an additional design tradeoff to balance creep and fatigue during the future design process.« less

  5. The truth about laser fiber diameters.

    PubMed

    Kronenberg, Peter; Traxer, Olivier

    2014-12-01

    To measure the various diameters of laser fibers from various manufacturers and compare them with the advertised diameter. Fourteen different unused laser fibers from 6 leading manufacturers with advertised diameters of 200, 270, 272, 273, 365, and 400 μm were measured by light microscopy. The outer diameter (including the fiber coating, cladding, and core), cladding diameter (including the cladding and the fiber core), and core diameter were measured. Industry representatives of the manufacturers were interviewed about the diameter of their fibers. For all fibers, the outer and cladding diameters differed significantly from the advertised diameter (P <.00001). The outer diameter, which is of most practical relevance for urologists, exhibited a median increase of 87.3% (range, 50.7%-116.7%). The outer, cladding, and core diameters of fibers with equivalent advertised diameters differed by up to 180, 100, and 78 μm, respectively. Some 200-μm fibers had larger outer diameters than the 270- to 273-μm fibers. All packaging material and all laser fibers lacked clear and precise fiber diameter information labels. Of 12 representatives interviewed, 8, 3, and 1 considered the advertised diameter to be the outer, the cladding, and the core diameter, respectively. Representatives within the same company frequently gave different answers. This study suggests that, at present, there is a lack of uniformity between laser fiber manufacturers, and most of the information conveyed to urologists regarding laser fiber diameter may be incorrect. Because fibers larger than the advertised laser fibers are known to influence key interventional parameters, this misinformation can have surgical repercussions. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The in vivo performance of a sol-gel glass and a glass-ceramic in the treatment of limited bone defects.

    PubMed

    Gil-Albarova, Jorge; Garrido-Lahiguera, Ruth; Salinas, Antonio J; Román, Jesús; Bueno-Lozano, Antonio L; Gil-Albarova, Raúl; Vallet-Regí, María

    2004-08-01

    The in vivo evaluation, in New Zealand rabbits, of a SiO(2)-P(2)O(5)-CaO sol-gel glass and a SiO(2)-P(2)O(5)-CaO-MgO glass-ceramic, both bioactive in Kokubo's simulated body fluid (SBF), is presented. Bone defects, performed in the lateral aspect of distal right femoral epiphysis, 5mm in diameter and 4mm in depth, were filled with (i) sol-gel glass disks, (ii) glass-ceramic disks, or (iii) no material (control group). Each group included 8 mature and 8 immature rabbits. A 4-month radiographic study showed good implant stability without axial deviation of extremities in immature animals and periosteal growth and remodelling around and over the bone defect. After sacrifice, the macroscopic study showed healing of bone defects, with bone coating over the implants. The morphometric study showed a more generous bone formation in animals receiving sol-gel glass or glass-ceramic disks than in control group. Histomorphometric study showed an intimate union of the new-formed bone to the implants. This study allows considering both materials as eligible for bone substitution or repair. Their indications could include cavities filling and the coating of implant surfaces. The minimum degradation of glass-ceramic disks suggests its application in locations of load or transmission forces. As specific indication in growth plate surgery, both materials could be used as material of interposition after bony bridges resection.

  7. Rotating disk atomization of Gd and Gd-Y for hydrogen liquefaction via magnetocaloric cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slinger, Tyler

    2016-12-17

    In order to enable liquid hydrogen fuel cell technologies for vehicles the cost of hydrogen liquefaction should be lowered. The current method of hydrogen liquefaction is the Claude cycle that has a figure of merit (FOM) of 0.3-0.35. New magnetocaloric hydrogen liquefaction devices have been proposed with a FOM>0.5, which is a significant improvement. A significant hurdle to realizing these devices is the synthesis of spherical rare earth based alloy powders of 200μm in diameter. In this study a centrifugal atomization method that used a rotating disk with a rotating oil quench bath was developed to make gadolinium and gadolinium-yttriummore » spheres. The composition of the spherical powders included pure Gd and Gd 0.91Y 0.09. The effect of atomization parameters, such as superheat, melt properties, disk shape, disk speed, and melt system materials and design, were investigated on the size distribution and morphology of the resulting spheres. The carbon, nitrogen, and oxygen impurity levels also were analyzed and compared with the magnetic performance of the alloys. The magnetic properties of the charge material as well as the resulting powders were measured using a vibrating sample magnetometer. The saturation magnetization and Curie temperature were the target properties for the resulting spheres. These values were compared with measurements taken on the charge material in order to investigate the effect of atomization processing on the alloys.« less

  8. An automated laboratory-scale methodology for the generation of sheared mammalian cell culture samples.

    PubMed

    Joseph, Adrian; Goldrick, Stephen; Mollet, Michael; Turner, Richard; Bender, Jean; Gruber, David; Farid, Suzanne S; Titchener-Hooker, Nigel

    2017-05-01

    Continuous disk-stack centrifugation is typically used for the removal of cells and cellular debris from mammalian cell culture broths at manufacturing-scale. The use of scale-down methods to characterise disk-stack centrifugation performance enables substantial reductions in material requirements and allows a much wider design space to be tested than is currently possible at pilot-scale. The process of scaling down centrifugation has historically been challenging due to the difficulties in mimicking the Energy Dissipation Rates (EDRs) in typical machines. This paper describes an alternative and easy-to-assemble automated capillary-based methodology to generate levels of EDRs consistent with those found in a continuous disk-stack centrifuge. Variations in EDR were achieved through changes in capillary internal diameter and the flow rate of operation through the capillary. The EDRs found to match the levels of shear in the feed zone of a pilot-scale centrifuge using the experimental method developed in this paper (2.4×10 5 W/Kg) are consistent with those obtained through previously published computational fluid dynamic (CFD) studies (2.0×10 5 W/Kg). Furthermore, this methodology can be incorporated into existing scale-down methods to model the process performance of continuous disk-stack centrifuges. This was demonstrated through the characterisation of culture hold time, culture temperature and EDRs on centrate quality. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Pic du Midi solar survey

    NASA Astrophysics Data System (ADS)

    Koechlin, L.

    2015-12-01

    We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.

  10. Large scale clear-water local pier scour experiments

    USGS Publications Warehouse

    Sheppard, D.M.; Odeh, M.; Glasser, T.

    2004-01-01

    Local clear-water scour tests were performed with three different diameter circular piles (0. 114, 0.305, and 0.914 m), three different uniform cohesionless sediment diameters (0.22, 0.80, and 2.90 mm) and a range of water depths and flow velocities. The tests were performed in the 6.1 m wide, 6.4 m deep, and 38.4 m long flume at the United States Geological Survey Conte Research Center in Turners Falls, Mass. These tests extend local scour data obtained in controlled experiments to prototype size piles and ratios of pile diameter to sediment diameter to 4,155. Supply water for this flow through flume was supplied by a hydroelectric power plant reservoir and the concentration of suspended fine sediment (wash load) could not be controlled. Equilibrium scour depths were found to depend on the wash load concentration. ?? ASCE.

  11. The controlled growth of GaN nanowires.

    PubMed

    Hersee, Stephen D; Sun, Xinyu; Wang, Xin

    2006-08-01

    This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.

  12. Effects of grain size distribution on the packing fraction and shear strength of frictionless disk packings.

    PubMed

    Estrada, Nicolas

    2016-12-01

    Using discrete element methods, the effects of the grain size distribution on the density and the shear strength of frictionless disk packings are analyzed. Specifically, two recent findings on the relationship between the system's grain size distribution and its rheology are revisited, and their validity is tested across a broader range of distributions than what has been used in previous studies. First, the effects of the distribution on the solid fraction are explored. It is found that the distribution that produces the densest packing is not the uniform distribution by volume fractions as suggested in a recent publication. In fact, the maximal packing fraction is obtained when the grading curve follows a power law with an exponent close to 0.5 as suggested by Fuller and Thompson in 1907 and 1919 [Trans Am. Soc. Civ. Eng. 59, 1 (1907) and A Treatise on Concrete, Plain and Reinforced (1919), respectively] while studying mixtures of cement and stone aggregates. Second, the effects of the distribution on the shear strength are analyzed. It is confirmed that these systems exhibit a small shear strength, even if composed of frictionless particles as has been shown recently in several works. It is also found that this shear strength is independent of the grain size distribution. This counterintuitive result has previously been shown for the uniform distribution by volume fractions. In this paper, it is shown that this observation keeps true for different shapes of the grain size distribution.

  13. 100 J UV glass laser for dynamic compression research

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Fochs, S. F.; Bromage, J.; Broege, D.; Cuffney, R.; Currier, Z.; Dorrer, C.; Ehrich, B.; Engler, J.; Guardalben, M.; Kephalos, N.; Marozas, J.; Roides, R.; Zuegel, J.

    2017-02-01

    A frequency tripled, Nd:Glass laser has been constructed and installed at the Dynamic Compression Sector located at the Advanced Photon Source. This 100-J laser will be used to drive shocks in condensed matter which will then be interrogated by the facility x-ray beam. The laser is designed for reliable operation, utilizing proven designs for all major subsystems. A fiber front-end provides arbitrarily shaped pulses to the amplifier chain. A diode-pumped Nd:glass regenerative amplifier is followed by a four-pass, flashlamp- pumped rod amplifier. The regenerative amplifier produces up to 20 mJ with better than 1% RMS stability. The passively multiplexed four-pass amplifier produces up to 2 J. The final amplifier uses a 15-cm Nd:glass disk amplifier in a six-pass configuration. Over 200 J of infrared energy is produced by the disk amplifier. A KDP Type-II/Type-II frequency tripler configuration, utilizing a dual tripler, converts the 1053-nm laser output to a wavelength of 351 nm and the ultraviolet beam is image relayed to the target chamber. Output energy stability is better than 3%. Smoothing by Spectral Dispersion and polarization smoothing have been optimized to produce a highly uniform focal spot. A distributed phase plate and aspheric lens produce a farfield spot with a measured uniformity of 8.2% RMS. Custom control software collects all data and provides the operator an intuitive interface to operate and maintain the laser.

  14. NICMOS PEERS THROUGH DUST TO REVEAL YOUNG STELLAR DISKS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The following images were taken by NASA Hubble Space Telescope's Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). All of the objects are extremely young stars, 450 light-years away in the constellation Taurus. Most of the nebulae represent small dust particles around the stars, which are seen because they are reflecting starlight. In the color-coding, regions of greatest dust concentration appear red. All photo credits: D. Padgett (IPAC/Caltech), W. Brandner (IPAC), K. Stapelfeldt (JPL) and NASA [Top left]: CoKu Tau/1. This image shows a newborn binary star system, CoKu Tau/1, lying at the center of four 'wings' of light extending as much as 75 billion miles from the pair. The 'wings' outline the edges of a region in the stars' dusty surroundings, which have been cleared by outflowing gas. A thin, dark lane extends to the left and to right of the binary, suggesting that a disk or ring of dusty material encircles the two young stars. [Top center]: DG Tau B - An excellent example of the complementary nature of Hubble's instruments may be found by comparing the infrared NICMOS image of DG Tau B to the visible-light Wide Field and Planetary Camera 2 (WFPC2) image of the same object. WFPC2 highlights the jet emerging from the system, while NICMOS penetrates some of the dust near the star to more clearly outline the 50 billion-mile-long dust lane (the horizontal dark band, which indicates the presence of a large disk forming around the infant star). The young star itself appears as the bright red spot at the corner of the V-shaped nebula. [Top right]: Haro 6-5B - This image of the young star Haro 6-5B shows two bright regions separated by a dark lane. As seen in the WFPC2 image of the same object, the bright regions represent starlight reflecting from the upper and lower surfaces of the disk, which is thicker at its edges than its center. However, the infrared view reveals the young star just above the dust lane. [Bottom left]: I04016 - A very young star still deep within the dusty cocoon from which it formed is shown in this image of IRAS 04016+2610. The star is visible as a bright reddish spot at the base of a bowl-shaped nebula about 100 billion miles across at the widest point. The nebula arises from dusty material falling onto a forming circumstellar disk, seen as a partial dark band to the left of the star. The necklace of bright spots above the star is an image artifact. [Bottom center]: I04248 - In this image of IRAS 04248+2612, the infrared eyes of NICMOS peer through a dusty cloud to reveal a double-star system in formation. A nebula extends at least 65 billion miles in opposite directions from the twin stars, and is illuminated by them. This nebula was formed from material ejected by the young star system. The apparent 'pinching' of this nebula close to the binary suggests that a ring or disk of dust and gas surrounds the two stars. [Bottom right]: I04302 - This image shows IRAS 04302+2247, a star hidden from direct view and seen only by the nebula it illuminates. Dividing the nebula in two is a dense, edge-on disk of dust and gas which appears as the thick, dark band crossing the center of the image. The disk has a diameter of 80 billion miles (15 times the diameter of Neptune's orbit), and has a mass comparable to the Solar Nebula, which gave birth to our planetary system. Dark clouds and bright wisps above and below the disk suggest that it is still building up from infalling dust and gas.

  15. Accounting For Compressibility In Viscous Flow In Pipes

    NASA Technical Reports Server (NTRS)

    Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.

    1991-01-01

    Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.

  16. Lack of association between allozyme heterozygosity and juvenile traits in Eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Genetic variability for juvenile waits, which included basal diameter, height, biomass accumulation, and growth increment, was studied in eight provenances involving four species, Eucalyptus grandis, E. saligna, E. camaldulensis and E. urophylla, under uniform greenhouse conditions. The species diff...

  17. Effect of Friction on Shear Jamming

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ren, Jie; Dijksman, Joshua; Bares, Jonathan; Behringer, Robert

    2015-03-01

    Shear jamming of granular materials was first found for systems of frictional disks, with a static friction coefficient μ ~ 0 . 6 (Bi et al. Nature (2011)). Jamming by shear is obtained by starting from a zero-stress state with a packing fraction ϕ between ϕJ (isotropic jamming) and a lowest ϕS for shear jamming. This phenomenon is associated with strong anisotropy in stress and the contact network in the form of force chains, which are stabilized and/or enhanced by the presence of friction. Whether shear jamming occurs for frictionless particles is under debate. The issue we address experimentally is how reducing friction affects shear jamming. We put the Teflon-wrapped photoelastic disks, lowering the friction substantially from previous experiments, in a well-studied 2D shear apparatus (Ren et al. PRL (2013)), which provides a uniform simple shear. Shear jamming is still observed; however, the difference ϕJ -ϕS is smaller with lower friction. We also observe larger anisotropies in fragile states compared to experiments with higher friction particles at the same density. In ongoing work we are studying systems using photoelastic disks with fine gears on the edge to generate very large effective friction. We acknowledge support from NSF Grant DMR1206351, NSF Grant DMS-1248071, NASA Grant NNX10AU01G and William M. Keck Foundation.

  18. Generation of uniform light by use of diode lasers and a truncated paraboloid with a Lambertian scatterer.

    PubMed

    Alahautala, Taito; Hernberg, Rolf

    2004-02-01

    Uniform illumination was generated by use of a large number of diode laser emitters and a single nonimaging paraboloid with a Lambertian scatterer in the truncation plane. Laser light traverses a path toward the Lambertian surface and back by total internal reflection. An overall efficiency of 69% was demonstrated. Improvements that would increase the efficiency to more than 85% are suggested. The illuminated area is circular, with 14-mm diameter. The spatial nonuniformity of the beam profile is less than +/- 2%.

  19. Preparation and flow cytometry of uniform silica-fluorescent dye microspheres.

    PubMed

    Bele, Marjan; Siiman, Olavi; Matijević, Egon

    2002-10-15

    Uniform fluorescent silica-dye microspheres have been prepared by coating preformed monodispersed silica particles with silica layers containing rhodamine 6G or acridine orange. The resulting dispersions exhibit intense fluorescent emission between 500 and 600 nm, over a broad excitation wavelength range of 460 to 550 nm, even with exceedingly small amounts of dyes incorporated into the silica particles (10-30 ppm, expressed as weight of dye relative to weight of dry particles). The fluorescent particles can be prepared in micrometer diameters suitable for analyses using flow cytometry with 488-nm laser excitation.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS Fibreoptic diffuse-light irradiators of biological tissues

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir V.; Loshchenov, V. B.; Konov, Vitalii I.; Kononenko, Vitalii V.

    2010-10-01

    We report techniques for the fabrication of laser radiation diffusers for interstitial photodynamic therapy. Using chemical etching of the distal end of silica fibre with a core diameter of 200 — 600 μm, we have obtained long (up to 40 mm) diffusers with good scattering uniformity. Laser ablation has been used to produce cylindrical diffusers with high emission contrast and a scattering uniformity no worse than ~10 % in their middle part. The maximum length of the diffusers produced by this method is 20 — 25 mm.

Top