Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei
2018-02-21
Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.
Memory hierarchy using row-based compression
Loh, Gabriel H.; O'Connor, James M.
2016-10-25
A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.
Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode
NASA Astrophysics Data System (ADS)
Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool
2015-12-01
Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.
NASA Astrophysics Data System (ADS)
Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu
2018-03-01
Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
NASA Astrophysics Data System (ADS)
Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung
2018-06-01
An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.
Set statistics in conductive bridge random access memory device with Cu/HfO{sub 2}/Pt structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Meiyun; Long, Shibing, E-mail: longshibing@ime.ac.cn; Wang, Guoming
2014-11-10
The switching parameter variation of resistive switching memory is one of the most important challenges in its application. In this letter, we have studied the set statistics of conductive bridge random access memory with a Cu/HfO{sub 2}/Pt structure. The experimental distributions of the set parameters in several off resistance ranges are shown to nicely fit a Weibull model. The Weibull slopes of the set voltage and current increase and decrease logarithmically with off resistance, respectively. This experimental behavior is perfectly captured by a Monte Carlo simulator based on the cell-based set voltage statistics model and the Quantum Point Contact electronmore » transport model. Our work provides indications for the improvement of the switching uniformity.« less
The Effect of NUMA Tunings on CPU Performance
NASA Astrophysics Data System (ADS)
Hollowell, Christopher; Caramarcu, Costin; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr
2015-12-01
Non-Uniform Memory Access (NUMA) is a memory architecture for symmetric multiprocessing (SMP) systems where each processor is directly connected to separate memory. Indirect access to other CPU's (remote) RAM is still possible, but such requests are slower as they must also pass through that memory's controlling CPU. In concert with a NUMA-aware operating system, the NUMA hardware architecture can help eliminate the memory performance reductions generally seen in SMP systems when multiple processors simultaneously attempt to access memory. The x86 CPU architecture has supported NUMA for a number of years. Modern operating systems such as Linux support NUMA-aware scheduling, where the OS attempts to schedule a process to the CPU directly attached to the majority of its RAM. In Linux, it is possible to further manually tune the NUMA subsystem using the numactl utility. With the release of Red Hat Enterprise Linux (RHEL) 6.3, the numad daemon became available in this distribution. This daemon monitors a system's NUMA topology and utilization, and automatically makes adjustments to optimize locality. As the number of cores in x86 servers continues to grow, efficient NUMA mappings of processes to CPUs/memory will become increasingly important. This paper gives a brief overview of NUMA, and discusses the effects of manual tunings and numad on the performance of the HEPSPEC06 benchmark, and ATLAS software.
Parallelization of Program to Optimize Simulated Trajectories (POST3D)
NASA Technical Reports Server (NTRS)
Hammond, Dana P.; Korte, John J. (Technical Monitor)
2001-01-01
This paper describes the parallelization of the Program to Optimize Simulated Trajectories (POST3D). POST3D uses a gradient-based optimization algorithm that reaches an optimum design point by moving from one design point to the next. The gradient calculations required to complete the optimization process, dominate the computational time and have been parallelized using a Single Program Multiple Data (SPMD) on a distributed memory NUMA (non-uniform memory access) architecture. The Origin2000 was used for the tests presented.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)
1994-01-01
A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.
The ASSIST: Bringing Information and Software Together for Scientists
NASA Technical Reports Server (NTRS)
Mandel, Eric
1997-01-01
The ASSIST was developed as a step toward overcoming the problems faced by researchers when trying to utilize complex and often conflicting astronomical data analysis systems. It implements a uniform graphical interface to analysis systems, documentation, data, and organizational memory. It is layered on top of the Answer Garden Substrate (AGS), a system specially designed to facilitate the collection and dissemination of organizational memory. Under the AISRP program, we further developed the ASSIST to make it even easier for researchers to overcome the difficulties of accessing software and information in a complex computer environment.
Highly uniform and reliable resistive switching characteristics of a Ni/WOx/p+-Si memory device
NASA Astrophysics Data System (ADS)
Kim, Tae-Hyeon; Kim, Sungjun; Kim, Hyungjin; Kim, Min-Hwi; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook
2018-02-01
In this paper, we investigate the resistive switching behavior of a bipolar resistive random-access memory (RRAM) in a Ni/WOx/p+-Si RRAM with CMOS compatibility. Highly unifrom and reliable bipolar resistive switching characteristics are observed by a DC voltage sweeping and its switching mechanism can be explained by SCLC model. As a result, the possibility of metal-insulator-silicon (MIS) structural WOx-based RRAM's application to Si-based 1D (diode)-1R (RRAM) or 1T (transistor)-1R (RRAM) structure is demonstrated.
Naval Research Laboratory Fact Book 2012
2012-11-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...hyperspectral systems VNIR, MWIR, and LWIR high-resolution systems Wideband SAR systems RF and laser data links High-speed, high-power...hyperspectral imaging system Long-wave infrared ( LWIR ) quantum well IR photodetector (QWIP) imaging system Research and Development Services Divi- sion
2008-01-01
Distributed network-based battle management High performance computing supporting uniform and nonuniform memory access with single and multithreaded...pallet Airborne EO/IR and radar sensors VNIR through SWIR hyperspectral systems VNIR, MWIR, and LWIR high-resolution sys- tems Wideband SAR systems...meteorological sensors Hyperspectral sensor systems (PHILLS) Mid-wave infrared (MWIR) Indium Antimonide (InSb) imaging system Long-wave infrared ( LWIR
NASA Astrophysics Data System (ADS)
Gao, Shuang; Zeng, Fei; Li, Fan; Wang, Minjuan; Mao, Haijun; Wang, Guangyue; Song, Cheng; Pan, Feng
2015-03-01
The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications.The search for self-rectifying resistive memories has aroused great attention due to their potential in high-density memory applications without additional access devices. Here we report the forming-free and self-rectifying bipolar resistive switching behavior of a simple Pt/TaOx/n-Si tri-layer structure. The forming-free phenomenon is attributed to the generation of a large amount of oxygen vacancies, in a TaOx region that is in close proximity to the TaOx/n-Si interface, via out-diffusion of oxygen ions from TaOx to n-Si. A maximum rectification ratio of ~6 × 102 is obtained when the Pt/TaOx/n-Si devices stay in a low resistance state, which originates from the existence of a Schottky barrier between the formed oxygen vacancy filament and the n-Si electrode. More importantly, numerical simulation reveals that the self-rectifying behavior itself can guarantee a maximum crossbar size of 212 × 212 (~44 kbit) on the premise of 10% read margin. Moreover, satisfactory switching uniformity and retention performance are observed based on this simple tri-layer structure. All of these results demonstrate the great potential of this simple Pt/TaOx/n-Si tri-layer structure for access device-free high-density memory applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06406b
Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw
2015-03-23
Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less
Elevated-Confined Phase-Change Random Access Memory Cells
NASA Astrophysics Data System (ADS)
Lee; Koon, Hock; Shi; Luping; Zhao; Rong; Yang; Hongxin; Lim; Guan, Kian; Li; Jianming; Chong; Chong, Tow
2010-04-01
A new elevated-confined phase-change random access memory (PCRAM) cell structure to reduce power consumption was proposed. In this proposed structure, the confined phase-change region is sitting on top of a small metal column enclosed by a dielectric at the sides. Hence, more heat can be effectively sustained underneath the phase-change region. As for the conventional structure, the confined phase-change region is sitting directly above a large planar bottom metal electrode, which can easily conduct most of the induced heat away. From simulations, a more uniform temperature profile around the active region and a higher peak temperature at the phase-change layer (PCL) in an elevated-confined structure were observed. Experimental results showed that the elevated-confined PCRAM cell requires a lower programming power and has a better scalability than a conventional confined PCRAM cell.
Dynamic Photorefractive Memory and its Application for Opto-Electronic Neural Networks.
NASA Astrophysics Data System (ADS)
Sasaki, Hironori
This dissertation describes the analysis of the photorefractive crystal dynamics and its application for opto-electronic neural network systems. The realization of the dynamic photorefractive memory is investigated in terms of the following aspects: fast memory update, uniform grating multiplexing schedules and the prevention of the partial erasure of existing gratings. The fast memory update is realized by the selective erasure process that superimposes a new grating on the original one with an appropriate phase shift. The dynamics of the selective erasure process is analyzed using the first-order photorefractive material equations and experimentally confirmed. The effects of beam coupling and fringe bending on the selective erasure dynamics are also analyzed by numerically solving a combination of coupled wave equations and the photorefractive material equation. Incremental recording technique is proposed as a uniform grating multiplexing schedule and compared with the conventional scheduled recording technique in terms of phase distribution in the presence of an external dc electric field, as well as the image gray scale dependence. The theoretical analysis and experimental results proved the superiority of the incremental recording technique over the scheduled recording. Novel recirculating information memory architecture is proposed and experimentally demonstrated to prevent partial degradation of the existing gratings by accessing the memory. Gratings are circulated through a memory feed back loop based on the incremental recording dynamics and demonstrate robust read/write/erase capabilities. The dynamic photorefractive memory is applied to opto-electronic neural network systems. Module architecture based on the page-oriented dynamic photorefractive memory is proposed. This module architecture can implement two complementary interconnection organizations, fan-in and fan-out. The module system scalability and the learning capabilities are theoretically investigated using the photorefractive dynamics described in previous chapters of the dissertation. The implementation of the feed-forward image compression network with 900 input and 9 output neurons with 6-bit interconnection accuracy is experimentally demonstrated. Learning of the Perceptron network that determines sex based on input face images of 900 pixels is also successfully demonstrated.
Feasibility of Virtual Machine and Cloud Computing Technologies for High Performance Computing
2014-05-01
Hat Enterprise Linux SaaS software as a service VM virtual machine vNUMA virtual non-uniform memory access WRF weather research and forecasting...previously mentioned in Chapter I Section B1 of this paper, which is used to run the weather research and forecasting ( WRF ) model in their experiments...against a VMware virtualization solution of WRF . The experiment consisted of running WRF in a standard configuration between the D-VTM and VMware while
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evarts, Eric R.; Rippard, William H.; Pufall, Matthew R.
In a small fraction of magnetic-tunnel-junction-based magnetic random-access memory devices with in-plane free layers, the write-error rates (WERs) are higher than expected on the basis of the macrospin or quasi-uniform magnetization reversal models. In devices with increased WERs, the product of effective resistance and area, tunneling magnetoresistance, and coercivity do not deviate from typical device properties. However, the field-swept, spin-torque, ferromagnetic resonance (FS-ST-FMR) spectra with an applied DC bias current deviate significantly for such devices. With a DC bias of 300 mV (producing 9.9 × 10{sup 6} A/cm{sup 2}) or greater, these anomalous devices show an increase in the fraction of the power presentmore » in FS-ST-FMR modes corresponding to higher-order excitations of the free-layer magnetization. As much as 70% of the power is contained in higher-order modes compared to ≈20% in typical devices. Additionally, a shift in the uniform-mode resonant field that is correlated with the magnitude of the WER anomaly is detected at DC biases greater than 300 mV. These differences in the anomalous devices indicate a change in the micromagnetic resonant mode structure at high applied bias.« less
NASA Astrophysics Data System (ADS)
Bousoulas, P.; Giannopoulos, I.; Asenov, P.; Karageorgiou, I.; Tsoukalas, D.
2017-03-01
Although multilevel capability is probably the most important property of resistive random access memory (RRAM) technology, it is vulnerable to reliability issues due to the stochastic nature of conducting filament (CF) creation. As a result, the various resistance states cannot be clearly distinguished, which leads to memory capacity failure. In this work, due to the gradual resistance switching pattern of TiO2-x-based RRAM devices, we demonstrate at least six resistance states with distinct memory margin and promising temporal variability. It is shown that the formation of small CFs with high density of oxygen vacancies enhances the uniformity of the switching characteristics in spite of the random nature of the switching effect. Insight into the origin of the gradual resistance modulation mechanisms is gained by the application of a trap-assisted-tunneling model together with numerical simulations of the filament formation physical processes.
Mobile computing in critical care.
Lapinsky, Stephen E
2007-03-01
Handheld computing devices are increasingly used by health care workers, and offer a mobile platform for point-of-care information access. Improved technology, with larger memory capacity, higher screen resolution, faster processors, and wireless connectivity has broadened the potential roles for these devices in critical care. In addition to the personal information management functions, handheld computers have been used to access reference information, management guidelines and pharmacopoeias as well as to track the educational experience of trainees. They can act as an interface with a clinical information system, providing rapid access to patient information. Despite their popularity, these devices have limitations related to their small size, and acceptance by physicians has not been uniform. In the critical care environment, the risk of transmitting microorganisms by such a portable device should always be considered.
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry
1998-01-01
This paper presents a model to evaluate the performance and overhead of parallelizing sequential code using compiler directives for multiprocessing on distributed shared memory (DSM) systems. With increasing popularity of shared address space architectures, it is essential to understand their performance impact on programs that benefit from shared memory multiprocessing. We present a simple model to characterize the performance of programs that are parallelized using compiler directives for shared memory multiprocessing. We parallelized the sequential implementation of NAS benchmarks using native Fortran77 compiler directives for an Origin2000, which is a DSM system based on a cache-coherent Non Uniform Memory Access (ccNUMA) architecture. We report measurement based performance of these parallelized benchmarks from four perspectives: efficacy of parallelization process; scalability; parallelization overhead; and comparison with hand-parallelized and -optimized version of the same benchmarks. Our results indicate that sequential programs can conveniently be parallelized for DSM systems using compiler directives but realizing performance gains as predicted by the performance model depends primarily on minimizing architecture-specific data locality overhead.
Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle
NASA Astrophysics Data System (ADS)
Jin, Zhiwen; Liu, Guo; Wang, Jizheng
2013-05-01
Uniform Au nanoparticles (NPs) are formed by thermally depositing nominal 2-nm thick Au film on a 10-nm thick polyimide film formed on a Al electrode, and then covered by a thin polymer semiconductor film, which acts as an energy barrier for electrons to be injected from the other Al electrode (on top of polymer film) into the Au NPs, which are energetically electron traps in such a resistive random access memory (RRAM) device. The Au NPs based RRAM device exhibits estimated retention time of 104 s, cycle times of more than 100, and ON-OFF ratio of 102 to 103. The carrier transport properties are also analyzed by fitting the measured I-V curves with several conduction models.
Atomic memory access hardware implementations
Ahn, Jung Ho; Erez, Mattan; Dally, William J
2015-02-17
Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.
Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel
2015-08-01
Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.
Wang, Xue-Feng; Tian, He; Zhao, Hai-Ming; Zhang, Tian-Yu; Mao, Wei-Quan; Qiao, Yan-Cong; Pang, Yu; Li, Yu-Xing; Yang, Yi; Ren, Tian-Ling
2018-01-01
Metal oxide-based resistive random access memory (RRAM) has attracted a lot of attention for its scalability, temperature robustness, and potential to achieve machine learning. However, a thick oxide layer results in relatively high program voltage while a thin one causes large leakage current and a small window. Owing to these fundamental limitations, by optimizing the oxide layer itself a novel interface engineering idea is proposed to reduce the programming voltage, increase the uniformity and on/off ratio. According to this idea, a molybdenum disulfide (MoS 2 )-palladium nanoparticles hybrid structure is used to engineer the oxide/electrode interface of hafnium oxide (HfO x )-based RRAM. Through its interface engineering, the set voltage can be greatly lowered (from -3.5 to -0.8 V) with better uniformity under a relatively thick HfO x layer (≈15 nm), and a 30 times improvement of the memory window can be obtained. Moreover, due to the atomic thickness of MoS 2 film and high transmittance of ITO, the proposed RRAM exhibits high transparency in visible light. As the proposed interface-engineering RRAM exhibits good transparency, low SET voltage, and a large resistive switching window, it has huge potential in data storage in transparent circuits and wearable electronics with relatively low supply voltage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yoon, Jung Ho; Yoo, Sijung; Song, Seul Ji; Yoon, Kyung Jean; Kwon, Dae Eun; Kwon, Young Jae; Park, Tae Hyung; Kim, Hye Jin; Shao, Xing Long; Kim, Yumin; Hwang, Cheol Seong
2016-07-20
To replace or succeed the present NAND flash memory, resistive switching random access memory (ReRAM) should be implemented in the vertical-type crossbar array configuration. The ReRAM cell must have a highly reproducible resistive switching (RS) performance and an electroforming-free, self-rectifying, low-power-consumption, multilevel-switching, and easy fabrication process with a deep sub-μm(2) cell area. In this work, a Pt/Ta2O5/HfO2-x/TiN RS memory cell fabricated in the form of a vertical-type structure was presented as a feasible contender to meet the above requirements. While the fundamental RS characteristics of this material based on the electron trapping/detrapping mechanisms have been reported elsewhere, the influence of the cell scaling size to 0.34 μm(2) on the RS performance by adopting the vertical integration scheme was carefully examined in this work. The smaller cell area provided much better switching uniformity while all the other benefits of this specific material system were preserved. Using the overstressing technique, the nature of RS through the localized conducting path was further examined, which elucidated the fundamental difference between the present material system and the general ionic-motion-related bipolar RS mechanism.
Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.
Lukavský, Jiří; Děchtěrenko, Filip
2017-10-01
Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.
A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Heather M; Graham, Paul S; Morgan, Keith S
2008-01-01
Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA usermore » designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.« less
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.
NASA Technical Reports Server (NTRS)
Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)
2000-01-01
A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.
CD uniformity control for thick resist process
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2017-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.
YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste
Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less
MAPI: a software framework for distributed biomedical applications
2013-01-01
Background The amount of web-based resources (databases, tools etc.) in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license). PMID:23311574
Park, Jae Hyo; Kim, Hyung Yoon; Jang, Gil Su; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Kiaee, Zohreh; Joo, Seung Ki
2016-01-01
The development of ferroelectric random-access memory (FeRAM) technology with control of grain boundaries would result in a breakthrough for new nonvolatile memory devices. The excellent piezoelectric and electrical properties of bulk ferroelectrics are degraded when the ferroelectric is processed into thin films because the grain boundaries then form randomly. Controlling the nature of nucleation and growth are the keys to achieving a good crystalline thin-film. However, the sought after high-quality ferroelectric thin-film has so far been thought to be impossible to make, and research has been restricted to atomic-layer deposition which is extremely expensive and has poor reproducibility. Here we demonstrate a novel epitaxial-like growth technique to achieve extremely uniform and large rectangular-shaped grains in thin-film ferroelectrics by dividing the nucleation and growth phases. With this technique, it is possible to achieve 100-μm large uniform grains, even made available on Si, which is large enough to fabricate a field-effect transistor in each grain. The electrical and reliability test results, including endurance and retention test results, were superior to other FeRAMs reported so far and thus the results presented here constitute the first step toward the development of FeRAM using epitaxial-like ferroelectric thin-films. PMID:27005886
Generating Performance Models for Irregular Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friese, Ryan D.; Tallent, Nathan R.; Vishnu, Abhinav
2017-05-30
Many applications have irregular behavior --- non-uniform input data, input-dependent solvers, irregular memory accesses, unbiased branches --- that cannot be captured using today's automated performance modeling techniques. We describe new hierarchical critical path analyses for the \\Palm model generation tool. To create a model's structure, we capture tasks along representative MPI critical paths. We create a histogram of critical tasks with parameterized task arguments and instance counts. To model each task, we identify hot instruction-level sub-paths and model each sub-path based on data flow, instruction scheduling, and data locality. We describe application models that generate accurate predictions for strong scalingmore » when varying CPU speed, cache speed, memory speed, and architecture. We present results for the Sweep3D neutron transport benchmark; Page Rank on multiple graphs; Support Vector Machine with pruning; and PFLOTRAN's reactive flow/transport solver with domain-induced load imbalance.« less
Resistive switching properties and physical mechanism of cobalt ferrite thin films
NASA Astrophysics Data System (ADS)
Hu, Wei; Zou, Lilan; Chen, Ruqi; Xie, Wei; Chen, Xinman; Qin, Ni; Li, Shuwei; Yang, Guowei; Bao, Dinghua
2014-04-01
We report reproducible resistive switching performance and relevant physical mechanism of sandwiched Pt/CoFe2O4/Pt structures in which the CoFe2O4 thin films were fabricated by a chemical solution deposition method. Uniform switching voltages, good endurance, and long retention have been demonstrated in the Pt/CoFe2O4/Pt memory cells. On the basis of the analysis of current-voltage characteristic and its temperature dependence, we suggest that the carriers transport through the conducting filaments in low resistance state with Ohmic conduction behavior, and the Schottky emission and Poole-Frenkel emission dominate the conduction mechanism in high resistance state. From resistance-temperature dependence of resistance states, we believe that the physical origin of the resistive switching refers to the formation and rupture of the oxygen vacancies related filaments. The nanostructured CoFe2O4 thin films can find applications in resistive random access memory.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... INTERNATIONAL TRADE COMMISSION [DN 2859] Certain Dynamic Random Access Memory Devices, and.... International Trade Commission has received a complaint entitled In Re Certain Dynamic Random Access Memory... certain dynamic random access memory devices, and products containing same. The complaint names Elpida...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same... synchronous dynamic random access memory controllers and products containing same by reason of infringement of... semiconductor chips having synchronous dynamic random access memory controllers and products containing same...
Ohmacht, Martin
2017-08-15
In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.
Ohmacht, Martin
2014-09-09
In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.
Holographic memories with encryption-selectable function
NASA Astrophysics Data System (ADS)
Su, Wei-Chia; Lee, Xuan-Hao
2006-03-01
Volume holographic storage has received increasing attention owing to its potential high storage capacity and access rate. In the meanwhile, encrypted holographic memory using random phase encoding technique is attractive for an optical community due to growing demand for protection of information. In this paper, encryption-selectable holographic storage algorithms in LiNbO 3 using angular multiplexing are proposed and demonstrated. Encryption-selectable holographic memory is an advance concept of security storage for content protection. It offers more flexibility to encrypt the data or not optionally during the recording processes. In our system design, the function of encryption and non-encryption storage is switched by a random phase pattern and a uniform phase pattern. Based on a 90-degree geometry, the input patterns including the encryption and non-encryption storage are stored via angular multiplexing with reference plane waves at different incident angles. Image is encrypted optionally by sliding the ground glass into one of the recording waves or removing it away in each exposure. The ground glass is a key for encryption. Besides, it is also an important key available for authorized user to decrypt the encrypted information.
Implementation of real-time digital signal processing systems
NASA Technical Reports Server (NTRS)
Narasimha, M.; Peterson, A.; Narayan, S.
1978-01-01
Special purpose hardware implementation of DFT Computers and digital filters is considered in the light of newly introduced algorithms and IC devices. Recent work by Winograd on high-speed convolution techniques for computing short length DFT's, has motivated the development of more efficient algorithms, compared to the FFT, for evaluating the transform of longer sequences. Among these, prime factor algorithms appear suitable for special purpose hardware implementations. Architectural considerations in designing DFT computers based on these algorithms are discussed. With the availability of monolithic multiplier-accumulators, a direct implementation of IIR and FIR filters, using random access memories in place of shift registers, appears attractive. The memory addressing scheme involved in such implementations is discussed. A simple counter set-up to address the data memory in the realization of FIR filters is also described. The combination of a set of simple filters (weighting network) and a DFT computer is shown to realize a bank of uniform bandpass filters. The usefulness of this concept in arriving at a modular design for a million channel spectrum analyzer, based on microprocessors, is discussed.
NASA Astrophysics Data System (ADS)
Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju
2018-02-01
In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Access Memory and Nand Flash Memory Devices and Products Containing Same; Notice of Institution of... importation, and the sale within the United States after importation of certain dynamic random access memory and NAND flash memory devices and products containing same by reason of infringement of certain claims...
Improved Writing-Conductor Designs For Magnetic Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1994-01-01
Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of... the sale within the United States after importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-821] Certain Dynamic Random Access Memory... importation, and the sale within the United States after importation of certain dynamic random access memory... certain dynamic random access memory devices, and products containing same that infringe one or more of...
Method and apparatus for managing access to a memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBenedictis, Erik
A method and apparatus for managing access to a memory of a computing system. A controller transforms a plurality of operations that represent a computing job into an operational memory layout that reduces a size of a selected portion of the memory that needs to be accessed to perform the computing job. The controller stores the operational memory layout in a plurality of memory cells within the selected portion of the memory. The controller controls a sequence by which a processor in the computing system accesses the memory to perform the computing job using the operational memory layout. The operationalmore » memory layout reduces an amount of energy consumed by the processor to perform the computing job.« less
Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M
2017-05-08
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.
Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M
2017-01-01
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891
Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM
2012-02-28
A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain claims of U.S. Patent Nos. 5,480,051; 5,422,309; 5...
Overview of emerging nonvolatile memory technologies
2014-01-01
Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820
Overview of emerging nonvolatile memory technologies.
Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen
2014-01-01
Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.
Hu, Wei; Zou, Lilan; Chen, Xinman; Qin, Ni; Li, Shuwei; Bao, Dinghua
2014-04-09
We report on highly uniform resistive switching properties of amorphous InGaZnO (a-IGZO) thin films. The thin films were fabricated by a low temperature photochemical solution deposition method, a simple process combining chemical solution deposition and ultraviolet (UV) irradiation treatment. The a-IGZO based resistive switching devices exhibit long retention, good endurance, uniform switching voltages, and stable distribution of low and high resistance states. Electrical conduction mechanisms were also discussed on the basis of the current-voltage characteristics and their temperature dependence. The excellent resistive switching properties can be attributed to the reduction of organic- and hydrogen-based elements and the formation of enhanced metal-oxide bonding and metal-hydroxide bonding networks by hydrogen bonding due to UV irradiation, based on Fourier-transform-infrared spectroscopy, X-ray photoelectron spectroscopy, and Field emission scanning electron microscopy analysis of the thin films. This study suggests that a-IGZO thin films have potential applications in resistive random access memory and the low temperature photochemical solution deposition method can find the opportunity for further achieving system on panel applications if the a-IGZO resistive switching cells were integrated with a-IGZO thin film transistors.
Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy
2017-09-26
A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.
NASA Astrophysics Data System (ADS)
Abbas, Haider; Park, Mi Ra; Abbas, Yawar; Hu, Quanli; Kang, Tae Su; Yoon, Tae-Sik; Kang, Chi Jung
2018-06-01
Improved resistive switching characteristics are demonstrated in a hybrid device with Pt/Ti/MnO (thin film)/MnO (nanoparticle)/Pt structure. The hybrid devices of MnO thin film and nanoparticle assembly were fabricated. MnO nanoparticles with an average diameter of ∼30 nm were chemically synthesized and assembled as a monolayer on a Pt bottom electrode. A MnO thin film of ∼40 nm thickness was deposited on the nanoparticle assembly to form the hybrid structure. Resistive switching could be induced by the formation and rupture of conducting filaments in the hybrid oxide layers. The hybrid device exhibited very stable unipolar switching with good endurance and retention characteristics. It showed a larger and stable memory window with a uniform distribution of SET and RESET voltages. Moreover, the conduction mechanisms of ohmic conduction, space-charge-limited conduction, Schottky emission, and Poole–Frenkel emission have been investigated as possible conduction mechanisms for the switching of the devices. Using MnO nanoparticles in the thin film and nanoparticle heterostructures enabled the appropriate control of resistive random access memory (RRAM) devices and markedly improved their memory characteristics.
Data traffic reduction schemes for sparse Cholesky factorizations
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1988-01-01
Load distribution schemes are presented which minimize the total data traffic in the Cholesky factorization of dense and sparse, symmetric, positive definite matrices on multiprocessor systems with local and shared memory. The total data traffic in factoring an n x n sparse, symmetric, positive definite matrix representing an n-vertex regular 2-D grid graph using n (sup alpha), alpha is equal to or less than 1, processors are shown to be O(n(sup 1 + alpha/2)). It is O(n(sup 3/2)), when n (sup alpha), alpha is equal to or greater than 1, processors are used. Under the conditions of uniform load distribution, these results are shown to be asymptotically optimal. The schemes allow efficient use of up to O(n) processors before the total data traffic reaches the maximum value of O(n(sup 3/2)). The partitioning employed within the scheme, allows a better utilization of the data accessed from shared memory than those of previously published methods.
A highly efficient 3D level-set grain growth algorithm tailored for ccNUMA architecture
NASA Astrophysics Data System (ADS)
Mießen, C.; Velinov, N.; Gottstein, G.; Barrales-Mora, L. A.
2017-12-01
A highly efficient simulation model for 2D and 3D grain growth was developed based on the level-set method. The model introduces modern computational concepts to achieve excellent performance on parallel computer architectures. Strong scalability was measured on cache-coherent non-uniform memory access (ccNUMA) architectures. To achieve this, the proposed approach considers the application of local level-set functions at the grain level. Ideal and non-ideal grain growth was simulated in 3D with the objective to study the evolution of statistical representative volume elements in polycrystals. In addition, microstructure evolution in an anisotropic magnetic material affected by an external magnetic field was simulated.
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.
Memory availability and referential access
Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.
2013-01-01
Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.
2010-07-22
dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain
Ultra-fast fluence optimization for beam angle selection algorithms
NASA Astrophysics Data System (ADS)
Bangert, M.; Ziegenhein, P.; Oelfke, U.
2014-03-01
Beam angle selection (BAS) including fluence optimization (FO) is among the most extensive computational tasks in radiotherapy. Precomputed dose influence data (DID) of all considered beam orientations (up to 100 GB for complex cases) has to be handled in the main memory and repeated FOs are required for different beam ensembles. In this paper, the authors describe concepts accelerating FO for BAS algorithms using off-the-shelf multiprocessor workstations. The FO runtime is not dominated by the arithmetic load of the CPUs but by the transportation of DID from the RAM to the CPUs. On multiprocessor workstations, however, the speed of data transportation from the main memory to the CPUs is non-uniform across the RAM; every CPU has a dedicated memory location (node) with minimum access time. We apply a thread node binding strategy to ensure that CPUs only access DID from their preferred node. Ideal load balancing for arbitrary beam ensembles is guaranteed by distributing the DID of every candidate beam equally to all nodes. Furthermore we use a custom sorting scheme of the DID to minimize the overall data transportation. The framework is implemented on an AMD Opteron workstation. One FO iteration comprising dose, objective function, and gradient calculation takes between 0.010 s (9 beams, skull, 0.23 GB DID) and 0.070 s (9 beams, abdomen, 1.50 GB DID). Our overall FO time is < 1 s for small cases, larger cases take ~ 4 s. BAS runs including FOs for 1000 different beam ensembles take ~ 15-70 min, depending on the treatment site. This enables an efficient clinical evaluation of different BAS algorithms.
The dynamic interplay between acute psychosocial stress, emotion and autobiographical memory.
Sheldon, Signy; Chu, Sonja; Nitschke, Jonas P; Pruessner, Jens C; Bartz, Jennifer A
2018-06-06
Although acute psychosocial stress can impact autobiographical memory retrieval, the nature of this effect is not entirely clear. One reason for this ambiguity is because stress can have opposing effects on the different stages of autobiographical memory retrieval. We addressed this issue by testing how acute stress affects three stages of the autobiographical memory retrieval - accessing, recollecting and reconsolidating a memory. We also investigate the influence of emotion valence on this effect. In a between-subjects design, participants were first exposed to an acute psychosocial stressor or a control task. Next, the participants were shown positive, negative or neutral retrieval cues and asked to access and describe autobiographical memories. After a three to four day delay, participants returned for a second session in which they described these autobiographical memories. During initial retrieval, stressed participants were slower to access memories than were control participants; moreover, cortisol levels were positively associated with response times to access positively-cued memories. There were no effects of stress on the amount of details used to describe memories during initial retrieval, but stress did influence memory detail during session two. During session two, stressed participants recovered significantly more details, particularly emotional ones, from the remembered events than control participants. Our results indicate that the presence of stress impairs the ability to access consolidated autobiographical memories; moreover, although stress has no effect on memory recollection, stress alters how recollected experiences are reconsolidated back into memory traces.
ERIC Educational Resources Information Center
Oberauer, Klaus; Bialkova, Svetlana
2009-01-01
Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination Affirming a Final Initial Determination..., and the sale within the United States after importation of certain static random access memories and...
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo
2008-04-25
A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination To Review in Part a Final Initial... States after importation of certain static random access memories and products containing the same by...
Low latency and persistent data storage
Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E
2014-02-18
Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
System and method for programmable bank selection for banked memory subsystems
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan
2010-09-07
A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.
Carbon nanomaterials for non-volatile memories
NASA Astrophysics Data System (ADS)
Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric
2018-03-01
Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... Determinations: ``The Holocaust--Uniforms, Canisters, and Shoes'' SUMMARY: Notice is hereby given of the... that the objects to be included in the exhibition ``The Holocaust--Uniforms, Canisters, and Shoes.... Holocaust Memorial Museum, Washington, DC, from on or about September 2010 until on or about September 2015...
NASA Astrophysics Data System (ADS)
Natsui, Masanori; Hanyu, Takahiro
2018-04-01
In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.
Fabrication of nylon/fullerene polymer memory
NASA Astrophysics Data System (ADS)
Jayan, Manuvel; Davis, Rosemary; Karthik, M. P.; Devika, K.; Kumar, G. Vijay; Sriraj, B.; Predeep, P.
2017-06-01
Two terminal Organic memories in passive matrix array form with device structure, Al/Nylon/ (Nylon+C60)/Nylon/ Al are fabricated. The current-voltage measurements showed hysteresis and the devices are thoroughly characterized for write-read-erase-read cycles. The control over the dispersion concentration, capacity of fullerene to readily accept electrons and the constant diameter of fullerene made possible uniform device fabrication with reproducible results. Scanning electron micrographs indicated that the device thickness remained uniform in the range of 19 micrometers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... following events have occurred since the publication of the preliminary results of this review. See Dynamic...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...
Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings
ERIC Educational Resources Information Center
Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.
2013-01-01
Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…
NASA Astrophysics Data System (ADS)
Xia, Peng; Li, Luman; Wang, Pengfei; Gan, Ying; Xu, Wei
2017-11-01
A facile and low-cost process was developed for fabricating write-once-read-many-times (WORM) Cu/Ag NPs/Alumina/Al memory devices, where the alumina passivation layer formed naturally in air at room temperature, whereas the Ag nanoparticle monolayer was in situ prepared through thermal annealing of a 4.5 nm Ag film in air at 150°C. The devices exhibit irreversible transition from initial high resistance (OFF) state to low resistance (ON) state, with ON/OFF ratio of 107, indicating the introduction of Ag nanoparticle monolayer greatly improves ON/OFF ratio by four orders of magnitude. The uniformity of threshold voltages exhibits a polar-dependent behavior, and a narrow range of threshold voltages of 0.40 V among individual devices was achieved upon the forward voltage. The memory device can be regarded as two switching units connected in series. The uniform alumina interfacial layer and the non-uniform distribution of local electric fields originated from Ag nanoparticles might be responsible for excellent switching uniformity. Since silver ions in active layer can act as fast ion conductor, a plausible mechanism relating to the formation of filaments sequentially among the two switching units connected in series is suggested for the polar-dependent switching behavior. Furthermore, we demonstrate both alumina layer and Ag NPs monolayer play essential roles in improving switching parameters based on comparative experiments.
Low latency and persistent data storage
Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd
2014-11-04
Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
More than a feeling: Emotional cues impact the access and experience of autobiographical memories.
Sheldon, Signy; Donahue, Julia
2017-07-01
Remembering is impacted by several factors of retrieval, including the emotional content of a memory cue. Here we tested how musical retrieval cues that differed on two dimensions of emotion-valence (positive and negative) and arousal (high and low)-impacted the following aspects of autobiographical memory recall: the response time to access a past personal event, the experience of remembering (ratings of memory vividness), the emotional content of a cued memory (ratings of event arousal and valence), and the type of event recalled (ratings of event energy, socialness, and uniqueness). We further explored how cue presentation affected autobiographical memory retrieval by administering cues of similar arousal and valence levels in a blocked fashion to one half of the tested participants, and randomly to the other half. We report three main findings. First, memories were accessed most quickly in response to musical cues that were highly arousing and positive in emotion. Second, we observed a relation between a cue and the elicited memory's emotional valence but not arousal; however, both the cue valence and arousal related to the nature of the recalled event. Specifically, high cue arousal led to lower memory vividness and uniqueness ratings, but cues with both high arousal and positive valence were associated with memories rated as more social and energetic. Finally, cue presentation impacted both how quickly and specifically memories were accessed and how cue valence affected the memory vividness ratings. The implications of these findings for views of how emotion directs the access to memories and the experience of remembering are discussed.
Optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1979-01-01
High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.
Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul
2014-01-01
We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803
How intention and monitoring your thoughts influence characteristics of autobiographical memories.
Barzykowski, Krystian; Staugaard, Søren Risløv
2018-05-01
Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.
Evaluating architecture impact on system energy efficiency
Yu, Shijie; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget. PMID:29161317
Evaluating architecture impact on system energy efficiency.
Yu, Shijie; Yang, Hailong; Wang, Rui; Luan, Zhongzhi; Qian, Depei
2017-01-01
As the energy consumption has been surging in an unsustainable way, it is important to understand the impact of existing architecture designs from energy efficiency perspective, which is especially valuable for High Performance Computing (HPC) and datacenter environment hosting tens of thousands of servers. One obstacle hindering the advance of comprehensive evaluation on energy efficiency is the deficient power measuring approach. Most of the energy study relies on either external power meters or power models, both of these two methods contain intrinsic drawbacks in their practical adoption and measuring accuracy. Fortunately, the advent of Intel Running Average Power Limit (RAPL) interfaces has promoted the power measurement ability into next level, with higher accuracy and finer time resolution. Therefore, we argue it is the exact time to conduct an in-depth evaluation of the existing architecture designs to understand their impact on system energy efficiency. In this paper, we leverage representative benchmark suites including serial and parallel workloads from diverse domains to evaluate the architecture features such as Non Uniform Memory Access (NUMA), Simultaneous Multithreading (SMT) and Turbo Boost. The energy is tracked at subcomponent level such as Central Processing Unit (CPU) cores, uncore components and Dynamic Random-Access Memory (DRAM) through exploiting the power measurement ability exposed by RAPL. The experiments reveal non-intuitive results: 1) the mismatch between local compute and remote memory node caused by NUMA effect not only generates dramatic power and energy surge but also deteriorates the energy efficiency significantly; 2) for multithreaded application such as the Princeton Application Repository for Shared-Memory Computers (PARSEC), most of the workloads benefit a notable increase of energy efficiency using SMT, with more than 40% decline in average power consumption; 3) Turbo Boost is effective to accelerate the workload execution and further preserve the energy, however it may not be applicable on system with tight power budget.
UPC++ Programmer’s Guide (v1.0 2017.9)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, D.
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
UPC++ Programmer’s Guide, v1.0-2018.3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, Dan
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
Is random access memory random?
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.
Distributed multiport memory architecture
NASA Technical Reports Server (NTRS)
Kohl, W. H. (Inventor)
1983-01-01
A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.
Nano suboxide layer generated in Ta{sub 2}O{sub 5} by Ar{sup +} ion irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, W. D., E-mail: song-wendong@dsi.a-star.edu.sg, E-mail: ying-ji-feng@dsi.a-star.edu.sg; Ying, J. F., E-mail: song-wendong@dsi.a-star.edu.sg, E-mail: ying-ji-feng@dsi.a-star.edu.sg; He, W.
2015-01-19
Ta{sub 2}O{sub 5}/TaO{sub x} heterostructure has become a leading oxide layer in memory cells and/or a bidirectional selector for resistive random access memory (RRAM). Although atomic layer deposition (ALD) was found to be uniquely suitable for depositing uniform and conformal films on complex topographies, it is hard to use ALD to grow suboxide TaO{sub x} layer. In this study, tantalum oxide films with a composition of Ta{sub 2}O{sub 5} were grown by ALD. Using Ar{sup +} ion irradiation, the suboxide was formed in the top layer of Ta{sub 2}O{sub 5} films by observing the Ta core level shift toward lowermore » binding energy with angle-resolved X-ray photoelectron spectroscopy. By controlling the energy and irradiation time of an Ar{sup +} ion beam, Ta{sub 2}O{sub 5}/TaO{sub x} heterostructure can be reliably produced on ALD films, which provides a way to fabricate the critical switching layers of RRAM.« less
Scalability of voltage-controlled filamentary and nanometallic resistance memory devices.
Lu, Yang; Lee, Jong Ho; Chen, I-Wei
2017-08-31
Much effort has been devoted to device and materials engineering to realize nanoscale resistance random access memory (RRAM) for practical applications, but a rational physical basis to be relied on to design scalable devices spanning many length scales is still lacking. In particular, there is no clear criterion for switching control in those RRAM devices in which resistance changes are limited to localized nanoscale filaments that experience concentrated heat, electric current and field. Here, we demonstrate voltage-controlled resistance switching, always at a constant characteristic critical voltage, for macro and nanodevices in both filamentary RRAM and nanometallic RRAM, and the latter switches uniformly and does not require a forming process. As a result, area-scalability can be achieved under a device-area-proportional current compliance for the low resistance state of the filamentary RRAM, and for both the low and high resistance states of the nanometallic RRAM. This finding will help design area-scalable RRAM at the nanoscale. It also establishes an analogy between RRAM and synapses, in which signal transmission is also voltage-controlled.
Price, John M; Colflesh, Gregory J H; Cerella, John; Verhaeghen, Paul
2014-05-01
We investigated the effects of 10h of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hendry, David F. (Inventor)
1993-01-01
In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.
zorder-lib: Library API for Z-Order Memory Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowell, Lucy; Edward W. Bethel
2015-04-01
This document describes the motivation for, elements of, and use of the zorder-lib, a library API that implements organization of and access to data in memory using either a-order (also known as "row-major" order) or z-order memory layouts. The primary motivation for this work is to improve the performance of many types of data- intensive codes by increasing both spatial and temporal locality of memory accesses. The basic idea is that the cost associated with accessing a datum is less when it is nearby in either space or time.
Efficient accesses of data structures using processing near memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera
Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less
Working memory capacity and controlled serial memory search.
Mızrak, Eda; Öztekin, Ilke
2016-08-01
The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.
The potential of multi-port optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1975-01-01
A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.
Saying what’s on your mind: Working memory effects on sentence production
Slevc, L. Robert
2011-01-01
The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058
Working memory at work: how the updating process alters the nature of working memory transfer.
Zhang, Yanmin; Verhaeghen, Paul; Cerella, John
2012-01-01
In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. Copyright © 2011 Elsevier B.V. All rights reserved.
Working Memory at Work: How the Updating Process Alters the Nature of Working Memory Transfer
Zhang, Yanmin; Verhaeghen, Paul; Cerella, John
2011-01-01
In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. PMID:22105718
ERIC Educational Resources Information Center
Gerhardt, Lillian N.
1981-01-01
Evaluates the Prince George's County Memorial Public Library's approach to providing access to its services for children, and examines policies, regulations, practices, and conditions that affect such access. Six references are cited. (FM)
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Acharya, Susant Kumar; Jo, Janghyun; Raveendra, Nallagatlla Venkata; Dash, Umasankar; Kim, Miyoung; Baik, Hionsuck; Lee, Sangik; Park, Bae Ho; Lee, Jae Sung; Chae, Seung Chul; Hwang, Cheol Seong; Jung, Chang Uk
2017-07-27
An oxide-based resistance memory is a leading candidate to replace Si-based flash memory as it meets the emerging specifications for future memory devices. The non-uniformity in the key switching parameters and low endurance in conventional resistance memory devices are preventing its practical application. Here, a novel strategy to overcome the aforementioned challenges has been unveiled by tuning the growth direction of epitaxial brownmillerite SrFeO 2.5 thin films along the SrTiO 3 [111] direction so that the oxygen vacancy channels can connect both the top and bottom electrodes rather directly. The controlled oxygen vacancy channels help reduce the randomness of the conducting filament (CF). The resulting device displayed high endurance over 10 6 cycles, and a short switching time of ∼10 ns. In addition, the device showed very high uniformity in the key switching parameters for device-to-device and within a device. This work demonstrates a feasible example for improving the nanoscale device performance by controlling the atomic structure of a functional oxide layer.
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1995-01-01
Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.
Development of Curie point switching for thin film, random access, memory device
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Tchernev, D. I.
1967-01-01
Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.
Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chun-Yi
By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less
Tehan, G; Lalor, D M
2000-11-01
Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the subject population, have suggested other contributors to span performance, notably contributions from long-term memory and forgetting and retrieval processes occurring during recall. In the current research we explore individual differences in span with respect to measures of rehearsal, output time, and access to lexical memory. We replicate standard short-term phenomena; we show that the variables that influence children's span performance influence adult performance in the same way; and we show that lexical memory access appears to be a more potent source of individual differences in span than either rehearsal speed or output factors.
Adult Age Differences in Accessing and Retrieving Information from Long-Term Memory.
ERIC Educational Resources Information Center
Petros, Thomas V.; And Others
1983-01-01
Investigated adult age differences in accessing and retrieving information from long-term memory. Results showed that older adults (N=26) were slower than younger adults (N=35) at feature extraction, lexical access, and accessing category information. The age deficit was proportionally greater when retrieval of category information was required.…
Bubble memory module for spacecraft application
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Looney, K. T.; Nichols, C. D.
1985-01-01
Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.
Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding
NASA Astrophysics Data System (ADS)
Dung, Lan-Rong; Lin, Meng-Chun
This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.
Radiation Effects of Commercial Resistive Random Access Memories
NASA Technical Reports Server (NTRS)
Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas
2014-01-01
We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.
17 CFR 274.402 - Form ID, uniform application for access codes to file on EDGAR.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for access codes to file on EDGAR. 274.402 Section 274.402 Commodity and Securities Exchanges... Forms for Electronic Filing § 274.402 Form ID, uniform application for access codes to file on EDGAR..., filing agent or training agent to log on to the EDGAR system, submit filings, and change its CCC. (d...
17 CFR 239.63 - Form ID, uniform application for access codes to file on EDGAR.
Code of Federal Regulations, 2011 CFR
2011-04-01
... for access codes to file on EDGAR. 239.63 Section 239.63 Commodity and Securities Exchanges SECURITIES... Statements § 239.63 Form ID, uniform application for access codes to file on EDGAR. Form ID must be filed by... log on to the EDGAR system, submit filings, and change its CCC. (d) Password Modification...
17 CFR 239.63 - Form ID, uniform application for access codes to file on EDGAR.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for access codes to file on EDGAR. 239.63 Section 239.63 Commodity and Securities Exchanges SECURITIES... Statements § 239.63 Form ID, uniform application for access codes to file on EDGAR. Form ID must be filed by... log on to the EDGAR system, submit filings, and change its CCC. (d) Password Modification...
17 CFR 274.402 - Form ID, uniform application for access codes to file on EDGAR.
Code of Federal Regulations, 2011 CFR
2011-04-01
... for access codes to file on EDGAR. 274.402 Section 274.402 Commodity and Securities Exchanges... Forms for Electronic Filing § 274.402 Form ID, uniform application for access codes to file on EDGAR..., filing agent or training agent to log on to the EDGAR system, submit filings, and change its CCC. (d...
Accessibility Limits Recall from Visual Working Memory
ERIC Educational Resources Information Center
Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay
2017-01-01
In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…
Physical principles and current status of emerging non-volatile solid state memories
NASA Astrophysics Data System (ADS)
Wang, L.; Yang, C.-H.; Wen, J.
2015-07-01
Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
Bäuml, Karl-Heinz T; Dobler, Ina M
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas recall specificity of the beneficial effect has not been examined to date. Addressing the issue, we compared in 2 experiments the effects of retrieval and restudy on recall of other items, when access to the study context was (largely) maintained and when access to the study context was impaired (in Experiment 1 by using the listwise directed-forgetting task, in Experiment 2 by using a prolonged retention interval). In both experiments, selective retrieval but not restudy induced forgetting of other items when context access was maintained, which replicates prior work. In contrast, when context access was impaired, both selective retrieval and restudy induced beneficial effects on other memories. These findings suggest that the detrimental but not the beneficial effect of selective memory retrieval is recall specific. The results are consistent with a recent 2-factor account of selective memory retrieval that attributes the detrimental effect to inhibition or blocking but the beneficial effect to context reactivation processes. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
Multi-Resolution Indexing for Hierarchical Out-of-Core Traversal of Rectilinear Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascucci, V.
2000-07-10
The real time processing of very large volumetric meshes introduces specific algorithmic challenges due to the impossibility of fitting the input data in the main memory of a computer. The basic assumption (RAM computational model) of uniform-constant-time access to each memory location is not valid because part of the data is stored out-of-core or in external memory. The performance of most algorithms does not scale well in the transition from the in-core to the out-of-core processing conditions. The performance degradation is due to the high frequency of I/O operations that may start dominating the overall running time. Out-of-core computing [28]more » addresses specifically the issues of algorithm redesign and data layout restructuring to enable data access patterns with minimal performance degradation in out-of-core processing. Results in this area are also valuable in parallel and distributed computing where one has to deal with the similar issue of balancing processing time with data migration time. The solution of the out-of-core processing problem is typically divided into two parts: (i) analysis of a specific algorithm to understand its data access patterns and, when possible, redesign the algorithm to maximize their locality; and (ii) storage of the data in secondary memory with a layout consistent with the access patterns of the algorithm to amortize the cost of each I/O operation over several memory access operations. In the case of a hierarchical visualization algorithms for volumetric data the 3D input hierarchy is traversed to build derived geometric models with adaptive levels of detail. The shape of the output models is then modified dynamically with incremental updates of their level of detail. The parameters that govern this continuous modification of the output geometry are dependent on the runtime user interaction making it impossible to determine a priori what levels of detail are going to be constructed. For example they can be dependent from external parameters like the viewpoint of the current display window or from internal parameters like the isovalue of an isocontour or the position of an orthogonal slice. The structure of the access pattern can be summarized into two main points: (i) the input hierarchy is traversed level by level so that the data in the same level of resolution or in adjacent levels is traversed at the same time and (ii) within each level of resolution the data is mostly traversed at the same time in regions that are geometrically close. In this paper I introduce a new static indexing scheme that induces a data layout satisfying both requirements (i) and (ii) for the hierarchical traversal of n-dimensional regular grids. In one particular implementation the scheme exploits in a new way the recursive construction of the Z-order space filling curve. The standard indexing that maps the input nD data onto a 1D sequence for the Z-order curve is based on a simple bit interleaving operation that merges the n input indices into one index n times longer. This helps in grouping the data for geometric proximity but only for a specific level of detail. In this paper I show how this indexing can be transformed into an alternative index that allows to group the data per level of resolution first and then the data within each level per geometric proximity. This yields a data layout that is appropriate for hierarchical out-of-core processing of large grids.« less
Plated wire random access memories
NASA Technical Reports Server (NTRS)
Gouldin, L. D.
1975-01-01
A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.
The Dynamics of Access to Groups in Working Memory
ERIC Educational Resources Information Center
Farrell, Simon; Lelievre, Anna
2012-01-01
The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…
Uniform Federal Accessibility Standards.
ERIC Educational Resources Information Center
Department of Housing and Urban Development, Washington, DC.
The document presents uniform standards for facility accessibility by physically handicapped persons for Federal and federally funded facilities. The standards are to be applied during the design, construction, and alteration of buildings and facilities to the extent required by the Architectural Barriers Act of 1968, as amended. Technical…
Performance of FORTRAN floating-point operations on the Flex/32 multicomputer
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1987-01-01
A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.
Improving the effectiveness of an interruption lag by inducing a memory-based strategy.
Morgan, Phillip L; Patrick, John; Tiley, Leyanne
2013-01-01
The memory for goals model (Altmann & Trafton, 2002) posits the importance of a short delay (the 'interruption lag') before an interrupting task to encode suspended goals for retrieval post-interruption. Two experiments used the theory of soft constraints (Gray, Simms, Fu & Schoelles, 2006) to investigate whether the efficacy of an interruption lag could be improved by increasing goal-state access cost to induce a more memory-based encoding strategy. Both experiments used a copying task with three access cost conditions (Low, Medium, and High) and a 5-s interruption lag with a no lag control condition. Experiment 1 found that the participants in the High access cost condition resumed more interrupted trials and executed more actions correctly from memory when coupled with an interruption lag. Experiment 2 used a prospective memory test post-interruption and an eyetracker recorded gaze activity during the interruption lag. The participants in the High access cost condition with an interruption lag were best at encoding target information during the interruption lag, evidenced by higher scores on the prospective memory measure and more gaze activity on the goal-state during the interruption lag. Theoretical and practical issues regarding the use of goal-state access cost and an interruption lag are discussed. Copyright © 2012. Published by Elsevier B.V.
Logical optimization for database uniformization
NASA Technical Reports Server (NTRS)
Grant, J.
1984-01-01
Data base uniformization refers to the building of a common user interface facility to support uniform access to any or all of a collection of distributed heterogeneous data bases. Such a system should enable a user, situated anywhere along a set of distributed data bases, to access all of the information in the data bases without having to learn the various data manipulation languages. Furthermore, such a system should leave intact the component data bases, and in particular, their already existing software. A survey of various aspects of the data bases uniformization problem and a proposed solution are presented.
NASA Astrophysics Data System (ADS)
Munjal, Sandeep; Khare, Neeraj
2018-02-01
Controlled bipolar resistive switching (BRS) has been observed in nanostructured CoFe2O4 (CFO) films using an Al (aluminum)/CoFe2O4/FTO (fluorine-doped tin oxide) device. The fabricated device shows electroforming-free uniform BRS with two clearly distinguished and stable resistance states without any application of compliance current, with a resistance ratio of the high resistance state (HRS) and the low resistance state (LRS) of >102. Small switching voltage (<1 volt) and lower current in both the resistance states confirm the fabrication of a low power consumption device. In the LRS, the conduction mechanism was found to be Ohmic in nature, while the high-resistance state (HRS/OFF state) was governed by the space charge-limited conduction mechanism, which indicates the presence of an interfacial layer with an imperfect microstructure near the top Al/CFO interface. The device shows nonvolatile behavior with good endurance properties, an acceptable resistance ratio, uniform resistive switching due to stable, less random filament formation/rupture, and a control over the resistive switching properties by choosing different stop voltages, which makes the device suitable for its application in future nonvolatile resistive random access memory.
Programmable Direct-Memory-Access Controller
NASA Technical Reports Server (NTRS)
Hendry, David F.
1990-01-01
Proposed programmable direct-memory-access controller (DMAC) operates with computer systems of 32000 series, which have 32-bit data buses and use addresses of 24 (or potentially 32) bits. Controller functions with or without help of central processing unit (CPU) and starts itself. Includes such advanced features as ability to compare two blocks of memory for equality and to search block of memory for specific value. Made as single very-large-scale integrated-circuit chip.
Automating testbed documentation and database access using World Wide Web (WWW) tools
NASA Technical Reports Server (NTRS)
Ames, Charles; Auernheimer, Brent; Lee, Young H.
1994-01-01
A method for providing uniform transparent access to disparate distributed information systems was demonstrated. A prototype testing interface was developed to access documentation and information using publicly available hypermedia tools. The prototype gives testers a uniform, platform-independent user interface to on-line documentation, user manuals, and mission-specific test and operations data. Mosaic was the common user interface, and HTML (Hypertext Markup Language) provided hypertext capability.
Memory-Intensive Benchmarks: IRAM vs. Cache-Based Machines
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Gaeke, Brian R.; Husbands, Parry; Li, Xiaoye S.; Oliker, Leonid; Yelick, Katherine A.; Biegel, Bryan (Technical Monitor)
2002-01-01
The increasing gap between processor and memory performance has lead to new architectural models for memory-intensive applications. In this paper, we explore the performance of a set of memory-intensive benchmarks and use them to compare the performance of conventional cache-based microprocessors to a mixed logic and DRAM processor called VIRAM. The benchmarks are based on problem statements, rather than specific implementations, and in each case we explore the fundamental hardware requirements of the problem, as well as alternative algorithms and data structures that can help expose fine-grained parallelism or simplify memory access patterns. The benchmarks are characterized by their memory access patterns, their basic control structures, and the ratio of computation to memory operation.
Some pitfalls in measuring memory in animals.
Thorpe, Christina M; Jacova, Claudia; Wilkie, Donald M
2004-11-01
Because the presence or absence of memories in the brain cannot be directly observed, scientists must rely on indirect measures and use inferential reasoning to make statements about the status of memories. In humans, memories are often accessed through spoken or written language. In animals, memory is accessed through overt behaviours such as running down an arm in a maze, pressing a lever, or visiting a food cache site. Because memory is measured by these indirect methods, errors in the veracity of statements about memory can occur. In this brief paper, we identify three areas that may serve as pitfalls in reasoning about memory in animals: (1) the presence of 'silent associations', (2) intrusions of species-typical behaviours on memory tasks, and (3) improper mapping between human and animals memory tasks. There are undoubtedly other areas in which scientists should act cautiously when reasoning about the status of memory.
A Decision Model for Selection of Microcomputers and Operating Systems.
1984-06-01
is resilting in application software (for microccmputers) being developed almost exclu- sively tor the IBM PC and compatiole systems. NAVDAC ielt that...location can be indepen- dently accessed. RAN memory is also often called read/ write memory, hecause new information can be written into and read from...when power is lost; this is also read/ write memory. Bubble memory, however, has significantly slower access times than RAM or RON and also is not preva
Timing in a Variable Interval Procedure: Evidence for a Memory Singularity
Matell, Matthew S.; Kim, Jung S.; Hartshorne, Loryn
2013-01-01
Rats were trained in either a 30s peak-interval procedure, or a 15–45s variable interval peak procedure with a uniform distribution (Exp 1) or a ramping probability distribution (Exp 2). Rats in all groups showed peak shaped response functions centered around 30s, with the uniform group having an earlier and broader peak response function and rats in the ramping group having a later peak function as compared to the single duration group. The changes in these mean functions, as well as the statistics from single trial analyses, can be better captured by a model of timing in which memory is represented by a single, average, delay to reinforcement compared to one in which all durations are stored as a distribution, such as the complete memory model of Scalar Expectancy Theory or a simple associative model. PMID:24012783
Integrated semiconductor-magnetic random access memory system
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)
2001-01-01
The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.
Quantum memory for Rindler supertranslations
NASA Astrophysics Data System (ADS)
Kolekar, Sanved; Louko, Jorma
2018-04-01
The Rindler horizon in Minkowski spacetime can be implanted with supertranslation hair by a matter shock wave without planar symmetry, and the hair is observable as a supertranslation memory on the Rindler family of uniformly linearly accelerated observers. We show that this classical memory is accompanied by a supertranslation quantum memory that modulates the entanglement between the opposing Rindler wedges in quantum field theory. A corresponding phenomenon across a black hole horizon may play a role in Hawking, Perry, and Strominger's proposal for supertranslations to provide a solution to the black hole information paradox.
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
An Investigation of Unified Memory Access Performance in CUDA
Landaverde, Raphael; Zhang, Tiansheng; Coskun, Ayse K.; Herbordt, Martin
2015-01-01
Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations. PMID:26594668
ERIC Educational Resources Information Center
Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick
2016-01-01
High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…
ERIC Educational Resources Information Center
Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.
2014-01-01
The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…
Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.
Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos
2015-01-01
The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.
Paging memory from random access memory to backing storage in a parallel computer
Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E
2013-05-21
Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1976-01-01
Optical and magnetic variants in the design of trillion-bit read/write memories are compared and tabulated. Components and materials suitable for a random access read/write nonmoving memory system are examined, with preference given to holography and photoplastic materials. Advantages and deficiencies of photoplastics are reviewed. Holographic page composer design, essential features of an optical memory with no moving parts, fiche-oriented random access memory design, and materials suitable for an efficient photoplastic fiche are considered. The optical variants offer advantages in lower volume and weight at data transfer rates near 1 Mbit/sec, but power drain is of the same order as for the magnetic variants (tape memory, disk memory). The mechanical properties of photoplastic film materials still leave much to be desired.
BCH codes for large IC random-access memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1983-01-01
In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... Static Random Access Memories and Products Containing Same, DN 2816; the Commission is soliciting... importation of certain static random access memories and products containing same. The complaint names as...
Within-wafer CD variation induced by wafer shape
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2016-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked vertical flash cell array has been proposed. In constructing 3D NAND flash memories, the bit number per unit area is increased as increasing the number of stacked layers. However, the increased number of stacked layers has made the film stress control extremely important for maintaining good process quality. The residual film stress alters the wafer shape accordingly several process impacts have been readily observed across wafer, such as film deposition non-uniformity, etch rate non-uniformity, wafer chucking error on scanner, materials coating/baking defects, overlay degradation and critical dimension (CD) non-uniformity. The residual tensile and compressive stresses on wafers will result in concave and convex wafer shapes, respectively. This study investigates within-wafer CD uniformity (CDU) associated with wafer shape change induced by the 3D NAND flash memory processes. Within-wafer CDU was correlated with several critical parameters including different wafer bow heights of concave and convex wafer shapes, photo resists with different post exposure baking (PEB) temperature sensitivities, and DoseMapper compensation. The results indicated the trend of within-wafer CDU maintains flat for convex wafer shapes with bow height up to +230um and concave wafer shapes with bow height ranging from 0 ~ -70um, while the within-wafer CDU trends up from -70um to -246um wafer bow heights. To minimize the within-wafer CD distribution induced by wafer warpage, carefully tailoring the film stack and thermal budget in the process flow for maintaining the wafer shape at CDU friendly range is indispensable and using photo-resist materials with lower PEB temperature sensitivity is also suggested. In addition, DoseMapper compensation is also an alternative to greatly suppress the within-wafer CD non-uniformity but the photo-resist profile variation induced by across-wafer PEB temperature non-uniformity attributed to wafer warpage is uncorrectable, and the photo-resist profile variation is believed to affect across-wafer etch bias uniformity to some degree.
Providing the Public with Online Access to Large Bibliographic Data Bases.
ERIC Educational Resources Information Center
Firschein, Oscar; Summit, Roger K.
DIALOG, an interactive, computer-based information retrieval language, consists of a series of computer programs designed to make use of direct access memory devices in order to provide the user with a rapid means of identifying records within a specific memory bank. Using the system, a library user can be provided access to sixteen distinct and…
Social Desirability Bias in Smoking Cessation: Effects in the Laboratory and Field
2012-03-16
and Child Health Journal, 2(2), 77-83. Bradburn, N., Rips, L., & Shevell, S. (1987). Answering autobiographical questions: the impact of memory ...how accessible smoking outcomes are in an individual’s memory . Research has shown that smokers tend to exhibit greater accessibility for positive...body of research that suggests that acute tobacco abstinence hinders cognitive functioning, such as attention, memory , information processing
Fast Magnetoresistive Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel
2014-07-22
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less
Accessing global data from accelerator devices
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.
2016-12-06
An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the device memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.
Application of phase-change materials in memory taxonomy.
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
A Cerebellar-model Associative Memory as a Generalized Random-access Memory
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1989-01-01
A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.
Accessing global data from accelerator devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.
2016-12-06
An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the devicemore » memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.« less
Tehan, Gerald; Fogarty, Gerard; Ryan, Katherine
2004-07-01
Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the participant population, have suggested other contributors to span performance. In the present research, we used structural equation modeling to explore, at the construct level, individual differences in immediate serial recall with respect to rehearsal, search, phonological coding, and speed of access to lexical memory. We replicated standard short-term phenomena; we showed that the variables that influence children's span performance influence adult performance in the same way; and we showed that speed of access to lexical memory and facility with phonological codes appear to be more potent sources of individual differences in immediate memory than is either rehearsal speed or search factors.
Chip architecture - A revolution brewing
NASA Astrophysics Data System (ADS)
Guterl, F.
1983-07-01
Techniques being explored by microchip designers and manufacturers to both speed up memory access and instruction execution while protecting memory are discussed. Attention is given to hardwiring control logic, pipelining for parallel processing, devising orthogonal instruction sets for interchangeable instruction fields, and the development of hardware for implementation of virtual memory and multiuser systems to provide memory management and protection. The inclusion of microcode in mainframes eliminated logic circuits that control timing and gating of the CPU. However, improvements in memory architecture have reduced access time to below that needed for instruction execution. Hardwiring the functions as a virtual memory enhances memory protection. Parallelism involves a redundant architecture, which allows identical operations to be performed simultaneously, and can be directed with microcode to avoid abortion of intermediate instructions once on set of instructions has been completed.
1980-11-01
4006 DMAE Direct Memory Access Enable: ’Ibis command enables direct memory access (DMA). 4007 I)MAi) Direct Memory Access Disable: This command...72 DLI 72 DLR 72 DM 111 DMAD 30 DMAE 30 DMR 111 ONEG 103 DR 117 DS 104 OSAR 53 141 373 ’., M1L-STD-1750A (USAF) 2 July 1980 OSBI 29 OSCR 54 OSIC 48...in 4.7.7, the connectors shall show no defects detrimental to the operation of the connectors and shall A-7 461 -meet the subsequent test requirements
Kirk, Marie; Berntsen, Dorthe
2018-02-01
Older adults diagnosed with Alzheimer's disease (AD) have difficulties accessing autobiographical memories. However, this deficit tends to spare memories dated to earlier parts of their lives, and may partially reflect retrieval deficits rather than complete memory loss. Introducing a novel paradigm, the present study examines whether autobiographical memory recall can be improved in AD by manipulating the sensory richness, concreteness and cultural dating of the memory cues. Specifically, we examine whether concrete everyday objects historically dated to the participants' youth (e.g., a skipping rope), relative to verbal cues (i.e., the verbal signifiers for the objects) facilitate access to autobiographical memories. The study includes 49 AD patients, and 50 healthy, older matched control participants, all tested on word versus object-cued recall. Both groups recalled significantly more memories, when cued by objects relative to words, but the advantage was significantly larger in the AD group. In both groups, memory descriptions were longer and significantly more episodic in nature in response to object-cued recall. Together these findings suggest that the multimodal nature of the object cues (i.e. vision, olfaction, audition, somatic sensation) along with specific cue characteristics, such as time reference, texture, shape, may constrain the retrieval search, potentially minimizing executive function demands, and hence strategic processing requirements, thus easing access to autobiographical memories in AD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aspects of GPU perfomance in algorithms with random memory access
NASA Astrophysics Data System (ADS)
Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.
2017-10-01
The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.
2015-08-01
metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes
Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.
Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun
2017-12-13
Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.
NASA Astrophysics Data System (ADS)
Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua
2018-02-01
The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.
Digital Equipment Corporation VAX/VMS Version 4.3
1986-07-30
operating system performs process-oriented paging that allows execution of programs that may be larger than the physical memory allocated to them... to higher privileged modes. (For an explanation of how the four access modes provide memory access protection see page 9, "Memory Management".) A... to optimize program performance for real-time applications or interactive environments. July 30, 1986 - 4 - Final Evaluation Report Digital VAX/VMS
NASA Astrophysics Data System (ADS)
Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-05-01
As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.
Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers
NASA Astrophysics Data System (ADS)
Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.
2016-09-01
Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.
Memory Benchmarks for SMP-Based High Performance Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A B; de Supinski, B; Mueller, F
2001-11-20
As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less
NASA Astrophysics Data System (ADS)
Chase, Patrick; Vondran, Gary
2011-01-01
Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.
ERIC Educational Resources Information Center
Scharf, Davida
2002-01-01
Discussion of improving accessibility to copyrighted electronic content focuses on the Digital Object Identifier (DOI) and the Open URL standard and linking software. Highlights include work of the World Wide Web consortium; URI (Uniform Resource Identifier); URL (Uniform Resource Locator); URN (Uniform Resource Name); OCLC's (Online Computer…
Measuring autobiographical fluency in the self-memory system.
Rathbone, Clare J; Moulin, Chris J A
2014-01-01
Autobiographical memory is widely considered to be fundamentally related to concepts of self and identity. However, few studies have sought to test models of self and memory directly using experimental designs. Using a novel autobiographical fluency paradigm, the present study investigated memory accessibility for different levels of self-related knowledge. Forty participants generated 20 "I am" statements about themselves, from which the 1st, 5th, 10th, 15th, and 20th were used as cues in a two-minute autobiographical fluency task. The most salient aspects of the self, measured by both serial position and ratings of personal significance, were associated with more accessible sets of autobiographical memories. This finding supports theories that view the self as a powerful organizational structure in memory. Results are discussed with reference to models of self and memory.
Micromechanics of composites with shape memory alloy fibers in uniform thermal fields
NASA Technical Reports Server (NTRS)
Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.
1995-01-01
Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Kamesh
Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less
Heap/stack guard pages using a wakeup unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard
A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less
The Benefit of Surface Uniformity for Encoding Boundary Features in Visual Working Memory
ERIC Educational Resources Information Center
Kim, Sung-Ho; Kim, Jung-Oh
2011-01-01
Using a change detection paradigm, the present study examined an object-based encoding benefit in visual working memory (VWM) for two boundary features (two orientations in Experiments 1-2 and two shapes in Experiments 3-4) assigned to a single object. Participants remembered more boundary features when they were conjoined into a single object of…
Montgomery, Catharine; Fisk, John E; Newcombe, Russell; Murphy, Phillip N
2005-10-01
Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work.
Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.
Enhancing Memory Access for Less Skilled Readers
ERIC Educational Resources Information Center
Smith, Emily R.; O'Brien, Edward J.
2016-01-01
Less skilled readers' comprehension often suffers because they have an impoverished representation of text in long-term memory; this, in turn, increases the difficulty of gaining access to backgrounded information necessary for maintaining coherence. The results of four experiments demonstrated that providing less skilled readers with additional…
Application of phase-change materials in memory taxonomy
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557
A review of emerging non-volatile memory (NVM) technologies and applications
NASA Astrophysics Data System (ADS)
Chen, An
2016-11-01
This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.
Jacob, Jane; Jacobs, Christianne; Silvanto, Juha
2015-01-01
What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.
Selective memory retrieval can impair and improve retrieval of other memories.
Bäuml, Karl-Heinz T; Samenieh, Anuscheh
2012-03-01
Research from the past decades has shown that retrieval of a specific memory (e.g., retrieving part of a previous vacation) typically attenuates retrieval of other memories (e.g., memories for other details of the event), causing retrieval-induced forgetting. More recently, however, it has been shown that retrieval can both attenuate and aid recall of other memories (K.-H. T. Bäuml & A. Samenieh, 2010). To identify the circumstances under which retrieval aids recall, the authors examined retrieval dynamics in listwise directed forgetting, context-dependent forgetting, proactive interference, and in the absence of any induced memory impairment. They found beneficial effects of selective retrieval in listwise directed forgetting and context-dependent forgetting but detrimental effects in all the other conditions. Because context-dependent forgetting and listwise directed forgetting arguably reflect impaired context access, the results suggest that memory retrieval aids recall of memories that are subject to impaired context access but attenuates recall in the absence of such circumstances. The findings are consistent with a 2-factor account of memory retrieval and suggest the existence of 2 faces of memory retrieval. 2012 APA, all rights reserved
Method of up-front load balancing for local memory parallel processors
NASA Technical Reports Server (NTRS)
Baffes, Paul Thomas (Inventor)
1990-01-01
In a parallel processing computer system with multiple processing units and shared memory, a method is disclosed for uniformly balancing the aggregate computational load in, and utilizing minimal memory by, a network having identical computations to be executed at each connection therein. Read-only and read-write memory are subdivided into a plurality of process sets, which function like artificial processing units. Said plurality of process sets is iteratively merged and reduced to the number of processing units without exceeding the balance load. Said merger is based upon the value of a partition threshold, which is a measure of the memory utilization. The turnaround time and memory savings of the instant method are functions of the number of processing units available and the number of partitions into which the memory is subdivided. Typical results of the preferred embodiment yielded memory savings of from sixty to seventy five percent.
Multiple memory stores and operant conditioning: a rationale for memory's complexity.
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-02-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.
Crajé, Céline; Santello, Marco; Gordon, Andrew M
2013-01-01
Anticipatory force planning during grasping is based on visual cues about the object's physical properties and sensorimotor memories of previous actions with grasped objects. Vision can be used to estimate object mass based on the object size to identify and recall sensorimotor memories of previously manipulated objects. It is not known whether subjects can use density cues to identify the object's center of mass (CM) and create compensatory moments in an anticipatory fashion during initial object lifts to prevent tilt. We asked subjects (n = 8) to estimate CM location of visually symmetric objects of uniform densities (plastic or brass, symmetric CM) and non-uniform densities (mixture of plastic and brass, asymmetric CM). We then asked whether subjects can use density cues to scale fingertip forces when lifting the visually symmetric objects of uniform and non-uniform densities. Subjects were able to accurately estimate an object's center of mass based on visual density cues. When the mass distribution was uniform, subjects could scale their fingertip forces in an anticipatory fashion based on the estimation. However, despite their ability to explicitly estimate CM location when object density was non-uniform, subjects were unable to scale their fingertip forces to create a compensatory moment and prevent tilt on initial lifts. Hefting object parts in the hand before the experiment did not affect this ability. This suggests a dichotomy between the ability to accurately identify the object's CM location for objects with non-uniform density cues and the ability to utilize this information to correctly scale their fingertip forces. These results are discussed in the context of possible neural mechanisms underlying sensorimotor integration linking visual cues and anticipatory control of grasping.
NASA Astrophysics Data System (ADS)
Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2014-01-01
Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.
1987-01-01
A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.
Designing a VMEbus FDDI adapter card
NASA Astrophysics Data System (ADS)
Venkataraman, Raman
1992-03-01
This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-12-09
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 5 cm²/Vs, low threshold voltage of -1.1 V, and low leakage current of 10 -12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO₂-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications.
Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes
NASA Astrophysics Data System (ADS)
Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John
2012-05-01
High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.
Scaling Irregular Applications through Data Aggregation and Software Multithreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel
Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languagesmore » and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.« less
The influence of training and experience on memory strategy.
Patrick, John; Morgan, Phillip L; Smy, Victoria; Tiley, Leyanne; Seeby, Helen; Patrick, Tanya; Evans, Jonathan
2015-07-01
This paper investigates whether, and if so how much, prior training and experience overwrite the influence of the constraints of the task environment on strategy deployment. This evidence is relevant to the theory of soft constraints that focuses on the role of constraints in the task environment (Gray, Simms, Fu, & Schoelles, Psychological Review, 113: 461-482, 2006). The theory explains how an increase in the cost of accessing information induces a more memory-based strategy involving more encoding and planning. Experiments 1 and 3 adopt a traditional training and transfer design using the Blocks World Task in which participants were exposed to training trials involving a 2.5-s delay in accessing goal-state information before encountering transfer trials in which there was no access delay. The effect of prior training was assessed by the degree of memory-based strategy adopted in the transfer trials. Training with an access delay had a substantial carry-over effect and increased the subsequent degree of memory-based strategy adopted in the transfer environment. However, such effects do not necessarily occur if goal-state access cost in training is less costly than in transfer trials (Experiment 2). Experiment 4 used a fine-grained intra-trial design to examine the effect of experiencing access cost on one, two, or three occasions within the same trial and found that such experience on two consecutive occasions was sufficient to induce a more memory-based strategy. This paper establishes some effects of training that are relevant to the soft constraints theory and also discusses practical implications.
Optoelectronic-cache memory system architecture.
Chiarulli, D M; Levitan, S P
1996-05-10
We present an investigation of the architecture of an optoelectronic cache that can integrate terabit optical memories with the electronic caches associated with high-performance uniprocessors and multiprocessors. The use of optoelectronic-cache memories enables these terabit technologies to provide transparently low-latency secondary memory with frame sizes comparable with disk pages but with latencies that approach those of electronic secondary-cache memories. This enables the implementation of terabit memories with effective access times comparable with the cycle times of current microprocessors. The cache design is based on the use of a smart-pixel array and combines parallel free-space optical input-output to-and-from optical memory with conventional electronic communication to the processor caches. This cache and the optical memory system to which it will interface provide a large random-access memory space that has a lower overall latency than that of magnetic disks and disk arrays. In addition, as a consequence of the high-bandwidth parallel input-output capabilities of optical memories, fault service times for the optoelectronic cache are substantially less than those currently achievable with any rotational media.
Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989
NASA Technical Reports Server (NTRS)
Raugh, Michael R. (Editor)
1989-01-01
Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis.
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Oscillatory mechanisms of process binding in memory.
Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul
2010-06-01
A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
Magnet/Hall-Effect Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.
Investigation of multilayer magnetic domain lattice file
NASA Technical Reports Server (NTRS)
Torok, E. J.; Kamin, M.; Tolman, C. H.
1980-01-01
The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.
NASA Astrophysics Data System (ADS)
Ando, K.; Fujita, S.; Ito, J.; Yuasa, S.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.; Yoda, H.
2014-05-01
Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.
Non-volatile magnetic random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A; Mamidala, Amith R
2014-02-11
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Staging memory for massively parallel processor
NASA Technical Reports Server (NTRS)
Batcher, Kenneth E. (Inventor)
1988-01-01
The invention herein relates to a computer organization capable of rapidly processing extremely large volumes of data. A staging memory is provided having a main stager portion consisting of a large number of memory banks which are accessed in parallel to receive, store, and transfer data words simultaneous with each other. Substager portions interconnect with the main stager portion to match input and output data formats with the data format of the main stager portion. An address generator is coded for accessing the data banks for receiving or transferring the appropriate words. Input and output permutation networks arrange the lineal order of data into and out of the memory banks.
NASA Astrophysics Data System (ADS)
Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio
2015-04-01
High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.
Method for prefetching non-contiguous data structures
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Brewster, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2009-05-05
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple perfecting for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefect rather than some other predictive algorithm. This enables hardware to effectively prefect memory access patterns that are non-contiguous, but repetitive.
NASA Astrophysics Data System (ADS)
Liang, Cheng-Yen
Micromagnetic simulations of magnetoelastic nanostructures traditionally rely on either the Stoner-Wohlfarth model or the Landau-Lifshitz-Gilbert (LLG) model assuming uniform strain (and/or assuming uniform magnetization). While the uniform strain assumption is reasonable when modeling magnetoelastic thin films, this constant strain approach becomes increasingly inaccurate for smaller in-plane nanoscale structures. In this dissertation, a fully-coupled finite element micromagnetic method is developed. The method deals with the micromagnetics, elastodynamics, and piezoelectric effects. The dynamics of magnetization, non-uniform strain distribution, and electric fields are iteratively solved. This more sophisticated modeling technique is critical for guiding the design process of the nanoscale strain-mediated multiferroic elements such as those needed in multiferroic systems. In this dissertation, we will study magnetic property changes (e.g., hysteresis, coercive field, and spin states) due to strain effects in nanostructures. in addition, a multiferroic memory device is studied. The electric-field-driven magnetization switching by applying voltage on patterned electrodes simulation in a nickel memory device is shown in this work. The deterministic control law for the magnetization switching in a nanoring with electric field applied to the patterned electrodes is investigated. Using the patterned electrodes, we show that strain-induced anisotropy is able to be controlled, which changes the magnetization deterministically in a nano-ring.
Making Physical Activity Accessible to Older Adults with Memory Loss: A Feasibility Study
ERIC Educational Resources Information Center
Logsdon, Rebecca G.; McCurry, Susan M.; Pike, Kenneth C.; Teri, Linda
2009-01-01
Purpose: For individuals with mild cognitive impairment (MCI), memory loss may prevent successful engagement in exercise, a key factor in preventing additional disability. The Resources and Activities for Life Long Independence (RALLI) program uses behavioral principles to make exercise more accessible for these individuals. Exercises are broken…
NASA Astrophysics Data System (ADS)
Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying
2017-05-01
In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.
Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály
2015-01-01
Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation.
Facial Expression Influences Face Identity Recognition During the Attentional Blink
2014-01-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076
Facial expression influences face identity recognition during the attentional blink.
Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J
2014-12-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.
Event memory and moving in a well-known environment.
Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A; Copeland, David E
2013-11-01
Research in narrative comprehension has repeatedly shown that when people read about characters moving in well-known environments, the accessibility of object information follows a spatial gradient. That is, the accessibility of objects is best when they are in the same room as the protagonist, and it becomes worse the farther away they are see, e.g., Morrow, Greenspan, & Bower, (Journal of Memory and Language, 26, 165-187, 1987). In the present study, we assessed this finding using an interactive environment in which we had people memorize a map and navigate a virtual simulation of the area. During navigation, people were probed with pairs of object names and indicated whether both objects were in the same room. In contrast to the narrative studies described above, several experiments showed no evidence of a clear spatial gradient. Instead, memory for objects in currently occupied locations (e.g., the location room) was more accessible, especially after a small delay, but no clear decline was evident in the accessibility of information in memory with increased distance. Also, memory for objects along the pathway of movement (i.e., rooms that a person only passed through) showed a transitory suppression effect that was present immediately after movement, but attenuated over time. These results were interpreted in light of the event horizon model of event cognition.
The special role of item-context associations in the direct-access region of working memory.
Campoy, Guillermo
2017-09-01
The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.
Multi-port, optically addressed RAM
NASA Technical Reports Server (NTRS)
Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)
1989-01-01
A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.
A Calendar Savant with Episodic Memory Impairments
Olson, Ingrid R.; Berryhill, Marian E.; Drowos, David B.; Brown, Lawrence; Chatterjee, Anjan
2010-01-01
Patients with memory disorders have severely restricted learning and memory. For instance, patients with anterograde amnesia can learn motor procedures as well as retaining some restricted ability to learn new words and factual information. However, such learning is inflexible and frequently inaccessible to conscious awareness. Here we present a case of patient AC596, a 25-year old male with severe episodic memory impairments, presumably due to anoxia during a preterm birth. In contrast to his poor episodic memory, he exhibits savant-like memory for calendar information that can be flexibly accessed by day, month, and year cues. He also has the ability to recollect the exact date of a wide range of personal experiences over the past 20 years. The patient appears to supplement his generally poor episodic memory by using memorized calendar information as a retrieval cue for autobiographical events. These findings indicate that islands of preserved memory functioning, such as a highly developed semantic memory system, can exist in individuals with severely impaired episodic memory systems. In this particular case, our patient’s memory for dates far outstripped that of normal individuals and served as a keen retrieval cue, allowing him to access information that was otherwise unavailable. PMID:20104390
ERIC Educational Resources Information Center
Voss, Joel L.; Paller, Ken A.
2007-01-01
During episodic recognition tests, meaningful stimuli such as words can engender both conscious retrieval (explicit memory) and facilitated access to meaning that is distinct from the awareness of remembering (conceptual implicit memory). Neuroimaging investigations of one type of memory are frequently subject to the confounding influence of the…
Morgan, Phillip L; Patrick, John; Waldron, Samuel M; King, Sophia L; Patrick, Tanya
2009-12-01
Forgetting what one was doing prior to interruption is an everyday problem. The recent soft constraints hypothesis (Gray, Sims, Fu, & Schoelles, 2006) emphasizes the strategic adaptation of information processing strategy to the task environment. It predicts that increasing information access cost (IAC: the time, and physical and mental effort involved in accessing information) encourages a more memory-intensive strategy. Like interruptions, access costs are also intrinsic to most work environments, such as when opening documents and e-mails. Three experiments investigated whether increasing IAC during a simple copying task can be an effective method for reducing forgetting following interruption. IAC was designated Low (all information permanently visible), Medium (a mouse movement to uncover target information), or High (an additional few seconds to uncover such information). Experiment 1 found that recall improved across all three levels of IAC. Subsequent experiments found that High IAC facilitated resumption after interruption, particularly when interruption occurred on half of all trials (Experiment 2), and improved prospective memory following two different interrupting tasks, even when one involved the disruptive effect of using the same type of resource as the primary task (Experiment 3). The improvement of memory after interruption with increased IAC supports the prediction of the soft constraints hypothesis. The main disadvantage of a high access cost was a reduction in speed of task completion. The practicality of manipulating IAC as a design method for inducing a memory-intensive strategy to protect against forgetting is discussed. Copyright 2009 APA
Electrical Evaluation of RCA MWS5501D Random Access Memory, Volume 2, Appendix a
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. The address access time, address readout time, the data hold time, and the data setup time are some of the results surveyed.
ERIC Educational Resources Information Center
Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael
2013-01-01
Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…
Test Expectation Enhances Memory Consolidation across Both Sleep and Wake
Wamsley, Erin J.; Hamilton, Kelly; Graveline, Yvette; Manceor, Stephanie; Parr, Elaine
2016-01-01
Memory consolidation benefits from post-training sleep. However, recent studies suggest that sleep does not uniformly benefit all memory, but instead prioritizes information that is important to the individual. Here, we examined the effect of test expectation on memory consolidation across sleep and wakefulness. Following reports that information with strong “future relevance” is preferentially consolidated during sleep, we hypothesized that test expectation would enhance memory consolidation across a period of sleep, but not across wakefulness. To the contrary, we found that expectation of a future test enhanced memory for both spatial and motor learning, but that this effect was equivalent across both wake and sleep retention intervals. These observations differ from those of least two prior studies, and fail to support the hypothesis that the “future relevance” of learned material moderates its consolidation selectively during sleep. PMID:27760193
Qian, Kai; Cai, Guofa; Nguyen, Viet Cuong; Chen, Tupei; Lee, Pooi See
2016-10-05
Transparent nonvolatile memory has great potential in integrated transparent electronics. Here, we present highly transparent resistive switching memory using stoichiometric WO 3 film produced by cathodic electrodeposition with indium tin oxide electrodes. The memory device demonstrates good optical transmittance, excellent operative uniformity, low operating voltages (+0.25 V/-0.42 V), and long retention time (>10 4 s). Conductive atomic force microscopy, ex situ transmission electron microscopy, and X-ray photoelectron spectroscopy experiments directly confirm that the resistive switching effects occur due to the electric field-induced formation and annihilation of the tungsten-rich conductive channel between two electrodes. Information on the physical and chemical nature of conductive filaments offers insightful design strategies for resistive switching memories with excellent performances. Moreover, we demonstrate the promising applicability of the cathodic electrodeposition method for future resistive memory devices.
Tracing the time course of picture--word processing.
Smith, M C; Magee, L E
1980-12-01
A number of independent lines of research have suggested that semantic and articulatory information become available differentially from pictures and words. The first of the experiments reported here sought to clarify the time course by which information about pictures and words becomes available by considering the pattern of interference generated when incongruent pictures and words are presented simultaneously in a Stroop-like situation. Previous investigators report that picture naming is easily disrupted by the presence of a distracting word but that word naming is relatively immune to interference from an incongruent picture. Under the assumption that information available from a completed process may disrupt an ongoing process, these results suggest that words access articulatory information more rapidly than do pictures. Experiment 1 extended this paradigm by requiring subjects to verify the category of the target stimulus. In accordance with the hypothesis that picture access the semantic code more rapidly than words, there was a reversal in the interference pattern: Word categorization suffered considerable disruption, whereas picture categorization was minimally affected by the presence of an incongruent word. Experiment 2 sought to further test the hypothesis that access to semantic and articulatory codes is different for pictures and words by examining memory for those items following naming or categorization. Categorized words were better recognized than named words, whereas the reverse was true for pictures, a result which suggests that picture naming involves more extensive processing than picture categorization. Experiment 3 replicated this result under conditions in which viewing time was held constant. The last experiment extended the investigation of memory differences to a situation in which subjects were required to generate the superordinate category name. Here, memory for categorized pictures was as good as memory for named pictures. Category generation also influenced memory for words, memory performance being superior to that following a yes--no verification of category membership. These experiments suggest a model of information access whereby pictures access semantic information were readily than name information, with the reverse being true for words. Memory for both pictures and words was a function of the amount of processing required to access a particular type of information as well as the extent of response differentiation necessitated by the task.
NASA Astrophysics Data System (ADS)
Leggett, C.; Binet, S.; Jackson, K.; Levinthal, D.; Tatarkhanov, M.; Yao, Y.
2011-12-01
Thermal limitations have forced CPU manufacturers to shift from simply increasing clock speeds to improve processor performance, to producing chip designs with multi- and many-core architectures. Further the cores themselves can run multiple threads as a zero overhead context switch allowing low level resource sharing (Intel Hyperthreading). To maximize bandwidth and minimize memory latency, memory access has become non uniform (NUMA). As manufacturers add more cores to each chip, a careful understanding of the underlying architecture is required in order to fully utilize the available resources. We present AthenaMP and the Atlas event loop manager, the driver of the simulation and reconstruction engines, which have been rewritten to make use of multiple cores, by means of event based parallelism, and final stage I/O synchronization. However, initial studies on 8 andl6 core Intel architectures have shown marked non-linearities as parallel process counts increase, with as much as 30% reductions in event throughput in some scenarios. Since the Intel Nehalem architecture (both Gainestown and Westmere) will be the most common choice for the next round of hardware procurements, an understanding of these scaling issues is essential. Using hardware based event counters and Intel's Performance Tuning Utility, we have studied the performance bottlenecks at the hardware level, and discovered optimization schemes to maximize processor throughput. We have also produced optimization mechanisms, common to all large experiments, that address the extreme nature of today's HEP code, which due to it's size, places huge burdens on the memory infrastructure of today's processors.
Boguslawski, Bartosz; Gripon, Vincent; Seguin, Fabrice; Heitzmann, Frédéric
2016-02-01
Associative memories are data structures that allow retrieval of previously stored messages given part of their content. They, thus, behave similarly to the human brain's memory that is capable, for instance, of retrieving the end of a song, given its beginning. Among different families of associative memories, sparse ones are known to provide the best efficiency (ratio of the number of bits stored to that of the bits used). Recently, a new family of sparse associative memories achieving almost optimal efficiency has been proposed. Their structure, relying on binary connections and neurons, induces a direct mapping between input messages and stored patterns. Nevertheless, it is well known that nonuniformity of the stored messages can lead to a dramatic decrease in performance. In this paper, we show the impact of nonuniformity on the performance of this recent model, and we exploit the structure of the model to improve its performance in practical applications, where data are not necessarily uniform. In order to approach the performance of networks with uniformly distributed messages presented in theoretical studies, twin neurons are introduced. To assess the adapted model, twin neurons are used with the real-world data to optimize power consumption of electronic circuits in practical test cases.
Review of optical memory technologies
NASA Technical Reports Server (NTRS)
Chen, D.
1972-01-01
Optical technologies for meeting the demands of large capacity fast access time memory are discussed in terms of optical phenomena and laser applications. The magneto-optic and electro-optic approaches are considered to be the most promising memory approaches.
Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun
2015-08-10
With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
2017-03-01
models of software execution, for example memory access patterns, to check for security intrusions. Additional research was performed to tackle the...considered using indirect models of software execution, for example memory access patterns, to check for security intrusions. Additional research ...deterioration for example , no longer corresponds to the model used during verification time. Finally, the research looked at ways to combine hybrid systems
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
A Pilot Memory Café for People with Learning Disabilities and Memory Difficulties
ERIC Educational Resources Information Center
Kiddle, Hannah; Drew, Neil; Crabbe, Paul; Wigmore, Jonathan
2016-01-01
Memory cafés have been found to normalise experiences of dementia and provide access to an accepting social network. People with learning disabilities are at increased risk of developing dementia, but the possible benefits of attending a memory café are not known. This study evaluates a 12-week pilot memory café for people with learning…
Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.
Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu
2016-09-01
When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. © The Author(s) 2016.
Integrated-Circuit Pseudorandom-Number Generator
NASA Technical Reports Server (NTRS)
Steelman, James E.; Beasley, Jeff; Aragon, Michael; Ramirez, Francisco; Summers, Kenneth L.; Knoebel, Arthur
1992-01-01
Integrated circuit produces 8-bit pseudorandom numbers from specified probability distribution, at rate of 10 MHz. Use of Boolean logic, circuit implements pseudorandom-number-generating algorithm. Circuit includes eight 12-bit pseudorandom-number generators, outputs are uniformly distributed. 8-bit pseudorandom numbers satisfying specified nonuniform probability distribution are generated by processing uniformly distributed outputs of eight 12-bit pseudorandom-number generators through "pipeline" of D flip-flops, comparators, and memories implementing conditional probabilities on zeros and ones.
Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun
2018-06-18
Conductive-bridge random access memory (CBRAM) has become one of the most suitable candidates for non-volatile memory in next-generation information and communication technology. The resistive switching mechanism of CBRAM depends on the formation/annihilation of the conductive filament (CF) between the active metal electrode and the inert electrode. However, excessive ion injection from the active electrode into the solid electrolyte is reduces the uniformity and reliability of the resistive switching devices. To solve this problem, we investigated the resistive switching characteristics of a modified active electrode with different compositions of Cu<sub>x</sub>-Sn<sub><sub>1-x </sub></sub>(0.13 < X < 0.55). The resistive switching characteristics were further improved by inserting a dysprosium (Dy) or lutetium (Lu) buffer layer at the interface of Cu<sub>x</sub>-Sn<sub>1-x</sub>/Al<sub>2</sub>O<sub>3</sub>. Electrical analysis of the optimal Cu<sub>0.27</sub>-Sn<sub>0.73</sub>/Lu-based CBRAM exhibited stable resistive switching behavior with low operation voltage (SET: 0.7 V and RESET: -0.3 V), a high on/off resistive ratio (10<sup>6</sup>), cyclic endurance (>10<sup>4</sup>), and long-term retention (85℃/10 years). To achieve these performance parameters, CFs were locally formed inside the electrolyte using a modified CuSn active electrode, and the amount of Cu-ion injection was reduced by inserting the Dy or Lu buffer layer between the CuSn active electrode and the electrolyte. In particular, conductive-atomic force microscopy results at the Dy/ or Lu/Al<sub>2</sub>O<sub>3</sub> interface directly showed and defined the diameter of the CF. © 2018 IOP Publishing Ltd.
Enhancing Memory in Your Students: COMPOSE Yourself!
ERIC Educational Resources Information Center
Rotter, Kathleen M.
2009-01-01
The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…
Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee
2009-01-14
The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 microm(2) to 200 x 200 nm(2). From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I(ON)/I(OFF) approximately 10(4)), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10,000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.
El-Zawawy, Mohamed A.
2014-01-01
This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). PMID:24892098
NASA Astrophysics Data System (ADS)
Yun, Changho; Kim, Kiseon
2006-04-01
For the passive star-coupled wavelength-division multiple-access (WDMA) network, a modified accelerative preallocation WDMA (MAP-WDMA) media access control (MAC) protocol is proposed, which is based on AP-WDMA. To show the advantages of MAP-WDMA as an adequate MAC protocol for the network over AP-WDMA, the channel utilization, the channel-access delay, and the latency of MAP-WDMA are investigated and compared with those of AP-WDMA under various data traffic patterns, including uniform, quasi-uniform type, disconnected type, mesh type, and ring type data traffics, as well as the assumption that a given number of network stations is equal to that of channels, in other words, without channel sharing. As a result, the channel utilization of MAP-WDMA can be competitive with respect to that of AP-WDMA at the expense of insignificantly higher latency. Namely, if the number of network stations is small, MAP-WDMA provides better channel utilization for uniform, quasi-uniform-type, and disconnected-type data traffics at all data traffic loads, as well as for mesh and ring-type data traffics at low data traffic loads. Otherwise, MAP-WDMA only outperforms AP-WDMA for the first three data traffics at higher data traffic loads. In the aspect of channel-access delay, MAP-WDMA gives better performance than AP-WDMA, regardless of data traffic patterns and the number of network stations.
Retention and Fading of Military Skills: Literature Review
2000-04-01
distinction between availability and accessibility of human memory ( Tulving & Pearlstone , 1966; Tulving , 1983). Observation of some decrement in performance...Army War College. TULVING , E. (1983). Elements of Episodic Memory. London: Oxford University Press. TULVING , E., & PEARLSTONE , Z. (1966). Availability...store ( Tulving , 1983). To access this knowledge, the individual consciously recalls facts about the task and attempts to use them to guide performance
ERIC Educational Resources Information Center
Wood, Wendy; And Others
Research literature shows that people with access to attitude-relevant information in memory are able to draw on relevant beliefs and prior experiences when analyzing a persuasive message. This suggests that people who can retrieve little attitude-relevant information should be less able to engage in systematic processing. Two experiments were…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... supplementing the amended complaint was filed on June 28, 2011. A second amended complaint was filed on July 13... of certain static random access memories and products containing same by reason of infringement of... 13 of the `937 patent, and whether an industry in the United States exists as required by subsection...
Implementing a bubble memory hierarchy system
NASA Technical Reports Server (NTRS)
Segura, R.; Nichols, C. D.
1979-01-01
This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.
Integrated Vertical Bloch Line (VBL) memory
NASA Technical Reports Server (NTRS)
Katti, R. R.; Wu, J. C.; Stadler, H. L.
1991-01-01
Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segmentmore » of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.« less
Guilt as a Motivator for Moral Judgment: An Autobiographical Memory Study
Knez, Igor; Nordhall, Ola
2017-01-01
The aim was to investigate the phenomenology of self-defining moral memory and its relations to self-conscious feelings of guilt and willingness to do wrong (moral intention) in social and economic moral situations. We found that people use guilt as a moral motivator for their moral intention. The reparative function of guilt varied, however, with type of situation; that is, participants felt guiltier and were less willing to do wrong in economic compared to social moral situations. The self-defining moral memory was shown to be relatively more easy to access (accessibility), logically structured (coherence), vivid, seen from the first-person perspective (visual perspective), real (sensory detail); but was relatively less positive (valence), emotionally intense, chronologically clear (time perspective), in agreement with the present self (distancing), and shared. Finally, it was indicated that the more guilt people felt the more hidden/denied (less accessible), but more real (more sensory details), the self-defining moral memory. PMID:28539906
Platzer, Christine; Bröder, Arndt; Heck, Daniel W
2014-05-01
Decision situations are typically characterized by uncertainty: Individuals do not know the values of different options on a criterion dimension. For example, consumers do not know which is the healthiest of several products. To make a decision, individuals can use information about cues that are probabilistically related to the criterion dimension, such as sugar content or the concentration of natural vitamins. In two experiments, we investigated how the accessibility of cue information in memory affects which decision strategy individuals rely on. The accessibility of cue information was manipulated by means of a newly developed paradigm, the spatial-memory-cueing paradigm, which is based on a combination of the looking-at-nothing phenomenon and the spatial-cueing paradigm. The results indicated that people use different decision strategies, depending on the validity of easily accessible information. If the easily accessible information is valid, people stop information search and decide according to a simple take-the-best heuristic. If, however, information that comes to mind easily has a low predictive validity, people are more likely to integrate all available cue information in a compensatory manner.
ERIC Educational Resources Information Center
Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.
1997-01-01
Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…
ERIC Educational Resources Information Center
Oberauer, Klauss; Lange, Elke B.
2009-01-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…
Recognition-induced forgetting is not due to category-based set size.
Maxcey, Ashleigh M
2016-01-01
What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.
NASA Astrophysics Data System (ADS)
Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro
2006-04-01
A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).
Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Barry, R. C.
1980-01-01
Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.
7 CFR 3015.24 - Access to records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Access to records. 3015.24 Section 3015.24 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Record Retention and Access Requirements...
47 CFR 32.5083 - Special access revenue.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Special access revenue. 32.5083 Section 32.5083 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5083 Special access revenue...
47 CFR 32.5083 - Special access revenue.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Special access revenue. 32.5083 Section 32.5083 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5083 Special access revenue...
A double barrier memristive device
Hansen, M.; Ziegler, M.; Kolberg, L.; Soni, R.; Dirkmann, S.; Mussenbrock, T.; Kohlstedt, H.
2015-01-01
We present a quantum mechanical memristive Nb/Al/Al2O3/NbxOy/Au device which consists of an ultra-thin memristive layer (NbxOy) sandwiched between an Al2O3 tunnel barrier and a Schottky-like contact. A highly uniform current distribution for the LRS (low resistance state) and HRS (high resistance state) for areas ranging between 70 μm2 and 2300 μm2 were obtained, which indicates a non-filamentary based resistive switching mechanism. In a detailed experimental and theoretical analysis we show evidence that resistive switching originates from oxygen diffusion and modifications of the local electronic interface states within the NbxOy layer, which influences the interface properties of the Au (Schottky) contact and of the Al2O3 tunneling barrier, respectively. The presented device might offer several benefits like an intrinsic current compliance, improved retention and no need for an electric forming procedure, which is especially attractive for possible applications in highly dense random access memories or neuromorphic mixed signal circuits. PMID:26348823
Achieving High Performance With TCP Over 40 GbE on NUMA Architectures for CMS Data Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bawej, Tomasz; et al.
2014-01-01
TCP and the socket abstraction have barely changed over the last two decades, but at the network layer there has been a giant leap from a few megabits to 100 gigabits in bandwidth. At the same time, CPU architectures have evolved into the multicore era and applications are expected to make full use of all available resources. Applications in the data acquisition domain based on the standard socket library running in a Non-Uniform Memory Access (NUMA) architecture are unable to reach full efficiency and scalability without the software being adequately aware about the IRQ (Interrupt Request), CPU and memory affinities.more » During the first long shutdown of LHC, the CMS DAQ system is going to be upgraded for operation from 2015 onwards and a new software component has been designed and developed in the CMS online framework for transferring data with sockets. This software attempts to wrap the low-level socket library to ease higher-level programming with an API based on an asynchronous event driven model similar to the DAT uDAPL API. It is an event-based application with NUMA optimizations, that allows for a high throughput of data across a large distributed system. This paper describes the architecture, the technologies involved and the performance measurements of the software in the context of the CMS distributed event building.« less
Lee, Ke-Jing; Chang, Yu-Chi; Lee, Cheng-Jung; Wang, Li-Wen; Wang, Yeong-Her
2017-01-01
A one-transistor and one-resistor (1T1R) architecture with a resistive random access memory (RRAM) cell connected to an organic thin-film transistor (OTFT) device is successfully demonstrated to avoid the cross-talk issues of only one RRAM cell. The OTFT device, which uses barium zirconate nickelate (BZN) as a dielectric layer, exhibits favorable electrical properties, such as a high field-effect mobility of 2.5 cm2/Vs, low threshold voltage of −2.8 V, and low leakage current of 10−12 A, for a driver in the 1T1R operation scheme. The 1T1R architecture with a TiO2-based RRAM cell connected with a BZN OTFT device indicates a low operation current (10 μA) and reliable data retention (over ten years). This favorable performance of the 1T1R device can be attributed to the additional barrier heights introduced by using Ni (II) acetylacetone as a substitute for acetylacetone, and the relatively low leakage current of a BZN dielectric layer. The proposed 1T1R device with low leakage current OTFT and excellent uniform resistance distribution of RRAM exhibits a good potential for use in practical low-power electronic applications. PMID:29232828
Controllable Organic Resistive Switching Achieved by One-Step Integration of Cone-Shaped Contact.
Ling, Haifeng; Yi, Mingdong; Nagai, Masaru; Xie, Linghai; Wang, Laiyuan; Hu, Bo; Huang, Wei
2017-09-01
Conductive filaments (CFs)-based resistive random access memory possesses the ability of scaling down to sub-nanoscale with high-density integration architecture, making it the most promising nanoelectronic technology for reclaiming Moore's law. Compared with the extensive study in inorganic switching medium, the scientific challenge now is to understand the growth kinetics of nanoscale CFs in organic polymers, aiming to achieve controllable switching characteristics toward flexible and reliable nonvolatile organic memory. Here, this paper systematically investigates the resistive switching (RS) behaviors based on a widely adopted vertical architecture of Al/organic/indium-tin-oxide (ITO), with poly(9-vinylcarbazole) as the case study. A nanoscale Al filament with a dynamic-gap zone (DGZ) is directly observed using in situ scanning transmission electron microscopy (STEM) , which demonstrates that the RS behaviors are related to the random formation of spliced filaments consisting of Al and oxygen vacancy dual conductive channels growing through carbazole groups. The randomicity of the filament formation can be depressed by introducing a cone-shaped contact via a one-step integration method. The conical electrode can effectively shorten the DGZ and enhance the localized electric field, thus reducing the switching voltage and improving the RS uniformity. This study provides a deeper insight of the multiple filamentary mechanisms for organic RS effect. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kim, Sungjun; Park, Byung-Gook
2017-01-01
In this letter, we compare three different types of reset switching behavior in a bipolar resistive random-access memory (RRAM) system that is housed in a Ni/Si3N4/Si structure. The abrupt, step-like gradual and continuous gradual reset transitions are largely determined by the low-resistance state (LRS). For abrupt reset switching, the large conducting path shows ohmic behavior or has a weak nonlinear current-voltage (I-V) characteristics in the LRS. For gradual switching, including both the step-like and continuous reset types, trap-assisted direct tunneling is dominant in the low-voltage regime, while trap-assisted Fowler-Nordheim tunneling is dominant in the high-voltage regime, thus causing nonlinear I-V characteristics. More importantly, we evaluate the multi-level capabilities of the two different gradual switching types, including both step-like and continuous reset behavior, using identical and incremental voltage conditions. Finer control of the conductance level with good uniformity is achieved in continuous gradual reset switching when compared to that in step-like gradual reset switching. For continuous reset switching, a single conducting path, which initially has a tunneling gap, gradually responds to pulses with even and identical amplitudes, while for step-like reset switching, the multiple conducting paths only respond to incremental pulses to obtain effective multi-level states.
Vertical Launch System Loadout Planner
2015-03-01
United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this
Nonvolatile GaAs Random-Access Memory
NASA Technical Reports Server (NTRS)
Katti, Romney R.; Stadler, Henry L.; Wu, Jiin-Chuan
1994-01-01
Proposed random-access integrated-circuit electronic memory offers nonvolatile magnetic storage. Bits stored magnetically and read out with Hall-effect sensors. Advantages include short reading and writing times and high degree of immunity to both single-event upsets and permanent damage by ionizing radiation. Use of same basic material for both transistors and sensors simplifies fabrication process, with consequent benefits in increased yield and reduced cost.
MemAxes Visualization Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.
Recollection Rejection: How Children Edit Their False Memories.
ERIC Educational Resources Information Center
Brainerd, C. J.; Reyna, V. F.
2002-01-01
Presents new measure of children's use of an editing operation that suppresses false memories by accessing verbatim traces of true events. Application of the methodology showed that false-memory editing increased dramatically between early and middle childhood. Measure reacted appropriately to experimental manipulations. Developmental reductions…
Blank, Hartmut
2005-02-01
Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.
NASA Astrophysics Data System (ADS)
Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali
2018-01-01
The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mills, Steven; Lee, Bongmook; Pitts, W. Shepherd; Misra, Veena; Franzon, Paul D.
2018-02-01
In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.
Marijuana effects on long-term memory assessment and retrieval.
Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S
1977-05-09
The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.
Parameter optimization for transitions between memory states in small arrays of Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezac, Jacob D.; Imam, Neena; Braiman, Yehuda
Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilizedmore » for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10 -19–5×10 -18 J. Numerical simulations are validated with approximate analytical results.« less
Lines, Justin
2017-01-01
The context in which learning occurs is sufficient to reconsolidate stored memories and neuronal reactivation may be crucial to memory consolidation during sleep. The mechanisms of context-dependent and sleep-dependent memory (re)consolidation are unknown but involve the hippocampus. We simulated memory (re)consolidation using a connectionist model of the hippocampus that explicitly accounted for its dorsoventral organization and for CA1 proximodistal processing. Replicating human and rodent (re)consolidation studies yielded the following results. (1) Semantic overlap between memory items and extraneous learning was necessary to explain experimental data and depended crucially on the recurrent networks of dorsal but not ventral CA3. (2) Stimulus-free, sleep-induced internal reactivations of memory patterns produced heterogeneous recruitment of memory items and protected memories from subsequent interference. These simulations further suggested that the decrease in memory resilience when subjects were not allowed to sleep following learning was primarily due to extraneous learning. (3) Partial exposure to the learning context during simulated sleep (i.e., targeted memory reactivation) uniformly increased memory item reactivation and enhanced subsequent recall. Altogether, these results show that the dorsoventral and proximodistal organization of the hippocampus may be important components of the neural mechanisms for context-based and sleep-based memory (re)consolidations. PMID:28757864
Plasma Doping—Enabling Technology for High Dose Logic and Memory Applications
NASA Astrophysics Data System (ADS)
Miller, T.; Godet, L.; Papasouliotis, G. D.; Singh, V.
2008-11-01
As logic and memory device dimensions shrink with each generation, there are more high dose implants at lower energies. Examples include dual poly gate (also referred to as counter-doped poly), elevated source drain and contact plug implants. Plasma Doping technology throughput and dopant profile benefits at these ultra high dose and lower energy conditions have been well established [1,2,3]. For the first time a production-worthy plasma doping implanter, the VIISta PLAD tool, has been developed with unique architecture suited for precise and repeatable dopant placement. Critical elements of the architecture include pulsed DC wafer bias, closed-loop dosimetry and a uniform low energy, high density plasma source. In this paper key performance metrics such as dose uniformity, dose repeatability and dopant profile control will be presented that demonstrate the production-worthiness of the VIISta PLAD tool for several high dose applications.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Xu, Haiyang; Wang, Zhongqiang; Yu, Hao; Ma, Jiangang; Liu, Yichun
2016-01-01
The coexistence of uniform bipolar and unipolar resistive-switching (RS) characteristics was demonstrated in a double-layer Ag/ZnS-Ag/CuAlO2/Pt memory device. By changing the compliance current (CC) from 1 mA to 10 mA, the RS behavior can be converted from the bipolar mode (BRS) to the unipolar mode (URS). The temperature dependence of low resistance states further indicates that the CFs are composed of the Ag atoms and Cu vacancies for the BRS mode and URS mode, respectively. For this double-layer structure device, the thicker conducting filaments (CFs) will be formed in the ZnS-Ag layer, and it can act as tip electrodes. Thus, the formation and rupture of these two different CFs are located in the CuAlO2 layer, realizing the uniform and stable BRS and URS.
Toward Millions of File System IOPS on Low-Cost, Commodity Hardware
Zheng, Da; Burns, Randal; Szalay, Alexander S.
2013-01-01
We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a user-space file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space. We redesign page caching to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines. We evaluate our design on a 32 core NUMA machine with four, eight-core processors. Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit rates of the global Linux page cache under real workloads. PMID:24402052
Toward Millions of File System IOPS on Low-Cost, Commodity Hardware.
Zheng, Da; Burns, Randal; Szalay, Alexander S
2013-01-01
We describe a storage system that removes I/O bottlenecks to achieve more than one million IOPS based on a user-space file abstraction for arrays of commodity SSDs. The file abstraction refactors I/O scheduling and placement for extreme parallelism and non-uniform memory and I/O. The system includes a set-associative, parallel page cache in the user space. We redesign page caching to eliminate CPU overhead and lock-contention in non-uniform memory architecture machines. We evaluate our design on a 32 core NUMA machine with four, eight-core processors. Experiments show that our design delivers 1.23 million 512-byte read IOPS. The page cache realizes the scalable IOPS of Linux asynchronous I/O (AIO) and increases user-perceived I/O performance linearly with cache hit rates. The parallel, set-associative cache matches the cache hit rates of the global Linux page cache under real workloads.
... pdf . Accessed on June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Butler, Bryan P.
1990-01-01
The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.
ERIC Educational Resources Information Center
Bäuml, Karl-Heinz T.; Dobler, Ina M.
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas…
7 CFR 3015.25 - Restrictions to public access.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Restrictions to public access. 3015.25 Section 3015.25 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM FEDERAL ASSISTANCE REGULATIONS Record Retention and Access...
Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2011-03-01
An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.
Uniform rotating field network structure to efficiently package a magnetic bubble domain memory
NASA Technical Reports Server (NTRS)
Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)
1978-01-01
A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.
Blanket Gate Would Address Blocks Of Memory
NASA Technical Reports Server (NTRS)
Lambe, John; Moopenn, Alexander; Thakoor, Anilkumar P.
1988-01-01
Circuit-chip area used more efficiently. Proposed gate structure selectively allows and restricts access to blocks of memory in electronic neural-type network. By breaking memory into independent blocks, gate greatly simplifies problem of reading from and writing to memory. Since blocks not used simultaneously, share operational amplifiers that prompt and read information stored in memory cells. Fewer operational amplifiers needed, and chip area occupied reduced correspondingly. Cost per bit drops as result.
Effect of sputtering atmosphere on the characteristics of ZrOx resistive switching memory
NASA Astrophysics Data System (ADS)
He, Pin; Ye, Cong; Wu, Jiaji; Wei, Wei; Wei, Xiaodi; Wang, Hao; Zhang, Rulin; Zhang, Li; Xia, Qing; Wang, Hanbin
2017-05-01
A ZrOx switching layer with different oxygen content for TiN/ZrOx/Pt resistive switching (RS) memory was prepared by magnetron sputtering in different atmospheres such as N2/Ar mixture, O2/Ar mixture as well as pure Ar. The morphology, structure and RS characteristics were systemically investigated and it was found that the RS performance is highly dependent on the sputtering atmosphere. For the memory device sputtered in N2/Ar mixture, with 8.06% nitrogen content in the ZrOx switching layer, the highest uniformity with smallest distribution of V set and high resistance states (HRS)/low resistance states (LRS) values were achieved. By analyzing the current conduction mechanisms combined with possible RS mechanisms for three devices, we deduce that for the device with a ZrOx layer sputtered in N2/Ar mixture, oxygen ions (O2-), which are decisive to the disruption/formation of the conductive filament, will gather around the tip of the filament due to the existence of doping nitrogen, and lead to the reduction of O2- migration randomness in the operation process, so that the uniformity of the N-doped ZrOx device can be improved.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-02-07
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-01-24
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
NASA Astrophysics Data System (ADS)
Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin
2014-01-01
The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
24 CFR 40.7 - Availability of Accessibility Standards.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Standards. 40.7 Section 40.7 Housing and Urban Development Office of the Secretary, Department of Housing... OWNED RESIDENTIAL STRUCTURES § 40.7 Availability of Accessibility Standards. Copies of the Uniform Federal Accessibility Standards are available from the Office of Fair Housing and Equal Opportunity, U.S...
Overgeneral Autobiographical Memory and Traumatic Events: An Evaluative Review
ERIC Educational Resources Information Center
Moore, Sally A.; Zoellner, Lori A.
2007-01-01
Does trauma exposure impair retrieval of autobiographical memories? Many theorists have suggested that the reduced ability to access specific memories of life events, termed overgenerality, is a protective mechanism helping attenuate painful emotions associated with trauma. The authors addressed this question by reviewing 24 studies that assessed…
Working Memory Underpins Cognitive Development, Learning, and Education
ERIC Educational Resources Information Center
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
... and Therapeutics Committee regarding the Uniform Formulary. Meeting Agenda Sign-In; Welcome and Opening Remarks; Public Citizen Comments; Scheduled Therapeutic Class Reviews--Ophthalmic Agents...; Panel Discussions and Vote; and comments following each therapeutic class review. Meeting Accessibility...
Library API for Z-Order Memory Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes
This library provides a simple-to-use API for implementing an altnerative to traditional row-major order in-memory layout, one based on a Morton- order space filling curve (SFC) , specifically, a Z-order variant of the Morton order curve. The library enables programmers to, after a simple initialization step, to convert a multidimensional array from row-major to Z- order layouts, then use a single, generic API call to access data from any arbitrary (i,j,k) location from within the array, whether it it be stored in row- major or z-order format. The motivation for using a SFC in-memory layout is for improved spatial locality,more » which results in increased use of local high speed cache memory. The basic idea is that with row-major order layouts, a data access to some location that is nearby in index space is likely far away in physical memory, resulting in poor spatial locality and slow runtime. On the other hand, with a SFC-based layout, accesses that are nearby in index space are much more likely to also be nearby in physical memory, resulting in much better spatial locality, and better runtime performance. Numerous studies over the years have shown significant runtime performance gains are realized by using a SFC-based memory layout compared to a row-major layout, sometimes by as much as 50%, which result from the better use of the memory and cache hierarchy that are attendant with a SFC-based layout (see, for example, [Beth2012]). This library implementation is intended for use with codes that work with structured, array-based data in 2 or 3 dimensions. It is not appropriate for use with unstructured or point-based data.« less
Dementia - what to ask your doctor
... recs.pdf . Accessed December 8, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
Dementia - keeping safe in the home
... recs.pdf . Accessed June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
How Distinctive Processing Enhances Hits and Reduces False Alarms
Hunt, R. Reed; Smith, Rebekah E.
2015-01-01
Distinctive processing is a concept designed to account for precision in memory, both correct responses and avoidance of errors. The principal question addressed in two experiments is how distinctive processing of studied material reduces false alarms to familiar distractors. Jacoby (Jacoby, Kelley, & McElree, 1999) has used the metaphors early selection and late correction to describe two different types of control processes. Early selection refers to limitations on access whereas late correction describes controlled monitoring of accessed information. The two types of processes are not mutually exclusive, and previous research has provided evidence for the operation of both. The data reported here extend previous work to a criterial recollection paradigm and to a recognition memory test. The results of both experiments show that variables that reduce false memory for highly familiar distracters continue to exert their effect under conditions of minimal post-access monitoring. Level of monitoring was reduced in the first experiment through test instructions and in the second experiment through speeded test responding. The results were consistent with the conclusion that both early selection and late correction operate to control accuracy in memory. PMID:26034343
Memory inhibition as a critical factor preventing creative problem solving.
Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel
2017-06-01
The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kanerva's sparse distributed memory with multiple hamming thresholds
NASA Technical Reports Server (NTRS)
Pohja, Seppo; Kaski, Kimmo
1992-01-01
If the stored input patterns of Kanerva's Sparse Distributed Memory (SDM) are highly correlated, utilization of the storage capacity is very low compared to the case of uniformly distributed random input patterns. We consider a variation of SDM that has a better storage capacity utilization for correlated input patterns. This approach uses a separate selection threshold for each physical storage address or hard location. The selection of the hard locations for reading or writing can be done in parallel of which SDM implementations can benefit.
If It Is Stored in My Memory I Will Surely Retrieve It: Anatomy of a Metacognitive Belief
ERIC Educational Resources Information Center
Kornell, Nate
2015-01-01
Retrieval failures--moments when a memory will not come to mind--are a universal human experience. Yet many laypeople believe human memory is a reliable storage system in which a stored memory should be accessible. I predicted that people would see retrieval failures as aberrations and predict that fewer retrieval failures would happen in the…
Synesthetic experiences enhance unconscious learning.
Rothen, Nicolas; Scott, Ryan B; Mealor, Andy D; Coolbear, Daniel J; Burckhardt, Vera; Ward, Jamie
2013-01-01
Synesthesia is characterized by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Integrated, nonvolatile, high-speed analog random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)
1994-01-01
This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.
Optical memory development. Volume 2: Gain-assisted holographic storage media
NASA Technical Reports Server (NTRS)
Gange, R. A.; Mezrich, R. S.
1972-01-01
Thin deformable films were investigated for use as the storage medium in a holographic optical memory. The research was directed toward solving the problems of material fatigue, selective heat addressing, electrical charging of the film surface and charge patterning by light. A number of solutions to these problems were found but the main conclusion to be drawn from the work is that deformable media which employ heat in the recording process are not satisfactory for use in a high-speed random-access read/write holographic memory. They are, however, a viable approach in applications where either high speed or random-access is not required.
Ferroelectric tunneling element and memory applications which utilize the tunneling element
Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN
2010-07-20
A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.
Cost aware cache replacement policy in shared last-level cache for hybrid memory based fog computing
NASA Astrophysics Data System (ADS)
Jia, Gangyong; Han, Guangjie; Wang, Hao; Wang, Feng
2018-04-01
Fog computing requires a large main memory capacity to decrease latency and increase the Quality of Service (QoS). However, dynamic random access memory (DRAM), the commonly used random access memory, cannot be included into a fog computing system due to its high consumption of power. In recent years, non-volatile memories (NVM) such as Phase-Change Memory (PCM) and Spin-transfer torque RAM (STT-RAM) with their low power consumption have emerged to replace DRAM. Moreover, the currently proposed hybrid main memory, consisting of both DRAM and NVM, have shown promising advantages in terms of scalability and power consumption. However, the drawbacks of NVM, such as long read/write latency give rise to potential problems leading to asymmetric cache misses in the hybrid main memory. Current last level cache (LLC) policies are based on the unified miss cost, and result in poor performance in LLC and add to the cost of using NVM. In order to minimize the cache miss cost in the hybrid main memory, we propose a cost aware cache replacement policy (CACRP) that reduces the number of cache misses from NVM and improves the cache performance for a hybrid memory system. Experimental results show that our CACRP behaves better in LLC performance, improving performance up to 43.6% (15.5% on average) compared to LRU.
NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.
Autobiographical narratives relate to Alzheimer's disease biomarkers in older adults.
Buckley, Rachel F; Saling, Michael M; Irish, Muireann; Ames, David; Rowe, Christopher C; Villemagne, Victor L; Lautenschlager, Nicola T; Maruff, Paul; Macaulay, S Lance; Martins, Ralph N; Szoeke, Cassandra; Masters, Colin L; Rainey-Smith, Stephanie R; Rembach, Alan; Savage, Greg; Ellis, Kathryn A
2014-10-01
Autobiographical memory (ABM), personal semantic memory (PSM), and autonoetic consciousness are affected in individuals with mild cognitive impairment (MCI) but their relationship with Alzheimer's disease (AD) biomarkers are unclear. Forty-five participants (healthy controls (HC) = 31, MCI = 14) completed the Episodic ABM Interview and a battery of memory tests. Thirty-one (HC = 22, MCI = 9) underwent β-amyloid positron emission tomography (PET) and magnetic resonance (MR) imaging. Fourteen participants (HC = 9, MCI = 5) underwent one imaging modality. Unlike PSM, ABM differentiated between diagnostic categories but did not relate to AD biomarkers. Personal semantic memory was related to neocortical β-amyloid burden after adjusting for age and apolipoprotein E (APOE) ɛ4. Autonoetic consciousness was not associated with AD biomarkers, and was not impaired in MCI. Autobiographical memory was impaired in MCI participants but was not related to neocortical amyloid burden, suggesting that personal memory systems are impacted by differing disease mechanisms, rather than being uniformly underpinned by β-amyloid. Episodic and semantic ABM impairment represent an important AD prodrome.
Yang, X Jessie; Wickens, Christopher D; Park, Taezoon; Fong, Liesel; Siah, Kewin T H
2015-12-01
We aimed to examine the effects of information access cost and accountability on medical residents' information retrieval strategy and performance during prehandover preparation. Prior studies observing doctors' prehandover practices witnessed the use of memory-intensive strategies when retrieving patient information. These strategies impose potential threats to patient safety as human memory is prone to errors. Of interest in this work are the underlying determinants of information retrieval strategy and the potential impacts on medical residents' information preparation performance. A two-step research approach was adopted, consisting of semistructured interviews with 21 medical residents and a simulation-based experiment with 32 medical residents. The semistructured interviews revealed that a substantial portion of medical residents (38%) relied largely on memory for preparing handover information. The simulation-based experiment showed that higher information access cost reduced information access attempts and access duration on patient documents and harmed information preparation performance. Higher accountability led to marginally longer access to patient documents. It is important to understand the underlying determinants of medical residents' information retrieval strategy and performance during prehandover preparation. We noted the criticality of easy access to patient documents in prehandover preparation. In addition, accountability marginally influenced medical residents' information retrieval strategy. Findings from this research suggested that the cost of accessing information sources should be minimized in developing handover preparation tools. © 2015, Human Factors and Ergonomics Society.
Kiefer, Gundolf; Lehmann, Helko; Weese, Jürgen
2006-04-01
Maximum intensity projections (MIPs) are an important visualization technique for angiographic data sets. Efficient data inspection requires frame rates of at least five frames per second at preserved image quality. Despite the advances in computer technology, this task remains a challenge. On the one hand, the sizes of computed tomography and magnetic resonance images are increasing rapidly. On the other hand, rendering algorithms do not automatically benefit from the advances in processor technology, especially for large data sets. This is due to the faster evolving processing power and the slower evolving memory access speed, which is bridged by hierarchical cache memory architectures. In this paper, we investigate memory access optimization methods and use them for generating MIPs on general-purpose central processing units (CPUs) and graphics processing units (GPUs), respectively. These methods can work on any level of the memory hierarchy, and we show that properly combined methods can optimize memory access on multiple levels of the hierarchy at the same time. We present performance measurements to compare different algorithm variants and illustrate the influence of the respective techniques. On current hardware, the efficient handling of the memory hierarchy for CPUs improves the rendering performance by a factor of 3 to 4. On GPUs, we observed that the effect is even larger, especially for large data sets. The methods can easily be adjusted to different hardware specifics, although their impact can vary considerably. They can also be used for other rendering techniques than MIPs, and their use for more general image processing task could be investigated in the future.
Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L
2014-09-01
The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.
Editorial: Next Generation Access Networks
NASA Astrophysics Data System (ADS)
Ruffini, Marco; Cincotti, Gabriella; Pizzinat, Anna; Vetter, Peter
2015-12-01
Over the past decade we have seen an increasing number of operators deploying Fibre-to-the-home (FTTH) solutions in access networks, in order to provide home users with a much needed network access upgrade, to support higher peak rates, higher sustained rates and a better and more uniform broadband coverage of the territory.
The Histone Deacetylase HDAC4 Regulates Long-Term Memory in Drosophila
Fitzsimons, Helen L.; Schwartz, Silvia; Given, Fiona M.; Scott, Maxwell J.
2013-01-01
A growing body of research indicates that pharmacological inhibition of histone deacetylases (HDACs) correlates with enhancement of long-term memory and current research is concentrated on determining the roles that individual HDACs play in cognitive function. Here, we investigate the role of HDAC4 in long-term memory formation in Drosophila. We show that overexpression of HDAC4 in the adult mushroom body, an important structure for memory formation, resulted in a specific impairment in long-term courtship memory, but had no affect on short-term memory. Overexpression of an HDAC4 catalytic mutant also abolished LTM, suggesting a mode of action independent of catalytic activity. We found that overexpression of HDAC4 resulted in a redistribution of the transcription factor MEF2 from a relatively uniform distribution through the nucleus into punctate nuclear bodies, where it colocalized with HDAC4. As MEF2 has also been implicated in regulation of long-term memory, these data suggest that the repressive effects of HDAC4 on long-term memory may be through interaction with MEF2. In the same genetic background, we also found that RNAi-mediated knockdown of HDAC4 impairs long-term memory, therefore we demonstrate that HDAC4 is not only a repressor of long-term memory, but also modulates normal memory formation. PMID:24349558
ACCESS: A Communicating and Cooperating Expert Systems System.
1988-01-31
therefore more quickly accepted by programmers. This is in part due to the already familiar concepts of multi-processing environments (e.g. semaphores ...Di68] and monitors [Br75]) which can be viewed as a special case of synchronized shared memory models [Di6S]. Heterogeneous systems however, are by...locality of nodes is not possible and frequent access of memory is required. Synchronization of processes also suffers from a loss of efficiency in
Constraints on Access: Costs and Benefits (Spontaneous Memory for Relevant Experiences)
1989-05-01
F. I. M. Craik (Eds.), Levels of processing and human memory. Hillsdale, NJ: Erlbaum. Dewey, J. (1963). How we think. Portions published in R. M...transfer. Pictures (vs. words) and levels of processing and elaborative encoding manipulations are shown to affect directed access but are found to have...includes most 5 6 list-learning experiments, research on schema/script abstraction, and studies of remembering which might manipulate levels of processing
1984-10-31
five colors , page forward, page back, erase, clear the page, store previously annotated material, and later retrieve it. From this developed a four...system to secure sites. These * enchancements are discussed below. -2- .7- -. . . --. J -. . . . .. . . . . . . . ..- . _77 . -.- 2.1 Enhancements to the...and large cache memory of the Winchester drive allows the SGWS software to run much faster when doing file access or direct memory access (DMA) than
Activating representations in permanent memory: different benefits for pictures and words.
Seifert, L S
1997-09-01
Previous research has suggested that pictures have privileged access to semantic memory (W. R. Glaser, 1992), but J. Theios and P. C. Amrhein (1989b) argued that prior studies inappropriately used large pictures and small words. In Experiment 1, participants categorized pictures reliably faster than words, even when both types of items were of optimal perceptual size. In Experiment 2, a poststimulus flashmask and judgments about internal features did not eliminate picture superiority, indicating that it was not due to differences in early visual processing or analysis of visible features. In Experiment 3, when participants made judgments about whether items were related, latencies were reliably faster for categorically related pictures than for words, but there was no picture advantage for noncategorically associated items. Results indicate that pictures have privileged access to semantic memory for categories, but that neither pictures nor words seem to have privileged access to noncategorical associations.
Implementation of Ferroelectric Memories for Space Applications
NASA Technical Reports Server (NTRS)
Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.
2000-01-01
Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.
Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm.
Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar
2018-01-31
Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point's received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.
Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm
Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar
2018-01-01
Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point’s received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner. PMID:29385042
van Schie, Kevin; Engelhard, Iris M.; van den Hout, Marcel A.
2015-01-01
Earlier studies have shown that when individuals recall an emotional memory while simultaneously doing a demanding dual-task [e.g., playing Tetris, mental arithmetic, making eye movements (EM)], this reduces self-reported vividness and emotionality of the memory. These effects have been found up to 1 week later, but have largely been confined to self-report ratings. This study examined whether this dual-tasking intervention reduces memory performance (i.e., accessibility of emotional memories). Undergraduates (N = 60) studied word-image pairs and rated the retrieved image on vividness and emotionality when cued with the word. Then they viewed the cues and recalled the images with or without making EM. Finally, they re-rated the images on vividness and emotionality. Additionally, fragments from images from all conditions were presented and participants identified which fragment was paired earlier with which cue. Findings showed no effect of the dual-task manipulation on self-reported ratings and latency responses. Several possible explanations for the lack of effects are discussed, but the cued recall procedure in our experiment seems to explain the absence of effects best. The study demonstrates boundaries to the effects of the “dual-tasking” procedure. PMID:25729370
Left Ventrolateral Prefrontal Cortex and the Cognitive Control of Memory
ERIC Educational Resources Information Center
Badre, David; Wagner, Anthony D.
2007-01-01
Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic…
Patterns of Autobiographical Memory in Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Crane, Laura; Pring, Linda; Jukes, Kaylee; Goddard, Lorna
2012-01-01
Two studies are presented that explored the effects of experimental manipulations on the quality and accessibility of autobiographical memories in adults with autism spectrum disorder (ASD), relative to a typical comparison group matched for age, gender and IQ. Both studies found that the adults with ASD generated fewer specific memories than the…
Ames Lab 101: Ultrafast Magnetic Switching
Wang; Jigang
2018-01-01
Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.
Memory for Recently Accessed Visual Attributes
ERIC Educational Resources Information Center
Jiang, Yuhong V.; Shupe, Joshua M.; Swallow, Khena M.; Tan, Deborah H.
2016-01-01
Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's…
Episodic and Semantic Memory Influences on Picture Naming in Alzheimer's Disease
ERIC Educational Resources Information Center
Small, Jeff A.; Sandhu, Nirmaljeet
2008-01-01
This study investigated the relationship between semantic and episodic memory as they support lexical access by healthy younger and older adults and individuals with Alzheimer's disease (AD). In particular, we were interested in examining the pattern of semantic and episodic memory declines in AD (i.e., word-finding difficulty and impaired recent…
Hemispheric Differences in the Organization of Memory for Text Ideas
ERIC Educational Resources Information Center
Long, Debra L.; Johns, Clinton L.; Jonathan, Eunike
2012-01-01
The goal of this study was to examine hemispheric asymmetries in episodic memory for discourse. Access to previously comprehended information is essential for mapping incoming information to representations of "who did what to whom" in memory. An item-priming-in-recognition paradigm was used to examine differences in how the hemispheres represent…
Individual Differences in the Effects of Retrieval from Long-Term Memory
ERIC Educational Resources Information Center
Brewer, Gene A.; Unsworth, Nash
2012-01-01
The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…
Semantic Memory and Verbal Working Memory Correlates of N400 to Subordinate Homographs
ERIC Educational Resources Information Center
Salisbury, Dean F.
2004-01-01
N400 is an event-related brain potential that indexes operations in semantic memory conceptual space, whether elicited by language or some other representation (e.g., drawings). Language models typically propose three stages: lexical access or orthographic- and phonological-level analysis; lexical selection or word-level meaning and associate…
A Neuroanatomical Model of Prefrontal Inhibitory Modulation of Memory Retrieval
Depue, Brendan E.
2012-01-01
Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: i) attending to other stimuli as a form of diversionary attention, ii) inhibiting the specific individual neural representation of the memory, and iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general. PMID:22374224
Oberauer, Klaus; Lange, Elke B
2009-02-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.
NASA Astrophysics Data System (ADS)
Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko
2017-08-01
We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.
Early-life sugar consumption has long-term negative effects on memory function in male rats.
Noble, Emily E; Hsu, Ted M; Liang, Joanna; Kanoski, Scott E
2017-09-25
Added dietary sugars contribute substantially to the diet of children and adolescents in the USA, and recent evidence suggests that consuming sugar-sweetened beverages (SSBs) during early life has deleterious effects on hippocampal-dependent memory function. Here, we test whether the effects of early-life sugar consumption on hippocampal function persist into adulthood when access to sugar is restricted to the juvenile/adolescent phase of development. Male rats were given ad libitum access to an 11% weight-by-volume sugar solution (made with high fructose corn syrup-55) throughout the adolescent phase of development (post-natal day (PN) 26-56). The control group received a second bottle of water instead, and both groups received ad libitum standard laboratory chow and water access throughout the study. At PN 56 sugar solutions were removed and at PN 175 rats were subjected to behavioral testing for hippocampal-dependent episodic contextual memory in the novel object in context (NOIC) task, for anxiety-like behavior in the Zero maze, and were given an intraperitoneal glucose tolerance test. Early-life exposure to SSBs conferred long-lasting impairments in hippocampal-dependent memory function later in life- yet had no effect on body weight, anxiety-like behavior, or glucose tolerance. A second experiment demonstrated that NOIC performance was impaired at PN 175 even when SSB access was limited to 2 hours daily from PN 26-56. Our data suggest that even modest SSB consumption throughout early life may have long-term negative consequences on memory function during adulthood.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-01-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Memory access in shared virtual memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berrendorf, R.
1992-09-01
Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.
Non-Volatile Memory Technology Symposium 2001: Proceedings
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh; Daud, Taher; Strauss, Karl
2001-01-01
This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2001 that was held on November 7-8, 2001 in San Diego, CA. The proceedings contains a a wide range of papers that cover current and new memory technologies including Flash memories, Magnetic Random Access Memories (MRAM and GMRAM), Ferro-electric RAM (FeRAM), and Chalcogenide RAM (CRAM). The papers presented in the proceedings address the use of these technologies for space applications as well as radiation effects and packaging issues.
1979-05-17
34 social memory", in the broader context of society. This paper explores some of the possibilities of creating a computer based corporate memory...NUMBER 79-04-03 2. COVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER «. TITLE f«n<* SubfU/.; A CONCEPT OF- CORPORATE MEMORY S. TYPE OF...It. SUPPLEMENTARY NOTES • IJ. KEY WORDS fCon<Jnu» on r»r»r»» mid* It nmcammmrj and Idmntltr bf block numbmr) corporate memory, office
Artificial intelligence applications of fast optical memory access
NASA Astrophysics Data System (ADS)
Henshaw, P. D.; Todtenkopf, A. B.
The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).
Performance of Compiler-Assisted Memory Safety Checking
2014-08-01
software developer has in mind a particular object to which the pointer should point, the intended referent. A memory access error occurs when an ac...Performance of Compiler-Assisted Memory Safety Checking David Keaton Robert C. Seacord August 2014 TECHNICAL NOTE CMU/SEI-2014-TN...based memory safety checking tool and the performance that can be achieved with two such tools whose source code is freely available. The note then
Active non-volatile memory post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish
A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.
Optically Addressable, Ferroelectric Memory With NDRO
NASA Technical Reports Server (NTRS)
Thakoor, Sarita
1994-01-01
For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.
The Cognitive Bases of Intelligence Analysis.
1984-01-01
the truth of a single proposition or to discriminate among several propositions. Indicators represent the potentially observable events that form the ...serves as a checklist against which to evaluate an actual Intelligance product. * If the Ideal product Is specified In sufficient detail for a particular...34 Interf’arence In accessing memory occurs for both recognition and recall. Memory retrieval is most efficient when the memories are discriminable . Memories for
Memory Loss: When to Seek Help
... a set of symptoms, including impairment in memory, reasoning, judgment, language and other thinking skills. Dementia usually ... et al. Mild cognitive impairment: Epidemiology, pathology and clinical assessment. http://www.uptodate.com/home. Accessed March ...
Context controls access to working and reference memory in the pigeon (Columba livia).
Roberts, William A; Macpherson, Krista; Strang, Caroline
2016-01-01
The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.
A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Bard, Christopher; Dorelli, John C.
2013-01-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
Gagnepain, Pierre; Fauvel, Baptiste; Desgranges, Béatrice; Gaubert, Malo; Viader, Fausto; Eustache, Francis; Groussard, Mathilde; Platel, Hervé
2017-01-01
The hippocampus has classically been associated with episodic memory, but is sometimes also recruited during semantic memory tasks, especially for the skilled exploration of familiar information. Cognitive control mechanisms guiding semantic memory search may benefit from the set of cognitive processes at stake during musical training. Here, we examined using functional magnetic resonance imaging, whether musical expertise would promote the top–down control of the left inferior frontal gyrus (LIFG) over the generation of hippocampally based goal-directed thoughts mediating the familiarity judgment of proverbs and musical items. Analyses of behavioral data confirmed that musical experts more efficiently access familiar melodies than non-musicians although such increased ability did not transfer to verbal semantic memory. At the brain level, musical expertise specifically enhanced the recruitment of the hippocampus during semantic access to melodies, but not proverbs. Additionally, hippocampal activation contributed to speed of access to familiar melodies, but only in musicians. Critically, causal modeling of neural dynamics between LIFG and the hippocampus further showed that top–down excitatory regulation over the hippocampus during familiarity decision specifically increases with musical expertise – an effect that generalized across melodies and proverbs. At the local level, our data show that musical expertise modulates the online recruitment of hippocampal response to serve semantic memory retrieval of familiar melodies. The reconfiguration of memory network dynamics following musical training could constitute a promising framework to understand its ability to preserve brain functions. PMID:29033805
Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E
2015-12-01
The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.
Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H
2018-04-01
The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Retrieval of memories with the help of music in Alzheimer's disease.
Chevreau, Priscilia; Nizard, Ingrid; Allain, Philippe
2017-09-01
This study focuses on music as a mediator facilitating access to autobiographical memory in Alzheimer's disease (AD). Studies on this topic are rare, but available data have shown a beneficial effect of music on autobiographical performance in AD patients. Based on the "index word" method, we developed the "index music" method for the evaluation of autobiographical memory. The subjects had to tell a memory of their choice from the words or music presented to them. The task was proposed to 54 patients with diagnosis of AD according to DSM IV and NINCDS-ADRDA criteria. All of them had a significant cognitive decline on the MMSE (mean score: 14.5). Patients were matched by age, sex and level of education with 48 control subjects without cognitive impairment (mean score on the MMSE: 28). Results showed that autobiographical memory quantity scores of AD patients were significantly lower than those of healthy control in both methods. However, autobiographical memory quality scores of AD patients increased with "index music" whereas autobiographical memory quality scores of healthy control decreased. Also, the autobiographical performance of patients with AD in condition index music was not correlated with cognitive performance in contrast to the autobiographical performances in index word. These results confirm that music improves access to personal memories in patients with AD. Personal memories could be preserved in patients with AD and music could constitute an interesting way to stimulate recollection.
Human Capital: DoD Compliance With the Uniformed and Overseas Citizens Absentee Voting Act
2003-03-31
UVAOs to perform their duties: “last day to mail” notifications to uniformed absentee voters; access to information regarding voter registration...the scope of our research on absentee voting issues that were brought to our attention by uniformed absentee voters. We performed this evaluation...and Overseas Citizens Absentee Voting Act (D-2003-072) Report Documentation Page Report Date 31 Mar 2003 Report Type N/A Dates Covered (from... to
25 CFR 47.6 - Who has access to local education financial records?
Code of Federal Regulations, 2012 CFR
2012-04-01
... Section 47.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION UNIFORM DIRECT FUNDING AND SUPPORT FOR BUREAU-OPERATED SCHOOLS § 47.6 Who has access to local education financial records... representatives have access for audit and explanation purposes to any of the local school's accounts, documents...
25 CFR 47.6 - Who has access to local education financial records?
Code of Federal Regulations, 2011 CFR
2011-04-01
... Section 47.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION UNIFORM DIRECT FUNDING AND SUPPORT FOR BUREAU-OPERATED SCHOOLS § 47.6 Who has access to local education financial records... representatives have access for audit and explanation purposes to any of the local school's accounts, documents...
25 CFR 47.6 - Who has access to local education financial records?
Code of Federal Regulations, 2013 CFR
2013-04-01
... Section 47.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION UNIFORM DIRECT FUNDING AND SUPPORT FOR BUREAU-OPERATED SCHOOLS § 47.6 Who has access to local education financial records... representatives have access for audit and explanation purposes to any of the local school's accounts, documents...
25 CFR 47.6 - Who has access to local education financial records?
Code of Federal Regulations, 2014 CFR
2014-04-01
... Section 47.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION UNIFORM DIRECT FUNDING AND SUPPORT FOR BUREAU-OPERATED SCHOOLS § 47.6 Who has access to local education financial records... representatives have access for audit and explanation purposes to any of the local school's accounts, documents...
25 CFR 47.6 - Who has access to local education financial records?
Code of Federal Regulations, 2010 CFR
2010-04-01
... Section 47.6 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION UNIFORM DIRECT FUNDING AND SUPPORT FOR BUREAU-OPERATED SCHOOLS § 47.6 Who has access to local education financial records... representatives have access for audit and explanation purposes to any of the local school's accounts, documents...
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.
The Effect of a Previously-Generated Hypothesis on Hypothesis Generation Performance.
1980-08-05
distinction 17I -’ai S between availability and accessibility has been made by Tulving and Pearlstone (1966). A datum may be present in memory, but may...1977. Thorndyke, P.W. The role of inference in discourse comprehension. Journal of Verbal Learning and Verbal Behavior, 1976, 15, 437-446. Tulving ...E. and Pearlstone , Z. Availability versus accessibility of infor- mation in memory for words. Journal of Verbal Learning and Verbal Behavior, 1966, 5
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 4, Appendix C
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Statistical analysis data is supplied along with write pulse width, read cycle time, write cycle time, and chip enable time data.
Simione, Luca; Raffone, Antonino; Wolters, Gezinus; Salmas, Paola; Nakatani, Chie; Belardinelli, Marta Olivetti; van Leeuwen, Cees
2012-10-01
Two separate lines of study have clarified the role of selectivity in conscious access to visual information. Both involve presenting multiple targets and distracters: one simultaneously in a spatially distributed fashion, the other sequentially at a single location. To understand their findings in a unified framework, we propose a neurodynamic model for Visual Selection and Awareness (ViSA). ViSA supports the view that neural representations for conscious access and visuo-spatial working memory are globally distributed and are based on recurrent interactions between perceptual and access control processors. Its flexible global workspace mechanisms enable a unitary account of a broad range of effects: It accounts for the limited storage capacity of visuo-spatial working memory, attentional cueing, and efficient selection with multi-object displays, as well as for the attentional blink and associated sparing and masking effects. In particular, the speed of consolidation for storage in visuo-spatial working memory in ViSA is not fixed but depends adaptively on the input and recurrent signaling. Slowing down of consolidation due to weak bottom-up and recurrent input as a result of brief presentation and masking leads to the attentional blink. Thus, ViSA goes beyond earlier 2-stage and neuronal global workspace accounts of conscious processing limitations. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Zou, Zhengxia; Shi, Zhenwei
2018-03-01
We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
Application of holographic optical techniques to bulk memory.
NASA Technical Reports Server (NTRS)
Anderson, L. K.
1971-01-01
Current efforts to exploit the spatial redundancy and built-in imaging of holographic optical techniques to provide high information densities without critical alignment and tight mechanical tolerances are reviewed. Read-write-erase in situ operation is possible but is presently impractical because of limitations in available recording media. As these are overcome, it should prove feasible to build holographic bulk memories with mechanically replaceable hologram plates featuring very fast (less than 2 microsec) random access to large (greater than 100 million bit) data blocks and very high throughput (greater than 500 Mbit/sec). Using volume holographic storage it may eventually be possible to realize random-access mass memories which require no mechanical motion and yet provide very high capacity.
Acoustic Neuroma: Questions to Discuss with Your Doctor
... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...
Colonic Polyps: Questions to Discuss with Your Doctor
... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...
When You Visit Your Doctor After a Heart Attack
... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...
When You Visit Your Doctor: Irregular Menstrual Periods
... products will be searched. Shopping Cart Description Qty Price The Harvard Medical School 6-Week Plan for ... Memory: Understanding Age-Related Memory Loss (PDF - Lowest Price!) $18.00 Harvard Health Letter (Print & Online Access ( ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Hu, T.; Kwok, Dixon T. K.
2010-05-15
Owing to the nonconformal plasma sheath in plasma immersion ion implantation of a rod sample, the retained dose can vary significantly. The authors propose to improve the implant uniformity by introducing a metal mesh. The depth profiles obtained with and without the mesh are compared and the implantation temperature at various locations is evaluated indirectly by differential scanning calorimeter. Our results reveal that by using the metal mesh, the retained dose uniformity along the length is greatly improved and the effects of the implantation temperature on the localized mechanical properties of the implanted NiTi shape memory alloy rod are nearlymore » negligible.« less
Varga, Nicole L.; Stewart, Rebekah A.; Bauer, Patricia J.
2016-01-01
Semantic memory, defined as our store of knowledge about the world, provides representational support for all of our higher order cognitive functions. As such, it is crucial that the contents of semantic memory remain accessible over time. Although memory for knowledge learned through direct observation has been previously investigated, we know very little about the retention of knowledge derived through integration of information acquired across separate learning episodes. The present research investigated cross-episode integration in 4-year-old children. Participants were presented with novel facts via distinct story episodes and tested for knowledge extension through cross-episode integration, as well as for retention of the information over a 1-week delay. In Experiment 1, children retained the self-derived knowledge over the delay, though performance was primarily evidenced in a forced-choice format. In Experiment 2, we sought to facilitate the accessibility and robustness of self-derived knowledge by providing a verbal reminder after the delay. The accessibility of self-derived knowledge increased, irrespective of whether participants successfully demonstrated knowledge of the integration facts during the first visit. The results suggest knowledge extended through integration remains accessible after delays, even in a population in which this learning process is less robust. The findings also demonstrate the facilitative effect of reminders on the accessibility and further extension of knowledge over extended time periods. PMID:26774259
Belief Inhibition in Children's Reasoning: Memory-Based Evidence
ERIC Educational Resources Information Center
Steegen, Sara; Neys, Wim De
2012-01-01
Adult reasoning has been shown as mediated by the inhibition of intuitive beliefs that are in conflict with logic. The current study introduces a classic procedure from the memory field to investigate belief inhibition in 12- to 17-year-old reasoners. A lexical decision task was used to probe the memory accessibility of beliefs that were cued…
Checkpoint-Restart in User Space
DOE Office of Scientific and Technical Information (OSTI.GOV)
CRUISE implements a user-space file system that stores data in main memory and transparently spills over to other storage, like local flash memory or the parallel file system, as needed. CRUISE also exposes file contents fo remote direct memory access, allowing external tools to copy files to the parallel file system in the background with reduced CPU interruption.
Memory Dynamics and Decision Making in Younger and Older Adults
ERIC Educational Resources Information Center
Lechuga, M. Teresa; Gomez-Ariza, Carlos J.; Iglesias-Parro, Sergio; Pelegrina, Santiago
2012-01-01
The main aim of this research was to study whether memory dynamics influence older people's choices to the same extent as younger's ones. To do so, we adapted the retrieval-practice paradigm to produce variations in memory accessibility of information on which decisions were made later. Based on previous results, we expected to observe…
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2008-01-01
Three experiments examined the nature of individual differences in switching the focus of attention in working memory. Participants performed 3 versions of a continuous counting task that required successive updating and switching between counts. Across all 3 experiments, individual differences in working memory span and fluid intelligence were…
Contexts and Control Operations Used in Accessing List-Specific, Generalized, and Semantic Memories
ERIC Educational Resources Information Center
Humphreys, Michael S.; Murray, Krista L.; Maguire, Angela M.
2009-01-01
The human ability to focus memory retrieval operations on a particular list, episode or memory structure has not been fully appreciated or documented. In Experiment 1-3, we make it increasingly difficult for participants to switch between a less recent list (multiple study opportunities), and a more recent list (single study opportunity). Task…
ERIC Educational Resources Information Center
Ricker, Timothy J.; Cowan, Nelson
2010-01-01
We reexamine the role of time in the loss of information from working memory, the limited information accessible for cognitive tasks. The controversial issue of whether working memory deteriorates over time was investigated using arrays of unconventional visual characters. Each array was followed by a postperceptual mask, a variable retention…
Production, Comprehension, and Theories of the Mental Lexicon. CUNYForum, Numbers 5-6.
ERIC Educational Resources Information Center
Cowart, Wayne
Problems related to the structure of the mental lexicon are considered. The single access assumption, the passive memory assumption, and the heterogeneous memory assumption are rejected in favor of the theory which assumes several active memories, each able to store expression based on only one homogenous set of abstract primitives. One lexicon…
Multiple Memory Stores and Operant Conditioning: A Rationale for Memory's Complexity
ERIC Educational Resources Information Center
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-01-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory…
Columbia Crew added to Astronaut Memorial Mirror
2003-07-15
Workers add to the Astronaut Memorial Mirror the names of the Columbia crew who died in the STS-107 accident. Dedicated May 9, 1991, the Astronaut Memorial honors U.S. astronauts who gave their lives for space exploration. The "Space Mirror," 42 1/2 feet high by 50 feet wide, illuminates the names of the fallen astronauts cut through the monument's black granite surface. The Memorial Mirror is accessible through the KSC Visitor Complex.
Temporal information processing in short- and long-term memory of patients with schizophrenia.
Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank
2011-01-01
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.
45 CFR 1151.23 - New construction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS NONDISCRIMINATION ON THE BASIS OF HANDICAP Discrimination... shall be designed and constructed to be readily accessible to and usable by handicapped persons... readily accessible to and usable by handicapped persons. (b) Conformance with Uniform Federal...
45 CFR 1151.23 - New construction.
Code of Federal Regulations, 2014 CFR
2014-10-01
... HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS NONDISCRIMINATION ON THE BASIS OF HANDICAP Discrimination... shall be designed and constructed to be readily accessible to and usable by handicapped persons... readily accessible to and usable by handicapped persons. (b) Conformance with Uniform Federal...
45 CFR 1151.23 - New construction.
Code of Federal Regulations, 2012 CFR
2012-10-01
... HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS NONDISCRIMINATION ON THE BASIS OF HANDICAP Discrimination... shall be designed and constructed to be readily accessible to and usable by handicapped persons... readily accessible to and usable by handicapped persons. (b) Conformance with Uniform Federal...
45 CFR 1151.23 - New construction.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS NONDISCRIMINATION ON THE BASIS OF HANDICAP Discrimination... shall be designed and constructed to be readily accessible to and usable by handicapped persons... readily accessible to and usable by handicapped persons. (b) Conformance with Uniform Federal...
45 CFR 1151.23 - New construction.
Code of Federal Regulations, 2013 CFR
2013-10-01
... HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS NONDISCRIMINATION ON THE BASIS OF HANDICAP Discrimination... shall be designed and constructed to be readily accessible to and usable by handicapped persons... readily accessible to and usable by handicapped persons. (b) Conformance with Uniform Federal...
Logical Access Control Mechanisms in Computer Systems.
ERIC Educational Resources Information Center
Hsiao, David K.
The subject of access control mechanisms in computer systems is concerned with effective means to protect the anonymity of private information on the one hand, and to regulate the access to shareable information on the other hand. Effective means for access control may be considered on three levels: memory, process and logical. This report is a…
Selective memory retrieval in social groups: When silence is golden and when it is not.
Abel, Magdalena; Bäuml, Karl-Heinz T
2015-07-01
Previous research has shown that the selective remembering of a speaker and the resulting silences can cause forgetting of related, but unmentioned information by a listener (Cuc, Koppel, & Hirst, 2007). Guided by more recent work that demonstrated both detrimental and beneficial effects of selective memory retrieval in individuals, the present research explored the effects of selective remembering in social groups when access to the encoding context at retrieval was maintained or impaired. In each of three experiments, selective retrieval by the speaker impaired recall of the listener when access to the encoding context was maintained, but it improved recall of the listener when context access was impaired. The results suggest the existence of two faces of selective memory retrieval in social groups, with a detrimental face when the encoding context is still active at retrieval and a beneficial face when it is not. The role of silence in social recall thus seems to be more complex than was indicated in prior work, and mnemonic silences on the part of a speaker can be "golden" for the memories of a listener under some circumstances, but not be "golden" under others. Copyright © 2015 Elsevier B.V. All rights reserved.
Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L
2012-02-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.
Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.
2011-01-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Chun Chia; Zhao, Rong, E-mail: zhao-rong@sutd.edu.sg; Chong, Tow Chong
2014-10-13
Nitrogen-doped titanium-tungsten (N-TiW) was proposed as a tunable heater in Phase Change Random Access Memory (PCRAM). By tuning N-TiW's material properties through doping, the heater can be tailored to optimize the access speed and programming current of PCRAM. Experiments reveal that N-TiW's resistivity increases and thermal conductivity decreases with increasing nitrogen-doping ratio, and N-TiW devices displayed (∼33% to ∼55%) reduced programming currents. However, there is a tradeoff between the current and speed for heater-based PCRAM. Analysis of devices with different N-TiW heaters shows that N-TiW doping levels could be optimized to enable low RESET currents and fast access speeds.
Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems
NASA Technical Reports Server (NTRS)
Naik, Vijay K.; Patrick, Merrell L.
1989-01-01
Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.
Li, Xiang Yuan; Shao, Xing Long; Wang, Yi Chuan; Jiang, Hao; Hwang, Cheol Seong; Zhao, Jin Shi
2017-02-09
Ta 2 O 5 has been an appealing contender for the resistance switching random access memory (ReRAM). The resistance switching (RS) in this material is induced by the repeated formation and rupture of the conducting filaments (CFs) in the oxide layer, which are accompanied by the almost inevitable randomness of the switching parameters. In this work, a 1 to 2 nm-thick Ti layer was deposited on the 10 nm-thick Ta 2 O 5 RS layer, which greatly improved the RS performances, including the much-improved switching uniformity. The Ti metal layer was naturally oxidized to TiO x (x < 2) and played the role of a series resistor, whose resistance value was comparable to the on-state resistance of the Ta 2 O 5 RS layer. The series resistor TiO x efficiently suppressed the adverse effects of the voltage (or current) overshooting at the moment of switching by the appropriate voltage partake effect, which increased the controllability of the CF formation and rupture. The switching cycle endurance was increased by two orders of magnitude even during the severe current-voltage sweep tests compared with the samples without the thin TiO x layer. The Ti deposition did not induce any significant overhead to the fabrication process, making the process highly promising for the mass production of a reliable ReRAM.
NASA Astrophysics Data System (ADS)
Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki
2018-04-01
A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.
Are There Multiple Visual Short-Term Memory Stores?
Sligte, Ilja G.; Scholte, H. Steven; Lamme, Victor A. F.
2008-01-01
Background Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. Methodology/Principal Findings We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. Conclusions/Significance We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will. PMID:18301775
Are there multiple visual short-term memory stores?
Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F
2008-02-27
Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will.
van Ede, Freek; Niklaus, Marcel; Nobre, Anna C
2017-01-11
Although working memory is generally considered a highly dynamic mnemonic store, popular laboratory tasks used to understand its psychological and neural mechanisms (such as change detection and continuous reproduction) often remain relatively "static," involving the retention of a set number of items throughout a shared delay interval. In the current study, we investigated visual working memory in a more dynamic setting, and assessed the following: (1) whether internally guided temporal expectations can dynamically and reversibly prioritize individual mnemonic items at specific times at which they are deemed most relevant; and (2) the neural substrates that support such dynamic prioritization. Participants encoded two differently colored oriented bars into visual working memory to retrieve the orientation of one bar with a precision judgment when subsequently probed. To test for the flexible temporal control to access and retrieve remembered items, we manipulated the probability for each of the two bars to be probed over time, and recorded EEG in healthy human volunteers. Temporal expectations had a profound influence on working memory performance, leading to faster access times as well as more accurate orientation reproductions for items that were probed at expected times. Furthermore, this dynamic prioritization was associated with the temporally specific attenuation of contralateral α (8-14 Hz) oscillations that, moreover, predicted working memory access times on a trial-by-trial basis. We conclude that attentional prioritization in working memory can be dynamically steered by internally guided temporal expectations, and is supported by the attenuation of α oscillations in task-relevant sensory brain areas. In dynamic, everyday-like, environments, flexible goal-directed behavior requires that mental representations that are kept in an active (working memory) store are dynamic, too. We investigated working memory in a more dynamic setting than is conventional, and demonstrate that expectations about when mnemonic items are most relevant can dynamically and reversibly prioritize these items in time. Moreover, we uncover a neural substrate of such dynamic prioritization in contralateral visual brain areas and show that this substrate predicts working memory retrieval times on a trial-by-trial basis. This places the experimental study of working memory, and its neuronal underpinnings, in a more dynamic and ecologically valid context, and provides new insights into the neural implementation of attentional prioritization within working memory. Copyright © 2017 van Ede et al.
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 4 2013-10-01 2013-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 45 Public Welfare 4 2012-10-01 2012-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 4 2014-10-01 2014-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 45 Public Welfare 4 2011-10-01 2011-10-01 false Program accessibility: Existing facilities. 2490.150 Section 2490.150 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility...
Data storage technology comparisons
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1990-01-01
The role of data storage and data storage technology is an integral, though conceptually often underestimated, portion of data processing technology. Data storage is important in the mass storage mode in which generated data is buffered for later use. But data storage technology is also important in the data flow mode when data are manipulated and hence required to flow between databases, datasets and processors. This latter mode is commonly associated with memory hierarchies which support computation. VLSI devices can reasonably be defined as electronic circuit devices such as channel and control electronics as well as highly integrated, solid-state devices that are fabricated using thin film deposition technology. VLSI devices in both capacities play an important role in data storage technology. In addition to random access memories (RAM), read-only memories (ROM), and other silicon-based variations such as PROM's, EPROM's, and EEPROM's, integrated devices find their way into a variety of memory technologies which offer significant performance advantages. These memory technologies include magnetic tape, magnetic disk, magneto-optic disk, and vertical Bloch line memory. In this paper, some comparison between selected technologies will be made to demonstrate why more than one memory technology exists today, based for example on access time and storage density at the active bit and system levels.
47 CFR 32.5082 - Switched access revenue.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 2 2011-10-01 2011-10-01 false Switched access revenue. 32.5082 Section 32.5082 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5082 Switched...
47 CFR 32.5082 - Switched access revenue.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 2 2014-10-01 2014-10-01 false Switched access revenue. 32.5082 Section 32.5082 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions For Revenue Accounts § 32.5082 Switched...
Item Analyses of Memory Differences
Salthouse, Timothy A.
2017-01-01
Objective Although performance on memory and other cognitive tests is usually assessed with a score aggregated across multiple items, potentially valuable information is also available at the level of individual items. Method The current study illustrates how analyses of variance with item as one of the factors, and memorability analyses in which item accuracy in one group is plotted as a function of item accuracy in another group, can provide a more detailed characterization of the nature of group differences in memory. Data are reported for two memory tasks, word recall and story memory, across age, ability, repetition, delay, and longitudinal contrasts. Results The item-level analyses revealed evidence for largely uniform differences across items in the age, ability, and longitudinal contrasts, but differential patterns across items in the repetition contrast, and unsystematic item relations in the delay contrast. Conclusion Analyses at the level of individual items have the potential to indicate the manner by which group differences in the aggregate test score are achieved. PMID:27618285
32-Bit-Wide Memory Tolerates Failures
NASA Technical Reports Server (NTRS)
Buskirk, Glenn A.
1990-01-01
Electronic memory system of 32-bit words corrects bit errors caused by some common type of failures - even failure of entire 4-bit-wide random-access-memory (RAM) chip. Detects failure of two such chips, so user warned that ouput of memory may contain errors. Includes eight 4-bit-wide DRAM's configured so each bit of each DRAM assigned to different one of four parallel 8-bit words. Each DRAM contributes only 1 bit to each 8-bit word.
Rutger's CAM2000 chip architecture
NASA Technical Reports Server (NTRS)
Smith, Donald E.; Hall, J. Storrs; Miyake, Keith
1993-01-01
This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.
Karylowski, Jerzy J.; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait’s self-descriptiveness (yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed. PMID:28473793
Karylowski, Jerzy J; Mrozinski, Blazej
2017-01-01
Previous research suggests that, with the passage of time, representations of self in episodic memory become less dependent on their initial (internal) vantage point and shift toward an external perspective that is normally characteristic of how other people are represented. The present experiment examined this phenomenon in both episodic and semantic autobiographical memory using latency of self-judgments as a measure of accessibility of the internal vs. the external perspective. Results confirmed that in the case of representations of the self retrieved from recent autobiographical memories, trait-judgments regarding unobservable self-aspects (internal perspective) were faster than trait judgments regarding observable self-aspects (external perspective). Yet, in the case of self-representations retrieved from memories of a more distant past, judgments regarding observable self-aspects were faster. Those results occurred for both self-representations retrieved from episodic memory and for representations retrieved from the semantic memory. In addition, regardless of the effect of time, greater accessibility of unobservable (vs. observable) self-aspects was associated with the episodic rather than semantic autobiographical memory. Those results were modified by neither declared trait's self-descriptiveness ( yes vs. no responses) nor by its desirability (highly desirable vs. moderately desirable traits). Implications for compatibility between how self and others are represented and for the role of self in social perception are discussed.
Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali E.; Naguib, Hani E.
2016-04-01
Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.
Figuring fact from fiction: unbiased polling of memory T cells.
Gerlach, Carmen; Loughhead, Scott M; von Andrian, Ulrich H
2015-05-07
Immunization generates several memory T cell subsets that differ in their migratory properties, anatomic distribution, and, hence, accessibility to investigation. In this issue, Steinert et al. demonstrate that what was believed to be a minor memory cell subset in peripheral tissues has been dramatically underestimated. Thus, current models of protective immunity require revision. Copyright © 2015 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.
2016-01-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…
Reasoning and Memory: People Make Varied Use of the Information Available in Working Memory
ERIC Educational Resources Information Center
Hardman, Kyle O.; Cowan, Nelson
2016-01-01
Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had…
Two Spatial Memories Are Not Better than One: Evidence of Exclusivity in Memory for Object Location
ERIC Educational Resources Information Center
Baguley, Thom; Lansdale, Mark W.; Lines, Lorna K.; Parkin, Jennifer K.
2006-01-01
This paper studies the dynamics of attempting to access two spatial memories simultaneously and its implications for the accuracy of recall. Experiment 1 demonstrates in a range of conditions that two cues pointing to different experiences of the same object location produce little or no higher recall than that observed with a single cue.…
NASA Technical Reports Server (NTRS)
Reynolds, L.; Tweed, H.
1972-01-01
The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.
Parity of access to memory services in London for the BAME population: a cross-sectional study.
Cook, Laura; Mukherjee, Sujoy; McLachlan, Tim; Shah, Rajendra; Livingston, Gill; Mukadam, Naaheed
2018-03-12
To investigate whether referrals to memory services in London reflect the ethnic diversity of the population. Memory service data including referral rates of BAME was collected from London Clinical Commissioning Groups (CCGs). The expected percentage of BAME referrals using census data was compared against White British population percentages using the chi squared test. We found that within 13,166 referrals to memory services across London, the percentage of people from BAME groups was higher than would be expected (20.3 versus 19.4%; χ 2 = 39.203, d.f. = 1, p < 0.0001) indicating that generally people from BAME groups are accessing memory services. Seventy-nine percent of memory services had more referrals than expected or no significant difference for all BAME groups. When there were fewer referrals then expected, the largest difference in percentage for an individual ethnic group was 3.3%. Results are encouraging and may indicate a significant improvement in awareness of dementia and help seeking behaviour among BAME populations. Prevalence of dementia in some ethnic groups may be higher so these numbers could still indicate under-referral. Due to the data available we were unable to compare disease severity or diagnosis type.
Virtual memory support for distributed computing environments using a shared data object model
NASA Astrophysics Data System (ADS)
Huang, F.; Bacon, J.; Mapp, G.
1995-12-01
Conventional storage management systems provide one interface for accessing memory segments and another for accessing secondary storage objects. This hinders application programming and affects overall system performance due to mandatory data copying and user/kernel boundary crossings, which in the microkernel case may involve context switches. Memory-mapping techniques may be used to provide programmers with a unified view of the storage system. This paper extends such techniques to support a shared data object model for distributed computing environments in which good support for coherence and synchronization is essential. The approach is based on a microkernel, typed memory objects, and integrated coherence control. A microkernel architecture is used to support multiple coherence protocols and the addition of new protocols. Memory objects are typed and applications can choose the most suitable protocols for different types of object to avoid protocol mismatch. Low-level coherence control is integrated with high-level concurrency control so that the number of messages required to maintain memory coherence is reduced and system-wide synchronization is realized without severely impacting the system performance. These features together contribute a novel approach to the support for flexible coherence under application control.
The Uniform Migrant Student Record Transfer System. A Position Paper.
ERIC Educational Resources Information Center
National Committee on the Education of Migrant Children, New York, NY.
Initiated in the mid-sixties under Title I of the Elementary and Secondary Education Act, the Uniform Migrant Student Record Transfer System (UMSRTS) was designed to maintain ready accessibility via computer data base to the health and academic records of migrant children. The National Committee on the Education of Migrant Children (NCEMC)…
Planar electroluminescent panel techniques
NASA Technical Reports Server (NTRS)
Kerr, C.; Kell, R. E.
1973-01-01
Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.
CoNNeCT Baseband Processor Module
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.
2011-01-01
A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.
NASA Astrophysics Data System (ADS)
Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis
2016-01-01
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.
A performance comparison of the IBM RS/6000 and the Astronautics ZS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.M.; Abraham, S.G.; Davidson, E.S.
1991-01-01
Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiang; Lu, Yang; Lee, Jongho
2016-01-04
Tuning low resistance state is crucial for resistance random access memory (RRAM) that aims to achieve optimal read margin and design flexibility. By back-to-back stacking two nanometallic bipolar RRAMs with different thickness into a complementary structure, we have found that its low resistance can be reliably tuned over several orders of magnitude. Such high tunability originates from the exponential thickness dependence of the high resistance state of nanometallic RRAM, in which electron wave localization in a random network gives rise to the unique scaling behavior. The complementary nanometallic RRAM provides electroforming-free, multi-resistance-state, sub-100 ns switching capability with advantageous characteristics formore » memory arrays.« less
Twin-bit via resistive random access memory in 16 nm FinFET logic technologies
NASA Astrophysics Data System (ADS)
Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung
2018-04-01
A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.
Soft errors in commercial off-the-shelf static random access memories
NASA Astrophysics Data System (ADS)
Dilillo, L.; Tsiligiannis, G.; Gupta, V.; Bosser, A.; Saigne, F.; Wrobel, F.
2017-01-01
This article reviews state-of-the-art techniques for the evaluation of the effect of radiation on static random access memory (SRAM). We detailed irradiation test techniques and results from irradiation experiments with several types of particles. Two commercial SRAMs, in 90 and 65 nm technology nodes, were considered as case studies. Besides the basic static and dynamic test modes, advanced stimuli for the irradiation tests were introduced, as well as statistical post-processing techniques allowing for deeper analysis of the correlations between bit-flip cross-sections and design/architectural characteristics of the memory device. Further insight is provided on the response of irradiated stacked layer devices and on the use of characterized SRAM devices as particle detectors.
NASA Astrophysics Data System (ADS)
Kajiyama, Shinya; Fujito, Masamichi; Kasai, Hideo; Mizuno, Makoto; Yamaguchi, Takanori; Shinagawa, Yutaka
A novel 300MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility: Existing facilities. (a) General. The agency shall operate each program or activity so that the program or activity, when viewed in its entirety, is readily accessible to and usable by individuals with handicaps...
Working Memory Underpins Cognitive Development, Learning, and Education
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585
Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.
Csaba, György
2017-06-01
According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.
Complex dynamics of semantic memory access in reading.
Baggio, Giosué; Fonseca, André
2012-02-07
Understanding a word in context relies on a cascade of perceptual and conceptual processes, starting with modality-specific input decoding, and leading to the unification of the word's meaning into a discourse model. One critical cognitive event, turning a sensory stimulus into a meaningful linguistic sign, is the access of a semantic representation from memory. Little is known about the changes that activating a word's meaning brings about in cortical dynamics. We recorded the electroencephalogram (EEG) while participants read sentences that could contain a contextually unexpected word, such as 'cold' in 'In July it is very cold outside'. We reconstructed trajectories in phase space from single-trial EEG time series, and we applied three nonlinear measures of predictability and complexity to each side of the semantic access boundary, estimated as the onset time of the N400 effect evoked by critical words. Relative to controls, unexpected words were associated with larger prediction errors preceding the onset of the N400. Accessing the meaning of such words produced a phase transition to lower entropy states, in which cortical processing becomes more predictable and more regular. Our study sheds new light on the dynamics of information flow through interfaces between sensory and memory systems during language processing.
PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications
NASA Astrophysics Data System (ADS)
Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne
2016-12-01
High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.
22 CFR 142.17 - New construction.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR... accessible to and usable by persons with handicaps, if the construction was commenced after the effective... with handicaps. (c) Conformance with Uniform Federal Accessibility Standards. (1) Effective as of...
22 CFR 142.17 - New construction.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR... accessible to and usable by persons with handicaps, if the construction was commenced after the effective... with handicaps. (c) Conformance with Uniform Federal Accessibility Standards. (1) Effective as of...
22 CFR 142.17 - New construction.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Relations DEPARTMENT OF STATE CIVIL RIGHTS NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR... accessible to and usable by persons with handicaps, if the construction was commenced after the effective... with handicaps. (c) Conformance with Uniform Federal Accessibility Standards. (1) Effective as of...
47 CFR 32.5083 - Special access revenue.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (a) This account shall include all federally and state tariffed charges assessed for other than end user or switched access charges referred to in Account 5081, End user revenue, and Account 5082... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS...
Conway, Martin A
2009-09-01
An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of episodic elements, summary records of experience often in the form of visual images, associated to a conceptual frame that provides a conceptual context. Episodic memories are embedded in a more complex conceptual system in which they can become the basis of autobiographical memories. However, the function of episodic memories is to keep a record of progress with short-term goals and access to most episodic memories is lost soon after their formation. Finally, it is suggested that developmentally episodic memories form the basis of the conceptual system and it is from sets of episodic memories that early non-verbal conceptual knowledge is abstracted.
Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.
2016-01-01
Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Functional retrograde amnesia: a quantitative case study.
Schacter, D L; Wang, P L; Tulving, E; Freedman, M
1982-01-01
The memory impairment of a patient suffering from functional retrograde amnesia was assessed both during the amnesic episode and after its termination. The patient's performance on a task tapping semantic memory was nearly identical on the two test occasions, but his performance on a task tapping episodic memory substantially changed across test sessions. Cueing procedures revealed that in spite of the patient's restricted access to episodic memory during the amnesic period, a relatively intact "island" of episodic memories could be uncovered. The distinction between episodic and semantic memory, as well as the relation between organic and functional retrograde amnesia, are discussed in light of the case study.
The removal of information from working memory.
Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus
2018-05-09
What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.
Shehzad, Danish; Bozkuş, Zeki
2016-01-01
Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.
Bozkuş, Zeki
2016-01-01
Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363
Accessing sparse arrays in parallel memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, U.; Gajski, D.; Kuck, D.
The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less
Microcontroller for automation application
NASA Technical Reports Server (NTRS)
Cooper, H. W.
1975-01-01
The description of a microcontroller currently being developed for automation application was given. It is basically an 8-bit microcomputer with a 40K byte random access memory/read only memory, and can control a maximum of 12 devices through standard 15-line interface ports.
Gateway Arch Circulator Conceptual Feasibility Study : Jefferson National Expansion Memorial
DOT National Transportation Integrated Search
2015-03-01
The Jefferson National Expansion Memorial (JEFF) is undergoing major design changes as part of the City Arch River 2015 project (CAR) that will impact access for park visitors. The park and stakeholders are considering a circulator system to facilita...
No Evidence for an Item Limit in Change Detection (Open Access)
2013-02-28
memory : a reconsideration of mental storage capacity. Behav Brain Sci 24: 87–114. 17. Eng HY, Chen D, Jiang Y (2005) Visual working memory for simple...working memory can hold no more than a fixed number of items (‘‘item-limit models’’). Recent findings force us to consider the alternative view that working... memory is limited by the precision in stimulus encoding, with mean precision decreasing with increasing set size (‘‘continuous-resource models
NASA Technical Reports Server (NTRS)
Carpenter, K. H.
1974-01-01
The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.
NASA Astrophysics Data System (ADS)
Suzuki, Daisuke; Hanyu, Takahiro
2018-04-01
A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.
Psychological Processes Underlying Cultivation Effects: Further Tests of Construct Accessibility.
ERIC Educational Resources Information Center
Shrum, L. J.
1996-01-01
Describes a study that tested whether the accessibility of information in memory mediates the cultivation effect (the effect of television viewing on social perceptions), consistent with the availability heuristic. Shows that heavy viewers gave higher frequency estimates (cultivation effect) and responded faster (accessibility effect) than did…
ERIC Educational Resources Information Center
Adelman, Clifford
2005-01-01
Visitors to the FDR Memorial in Washington, D.C., enter the area through ceremonial openings: from the pathway around the reflecting pond of the Jefferson Memorial, or across a small shaded plaza reached from a roadway parallel to the Potomac River. The FDR Memorial itself cannot be seen at the start of either of these paths. It is out there…
NASA Technical Reports Server (NTRS)
Morfopoulos, Arin C.; Pham, Thang D.
2013-01-01
JPL has produced a series of FPGA (field programmable gate array) vision algorithms that were written with custom interfaces to get data in and out of each vision module. Each module has unique requirements on the data interface, and further vision modules are continually being developed, each with their own custom interfaces. Each memory module had also been designed for direct access to memory or to another memory module.
Trinary Associative Memory Would Recognize Machine Parts
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Awwal, Abdul Ahad S.; Karim, Mohammad A.
1991-01-01
Trinary associative memory combines merits and overcomes major deficiencies of unipolar and bipolar logics by combining them in three-valued logic that reverts to unipolar or bipolar binary selectively, as needed to perform specific tasks. Advantage of associative memory: one obtains access to all parts of it simultaneously on basis of content, rather than address, of data. Consequently, used to exploit fully parallelism and speed of optical computing.
Cache directory look-up re-use as conflict check mechanism for speculative memory requests
Ohmacht, Martin
2013-09-10
In a cache memory, energy and other efficiencies can be realized by saving a result of a cache directory lookup for sequential accesses to a same memory address. Where the cache is a point of coherence for speculative execution in a multiprocessor system, with directory lookups serving as the point of conflict detection, such saving becomes particularly advantageous.
Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory
NASA Astrophysics Data System (ADS)
Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu
2015-07-01
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.
Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory.
Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu
2015-07-23
Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.
An FPGA-Based Test-Bed for Reliability and Endurance Characterization of Non-Volatile Memory
NASA Technical Reports Server (NTRS)
Rao, Vikram; Patel, Jagdish; Patel, Janak; Namkung, Jeffrey
2001-01-01
Memory technologies are divided into two categories. The first category, nonvolatile memories, are traditionally used in read-only or read-mostly applications because of limited write endurance and slow write speed. These memories are derivatives of read only memory (ROM) technology, which includes erasable programmable ROM (EPROM), electrically-erasable programmable ROM (EEPROM), Flash, and more recent ferroelectric non-volatile memory technology. Nonvolatile memories are able to retain data in the absence of power. The second category, volatile memories, are random access memory (RAM) devices including SRAM and DRAM. Writing to these memories is fast and write endurance is unlimited, so they are most often used to store data that change frequently, but they cannot store data in the absence of power. Nonvolatile memory technologies with better future potential are FRAM, Chalcogenide, GMRAM, Tunneling MRAM, and Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) EEPROM.
Solving Large Problems with a Small Working Memory
ERIC Educational Resources Information Center
Pizlo, Zygmunt; Stefanov, Emil
2013-01-01
We describe an important elaboration of our multiscale/multiresolution model for solving the Traveling Salesman Problem (TSP). Our previous model emulated the non-uniform distribution of receptors on the human retina and the shifts of visual attention. This model produced near-optimal solutions of TSP in linear time by performing hierarchical…
Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons
ERIC Educational Resources Information Center
Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.
2011-01-01
Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…
NASA Technical Reports Server (NTRS)
Kelley, Steve; Roussopoulos, Nick; Sellis, Timos; Wallace, Sarah
1993-01-01
The Universal Index System (UIS) is an index management system that uses a uniform interface to solve the heterogeneity problem among database management systems. UIS provides an easy-to-use common interface to access all underlying data, but also allows different underlying database management systems, storage representations, and access methods.
20 CFR 435.53 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Retention and access requirements for records. 435.53 Section 435.53 Employees' Benefits SOCIAL SECURITY ADMINISTRATION UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND AGREEMENTS WITH INSTITUTIONS OF HIGHER EDUCATION, HOSPITALS, OTHER NON-PROFIT...
78 FR 19979 - Establishment of the Presidential Commission on Election Administration
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
..., recruitment, and number of poll workers; (iii) voting accessibility for uniformed and overseas voters; (iv) the efficient management of voter rolls and poll books; (v) voting machine capacity and technology; (vi) ballot simplicity and voter education; (vii) voting accessibility for individuals with...
20 CFR 437.42 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... 437.42 Section 437.42 Employees' Benefits SOCIAL SECURITY ADMINISTRATION UNIFORM ADMINISTRATIVE... (c) of this section. (2) If any litigation, claim, negotiation, audit or other action involving the... to make audits, examinations, excerpts, and transcripts. (2) Expiration of right of access. The...
20 CFR 437.42 - Retention and access requirements for records.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... 437.42 Section 437.42 Employees' Benefits SOCIAL SECURITY ADMINISTRATION UNIFORM ADMINISTRATIVE... (c) of this section. (2) If any litigation, claim, negotiation, audit or other action involving the... to make audits, examinations, excerpts, and transcripts. (2) Expiration of right of access. The...
45 CFR 2490.149 - Program accessibility: Discrimination prohibited.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...
45 CFR 2490.149 - Program accessibility: Discrimination prohibited.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...
45 CFR 2490.149 - Program accessibility: Discrimination prohibited.
Code of Federal Regulations, 2012 CFR
2012-10-01
.... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...
45 CFR 2490.149 - Program accessibility: Discrimination prohibited.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...
45 CFR 2490.149 - Program accessibility: Discrimination prohibited.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... 2490.149 Section 2490.149 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.149 Program...
Accessibility limits recall from visual working memory.
Rajsic, Jason; Swan, Garrett; Wilson, Daryl E; Pratt, Jay
2017-09-01
In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response error in these tasks has been largely studied with respect to failures of encoding and maintenance; however, the retrieval operations used in these tasks remain poorly understood. By varying the number and type of object features provided as a cue in a visual delayed-estimation paradigm, we directly assess the nature of retrieval errors in delayed estimation from VWM. Our results demonstrate that providing additional object features in a single cue reliably improves recall, largely by reducing swap, or misbinding, responses. In addition, performance simulations using the binding pool model (Swan & Wyble, 2014) were able to mimic this pattern of performance across a large span of parameter combinations, demonstrating that the binding pool provides a possible mechanism underlying this pattern of results that is not merely a symptom of one particular parametrization. We conclude that accessing visual working memory is a noisy process, and can lead to errors over and above those of encoding and maintenance limitations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The storage system of PCM based on random access file system
NASA Astrophysics Data System (ADS)
Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang
2016-10-01
Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.
Distributed shared memory for roaming large volumes.
Castanié, Laurent; Mion, Christophe; Cavin, Xavier; Lévy, Bruno
2006-01-01
We present a cluster-based volume rendering system for roaming very large volumes. This system allows to move a gigabyte-sized probe inside a total volume of several tens or hundreds of gigabytes in real-time. While the size of the probe is limited by the total amount of texture memory on the cluster, the size of the total data set has no theoretical limit. The cluster is used as a distributed graphics processing unit that both aggregates graphics power and graphics memory. A hardware-accelerated volume renderer runs in parallel on the cluster nodes and the final image compositing is implemented using a pipelined sort-last rendering algorithm. Meanwhile, volume bricking and volume paging allow efficient data caching. On each rendering node, a distributed hierarchical cache system implements a global software-based distributed shared memory on the cluster. In case of a cache miss, this system first checks page residency on the other cluster nodes instead of directly accessing local disks. Using two Gigabit Ethernet network interfaces per node, we accelerate data fetching by a factor of 4 compared to directly accessing local disks. The system also implements asynchronous disk access and texture loading, which makes it possible to overlap data loading, volume slicing and rendering for optimal volume roaming.
Low power consumption resistance random access memory with Pt/InOx/TiN structure
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn
2013-09-01
In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.
NASA Astrophysics Data System (ADS)
Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro
2018-04-01
We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.
Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods.
Nickel, Allison E; Henke, Katharina; Hannula, Deborah E
2015-01-01
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness.
Relational Memory Is Evident in Eye Movement Behavior despite the Use of Subliminal Testing Methods
Nickel, Allison E.; Henke, Katharina; Hannula, Deborah E.
2015-01-01
While it is generally agreed that perception can occur without awareness, there continues to be debate about the type of representational content that is accessible when awareness is minimized or eliminated. Most investigations that have addressed this issue evaluate access to well-learned representations. Far fewer studies have evaluated whether or not associations encountered just once prior to testing might also be accessed and influence behavior. Here, eye movements were used to examine whether or not memory for studied relationships is evident following the presentation of subliminal cues. Participants assigned to experimental or control groups studied scene-face pairs and test trials evaluated implicit and explicit memory for these pairs. Each test trial began with a subliminal scene cue, followed by three visible studied faces. For experimental group participants, one face was the studied associate of the scene (implicit test); for controls none were a match. Subsequently, the display containing a match was presented to both groups, but now it was preceded by a visible scene cue (explicit test). Eye movements were recorded and recognition memory responses were made. Participants in the experimental group looked disproportionately at matching faces on implicit test trials and participants from both groups looked disproportionately at matching faces on explicit test trials, even when that face had not been successfully identified as the associate. Critically, implicit memory-based viewing effects seemed not to depend on residual awareness of subliminal scene cues, as subjective and objective measures indicated that scenes were successfully masked from view. The reported outcomes indicate that memory for studied relationships can be expressed in eye movement behavior without awareness. PMID:26512726
New uses of hypnosis in the treatment of posttraumatic stress disorder.
Spiegel, D; Cardena, E
1990-10-01
Hypnosis is associated with the treatment of posttraumatic stress disorder (PTSD) for two reasons: (1) the similarity between hypnotic phenomena and the symptoms of PTSD, and (2) the utility of hypnosis as a tool in treatment. Physical trauma produces a sudden discontinuity in cognitive and emotional experience that often persists after the trauma is over. This results in symptoms such as psychogenic amnesia, intrusive reliving of the event as if it were recurring, numbing of responsiveness, and hypersensitivity to stimuli. Two studies have shown that Vietnam veterans with PTSD have higher than normal hypnotizability scores on standardized tests. Likewise, a history of physical abuse in childhood has been shown to be strongly associated with dissociative symptoms later in life. Furthermore, dissociative symptoms during and soon after traumatic experience predict later PTSD. Formal hypnotic procedures are especially helpful because this population is highly hypnotizable. Hypnosis provides controlled access to memories that may otherwise be kept out of consciousness. New uses of hypnosis in the psychotherapy of PTSD victims involve coupling access to the dissociated traumatic memories with positive restructuring of those memories. Hypnosis can be used to help patients face and bear a traumatic experience by embedding it in a new context, acknowledging helplessness during the event, and yet linking that experience with remoralizing memories such as efforts at self-protection, shared affection with friends who were killed, or the ability to control the environment at other times. In this way, hypnosis can be used to provide controlled access to memories that are then placed into a broader perspective. Patients can be taught self-hypnosis techniques that allow them to work through traumatic memories and thereby reduce spontaneous unbidden intrusive recollections.
MPEG-1 low-cost encoder solution
NASA Astrophysics Data System (ADS)
Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven
1995-02-01
A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.
NASA Technical Reports Server (NTRS)
Recksiedler, A. L.; Lutes, C. L.
1972-01-01
The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing.
Optimized collectives using a DMA on a parallel computer
Chen, Dong [Croton On Hudson, NY; Gabor, Dozsa [Ardsley, NY; Giampapa, Mark E [Irvington, NY; Heidelberger,; Phillip, [Cortlandt Manor, NY
2011-02-08
Optimizing collective operations using direct memory access controller on a parallel computer, in one aspect, may comprise establishing a byte counter associated with a direct memory access controller for each submessage in a message. The byte counter includes at least a base address of memory and a byte count associated with a submessage. A byte counter associated with a submessage is monitored to determine whether at least a block of data of the submessage has been received. The block of data has a predetermined size, for example, a number of bytes. The block is processed when the block has been fully received, for example, when the byte count indicates all bytes of the block have been received. The monitoring and processing may continue for all blocks in all submessages in the message.
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
Final Report: Correctness Tools for Petascale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellor-Crummey, John
2014-10-27
In the course of developing parallel programs for leadership computing systems, subtle programming errors often arise that are extremely difficult to diagnose without tools. To meet this challenge, University of Maryland, the University of Wisconsin—Madison, and Rice University worked to develop lightweight tools to help code developers pinpoint a variety of program correctness errors that plague parallel scientific codes. The aim of this project was to develop software tools that help diagnose program errors including memory leaks, memory access errors, round-off errors, and data races. Research at Rice University focused on developing algorithms and data structures to support efficient monitoringmore » of multithreaded programs for memory access errors and data races. This is a final report about research and development work at Rice University as part of this project.« less
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-11-22
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.
High-density magnetoresistive random access memory operating at ultralow voltage at room temperature
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-01-01
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527
Integrated sensor with frame memory and programmable resolution for light adaptive imaging
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
2004-01-01
An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.
Cross talk and diffraction efficiency in angular multiplexed memories using improved polypeptide
NASA Astrophysics Data System (ADS)
Ramenah, Harry K.; Bertrand, Paul; Soubari, E. H.; Meyrueis, Patrick
1996-12-01
We studied energy coupling between gratings and angularly multiplexed 20 gratings with a uniform diffraction efficiency within 25 micrometer layer thickness of dichromated gelatin. The dependence of diffraction efficiency on beam ratio is given. We recorded a matrix form memory of nxmxp elements, where n and m are the rows and columns and p the number of multiplexes. For indication only, n equals m equals 10, p equals 20, the surface area of the matrix is 1 cm2. Color diffractive images and digital data are illustrated as well as video, cartography and medical applications.
45 CFR 1183.42 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION ON THE ARTS AND THE HUMANITIES INSTITUTE OF MUSEUM AND LIBRARY SERVICES UNIFORM ADMINISTRATIVE... (c) of this section. (2) If any litigation, claim, negotiation, audit or other action involving the... to make audits, examinations, excerpts, and transcripts. (2) Expiration of right of access. The...
45 CFR 1157.42 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE ARTS UNIFORM ADMINISTRATIVE REQUIREMENTS... (c) of this section. (2) If any litigation, claim, negotiation, audit or other action involving the... to make audits, examinations, excerpts, and transcripts. (2) Expiration of right of access. The...
45 CFR 1174.42 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... FOUNDATION ON THE ARTS AND THE HUMANITIES NATIONAL ENDOWMENT FOR THE HUMANITIES UNIFORM ADMINISTRATIVE... (c) of this section. (2) If any litigation, claim, negotiation, audit or other action involving the... to make audits, examinations, excerpts, and transcripts. (2) Expiration of right of access. The...
7 CFR 3016.42 - Retention and access requirements for records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Retention and access requirements for records. 3016.42 Section 3016.42 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF THE CHIEF FINANCIAL OFFICER, DEPARTMENT OF AGRICULTURE UNIFORM ADMINISTRATIVE REQUIREMENTS FOR GRANTS AND...
45 CFR 2490.151 - Program accessibility: New construction and alterations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...
45 CFR 2490.151 - Program accessibility: New construction and alterations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...
45 CFR 2490.151 - Program accessibility: New construction and alterations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...
45 CFR 2490.151 - Program accessibility: New construction and alterations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...
Empirical Modeling Of Single-Event Upset
NASA Technical Reports Server (NTRS)
Zoutendyk, John A.; Smith, Lawrence S.; Soli, George A.; Thieberger, Peter; Smith, Stephen L.; Atwood, Gregory E.
1988-01-01
Experimental study presents examples of empirical modeling of single-event upset in negatively-doped-source/drain metal-oxide-semiconductor static random-access memory cells. Data supports adoption of simplified worst-case model in which cross sectionof SEU by ion above threshold energy equals area of memory cell.
45 CFR 2490.151 - Program accessibility: New construction and alterations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... alterations. 2490.151 Section 2490.151 Public Welfare Regulations Relating to Public Welfare (Continued) JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION ENFORCEMENT OF NONDISCRIMINATION ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.151 Program...
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.