Lahanas, M; Baltas, D; Giannouli, S; Milickovic, N; Zamboglou, N
2000-05-01
We have studied the accuracy of statistical parameters of dose distributions in brachytherapy using actual clinical implants. These include the mean, minimum and maximum dose values and the variance of the dose distribution inside the PTV (planning target volume), and on the surface of the PTV. These properties have been studied as a function of the number of uniformly distributed sampling points. These parameters, or the variants of these parameters, are used directly or indirectly in optimization procedures or for a description of the dose distribution. The accurate determination of these parameters depends on the sampling point distribution from which they have been obtained. Some optimization methods ignore catheters and critical structures surrounded by the PTV or alternatively consider as surface dose points only those on the contour lines of the PTV. D(min) and D(max) are extreme dose values which are either on the PTV surface or within the PTV. They must be avoided for specification and optimization purposes in brachytherapy. Using D(mean) and the variance of D which we have shown to be stable parameters, achieves a more reliable description of the dose distribution on the PTV surface and within the PTV volume than does D(min) and D(max). Generation of dose points on the real surface of the PTV is obligatory and the consideration of catheter volumes results in a realistic description of anatomical dose distributions.
Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko
2010-09-01
An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients.
Radiochromic film dosimetry for UV-C treatments of apple fruit
USDA-ARS?s Scientific Manuscript database
Radiochromic films were evaluated for their suitability to estimate UV-C doses and dose uniformity on apple fruit surface. Parameters investigated included film type, color changes of the films in response to different UV-C doses, color stability of films, UV-C light intensity, and temperature. In...
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1994-01-01
A microporous structure with layered interstitial surface treatments, and method and apparatus for preparation thereof is presented. The structure is prepared by sequentially subjecting a uniformly surface-treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main atomic oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.
NASA Technical Reports Server (NTRS)
Koontz, Steven L. (Inventor)
1992-01-01
A microporous structure with layered interstitial surface treatments, and the method and apparatus for its preparation are disclosed. The structure is prepared by sequentially subjecting a uniformly surface treated structure to atomic oxygen treatment to remove an outer layer of surface treatment to a generally uniform depth, and then surface treating the so exposed layer with another surface treating agent. The atomic oxygen/surface treatment steps may optionally be repeated, each successive time to a lesser depth, to produce a microporous structure having multilayered surface treatments. The apparatus employs at least one side arm from a main oxygen-containing chamber. The side arm has characteristic relaxation times such that a uniform atomic oxygen dose rate is delivered to a specimen positioned transversely in the side arm spaced from the main gas chamber.
Total body irradiation with a compensator fabricated using a 3D optical scanner and a 3D printer
NASA Astrophysics Data System (ADS)
Park, So-Yeon; Kim, Jung-in; Joo, Yoon Ha; Lee, Jung Chan; Park, Jong Min
2017-05-01
We propose bilateral total body irradiation (TBI) utilizing a 3D printer and a 3D optical scanner. We acquired surface information of an anthropomorphic phantom with the 3D scanner and fabricated the 3D compensator with the 3D printer, which could continuously compensate for the lateral missing tissue of an entire body from the beam’s eye view. To test the system’s performance, we measured doses with optically stimulated luminescent dosimeters (OSLDs) as well as EBT3 films with the anthropomorphic phantom during TBI without a compensator, conventional bilateral TBI, and TBI with the 3D compensator (3D TBI). The 3D TBI showed the most uniform dose delivery to the phantom. From the OSLD measurements of the 3D TBI, the deviations between the measured doses and the prescription dose ranged from -6.7% to 2.4% inside the phantom and from -2.3% to 0.6% on the phantom’s surface. From the EBT3 film measurements, the prescription dose could be delivered to the entire body of the phantom within ±10% accuracy, except for the chest region, where tissue heterogeneity is extreme. The 3D TBI doses were much more uniform than those of the other irradiation techniques, especially in the anterior-to-posterior direction. The 3D TBI was advantageous, owing to its uniform dose delivery as well as its efficient treatment procedure.
Dynamics of magnetized plasma sheaths around a trench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatami, M. M., E-mail: m-hatami@kntu.ac.ir
2016-08-15
Considering a magnetized plasma sheath, the temporal evolution of the ion properties (the incident ion flux, the ion impact angle, and the incident ion dose) around a rectangular trench is studied numerically. Our results show that the ion flux along the bottom surface greatly reduces in the presence of magnetic field and its uniformity improves, but the magnetic field does not considerably affect the ion flux along the sidewall. In addition, the thickness of the plasma sheath increases by increasing the magnetic field while its conformality to the target surface reduces faster. Moreover, it is shown that any increase inmore » the magnitude (inclination angle) of the magnetic field causes a decrease (an increase) in the angle of incidence of ions on the bottom and sidewall surfaces. Furthermore, in the presence of magnetic field, the ions strike nearly normal to the surface of the bottom while they become less oblique along the sidewall surface. In addition, contrary to the corners of the trench, it is found that the magnetic field greatly affects the incident ion dose at the center of the trench surfaces. Also, it is shown that the incident ion dose along the sidewall is the highest near the center of the sidewall in both magnetized and magnetic-free cases. However, uniformity of the incident ion dose along the sidewall is better than that along the bottom in both magnetized and unmagnetized plasma sheath.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Rosenfield, J; Dong, X
2016-06-15
Purpose: Rotational total skin electron irradiation (RTSEI) is used in the treatment of cutaneous T-cell lymphoma. Due to inter-film uniformity variations the dosimetry measurement of a large electron beam of a very low energy is challenging. This work provides a method to improve the accuracy of flatness and symmetry for a very large treatment field of low electron energy used in dual beam RTSEI. Methods: RTSEI is delivered by dual angles field a gantry of ±20 degrees of 270 to cover the upper and the lower halves of the patient body with acceptable beam uniformity. The field size is inmore » the order of 230cm in vertical height and 120 cm in horizontal width and beam energy is a degraded 6 MeV (6 mm of PMMA spoiler). We utilized parallel plate chambers, Gafchromic films and OSLDs as a measuring devices for absolute dose, B-Factor, stationary and rotational percent depth dose and beam uniformity. To reduce inter-film dosimetric variation we introduced a new specific correction method to analyze beam uniformity. This correction method uses some image processing techniques combining film value before and after radiation dose to compensate the inter-variation dose response differences among films. Results: Stationary and rotational depth of dose demonstrated that the Rp is 2 cm for rotational and the maximum dose is shifted toward the surface (3mm). The dosimetry for the phantom showed that dose uniformity reduced to 3.01% for the vertical flatness and 2.35% for horizontal flatness after correction thus achieving better flatness and uniformity. The absolute dose readings of calibrated films after our correction matched with the readings from OSLD. Conclusion: The proposed correction method for Gafchromic films will be a useful tool to correct inter-film dosimetric variation for the future clinical film dosimetry verification in very large fields, allowing the optimizations of other parameters.« less
Kim, Hyun Nam; Lee, Ju Hyuk; Park, Han Beom; Kim, Hyun Jin; Cho, Sung Oh
2018-01-01
We designed and fabricated a surface applicator of a novel carbon nanotube (CNT)-based miniature X-ray tube for the use in superficial electronic brachytherapy of skin cancer. To investigate the effectiveness of the surface applicator, the performance of the applicator was numerically and experimentally analyzed. The surface applicator consists of a graphite flattening filter and an X-ray shield. A Monte Carlo radiation transport code, MCNP6, was used to optimize the geometries of both the flattening filter and the shield so that X-rays are generated uniformly over the desired region. The performance of the graphite filter was compared with that of conventional aluminum (Al) filters of different geometries using the numerical simulations. After fabricating a surface applicator, the X-ray spatial distribution was measured to evaluate the performance of the applicator. The graphite filter shows better spatial dose uniformity and less dose distortion than Al filters. Moreover, graphite allows easy fabrication of the flattening filter due to its low X-ray attenuation property, which is particularly important for low-energy electronic brachytherapy. The applicator also shows that no further X-ray shielding is required for the application because unwanted X-rays are completely protected. As a result, highly uniform X-ray dose distribution was achieved from the miniature X-ray tube mounted with the surface applicators. The measured values of both flatness and symmetry were less than 5% and the measured penumbra values were less than 1 mm. All these values satisfy the currently accepted tolerance criteria for radiation therapy. The surface applicator exhibits sufficient performance capability for their application in electronic brachytherapy of skin cancers. © 2017 American Association of Physicists in Medicine.
Alyami, Hamad; Dahmash, Eman; Bowen, James
2017-01-01
Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation. PMID:28609454
Alyami, Hamad; Dahmash, Eman; Bowen, James; Mohammed, Afzal R
2017-01-01
Powder blend homogeneity is a critical attribute in formulation development of low dose and potent active pharmaceutical ingredients (API) yet a complex process with multiple contributing factors. Excipient characteristics play key role in efficient blending process and final product quality. In this work the effect of excipient type and properties, blending technique and processing time on content uniformity was investigated. Powder characteristics for three commonly used excipients (starch, pregelatinised starch and microcrystalline cellulose) were initially explored using laser diffraction particle size analyser, angle of repose for flowability, followed by thorough evaluations of surface topography employing scanning electron microscopy and interferometry. Blend homogeneity was evaluated based on content uniformity analysis of the model API, ergocalciferol, using a validated analytical technique. Flowability of powders were directly related to particle size and shape, while surface topography results revealed the relationship between surface roughness and ability of excipient with high surface roughness to lodge fine API particles within surface groves resulting in superior uniformity of content. Of the two blending techniques, geometric blending confirmed the ability to produce homogeneous blends at low dilution when processed for longer durations, whereas manual ordered blending failed to achieve compendial requirement for content uniformity despite mixing for 32 minutes. Employing the novel dry powder hybrid mixer device, developed at Aston University laboratory, results revealed the superiority of the device and enabled the production of homogenous blend irrespective of excipient type and particle size. Lower dilutions of the API (1% and 0.5% w/w) were examined using non-sieved excipients and the dry powder hybrid mixing device enabled the development of successful blends within compendial requirements and low relative standard deviation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Z; Baker, J; Hsia, A
Purpose: The commercially available Leipzig-style Cone for High Dose Rate (HDR) Brachytherapy has a steep depth dose curve and a non-uniform dose distribution. This work shows the performance of a Ring Surface Applicator created using a 3D printer that can generate a better dose distribution. Calculated doses were verified with film measurement. Methods: The water equivalent red-ABS plastic was used to print the Ring Surface Applicator which hosts three catheters: a center piece with a straight catheter and two concentric rings with diameters of 3.5 and 5.5 cm. Gafchromic EBT2 film, Epson Expression 10000 flatbed scanner, and the online softwaremore » at radiochromic.com were used to analyze the measured data. 10cm×10cm piece of film was sandwiched between two 15×10×5cm3 polystyrene phantoms. The applicator was positioned directly on top of the phantom. Measurement was done using dwell time and positions calculated by Eclipse BrachyVision treatment planning system (RTP). Results: Depth dose curve was generated from the plan and measurement. The results show that the measured and calculated depth dose were in agreement (<3%) from surface to 4mm depth. A discrepancy of 6% was observed at 5 mm depth, where the dose is typically prescribed to. For depths deeper than 5 mm, the measured doses were lower than those calculated by Eclipse BrachyVision. This can be attributed to a combination of simple calculation algorithm using TG-43 and the lack of inhomogeneity correction. Dose profiles at 5 mm depth were also generated from TPS calculation and measured with film. The measured and calculated profiles are similar. Consistent with the depth dose curve, the measured dose is lower than the calculated. Conclusion: Our results showed that the Ring Surface Applicator, printed using 3D printer, can generate more uniform dose distribution within the target volume and can be safely used in the clinic.« less
Qin, S; Chen, T; Wang, L; Tu, Y; Yue, N; Zhou, J
2014-08-01
The focus of this study is the angular dependence of two types of Metal Oxide Semiconductor Field Effect Transistor (MOSFET) dosimeters (MOSFET20 and OneDose/OneDosePlus) when used for surface dose measurements. External beam radiationat different gantry angles were delivered to a cubic solid water phantom with a MOSFET placed on the top surface at CAX. The long axis of the MOSFET was oriented along the gantry axis of rotation, with the dosimeter (bubble side) facing the radiation source. MOSFET-measured surface doses were compared against calibrated radiochromic film readings. It was found that both types of MOSFET dosimeters exhibited larger than previously reported angular dependence when measuring surface dose in beams at large oblique angles. For the MOSFET20 dosimeter the measured surface dose deviation against film readings was as high as 17% when the incident angle was 72 degrees to the norm of the phantom surface. It is concluded that some MOSFET dosimeters may have a strong angular dependence when placed on the surface of water-equivalent material, even though they may have an isotropic angular response when surrounded by uniform medium. Extra on-surface calibration maybe necessary before using MOSFET dosimeters for skin dose measurement in tangential fields.
NASA Astrophysics Data System (ADS)
Kvinnsland, Yngve; Muren, Ludvig Paul; Dahl, Olav
2004-08-01
Calculations of normal tissue complication probability (NTCP) values for the rectum are difficult because it is a hollow, non-rigid, organ. Finding the true cumulative dose distribution for a number of treatment fractions requires a CT scan before each treatment fraction. This is labour intensive, and several surrogate distributions have therefore been suggested, such as dose wall histograms, dose surface histograms and histograms for the solid rectum, with and without margins. In this study, a Monte Carlo method is used to investigate the relationships between the cumulative dose distributions based on all treatment fractions and the above-mentioned histograms that are based on one CT scan only, in terms of equivalent uniform dose. Furthermore, the effect of a specific choice of histogram on estimates of the volume parameter of the probit NTCP model was investigated. It was found that the solid rectum and the rectum wall histograms (without margins) gave equivalent uniform doses with an expected value close to the values calculated from the cumulative dose distributions in the rectum wall. With the number of patients available in this study the standard deviations of the estimates of the volume parameter were large, and it was not possible to decide which volume gave the best estimates of the volume parameter, but there were distinct differences in the mean values of the values obtained.
Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface.
Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham
2003-01-01
In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment.
The ion environment near Europa and its role in surface energetics
NASA Astrophysics Data System (ADS)
Paranicas, C.; Ratliff, J. M.; Mauk, B. H.; Cohen, C.; Johnson, R. E.
2002-03-01
This paper gives the composition, energy spectra, and time variability of energetic ions measured just upstream of Europa. From 100 keV to 100 MeV, ion intensities vary by less than a factor of ~5 among Europa passes considered between 1997 and 2000. We use the data to estimate the radiation dose rate into Europa's surface for depths 0.01 mm - 1 m. We find that in a critical fraction of the upper layer on Europa's trailing hemisphere, energetic electrons are the principal agent for radiolysis, and their bremsstrahlung photon products, not included in previous studies, dominate the dose below about 1 m. Because ion bombardment is more uniform across Europa's surface, the radiation dose on the leading hemisphere is dominated by the proton flux. Differences exist between this calculation and published doses based on the E4 wake pass. For instance, proton doses presented here are much greater below 1 mm.
Lee, Min-Young; Han, Bin; Jenkins, Cesare; Xing, Lei; Suh, Tae-Suk
2016-01-01
Purpose: The purpose of total body irradiation (TBI) techniques is to deliver a uniform radiation dose to the entire volume of a patient’s body. Due to variations in the thickness of the patient, it is difficult to produce such a uniform dose distribution throughout the body. In many techniques, a compensator is used to adjust the dose delivered to various sections of the patient. The current study aims to develop and validate an innovative method of using depth-sensing cameras and 3D printing techniques for TBI treatment planning and compensator fabrication. Methods: A tablet with an integrated depth-sensing camera and motion tracking sensors was used to scan a RANDO™ phantom positioned in a TBI treatment booth to detect and store the 3D surface in a point cloud format. The accuracy of the detected surface was evaluated by comparing extracted body thickness measurements with corresponding measurements from computed tomography (CT) scan images. The thickness, source to surface distance, and off-axis distance of the phantom at different body section were measured for TBI treatment planning. A detailed compensator design was calculated to achieve a uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding, and a mixture of wax and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors. Results: The scan of the phantom took approximately 30 s. The mean error for thickness measurements at each section of phantom relative to CT was 0.48 ± 0.27 cm. The average fabrication error for the 3D-printed compensator was 0.16 ± 0.15 mm. In vivo measurements for an end-to-end test showed that overall dose differences were within 5%. Conclusions: A technique for planning and fabricating a compensator for TBI treatment using a depth camera equipped tablet and a 3D printer was demonstrated to be sufficiently accurate to be considered for further investigation. PMID:27806603
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S; Demanes, J; Kamrava, M
2015-06-15
Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour themore » target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.« less
SU-E-T-748: Theoretical Investigation On Using High Energy Proton Beam for Total-Body-Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, M; Zou, J; Chen, T
2015-06-15
Purpose: The broad-slow-rising entrance dose region proximal to the Bragg peak made by a mono-energetic proton beam could potentially be used for total body irradiation (TBI). Due to the quasi-uniform dose deposition, customized thickness compensation may not be required to deliver a uniform dose to patients with varied thickness. We investigated the possibility, efficacy, and hardware requirement to use such proton beam for TBI. Methods: A wedge shaped water phantom with thickness varying from 2 cm to 40 cm was designed to mimic a patient. Geant4 based Monte Carlo code was used to simulate broad mono-energetic proton beams with energymore » ranging from 250 MeV to 300 MeV radiating the phantom. A 6 MV photon with 1 cm water equivalent build-up used for conventional TBI was also calculated. A paired-opposing beam arrangement with no thickness compensation was used to generate TBI plans for all beam energies. Dose from all particles were scored on a grid size of 2 mm{sup 3}. Dose uniformity across the phantom was calculated to evaluate the plan. The field size limit and the dose uniformity of Mevion S250 proton system was examined by using radiochromic films placed at extended treatment distance with the open large applicator and 90° gantry angle. Results: To achieve a maximum ± 7.5% dose variation, the largest patient thickness variation allowed for 250 MeV, 275 MeV, and 300 MeV proton beams were 27.0 cm, 34.9 cm and 36.7 cm. The value for 6 MV photon beam was only 8.0 cm to achieve the same dose variation. With open gantry, Mevion S250 system allows 5 m source-to-surface distance producing an expected 70 cm{sup 2} field size. Conclusion: Energetic proton beam can potentially be used to deliver TBI. Treatment planning and delivery would be much simple since no thickness compensation is required to achieve a uniform dose distribution.« less
SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, I; Andersen, A; Coutinho, L
2015-06-15
Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factormore » (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.« less
Improved cell viability and hydroxyapatite growth on nitrogen ion-implanted surfaces
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Uddin, Muhammad K. H.; Ahmad, Riaz
2017-08-01
Stainless steel 306 is implanted with various doses of nitrogen ions using a 2 MV pelletron accelerator for the improvement of its surface biomedical properties. Raman spectroscopy reveals incubation of hydroxyapatite (HA) on all the samples and it is found that the growth of incubated HA is greater in higher ion dose samples. SEM profiles depict uniform growth and greater spread of HA with higher ion implantation. Human oral fibroblast response is also found consistent with Raman spectroscopy and SEM results; the cell viability is found maximum in samples treated with the highest (more than 300%) dose. XRD profiles signified greater peak intensity of HA with ion implantation; a contact angle study revealed hydrophilic behavior of all the samples but the treated samples were found to be lesser hydrophilic compared to the control samples. Nitrogen implantation yields greater bioactivity, improved surface affinity for HA incubation and improved hardness of the surface.
Sizes of particles formed during municipal wastewater treatment.
Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska
2017-02-01
Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.
Biological and dosimetric characterisation of spatially fractionated proton minibeams
NASA Astrophysics Data System (ADS)
Meyer, Juergen; Stewart, Robert D.; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-12-01
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
Biological and dosimetric characterisation of spatially fractionated proton minibeams.
Meyer, Juergen; Stewart, Robert D; Smith, Daniel; Eagle, James; Lee, Eunsin; Cao, Ning; Ford, Eric; Hashemian, Reza; Schuemann, Jan; Saini, Jatinder; Marsh, Steve; Emery, Robert; Dorman, Eric; Schwartz, Jeff; Sandison, George
2017-11-21
The biological effectiveness of proton beams varies with depth, spot size and lateral distance from the beam central axis. The aim of this work is to incorporate proton relative biological effectiveness (RBE) and equivalent uniform dose (EUD) considerations into comparisons of broad beam and highly modulated proton minibeams. A Monte Carlo model of a small animal proton beamline is presented. Dose and variable RBE is calculated on a per-voxel basis for a range of energies (30-109 MeV). For an open beam, the RBE values at the beam entrance ranged from 1.02-1.04, at the Bragg peak (BP) from 1.3 to 1.6, and at the distal end of the BP from 1.4 to 2.0. For a 50 MeV proton beam, a minibeam collimator designed to produce uniform dose at the depth of the BP peak, had minimal impact on the open beam RBE values at depth. RBE changes were observed near the surface when the collimator was placed flush with the irradiated object, due to a higher neutron contribution derived from proton interactions with the collimator. For proton minibeams, the relative mean RBE weighted entrance dose (RWD) was ~25% lower than the physical mean dose. A strong dependency of the EUD with fraction size was observed. For 20 Gy fractions, the EUD varied widely depending on the radiosensitivity of the cells. For radiosensitive cells, the difference was up to ~50% in mean dose and ~40% in mean RWD and the EUD trended towards the valley dose rather than the mean dose. For comparative studies of uniform dose with spatially fractionated proton minibeams, EUD derived from a per-voxel RWD distribution is recommended for biological assessments of reproductive cell survival and related endpoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koren, S; Bragilovski, D; Tafo, A Guemnie
Purpose: To evaluate the clinical feasibility of IntraBeam intra operative kV irradiation beam device for ocular conjunctiva treatments. The Intra-Beam system offers a 4.4 mm diameter needle applicator, that is not suitable for treatment of a large surface with limits access. We propose an adaptor that will answer to this clinical need and provide initial dosimetry. Methods: The dose distribution of the needle applicator is non uniform and hence not suitable for treatment of relatively large surfaces. We designed an adapter to the needle applicator that will filter the X-rays and produce a conformal dose distribution over the treatment areamore » while shielding surfaces to be spared. Dose distributions were simulated using FLUKA is a fully integrated particle physics Monte Carlo simulation package. Results: We designed a wedge applicator made of Polythermide window and stainless steel for collimating. We compare the dose distribution to that of the known needle and surface applicators. Conclusion: Initial dosimetry shows feasibility of this approach. While further refinements to the design may be warranted, the results support construction of a prototype and confirmation of the Monte Carlo dosimetry with measured data.« less
SU-F-T-671: Effects of Collimator Material On Proton Minibeams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Sandison, G; Cao, N
2016-06-15
Purpose: To investigate the dosimetric effects of collimator material on spatially modulated proton minibeams (pMBRT). Methods: pMBRT holds promise to exhibit shallow depth normal-tissue sparing effects similar to synchrotron based microbeams while also retaining potential for uniform dose distributions for tumor targets. TOPAS Monte Carlo simulations were performed for a 5cm thick multislit collimator with 0.3mm slits and 1mm center-to-center spacing for a 50.5MeV proton minibeam while varying collimator material between brass, tungsten, and iron. The collimator was placed both “flush” at the water phantom surface and at 5cm distance to investigate the effects on surface dose, peak-to-valley-dose-ratio (PVDR) andmore » neutron contribution. Results: For flush placement, the neutron dose at the phantom surface for the tungsten collimator was approximately 20% higher than for brass and iron. This was not reflected in the overall surface dose, which was comparable for all materials due to the relatively low neutron contribution of <0.1%. When the collimator was retracted, the overall neutron contribution was essentially identical for all three collimators. Surface dose dropped by ∼40% for all collimator materials with air gap compared to being flush with the phantom surface. This surface dose reduction was at the cost of increase in valley dose for all collimator materials due to increased angular divergence of the mini-beams at the surface and their consequent geometric penumbra at depth. When the collimator was placed at distance from the phantom surface the PVDR decreased. The peak-to-entrance-dose ratio was highest for the iron collimator with 5cm air gap. Conclusion: The dosimetric difference between the collimator materials is minimal despite the relatively higher neutron contribution at the phantom surface for the tungsten collimator when placed flush. The air gap between the collimator and phantom surface strongly influences all dosimetry parameters due to the influence of scatter on the narrow spatial modulation.« less
Cawston-Grant, Brie; Morrison, Hali; Menon, Geetha; Sloboda, Ron S
2017-05-01
Model-based dose calculation algorithms have recently been incorporated into brachytherapy treatment planning systems, and their introduction requires critical evaluation before clinical implementation. Here, we present an experimental evaluation of Oncentra ® Brachy Advanced Collapsed-cone Engine (ACE) for a multichannel vaginal cylinder (MCVC) applicator using radiochromic film. A uniform dose of 500 cGy was specified to the surface of the MCVC using the TG-43 dose formalism under two conditions: (a) with only the central channel loaded or (b) only the peripheral channels loaded. Film measurements were made at the applicator surface and compared to the doses calculated using TG-43, standard accuracy ACE (sACE), and high accuracy ACE (hACE). When the central channel of the applicator was used, the film measurements showed a dose increase of (11 ± 8)% (k = 2) above the two outer grooves on the applicator surface. This increase in dose was confirmed with the hACE calculations, but was not confirmed with the sACE calculations at the applicator surface. When the peripheral channels were used, a periodic azimuthal variation in measured dose was observed around the applicator. The sACE and hACE calculations confirmed this variation and agreed within 1% of each other at the applicator surface. Additionally for the film measurements with the central channel used, a baseline dose variation of (10 ± 4)% (k = 2) of the mean dose was observed azimuthally around the applicator surface, which can be explained by offset source positioning in the central channel. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
An IR Navigation System for Pleural PDT
NASA Astrophysics Data System (ADS)
Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith
2015-03-01
Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.
SU-E-T-287: Patterns of Patient Specific Dosimetry in Total Body Irradiation.
Akino, Y; McMullen, K; Das, I
2012-06-01
Total body irradiation (TBI) is commonly used for conditioning prior to transplant in hematologic and immunologic diseases. Due to variability in body thickness, achieving dose uniformity across body within ±10% of the prescribed dose is challenging. The dose uniformity is further complicated by, techniques and beam energy used, lung shielding and selection of detector. The translational table technique for TBI could compensate for estimated delivered dose to whole body by adjusting couch speed during treatment. However, it is difficult to accurately estimate the dose by calculation and hence in vivo dosimetry (IVD) is routinely performed for TBI. The patterns of patient specific dosimetry, IVD are presented in this study. Under IRB exempt status, 161 patients who received TBI treatment between 2006 and 2011 were retrospectively analyzed using the treatment records from Cobalt-60 teletherapy unit and translational treatment couch. During treatment, IVD detectors (TLD, diode, or MOSFET) were placed on patient surface; both entrance and exit dose were recorded at the patient's head, neck, mediastinum, umbilicus, and knee. When large differences between prescribed and measured dose were observed, the dose delivery was corrected for subsequent fractions by adjustment in couch speed and/or bolus placement. Across the entire cohort, the mean (range) percent variance between calculated and measured dose were -2.3% (-66.2 - 35.3), 1.1% (-62.2 - 40.3), -1.9% (-66.4 - 46.6), -1.1% (-35.2 - 42.9), and 3.4% (-47.9 - 108.5) for head, neck, mediastinum, umbilicus, and knee, respectively. When the dose differences for multiple fractions were averaged, the compliance (±10%) between prescription and measured dose was improved as at umbilicus from 83.9% to 98.5%. Actual dose measurement analysis of TBI patients reveals a potentially wide variance from calculated dose. Dose uniformity can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments. This work was supported by the JSPS Core-to-Core Program No. 23003. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J; Strauss, D; Langner, U
Purpose: To establish patient surface dose dosimetry for scanning proton beam therapy (SPBT) for breast cancer using optically stimulated luminescence dosimeters (OSLD). Methods: OSLDs were calibrated with SPB under the similar conditions as the treatments for breast cancer. A range shifter (RS) of 5 cm water equivalent thickness (WET) was used. The air gap from the surface of the range shifter to the surface of the phantom was 15 cm. A uniform planar dose generated by nominal energy of 118 MeV was delivered. The range of 118 MeV proton beam after the 5cm RS is approximately 5 cm in water,more » which is the common range for breast treatments. The OSLDs were placed on the surface of high density polyethylene slabs, and a bolus of 1.06 cm WET was used for buildup. A variety of dose levels in the range of 0.5 to 8 Gy were delivered. Under the same condition, an ADCL calibrated parallel plate (PP) chamber was used to measure the reference dose. The correlation between the output signals of OSLDs and the reference doses was established. The calibration of OSLD was verified against the PP chamber measurements for two SPBT breast plans calculated for two patients. Results: the least squares fitting for the OSLD calibration curve was a polynomial function to the order of 2 in the range of 0.5 to 8 Gy (RBE). The differences between the dose measured with OSLDs and PP chamber were within 3% for the two breast proton plans. Conclusion: the calibrated OSLDs under the similar conditions as the treatments can be used for patient surface dose measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, D; Kry, S; Salehpour, M
Purpose: Patient-specific tissue equivalent compensators can be used for post-mastectomy radiation therapy (PMRT) to achieve homogenous dose distributions with single-field treatments. However, current fabrication methods are time consuming and expensive. 3D-printing technology could overcome these limitations. The purposes of this study were to [1] evaluate materials for 3D-printed compensators [2] design and print a compensator to achieve a uniform thickness to a clinical target volume (CTV), and [3] demonstrate that a single-field electron compensator plan is a clinically feasible treatment option for PMRT. Methods: Blocks were printed with three materials; print accuracy, density, Hounsfield units (HU), and percent depth dosesmore » (PDD) were evaluated. For a CT scan of an anthropomorphic phantom, we used a ray-tracing method to design a compensator that achieved uniform thickness from compensator surface to CTV. The compensator was printed with flexible tissue equivalent material whose physical and radiological properties were most similar to soft tissue. A single-field electron compensator plan was designed and compared with two standard-of-care techniques. The compensator plan was validated with thermoluminescent dosimeter (TLD) measurements. Results: We identified an appropriate material for 3D-printed compensators that had high print accuracy (99.6%) and was similar to soft tissue; density was 1.04, HU was - 45 ± 43, and PDD curves agreed with clinical curves within 3 mm. We designed and printed a compensator that conformed well to the phantom surface and created a uniform thickness to the CTV. In-house fabrication was simple and inexpensive (<$75). Compared with the two standard plans, the compensator plan resulted in overall more homogeneous dose distributions and performed similarly in terms of lung/heart doses and 90% isodose coverage of the CTV. TLD measurements agreed well with planned doses (within 5 %). Conclusions: We have demonstrated that 3D-printed compensators make single-field electron therapy a clinically feasible treatment option for PMRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobler, Matt; Watson, Gordon; Leavitt, Dennis
Radiotherapy plays a key role in the definitive or adjuvant management of patients with mesothelioma of the pleural surface. Many patients are referred for radiation with intact lung following biopsy or subtotal pleurectomy. Delivery of efficacious doses of radiation to the pleural lining while avoiding lung parenchyma toxicity has been a difficult technical challenge. Using opposed photon fields produce doses in lung that result in moderate-to-severe pulmonary toxicity in 100% of patients treated. Combined photon-electron beam treatment, at total doses of 4250 cGy to the pleural surface, results in two-thirds of the lung volume receiving over 2100 cGy. We havemore » developed a technique using intensity-modulated photon arc therapy (IMRT) that significantly improves the dose distribution to the pleural surface with concomitant decrease in dose to lung parenchyma compared to traditional techniques. IMRT treatment of the pleural lining consists of segments of photon arcs that can be intensity modulated with varying beam weights and multileaf positions to produce a more uniform distribution to the pleural surface, while at the same time reducing the overall dose to the lung itself. Computed tomography (CT) simulation is critical for precise identification of target volumes as well as critical normal structures (lung and heart). Rotational arc trajectories and individual leaf positions and weightings are then defined for each CT plane within the patient. This paper will describe the proposed rotational IMRT technique and, using simulated isodose distributions, show the improved potential for sparing of dose to the critical structures of the lung, heart, and spinal cord.« less
Haikarainen, Jussi; Rytilä, Paula; Roos, Sirkku; Metsärinne, Sirpa; Happonen, Anita
2017-01-01
Budesonide Easyhaler® multidose dry powder inhaler is approved for the treatment of asthma. Objectives were to determine the delivered dose (DD) uniformity of budesonide Easyhaler® in simulated real-world conditions and with different inspiration flow rates (IFRs). Three dose delivery studies were performed using 100, 200, and 400 µg/dose strengths of budesonide. Dose uniformity was assessed during in-use periods of 4-6 months after exposure to high temperature (30°C) and humidity (60% relative humidity) and after dropping and vibration testing. The influence of various IFRs (31, 43, and 54 L/min) on the DD was also investigated. Acceptable dose uniformity was declared when mean DD were within 80-120% of expected dose; all data reported descriptively. DD was constant (range: 93-109% of expected dose) at all in-use periods and after exposure to high temperature and humidity for a duration of up to 6 months. DD post-dropping and -vibration were unaffected (range 98-105% of expected dose). Similarly, DD was constant and within 10% of expected dose across all IFRs. Results indicate that budesonide Easyhaler® delivers consistently accurate doses in various real-life conditions. Budesonide Easyhaler® can be expected to consistently deliver a uniform dose and improve asthma control regardless of high temperature and humidity or varying IFR.
Adapting radiotherapy to hypoxic tumours
NASA Astrophysics Data System (ADS)
Malinen, Eirik; Søvik, Åste; Hristov, Dimitre; Bruland, Øyvind S.; Rune Olsen, Dag
2006-10-01
In the current work, the concepts of biologically adapted radiotherapy of hypoxic tumours in a framework encompassing functional tumour imaging, tumour control predictions, inverse treatment planning and intensity modulated radiotherapy (IMRT) were presented. Dynamic contrast enhanced magnetic resonance imaging (DCEMRI) of a spontaneous sarcoma in the nasal region of a dog was employed. The tracer concentration in the tumour was assumed related to the oxygen tension and compared to Eppendorf histograph measurements. Based on the pO2-related images derived from the MR analysis, the tumour was divided into four compartments by a segmentation procedure. DICOM structure sets for IMRT planning could be derived thereof. In order to display the possible advantages of non-uniform tumour doses, dose redistribution among the four tumour compartments was introduced. The dose redistribution was constrained by keeping the average dose to the tumour equal to a conventional target dose. The compartmental doses yielding optimum tumour control probability (TCP) were used as input in an inverse planning system, where the planning basis was the pO2-related tumour images from the MR analysis. Uniform (conventional) and non-uniform IMRT plans were scored both physically and biologically. The consequences of random and systematic errors in the compartmental images were evaluated. The normalized frequency distributions of the tracer concentration and the pO2 Eppendorf measurements were not significantly different. 28% of the tumour had, according to the MR analysis, pO2 values of less than 5 mm Hg. The optimum TCP following a non-uniform dose prescription was about four times higher than that following a uniform dose prescription. The non-uniform IMRT dose distribution resulting from the inverse planning gave a three times higher TCP than that of the uniform distribution. The TCP and the dose-based plan quality depended on IMRT parameters defined in the inverse planning procedure (fields and step-and-shoot intensity levels). Simulated random and systematic errors in the pO2-related images reduced the TCP for the non-uniform dose prescription. In conclusion, improved tumour control of hypoxic tumours by dose redistribution may be expected following hypoxia imaging, tumour control predictions, inverse treatment planning and IMRT.
SU-G-TeP1-13: Reclined Total Skin Electron Treatment Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Gerbi, B
Purpose: The purpose is to describe a new reclined technique for treatment of weakened patients that require total skin electron irradiation. Methods: This technique is a modification of a previously published reclined technique differing in that all six patient positions are treated with the gantry angled 60° from vertically down. The patient is located at a treatment distance of 330 cm SSD along the CA of the beam. The 3/8′ thick Lexan beam spoiler is placed 25 cm from the most proximal surface of the patient for all patient treatment positions. To produce a flat, uniform field of ∼190 cmmore » length, the patient was moved longitudinally by an experimentally determined distance. Kodak EDR2 and EBT3 Radiochromic film were placed around the periphery of the phantom, and OSLs were placed every 30° around the phantom periphery to determine output and surface dose uniformity. A piece of Kodak EDR2 was sandwiched between the two slabs of the 30 cm diameter phantom to determine beam penetration. Results: Field uniformity shifting the patient ±75 cm was ±5% over a treatment span of 190 cm. The dose variation around the periphery of the 30 cm diameter phantom varied by <±5% with the maximum values observed at the 0°-300°, 60° locations with the minimum values at the 30°-330°, 60° locations. Results obtained using Kodak EDR2, EBT3 Radiochromic film, and OSLs agreed to within ±5%. Conclusion: This technique provides a very efficient and convenient means by which to treat the entire skin surface of patients incapable of standing for treatment. It provides a treatment field that is both large and uniform enough for adults along with a convenient way to treat four of the six patient treatment positions. The beam spoiler lies to the side of the patient allowing easy access for patient positioning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Fu, Ricky K. Y.; Chu, Paul K.
2009-08-10
The implantation energy and retained dose uniformity in enhanced glow discharge plasma immersion ion implantation (EGD-PIII) is investigated numerically and experimentally. Depth profiles obtained from different samples processed by EGD-PIII and traditional PIII are compared. The retained doses under different pulse widths are calculated by integrating the area under the depth profiles. Our results indicate that the improvement in the impact energy and retained dose uniformity by this technique is remarkable.
Yahya, Noorazrul; Ebert, Martin A; Bulsara, Max; House, Michael J; Kennedy, Angel; Joseph, David J; Denham, James W
2015-11-01
This study aimed to compare urinary dose-symptom correlates after external beam radiotherapy of the prostate using commonly utilised peak-symptom models to multiple-event and event-count models which account for repeated events. Urinary symptoms (dysuria, haematuria, incontinence and frequency) from 754 participants from TROG 03.04-RADAR trial were analysed. Relative (R1-R75 Gy) and absolute (A60-A75Gy) bladder dose-surface area receiving more than a threshold dose and equivalent uniform dose using exponent a (range: a ∈[1 … 100]) were derived. The dose-symptom correlates were analysed using; peak-symptom (logistic), multiple-event (generalised estimating equation) and event-count (negative binomial regression) models. Stronger dose-symptom correlates were found for incontinence and frequency using multiple-event and/or event-count models. For dysuria and haematuria, similar or better relationships were found using peak-symptom models. Dysuria, haematuria and high grade (⩾ 2) incontinence were associated to high dose (R61-R71 Gy). Frequency and low grade (⩾ 1) incontinence were associated to low and intermediate dose-surface parameters (R13-R41Gy). Frequency showed a parallel behaviour (a=1) while dysuria, haematuria and incontinence showed a more serial behaviour (a=4 to a ⩾ 100). Relative dose-surface showed stronger dose-symptom associations. For certain endpoints, the multiple-event and event-count models provide stronger correlates over peak-symptom models. Accounting for multiple events may be advantageous for a more complete understanding of urinary dose-symptom relationships. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Shengfeng; Lyu, Jinke; Sun, Hongda; Cui, Xiaobin; Wang, Tun; Lu, Miao
2015-03-01
A chirped artificial compound eye on a curved surface was fabricated using an optical resin and then mounted on the end of an endoscopic imaging fiber bundle. The focal length of each lenslet on the curved surface was variable to realize a flat focal plane, which matched the planar end surface of the fiber bundle. The variation of the focal length was obtained by using a photoresist mold formed by dose-modulated laser lithography and subsequent thermal reflow. The imaging performance of the fiber bundle was characterized by coupling with a coaxial light microscope, and the result demonstrated a larger field of view and better imaging quality than that of an artificial compound eye with a uniform focal length. Accordingly, this technology has potential application in stereoscopic endoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, J; Zheng, X; Liu, H
Purpose: This study is to evaluate the feasibility of simultaneously integrated boost (SIB) to hypoxic subvolume (HTV) in nasopharyngeal carcinomas under the guidance of 18F-Fluoromisonidazole (FMISO) PET/CT using a novel non-uniform volumetric modulated arc therapy (VMAT)technique. Methods: Eight nasopharyngeal carcinoma patients treated with conventional uniform VMAT were retrospectively analyzed. For each treatment, actual conventional uniform VMAT plan with two or more arcs (2–2.5 arcs, totally rotating angle < 1000o) was designed with dose boost to hopxic subvolume (total dose, 84Gy) in the gross tumor volme (GTV) under the guidance of 18F- FMISO PET/CT. Based on the same dataset, experimental singlemore » arc non-uniform VAMT plans were generated with the same dose prescription using customized software tools. Dosimetric parameters, quality assurance and the efficiency of the treatment delivery were compared between the uniform and non-uniform VMAT plans. Results: To develop the non-uniform VMAT technique, a specific optimization model was successfully established. Both techniques generate high-quality plans with pass rate (>98%) with the 3mm, 3% criterion. HTV received dose of 84.1±0.75Gy and 84.1±1.2Gy from uniform and non-uniform VMAT plans, respectively. In terms of target coverage and dose homogeneity, there was no significant statistical difference between actual and experimental plans for each case. However, for critical organs at risk (OAR), including the parotids, oral cavity and larynx, dosimetric difference was significant with better dose sparing form experimental plans. Regarding plan implementation efficiency, the average machine time was 3.5 minutes for the actual VMAT plans and 3.7 minutes for the experimental nonuniform VMAT plans (p>0.050). Conclusion: Compared to conventional VMAT technique, the proposed non-uniform VMAT technique has the potential to produce efficient and safe treatment plans, especially in cases with complicated anatomical structures and demanding dose boost to subvolumes.« less
NASA Astrophysics Data System (ADS)
Flynn, Ryan
2007-12-01
The distribution of biological characteristics such as clonogen density, proliferation, and hypoxia throughout tumors is generally non-uniform, therefore it follows that the optimal dose prescriptions should also be non-uniform and tumor-specific. Advances in intensity modulated x-ray therapy (IMXT) technology have made the delivery of custom-made non-uniform dose distributions possible in practice. Intensity modulated proton therapy (IMPT) has the potential to deliver non-uniform dose distributions as well, while significantly reducing normal tissue and organ at risk dose relative to IMXT. In this work, a specialized treatment planning system was developed for the purpose of optimizing and comparing biologically based IMXT and IMPT plans. The IMXT systems of step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) and the IMPT systems of intensity modulated spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT), were simulated. A thorough phantom study was conducted in which several subvolumes, which were contained within a base tumor region, were boosted or avoided with IMXT and IMPT. Different boosting situations were simulated by varying the size, proximity, and the doses prescribed to the subvolumes, and the size of the phantom. IMXT and IMPT were also compared for a whole brain radiation therapy (WBRT) case, in which a brain metastasis was simultaneously boosted and the hippocampus was avoided. Finally, IMXT and IMPT dose distributions were compared for the case of non-uniform dose prescription in a head and neck cancer patient that was based on PET imaging with the Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone (Cu-ATSM) hypoxia marker. The non-uniform dose distributions within the tumor region were comparable for IMXT and IMPT. IMPT, however, was capable of delivering the same non-uniform dose distributions within a tumor using a 180° arc as for a full 360° rotation, which resulted in the reduction of normal tissue integral dose by a factor of up to three relative to IMXT, and the complete sparing of organs at risk distal to the tumor region.
Microtomographic studies of subdivision of modified-release tablets.
Wilczyński, Sławomir; Koprowski, Robert; Duda, Piotr; Banyś, Anna; Błońska-Fajfrowska, Barbara
2016-09-25
The uniformity of dosage units within a certain batch is ensured when each unit contains the active pharmaceutical ingredient (API) within a narrow range around the label claim. For tablets containing a score-line authorised for dose reductions, the European Pharmacopoeia (Ph. Eur.) considers that the uniformity of the tablet parts may be based on weight measurements regardless of the tablet type (immediate or modified release). This is because it is up to the regulatory authorities first to assess whether the tablet may contain a score-line for such use. X-ray microtomography was applied to assess the symmetry of 36 modified release tablets, containing 300mg of theophylline. The sum of the volume and surface area of the pellets in the subdivided tablets were compared. Simulations were carried out to identify the optimal amount of pellets in the tablet mass. The maximum difference in the API content between two subdivided halves was 165.18mg vs 133.83mg. If the amount of pellets in the tablet mass would drop below 13% on the basis of the pellet surface area, then the Ph. Eur. requirements would be exceeded. The amount of pellets in the tablet halves resulting in the greatest variability in API content was 38%. The results of this study indicate that the pellets were not distributed uniformly in the tablet mass. Thus, the uniformity of the dose in both halves of a tablet containing pellets cannot be based on the weight measurements i.e. it is necessary to develop further standards for tablet subdivision. Microtomographic methods are a very interesting alternative to expensive and time-consuming pharmacokinetic studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Lau, Michael; Young, Paul M; Traini, Daniela
2017-08-01
The aim of the study was to understand the impact of different concentrations of the additive material, magnesium stearate (MGST), and the active pharmaceutical ingredient (API), respectively, on the physicochemical properties and aerosol performance of comilled formulations for high-dose delivery. Initially, blends of API/lactose with different concentrations of MGST (1-7.5% w/w) were prepared and comilled by the jet-mill apparatus. The optimal concentration of MGST in comilled formulations was investigated, specifically for agglomerate structure and strength, particle size, uniformity of content, surface coverage, and aerosol performance. Secondly, comilled formulations with different API (1-40% w/w) concentrations were prepared and similarly analyzed. Comilled 5% MGST (w/w) formulation resulted in a significant improvement in in vitro aerosol performance due to the reduction in agglomerate size and strength compared to the formulation comilled without MGST. Higher concentrations of MGST (7.5% w/w) led to reduction in aerosol performance likely due to excessive surface coverage of the micronized particles by MGST, which led to failure in uniformity of content and an increase in agglomerate strength and size. Generally, comilled formulations with higher concentrations of API increased the agglomerate strength and size, which subsequently caused a reduction in aerosol performance. High-dose delivery was achieved at API concentration of >20% (w/w). The study provided a platform for the investigation of aerosol performance and physicochemical properties of other API and additive materials in comilled formulations for the emerging field of high-dose delivery by dry powder inhalation.
Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K
2010-06-01
Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a significant contributor to the secondary neutron dose equivalent to a distant organ at risk. Improving conformity of the radiation field to the patient-specific collimator can significantly reduce secondary neutron dose equivalent to the patient. Therefore, it is important to increase the number of available generic field sizes in double scattering systems as well as in uniform scanning nozzles.
Yaromina, Ala; Granzier, Marlies; Biemans, Rianne; Lieuwes, Natasja; van Elmpt, Wouter; Shakirin, Georgy; Dubois, Ludwig; Lambin, Philippe
2017-09-01
We tested a novel treatment approach combining (1) targeting radioresistant hypoxic tumour cells with the hypoxia-activated prodrug TH-302 and (2) inverse radiation dose-painting to boost selectively non-hypoxic tumour sub-volumes having no/low drug uptake. 18 F-HX4 hypoxia tracer uptake measured with a clinical PET/CT scanner was used as a surrogate of TH-302 activity in rhabdomyosarcomas growing in immunocompetent rats. Low or high drug uptake volume (LDUV/HDUV) was defined as 40% of the GTV with the lowest or highest 18 F-HX4 uptake, respectively. Two hours post TH-302/saline administration, animals received either single dose radiotherapy (RT) uniformly (15 or 18.5Gy) or a dose-painted non-uniform radiation (15Gy) with 50% higher dose to LDUV or HDUV (18.5Gy). Treatment plans were created using Eclipse treatment planning system and radiation was delivered using VMAT. Tumour response was quantified as time to reach 3 times starting tumour volume. Non-uniform RT boosting tumour sub-volume with low TH-302 uptake (LDUV) was superior to the same dose escalation to HDUV (p<0.0001) and uniform RT with the same mean dose 15Gy (p=0.0077). Noteworthy, dose escalation to LDUV required on average 3.5Gy lower dose to the GTV to achieve similar tumour response as uniform dose escalation. The results support targeted dose escalation to non-hypoxic tumour sub-volume with no/low activity of hypoxia-activated prodrugs. This strategy applies on average a lower radiation dose and is as effective as uniform dose escalation to the entire tumour. It could be applied to other type of drugs provided that their distribution can be imaged. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Yazici, Cemal; Yanoso, Laura; Xie, Chao; Reynolds, David G; Samulski, R Jude; Samulski, Jade; Yannariello-Brown, Judith; Gertzman, Arthur A; Zhang, Xinping; Awad, Hani A; Schwarz, Edward M
2008-10-01
Freeze-dried recombinant adeno-associated virus (rAAV) coated structural allografts have emerged as an approach to engender necrotic cortical bone with host factors that will persist for weeks following surgery to facilitate revascularization, osteointegration, and remodeling. However, one major limitation is the nonporous cortical surface that prohibits uniform distribution of the rAAV coating prior to freeze-drying. To overcome this we have developed a demineralization method to increase surface absorbance while retaining the structural integrity of the allograft. Demineralized bone wafers (DBW) made from human femoral allograft rings demonstrated a significant 21.1% (73.6+/-3.9% versus 52.5+/-2.6%; p<0.001) increase in percent surface area coating versus mineralized controls. Co-incubation of rAAV-luciferase (rAAV-Luc) coated DBW with a monolayer of C3H10T1/2 cells in culture led to peak luciferase levels that were not significantly different from soluble rAAV-Luc controls (p>0.05), although the peaks occurred at 60h and 12h, respectively. To assess the transduction efficiency of rAAV-Luc coated DBW in vivo, we first performed a dose response with allografts containing 10(7), 10(9) or 10(10) particles that were surgically implanted into the quadriceps of mice, and assayed by in vivo bioluminescence imaging (BLI) on days 1, 3, 5, 7, 10, 14, and 21. The results demonstrated a dose response in which the DBW coated with 10(10) rAAV-Luc particles achieved peak gene expression levels on day 3, which persisted until day 21, and was significantly greater than the 10(7) dose throughout this time period (p<0.01). A direct comparison of mineralized versus DBW coated with 10(10) rAAV-Luc particles failed to demonstrate any significant differences in transduction kinetics or efficiency in vivo. Thus, surface demineralization of human cortical bone allograft increases its absorbance for uniform rAAV coating, without affecting vector transduction efficiency.
SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K; Corbett, M; Pelletier, C
2015-06-15
Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes weremore » analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.« less
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arentsen, L; Lopater, Z; Dusenbery, K
Purpose: Duputren’s contracture (DC) is a benign disease characterized by abnormal thickening of the fascial surfaces of the hands or feet causing curling of the surface, functional impairment, weakness, and pain. The purpose of the investigation is to describe the radiation treatment approaches, compare these techniques, and discuss the potential side effects and complications of these techniques. Methods: Early stage DC has been treated with 120 kVp X rays but also with high-energy electrons or photons. High-energy electrons have been the radiation of choice but severe contracture of the hand makes it difficult to produce a plan with acceptable dosemore » uniformity. High-energy photons can overcome this difficulty either by directing a beam onto the palmer or back of the surface of the hand, including bolus to maximize the surface dose. We calculated the dose to the bone for the 120 kVp treatment using published %DD data and mass energy absorption coefficients for bone and muscle. Results: The dose to underlying bone from megavoltage photons and electrons is essentially the same, but dose to the bone for using 120 kVp can be 4–5 times greater due to the photoelectric effect. For the 30 Gy dose deliver using this technique, the dose to the bone could be 84–105 Gy after taking the penetration of the beam into account. After radiotherapy, there is often decreased osteoblastic activity and vascular fibrosis that leads to osteitis, atrophy, and decreased metabolic bone activity. Incidence of fractures occurs routinely above 60 Gy with higher doses potentially leading to higher incidences of bone complications. Conclusion: Radiation therapy for DC using low-energy X rays can deliver a prohibitively high dose to the underlying bone potentially leading to severe bone complications.« less
Antolak, John A.
2013-01-01
A total skin electron (TSE) floor technique is presented for treating patients who are unable to safely stand for extended durations. A customized flattening filter is used to eliminate the need for field junctioning, improve field uniformity, and reduce setup time. The flattening filter is constructed from copper and polycarbonate, fits into the linac's accessory slot, and is optimized to extend the useful height and width of the beam such that no field junctions are needed during treatment. A TSE floor with flattening filter (TSE FF) treatment course consisted of six patient positions: three supine and three prone. For all treatment fields, electron beam energy was 6 MeV; collimator settings were an x of 30 cm, y of 40 cm, and θcoll of 0°; and a 0.4 cm thick polycarbonate spoiler was positioned in front of the patient. Percent depth dose (PDD) and photon contamination for the TSE FF technique were compared with our standard technique, which is similar to the Stanford technique. Beam profiles were measured using radiochromic film, and dose uniformity was verified using an anthropomorphic radiological phantom. The TSE FF technique met field uniformity requirements specified by the American Association of Physicists in Medicine Task Group 30. TSE FF R80 ranges from 4 to 4.8 mm. TSE FF photon contamination was ~ 3%. Anthropomorphic radiological phantom verification demonstrated that dose to the entire skin surface was expected to be within about ±15% of the prescription dose, except for the perineum, scalp vertex, top of shoulder, and soles of the feet. The TSE floor technique presented herein eliminates field junctioning, is suitable for patients who cannot safely stand during treatment, and provides comparable quality and uniformity to the Stanford technique. PACS number: 87 PMID:24036864
NASA Astrophysics Data System (ADS)
Ansari, M.; Abbasi Davani, F.; Lamehi Rashti, M.; Monadi, Sh.; Emami, H.
2018-05-01
Total skin electron irradiation technique is used in treatment of the mycosis fungoid. The implementation of this technique requires non-standard measurements and complex dosimetry methods. Depending on the linear accelerator (Linac) type, bunker size, room dimensions and dosimetry equipment, the design of instruments for appropriate set up and implementation of TSEI in different radiation therapy centers varies. The studies which have been done in this article provide an introduction to the implementing of this method for the first time in Iran and its results can be used for the centers with similar specifications in the world. This article determined the electron beam characteristic of TSEI for the only electron accelerator, located at the radiation center of the Seyed Alshohada Hospital of Isfahan (NEPTUN 10PC), by performing Monte Carlo simulations and using EGSnrc-based codes (BEAMnrc and DOSXYZnrc). For the best uniformity of the vertical profile, the optimal angle of gantry was defined at SSD=350 cm. The effect of the degrader plane that is located at a distance of 20 cm from the patient surface, was evaluated on the amount of energy reduction of the beam, the opening of the electron beam field and the homogeneity of the dose distribution. The transversal dose distribution from the whole treatment with Stanford technique (six dual fields) and Rotational technique was simulated in a CT-based anthropomorphic phantom. Also, the percentage depth dose in the head, neck, thorax, abdomen and legs was obtained for both methods. The simulation results show that the 20o angle between the horizontal and the beam central axis is optimal in order to provide the best vertical dose uniformity. The mean energy decreases from 6.1 MeV (the exit window) to 3 MeV (the treatment surface) by placing a degrader with 0.8 cm thickness in front of the treatment plane. FWHM of the angular distribution of the electron beam increased from 15o at SSD=100 cm to more than 30o on the treatment surface by traversing the PMMA degrader. The MC calculated percentage depth dose curves in different organs of anthropomorphic phantom for RTSEI indicates that the depth of maximum dose is on the surface of the phantom and Isodose curve of 80% is formed at a depth less than 4 mm. the results also show, with the degrader plane in front of the patient, the degree of homogeneity of the dose distribution for both Stanford and rotational techniques is the same.
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
10 CFR 835.205 - Determination of compliance for non-uniform exposure of the skin.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 100 cm 2 or more. The non-uniform equivalent dose received during the year shall be averaged over the... irradiated is 10 cm 2 or more, but is less than 100 cm 2. The non-uniform equivalent dose (H) to the... less than 0.1 be used. (3) Area of skin irradiated is less than 10 cm 2. The non-uniform equivalent...
SU-E-T-404: Simple Field-In-Field Technique for Total Body Irradiation in Large Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chi, P; Pinnix, C; Dabaja, B
2014-06-01
Purpose: A simple Field-in-Field technique for Total Body Irradiation (TBI) was developed for traditional AP/PA TBI treatments to improve dosimetric uniformity in patients with large separation. Methods: TBI at our institution currently utilizes an AP/PA technique at an extended source-to-surface distance (SSD) of 380cm with patients in left decubitus position during the AP beam and in right decubitus during the PA beam. Patients who have differences in thickness (separation) between the abdomen and head greater than 10cm undergo CT simulation in both left and right decubitus treatment positions. One plan for each CT is generated to evaluate dose to patientmore » midline with both AP and PA fields, but only corresponding AP fields will be exported for treatment for patient left decubitus position and PA fields for patient right decubitus position. Subfields are added by collimating with the x-ray jaws according to separation changes at 5–7% steps to minimize hot regions to less than 10%. Finally, the monitor units (MUs) for the plans are verified with hand calculation and water phantom measurements. Results: Dose uniformity (+/−10%) is achieved with field-in-field using only asymmetric jaws. It is dosimetrically robust with respect to minor setup/patient variations inevitable due to patient conditions. MUs calculated with Pinnacle were verified in 3 clinical cases and only a 2% difference was found compared to homogeneous calculation. In-vivo dosimeters were also used to verify doses received by each patient with and confirmed dose variations less than 10%. Conclusion: We encountered several cases with separation differences that raised uniformity concerns — based on a 1% dose difference per cm separation difference assumption. This could Resultin an unintended hot spot, often in the head/neck, up to 25%. This method allows dose modulation without adding treatment complexity nor introducing radiobiological variations, providing a reasonable solution for this unique TBI situation.« less
Investigation on using high-energy proton beam for total body irradiation (TBI).
Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J
2016-09-08
This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. © 2016 The Authors.
Methodology for the regulation of boom sprayers operating in circular trajectories.
Garcia-Ramos, Francisco Javier; Vidal, Mariano; Boné, Antonio; Serreta, Alfredo
2011-01-01
A methodology for the regulation of boom sprayers working in circular trajectories has been developed. In this type of trajectory, the areas of the plots of land treated by the outer nozzles of the boom are treated at reduced rates, and those treated by the inner nozzles are treated in excess. The goal of this study was to establish the methodology to determine the flow of the individual nozzles on the boom to guarantee that the dose of the product applied per surface unit is similar across the plot. This flow is a function of the position of the equipment (circular trajectory radius) and of the displacement velocity such that the treatment applied per surface unit is uniform. GPS technology was proposed as a basis to establish the position and displacement velocity of the tractor. The viability of this methodology was simulated considering two circular plots with radii of 160 m and 310 m, using three sets of equipment with boom widths of 14.5, 24.5 and 29.5 m. Data showed as increasing boom widths produce bigger errors in the surface dose applied (L/m(2)). Error also increases with decreasing plot surface. As an example, considering the three boom widths of 14.5, 24.5 and 29.5 m working on a circular plot with a radius of 160 m, the percentage of surface with errors in the applied surface dose greater than 5% was 30%, 58% and 65% respectively. Considering a circular plot with radius of 310 m the same errors were 8%, 22% and 31%. To obtain a uniform superficial dose two sprayer regulation alternatives have been simulated considering a 14.5 m boom: the regulation of the pressure of each nozzle and the regulation of the pressure of each boom section. The viability of implementing the proposed methodology on commercial boom sprayers using GPS antennas to establish the position and displacement velocity of the tractor was justified with a field trial in which a self-guiding commercial GPS system was used along with three precision GPS systems located in the sprayer boom. The use of an unique central GPS unit should allow the estimation of the work parameters of the boom nozzles (including those located at the boom ends) with great accuracy.
The nonuniformity of antibody distribution in the kidney and its influence on dosimetry.
Flynn, Aiden A; Pedley, R Barbara; Green, Alan J; Dearling, Jason L; El-Emir, Ethaar; Boxer, Geoffrey M; Boden, Robert; Begent, Richard H J
2003-02-01
The therapeutic efficacy of radiolabeled antibody fragments can be limited by nephrotoxicity, particularly when the kidney is the major route of extraction from the circulation. Conventional dose estimates in kidney assume uniform dose deposition, but we have shown increased antibody localization in the cortex after glomerular filtration. The purpose of this study was to measure the radioactivity in cortex relative to medulla for a range of antibodies and to assess the validity of the assumption of uniformity of dose deposition in the whole kidney and in the cortex for these antibodies with a range of radionuclides. Storage phosphor plate technology (radioluminography) was used to acquire images of the distributions of a range of antibodies of various sizes, labeled with 125I, in kidney sections. This allowed the calculation of the antibody concentration in the cortex relative to the medulla. Beta-particle point dose kernels were then used to generate the dose-rate distributions from 14C, 131I, 186Re, 32P and 90Y. The correlation between the actual dose-rate distribution and the corresponding distribution calculated assuming uniform antibody distribution throughout the kidney was used to test the validity of estimating dose by assuming uniformity in the kidney and in the cortex. There was a strong inverse relationship between the ratio of the radioactivity in the cortex relative to that in the medulla and the antibody size. The nonuniformity of dose deposition was greatest with the smallest antibody fragments but became more uniform as the range of the emissions from the radionuclide increased. Furthermore, there was a strong correlation between the actual dose-rate distribution and the distribution when assuming a uniform source in the kidney for intact antibodies along with medium- to long-range radionuclides, but there was no correlation for small antibody fragments with any radioisotope or for short-range radionuclides with any antibody. However, when the cortex was separated from the whole kidney, the correlation between the actual dose-rate distribution and the assumed dose-rate distribution, if the source was uniform, increased significantly. During radioimmunotherapy, the extent of nonuniformity of dose deposition in the kidney depends on the properties of the antibody and radionuclide. For dosimetry estimates, the cortex should be taken as a separate source region when the radiopharmaceutical is small enough to be filtered by the glomerulus.
SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enright, S; Asprinio, A; Lu, L
2014-06-01
Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. Allmore » phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.« less
Skin dose mapping for non-uniform x-ray fields using a backscatter point spread function
NASA Astrophysics Data System (ADS)
Vijayan, Sarath; Xiong, Zhenyu; Shankar, Alok; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the xray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the nonuniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.
A universal sample manipulator with 50 kV negative bias
NASA Astrophysics Data System (ADS)
Kenny, M. J.; Wielunski, L. S.; Scott, M. D.; Clissold, R. A.; Stevenson, D.; Baxter, G.
1991-04-01
A manipulator incorporating a number of novel features has been built for a research ion implanter. The system is designed to enable uniform dose implantation of both planar and nonplanar surfaces by incorporating one translational and two rotational degrees of freedom. Negative target bias of up to 50 kV may be applied to the target, thus increasing the ion energy by this amount. The target chamber and all external manipulator controls are grounded. With the exception of the high voltage power supply, cable and feedthrough, all high voltage components are within the vacuum system. A secondary electron suppression cage which can be held at a negative bias of up to 60 kV relative to the chamber (i.e. 10 kV relative to the manipulator) surrounds the manipulator. Performance has been evaluated using 15N ions and nuclear reaction analysis through 15N(p,α) 12C to profile ion concentrations for dose uniformity and for ion depth at elevated target potentials.
Growth process optimization of ZnO thin film using atomic layer deposition
NASA Astrophysics Data System (ADS)
Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao
2016-12-01
The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J; Molecular Imaging Program at Stanford, Stanford, CA; Bio-X Program, Stanford, CA
2015-06-15
Purpose: To evaluate radiation responses of the medulloblastoma cell line Daoy in intensity-modulated radiation therapy (IMRT), quantitative variations to variable radiation dosimetic parameters were tracked by bioluminescent images (BLIs). Methods: The luciferase and green fluorescent protein positive Daoy cells were cultured on dishes. The medulloblastoma cells irradiated to different dose rate, interval of fractionated doses, field margin and misalignment, and dose uniformity in IMRT were monitored using bioluminescent images. The cultured cells were placed into a dedicated acrylic phantom to deliver intensity-modulated fluences and calculate accurate predicted dose distribution. The radiation with dose rate from 0.5 Gy/min to 15 Gy/minmore » was irradiated by adjusting monitor unit per minute and source-to-surface distances. The intervals of fractionated dose delivery were changed considering the repair time of double strand breaks (DSB) revealed by straining of gamma-H2AX.The effect of non-uniform doses on the cells were visualized by registering dose distributions and BLIs. The viability according to dosimetric parameters was correlated with bioluminescent intensities for cross-check of radiation responses. Results: The DSB and cell responses due to the first fractionated dose delivery significantly affected final tumor control rather than other parameters. The missing tumor volumes due to the smaller field margin than the tumor periphery or field misalignment caused relapse of cell responses on BLIs. The dose rate and gradient had effect on initial responses but could not bring out the distinguishable killing effect on cancer cells. Conclusion: Visualized and quantified bioluminescent images were useful to correlate the dose distributions with spatial radiation effects on cells. This would derive the effective combination of dose delivery parameters and fractionation. Radiation responses in particular IMRT configuration could be reflected to image based-dose re-optimization.« less
High sensitivity charge amplifier for ion beam uniformity monitor
Johnson, Gary W.
2001-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian
2013-01-01
With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158
Brivio, D; Nguyen, P L; Sajo, E; Ngwa, W; Zygmanski, P
2017-03-07
We investigate via Monte Carlo simulations a new 125 I brachytherapy treatment technique for high-risk prostate cancer patients via injection of Au nanoparticle (AuNP) directly into the prostate. The purpose of using the nanoparticles is to increase the therapeutic index via two synergistic effects: enhanced energy deposition within the prostate and simultaneous shielding of organs at risk from radiation escaping from the prostate. Both uniform and non-uniform concentrations of AuNP are studied. The latter are modeled considering the possibility of AuNP diffusion after the injection using brachy needles. We study two extreme cases of coaxial AuNP concentrations: centered on brachy needles and centered half-way between them. Assuming uniform distribution of 30 mg g -1 of AuNP within the prostate, we obtain a dose enhancement larger than a factor of 2 to the prostate. Non-uniform concentration of AuNP ranging from 10 mg g -1 and 66 mg g -1 were studied. The higher the concentration in a given region of the prostate the greater is the enhancement therein. We obtain the highest dose enhancement when the brachytherapy needles are coincident with AuNP injection needles but, at the same time, the regions in the tail are colder (average dose ratio of 0.7). The best enhancement uniformity is obtained with the seeds in the tail of the AuNP distribution. In both uniform and non-uniform cases the urethra and rectum receive less than 1/3 dose compared to an analog treatment without AuNP. Remarkably, employing AuNP not only significantly increases dose to the target but also decreases dose to the neighboring rectum and even urethra, which is embedded within the prostate. These are mutually interdependent effects as more enhancement leads to more shielding and vice-versa. Caution must be paid since cold spot or hot spots may be created if the AuNP concentration versus seed position is not properly distributed respect to the seed locations.
NASA Astrophysics Data System (ADS)
Brivio, D.; Nguyen, P. L.; Sajo, E.; Ngwa, W.; Zygmanski, P.
2017-03-01
We investigate via Monte Carlo simulations a new 125I brachytherapy treatment technique for high-risk prostate cancer patients via injection of Au nanoparticle (AuNP) directly into the prostate. The purpose of using the nanoparticles is to increase the therapeutic index via two synergistic effects: enhanced energy deposition within the prostate and simultaneous shielding of organs at risk from radiation escaping from the prostate. Both uniform and non-uniform concentrations of AuNP are studied. The latter are modeled considering the possibility of AuNP diffusion after the injection using brachy needles. We study two extreme cases of coaxial AuNP concentrations: centered on brachy needles and centered half-way between them. Assuming uniform distribution of 30 mg g-1 of AuNP within the prostate, we obtain a dose enhancement larger than a factor of 2 to the prostate. Non-uniform concentration of AuNP ranging from 10 mg g-1 and 66 mg g-1 were studied. The higher the concentration in a given region of the prostate the greater is the enhancement therein. We obtain the highest dose enhancement when the brachytherapy needles are coincident with AuNP injection needles but, at the same time, the regions in the tail are colder (average dose ratio of 0.7). The best enhancement uniformity is obtained with the seeds in the tail of the AuNP distribution. In both uniform and non-uniform cases the urethra and rectum receive less than 1/3 dose compared to an analog treatment without AuNP. Remarkably, employing AuNP not only significantly increases dose to the target but also decreases dose to the neighboring rectum and even urethra, which is embedded within the prostate. These are mutually interdependent effects as more enhancement leads to more shielding and vice-versa. Caution must be paid since cold spot or hot spots may be created if the AuNP concentration versus seed position is not properly distributed respect to the seed locations.
A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guang-Pei, E-mail: gpchen@mcw.edu; Liu, Feng; White, Julia
2015-04-01
This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volumemore » parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered.« less
Study of Fricke-gel dosimeter calibration for attaining precise measurements of the absorbed dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liosi, Giulia Maria; Benedini, Sara; Giacobbo, Francesca
2015-07-01
A method has been studied for attaining, with good precision, absolute measurements of the spatial distribution of the absorbed dose by means of the Fricke gelatin Xylenol Orange dosimetric system. With this aim, the dose response to subsequent irradiations was analyzed. In fact, the proposed modality is based on a pre-irradiation of each single dosimeter in a uniform field with a known dose, in order to extrapolate a calibration image for a subsequent non-uniform irradiation with an un-known dose to be measured. (authors)
Gagne, Nolan L; Cutright, Daniel R; Rivard, Mark J
2012-09-01
To improve tumor dose conformity and homogeneity for COMS plaque brachytherapy by investigating the dosimetric effects of varying component source ring radionuclides and source strengths. The MCNP5 Monte Carlo (MC) radiation transport code was used to simulate plaque heterogeneity-corrected dose distributions for individually-activated source rings of 14, 16 and 18 mm diameter COMS plaques, populated with (103)Pd, (125)I and (131)Cs sources. Ellipsoidal tumors were contoured for each plaque size and MATLAB programming was developed to generate tumor dose distributions for all possible ring weighting and radionuclide permutations for a given plaque size and source strength resolution, assuming a 75 Gy apical prescription dose. These dose distributions were analyzed for conformity and homogeneity and compared to reference dose distributions from uniformly-loaded (125)I plaques. The most conformal and homogeneous dose distributions were reproduced within a reference eye environment to assess organ-at-risk (OAR) doses in the Pinnacle(3) treatment planning system (TPS). The gamma-index analysis method was used to quantitatively compare MC and TPS-generated dose distributions. Concentrating > 97% of the total source strength in a single or pair of central (103)Pd seeds produced the most conformal dose distributions, with tumor basal doses a factor of 2-3 higher and OAR doses a factor of 2-3 lower than those of corresponding uniformly-loaded (125)I plaques. Concentrating 82-86% of the total source strength in peripherally-loaded (131)Cs seeds produced the most homogeneous dose distributions, with tumor basal doses 17-25% lower and OAR doses typically 20% higher than those of corresponding uniformly-loaded (125)I plaques. Gamma-index analysis found > 99% agreement between MC and TPS dose distributions. A method was developed to select intra-plaque ring radionuclide compositions and source strengths to deliver more conformal and homogeneous tumor dose distributions than uniformly-loaded (125)I plaques. This method may support coordinated investigations of an appropriate clinical target for eye plaque brachytherapy.
Evaluation of a total scalp electron irradiation technique.
Able, C M; Mills, M D; McNeese, M D; Hogstrom, K R
1991-09-01
A dosimetric evaluation of a total scalp electron-beam irradiation technique that uses six stationary fields was performed. The initial treatment plan specified a) that there be a 3-mm gap between abutted fields and b) that the field junctions be shifted 1 cm after 50% of the prescribed dose had been delivered. Dosimetric measurements were made at the scalp surface, scalp-skull interface, and the skull-brain interface in an anthropomorphic head phantom using both film and thermoluminescent dosimeters (TLD-100). The measurements showed that the initial technique yields areas of increased and decreased dose ranging from -50% to +70% in the region of the field junctions. To reduce regions of nonuniform dose, the treatment protocol was changed by eliminating the gap between the coronal borders of abutted fields and by increasing the field shift from 1 cm to 2 cm for all borders. Subsequent measurements showed that these changes in treatment protocol resulted in a significantly more uniform dose to the scalp and decreased variation of doses near field junctions (-10% to +50%).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumas, M; Wen, N
Purpose: To use Gafchromic EBT3 film to quantify key dosimetric characteristics of the Vidar DosimetryPro Advantage RED film scanner for use in SBRT/SRS QA, by analyzing scanner uniformity and dose sensitivity. Method: Gafchromic EBT3 film was used in this study. Films were irradiated using 6MV FFF and 10MV FFF beams from a Varian Edge linear accelerator, with setup of 100cm SAD at depth 5 cm. Nine doses were delivered per film, with calibration dose ranges of 1–10 Gy and 3–24 Gy for 6MV FFF, and 3–27 Gy for 10MV FFF. Films were scanned with the long side of the filmmore » parallel to the detector array. Dose calibration curves were fitted to a 3rd degree polynomial. The derivative of a calibration curve was taken to determine the scanner’s sensitivity per dose delivered (OD/Gy). Scanner non-uniformity was calculated in 2 dimensions by taking the mean of standard deviation in each row and column. Absolute dose SRS/SBRT Gamma analyses were performed with passing criteria of 3% and 1mm DTA. For comparison, Gamma analyses were also performed using an Epson Expression 10000 XL. Results: Uniformity for the Vidar scanner was 0.37% +/− 0.03% in the perpendicular to scan direction and 0.67% +/− 0.05% in the parallel to scan direction, with an overall uniformity of 0.52% +/− 0.03%. Epson red channel uniformity was 0.85% +/− 0.05% and 0.88% +/− 0.08% for the green channel. The Vidar average dose sensitivity from 1–10 Gy was 0.112 OD/Gy and 0.061 OD/Gy for 3–24 Gy. SBRT/SRS Gamma pass rates were 97.8 +/− 1.4 for Vidar and 97.5 +/− 1.4 for Epson. Conclusion: The Vidar scanner has 41% less non-uniformity compared to Epson XL10000 green channel. The dose sensitivity is 2–3 time greater for the Vidar scanner compared to the Epson in the SRS/SBRT dose range of 5–24 Gy.« less
A planning comparison of 7 irradiation options allowed in RTOG 1005 for early-stage breast cancer.
Chen, Guang-Pei; Liu, Feng; White, Julia; Vicini, Frank A; Freedman, Gary M; Arthur, Douglas W; Li, X Allen
2015-01-01
This study compared the 7 treatment plan options in achieving the dose-volume criteria required by the Radiation Therapy Oncology Group (RTOG) 1005 protocol. Dosimetry plans were generated for 15 representative patients with early-stage breast cancer (ESBC) based on the protocol-required dose-volume criteria for each of the following 7 treatment options: 3D conformal radiotherapy (3DCRT), whole-breast irradiation (WBI) plus 3DCRT lumpectomy boost, 3DCRT WBI plus electron boost, 3DCRT WBI plus intensity-modulated radiation therapy (IMRT) boost, IMRT WBI plus 3DCRT boost, IMRT WBI plus electron boost, IMRT WBI plus IMRT boost, and simultaneous integrated boost (SIB) with IMRT. A variety of dose-volume parameters, including target dose conformity and uniformity and normal tissue sparing, were compared for these plans. For the patients studied, all plans met the required acceptable dose-volume criteria, with most of them meeting the ideal criteria. When averaged over patients, most dose-volume goals for all plan options can be achieved with a positive gap of at least a few tenths of standard deviations. The plans for all 7 options are generally comparable. The dose-volume goals required by the protocol can in general be easily achieved. IMRT WBI provides better whole-breast dose uniformity than 3DCRT WBI does, but it causes no significant difference for the dose conformity. All plan options are comparable for lumpectomy dose uniformity and conformity. Patient anatomy is always an important factor when whole-breast dose uniformity and conformity and lumpectomy dose conformity are considered. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steinman, Rebecca Lee
Radioactive materials play an important role in modern society. In addition to providing electrical power and supporting national defense, radioisotopes play significant roles in the fields of medicine, research, manufacturing, and industry. Since most of these materials are not manufactured or disposed of at the site where they are used, they must be transported between various processing, use, storage, and disposal facilities. This dissertation examines the mathematical model used to predict the collective dose to the population that resides along a potential transport route, commonly called the off-link dose. The currently accepted RADTRAN and RISKIND transient dose models are reviewed. Then three new individual transient dose models are derived by assuming that a point, line, or surface cylinder can approximate the actual transport package. Groundscatter effects were investigated using a Monte Carlo simulation of the surface cylinder model and found to contribute no more than 12% to the total individual dose from a passing shipment of radioactive material, thus not warranting explicit inclusion in the newly derived transient dose models. All five of the individual transient dose models were evaluated for representative shipments of spent nuclear fuel and low-level waste within the State of Michigan and compared to experimentally measured doses. The individual dose for the Michigan shipment scenarios was found to be on the order of 1 murem. Comparison to the experimental measurements revealed that RISKIND consistently predicts the best estimate of the measured dose, followed closely by the surface cylinder model. RADTRAN consistently over predicted the measured dose by at least a factor of two. Finally, the line dose model is integrated over strips of uniform population along the transport route to arrive at the collective off-link population dose. This off-link dose model was incorporated into an ArcView application using the Avenue scripting language. Then this script was used to investigate the off-link dose to Michigan residents for the previously mentioned representative transport scenarios. The off-link dose was found to be less than 3 person-rem for all of the scenarios investigated.
Sankar, A; Ayyangar, Komanduri M; Nehru, R Mothilal; Kurup, P G Gopalakrishna; Murali, V; Enke, Charles A; Velmurugan, J
2006-01-01
The quantitative dose validation of intensity-modulated radiation therapy (IMRT) plans require 2-dimensional (2D) high-resolution dosimetry systems with uniform response over its sensitive region. The present work deals with clinical use of commercially available self-developing Radio Chromic Film, Gafchromic EBT film, for IMRT dose verification. Dose response curves were generated for the films using a VXR-16 film scanner. The results obtained with EBT films were compared with the results of Kodak extended dose range 2 (EDR2) films. The EBT film had a linear response between the dose range of 0 to 600 cGy. The dose-related characteristics of the EBT film, such as post irradiation color growth with time, film uniformity, and effect of scanning orientation, were studied. There was up to 8.6% increase in the color density between 2 to 40 hours after irradiation. There was a considerable variation, up to 8.5%, in the film uniformity over its sensitive region. The quantitative differences between calculated and measured dose distributions were analyzed using DTA and Gamma index with the tolerance of 3% dose difference and 3-mm distance agreement. The EDR2 films showed consistent results with the calculated dose distributions, whereas the results obtained using EBT were inconsistent. The variation in the film uniformity limits the use of EBT film for conventional large-field IMRT verification. For IMRT of smaller field sizes (4.5 x 4.5 cm), the results obtained with EBT were comparable with results of EDR2 films.
SU-E-T-357: Electronic Compensation Technique to Deliver Total Body Dose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lakeman, T; Wang, I; Podgorsak, M
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient’s immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has conventionally been used to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Methods: Treatment plans utilizing electronic compensation to deliver a total body dose were created retrospectively for patients for whom CTmore » data had been previously acquired. Each treatment plan includes two, specifically weighted, pair of opposed fields. One pair of open, large fields (collimator=45°), to encompass the patient’s entire anatomy, and one pair of smaller fields (collimator=0°) focused only on the thicker midsection of the patient. The optimal fluence for each one of the smaller fields was calculated at a patient specific penetration depth. Irregular surface compensators provide a more uniform dose distribution within the smaller opposed fields. Results: Dose-volume histograms (DVH) were calculated for the evaluating the electronic compensation technique. In one case, the maximum body doses calculated from the DVH were reduced from the non-compensated 195.8% to 165.3% in the electronically compensated plans, indicating a more uniform dose with the region of electronic compensation. The mean body doses calculated from the DVH were also reduced from the non-compensated 120.6% to 112.7% in the electronically compensated plans, indicating a more accurate delivery of the prescription dose. All calculated monitor units were well within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not substantially increase the beam on time while it can significantly reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less
Charge amplifier with bias compensation
Johnson, Gary W.
2002-01-01
An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gräfe, James; Khan, Rao; Meyer, Tyler
2014-08-15
In this study we investigate the deliverability of dosimetric plans generated by the irregular surface compensator (ISCOMP) algorithm for 6 MV photon beams in Eclipse (Varian Medical System, CA). In contrast to physical tissue compensation, the electronic ISCOMP uses MLCs to dynamically modulate the fluence of a photon beam in order to deliver a uniform dose at a user defined plane in tissue. This method can be used to shield critical organs that are located within the treatment portal or improve dose uniformity by tissue compensation in inhomogeneous regions. Three site specific plans and a set of test fields weremore » evaluated using the γ-metric of 3%/ 3 mm on Varian EPID, MapCHECK, and Gafchromic EBT3 film with a clinical tolerance of >95% passing rates. Point dose measurements with an NRCC calibrated ionization chamber were also performed to verify the absolute dose delivered. In all cases the MapCHECK measured plans met the gamma criteria. The mean passing rate for the six EBT3 film field measurements was 96.2%, with only two fields at 93.4 and 94.0% passing rates. The EPID plans passed for fields encompassing the central ∼10 × 10 cm{sup 2} region of the detector; however for larger fields and greater off-axis distances discrepancies were observed and attributed to the profile corrections and modeling of backscatter in the portal dose calculation. The magnitude of the average percentage difference for 21 ion chamber point dose measurements and 17 different fields was 1.4 ± 0.9%, and the maximum percentage difference was −3.3%. These measurements qualify the algorithm for routine clinical use subject to the same pre-treatment patient specific QA as IMRT.« less
Cherenkov imaging for Total Skin Electron Therapy (TSET)
NASA Astrophysics Data System (ADS)
Xie, Yunhe; Petroccia, Heather; Maity, Amit; Miao, Tianshun; Zhu, Yihua; Bruza, Petr; Pogue, Brian W.; Andreozzi, Jacqueline M.; Plastaras, John P.; Dong, Lei; Zhu, Timothy C.
2018-03-01
Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Using a specialized camera-system, the Cherenkov emission can thus be used to evaluate the dose uniformity on the surface of the patient in real-time. Each patient was also monitored during TSET via in-vivo detectors (IVD) in nine locations. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed, and the viability of the system to provide clinical feedback was established.
Kim, Yusung; Tomé, Wolfgang A
2008-01-01
Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans.
Mavroidis, P; Shi, C; Plataniotis, G A; Delichas, M G; Costa Ferreira, B; Rodriguez, S; Lind, B K; Papanikolaou, N
2011-01-01
Objectives The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. Methods Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P+) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. Results The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P+ of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average ΔP+ of 27.0% for a Δ effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average ΔP+ of 23.8% for a Δ effective uniform dose of 11.6 Gy. Conclusion A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose–response relations of the irradiated tumours and normal tissues. The use of P – effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans. PMID:20858664
COMPARISON OF ORGAN DOSES IN HUMAN PHANTOMS: VARIATIONS DUE TO BODY SIZE AND POSTURE.
Feng, Xu; Xiang-Hong, Jia; Qian, Liu; Xue-Jun, Yu; Zhan-Chun, Pan; Chun-Xin, Yang
2017-04-20
Organ dose calculations performed using human phantoms can provide estimates of astronauts' health risks due to cosmic radiation. However, the characteristics of such phantoms strongly affect the estimation precision. To investigate organ dose variations with body size and posture in human phantoms, a non-uniform rational B-spline boundary surfaces model was constructed based on cryosection images. This model was used to establish four phantoms with different body size and posture parameters, whose organs parameters were changed simultaneously and which were voxelised with 4 × 4 × 4 mm3 resolution. Then, using Monte Carlo transport code, the organ doses caused by ≤500 MeV isotropic incident protons were calculated. The dose variations due to body size differences within a certain range were negligible, and the doses received in crouching and standing-up postures were similar. Therefore, a standard Chinese phantom could be established, and posture changes cannot effectively protect astronauts during solar particle events. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.
Liu, Shuang; Xie, Yiting; Reeves, Anthony P
2016-05-01
A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.
SU-F-T-298: The Impact of Modeling the Treatment Couch On Patient Specific VMAT QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelover, E; Dalhart, A; Hyer, D
2016-06-15
Purpose: The aim of this work is to quantify the impact of modeling the treatment couch on the passing rate of ion chamber measurements during VMAT quality assurance. Methods: For the initial characterization, attenuation and surface dose measurements were performed following the guidelines of TG-176 for the Civco Universal couch top using an Elekta VersaHD accelerator at an energy of 6 MV. A simulation CT was performed to aid in the creation of contours for representing the shape and size of the couch top in the treatment planning system (TPS). A uniform value of density for the couch wall wasmore » determined by comparing the ratios of ion chamber measurements made in a 30×30×11 cm3 water phantom with the TPS dose values of a plan with the same geometry. At our institution, patient specific quality assurance is performed using a Sun Nuclear ArcCheck with a multi-plug for chamber measurements, a 0.125cc PTW TN31010 chamber, and a Sun Nuclear 1010 electrometer. Ten VMAT plans were transferred into the phantom geometry created in the TPS with two settings: with and without the couch. The chamber measurements were compared to both treatment plans. Results: A maximum attenuation of 3.6% was observed when the gantry angle was set to 120 and 240 degrees, passing obliquely through the couch. A uniform density of 0.6 g/cm3 for the couch wall was determined in the TPS by comparison with measured data. The VMAT ion chamber measurement/plan ratios systematically improved by 1.79% ±0.53% for all patients when the couch was included in the calculation. Conclusion: The attenuation and surface dose changes produced by the Civco couch can generate observable dose difference in VMAT plans. Including a couch model in the phantom plan used for patient specific VMAT QA can improve the ionization chamber agreement by up to ∼2%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won
Purpose: To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. Methods and Materials: The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with amore » varying separation between the target volume and the surface of 6 patients. Results and Discussion: Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. Conclusion: It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry.« less
Rah, Jeong-Eun; Oh, Do Hoon; Kim, Jong Won; Kim, Dae-Hyun; Suh, Tae-Suk; Ji, Young Hoon; Shin, Dongho; Lee, Se Byeong; Kim, Dae Yong; Park, Sung Yong
2012-10-01
To evaluate the suitability of the GD-301 glass dosimeter for in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetrics characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stairlike holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and thermoluminescent dosimeter (TLD) dose measurements using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has good linearity. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in nonmodulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the treatment planning system and that measured by the glass dosimeter was within 5%. With in vivo dosimetry, the calculated surface doses overestimated measurements by 4%-16% using glass dosimeter and TLD. It is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential for use with in vivo patient proton dosimetry. Copyright © 2012 Elsevier Inc. All rights reserved.
Lah, J; Kim, D; Park, S
2012-06-01
To evaluate the suitability of the GD-301 glass dosimeter for use in in vivo dose verification in proton therapy. The glass dosimeter was analyzed for its dosimetric characteristic in proton beam. Dosimeters were calibrated in a water phantom using a stair-like holder specially designed for this study. To determine the accuracy of the glass dosimeter in proton dose measurements, we compared the glass dosimeter and TLD dose measurements of plan delivery using a cylindrical phantom. We investigated the feasibility of the glass dosimeter for the measurement of dose distributions near the superficial region for proton therapy plans with a varying separation between the target volume and the surface of 6 patients. Uniformity was within 1.5%. The dose-response has a good linear. Dose-rate, fading, and energy dependence were found to be within 3%. The beam profile measured using the glass dosimeter was in good agreement with the profile obtained from the ionization chamber. Depth-dose distributions in non-modulated and modulated proton beams obtained with the glass dosimeter were estimated to be within 3%, which was lower than those with the ionization chamber. In the phantom study, the difference of isocenter dose between the delivery dose calculated by the Eclipse and that of the measured by the glass dosimeter was within 5%. In vivo dosimetry of patients, given the results of the glass dosimeter and TLD measurements, calculated doses on the surface of the patient are typically overestimated between 4% and 16%. As such, it is recommended that bolus be added for these clinical cases. We also believe that the glass dosimeter has considerable potential to be used for in vivo patient proton dosimetry. © 2012 American Association of Physicists in Medicine.
The photon fluence non-uniformity correction for air kerma near Cs-137 brachytherapy sources.
Rodríguez, M L; deAlmeida, C E
2004-05-07
The use of brachytherapy sources in radiation oncology requires their proper calibration to guarantee the correctness of the dose delivered to the treatment volume of a patient. One of the elements to take into account in the dose calculation formalism is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by the two theories available, both of which were conceived only for point sources. This work presents the Monte Carlo assessment of the non-uniformity correction factors for a Cs-137 linear source and a Farmer-type ionization chamber. The results have clearly demonstrated that for linear sources there are some important differences among the values obtained from different calculation models, especially at short distances from the source. The use of experimental values for each specific source geometry is recommended in order to assess the non-uniformity factors for linear sources in clinical situations that require special dose calculations or when the correctness of treatment planning software is verified during the acceptance tests.
Kim, Yusung; Tomé, Wolfgang A.
2010-01-01
Summary Voxel based iso-Tumor Control Probability (TCP) maps and iso-Complication maps are proposed as a plan-review tool especially for functional image-guided intensity-modulated radiotherapy (IMRT) strategies such as selective boosting (dose painting) and conformal avoidance IMRT. The maps employ voxel-based phenomenological biological dose-response models for target volumes and normal organs. Two IMRT strategies for prostate cancer, namely conventional uniform IMRT delivering an EUD = 84 Gy (equivalent uniform dose) to the entire PTV and selective boosting delivering an EUD = 82 Gy to the entire PTV, are investigated, to illustrate the advantages of this approach over iso-dose maps. Conventional uniform IMRT did yield a more uniform isodose map to the entire PTV while selective boosting did result in a nonuniform isodose map. However, when employing voxel based iso-TCP maps selective boosting exhibited a more uniform tumor control probability map compared to what could be achieved using conventional uniform IMRT, which showed TCP cold spots in high-risk tumor subvolumes despite delivering a higher EUD to the entire PTV. Voxel based iso-Complication maps are presented for rectum and bladder, and their utilization for selective avoidance IMRT strategies are discussed. We believe as the need for functional image guided treatment planning grows, voxel based iso-TCP and iso-Complication maps will become an important tool to assess the integrity of such treatment plans. PMID:21151734
NASA Astrophysics Data System (ADS)
Pérez-Calatayud, J.; Lliso, F.; Ballester, F.; Serrano, M. A.; Lluch, J. L.; Limami, Y.; Puchades, V.; Casal, E.
2001-07-01
The CSM3 137Cs type stainless-steel encapsulated source is widely used in manually afterloaded low dose rate brachytherapy. A specially asymmetric source, CSM3-a, has been designed by CIS Bio International (France) substituting the eyelet side seed with an inactive material in the CSM3 source. This modification has been done in order to allow a uniform dose level over the upper vaginal surface when this `linear' source is inserted at the top of the dome vaginal applicators. In this study the Monte Carlo GEANT3 simulation code, incorporating the source geometry in detail, was used to investigate the dosimetric characteristics of this special CSM3-a 137Cs brachytherapy source. The absolute dose rate distribution in water around this source was calculated and is presented in the form of an along-away table. Comparison of Sievert integral type calculations with Monte Carlo results are discussed.
A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao Rui; Bernard, Damian; Turian, Julius
2012-04-15
Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lungmore » dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, N; Khan, F; Sharp, G
Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDGmore » PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.« less
Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B
2017-03-01
The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.
Proton recoil scintillator neutron rem meter
Olsher, Richard H.; Seagraves, David T.
2003-01-01
A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Q. Y.; Hu, T.; Kwok, Dixon T. K.
2010-05-15
Owing to the nonconformal plasma sheath in plasma immersion ion implantation of a rod sample, the retained dose can vary significantly. The authors propose to improve the implant uniformity by introducing a metal mesh. The depth profiles obtained with and without the mesh are compared and the implantation temperature at various locations is evaluated indirectly by differential scanning calorimeter. Our results reveal that by using the metal mesh, the retained dose uniformity along the length is greatly improved and the effects of the implantation temperature on the localized mechanical properties of the implanted NiTi shape memory alloy rod are nearlymore » negligible.« less
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.
Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13.4){sup 4} for the radiosensitive normal tissue depending on the cylinder size, treatment lengths, prescription depth, and dose as well. However, for a uniform cancer cell distribution, the EUDs were between 6.3 Gy × 4 and 7.1 Gy × 4, and the TRs were found to be between (1.4){sup 4} and (1.7){sup 4}. For the uniformly interspersed cancer and radio-resistant normal cells, the TRs were less than 1. The two VCBT prescription regimens were found to be equivalent in terms of EUDs and TRs. Conclusions: HDR VCBT strongly favors cylindrical target volume with the cancer cell distribution following its dosimetric trend. Assuming a half-Gaussian distribution of cancer cells, the HDR VCBT provides a considerable radiobiological advantage over the external beam radiotherapy (EBRT) in terms of sparing more normal tissues while maintaining the same level of cancer cell killing. But for the uniform cancer cell distribution and radio-resistant normal tissue, the radiobiology outcome of the HDR VCBT does not show an advantage over the EBRT. This study strongly suggests that radiation therapy design should consider the cancer cell distribution inside the target volume in addition to the shape of target.« less
Studies on high electronic energy deposition in transparent conducting indium tin oxide thin films
NASA Astrophysics Data System (ADS)
Deshpande, N. G.; Gudage, Y. G.; Ghosh, A.; Vyas, J. C.; Singh, F.; Tripathi, A.; Sharma, Ramphal
2008-02-01
We have examined the effect of swift heavy ions using 100 MeV Au8+ ions on the electrical properties of transparent, conducting indium tin oxide polycrystalline films with resistivity of 0.58 × 10-4 Ω cm and optical transmission greater than 78% (pristine). We report on the modifications occurring after high electronic energy deposition. With the increase in fluency, x-ray line intensity of the peaks corresponding to the planes (1 1 0), (4 0 0), (4 4 1) increased, while (3 3 1) remained constant. Surface morphological studies showed a pomegranate structure of pristine samples, which was highly disturbed with a high dose of irradiation. For the high dose, there was a formation of small spherical domes uniformly distributed over the entire surface. The transmittance was seen to be decreasing with the increase in ion fluency. At higher doses, the resistivity and photoluminescence intensity was seen to be decreased. In addition, the carrier concentration was seen to be increased, which was in accordance with the decrease in resistivity. The observed modifications after high electronic energy deposition in these films may lead to fruitful device applications.
Measurement and simulation of the TRR BNCT beam parameters
NASA Astrophysics Data System (ADS)
Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser; Golshanian, Mohadeseh; Ghods, Hossein; Ezzati, Arsalan; Keyvani, Mehdi; Haddadi, Mohammad
2016-09-01
Recently, the configuration of the Tehran Research Reactor (TRR) thermal column has been modified and a proper thermal neutron beam for preclinical Boron Neutron Capture Therapy (BNCT) has been obtained. In this study, simulations and experimental measurements have been carried out to identify the BNCT beam parameters including the beam uniformity, the distribution of the thermal neutron dose, boron dose, gamma dose in a phantom and also the Therapeutic Gain (TG). To do this, the entire TRR structure including the reactor core, pool, the thermal column and beam tubes have been modeled using MCNPX Monte Carlo code. To measure in-phantom dose distribution a special head phantom has been constructed and foil activation techniques and TLD700 dosimeter have been used. The results show that there is enough uniformity in TRR thermal BNCT beam. TG parameter has the maximum value of 5.7 at the depth of 1 cm from the surface of the phantom, confirming that TRR thermal neutron beam has potential for being used in treatment of superficial brain tumors. For the purpose of a clinical trial, more modifications need to be done at the reactor, as, for example design, and construction of a treatment room at the beam exit which is our plan for future. To date, this beam is usable for biological studies and animal trials. There is a relatively good agreement between simulation and measurement especially within a diameter of 10 cm which is the dimension of usual BNCT beam ports. This relatively good agreement enables a more precise prediction of the irradiation conditions needed for future experiments.
NASA Astrophysics Data System (ADS)
Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph
2014-03-01
In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bender, Edward T.
Purpose: To develop a robust method for deriving dose-painting prescription functions using spatial information about the risk for disease recurrence. Methods: Spatial distributions of radiobiological model parameters are derived from distributions of recurrence risk after uniform irradiation. These model parameters are then used to derive optimal dose-painting prescription functions given a constant mean biologically effective dose. Results: An estimate for the optimal dose distribution can be derived based on spatial information about recurrence risk. Dose painting based on imaging markers that are moderately or poorly correlated with recurrence risk are predicted to potentially result in inferior disease control when comparedmore » the same mean biologically effective dose delivered uniformly. A robust optimization approach may partially mitigate this issue. Conclusions: The methods described here can be used to derive an estimate for a robust, patient-specific prescription function for use in dose painting. Two approximate scaling relationships were observed: First, the optimal choice for the maximum dose differential when using either a linear or two-compartment prescription function is proportional to R, where R is the Pearson correlation coefficient between a given imaging marker and recurrence risk after uniform irradiation. Second, the predicted maximum possible gain in tumor control probability for any robust optimization technique is nearly proportional to the square of R.« less
Knaup, Courtney; Mavroidis, Panayiotis; Stathakis, Sotirios; Smith, Mark; Swanson, Gregory; Papanikolaou, Niko
2011-09-01
This study evaluates low dose-rate brachytherapy (LDR) prostate plans to determine the biological effect of dose degradation due to prostate volume changes. In this study, 39 patients were evaluated. Pre-implant prostate volume was determined using ultrasound. These images were used with the treatment planning system (Nucletron Spot Pro 3.1(®)) to create treatment plans using (103)Pd seeds. Following the implant, patients were imaged using CT for post-implant dosimetry. From the pre and post-implant DVHs, the biologically equivalent dose and the tumor control probability (TCP) were determined using the biologically effective uniform dose. The model used RBE = 1.75 and α/β = 2 Gy. The prostate volume changed between pre and post implant image sets ranged from -8% to 110%. TCP and the mean dose were reduced up to 21% and 56%, respectively. TCP is observed to decrease as the mean dose decreases to the prostate. The post-implant tumor dose was generally observed to decrease, compared to the planned dose. A critical uniform dose of 130 Gy was established. Below this dose, TCP begins to fall-off. It was also determined that patients with a small prostates were more likely to suffer TCP decrease. The biological effect of post operative prostate growth due to operative trauma in LDR was evaluated using the concept. The post-implant dose was lower than the planned dose due to an increase of prostate volume post-implant. A critical uniform dose of 130 Gy was determined, below which TCP begun to decline.
Zhang, Rongxiao; Gladstone, David J.; Williams, Benjamin B.; Glaser, Adam K.; Pogue, Brian W.; Jarvis, Lesley A.
2016-01-01
Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, composite images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R2 = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R2 = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments. PMID:26843259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreozzi, Jacqueline M., E-mail: Jacqueline.M.Andreozzi.th@dartmouth.edu, E-mail: Lesley.A.Jarvis@hitchcock.org; Glaser, Adam K.; Zhang, Rongxiao
2016-02-15
Purpose: A method was developed utilizing Cherenkov imaging for rapid and thorough determination of the two gantry angles that produce the most uniform treatment plane during dual-field total skin electron beam therapy (TSET). Methods: Cherenkov imaging was implemented to gather 2D measurements of relative surface dose from 6 MeV electron beams on a white polyethylene sheet. An intensified charge-coupled device camera time-gated to the Linac was used for Cherenkov emission imaging at sixty-two different gantry angles (1° increments, from 239.5° to 300.5°). Following a modified Stanford TSET technique, which uses two fields per patient position for full body coverage, compositemore » images were created as the sum of two beam images on the sheet; each angle pair was evaluated for minimum variation across the patient region of interest. Cherenkov versus dose correlation was verified with ionization chamber measurements. The process was repeated at source to surface distance (SSD) = 441, 370.5, and 300 cm to determine optimal angle spread for varying room geometries. In addition, three patients receiving TSET using a modified Stanford six-dual field technique with 6 MeV electron beams at SSD = 441 cm were imaged during treatment. Results: As in previous studies, Cherenkov intensity was shown to directly correlate with dose for homogenous flat phantoms (R{sup 2} = 0.93), making Cherenkov imaging an appropriate candidate to assess and optimize TSET setup geometry. This method provided dense 2D images allowing 1891 possible treatment geometries to be comprehensively analyzed from one data set of 62 single images. Gantry angles historically used for TSET at their institution were 255.5° and 284.5° at SSD = 441 cm; however, the angles optimized for maximum homogeneity were found to be 252.5° and 287.5° (+6° increase in angle spread). Ionization chamber measurements confirmed improvement in dose homogeneity across the treatment field from a range of 24.4% at the initial angles, to only 9.8% with the angles optimized. A linear relationship between angle spread and SSD was observed, ranging from 35° at 441 cm, to 39° at 300 cm, with no significant variation in percent-depth dose at midline (R{sup 2} = 0.998). For patient studies, factors influencing in vivo correlation between Cherenkov intensity and measured surface dose are still being investigated. Conclusions: Cherenkov intensity correlates to relative dose measured at depth of maximum dose in a uniform, flat phantom. Imaging of phantoms can thus be used to analyze and optimize TSET treatment geometry more extensively and rapidly than thermoluminescent dosimeters or ionization chambers. This work suggests that there could be an expanded role for Cherenkov imaging as a tool to efficiently improve treatment protocols and as a potential verification tool for routine monitoring of unique patient treatments.« less
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2011 CFR
2011-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2014 CFR
2014-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2013 CFR
2013-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
10 CFR 835.702 - Individual monitoring records.
Code of Federal Regulations, 2012 CFR
2012-01-01
... emergency exposures. (b) Recording of the non-uniform equivalent dose to the skin is not required if the... internal dose (committed effective dose or committed equivalent dose) is not required for any monitoring...: (i) The effective dose from external sources of radiation (equivalent dose to the whole body may be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng Yuanshui; Liu Yaxi; Zeidan, Omar
Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range,more » modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.« less
Martin, Spencer; Chen, Jeff Z; Rashid Dar, A; Yartsev, Slav
2011-12-01
To compare radiotherapy treatment plans for mid- and distal-esophageal cancer with primary involvement of the gastroesophageal (GE) junction using a novel IMRT & Arc technique (IMRT & Arc), helical tomotherapy (HT), and RapidArc (RA1 and RA2). Eight patients treated on HT for locally advanced esophageal cancer with radical intent were re-planned for RA and IMRT&Arc. RA plans employed single and double arcs (RA1 and RA2, respectively), while IMRT&Arc plans had four fixed-gantry IMRT fields and a conformal arc. Dose-volume histogram statistics, dose uniformity, and dose homogeneity were analyzed to compare treatment plans. RA2 plans showed significant improvement over RA1 plans in terms of OAR dose and PTV dose uniformity and homogeneity. HT plan provided best dose uniformity (p=0.001) and dose homogeneity (p=0.002) to planning target volume (PTV), while IMRT&Arc and RA2 plans gave lowest dose to lungs among four radiotherapy techniques with acceptable PTV dose coverage. Mean V(10) of the lungs was significantly reduced by the RA2 plans compared to IMRT&Arc (40.3%, p=0.001) and HT (66.2%, p<0.001) techniques. Mean V(15) of the lungs for the RA2 plans also showed significant improvement over the IMRT&Arc (25.2%, p=0.042) and HT (34.8%, p=0.027) techniques. These improvements came at the cost of higher doses to the heart volume compared to HT and IMRT&Arc techniques. Mean lung dose (MLD) for the IMRT&Arc technique (21.2 ± 5.0% of prescription dose) was significantly reduced compared to HT (26.3%, p=0.004), RA1 (23.3%, p=0.028), and RA2 (23.2%, p=0.017) techniques. The IMRT&Arc technique is a good option for treating esophageal cancer with thoracic involvement. It achieved optimal low dose to the lungs and heart with acceptable PTV coverage. HT is a good option for treating esophageal cancer with little thoracic involvement as it achieves superior dose conformality and uniformity. The RA2 technique provided for improved treatment plans using additional arcs with low doses to the lungs at the cost of increased heart dose. Plan quality could still be improved through the use of additional arcs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Balderson, Michael J; Kirkby, Charles
2015-01-01
In light of in vitro evidence suggesting that radiation-induced bystander effects may enhance non-local cell killing, there is potential for impact on radiotherapy treatment planning paradigms such as the goal of delivering a uniform dose throughout the clinical target volume (CTV). This work applies a bystander effect model to calculate equivalent uniform dose (EUD) and tumor control probability (TCP) for external beam prostate treatment and compares the results with a more common model where local response is dictated exclusively by local absorbed dose. The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. EUD and TCP of a prostate cancer target volume under conditions of increasing dose heterogeneity were calculated using two models: One incorporating bystander effects derived from previously published in vitro bystander data ( McMahon et al. 2012 , 2013a); and one using a common linear-quadratic (LQ) response that relies exclusively on local absorbed dose. Dose through the CTV was modelled as a normal distribution, where the degree of heterogeneity was then dictated by changing the standard deviation (SD). Also, a representative clinical dose distribution was examined as cold (low dose) sub-volumes were systematically introduced. The bystander model suggests a moderate degree of dose heterogeneity throughout a target volume will yield as good or better outcome compared to a uniform dose in terms of EUD and TCP. For a typical intermediate risk prostate prescription of 78 Gy over 39 fractions maxima in EUD and TCP as a function of increasing SD occurred at SD ∼ 5 Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. Small, but potentially significant differences in the outcome metrics between the models were identified in the clinically-derived dose distribution as cold sub-volumes were introduced. In terms of EUD and TCP, the bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV varies. The results suggest, at least in a limiting sense, the potential for allowing some degree of dose heterogeneity within a CTV, although further investigation of the assumptions of the bystander model are warranted.
Mahdavi, Hoda; Jabbari, Keyvan; Roayaei, Mahnaz
2016-01-01
Delivering radiotherapy to the postmastectomy chest wall can be achieved using matched electron fields. Surgical defects of the chest wall change the dose distribution of electrons. In this study, the improvement of dose homogeneity using simple, nonconformal techniques of thermoplastic bolus application on a defect is evaluated. The proposed phantom design improves the capability of film dosimetry for obtaining dose profiles of a patient's anatomical condition. A modeled electron field of a patient with a postmastectomy inward surgical defect was planned. High energy electrons were delivered to the phantom in various settings, including no bolus, a bolus that filled the inward defect (PB0), a uniform thickness bolus of 5 mm (PB1), and two 5 mm boluses (PB2). A reduction of mean doses at the base of the defect was observed by any bolus application. PB0 increased the dose at central parts of the defect, reduced hot areas at the base of steep edges, and reduced dose to the lung and heart. Thermoplastic boluses that compensate a defect (PB0) increased the homogeneity of dose in a fixed depth from the surface; adversely, PB2 increased the dose heterogeneity. This study shows that it is practical to investigate dose homogeneity profiles inside a target volume for various techniques of electron therapy. PMID:27051169
Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE.
Hocine, Nora; Farlay, Delphine; Boivin, Georges; Franck, Didier; Agarande, Michelle
2014-11-01
To improve risk assessments associated with chronic exposure to Strontium-90 (Sr-90), for both the environment and human health, it is necessary to know the energy distribution in specific cells or tissue. Monte Carlo (MC) simulation codes are extremely useful tools for calculating deposition energy. The present work was focused on the validation of the MC code PENetration and Energy LOss of Positrons and Electrons (PENELOPE) and the assessment of dose distribution to bone marrow cells from punctual Sr-90 source localized within the cortical bone part. S-values (absorbed dose per unit cumulated activity) calculations using Monte Carlo simulations were performed by using PENELOPE and Monte Carlo N-Particle eXtended (MCNPX). Cytoplasm, nucleus, cell surface, mouse femur bone and Sr-90 radiation source were simulated. Cells are assumed to be spherical with the radii of the cell and cell nucleus ranging from 2-10 μm. The Sr-90 source is assumed to be uniformly distributed in cell nucleus, cytoplasm and cell surface. The comparison of S-values calculated with PENELOPE to MCNPX results and the Medical Internal Radiation Dose (MIRD) values agreed very well since the relative deviations were less than 4.5%. The dose distribution to mouse bone marrow cells showed that the cells localized near the cortical part received the maximum dose. The MC code PENELOPE may prove useful for cellular dosimetry involving radiation transport through materials other than water, or for complex distributions of radionuclides and geometries.
Comparative study of two negative CAR resists: EN-024M and NEB 31
NASA Astrophysics Data System (ADS)
Baik, Ki-Ho; Dean, Robert; Lem, Homer Y.; Osborne, Stephen P.; Mueller, Mark A.; Cole, Damon M.
2004-08-01
In this paper, two negative-tone chemically amplified resists (CAR) are evaluated. The methodology and results are compared and discussed. The resists include EN-024M from TOK, and NEB 31 from Sumitomo. Both resists show high contrast, good dry etch selectivity, and high environmental stability. EN-024M showed good coating uniformity while NEB31 showed a coating uniformity problem. This was a round "dimple" approximately one centimeter in diameter of different thickness and density at the center of the plate. We addressed the "dimple" coating problem as described in the paper. Optimum PAB and PEB temperatures and nominal to maximum doses for isolated features were determined by running a matrix of PAB and PEB temperatures along with a dose series. We evaluated the process and compared the lithographic performance in terms of dose sensitivity, dose and bake latitude, resolution, resist profile, OPC (Optical Proximity Correction) pattern fidelity, CD uniformity, environmental stability, Line Edge Roughness (LER) and etching bias and resistance.
NASA Astrophysics Data System (ADS)
Rana, Vijay; Gill, Kamaljit; Rudin, Stephen; Bednarek, Daniel R.
2012-03-01
The current version of the real-time skin-dose-tracking system (DTS) we have developed assumes the exposure is contained within the collimated beam and is uniform except for inverse-square variation. This study investigates the significance of factors that contribute to beam non-uniformity such as the heel effect and backscatter from the patient to areas of the skin inside and outside the collimated beam. Dose-calibrated Gafchromic film (XR-RV3, ISP) was placed in the beam in the plane of the patient table at a position 15 cm tube-side of isocenter on a Toshiba Infinix C-Arm system. Separate exposures were made with the film in contact with a block of 20-cm solid water providing backscatter and with the film suspended in air without backscatter, both with and without the table in the beam. The film was scanned to obtain dose profiles and comparison of the profiles for the various conditions allowed a determination of field non-uniformity and backscatter contribution. With the solid-water phantom and with the collimator opened completely for the 20-cm mode, the dose profile decreased by about 40% on the anode side of the field. Backscatter falloff at the beam edge was about 10% from the center and extra-beam backscatter decreased slowly with distance from the field, being about 3% of the beam maximum at 6 cm from the edge. Determination of the magnitude of these factors will allow them to be included in the skin-dose-distribution calculation and should provide a more accurate determination of peak-skin dose for the DTS.
Creating nanostructures on silicon using ion blistering and electron beam lithography
NASA Astrophysics Data System (ADS)
Giguère, Alexandre; Beerens, Jean; Terreault, Bernard
2006-01-01
We have investigated the patterning of silicon surfaces using ion blistering in conjunction with e-beam lithography. Variable width (150-5000 nm) trenches were first written in 500 nm thick PMMA resist spin coated on silicon, using an electron beam. Next, 10 keV H2+ ions were implanted to various fluences through the masks. The resist was then removed and the samples were rapidly thermally annealed at 900 °C. The resulting surface morphologies were investigated by atomic force microscopy. In the wider trenches, round blisters with 600-900 nm diameter are observed, which are similar to those observed on unmasked surfaces. In submicron trenches, there is a transition in morphology, caused by the proximity to the border. The blisters are smaller and they are densely aligned along the trench direction ('string of pearls' pattern). Unusual blister geometries are observed in the narrowest trenches (150 nm) at higher H doses (>=1 × 1017 H cm-2)—such as tubular blisters aligned along the trench. It was also found that for H doses of >=6 × 1016 H cm-2 the surface swells uniformly, which has implications for the blistering mechanism. The prospects for accomplishing ion cutting, layer transfer and bonding of finely delineated patterns of silicon onto another material are discussed in the light of the above results.
NASA Astrophysics Data System (ADS)
Cunha, J. S.; Cavalcante, F. R.; Souza, S. O.; Souza, D. N.; Santos, W. S.; Carvalho Júnior, A. B.
2017-11-01
One of the main criteria that must be held in Total Body Irradiation (TBI) is the uniformity of dose in the body. In TBI procedures the certification that the prescribed doses are absorbed in organs is made with dosimeters positioned on the patient skin. In this work, we modelled TBI scenarios in the MCNPX code to estimate the entrance dose rate in the skin for comparison and validation of simulations with experimental measurements from literature. Dose rates were estimated simulating an ionization chamber laterally positioned on thorax, abdomen, leg and thigh. Four exposure scenarios were simulated: ionization chamber (S1), TBI room (S2), and patient represented by hybrid phantom (S3) and water stylized phantom (S4) in sitting posture. The posture of the patient in experimental work was better represented by S4 compared with hybrid phantom, and this led to minimum and maximum percentage differences of 1.31% and 6.25% to experimental measurements for thorax and thigh regions, respectively. As for all simulations reported here the percentage differences in the estimated dose rates were less than 10%, we considered that the obtained results are consistent with experimental measurements and the modelled scenarios are suitable to estimate the absorbed dose in organs during TBI procedure.
Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J
2016-08-01
The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using a scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level "step-dose" pattern. With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a "cupping" artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.
Ciavarella, Anthony; Khan, Mansoor; Gupta, Abhay; Faustino, Patrick
2016-06-20
This FDA laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5-2.1 standard deviation (SD) of the % label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3-9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting "can affect how much drug is present in the split tablet and available for absorption" as stated in the guidance (1). Copyright © 2016, Parenteral Drug Association.
SU-F-T-669: Commissioning of An Electronic Brachytherapy System for Targeted Mouse Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culberson, W; Micka, J; Carchman, E
Purpose: The aim of this study was to commission the Xoft Axxent™ electronic brachytherapy (eBT) source and 10 mm diameter surface applicator with NIST traceability for targeted irradiations of mouse anal carcinomas. Methods: The Xoft Axxent™ electronic brachytherapy (eBT) and 10 mm diameter surface applicator was chosen by the collaborating physician as a radiation delivery mechanism for mouse anal carcinomas. The target dose was 2 Gy at a depth of 3 mm in tissue to be delivered in a single fraction. To implement an accurate and reliable irradiation plan, the system was commissioned by first determining the eBT source outputmore » and corresponding dose rate at a depth of 3 mm in tissue. This was determined through parallel-plate ion chamber measurements and published conversion factors. Well-type ionization chamber measurements were used to determine a transfer coefficient, which correlates the measured dose rate at 3 mm to the NIST-traceable quantity, air-kerma rate at 50 cm in air, for eBT sources. By correlating these two quantities, daily monitoring in the well chamber becomes an accurate and efficient quality assurance technique. Once the dose-rate was determined, a treatment recipe was developed and confirmed with chamber measurements to deliver the requested dose. Radiochromic film was used to verify the dose distribution across the field. Results: Dose rates at 3 mm depth in tissue were determined for two different Xoft Axxent™ sources and correlated with NIST-traceable well-type ionization chamber measurements. Unique transfer coefficients were determined for each source and the treatment recipe was validated by measurements. Film profiles showed a uniform dose distribution across the field. Conclusion: A Xoft Axxent™ eBT system was successfully commissioned for use in the irradiation of mouse rectal tumors. Dose rates in tissue were determined as well as other pertinent parameters to ensure accurate delivery of dose to the target region.« less
Characterization and control of EUV scanner dose uniformity and stability
NASA Astrophysics Data System (ADS)
Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick
2018-03-01
The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.
SU-F-J-86: Method to Include Tissue Dose Response Effect in Deformable Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, J; Liang, J; Chen, S
Purpose: Organ changes shape and size during radiation treatment due to both mechanical stress and radiation dose response. However, the dose response induced deformation has not been considered in conventional deformable image registration (DIR). A novel DIR approach is proposed to include both tissue elasticity and radiation dose induced organ deformation. Methods: Assuming that organ sub-volume shrinkage was proportional to the radiation dose induced cell killing/absorption, the dose induced organ volume change was simulated applying virtual temperature on each sub-volume. Hence, both stress and heterogeneity temperature induced organ deformation. Thermal stress finite element method with organ surface boundary condition wasmore » used to solve deformation. Initial boundary correspondence on organ surface was created from conventional DIR. Boundary condition was updated by an iterative optimization scheme to minimize elastic deformation energy. The registration was validated on a numerical phantom. Treatment dose was constructed applying both the conventional DIR and the proposed method using daily CBCT image obtained from HN treatment. Results: Phantom study showed 2.7% maximal discrepancy with respect to the actual displacement. Compared with conventional DIR, subvolume displacement difference in a right parotid had the mean±SD (Min, Max) to be 1.1±0.9(−0.4∼4.8), −0.1±0.9(−2.9∼2.4) and −0.1±0.9(−3.4∼1.9)mm in RL/PA/SI directions respectively. Mean parotid dose and V30 constructed including the dose response induced shrinkage were 6.3% and 12.0% higher than those from the conventional DIR. Conclusion: Heterogeneous dose distribution in normal organ causes non-uniform sub-volume shrinkage. Sub-volume in high dose region has a larger shrinkage than the one in low dose region, therefore causing more sub-volumes to move into the high dose area during the treatment course. This leads to an unfavorable dose-volume relationship for the normal organ. Without including this effect in DIR, treatment dose in normal organ could be underestimated affecting treatment evaluation and planning modification. Acknowledgement: Partially Supported by Elekta Research Grant.« less
Ayan, A; Lu, L; Rong, Y; Cunningham, M; Weldon, M; Welliver, M; Woollard, J; Gupta, N
2012-06-01
To investigate the feasibility of using the Irregular Surface Compensator (ISC) planning feature of the Eclipse treatment planning system (TPS) for Total Body Irradiation (TBI). TBI treatments require that the whole body receives within +-10% of the prescribed dose. Different body parts with different thicknesses compared to the umbilicus separation may receive higher or lower doses compared to the prescribed dose. Another challenge is to keep the lung dose below 10Gy to avoid complications. To mitigate this problem, physical compensators and blocks are used during the treatment for different body parts and lungs. This method presents a challenge during the treatment delivery and prolongs the treatment time due to patient setup, in-vivo on-line dosimetric monitoring and the adjustment of the compensators frequently during the treatment. We investigated the use of ISC planning feature of Eclipse TPS which is an electronic compensation method that calculates a fluence map based on the body contour from the CT image. The fluence map is delivered with dynamic MLCs . This TBI treatment technique was tested using a Rando phantom in Head First Supine position with lateral beams at SSD=250cm.The calculated fluence were edited so that the lung received <∼10Gy for 12Gy prescription. A single fraction of 2Gy was delivered and the in-vivo measurements were performed in the neck, lung and the umbilicus by using OSLDs. OSLD measurements and the Eclipse TPS predictionswere 200.4/195.0, 162.2/168.9, and 196.1/208.9 cGy for the neck, lung and the umbilicus respectively. The feasibility of using the 'Irregular Surface Compensator' feature of Eclipse TPS for TBI treatment planning was demonstrated. Good agreement (<6%) between the predicted and measured doses was obtained. The proposed planning and delivery simplifies the compensation and blocking to achieve uniform dose distributions and reduces the treatment time. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riofrio, D; Luan, S; Zhou, J
Purpose: In prostate HDR brachytherapy, interstitial implants are placed manually on the fly. The aim for this research is to develop a computer algorithm to find optimal and reliable implant trajectories using minimal number of implants. Methods: Our new algorithm mainly uses these key ideas: (1) positive charged static particles are uniformly placed on the surface of prostate and critical structures such as urethra, bladder, and rectum. (2) Positive charged kinetic particles are placed at a cross-section of the prostate with an initial velocity parallel to the principal implant direction. (3) The kinetic particles move through the prostate, interacting withmore » each other, spreading out, while staying away from the prostate surface and critical structures. The initial velocity ensures that the trajectories observe the curvature constraints of typical implant procedures. (4) The finial trajectories of kinetic particles are smoothed using a third-degree polynomial regression, which become the implant trajectories. (5) The dwelling times and final dose distribution are calculated using least-distance programming. Results: (1) We experimented with previously treated cases. Our plan achieves all prescription goals while reducing the number of implants by 41%! Our plan also has less uniform target dose, which implies a higher dose is delivered to the prostate. (2) We expect future implant procedures will be performed under the guidance of such pre-calculated trajectories. To assess the applicability, we randomly perturb the tracks to mimic the manual implant errors. Our studies showed the impact of these perturbations are negligible, which is compensated by the least distance programming. Conclusions: We developed a new inverse planning system for prostate HDR therapy that can find optimal implant trajectories while minimizing the number of implants. For future work, we plan to integrate our new inverse planning system with an existing needle tracking system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wears, B; Mohiuddin, I; Flynn, R
2016-06-15
Purpose: Developing a compact collimator system and validating a 3D surface imaging module for a scanning beam low-energy x-ray radiation therapy (SBIORT) system that enables delivery of non-uniform radiation dose to targets with irregular shapes intraoperatively. Methods: SBIORT consists of a low energy x-ray source, a custom compact collimator module, a robotic arm, and a 3D surface imaging module. The 3D surface imaging system (structure sensor) is utilized for treatment planning and motion monitoring of the surgical cavity. SBIORT can deliver non-uniform dose distributions by dynamically moving the x-ray source assembly along optimal paths with various collimator apertures. The compactmore » collimator utilizes a dynamic shutter mechanism to form a variable square aperture. The accuracy and reproducibility of the collimator were evaluated using a high accuracy encoder and a high resolution camera platform. The dosimetrical characteristics of the collimator prototype were evaluated using EBT3 films with a Pantak Therapax unit. The accuracy and clinical feasibility of the 3D imaging system were evaluated using a phantom and a cadaver cavity. Results: The SBIORT collimator has a compact size: 66 mm diameter and 10 mm thickness with the maximum aperture of 20 mm. The mechanical experiment indicated the average accuracy of leaf position was 0.08 mm with a reproducibility of 0.25 mm at 95% confidence level. The dosimetry study indicated the collimator had a penumbra of 0.35 mm with a leaf transmission of 0.5%. 3D surface scans can be acquired in 5 seconds. The average difference between the acquired 3D surface and the ground truth is 1 mm with a standard deviation of 0.6 mm. Conclusion: This work demonstrates the feasibility of the compact collimator and 3D scanning system for the SBIORT. SBIORT is a way of delivering IORT with a compact system that requires minimum shielding of the procedure room. This research is supported by the University of Iowa Internal Funding Initiatives.« less
NASA Astrophysics Data System (ADS)
Verdebout, Jean
2000-02-01
This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05°, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal, Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by ˜1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same day. The dose map produced in this way takes into account the evolution of the cloud field and is thought to be more accurate than if it were estimated from one data take, in particular at the relatively high spatial resolution of the product. Finally, a preliminary comparison of modeled dose rate and daily dose with measurements performed with a ground instrument is discussed.
Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target
NASA Astrophysics Data System (ADS)
Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen
2010-03-01
A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.
Oliva, Alexis; Fariña, José B; Llabrés, Matías
2013-10-15
A simple and reproducible UPLC method was developed and validated for the quantitative analysis of finasteride in low-dose drug products. Method validation demonstrated the reliability and consistency of analytical results. Due to the regulatory requirements of pharmaceutical analysis in particular, evaluation of robustness is vital to predict how small variations in operating conditions affect the responses. Response surface methodology as an optimization technique was used to evaluate the robustness. For this, a central composite design was implemented around the nominal conditions. Statistical treatment of the responses (retention factor and drug concentrations expressed as percentage of label claim) showed that methanol content in mobile-phase and flow rate were the most influential factors. In the optimization process, the compromise decision support problem (cDSP) strategy was used. Construction of the robust domain from response-surfaces provided tolerance windows for the factors affecting the effectiveness of the method. The specified limits for the USP uniformity of dosage units assay (98.5-101.5%) and the purely experimental variations based on the repeatability test for center points (nominal conditions repetitions) were used as criteria to establish the tolerance windows, which allowed definition design space (DS) of analytical method. Thus, the acceptance criteria values (AV) proposed by the USP-uniformity of assay only depend on the sampling error. If the variation in the responses corresponded to approximately twice the repeatability standard deviation, individual values for percentage label claim (%LC) response may lie outside the specified limits; this implies the data are not centered between the specified limits, and that this term plus the sampling error affects the AV value. To avoid this fact, the limits specified by the Uniformity of Dosage Form assay (i.e., 98.5-101.5%) must be taken into consideration to fix the tolerance windows for each factor. All these results were verified by the Monte Carlo simulation. In conclusion, the level of variability for different factors must be calculated for each case, and not arbitrary way, provided a variation is found higher than the repeatability for center points and secondly, the %LC response must lie inside the specified limits i.e., 98.5-101.5%. If not the UPLC method must be re-developed. © 2013 Elsevier B.V. All rights reserved.
Plasma Doping—Enabling Technology for High Dose Logic and Memory Applications
NASA Astrophysics Data System (ADS)
Miller, T.; Godet, L.; Papasouliotis, G. D.; Singh, V.
2008-11-01
As logic and memory device dimensions shrink with each generation, there are more high dose implants at lower energies. Examples include dual poly gate (also referred to as counter-doped poly), elevated source drain and contact plug implants. Plasma Doping technology throughput and dopant profile benefits at these ultra high dose and lower energy conditions have been well established [1,2,3]. For the first time a production-worthy plasma doping implanter, the VIISta PLAD tool, has been developed with unique architecture suited for precise and repeatable dopant placement. Critical elements of the architecture include pulsed DC wafer bias, closed-loop dosimetry and a uniform low energy, high density plasma source. In this paper key performance metrics such as dose uniformity, dose repeatability and dopant profile control will be presented that demonstrate the production-worthiness of the VIISta PLAD tool for several high dose applications.
SU-F-T-335: Piecewise Uniform Dose Prescription and Optimization Based On PET/CT Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, G; Liu, J
Purpose: In intensity modulated radiation therapy (IMRT), the tumor target volume is given a uniform dose prescription, which does not consider the heterogeneous characteristics of tumor such as hypoxia, clonogen density, radiosensitivity, tumor proliferation rate and so on. Our goal is to develop a nonuniform target dose prescription method which can spare organs at risk (OARs) better and does not decrease the tumor control probability (TCP). Methods: We propose a piecewise uniform dose prescription (PUDP) based on PET/CT images of tumor. First, we propose to delineate biological target volumes (BTV) and sub-biological target volumes (sub-BTVs) by our Hierarchical Mumford-Shah Vectormore » Model based on PET/CT images of tumor. Then, in order to spare OARs better, we make the BTV mean dose minimized while restrict the TCP to a constant. So, we can get a general formula for determining an optimal dose prescription based on a linearquadratic model (LQ). However, this dose prescription is high heterogeneous, it is very difficult to deliver by IMRT. Therefore we propose to use the equivalent uniform dose (EUD) in each sub-BTV as its final dose prescription, which makes a PUDP for the BTV. Results: We have evaluated the IMRT planning of a patient with nasopharyngeal carcinoma respectively using PUDP and UDP. The results show that the highest and mean doses inside brain stem are 48.425Gy and 19.151Gy respectively when the PUDP is used for IMRT planning, while they are 52.975Gy and 20.0776Gy respectively when the UDP is used. Both of the resulting TCPs(0.9245, 0.9674) are higher than the theoretical TCP(0.8739), when 70Gy is delivered to the BTV. Conclusion: Comparing with the UDP, the PUDP can spare the OARs better while the resulting TCP by PUDP is not significantly lower than by UDP. This work was supported in part by National Natural Science Foundation of China undergrant no.61271382 and by the foundation for construction of scientific project platform forthe cancer hospital of Hunan province.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balderson, M.J.; Kirkby, C.; Department of Medical Physics, Tom Baker Cancer Centre, Calgary, Alberta
In vitro evidence has suggested that radiation induced bystander effects may enhance non-local cell killing which may influence radiotherapy treatment planning paradigms. This work applies a bystander effect model, which has been derived from published in vitro data, to calculate equivalent uniform dose (EUD) and tumour control probability (TCP) and compare them with predictions from standard linear quadratic (LQ) models that assume a response due only to local absorbed dose. Comparisons between the models were made under increasing dose heterogeneity scenarios. Dose throughout the CTV was modeled with normal distributions, where the degree of heterogeneity was then dictated by changingmore » the standard deviation (SD). The broad assumptions applied in the bystander effect model are intended to place an upper limit on the extent of the results in a clinical context. The bystander model suggests a moderate degree of dose heterogeneity yields as good or better outcome compared to a uniform dose in terms of EUD and TCP. Intermediate risk prostate prescriptions of 78 Gy over 39 fractions had maximum EUD and TCP values at SD of around 5Gy. The plots only dropped below the uniform dose values for SD ∼ 10 Gy, almost 13% of the prescribed dose. The bystander model demonstrates the potential to deviate from the common local LQ model predictions as dose heterogeneity through a prostate CTV is varies. The results suggest the potential for allowing some degree of dose heterogeneity within a CTV, although further investigations of the assumptions of the bystander model are warranted.« less
Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A.; Trofimov, Alexei
2013-01-01
Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled. PMID:23635256
Zeng, Chuan; Giantsoudi, Drosoula; Grassberger, Clemens; Goldberg, Saveli; Niemierko, Andrzej; Paganetti, Harald; Efstathiou, Jason A; Trofimov, Alexei
2013-05-01
Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposed lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.
NASA Astrophysics Data System (ADS)
Hamedon, Zamzuri; Kuang, Shea Cheng; Jaafar, Hasnulhadi; Azhari, Azmir
2018-03-01
Incremental sheet forming is a versatile sheet metal forming process where a sheet metal is formed into its final shape by a series of localized deformation without a specialised die. However, it still has many shortcomings that need to be overcome such as geometric accuracy, surface roughness, formability, forming speed, and so on. This project focus on minimising the surface roughness of aluminium sheet and improving its thickness uniformity in incremental sheet forming via optimisation of wall angle, feed rate, and step size. Besides, the effect of wall angle, feed rate, and step size to the surface roughness and thickness uniformity of aluminium sheet was investigated in this project. From the results, it was observed that surface roughness and thickness uniformity were inversely varied due to the formation of surface waviness. Increase in feed rate and decrease in step size will produce a lower surface roughness, while uniform thickness reduction was obtained by reducing the wall angle and step size. By using Taguchi analysis, the optimum parameters for minimum surface roughness and uniform thickness reduction of aluminium sheet were determined. The finding of this project helps to reduce the time in optimising the surface roughness and thickness uniformity in incremental sheet forming.
Application of Raman spectroscopy for on-line monitoring of low dose blend uniformity.
Hausman, Debra S; Cambron, R Thomas; Sakr, Adel
2005-07-14
On-line Raman spectroscopy was used to evaluate the effect of blending time on low dose, 1%, blend uniformity of azimilide dihydrochloride. An 8 qt blender was used for the experiments and instrumented with a Raman probe through the I-bar port. The blender was slowed to 6.75 rpm to better illustrate the blending process (normal speed is 25 rpm). Uniformity was reached after 20 min of blending at 6.75 rpm (135 revolutions or 5.4 min at 25 rpm). On-line Raman analysis of blend uniformity provided more benefits than traditional thief sampling and off-line analysis. On-line Raman spectroscopy enabled generating data rich blend profiles, due to the ability to collect a large number of samples during the blending process (sampling every 20s). In addition, the Raman blend profile was rapidly generated, compared to the lengthy time to complete a blend profile with thief sampling and off-line analysis. The on-line Raman blend uniformity results were also significantly correlated (p-value < 0.05) to the HPLC uniformity results of thief samples.
Feng, Pin; Jiang, Lan; Li, Xin; Rong, Wenlong; Zhang, Kaihu; Cao, Qiang
2015-02-20
A simple, repeatable approach is proposed to fabricate large-area, uniform periodic surface structures by a femtosecond laser. 20 nm gold films are coated on semiconductor surfaces on which large-area, uniform structures are fabricated. In the case study of silicon, cross-links and broken structures of laser induced periodic surface structures (LIPSSs) are significantly reduced on Au-coated silicon. The good consistency between the scanning lines facilitates the formation of large-area, uniform LIPSSs. The diffusion of hot electrons in the Au films increases the interfacial carrier densities, which significantly enhances interfacial electron-phonon coupling. High and uniform electron density suppresses the influence of defects on the silicon and further makes the coupling field more uniform and thus reduces the impact of laser energy fluctuations, which homogenizes and stabilizes large-area LIPSSs.
Kumar, P P; Henschke, K; Mandal, K P; Nibhanupudy, J R; Patel, I S
1977-04-01
This paper describes the problems and solutions in using 18 MeV linear accelerator, with minimum 6 MeV electron capability, for total skin irradiation for mycosis fungoides. The 6 MeV electron energy can be degraded to acceptable electron energy of 3.2 MeV by interposing a plexiglass sheet of 9.6 mm in the beam. To minimize the bremsstrahlung, the degrading plexiglass should be kept away from the machine head. A wide area with uniform dose distribution over single plane can be achieved by using dual fields but homogenous dose distribution over irregular body surface cannot be achieved mainly because of self-shielding. The nails and the ocular lens can be easily shielded from the low energy electrons with 1.5 mm lead shield.
Patterns of patient specific dosimetry in total body irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akino, Yuichi; Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871; McMullen, Kevin P.
2013-04-15
Purpose: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within {+-}10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at ourmore » institution. Methods: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose{sup TM} (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011. Results: Across the entire cohort, the median {+-} SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 {+-} 10.2% (-66.2 to +35.3), 1.1 {+-} 11.5% (-62.2 to +40.3), -1.9 {+-} 9.5% (-66.4 to +46.6), -1.1 {+-} 7.2% (-35.2 to +42.9), and 3.4 {+-} 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within {+-}10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within {+-}10%. However, some large differences greater than 35% were also found at several points. For one case, the knee received double the prescribed dose. When the dose differences for multiple fractions were averaged, compliance ({+-}10%) between the prescription and measured dose was improved compared to the dose difference of the first single fraction, for example, as at umbilicus, which improved from 83.9% to 98.5%. Conclusions: Actual dose measurement analysis of TBI patients revealed a potentially wide variance from the calculated dose. Based from their IVD method for TBI using Cobalt-60 irradiator and moving table, {+-}10% over entire body is hard to achieve. However, it can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments.« less
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions.
Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René; Chrystyn, Henry
2015-10-01
Spiromax(®) is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide-formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Mean values for both budesonide and formoterol were within 85%-115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment.
MacVittie, Thomas J; Farese, Ann M; Jackson, William
2015-11-01
Well characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the U.S. Food and Drug Administration "animal rule." Development of a model requires the determination of the radiation dose response relationship and time course of mortality and morbidity across the hematopoietic acute radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that may be used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality at selected lethal doses of total body irradiation. A systematic review of relevant studies that determined the dose response relationship for the hematopoietic acute radiation syndrome in the rhesus macaque relative to radiation quality, dose rate, and exposure uniformity has never been performed. The selection of data cohorts was made from the following sources: Ovid Medline (1957-present), PubMed (1954-present), AGRICOLA (1976-present), Web of Science (1954-present), and U.S. HHS REPORT (2002 to present). The following terms were used: Rhesus, total body-irradiation, total body x irradiation, TBI, irradiation, gamma radiation, hematopoiesis, LD50/60, Macaca mulatta, whole-body irradiation, nonhuman primate, NHP, monkey, primates, hematopoietic radiation syndrome, mortality, and nuclear radiation. The reference lists of all studies, published and unpublished, were reviewed for additional studies. The total number of hits across all search sites was 3,001. There were a number of referenced, unpublished, non-peer reviewed government reports that were unavailable for review. Fifteen studies, 11 primary (n = 863) and four secondary (n = 153) studies [n = 1,016 total nonhuman primates (NHP), rhesus Macaca mulatta] were evaluated to provide an informative and consistent review. The dose response relationships (DRRs) were determined for uniform or non-uniform total body irradiation (TBI) with 250 kVp or 2 MeV x radiation, Co gamma radiation and reactor- and nuclear weapon-derived mixed gamma: neutron-radiation, delivered at various dose rates from a total body, bilateral, rotational, or unilateral exposure aspect. The DRRs established by a probit analysis vs. linear dose relationship were characterized by two main parameters or dependent variables: a slope and LD50/30. Respective LD50/30 values for studies that used 250 kVp x radiation (five primary studies combined, n = 338), 2 MeV x radiation, Co gamma radiation, and steady-state reactor-derived mixed gamma:neutron radiation for total body uniform exposures were 521 rad [498, 542], 671 rad [632, 715], 644 rad [613, 678], and 385 rad [357, 413]. The respective slopes were steep and ranged from 0.738 to 1.316. The DRR, LD50/30 values and slopes were also determined for total body, non-uniform, unilateral, pulse-rate exposures of mixed gamma:neutron radiation derived at reactor and nuclear weapon detonations. The LD50/30 values were, respectively, 395 rad [337, 432] and 412 rad [359, 460]. Secondary data sets of limited studies that did not describe a DRR were used to support the mid-to-high lethal dose range for the H-ARS and the threshold dose range for the concurrent acute GI ARS. The available evidence provided a reliable and extensive database that characterized the DRR for the H-ARS in young rhesus macaques exposed to 250 kVp uniform total body x radiation without the benefit of medical management. A less substantial but consistent database demonstrated the DRR for total body exposure of differing radiation quality, dose rate and non-uniform exposure. The DRR for the H-ARS is characterized by steep slopes and relative LD50/30 values that reflect the radiation quality, exposure aspect, and dose rate over a range in time from 1954-2012.
Ghirri, Alberto; Candini, Andrea; Evangelisti, Marco; Gazzadi, Gian Carlo; Volatron, Florence; Fleury, Benoit; Catala, Laure; David, Christophe; Mallah, Talal; Affronte, Marco
2008-12-01
Prussian blue CsNiCr nanoparticles are used to decorate selected portions of a Si substrate. For successful grafting to take place, the Si surface needs first to be chemically functionalized. Low-dose focused ion beam patterning on uniformly functionalized surfaces selects those portions that will not participate in the grafting process. Step-by-step control is assured by atomic force and high-resolution scanning electron microscopy, revealing a submonolayer distribution of the grafted nanoparticles. By novel scanning Hall-probe microscopy, an in-depth investigation of the magnetic response of the nanoparticles to varying temperature and applied magnetic field is provided. The magnetic images acquired suggest that low-temperature canted ferromagnetism is found in the grafted nanoparticles, similar to what is observed in the equivalent bulk material.
SU-E-T-541: Bolus Effect of Thermoplastic Masks in IMRT and VMAT Head and Neck Treatments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, H; Nedzi, L; Chen, S
2014-06-01
Purpose: To quantitatively evaluate the bolus effect of thermoplalstic mask on patient skin dose during multi-field IMRT and VMAT treatment. Methods: The clinically approved target contours for five head and neck patients were deformably registered to an anthropomorphic Rando phantom. Two plans: Multifield IMRT plan with 7-9 beams and VMAT plan with 2-4 arcs were created for each patient following same dose constraints. 3mm skin was excluded from PTVs but not constrained during optimization. The prescription dose was 200-220 cGy/fraction. A thermoplastic head and shoulder mask was customized for the Rando phantom. Each plan was delivered to the phantom twicemore » with and without mask. During each delivery, two rectangular strips of EBT3 films (1cm x 6.8cm) were placed across the anterior upper and lower neck near PTVs to measure the surface dose. For consistency films were positioned at same locations for same patient. A total of 8 film strips were obtained for each patient. Film dose was calibrated in the range of 0-400cGy on the day of plan delivery. For dose comparison 3 regions of interests (ROIs) of 1×1 cm{sup 2} were selected at left, right and middle part of each film, resulting in 6 point doses at each plan delivery. Results: The films without mask show relatively uniform dose distribution while those with mask clearly show mesh pattern of mask, usually indicating an increase in skin dose. On average the increase in skin dose over all ROIs with mask was 31.9%(±14.8%) with a range of 11.4%- 58.4%. There is no statistically significant difference (p=0.44) between skin dose increase in VMAT (30.8%±15.3%) and IMRT delivery (33.0%±14.9%). Conclusion: Thermoplastic immobilization masks increase surface dose for HN patient by around 30%. The magnitude is comparable between multi-field IMRT and VMAT. Radiochromic EBT3 film serves as an effective tool to quantify bolus effect.« less
A Science and Risk-Based Pragmatic Methodology for Blend and Content Uniformity Assessment.
Sayeed-Desta, Naheed; Pazhayattil, Ajay Babu; Collins, Jordan; Doshi, Chetan
2018-04-01
This paper describes a pragmatic approach that can be applied in assessing powder blend and unit dosage uniformity of solid dose products at Process Design, Process Performance Qualification, and Continued/Ongoing Process Verification stages of the Process Validation lifecycle. The statistically based sampling, testing, and assessment plan was developed due to the withdrawal of the FDA draft guidance for industry "Powder Blends and Finished Dosage Units-Stratified In-Process Dosage Unit Sampling and Assessment." This paper compares the proposed Grouped Area Variance Estimate (GAVE) method with an alternate approach outlining the practicality and statistical rationalization using traditional sampling and analytical methods. The approach is designed to fit solid dose processes assuring high statistical confidence in both powder blend uniformity and dosage unit uniformity during all three stages of the lifecycle complying with ASTM standards as recommended by the US FDA.
Energy spectrum control for modulated proton beams.
Hsi, Wen C; Moyers, Michael F; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E; Farr, Jonathan B; Mascia, Anthony E; Schreuder, Andries N
2009-06-01
In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to +/-21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than +/-3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.
CHARACTERIZATION OF CLYC SCINTILLATOR COUPLED WITH PHOTOMULTIPLIERS AND A LARGE SIPM ARRAY.
Dinar, N; Celeste, D; Puzo, P; Silari, M
2017-09-29
CERN Radiation Protection group has recently developed a novel radiation survey meter called B-RAD able to operate in the presence of a strong magnetic field. The B-RAD will be equipped with a series of probes for gamma dose rate, gamma spectrometry and surface contamination measurements. The feasibility of developing a probe for neutron dose rate and possibly spectral measurements is being investigated. The determination of the breakdown voltage of the SiPM as well as its uniformity between the pixels was performed. The energy resolution of the Cs2LiYCl6:Ce (CLYC) scintillator was measured with the SiPM and compared with two different PMT models: Bialkali and Superbialkali. The temperature sensitivity of the system CLYC + SiPM was measured from -10 to + 40°C. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.
2014-03-01
The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcos, M.; Devic, S.
2014-08-15
Purpose: Dose build-up and electron contamination are two closely related quantities with important implications in radiotherapy, yet they are quite difficult to measure with great certainty. We present a novel technique for measuring ultra-superficial doses. Method and Materials: We used Gafchromic EBT-3 film which have an effective point of measurement of roughly 153 micros (effective depth in water). By peeling off one of the polyester layers, the active layer becomes the top layer and we obtain a film with a effective point of measurement of 15 microns (effective depth in water). A film calibration was performed using a 180 kVpmore » orthovoltage beam. Since the active layer of the film may have been compressed or perturbed during the peeling of clear polyester we use a triple-channel film calibration technique to minimize the effects of non-uniformity in the active layer. We measured surface doses of orthovoltage beams with lead cutouts in place to introduce contaminant photoelectrons. Results: Our measurements show that the dose enhancement near the edges of the lead were about 125% relative to central axis for 6 cm diameter cutouts up to 170% for 2 cm diameter cutouts, which were within 5% of our EGSnrc based Monte Carlo simulations.« less
Lin, Hui; Jing, Jia; Xu, Liangfeng; Mao, Xiaoli
2017-12-01
To evaluate the influence of energy spectra, mesh sizes, high Z element on dose and PVDR in Microbeam Radiation Therapy (MRT) based on 1-D analogy-mouse-head-model (1-D MHM) and 3-D voxel-mouse-head-phantom (3-D VMHP) by Monte Carlo simulation. A Microbeam-Array-Source-Model was implemented into EGSnrc/DOSXYZnrc. The microbeam size is assumed to be 25μm, 50μm or 75μm in thickness and fixed 1mm in height with 200μmc-t-c. The influence of the energy spectra of ID17@ESRF and BMIT@CLS were investigated. The mesh size was optimized. PVDR in 1-D MHM and 3-D VMHP was compared with the homogeneous water phantom. The arc influence of 3-D VMHP filled with water (3-D VMHWP) was compared with the rectangle phantom. PVDR of the lower BMIT@CLS spectrum is 2.4times that of ID17@ESRF for lower valley dose. The optimized mesh is 5µm for 25µm, and 10µm for 50µm and 75µm microbeams with 200µmc-t-c. A 500μm skull layer could make PVDR difference up to 62.5% for 1-D MHM. However this influence is limited (<5%) for the farther homogeneous media (e.g. 600µm). The peak dose uniformity of 3-D VMHP at the same depth could be up to 8% for 1.85mm×1mm irradiation field, whereas that of 3-D VMHWP is<1%. The high Z element makes the dose uniformity enhance in target. The surface arc could affect the superficial PVDR (from 44% to 21% in 0.2mm depth), whereas this influence is limited for the more depth (<1%). An accurate MRT dose calculation algorithm should include the influence of 3-D heterogeneous media. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Dosimetry procedures for an industrial irradiation plant
NASA Astrophysics Data System (ADS)
Grahn, Ch.
Accurate and reliable dosimetry procedures constitute a very important part of process control and quality assurance at a radiation processing plant. γ-Dose measurements were made on the GBS 84 irradiator for food and other products on pallets or in containers. Chemical dosimeters wre exposed in the facility under conditions of the typical plant operation. The choice of the dosimeter systems employed was based on the experience in chemical dosimetry gained over several years. Dose uniformity information was obtained in air, spices, bulbs, feeds, cosmetics, plastics and surgical goods. Most products currently irradiated require dose uniformity which can be efficiently provided by pallet or box irradiators like GBS 84. The radiation performance characteristics and some dosimetry procedures are discussed.
Optimization of equivalent uniform dose using the L-curve criterion.
Chvetsov, Alexei V; Dempsey, James F; Palta, Jatinder R
2007-10-07
Optimization of equivalent uniform dose (EUD) in inverse planning for intensity-modulated radiation therapy (IMRT) prevents variation in radiobiological effect between different radiotherapy treatment plans, which is due to variation in the pattern of dose nonuniformity. For instance, the survival fraction of clonogens would be consistent with the prescription when the optimized EUD is equal to the prescribed EUD. One of the problems in the practical implementation of this approach is that the spatial dose distribution in EUD-based inverse planning would be underdetermined because an unlimited number of nonuniform dose distributions can be computed for a prescribed value of EUD. Together with ill-posedness of the underlying integral equation, this may significantly increase the dose nonuniformity. To optimize EUD and keep dose nonuniformity within reasonable limits, we implemented into an EUD-based objective function an additional criterion which ensures the smoothness of beam intensity functions. This approach is similar to the variational regularization technique which was previously studied for the dose-based least-squares optimization. We show that the variational regularization together with the L-curve criterion for the regularization parameter can significantly reduce dose nonuniformity in EUD-based inverse planning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, X; Hrycushko, B; Lee, H
2014-06-01
Purpose: Traditional extended SSD total body irradiation (TBI) techniques can be problematic in terms of patient comfort and/or dose uniformity. This work aims to develop a comfortable TBI technique that achieves a uniform dose distribution to the total body while reducing the dose to organs at risk for complications. Methods: To maximize patient comfort, a lazy Susan-like couch top immobilization system which rotates about a pivot point was developed. During CT simulation, a patient is immobilized by a Vac-Lok bag within the body frame. The patient is scanned head-first and then feet-first following 180° rotation of the frame. The twomore » scans are imported into the Pinnacle treatment planning system and concatenated to give a full-body CT dataset. Treatment planning matches multiple isocenter volumetric modulated arc (VMAT) fields of the upper body and multiple isocenter parallel-opposed fields of the lower body. VMAT fields of the torso are optimized to satisfy lung dose constraints while achieving a therapeutic dose to the torso. The multiple isocenter VMAT fields are delivered with an indexed couch, followed by body frame rotation about the pivot point to treat the lower body isocenters. The treatment workflow was simulated with a Rando phantom, and the plan was mapped to a solid water slab phantom for point- and film-dose measurements at multiple locations. Results: The treatment plan of 12Gy over 8 fractions achieved 80.2% coverage of the total body volume within ±10% of the prescription dose. The mean lung dose was 8.1 Gy. All ion chamber measurements were within ±1.7% compared to the calculated point doses. All relative film dosimetry showed at least a 98.0% gamma passing rate using a 3mm/3% passing criteria. Conclusion: The proposed patient comfort-oriented TBI technique provides for a uniform dose distribution within the total body while reducing the dose to the lungs.« less
Uehara, Ryuzo; Tachibana, Hidenobu; Ito, Yasushi; Yoshino, Shinichi; Matsubayashi, Fumiyasu; Sato, Tomoharu
2013-06-01
It has been reported that the light scattering could worsen the accuracy of dose distribution measurement using a radiochromic film. The purpose of this study was to investigate the accuracy of two different films, EDR2 and EBT2, as film dosimetry tools. The effectiveness of a correction method for the non-uniformity caused from EBT2 film and the light scattering was also evaluated. In addition the efficacy of this correction method integrated with the red/blue correction method was assessed. EDR2 and EBT2 films were read using a flatbed charge-coupled device scanner (EPSON 10000G). Dose differences on the axis perpendicular to the scanner lamp movement axis were within 1% with EDR2, but exceeded 3% (Maximum: +8%) with EBT2. The non-uniformity correction method, after a single film exposure, was applied to the readout of the films. A corrected dose distribution data was subsequently created. The correction method showed more than 10%-better pass ratios in dose difference evaluation than when the correction method was not applied. The red/blue correction method resulted in 5%-improvement compared with the standard procedure that employed red color only. The correction method with EBT2 proved to be able to rapidly correct non-uniformity, and has potential for routine clinical IMRT dose verification if the accuracy of EBT2 is required to be similar to that of EDR2. The use of red/blue correction method may improve the accuracy, but we recommend we should use the red/blue correction method carefully and understand the characteristics of EBT2 for red color only and the red/blue correction method.
Peano-like paths for subaperture polishing of optical aspherical surfaces.
Tam, Hon-Yuen; Cheng, Haobo; Dong, Zhichao
2013-05-20
Polishing can be more uniform if the polishing path provides uniform coverage of the surface. It is known that Peano paths can provide uniform coverage of planar surfaces. Peano paths also contain short path segments and turns: (1) all path segments have the same length, (2) path segments are mutually orthogonal at the turns, and (3) path segments and turns are uniformity distributed over the domain surface. These make Peano paths an attractive candidate among polishing tool paths because they enhance multidirectional approaches of the tool to each surface location. A method for constructing Peano paths for uniform coverage of aspherical surfaces is proposed in this paper. When mapped to the aspherical surface, the path also contains short path segments and turns, and the above attributes are approximately preserved. Attention is paid so that the path segments are still well distributed near the vertex of the surface. The proposed tool path was used in the polishing of a number of parabolic BK7 specimens using magnetorheological finishing (MRF) and pitch with cerium oxide. The results were rather good for optical lenses and confirm that a Peano-like path was useful for polishing, for MRF, and for pitch polishing. In the latter case, the surface roughness achieved was 0.91 nm according to WYKO measurement.
Uniform deposition of size-selected clusters using Lissajous scanning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Hirata, Hirohito
2016-05-15
Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonalmore » directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.« less
Rinse trough with improved flow
O'Hern, Timothy J.; Grasser, Thomas W.
1998-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects' surfaces to accomplish a more thorough rinse than prior art troughs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng Chuan; Giantsoudi, Drosoula; Grassberger, Clemens
2013-05-15
Purpose: Biological effect of radiation can be enhanced with hypofractionation, localized dose escalation, and, in particle therapy, with optimized distribution of linear energy transfer (LET). The authors describe a method to construct inhomogeneous fractional dose (IFD) distributions, and evaluate the potential gain in the therapeutic effect from their delivery in proton therapy delivered by pencil beam scanning. Methods: For 13 cases of prostate cancer, the authors considered hypofractionated courses of 60 Gy delivered in 20 fractions. (All doses denoted in Gy include the proton's mean relative biological effectiveness (RBE) of 1.1.) Two types of plans were optimized using two opposedmore » lateral beams to deliver a uniform dose of 3 Gy per fraction to the target by scanning: (1) in conventional full-target plans (FTP), each beam irradiated the entire gland, (2) in split-target plans (STP), beams irradiated only the respective proximal hemispheres (prostate split sagittally). Inverse planning yielded intensity maps, in which discrete position control points of the scanned beam (spots) were assigned optimized intensity values. FTP plans preferentially required a higher intensity of spots in the distal part of the target, while STP, by design, employed proximal spots. To evaluate the utility of IFD delivery, IFD plans were generated by rearranging the spot intensities from FTP or STP intensity maps, separately as well as combined using a variety of mixing weights. IFD courses were designed so that, in alternating fractions, one of the hemispheres of the prostate would receive a dose boost and the other receive a lower dose, while the total physical dose from the IFD course was roughly uniform across the prostate. IFD plans were normalized so that the equivalent uniform dose (EUD) of rectum and bladder did not increase, compared to the baseline FTP plan, which irradiated the prostate uniformly in every fraction. An EUD-based model was then applied to estimate tumor control probability (TCP) and normal tissue complication probability (NTCP). To assess potential local RBE variations, LET distributions were calculated with Monte Carlo, and compared for different plans. The results were assessed in terms of their sensitivity to uncertainties in model parameters and delivery. Results: IFD courses included equal number of fractions boosting either hemisphere, thus, the combined physical dose was close to uniform throughout the prostate. However, for the entire course, the prostate EUD in IFD was higher than in conventional FTP by up to 14%, corresponding to the estimated increase in TCP to 96% from 88%. The extent of gain depended on the mixing factor, i.e., relative weights used to combine FTP and STP spot weights. Increased weighting of STP typically yielded a higher target EUD, but also led to increased sensitivity of dose to variations in the proton's range. Rectal and bladder EUD were same or lower (per normalization), and the NTCP for both remained below 1%. The LET distributions in IFD also depended strongly on the mixing weights: plans using higher weight of STP spots yielded higher LET, indicating a potentially higher local RBE. Conclusions: In proton therapy delivered by pencil beam scanning, improved therapeutic outcome can potentially be expected with delivery of IFD distributions, while administering the prescribed quasi-uniform dose to the target over the entire course. The biological effectiveness of IFD may be further enhanced by optimizing the LET distributions. IFD distributions are characterized by a dose gradient located in proximity of the prostate's midplane, thus, the fidelity of delivery would depend crucially on the precision with which the proton range could be controlled.« less
INFLUENCE OF TABLET SPLITTING ON CONTENT UNIFORMITY OF LISINOPRIL/ HYDROCHLORTHIAZIDE TABLETS
Vranić, Edina; Uzunović, Alija
2007-01-01
Dose-related adverse effects of medications are a major problem in modern medical practice. The “correct” dose, based on drug company guidelines in package inserts, may not be correct for many patients. Tablet splitting or dividing has been an accepted practice for many years as a means of obtaining the prescribed dose of medication. As model tablets for this investigation, two batches of lisinopril-hydrochlorothiazide scored tablets labeled to contain 20/12,5 mg were used. The aim of this study was to establish possible influence of tablet splitting on content uniformity of lisinopril/hydrochlorthiazide tablets. Determination of the content uniformity of lisinopril and hydrochlorthiazide in our batches, was carried out by HPLC method. The results of content uniformity studies for halves of tablets containing combination of lisinopril-hydrochlorthiazide (supposed to contain 50% of stated 20/12,5 mg in the whole tablet) were: 49,60 ±3,29% and 49,29±0,60 % (lisinopril); 50,33±3,50% and 50,69±1,95% (hydrochlorthiazide) for batch I and II, respectively. We can conclude that the results obtained in this study support an option of tablet splitting, which is very important for obtaining the required dosage when a dosage form of the required strength is unavailable, and for better individualization of the therapy PMID:18039191
Isoniazid, Pyrazinamide and Rifampicin Content Variation in Split Fixed-Dose Combination Tablets
Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy
2014-01-01
Setting In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. Objective To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Design Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. Results All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. Conclusion In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis. PMID:25004128
Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets.
Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy
2014-01-01
In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.
Hancock, Bruno C; Garcia-Munoz, Salvador
2013-03-01
Responses from the second Product Quality Research Institute (PQRI) Blend Uniformity Working Group (BUWG) survey of industry have been reanalyzed to identify potential links between formulation and processing variables and the measured uniformity of blends and unit dosage forms. As expected, the variability of the blend potency and tablet potency data increased with a decrease in the loading of the active pharmaceutical ingredient (API). There was also an inverse relationship between the nominal strength of the unit dose and the blend uniformity data. The data from the PQRI industry survey do not support the commonly held viewpoint that granulation processes are necessary to create and sustain tablet and capsule formulations with a high degree of API uniformity. There was no correlation between the blend or tablet potency variability and the type of process used to manufacture the product. Although it is commonly believed that direct compression processes should be avoided for low API loading formulations because of blend and tablet content uniformity concerns, the data for direct compression processes reported by the respondents to the PQRI survey suggest that such processes are being used routinely to manufacture solid dosage forms of acceptable quality even when the drug loading is quite low. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, D; Unkelbach, J
2014-06-01
Purpose: Non-uniform fractionation, i.e. delivering distinct dose distributions in two subsequent fractions, can potentially improve outcomes by increasing biological dose to the target without increasing dose to healthy tissues. This is possible if both fractions deliver a similar dose to normal tissues (exploit the fractionation effect) but high single fraction doses to subvolumes of the target (hypofractionation). Optimization of such treatment plans can be formulated using biological equivalent dose (BED), but leads to intractable nonconvex optimization problems. We introduce a novel optimization approach to address this challenge. Methods: We first optimize a reference IMPT plan using standard techniques that deliversmore » a homogeneous target dose in both fractions. The method then divides the pencil beams into two sets, which are assigned to either fraction one or fraction two. The total intensity of each pencil beam, and therefore the physical dose, remains unchanged compared to the reference plan. The objectives are to maximize the mean BED in the target and to minimize the mean BED in normal tissues, which is a quadratic function of the pencil beam weights. The optimal reassignment of pencil beams to one of the two fractions is formulated as a binary quadratic optimization problem. A near-optimal solution to this problem can be obtained by convex relaxation and randomized rounding. Results: The method is demonstrated for a large arteriovenous malformation (AVM) case treated in two fractions. The algorithm yields a treatment plan, which delivers a high dose to parts of the AVM in one of the fractions, but similar doses in both fractions to the normal brain tissue adjacent to the AVM. Using the approach, the mean BED in the target was increased by approximately 10% compared to what would have been possible with a uniform reference plan for the same normal tissue mean BED.« less
Spiromax, a New Dry Powder Inhaler: Dose Consistency under Simulated Real-World Conditions
Canonica, Giorgio Walter; Arp, Jan; Keegstra, Johan René
2015-01-01
Abstract Background: Spiromax® is a novel dry powder inhaler for patients with asthma or chronic obstructive pulmonary disease (COPD). The studies presented here provide further data on attributes (in vitro dosing consistency with budesonide–formoterol (DuoResp) Spiromax; flow rates through empty versions of the Spiromax and Turbuhaler inhaler) of importance to patients with asthma or COPD. Methods: Dose-delivery studies were performed using low-, middle-, and high-strength DuoResp Spiromax. Dose consistency was assessed over inhaler life. Total emitted doses (TEDs) were measured at various flow rates, after exposure to high and low temperature or humidity, at different inhaler orientations, and after dropping the inhaler. The criterion for evaluating dose uniformity was whether mean TEDs were within the product specification limits. In separate studies, flow rates were measured after training, using the patient information leaflets, and again after enhanced training as part of a randomized, open-label, cross-over study. Results: Mean values for both budesonide and formoterol were within 85%–115% of the label claim for each strength of DuoResp Spiromax for initial dose uniformity and for the other investigated conditions (temperature, humidity, orientation, dropping, knocking), with the exception of approximately an 80% increase in first dose after dropping the inhaler (subsequent doses not affected). In the flow rate patient study, two patients' inhalations with Spiromax and six with Turbuhaler were <30 L/min. The majority of asthma patients [91% (Spiromax) versus 82% (Turbuhaler)] achieved the preferred flow rate of >60 L/min. Conclusions: DuoResp Spiromax consistently meets dose uniformity criteria, under controlled laboratory conditions and with variations intended to mimic real-world use. Following enhanced training, all patients in the flow study were able to achieve the minimal inspiratory flow rate of >30 L/min, which is required for effective treatment. PMID:26352860
WE-EF-BRA-06: Feasibility of Spatially Modulated Proton Beams for Small Animal Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, E; Meyer, J
Purpose: To investigate the feasibility of proton minibeam radiotherapy (pMBRT) for small animal research. The motivation is to explore with protons the extraordinary normal tissue sparing effects to spatially modulated beams as observed on high flux synchrotron beam lines. We hypothesized that we can design a multi-slit collimator for our proton beam line to produce planar-parallel dose profiles with high modulation in the entrance region and homogenous dose coverage in the overlap of the Bragg peaks. Methods: The high dose rate 50 MeV research proton beamline at the University of Washington was modeled using the TOol for PArticle Simulation (TOPAS)more » Monte Carlo package. A brass collimator was implemented to generate proton minibeams. The collimator consists of an array of 2 cm long slits to cover an area of 2×2 cm{sup 2}. The slit widths (0.1–1 mm), center-to-center (ctc) distances (1–3 mm) and collimator thickness (1–7 cm) were varied to evaluate the effect on dose rate, the peak-to-valley dose ratios (PVDR) and the change of penumbra and peak width (FWHM) with depth. Results: The Bragg peak was at a depth of ∼21 mm. The penumbra and FWHM remained relatively constant to a depth of about 10–15 mm. The PVDR ranged from 1.6 to 26 and the dose rate dropped exponentially with collimator thickness. A uniform dose can be achieved at depth with slightly compromised PVDRs and dose rate. Conclusion: The technical realization of pMBRT is feasible. The simulations have shown that it is possible to obtain uniform dose at depth while modulation is maintained on the entrance side. While the simulated beam widths are larger than on synchrotron generated microbeams the dosimetric advantage could avoid having to interlace two microbeams to achieve uniform dose in the target. The next steps are to build a collimator and verify the simulations experimentally.« less
NASA Technical Reports Server (NTRS)
Katzoff, S; Faison, M Frances; Dubose, Hugh C
1954-01-01
The field of a uniformly loaded wing in subsonic flow is discussed in terms of the acceleration potential. It is shown that, for the design of such wings, the slope of the mean camber surface at any point can be determined by a line integration around the wing boundary. By an additional line integration around the wing boundary, this method is extended to include the case where the local section lift coefficient varies with spanwise location (the chordwise loading at every section still remaining uniform). For the uniformly loaded wing of polygonal plan form, the integrations necessary to determine the local slope of the surface and the further integration of the slopes to determine the ordinate can be done analytically. An outline of these integrations and the resulting formulas are included. Calculated results are given for a sweptback wing with uniform chordwise loading and a highly tapered spanwise loading, a uniformly loaded delta wing, a uniformly loaded sweptback wing, and the same sweptback wing with uniform chordwise loading but elliptical span load distribution.
AN AUTOMATED SYSTEM FOR PRODUCING UNIFORM SURFACE DEPOSITS OF DRY PARTICLES
A laboratory system has been constructed that uniformly deposits dry particles onto any type of test surface. Devised as a quality assurance tool for the purpose of evaluating surface sampling methods for lead, it also may be used to generate test surfaces for any contaminant ...
Ciavarella, Anthony B; Khan, Mansoor A; Gupta, Abhay; Faustino, Patrick J
This U.S. Food and Drug Administration (FDA) laboratory study examines the impact of tablet splitting, the effect of tablet splitters, and the presence of a tablet score on the dose uniformity of two model drugs. Whole tablets were purchased from five manufacturers for amlodipine and six for gabapentin. Two splitters were used for each drug product, and the gabapentin tablets were also split by hand. Whole and split amlodipine tablets were tested for content uniformity following the general chapter of the United States Pharmacopeia (USP) Uniformity of Dosage Units <905>, which is a requirement of the new FDA Guidance for Industry on tablet scoring. The USP weight variation method was used for gabapentin split tablets based on the recommendation of the guidance. All whole tablets met the USP acceptance criteria for the Uniformity of Dosage Units. Variation in whole tablet content ranged from 0.5 to 2.1 standard deviation (SD) of the percent label claim. Splitting the unscored amlodipine tablets resulted in a significant increase in dose variability of 6.5-25.4 SD when compared to whole tablets. Split tablets from all amlodipine drug products did not meet the USP acceptance criteria for content uniformity. Variation in the weight for gabapentin split tablets was greater than the whole tablets, ranging from 1.3 to 9.3 SD. All fully scored gabapentin products met the USP acceptance criteria for weight variation. Size, shape, and the presence or absence of a tablet score can affect the content uniformity and weight variation of amlodipine and gabapentin tablets. Tablet splitting produced higher variability. Differences in dose variability and fragmentation were observed between tablet splitters and hand splitting. These results are consistent with the FDA's concerns that tablet splitting can have an effect on the amount of drug present in a split tablet and available for absorption. Tablet splitting has become a very common practice in the United States and throughout the world. Tablets are often split to modify dose strength, make swallowing easier, and reduce cost to the consumer. To better address product quality for this widely used practice, the U.S. Food and Drug Administration (FDA) published a Guidance for Industry that addresses tablet splitting. The guidance provides testing criteria for scored tablets, which is a part of the FDA review process for drugs. The model drugs selected for this study were amlodipine and gabapentin, which have different sizes, shapes, and tablet scores. Whole and split amlodipine tablets were tested for drug content because of a concern that the low-dose strength may cause greater variability. Whole and split gabapentin tablets were tested for weight variation because of their higher dosage strength of 600 mg. All whole tablets met the acceptance criteria for the Uniformity of Dosage Units based on the guidance recommendations. When unscored amlodipine tablets were split by a splitter, all formulations did not meet the acceptance criteria. When fully scored gabapentin tablets were split by hand and by splitter, they met the acceptance criteria. The findings of this FDA study indicated physical characteristics such as size, shape, and tablet score can affect the uniformity of split tablets. © PDA, Inc. 2016.
Processing of materials for uniform field emission
Pam, L.S.; Felter, T.E.; Talin, A.; Ohlberg, D.; Fox, C.; Han, S.
1999-01-12
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/{micro}m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 {micro}m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material. 2 figs.
Processing of materials for uniform field emission
Pam, Lawrence S.; Felter, Thomas E.; Talin, Alec; Ohlberg, Douglas; Fox, Ciaran; Han, Sung
1999-01-01
This method produces a field emitter material having a uniform electron emitting surface and a low turn-on voltage. Field emitter materials having uniform electron emitting surfaces as large as 1 square meter and turn-on voltages as low as 16V/.mu.m can be produced from films of electron emitting materials such as polycrystalline diamond, diamond-like carbon, graphite and amorphous carbon by the method of the present invention. The process involves conditioning the surface of a field emitter material by applying an electric field to the surface, preferably by scanning the surface of the field emitter material with an electrode maintained at a fixed distance of at least 3 .mu.m above the surface of the field emitter material and at a voltage of at least 500V. In order to enhance the uniformity of electron emission the step of conditioning can be preceeded by ion implanting carbon, nitrogen, argon, oxygen or hydrogen into the surface layers of the field emitter material.
Kosterev, Vladimir V; Kramer-Ageev, Evgeny A; Mazokhin, Vladimir N; van Rhoon, Gerard C; Crezee, Johannes
2015-06-01
This paper describes the development of a new type of electromagnetic hyperthermia applicator delivering dose control within large application fields and increased effectiveness by providing simultaneous action of radiation and heating (SRH) in malignant tumours, and development of a dosimetric feedback method to support SRH. Single and phased arrays of flexible applicators have been developed to allow simultaneous hyperthermia and external beam therapy. A frequency of 434 MHz is used to heat near-surface and moderately deep-seated tumours and 70 MHz for deep-seated tumours. Phase and amplitude control allows focusing of electromagnetic energy (EM) to deep-seated tumours. The specific absorption rate (SAR) dose distribution can be modified to achieve uniform heating of tumours with complex shapes and heterogeneous tissue properties. A lithium fluoride thermoluminescent dosimeter (TLD) in a flexible film cassette has been developed for real-time dose measurement. Four types of 434 MHz applicators were manufactured with 3, 4, 9 or 12 independent applicators. Two types of 70 MHz applicators were made with 4 or 6 independent applicators. Phantom tests demonstrated the ability to control the SAR pattern by phase and amplitude control. Placement of the dosimeter between bolus and phantom increased the phantom surface temperature up to 3 °C and showed that the ratio of absorbed energy in TLD to dose in water approaches (0.83 ± 3%) for photon energies >60 keV. Simultaneous and controlled radiation and local hyperthermia is technically feasible in a preclinical setting, a clinical feasibility test is the next step.
CD uniformity control for thick resist process
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Liu, Yu-Lin; Wang, Weihung; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2017-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked flash cell array has been proposed. In constructing 3D NAND flash memories, the higher bit number per area is achieved by increasing the number of stacked layers. Thus the so-called "staircase" patterning to form electrical connection between memory cells and word lines has become one of the primarily critical processes in 3D memory manufacture. To provide controllable critical dimension (CD) with good uniformity involving thick photo-resist has also been of particular concern for staircase patterning. The CD uniformity control has been widely investigated with relatively thinner resist associated with resolution limit dimension but thick resist coupling with wider dimension. This study explores CD uniformity control associated with thick photo-resist processing. Several critical parameters including exposure focus, exposure dose, baking condition, pattern size and development recipe, were found to strongly correlate with the thick photo-resist profile accordingly affecting the CD uniformity control. To minimize the within-wafer CD variation, the slightly tapered resist profile is proposed through well tailoring the exposure focus and dose together with optimal development recipe. Great improvements on DCD (ADI CD) and ECD (AEI CD) uniformity as well as line edge roughness were achieved through the optimization of photo resist profile.
Rinse trough with improved flow
O`Hern, T.J.; Grasser, T.W.
1998-08-11
Novel rinse troughs accomplish thorough uniform rinsing. The troughs are suitable for one or more essentially planar objects having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs provide uniform rinse fluid flow over the objects` surfaces to accomplish a more thorough rinse than prior art troughs. 5 figs.
Method For Plasma Source Ion Implantation And Deposition For Cylindrical Surfaces
Fetherston, Robert P. , Shamim, Muhammad M. , Conrad, John R.
1997-12-02
Uniform ion implantation and deposition onto cylindrical surfaces is achieved by placing a cylindrical electrode in coaxial and conformal relation to the target surface. For implantation and deposition of an inner bore surface the electrode is placed inside the target. For implantation and deposition on an outer cylindrical surface the electrode is placed around the outside of the target. A plasma is generated between the electrode and the target cylindrical surface. Applying a pulse of high voltage to the target causes ions from the plasma to be driven onto the cylindrical target surface. The plasma contained in the space between the target and the electrode is uniform, resulting in a uniform implantation or deposition of the target surface. Since the plasma is largely contained in the space between the target and the electrode, contamination of the vacuum chamber enclosing the target and electrodes by inadvertent ion deposition is reduced. The coaxial alignment of the target and the electrode may be employed for the ion assisted deposition of sputtered metals onto the target, resulting in a uniform coating of the cylindrical target surface by the sputtered material. The independently generated and contained plasmas associated with each cylindrical target/electrode pair allows for effective batch processing of multiple cylindrical targets within a single vacuum chamber, resulting in both uniform implantation or deposition, and reduced contamination of one target by adjacent target/electrode pairs.
Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces
NASA Astrophysics Data System (ADS)
Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome
2016-06-01
The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.
A two-stage series diode for intense large-area moderate pulsed X rays production.
Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang
2017-01-01
This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.
Design and in vivo evaluation of carvedilol buccal mucoadhesive patches.
Thimmasetty, J; Pandey, G S; Babu, P R Sathesh
2008-07-01
The buccal region offers an attractive route of administration for systemic drug delivery. Carvedilol (dose, 3.125-25 mg) is beta-adrenergic antagonist. Its oral bioavailability is 25-35% because of first pass metabolism. Buccal absorption studies of a carvedilol solution in human volunteers showed 32.86% drug absorption. FTIR and UV spectroscopic methods revealed that there was no interaction between carvedilol and polymers. Carvedilol patches were prepared using HPMC, carbopol 934, eudragit RS 100, and ethylcellulose. The patches were evaluated for their thickness uniformity, folding endurance, weight uniformity, content uniformity, swelling behaviour, tensile strength, and surface pH. In vitro release studies were conducted for carvedilol-loaded patches in phosphate buffer (pH, 6.6) solution. Patches exhibited drug release in the range of 86.26 to 98.32% in 90 min. Data of in vitro release from patches were fit to different equations and kinetic models to explain release profiles. Kinetic models used were zero and first-order equations, Hixon-Crowell, Higuchi, and Korsmeyer-Peppas models. In vivo drug release studies in rabbits showed 90.85% of drug release from HPMC-carbopol patch while it was 74.63 to 88.02% within 90 min in human volunteers. Good correlation among in vitro release and in vivo release of carvedilol was observed.
Roux-Marchand, Thibaut; Beyssen, Denis; Sarry, Frederic; Elmazria, Omar
2015-04-01
When a microdroplet is put on the Rayleigh surface acoustic wave path, longitudinal waves are radiated into the liquid and induce several phenomena such as the wellknown surface acoustic wave streaming. At the same time, the temperature of the microdroplet increases as it has been shown. In this paper, we study the temperature uniformity of a microdroplet heated by Rayleigh surface acoustic wave for discrete microfluidic applications such as biological reactions. To precisely ascertain the temperature uniformity and not interfere with the biological reaction, we used an infrared camera. We then tested the temperature uniformity as a function of three parameters: the microdroplet volume, the Rayleigh surface acoustic wave frequency, and the continuous applied radio frequency power. Based on these results, we propose a new device structure to develop a future lab on a chip based on reaction temperatures.
Seamless growth of a supramolecular carpet
Kim, Ju-Hyung; Ribierre, Jean-Charles; Yang, Yu Seok; Adachi, Chihaya; Kawai, Maki; Jung, Jaehoon; Fukushima, Takanori; Kim, Yousoo
2016-01-01
Organic/metal interfaces play crucial roles in the formation of intermolecular networks on metal surfaces and the performance of organic devices. Although their purity and uniformity have profound effects on the operation of organic devices, the formation of organic thin films with high interfacial uniformity on metal surfaces has suffered from the intrinsic limitation of molecular ordering imposed by irregular surface structures. Here we demonstrate a supramolecular carpet with widely uniform interfacial structure and high adaptability on a metal surface via a one-step process. The high uniformity is achieved with well-balanced interfacial interactions and site-specific molecular rearrangements, even on a pre-annealed amorphous gold surface. Co-existing electronic structures show selective availability corresponding to the energy region and the local position of the system. These findings provide not only a deeper insight into organic thin films with high structural integrity, but also a new way to tailor interfacial geometric and electronic structures. PMID:26839053
NASA Astrophysics Data System (ADS)
Bäumer, C.; Janson, M.; Timmermann, B.; Wulff, J.
2018-04-01
To assess if apertures shall be mounted upstream or downstream of a range shifting block if these field-shaping devices are combined with the pencil-beam scanning delivery technique (PBS). The lateral dose fall-off served as a benchmark parameter. Both options realizing PBS-with-apertures were compared to the uniform scanning mode. We also evaluated the difference regarding the out-of-field dose caused by interactions of protons in beam-shaping devices. The potential benefit of the downstream configuration over the upstream configuration was estimated analytically. Guided by this theoretical evaluation a mechanical adapter was developed which transforms the upstream configuration provided by the proton machine vendor to a downstream configuration. Transversal dose profiles were calculated with the Monte-Carlo based dose engine of the commercial treatment planning system RayStation 6. Two-dimensional dose planes were measured with an ionization chamber array and a scintillation detector at different depths and compared to the calculation. Additionally, a clinical example for the irradiation of the orbit was compared for both PBS options and a uniform scanning treatment plan. Assuming the same air gap the lateral dose fall-off at the field edge at a few centimeter depth is 20% smaller for the aperture-downstream configuration than for the upstream one. For both options of PBS-with-apertures the dose fall-off is larger than in uniform scanning delivery mode if the minimum accelerator energy is 100 MeV. The RayStation treatment planning system calculated the width of the lateral dose fall-off with an accuracy of typically 0.1 mm–0.3 mm. Although experiments and calculations indicate a ranking of the three delivery options regarding lateral dose fall-off, there seems to be a limited impact on a multi-field treatment plan.
Nanodosimetry-Based Plan Optimization for Particle Therapy
Schulte, Reinhard W.
2015-01-01
Treatment planning for particle therapy is currently an active field of research due uncertainty in how to modify physical dose in order to create a uniform biological dose response in the target. A novel treatment plan optimization strategy based on measurable nanodosimetric quantities rather than biophysical models is proposed in this work. Simplified proton and carbon treatment plans were simulated in a water phantom to investigate the optimization feasibility. Track structures of the mixed radiation field produced at different depths in the target volume were simulated with Geant4-DNA and nanodosimetric descriptors were calculated. The fluences of the treatment field pencil beams were optimized in order to create a mixed field with equal nanodosimetric descriptors at each of the multiple positions in spread-out particle Bragg peaks. For both proton and carbon ion plans, a uniform spatial distribution of nanodosimetric descriptors could be obtained by optimizing opposing-field but not single-field plans. The results obtained indicate that uniform nanodosimetrically weighted plans, which may also be radiobiologically uniform, can be obtained with this approach. Future investigations need to demonstrate that this approach is also feasible for more complicated beam arrangements and that it leads to biologically uniform response in tumor cells and tissues. PMID:26167202
Femtosecond laser pulse modification of amorphous silicon films: control of surface anisotropy
NASA Astrophysics Data System (ADS)
Shuleiko, D. V.; Potemkin, F. V.; Romanov, I. A.; Parhomenko, I. N.; Pavlikov, A. V.; Presnov, D. E.; Zabotnov, S. V.; Kazanskii, A. G.; Kashkarov, P. K.
2018-05-01
A one-dimensional surface relief with a 1.20 ± 0.02 µm period was formed in amorphous hydrogenated silicon films as a result of irradiation by femtosecond laser pulses (1.25 µm) with a fluence of 0.15 J cm‑2. Orientation of the formed structures was determined by the polarization vector of the radiation and the number of acting pulses. Nanocrystalline silicon phases with volume fractions from 40 to 67% were detected in the irradiated films according to the analysis of Raman spectra. Observed micro- and nanostructuring processes were caused by surface plasmon–polariton excitation and near-surface region nanocrystallization, respectively, in the high-intensity femtosecond laser field. Furthermore, the formation of Si-III and Si-XII silicon polymorphous modifications was observed after laser treatment with a large exposure dose. The conductivity of the film increased by three orders of magnitude at proper conditions after femtosecond laser nanocrystallization compared to the conductivity of the untreated amorphous surface. The conductivity anisotropy of the irradiated regions was also observed due to the depolarizing contribution of the surface structure, and the non-uniform intensity distribution in the cross-section of the laser beam used for modification.
Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy
NASA Astrophysics Data System (ADS)
Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.
2007-04-01
Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.
Multicentre dose audit for clinical trials of radiation therapy in Asia
Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C.R. Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-01-01
Abstract A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. PMID:27864507
Monte Carlo investigation of backscatter point spread function for x-ray imaging examinations
NASA Astrophysics Data System (ADS)
Xiong, Zhenyu; Vijayan, Sarath; Rudin, Stephen; Bednarek, Daniel R.
2017-03-01
X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu
2015-08-15
A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less
Deufel, Christopher L; Furutani, Keith M; Dahl, Robert A; Haddock, Michael G
2016-01-01
The ability to create treatment plans for intraoperative high-dose-rate (IOHDR) brachytherapy is limited by lack of imaging and time constraints. An automated method for creation of a library of high-dose-rate brachytherapy plans that can be used with standard planar applicators in the intraoperative setting is highly desirable. Nonnegative least squares algebraic methods were used to identify dwell time values for flat, rectangular planar applicators. The planar applicators ranged in length and width from 2 cm to 25 cm. Plans were optimized to deliver an absorbed dose of 10 Gy to three different depths from the patient surface: 0 cm, 0.5 cm, and 1.0 cm. Software was written to calculate the optimized dwell times and insert dwell times and positions into a .XML plan template that can be imported into the Varian brachytherapy treatment planning system. The user may import the .XML template into the treatment planning system in the intraoperative setting to match the patient applicator size and prescribed treatment depth. A total of 1587 library plans were created for IOHDR brachytherapy. Median plan generation time was approximately 1 minute per plan. Plan dose was typically 100% ± 1% (mean, standard deviation) of the prescribed dose over the entire length and width of the applicator. Plan uniformity was best for prescription depths of 0 cm and 0.5 cm from the patient surface. An IOHDR plan library may be created using automated methods. Thousands of plan templates may be optimized and prepared in a few hours to accommodate different applicator sizes and treatment depths and reduce treatment planning time. The automated method also enforces dwell time symmetry for symmetrical applicator geometries, which simplifies quality assurance. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Luminescence imaging of water during uniform-field irradiation by spot scanning proton beams
NASA Astrophysics Data System (ADS)
Komori, Masataka; Sekihara, Eri; Yabe, Takuya; Horita, Ryo; Toshito, Toshiyuki; Yamamoto, Seiichi
2018-06-01
Luminescence was found during pencil-beam proton irradiation to water phantom and range could be estimated from the luminescence images. However, it is not yet clear whether the luminescence imaging is applied to the uniform fields made of spot-scanning proton-beam irradiations. For this purpose, imaging was conducted for the uniform fields having spread out Bragg peak (SOBP) made by spot scanning proton beams. We designed six types of the uniform fields with different ranges, SOBP widths and irradiation fields. One of the designed fields was irradiated to water phantom and a cooled charge coupled device camera was used to measure the luminescence image during irradiations. We estimated the ranges, field widths, and luminescence intensities from the luminescence images and compared those with the dose distribution calculated by a treatment planning system. For all types of uniform fields, we could obtain clear images of the luminescence showing the SOBPs. The ranges and field widths evaluated from the luminescence were consistent with those of the dose distribution calculated by a treatment planning system within the differences of ‑4 mm and ‑11 mm, respectively. Luminescence intensities were almost proportional to the SOBP widths perpendicular to the beam direction. The luminescence imaging could be applied to uniform fields made of spot scanning proton beam irradiations. Ranges and widths of the uniform fields with SOBP could be estimated from the images. The luminescence imaging is promising for the range and field width estimations in proton therapy.
Calibration of EBT2 film by the PDD method with scanner non-uniformity correction.
Chang, Liyun; Chui, Chen-Shou; Ding, Hueisch-Jy; Hwang, Ing-Ming; Ho, Sheng-Yow
2012-09-21
The EBT2 film together with a flatbed scanner is a convenient dosimetry QA tool for verification of clinical radiotherapy treatments. However, it suffers from a relatively high degree of uncertainty and a tedious film calibration process for every new lot of films, including cutting the films into several small pieces, exposing with different doses, restoring them back and selecting the proper region of interest (ROI) for each piece for curve fitting. In this work, we present a percentage depth dose (PDD) method that can accurately calibrate the EBT2 film together with the scanner non-uniformity correction and provide an easy way to perform film dosimetry. All films were scanned before and after the irradiation in one of the two homemade 2 mm thick acrylic frames (one portrait and the other landscape), which was located at a fixed position on the scan bed of an Epson 10 000XL scanner. After the pre-irradiated scan, the film was placed parallel to the beam central axis and sandwiched between six polystyrene plates (5 cm thick each), followed by irradiation of a 20 × 20 cm² 6 MV photon beam. Two different beams on times were used on two different films to deliver a dose to the film ranging from 32 to 320 cGy. After the post-irradiated scan, the net optical densities for a total of 235 points on the beam central axis on the films were auto-extracted and compared with the corresponding depth doses that were calculated through the measurement of a 0.6 cc farmer chamber and the related PDD table to perform the curve fitting. The portrait film location was selected for routine calibration, since the central beam axis on the film is parallel to the scanning direction, where non-uniformity correction is not needed (Ferreira et al 2009 Phys. Med. Biol. 54 1073-85). To perform the scanner non-uniformity calibration, the cross-beam profiles of the film were analysed by referencing the measured profiles from a Profiler™. Finally, to verify our method, the films were exposed to 60° physical wedge fields and the compositive fields, and their relative dose profiles were compared with those from the water phantom measurement. The fitting uncertainty was less than 0.5% due to the many calibration points, and the overall calibration uncertainty was within 3% for doses above 50 cGy, when the average of four films were used for the calibration. According to our study, the non-uniformity calibration factor was found to be independent of the given dose for the EBT2 film and the relative dose differences between the profiles measured by the film and the Profiler were within 1.5% after applying the non-uniformity correction. For the verification tests, the relative dose differences between the measurements by films and in the water phantom, when the average of three films were used, were generally within 3% for the 60° wedge fields and compositive fields, respectively. In conclusion, our method is convenient, time-saving and cost-effective, since no film cutting is needed and only two films with two exposures are needed.
Dosimetry of a Small-Animal Irradiation Model using a 6 MV Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, F. Moran; Martinez-Davalos, A.; Garcia-Garduno, O. A.
2010-12-07
A custom made rat-like phantom was used to measure dose distributions using a 6 MV linear accelerator. The phantom has air cavities that simulate the lungs and cylindrical inserts that simulate the backbone. The calculated dose distributions were obtained with the BrainScan v.5.31 TPS software. For the irradiation two cases were considered: (a) near the region where the phantom has two air cavities that simulate the lungs, and (b) with an entirely uniform phantom. The treatment plan consisted of two circular cone arcs that imparted a 500 cGy dose to a simulated lesion in the backbone. We measured dose distributionsmore » using EBT2 GafChromic film and an Epson Perfection V750 scanner working in transmission mode. Vertical and horizontal profiles, isodose curves from 50 to 450 cGy, dose and distance to agreement (DTA) histograms and Gamma index were obtained to compare the dose distributions using DoseLab v4.11. As a result, these calculations show very good agreement between calculated and measured dose distribution in both cases. With a 2% 2 mm criteria 100% of the points pass the Gamma test for the uniform case, while 98.9% of the points do it for the lungs case.« less
Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eun Young, E-mail: eyhan@uams.edu; Kim, Dong-Wook; Zhang, Xin
It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently,more » the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy.« less
Tolerancing a lens for LED uniform illumination
NASA Astrophysics Data System (ADS)
Ryu, Jieun; Sasian, Jose
2017-08-01
A method to evaluate tolerance sensitivities for lenses used to produce uniform illumination is presented. Closed form surfaces are used to define optical surfaces and relative illumination is calculated from light etendue considerations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, M; Suh, T; Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul
2015-06-15
Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured formore » TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.« less
Methods for making deposited films with improved microstructures
Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.
1982-01-01
Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or larger planar surfaces.
Deposited films with improved microstructures
Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.
1984-01-01
Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or large planar surfaces.
Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials
NASA Astrophysics Data System (ADS)
Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.
2016-09-01
The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.
NASA Astrophysics Data System (ADS)
Gaddy, Melissa R.; Yıldız, Sercan; Unkelbach, Jan; Papp, Dávid
2018-01-01
Spatiotemporal fractionation schemes, that is, treatments delivering different dose distributions in different fractions, can potentially lower treatment side effects without compromising tumor control. This can be achieved by hypofractionating parts of the tumor while delivering approximately uniformly fractionated doses to the surrounding tissue. Plan optimization for such treatments is based on biologically effective dose (BED); however, this leads to computationally challenging nonconvex optimization problems. Optimization methods that are in current use yield only locally optimal solutions, and it has hitherto been unclear whether these plans are close to the global optimum. We present an optimization framework to compute rigorous bounds on the maximum achievable normal tissue BED reduction for spatiotemporal plans. The approach is demonstrated on liver tumors, where the primary goal is to reduce mean liver BED without compromising any other treatment objective. The BED-based treatment plan optimization problems are formulated as quadratically constrained quadratic programming (QCQP) problems. First, a conventional, uniformly fractionated reference plan is computed using convex optimization. Then, a second, nonconvex, QCQP model is solved to local optimality to compute a spatiotemporally fractionated plan that minimizes mean liver BED, subject to the constraints that the plan is no worse than the reference plan with respect to all other planning goals. Finally, we derive a convex relaxation of the second model in the form of a semidefinite programming problem, which provides a rigorous lower bound on the lowest achievable mean liver BED. The method is presented on five cases with distinct geometries. The computed spatiotemporal plans achieve 12-35% mean liver BED reduction over the optimal uniformly fractionated plans. This reduction corresponds to 79-97% of the gap between the mean liver BED of the uniform reference plans and our lower bounds on the lowest achievable mean liver BED. The results indicate that spatiotemporal treatments can achieve substantial reductions in normal tissue dose and BED, and that local optimization techniques provide high-quality plans that are close to realizing the maximum potential normal tissue dose reduction.
TU-D-209-02: A Backscatter Point Spread Function for Entrance Skin Dose Determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Shankar, A
Purpose: To determine the distribution of backscattered radiation to the skin resulting from a non-uniform distribution of primary radiation through convolution with a backscatter point spread function (PSF). Methods: A backscatter PSF is determined using Monte Carlo simulation of a 1 mm primary beam incident on a 30 × 30 cm × 20 cm thick PMMA phantom using EGSnrc software. A primary profile is similarly obtained without the phantom and the difference from the total provides the backscatter profile. This scatter PSF characterizes the backscatter spread for a “point” primary interaction and can be convolved with the entrance primary dosemore » distribution to obtain the total entrance skin dose. The backscatter PSF was integrated into the skin dose tracking system (DTS), a graphical utility for displaying the color-coded skin dose distribution on a 3D graphic of the patient during interventional fluoroscopic procedures. The backscatter convolution method was validated for the non-uniform beam resulting from the use of an ROI attenuator. The ROI attenuator is a copper sheet with about 20% primary transmission (0.7 mm thick) containing a circular aperture; this attenuator is placed in the beam to reduce dose in the periphery while maintaining full dose in the region of interest. The DTS calculated primary plus backscatter distribution is compared to that measured with GafChromic film and that calculated using EGSnrc Monte-Carlo software. Results: The PSF convolution method used in the DTS software was able to account for the spread of backscatter from the ROI region to the region under the attenuator. The skin dose distribution determined using DTS with the ROI attenuator was in good agreement with the distributions measured with Gafchromic film and determined by Monte Carlo simulation Conclusion: The PSF convolution technique provides an accurate alternative for entrance skin dose determination with non-uniform primary x-ray beams. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
NASA Astrophysics Data System (ADS)
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-01
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Courageot, Estelle; Sayah, Rima; Huet, Christelle
2010-05-07
Estimating the dose distribution in a victim's body is a relevant indicator in assessing biological damage from exposure in the event of a radiological accident caused by an external source. When the dose distribution is evaluated with a numerical anthropomorphic model, the posture and morphology of the victim have to be reproduced as realistically as possible. Several years ago, IRSN developed a specific software application, called the simulation of external source accident with medical images (SESAME), for the dosimetric reconstruction of radiological accidents by numerical simulation. This tool combines voxel geometry and the MCNP(X) Monte Carlo computer code for radiation-material interaction. This note presents a new functionality in this software that enables the modelling of a victim's posture and morphology based on non-uniform rational B-spline (NURBS) surfaces. The procedure for constructing the modified voxel phantoms is described, along with a numerical validation of this new functionality using a voxel phantom of the RANDO tissue-equivalent physical model.
Nanomedicine in pulmonary delivery
Mansour, Heidi M; Rhee, Yun-Seok; Wu, Xiao
2009-01-01
The lung is an attractive target for drug delivery due to noninvasive administration via inhalation aerosols, avoidance of first-pass metabolism, direct delivery to the site of action for the treatment of respiratory diseases, and the availability of a huge surface area for local drug action and systemic absorption of drug. Colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery offer many advantages such as the potential to achieve relatively uniform distribution of drug dose among the alveoli, achievement of improved solubility of the drug from its own aqueous solubility, a sustained drug release which consequently reduces dosing frequency, improves patient compliance, decreases incidence of side effects, and the potential of drug internalization by cells. This review focuses on the current status and explores the potential of colloidal carriers (ie, nanocarrier systems) in pulmonary drug delivery with special attention to their pharmaceutical aspects. Manufacturing processes, in vitro/in vivo evaluation methods, and regulatory/toxicity issues of nanomedicines in pulmonary delivery are also discussed. PMID:20054434
Tajiri, Shinya; Tashiro, Mutsumi; Mizukami, Tomohiro; Tsukishima, Chihiro; Torikoshi, Masami; Kanai, Tatsuaki
2017-11-01
Carbon-ion therapy by layer-stacking irradiation for static targets has been practised in clinical treatments. In order to apply this technique to a moving target, disturbances of carbon-ion dose distributions due to respiratory motion have been studied based on the measurement using a respiratory motion phantom, and the margin estimation given by the square root of the summation Internal margin2+Setup margin2 has been assessed. We assessed the volume in which the variation in the ratio of the dose for a target moving due to respiration relative to the dose for a static target was within 5%. The margins were insufficient for use with layer-stacking irradiation of a moving target, and an additional margin was required. The lateral movement of a target converts to the range variation, as the thickness of the range compensator changes with the movement of the target. Although the additional margin changes according to the shape of the ridge filter, dose uniformity of 5% can be achieved for a spherical target 93 mm in diameter when the upward range variation is limited to 5 mm and the additional margin of 2.5 mm is applied in case of our ridge filter. Dose uniformity in a clinical target largely depends on the shape of the mini-peak as well as on the bolus shape. We have shown the relationship between range variation and dose uniformity. In actual therapy, the upper limit of target movement should be considered by assessing the bolus shape. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
SU-E-T-193: FMEA Severity Scores - Do We Really Know?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, A; Robertson, JD; Narra, V
2014-06-01
Purpose: Mycosis fungoides is a common form of cutaneous T-cell lymphoma which generally affects the skin. A typical course of treatment may include fractionated total skin electron beam therapy. Given the difficulties in uniformly irradiating some regions of the body and the need for frequent visits within the context of a fractionated protocol, this study investigated the feasibility of delivering the dose using form-fitting cloth which contained phosphorous-32 as a source for beta particle irradiation. Methods: A piece of fabric (0.97 g) consisting of a blend of spandex and flame retardant material impregnated with phosphorus-31 (2000 ppm) was bombarded withmore » neutrons to produce phosphorus-32. The cloth was then laid flat and a stack of radiochromic film placed on top. Sheets of film and tissue equivalent plastic were layered to form a stack measuring a total of 1 cm thickness and remained sandwiched for 77.3 hr. Results: The initial activity of the activated cloth was 44 μCi of P-32. The absorbed dose was uniform within planes parallel to the cloth and exponentially dependent on depth, delivering 560cGy at 0.3mm and falling to 20cGy at 3mm. Conclusion: The total dose prescribed for a typical course of TSET for mycosis fungoides is 36Gy delivered over 9 weeks and is expected to treat to at least 5mm depth. Therefore, the P-32 impregnated cloth may not be clinically indicated to treat this disease given the unfavorable depth-dose characteristics. However, a major advantage of using form-fitting cloth is the uniformity with which the dose could be delivered over the skin in areas which are not flat. Increasing the distance between cloth and skin could improve the depth-dose characteristics.« less
Clean focus, dose and CD metrology for CD uniformity improvement
NASA Astrophysics Data System (ADS)
Lee, Honggoo; Han, Sangjun; Hong, Minhyung; Kim, Seungyoung; Lee, Jieun; Lee, DongYoung; Oh, Eungryong; Choi, Ahlin; Kim, Nakyoon; Robinson, John C.; Mengel, Markus; Pablo, Rovira; Yoo, Sungchul; Getin, Raphael; Choi, Dongsub; Jeon, Sanghuck
2018-03-01
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
Vadrucci, M; Esposito, G; Ronsivalle, C; Cherubini, R; Marracino, F; Montereali, R M; Picardi, L; Piccinini, M; Pimpinella, M; Vincenti, M A; De Angelis, C
2015-08-01
To study EBT3 GafChromic film in low-energy protons, and for comparison purposes, in a reference (60)Co beam in order to use it as a calibrated dosimetry system in the proton irradiation facility under construction within the framework of the Oncological Therapy with Protons (TOP)-Intensity Modulated Proton Linear Accelerator for RadioTherapy (IMPLART) Project at ENEA-Frascati, Italy. EBT3 film samples were irradiated at the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Legnaro, Italy, with a 5 MeV proton beam generated by a 7 MV Van de Graaff CN accelerator. The nominal dose rates used were 2.1 Gy/min and 40 Gy/min. The delivered dose was determined by measuring the particle fluence and the energy spectrum in air with silicon surface barrier detector monitors. A preliminary study of the EBT3 film beam quality dependence in low-energy protons was conducted by passively degrading the beam energy. EBT3 films were also irradiated at ENEA-National Institute of Ionizing Radiation Metrology with gamma radiation produced by a (60)Co source characterized by an absorbed dose to water rate of 0.26 Gy/min as measured by a calibrated Farmer type ionization chamber. EBT3 film calibration curves were determined by means of a set of 40 film pieces irradiated to various doses ranging from 0.5 Gy to 30 Gy absorbed dose to water. An EPSON Expression 11000XL color scanner in transmission mode was used for film analysis. Scanner response stability, intrafilm uniformity, and interfilm reproducibility were verified. Optical absorption spectra measurements were performed on unirradiated and irradiated EBT3 films to choose the most sensitive color channel to the dose range used. EBT3 GafChromic films show an under response up to about 33% for low-energy protons with respect to (60)Co gamma radiation, which is consistent with the linear energy transfer dependence already observed with higher energy protons, and a negligible dose-rate dependence in the 2-40 Gy/min range. Short- and long-term scanner stabilities were 0.5% and 1.5%, respectively; film uniformity and reproducibility were better than 0.5%. The main purpose of this study was to implement EBT3 dosimetry in the proton low-energy radiobiology line of the TOP-IMPLART accelerator, having a maximum energy of 7 MeV. Low-energy proton and (60)Co calibrated sources were used to investigate the behavior of film response vs to be written in italicum dose. The calibration in 5 MeV protons is currently used for dose assessment in the radiobiological experiments at the TOP-IMPLART accelerator carried out at that energy value.
NASA Astrophysics Data System (ADS)
Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu
2017-10-01
Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.
Alsulays, Bader B; Fayed, Mohamed H; Alalaiwe, Ahmed; Alshahrani, Saad M; Alshetaili, Abdullah S; Alshehri, Sultan M; Alanazi, Fars K
2018-05-16
The objective of this study was to examine the influence of drug amount and mixing time on the homogeneity and content uniformity of a low-dose drug formulation during the dry mixing step using a new gentle-wing high-shear mixer. Moreover, the study investigated the influence of drug incorporation mode on the content uniformity of tablets manufactured by different methods. Albuterol sulfate was selected as a model drug and was blended with the other excipients at two different levels, 1% w/w and 5% w/w at impeller speed of 300 rpm and chopper speed of 3000 rpm for 30 min. Utilizing a 1 ml unit side-sampling thief probe, triplicate samples were taken from nine different positions in the mixer bowl at selected time points. Two methods were used for manufacturing of tablets, direct compression and wet granulation. The produced tablets were sampled at the beginning, middle, and end of the compression cycle. An analysis of variance analysis indicated the significant effect (p < .05) of drug amount on the content uniformity of the powder blend and the corresponding tablets. For 1% w/w and 5% w/w formulations, incorporation of the drug in the granulating fluid provided tablets with excellent content uniformity and very low relative standard deviation (∼0.61%) during the whole tableting cycle compared to direct compression and granulation method with dry incorporation mode of the drug. Overall, gentle-wing mixer is a good candidate for mixing of low-dose cohesive drug and provides tablets with acceptable content uniformity with no need for pre-blending step.
Development of a facility for high-precision irradiation of cells with carbon ions.
van Goethem, Marc-Jan; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A; Coppes, Robert P; van Luijk, Peter
2011-01-01
Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed +/-1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing the irradiation of cell samples with the specified accuracy. Measurements of the transverse and longitudinal dose distribution showed that the dose variation over the sample volume was +/-0.8% and +/-0.7% in the lateral and longitudinal directions, respectively. The track-averaged LET of 132 +/- 10 keV/microm and dose-averaged LET of 189 +/- 15 keV/microm at the position of the sample were obtained from a GEANT4 simulation, which was validated experimentally. Three separately measured cell-survival curves yielded nearly identical results. With the new facility, high-precision carbon-ion irradiations of biological samples can be performed with highly reproducible results.
Multicentre dose audit for clinical trials of radiation therapy in Asia.
Mizuno, Hideyuki; Fukuda, Shigekazu; Fukumura, Akifumi; Nakamura, Yuzuru-Kutsutani; Jianping, Cao; Cho, Chul-Koo; Supriana, Nana; Dung, To Anh; Calaguas, Miriam Joy; Devi, C R Beena; Chansilpa, Yaowalak; Banu, Parvin Akhter; Riaz, Masooma; Esentayeva, Surya; Kato, Shingo; Karasawa, Kumiko; Tsujii, Hirohiko
2017-05-01
A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
McCaw, Travis J; Micka, John A; Dewerd, Larry A
2011-10-01
Gafchromic(®) EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. EBT2 films were used to measure the flatness of a (60)Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the (60)Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. The marker dye in EBT2 can be used to improve the response uniformity of the film. Depending on the film analysis method used, however, application of a marker-dye correction can improve or degrade the dose uncertainty relative to the net OD method. The uniformity of EBT2 was found to be independent of the time postexposure.
Eserian, Jaqueline K; Lombardo, Márcia; Chagas, Jair R; Galduróz, José C F
2018-02-08
To assess through a systematic review of the literature if the practice of splitting tablets containing psychoactive/psychotropic medications for medical or economic reasons would result in the expected doses. A MEDLINE and PsycInfo comprehensive search of English-language publications from January 1999 to December 2015 was conducted using the terms describing tablet splitting (tablet splitting, split tablets, tablet subdivision, divided tablets, and half tablets) and psychoactive substances (psychoactive medicines, psychotropic medicines, antidepressants, anxiolytics, anticonvulsants, antipsychotics, and antiparkinsonian agents). An additional supplementary search included the references from the articles found. Studies were included if splitting content was directly related to psychoactive medications and examined the effect of tablet splitting on drug uniformity, weight uniformity, and adherence of psychoactive drugs. Articles were systematically reviewed and examined regarding the study design, methodology, and results of the study. A total of 125 articles were screened, and 13 were selected. Tablet splitting implications are extensive, yet substantial deviations from the ideal weight, potency, and dose uniformity are more prone to be important to patient safety. The uneven division of tablets might result in the administration of different doses than what was prescribed, causing under- or overdosing, which might be relevant depending on the drug. In 55% of the cases, splitting psychoactive drugs was satisfactory. It cannot be generalized that splitting psychoactive drugs compromises dose accuracy, thus tablet splitting might still be employed in cases in which the advantages outweigh the disadvantages. It is recommended that alternatives be adopted to prevent the disadvantages related to tablet splitting. © Copyright 2018 Physicians Postgraduate Press, Inc.
NASA Astrophysics Data System (ADS)
Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore
2014-02-01
The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (P<0.05) compared to the other tested doses (1, 2, 3, 4, 6 and 7 J/cm2) and sham irradiated controls. In conclusion, the LLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirey, R; Wu, H
2016-06-15
Purpose: Treatment planning systems (TPS) may not accurately model superficial dose distributions of range shifted proton pencil beam scanning (PBS) treatments. Numerous patient-specific QA tests performed on superficially treated PBS plans have shown a consistent overestimate of dose by the TPS. This study quantifies variations between TPS planned dose and measured dose as a function of range shifter air gap and treatment depths up to 5 cm. Methods: PBS treatment plans were created in the TPS to uniformly irradiate a volume of solid water. One plan was created for each range shifter position analyzed, and all plans utilized identical dosemore » optimization parameters. Each optimized plan was analyzed in the TPS to determine the planned dose at varying depths. A PBS proton therapy system with a 3.5 cm lucite range shifter delivered the treatment plans, and a parallel plate chamber embedded in RW3 solid water measured dose at shallow depths for each air gap. Differences between measured and planned doses were plotted and analyzed. Results: The data show that the TPS more accurately models superficial dose as the air gap between the range shifter and patient surface decreases. Air gaps less than 10 cm have an average dose difference of only 1.6%, whereas air gaps between 10 and 20 cm differ by 3.0% and gaps greater than 20 cm differ by 4.4%. Conclusion: This study has shown that the TPS is unable to accurately model superficial dose with a large range shifter air gap. Dose differences greater than 3% will likely cause QA failure, as many institutions analyze patient QA with a 3%/3mm gamma analysis. For superficial PBS therapy, range shifter positions should be chosen to keep the air gap less then 10 cm when patient setup and gantry geometry allow.« less
TH-EF-BRB-11: Volumetric Modulated Arc Therapy for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, L; Folkerts, M; Hrycushko, B
Purpose: To develop a modern, patient-comfortable total body irradiation (TBI) technique suitable for standard-sized linac vaults. Methods: An indexed rotatable immobilization system (IRIS) was developed to make possible total-body CT imaging and radiation delivery on conventional couches. Treatment consists of multi-isocentric volumetric modulated arc therapy (VMAT) to the upper body and parallel-opposed fields to the lower body. Each isocenter is indexed to the couch and includes a 180° IRIS rotation between the upper and lower body fields. VMAT fields are optimized to satisfy lung dose objectives while achieving a uniform therapeutic dose to the torso. End-to-end tests with a randomore » phantom were used to verify dosimetric characteristics. Treatment plan robustness regarding setup uncertainty was assessed by simulating global and regional isocenter setup shifts on patient data sets. Dosimetric comparisons were made with conventional extended distance, standing TBI (cTBI) plans using a Monte Carlo-based calculation. Treatment efficiency was assessed for eight courses of patient treatment. Results: The IRIS system is level and orthogonal to the scanned CT image plane, with lateral shifts <2mm following rotation. End-to-end tests showed surface doses within ±10% of the prescription dose, field junction doses within ±15% of prescription dose. Plan robustness tests showed <15% changes in dose with global setup errors up to 5mm in each direction. Local 5mm relative setup errors in the chest resulted in < 5% dose changes. Local 5mm shift errors in the pelvic and upper leg junction resulted in <10% dose changes while a 10mm shift error causes dose changes up to 25%. Dosimetric comparison with cTBI showed VMAT-TBI has advantages in preserving chest wall dose with flexibility in leveraging the PTV-body and PTV-lung dose. Conclusion: VMAT-TBI with the IRIS system was shown clinically feasible as a cost-effective approach to TBI for standard-sized linac vaults.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekker, Kurtis H., E-mail: kdekker2@uwo.ca
Purpose: The practical use of the PRESAGE® solid plastic dosimeter is limited by the inconvenience of immersing it in high-viscosity oils to achieve refractive index matching for optical computed tomography (CT) scanning. The oils are slow to mix and difficult to clean from surfaces, and the dosimeter rotation can generate dynamic Schlieren inhomogeneity patterns in the reference liquid, limiting the rotational and overall scan speed. Therefore, it would be beneficial if lower-viscosity, water-based solutions with slightly unmatched refractive index could be used instead. The purpose of this work is to demonstrate the feasibility of allowing mismatched conditions when using amore » scanning laser system with a large acceptance angle detector. A fiducial-based ray path measurement technique is combined with an iterative CT reconstruction algorithm to reconstruct images. Methods: A water based surrounding liquid with a low viscosity was selected for imaging PRESAGE® solid dosimeters. Liquid selection was optimized to achieve as high a refractive index as possible while avoiding rotation-induced Schlieren effects. This led to a refractive index mismatch of 6% between liquid and dosimeters. Optical CT scans were performed with a fan-beam scanning-laser optical CT system with a large area detector to capture most of the refracted rays. A fiducial marker placed on the wall of a cylindrical sample occludes a given light ray twice. With knowledge of the rotation angle and the radius of the cylindrical object, the actual internal path of each ray through the dosimeter can be calculated. Scans were performed with 1024 projections of 512 data samples each, and rays were rebinned to form 512 parallel-beam projections. Reconstructions were performed on a 512 × 512 grid using 100 iterations of the SIRT iterative CT algorithm. Proof of concept was demonstrated with a uniformly attenuating solution phantom. PRESAGE® dosimeters (11 cm diameter) were irradiated with Cobalt-60 irradiator to achieve either a uniform dose or a 2-level “step-dose” pattern. Results: With 6% refractive index mismatching, a circular field of view of 85% of the diameter of a cylindrical sample can be reconstructed accurately. Reconstructed images of the test solution phantom were uniform (within 3%) inside this radius. However, the dose responses of the PRESAGE® samples were not spatially uniform, with variations of at least 5% in sensitivity. The variation appears as a “cupping” artifact with less sensitivity in the middle than at the periphery of the PRESAGE® cylinder. Polarization effects were also detected for these samples. Conclusions: The fiducial-based ray path measurement scheme, coupled with an iterative reconstruction algorithm, enabled optical CT scanning of PRESAGE® dosimeters immersed in mismatched refractive index solutions. However, improvements to PRESAGE® dose response uniformity are required.« less
46 CFR 163.003-21 - Approval tests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... applied uniformly for a period of at least one minute over a contact surface that is at the center of the.... The load must be uniformly distributed over a contact surface that is approximately 100 mm (4 in.) wide. The center of the contact surface must be at the center of the step. This test is performed on...
A small-scale anatomical dosimetry model of the liver
NASA Astrophysics Data System (ADS)
Stenvall, Anna; Larsson, Erik; Strand, Sven-Erik; Jönsson, Bo-Anders
2014-07-01
Radionuclide therapy is a growing and promising approach for treating and prolonging the lives of patients with cancer. For therapies where high activities are administered, the liver can become a dose-limiting organ; often with a complex, non-uniform activity distribution and resulting non-uniform absorbed-dose distribution. This paper therefore presents a small-scale dosimetry model for various source-target combinations within the human liver microarchitecture. Using Monte Carlo simulations, Medical Internal Radiation Dose formalism-compatible specific absorbed fractions were calculated for monoenergetic electrons; photons; alpha particles; and 125I, 90Y, 211At, 99mTc, 111In, 177Lu, 131I and 18F. S values and the ratio of local absorbed dose to the whole-organ average absorbed dose was calculated, enabling a transformation of dosimetry calculations from macro- to microstructure level. For heterogeneous activity distributions, for example uptake in Kupffer cells of radionuclides emitting low-energy electrons (125I) or high-LET alpha particles (211At) the target absorbed dose for the part of the space of Disse, closest to the source, was more than eight- and five-fold the average absorbed dose to the liver, respectively. With the increasing interest in radionuclide therapy of the liver, the presented model is an applicable tool for small-scale liver dosimetry in order to study detailed dose-effect relationships in the liver.
Dosimetric effect on pediatric conformal treatment plans using dynamic jaw with Tomotherapy HDA.
Han, Eun Young; Kim, Dong-Wook; Zhang, Xin; Penagaricano, Jose; Liang, Xiaoying; Hardee, Matthew; Morrill, Steve; Ratanatharathorn, Vaneerat
2015-01-01
It is important to minimize the radiation dose delivered to healthy tissues in pediatric cancer treatment because of the risk of secondary malignancies. Tomotherapy HDA provides a dynamic jaw (DJ) delivery mode that creates a sharper penumbra at the craniocaudal ends of a target in addition to a fixed jaw (FJ) delivery mode. The purpose of this study was to evaluate its dosimetric effect on the pediatric cancer cases. We included 6 pediatric cases in this study. The dose profiles and plan statistics—target dose conformity, uniformity, organ-at-risk (OAR) mean dose, beam-on time, and integral dose—were compared for each case. Consequently, the target dose coverage and uniformity were similar for different jaw settings. The OAR dose sparing depended on its relative location to the target and disease sites. For example, in the head and neck cancer cases, the brain stem dose using DJ 2.5 was reduced by more than two-fold (2.4 Gy vs. 6.3 Gy) than that obtained with FJ 2.5. The integral dose with DJ 2.5 decreased by more than 9% compared with that with FJ 2.5. Thus, using dynamic jaw in pediatric cases could be critical to reduce a probability of a secondary malignancy. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Fields, Emma C; Melvani, Rakhi; Hajdok, George; D'Souza, David; Jones, Bernard; Stuhr, Kelly; Diot, Quentin; Fisher, Christine M; Mukhopadhyay, Nitai; Todor, Dorin
2017-09-01
When brachytherapy doses are reported or added, biologically effective dose (BED) minimum dose covering 90% of the volume (D90) is used as if dose is delivered uniformly to the target. Unlike BED(D90), equivalent uniform BED (EUBED) and generalized biologically equivalent uniform dose (gBEUD) are quantities that integrate dose inhomogeneity. Here we compared BED(D90) and equivalent uniform BED (EUBED)/gBEUD in 3 settings: (1) 2 sites using tandem and ovoid (T&O) but different styles of implants; (2) 2 sites using different devices-T&O and tandem and ring (T&R)-and different styles; and (3) the same site using T&O and T&R with the same style. EUBED and gBEUD were calculated for 260 fractions from 3 institutions using BED(α/β = 10 Gy). EUBED uses an extra parameter α with smaller values associated with radioresistant tumors. Similarly, gBEUD uses a, which places variable emphasis on hot/cold spots. Distributions were compared using the Kolmogorov-Smirnoff test at 5% significance. For the 2 sites using T&O, the distribution of EUBED-BED(D90) was not different for values of α = 0.5 to 0.3 Gy -1 but was statistically different for values of α = 0.15 to 0.05 Gy -1 (P=.01, .002). The mean percentage differences between EUBED and BED(D90) ranged from 20% to 100% for α = 0.5 Gy -1 to 0.05 Gy -1 . Using gBEUD-BED(D90), the P values indicate the distributions to be similar for a = -10 but to be significantly different for other values of a (-5, -1, 1). Between sites and at the same site using T&O versus T&R, the distributions were statistically different with EUBED/gBEUD irrespective of parameter values at which these quantities were computed. These differences indicate that EUBED/gBEUD capture differences between the techniques and applicators that are not detected by the BED(D90). BED(D90) is unable to distinguish between plans created by different devices or optimized differently. EUBED/gBEUD distinguish between dose distributions created by different devices and styles of implant and planning. This discrepancy is particularly important with the increased use of magnetic resonance imaging and hybrid devices, whereby one has the ability to create dose distributions that are significant departures from the classic pear. Copyright © 2017 Elsevier Inc. All rights reserved.
Muselík, Jan; Franc, Aleš; Doležel, Petr; Goněc, Roman; Krondlová, Anna; Lukášová, Ivana
2014-09-01
The article describes the development and production of tablets using direct compression of powder mixtures. The aim was to describe the impact of filler particle size and the time of lubricant addition during mixing on content uniformity according to the Good Manufacturing Practice (GMP) process validation requirements. Processes are regulated by complex directives, forcing the producers to validate, using sophisticated methods, the content uniformity of intermediates as well as final products. Cutting down of production time and material, shortening of analyses, and fast and reliable statistic evaluation of results can reduce the final price without affecting product quality. The manufacturing process of directly compressed tablets containing the low dose active pharmaceutical ingredient (API) warfarin, with content uniformity passing validation criteria, is used as a model example. Statistic methods have proved that the manufacturing process is reproducible. Methods suitable for elucidation of various properties of the final blend, e.g., measurement of electrostatic charge by Faraday pail and evaluation of mutual influences of researched variables by partial least square (PLS) regression, were used. Using these methods, it was proved that the filler with higher particle size increased the content uniformity of both blends and the ensuing tablets. Addition of the lubricant, magnesium stearate, during the blending process improved the content uniformity of blends containing the filler with larger particles. This seems to be caused by reduced sampling error due to the suppression of electrostatic charge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, A; Devlin, P; Bhagwat, M
Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of themore » clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.« less
WE-D-BRE-01: A Sr-90 Irradiation Device for the Study of Cutaneous Radiation Injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorand, JE; Bourland, JD; Burnett, LR
2014-06-15
Purpose: To determine dosimetric character for a custom-built Sr-90 beta irradiator designed for the study of Cutaneous Radiation Injury (CRI) in a porcine animal model. In the event of a radiological accident or terrorist event, Sr-90, a fission by-product, will likely be produced. CRI is a main concern due to the low energy and superficial penetration in tissue of beta particles from Sr-90. Seven 100 mCi plaque Sr-90 radiation sources within a custom-built irradiation device create a 40 mm diameter region of radiation-induced skin injury as part of a larger project to study the efficacy of a topical keratin-based productmore » in CRI healing. Methods: A custom-built mobile irradiation device was designed and implemented for in vivo irradiations. Gafchromic™ EBT3 radiochromic film and a PTW Markus chamber type 23343 were utilized for dosimetric characterization of the beta fluence at the surface produced by this device. Films were used to assess 2-dimensional dose distribution and percent depth dose characteristics of the radiation field. Ion chamber measurements provided dose rate data within the field. Results: The radiation field produced by the irradiation device is homogeneous with high uniformity (∼5%) and symmetry (∼3%) with a steep dose fall-off with depth from the surface. Dose rates were determined to be 3.8 Gy/min and 3.3 Gy/min for film and ion chamber measurements, respectively. A dose rate of 3.4 Gy/min was used to calculate irradiation times for in vivo irradiations. Conclusion: The custom-built irradiation device enables the use of seven Sr-90 beta sources in an array to deliver a 40 mm diameter area of homogeneous skin dose with a dose rate that is useful for research purposes and clinically relevant for the induction of CRI. Doses of 36 and 42 Gy successfully produce Grade III CRI and are used in the study of the efficacy of KeraStat™. This project has been funded in whole or in part with Federal funds from the Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Office of the Secretary, Department of Health and Human Services, under Contract No. HHSO100201200007C.« less
NASA Astrophysics Data System (ADS)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2017-03-01
Cone-beam CT (CBCT) images are routinely acquired to verify patient position in radiotherapy (RT), but are typically not calibrated in Hounsfield Units (HU) and feature non-uniformity due to X-ray scatter and detector persistence effects. This prevents direct use of CBCT for re-calculation of RT delivered dose. We previously developed a prior-image based correction method to restore HU values and improve uniformity of CBCT images. Here we validate the accuracy with which corrected CBCT can be used for dosimetric assessment of RT delivery, using CBCT images and RT plans for 45 patients including pelvis, lung and head sites. Dose distributions were calculated based on each patient's original RT plan and using CBCT image values for tissue heterogeneity correction. Clinically relevant dose metrics were calculated (e.g. median and minimum target dose, maximum organ at risk dose). Accuracy of CBCT based dose metrics was determined using an "override ratio" method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the image is assumed to be constant for each patient, allowing comparison to "gold standard" CT. For pelvis and head images the proportion of dose errors >2% was reduced from 40% to 1.3% after applying shading correction. For lung images the proportion of dose errors >3% was reduced from 66% to 2.2%. Application of shading correction to CBCT images greatly improves their utility for dosimetric assessment of RT delivery, allowing high confidence that CBCT dose calculations are accurate within 2-3%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayan, S; Xiong, Z; Rudin, S
Purpose: The functionality of the Dose-Tracking System (DTS) has been expanded to include the calculation of the Kerma-Area Product (KAP) for non-uniform x-ray fields such as result from the use of compensation filters during fluoroscopic procedures Methods: The DTS calculates skin dose during fluoroscopic interventions and provides a color-coded dose map on a patient-graphic model. The KAP is the integral of air kerma over the x-ray field and is usually measured with a transmission-ionization chamber that intercepts the entire x-ray beam. The DTS has been modified to determine KAP when there are beam non-uniformities that can be modeled. For example,more » the DTS includes models of the three compensation filters with tapered edges located in the collimator assembly of the Toshiba Infinix fluoroscopic C-Arm and can track their movement. To determine the air kerma after the filters, DTS includes transmission factors for the compensation filters as a function of kVp and beam filtration. A virtual KAP dosimeter is simulated in the DTS by an array of graphic vertices; the air kerma at each vertex is corrected by the field non-uniformity, which in this case is the attenuation factor for those rays which pass through the filter. The products of individual vertex air-kerma values for all vertices within the beam times the effective-area-per-vertex are summed for each x-ray pulse to yield the KAP per pulse and the cumulative KAP for the procedure is then calculated. Results: The KAP values estimated by DTS with the compensation filter inserted into the x-ray field agree within ± 6% with the values displayed on the fluoroscopy unit monitor, which are measured with a transmission chamber. Conclusion: The DTS can account for field non-uniformities such as result from the use of compensation filters in calculating KAP and can obviate the need for a KAP transmission ionization chamber. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giantsoudi, D.; Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114; Baltas, D.
2013-04-15
Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the differentmore » dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.« less
Renner, Tim R.; Nyman, Mark A.; Stradtner, Ronald
1991-01-01
A method for fabricating an ion chamber dosimeter collecting array of the type utilizing plural discrete elements formed on a uniform collecting surface which includes forming a thin insulating layer over an aperture in a frame having surfaces, forming a predetermined pattern of through holes in the layer, plating both surfaces of the layer and simultaneously tilting and rotating the frame for uniform plate-through of the holes between surfaces. Aligned masking and patterned etching of the surfaces provides interconnects between the through holes and copper leads provided to external circuitry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, Samuel L., E-mail: samuel.brady@stjude.org; Shulkin, Barry L.
2015-02-15
Purpose: To develop ultralow dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultralow doses (10–35 mA s). CT quantitation: noise, low-contrast resolution, and CT numbers for 11 tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% volume computed tomography dose index (0.39/3.64; mGy) from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET imagesmore » were reconstructed with the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUV{sub bw}) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative dose reduction and noise control. Results: CT numbers were constant to within 10% from the nondose reduced CTAC image for 90% dose reduction. No change in SUV{sub bw}, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols was found down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62% and 86% (3.2/8.3–0.9/6.2). Noise magnitude in dose-reduced patient images increased but was not statistically different from predose-reduced patient images. Conclusions: Using ASiR allowed for aggressive reduction in CT dose with no change in PET reconstructed images while maintaining sufficient image quality for colocalization of hybrid CT anatomy and PET radioisotope uptake.« less
A tuneable approach to uniform light distribution for artificial daylight photodynamic therapy.
O'Mahoney, Paul; Haigh, Neil; Wood, Kenny; Brown, C Tom A; Ibbotson, Sally; Eadie, Ewan
2018-06-16
Implementation of daylight photodynamic therapy (dPDT) is somewhat limited by variable weather conditions. Light sources have been employed to provide artificial dPDT indoors, with low irradiances and longer treatment times. Uniform light distribution across the target area is key to ensuring effective treatment, particularly for large areas. A novel light source is developed with tuneable direction of light emission in order to meet this challenge. Wavelength composition of the novel light source is controlled such that the protoporphyrin-IX (PpIX) weighed spectra of both the light source and daylight match. The uniformity of the light source is characterised on a flat surface, a model head and a model leg. For context, a typical conventional PDT light source is also characterised. Additionally, the wavelength uniformity across the treatment site is characterised. The PpIX-weighted spectrum of the novel light source matches with PpIX-weighted daylight spectrum, with irradiance values within the bounds for effective dPDT. By tuning the direction of light emission, improvements are seen in the uniformity across large anatomical surfaces. Wavelength uniformity is discussed. We have developed a light source that addresses the challenges in uniform, multiwavelength light distribution for large area artificial dPDT across curved anatomical surfaces. Copyright © 2018. Published by Elsevier B.V.
Radiological assessment. A textbook on environmental dose analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Till, J.E.; Meyer, H.R.
1983-09-01
Radiological assessment is the quantitative process of estimating the consequences to humans resulting from the release of radionuclides to the biosphere. It is a multidisciplinary subject requiring the expertise of a number of individuals in order to predict source terms, describe environmental transport, calculate internal and external dose, and extrapolate dose to health effects. Up to this time there has been available no comprehensive book describing, on a uniform and comprehensive level, the techniques and models used in radiological assessment. Radiological Assessment is based on material presented at the 1980 Health Physics Society Summer School held in Seattle, Washington. Themore » material has been expanded and edited to make it comprehensive in scope and useful as a text. Topics covered include (1) source terms for nuclear facilities and Medical and Industrial sites; (2) transport of radionuclides in the atmosphere; (3) transport of radionuclides in surface waters; (4) transport of radionuclides in groundwater; (5) terrestrial and aquatic food chain pathways; (6) reference man; a system for internal dose calculations; (7) internal dosimetry; (8) external dosimetry; (9) models for special-case radionuclides; (10) calculation of health effects in irradiated populations; (11) evaluation of uncertainties in environmental radiological assessment models; (12) regulatory standards for environmental releases of radionuclides; (13) development of computer codes for radiological assessment; and (14) assessment of accidental releases of radionuclides.« less
Highlighting non-uniform temperatures close to liquid/solid surfaces
NASA Astrophysics Data System (ADS)
Noirez, L.; Baroni, P.; Bardeau, J. F.
2017-05-01
The present experimental measurements reveal that similar to external fields such as electric, magnetic, or flow fields, the vicinity of a solid surface can preclude the liquid molecules from relaxing to equilibrium, generating located non-uniform temperatures. The non-uniform temperature zone extends up to several millimeters within the liquid with a lower temperature near the solid wall (reaching ΔT = -0.15 °C ± 0.02 °C in the case of liquid water) counterbalanced at larger distances by a temperature rise. These effects highlighted by two independent methods (thermistor measurement and infra-red emissivity) are particularly pronounced for highly wetting surfaces. The scale over which non-uniform temperatures are extended indicates that the effect is assisted by intermolecular interactions, in agreement with recent developments showing that liquids possess finite shear elasticity and theoretical approaches integrating long range correlations.
Dosimetry for radiobiological studies of the human hematopoietic system
NASA Technical Reports Server (NTRS)
Beck, W. L.; Stokes, T. R.; Lushbaugh, C. C.
1972-01-01
A system for estimating individual bone marrow doses in therapeutic radiation exposures of leukemia patients was studied. These measurements are used to make dose response correlations and to study the effect of dose protraction on peripheral blood cell levels. Three irradiators designed to produce a uniform field of high energy gamma radiation for total body exposures of large animals and man are also used for radiobiological studies.
Brodin, N Patrik; Velcich, Anna; Guha, Chandan; Tomé, Wolfgang A
2017-01-01
Currently, no readily available mitigators exist for acute abdominal radiation injury. Here, we present an animal model for precise and homogenous limb-sparing abdominal irradiation (LSAIR) to study the radiation-induced gastrointestinal syndrome (RIGS). The LSAIR technique was developed using the small animal radiation research platform (SARRP) with image guidance capabilities. We delivered LSAIR at doses between 14 and 18 Gy on 8- to 10-week-old male C57BL/6 mice. Histological analysis was performed to confirm that the observed mortality was due to acute abdominal radiation injury. A steep dose-response relationship was found for survival, with no deaths seen at doses below 16 Gy and 100% mortality at above 17 Gy. All deaths occurred between 6 and 10 days after irradiation, consistent with the onset of RIGS. This was further confirmed by histological analysis showing clear differences in the number of regenerative intestinal crypts between animals receiving sublethal (14 Gy) and 100% lethal (18 Gy) radiation. The developed LSAIR technique provides uniform dose delivery with a clear dose response, consistent with acute abdominal radiation injury on histological examination. This model can provide a useful tool for researchers investigating the development of mitigators for accidental or clinical high-dose abdominal irradiation.
Effects of beam irregularity on uniform scanning
NASA Astrophysics Data System (ADS)
Kim, Chang Hyeuk; Jang, Sea duk; Yang, Tae-Keun
2016-09-01
An active scanning beam delivery method has many advantages in particle beam applications. For the beam is to be successfully delivered to the target volume by using the active scanning technique, the dose uniformity must be considered and should be at least 2.5% in the case of therapy application. During beam irradiation, many beam parameters affect the 2-dimensional uniformity at the target layer. A basic assumption in the beam irradiation planning stage is that the shape of the beam is symmetric and follows a Gaussian distribution. In this study, a pure Gaussian-shaped beam distribution was distorted by adding parasitic Gaussian distribution. An appropriate uniform scanning condition was deduced by using a quantitative analysis based on the gamma value of the distorted beam and 2-dimensional uniformities.
NASA Astrophysics Data System (ADS)
Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram
Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Wei, Xian-ding; Zhao, Yu-tian
2014-07-01
To investigate the dosimetric characteristics of irradiation of the chest wall and supraclavicular region as an integrated volume with intensity-modulated radiation therapy (IMRT) after modified radical mastectomy. This study included 246 patients who received modified radical mastectomy. The patients were scanned with computed tomography, and the chest wall (with or without the internal mammary lymph nodes) and supraclavicular region were delineated. For 143 patients, the chest wall and supraclavicular region were combined as an integrated planning volume and treated with IMRT. For 103 patients, conventional treatments were employed with 2 tangential fields for the chest wall, abutting a mixed fieldmore » of 6-MV x-rays (16 Gy) and 9-MeV electrons (34 Gy) for the upper supraclavicular region. The common prescription dose was 50 Gy/25 Fx/5 W to 90% of the target volume. The dosimetric characteristics of the chest wall, the supraclavicular region, and normal organs were compared. For the chest wall target, compared with conventional treatments, the integrated IMRT plans lowered the maximum dose, increased the minimum dose, and resulted in better conformity and uniformity of the target volume. There was an increase in minimum, average, and 95% prescription dose for the integrated IMRT plans in the supraclavicular region, and conformity and uniformity were improved. The V{sub 30} of the ipsilateral lung and V{sub 10}, V{sub 30}, and mean dose of the heart on the integrated IMRT plans were lower than those of the conventional plans. The V{sub 5} and V{sub 10} of the ipsilateral lung and V{sub 5} of the heart were higher on the integrated IMRT plans (p < 0.05) than on conventional plans. Without an increase in the radiation dose to organs at risk, the integrated IMRT treatment plans improved the dose distribution of the supraclavicular region and showed better dose conformity and uniformity of the integrated target volume of the chest wall and supraclavicular region.« less
Application of fluence field modulation to proton computed tomography for proton therapy imaging.
Dedes, G; De Angelis, L; Rit, S; Hansen, D; Belka, C; Bashkirov, V; Johnson, R P; Coutrakon, G; Schubert, K E; Schulte, R W; Parodi, K; Landry, G
2017-07-12
This simulation study presents the application of fluence field modulated computed tomography, initially developed for x-ray CT, to proton computed tomography (pCT). By using pencil beam (PB) scanning, fluence modulated pCT (FMpCT) may achieve variable image quality in a pCT image and imaging dose reduction. Three virtual phantoms, a uniform cylinder and two patients, were studied using Monte Carlo simulations of an ideal list-mode pCT scanner. Regions of interest (ROI) were selected for high image quality and only PBs intercepting them preserved full fluence (FF). Image quality was investigated in terms of accuracy (mean) and noise (standard deviation) of the reconstructed proton relative stopping power compared to reference values. Dose calculation accuracy on FMpCT images was evaluated in terms of dose volume histograms (DVH), range difference (RD) for beam-eye-view (BEV) dose profiles and gamma evaluation. Pseudo FMpCT scans were created from broad beam experimental data acquired with a list-mode pCT prototype. FMpCT noise in ROIs was equivalent to FF images and accuracy better than -1.3%(-0.7%) by using 1% of FF for the cylinder (patients). Integral imaging dose reduction of 37% and 56% was achieved for the two patients for that level of modulation. Corresponding DVHs from proton dose calculation on FMpCT images agreed to those from reference images and 96% of BEV profiles had RD below 2 mm, compared to only 1% for uniform 1% of FF. Gamma pass rates (2%, 2 mm) were 98% for FMpCT while for uniform 1% of FF they were as low as 59%. Applying FMpCT to preliminary experimental data showed that low noise levels and accuracy could be preserved in a ROI, down to 30% modulation. We have shown, using both virtual and experimental pCT scans, that FMpCT is potentially feasible and may allow a means of imaging dose reduction for a pCT scanner operating in PB scanning mode. This may be of particular importance to proton therapy given the low integral dose found outside the target.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Rana, S; Larson, G
Purpose: To analyze the toxicity of uniform scanning proton therapy for lung cancer patients and its correlation with dose distribution. Methods: In this study, we analyzed the toxicity of 128 lung cancer patients, including 18 small cell lung cancer and 110 non small cell lung cancer patients. Each patient was treated with uniform scanning proton beams at our center using typically 2–4 fields. The prescription was typically 74 Cobalt gray equivalent (CGE) at 2 CGE per fraction. 4D Computerized Tomography (CT) scans were used to evaluate the target motion and contour the internal target volume, and repeated 3 times duringmore » the course of treatment to evaluate the need for plan adaptation. Toxicity data for these patients were obtained from the proton collaborative group (PCG) database. For cases of grade 3 toxicities or toxicities of interest such as esophagitis and radiation dermatitis, dose distributions were reviewed and analyzed in attempt to correlate the toxicity with radiation dose. Results: At a median follow up time of about 21 months, none of the patients had experienced Grade 4 or 5 toxicity. The most common adverse effect was dermatitis (81%: 52%-Grade 1, 28%-Grade 2, and 1% Grade 3), followed by fatigue (48%), Cough (46%), and Esophagitis (45%), as shown in Figure 1. Severe toxicities, such as Grade 3 dermatitis or pain of skin, had a clear correlation with high radiation dose. Conclusion: Uniform scanning proton therapy is well tolerated by lung cancer patients. Preliminary analysis indicates there is correlation between severe toxicity and high radiation dose. Understanding of radiation resulted toxicities and careful choice of beam arrangement are critical in minimizing toxicity of skin and other organs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brady, S; Shulkin, B
Purpose: To develop ultra-low dose computed tomography (CT) attenuation correction (CTAC) acquisition protocols for pediatric positron emission tomography CT (PET CT). Methods: A GE Discovery 690 PET CT hybrid scanner was used to investigate the change to quantitative PET and CT measurements when operated at ultra-low doses (10–35 mAs). CT quantitation: noise, low-contrast resolution, and CT numbers for eleven tissue substitutes were analyzed in-phantom. CT quantitation was analyzed to a reduction of 90% CTDIvol (0.39/3.64; mGy) radiation dose from baseline. To minimize noise infiltration, 100% adaptive statistical iterative reconstruction (ASiR) was used for CT reconstruction. PET images were reconstructed withmore » the lower-dose CTAC iterations and analyzed for: maximum body weight standardized uptake value (SUVbw) of various diameter targets (range 8–37 mm), background uniformity, and spatial resolution. Radiation organ dose, as derived from patient exam size specific dose estimate (SSDE), was converted to effective dose using the standard ICRP report 103 method. Effective dose and CTAC noise magnitude were compared for 140 patient examinations (76 post-ASiR implementation) to determine relative patient population dose reduction and noise control. Results: CT numbers were constant to within 10% from the non-dose reduced CTAC image down to 90% dose reduction. No change in SUVbw, background percent uniformity, or spatial resolution for PET images reconstructed with CTAC protocols reconstructed with ASiR and down to 90% dose reduction. Patient population effective dose analysis demonstrated relative CTAC dose reductions between 62%–86% (3.2/8.3−0.9/6.2; mSv). Noise magnitude in dose-reduced patient images increased but was not statistically different from pre dose-reduced patient images. Conclusion: Using ASiR allowed for aggressive reduction in CTAC dose with no change in PET reconstructed images while maintaining sufficient image quality for co-localization of hybrid CT anatomy and PET radioisotope uptake.« less
Dose optimization of total or partial skin electron irradiation by thermoluminescent dosimetry.
Schüttrumpf, Lars; Neumaier, Klement; Maihoefer, Cornelius; Niyazi, Maximilian; Ganswindt, Ute; Li, Minglun; Lang, Peter; Reiner, Michael; Belka, Claus; Corradini, Stefanie
2018-05-01
Due to the complex surface of the human body, total or partial skin irradiation using large electron fields is challenging. The aim of the present study was to quantify the magnitude of dose optimization required after the application of standard fields. Total skin electron irradiation (TSEI) was applied using the Stanford technique with six dual-fields. Patients presenting with localized lesions were treated with partial skin electron irradiation (PSEI) using large electron fields, which were individually adapted. In order to verify and validate the dose distribution, in vivo dosimetry with thermoluminescent dosimeters (TLD) was performed during the first treatment fraction to detect potential dose heterogeneity and to allow for an individual dose optimization with adjustment of the monitor units (MU). Between 1984 and 2017, a total of 58 patients were treated: 31 patients received TSEI using 12 treatment fields, while 27 patients underwent PSEI and were treated with 4-8 treatment fields. After evaluation of the dosimetric results, an individual dose optimization was necessary in 21 patients. Of these, 7 patients received TSEI (7/31). Monitor units (MU) needed to be corrected by a mean value of 117 MU (±105, range 18-290) uniformly for all 12 treatment fields, corresponding to a mean relative change of 12% of the prescribed MU. In comparison, the other 14 patients received PSEI (14/27) and the mean adjustment of monitor units was 282 MU (±144, range 59-500) to single or multiple fields, corresponding to a mean relative change of 22% of the prescribed MU. A second dose optimization to obtain a satisfying dose at the prescription point was need in 5 patients. Thermoluminescent dosimetry allows an individual dose optimization in TSEI and PSEI to enable a reliable adjustment of the MUs to obtain the prescription dose. Especially in PSEI in vivo dosimetry is of fundamental importance.
NASA Astrophysics Data System (ADS)
Hilmy, N.; Febrida, A.; Basril, A.
2007-11-01
Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.
Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan
2016-12-01
To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels) as a function of dose were constructed for each reconstruction algorithm and background texture. FBP and SAFIRE were compared for each background type to determine the improvement in detectability at a given dose, and the reduced dose at which SAFIRE had equivalent performance compared to FBP at 100% dose. Detectability increased with increasing radiation dose (P = 2.7 × 10 -59 ) and contrast level (P = 2.2 × 10 -86 ) and was higher in the uniform phantom compared to the textured phantoms (P = 6.9 × 10 -51 ). Overall, SAFIRE had higher d' compared to FBP (P = 0.02). The estimated dose reduction potential of SAFIRE was found to be 8%, 10%, 27%, and 8% for Texture-A, Texture-B, Texture-C and uniform phantoms. In all background types, detectability was higher with SAFIRE compared to FBP. However, the relative improvement observed from SAFIRE was highly dependent on the complexity of the background texture. Iterative algorithms such as SAFIRE should be assessed in the most realistic context possible.
Dose properties of a laser accelerated electron beam and prospects for clinical application.
Kainz, K K; Hogstrom, K R; Antolak, J A; Almond, P R; Bloch, C D; Chiu, C; Fomytskyi, M; Raischel, F; Downer, M; Tajima, T
2004-07-01
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to document the necessary improvements to make radiotherapy application for LWFA viable. This paper first qualitatively reviews the fundamental principles of LWFA and describes a potential design for a 30 cm accelerator chamber containing a gas target. Electron beam energy spectra, upon which our dose calculations are based, were obtained from a uniform energy distribution and from two-dimensional particle-in-cell (2D PIC) simulations. The 2D PIC simulation parameters are consistent with those reported by a previous LWFA experiment. According to the 2D PIC simulations, only approximately 0.3% of the LWFA electrons are emitted with an energy greater than 1 MeV. We studied only the high-energy electrons to determine their potential for clinical electron beams of central energy from 9 to 21 MeV. Each electron beam was broadened and flattened by designing a dual scattering foil system to produce a uniform beam (103%>off-axis ratio>95%) over a 25 x 25 cm2 field. An energy window (deltaE) ranging from 0.5 to 6.5 MeV was selected to study central-axis depth dose, beam flatness, and dose rate. Dose was calculated in water at a 100 cm source-to-surface distance using the EGS/BEAM Monte Carlo algorithm. Calculations showed that the beam flatness was fairly insensitive to deltaE. However, since the falloff of the depth-dose curve (R10-R90) and the dose rate both increase with deltaE, a tradeoff between minimizing (R10-R90) and maximizing dose rate is implied. If deltaE is constrained so that R10-R90 is within 0.5 cm of its value for a monoenergetic beam, the maximum practical dose rate based on 2D PIC is approximately 0.1 Gy min(-1) for a 9 MeV beam and 0.03 Gy min(-1) for a 15 MeV beam. It was concluded that current LWFA technology should allow a table-top terawatt (T3) laser to produce therapeutic electron beams that have acceptable flatness, penetration, and falloff of depth dose; however, the dose rate is still 1%-3% of that which would be acceptable, especially for higher-energy electron beams. Further progress in laser technology, e.g., increasing the pulse repetition rate or number of high energy electrons generated per pulse, is necessary to give dose rates acceptable for electron beams. Future measurements confirming dosimetric calculations are required to substantiate our results. In addition to achieving adequate dose rate, significant engineering developments are needed for this technology to compete with current electron acceleration technology. Also, the functional benefits of LWFA electron beams require further study and evaluation.
Santoveña, A; Sánchez-Negrín, E; Charola, L; Llabrés, M; Fariña, J B
2014-12-30
This paper describes a rational method of characterizing the biopharmaceutical stability of two oral suspensions of ursodeoxycholic acid (UDCA) used in pediatrics. Because there is no commercial presentation of UDCA that can administer appropriate doses for infants and children, an active pharmaceutical ingredient (API) formulation is required. Due to its very low solubility and low dose in the formula (1.5%), two different suspensions with minimal use of excipients were studied, avoiding the use of complex additives and those not recommended by the European Medicines Agency (EMA). Adherence to Standard Operating Procedure (SOP) allows the preparation of formulations with appropriately sized and stable particles, and suitable rheological behavior in withdrawing the dose after stirring. Dose uniformity, expressed as mass and content variability, was determined using the criteria of the European and the United States Pharmacopoeia. Additionally, dose content variation of every mass determined was studied. A rational method was developed for determining the dose uniformity of UDCA in suspensions, whether freshly prepared or after storage under different conditions for 30 and 60 days. This method permits detection of differences between doses taken at different heights in the vessel at various times and storage conditions. UDCA was stable under all conditions studied, requiring the presence of glycerol in the formulation to obtain the declared API value after stirring. Storage of UDCA suspensions in a refrigerator increased variability between doses. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Hojin; Li, Ruijiang; Lee, Rena; Xing, Lei
2015-03-01
Conventional VMAT optimizes aperture shapes and weights at uniformly sampled stations, which is a generalization of the concept of a control point. Recently, rotational station parameter optimized radiation therapy (SPORT) has been proposed to improve the plan quality by inserting beams to the regions that demand additional intensity modulations, thus formulating non-uniform beam sampling. This work presents a new rotational SPORT planning strategy based on reweighted total-variation (TV) minimization (min.), using beam’s-eye-view dosimetrics (BEVD) guided beam selection. The convex programming based reweighted TV min. assures the simplified fluence-map, which facilitates single-aperture selection at each station for single-arc delivery. For the rotational arc treatment planning and non-uniform beam angle setting, the mathematical model needs to be modified by additional penalty term describing the fluence-map similarity and by determination of appropriate angular weighting factors. The proposed algorithm with additional penalty term is capable of achieving more efficient and deliverable plans adaptive to the conventional VMAT and SPORT planning schemes by reducing the dose delivery time about 5 to 10 s in three clinical cases (one prostate and two head-and-neck (HN) cases with a single and multiple targets). The BEVD guided beam selection provides effective and yet easy calculating methodology to select angles for denser, non-uniform angular sampling in SPORT planning. Our BEVD guided SPORT treatment schemes improve the dose sparing to femoral heads in the prostate and brainstem, parotid glands and oral cavity in the two HN cases, where the mean dose reduction of those organs ranges from 0.5 to 2.5 Gy. Also, it increases the conformation number assessing the dose conformity to the target from 0.84, 0.75 and 0.74 to 0.86, 0.79 and 0.80 in the prostate and two HN cases, while preserving the delivery efficiency, relative to conventional single-arc VMAT plans.
Estimating thyroid dose in pediatric CT exams from surface dose measurement
NASA Astrophysics Data System (ADS)
Al-Senan, Rani; Mueller, Deborah L.; Hatab, Mustapha R.
2012-07-01
The purpose of this study was to investigate the possibility of estimating pediatric thyroid doses from CT using surface neck doses. Optically stimulated luminescence dosimeters were used to measure the neck surface dose of 25 children ranging in ages between one and three years old. The neck circumference for each child was measured. The relationship between obtained surface doses and thyroid dose was studied using acrylic phantoms of various sizes and with holes of different depths. The ratios of hole-to-surface doses were used to convert patients' surface dose to thyroid dose. ImPACT software was utilized to calculate thyroid dose after applying the appropriate age correction factors. A paired t-test was performed to compare thyroid doses from our approach and ImPACT. The ratio of thyroid to surface dose was found to be 1.1. Thyroid doses ranged from 20 to 80 mGy. Comparison showed no statistical significance (p = 0.18). In addition, the average of surface dose variation along the z-axis in helical scans was studied and found to range between 5% (in 10 cm diameter phantom/24 mm collimation/pitch 1.0) and 8% (in 16 cm diameter phantom/12 mm collimation/pitch 0.7). We conclude that surface dose is an acceptable predictor for pediatric thyroid dose from CT. The uncertainty due to surface dose variability may be reduced if narrower collimation is used with a pitch factor close to 1.0. Also, the results did not show any effect of thyroid depth on the measured dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreozzi, J; Zhang, R; Glaser, A
Purpose: To evaluate treatment field heterogeneity resulting from gantry angle choice in total skin electron beam therapy (TSEBT) following a modified Stanford dual-field technique, and determine a relationship between source to surface distance (SSD) and optimized gantry angle spread. Methods: Cherenkov imaging was used to image 62 treatment fields on a sheet of 1.2m x 2.2m x 1.2cm polyethylene following standard TSEBT setup at our institution (6 MeV, 888 MU/min, no spoiler, SSD=441cm), where gantry angles spanned from 239.5° to 300.5° at 1° increments. Average Cherenkov intensity and coefficient of variation in the region of interest were compared for themore » set of composite Cherenkov images created by summing all unique combinations of angle pairs to simulate dual-field treatment. The angle pair which produced the lowest coefficient of variation was further studied using an ionization chamber. The experiment was repeated at SSD=300cm, and SSD=370.5cm. Cherenkov imaging was also implemented during TSEBT of three patients. Results: The most uniform treatment region from a symmetric angle spread was achieved using gantry angles +/−17.5° about the horizontal axis at SSD=441cm, +/−18.5° at SSD=370.5cm, and +/−19.5° at SSD=300cm. Ionization chamber measurements comparing the original treatment spread (+/−14.5°) and the optimized angle pair (+/−17.5°) at SSD=441cm showed no significant deviation (r=0.999) in percent depth dose curves, and chamber measurements from nine locations within the field showed an improvement in dose uniformity from 24.41% to 9.75%. Ionization chamber measurements correlated strongly (r=0.981) with Cherenkov intensity measured concurrently on the flat Plastic Water phantom. Patient images and TLD results also showed modest uniformity improvements. Conclusion: A decreasing linear relationship between optimal angle spread and SSD was observed. Cherenkov imaging offers a new method of rapidly analyzing and optimizing TSEBT setup geometry by providing a 2D image of the treatment plane as a sum of the two fields. This study has been funded by NIH grants R21EB17559 and R01CA109558 as well as Norris Cotton Cancer Center Pilot funding.« less
Alloy nanoparticle synthesis using ionizing radiation
Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC
2011-08-16
A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.
Kelly-Wintenberg, K; Montie, T C; Brickman, C; Roth, J R; Carr, A K; Sorge, K; Wadsworth, L C; Tsai, P P
1998-01-01
We report the results of an interdisciplinary collaboration formed to assess the sterilizing capabilities of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). This newly-invented source of glow discharge plasma (the fourth state of matter) is capable of operating at atmospheric pressure in air and other gases, and of providing antimicrobial active species to surfaces and workpieces at room temperature as judged by viable plate counts. OAUGDP exposures have reduced log numbers of bacteria, Staphylococcus aureus and Escherichia coli, and endospores from Bacillus stearothermophilus and Bacillus subtilis on seeded solid surfaces, fabrics, filter paper, and powdered culture media at room temperature. Initial experimental data showed a two-log10 CFU reduction of bacteria when 2 x 10(2) cells were seeded on filter paper. Results showed > or = 3 log10 CFU reduction when polypropylene samples seeded with E. coli (5 x 10(4)) were exposed, while a 30 s exposure time was required for similar killing with S. aureus-seeded polypropylene samples. The exposure times required to effect > or = 6 log10 CFU reduction of E. coli and S. aureus on polypropylene samples were no longer than 30 s. Experiments with seeded samples in sealed commercial sterilization bags showed little or no differences in exposure times compared to unwrapped samples. Plasma exposure times of less than 5 min generated > or = 5 log10 CFU reduction of commercially prepared Bacillus subtilis spores (1 x 10(5)); 7 min OAUGDP exposures were required to generate a > or = 3 log10 CFU reduction for Bacillus stearothermophilus spores. For all microorganisms tested, a biphasic curve was generated when the number of survivors vs time was plotted in dose-response cures. Several proposed mechanisms of killing at room temperature by the OAUGDP are discussed.
Introduction of a deformable x-ray CT polymer gel dosimetry system
NASA Astrophysics Data System (ADS)
Maynard, E.; Heath, E.; Hilts, M.; Jirasek, A.
2018-04-01
This study introduces the first 3D deformable dosimetry system based on x-ray computed tomography (CT) polymer gel dosimetry and establishes the setup reproducibility, deformation characteristics and dose response of the system. A N-isopropylacrylamide (NIPAM)-based gel formulation optimized for x-ray CT gel dosimetry was used, with a latex balloon serving as the deformable container and low-density polyethylene and polyvinyl alcohol providing additional oxygen barrier. Deformable gels were irradiated with a 6 MV calibration pattern to determine dosimetric response and a dosimetrically uniform plan to determine the spatial uniformity of the response. Wax beads were added to each gel as fiducial markers to track the deformation and setup of the gel dosimeters. From positions of the beads on CT images the setup reproducibility and the limits and reproducibility of gel deformation were determined. Comparison of gel measurements with Monte Carlo dose calculations found excellent dosimetric accuracy, comparable to that of an established non-deformable dosimetry system, with a mean dose discrepancy of 1.5% in the low-dose gradient region and a gamma pass rate of 97.9% using a 3%/3 mm criterion. The deformable dosimeter also showed good overall spatial dose uniformity throughout the dosimeter with some discrepancies within 20 mm of the edge of the container. Tracking of the beads within the dosimeter found that sub-millimetre setup accuracy is achievable with this system. The dosimeter was able to deform and relax when externally compressed by up to 30 mm without sustaining any permanent damage. Internal deformations in 3D produced average marker movements of up to 12 mm along the direction of compression. These deformations were also shown to be reproducible over 100 consecutive deformations. This work has established several important characteristics of a new deformable dosimetry system which shows promise for future clinical applications, including the validation of deformable dose accumulation algorithms.
Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.
Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi
2018-05-01
Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Kainz, Kristofer; Firat, Selim; Wilson, J Frank; Schultz, Christopher; Siker, Malika; Wang, Andrew; Olson, Dan; Li, X Allen
2015-03-21
We compare the quality of photon IMRT (helical tomotherapy) with classic proton plans for brain, head and neck tumors, in terms of target dose uniformity and conformity along with organ-at-risk (OAR) sparing. Plans were created for twelve target volumes among eight cases. All patients were originally planned and treated using helical tomotherapy. Proton plans were generated using a passively-scattered beam model with a maximum range of 32 g cm(-2) (225 MeV), range modulation in 0.5 g cm(-2) increments and range compensators with 4.8 mm milling tool diameters. All proton plans were limited to two to four beams. Plan quality was compared using uniformity index (UI), conformation number (CN) and a EUD-based plan quality index (fEUD). For 11 of the 12 targets, UI was improved for the proton plan; on average, UI was 1.05 for protons versus 1.08 for tomotherapy. For 7 of the 12 targets, the tomotherapy plan exhibited more favorable CN. For proximal OARs, the improved dose conformity to the target volume from tomotherapy led to a lower maximum dose. For distal OARs, the maximum dose was much lower for proton plans. For 6 of the 8 cases, near-total avoidance for distal OARs provided by protons leads to improved fEUD. However, if distal OARs are excluded in the fEUD calculation, the proton plans exhibit better fEUD in only 3 of the 8 cases. The distal OAR sparing and target dose uniformity are generally better with passive-scatter proton planning than with photon tomotherapy; proton therapy may be preferred if the clinician deems those attributes critical. However, tomotherapy may serve equally as well as protons for cases where superior target dose conformity from tomotherapy leads to plan quality nearly identical to or better than protons and for cases where distal OAR sparing is not concerning.
Effect of surface deposits on electromagnetic waves propagating in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Hydrostatic bearings for a turbine fluid flow metering device
Fincke, J.R.
1980-05-02
A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.
Layer uniformity in glucose oxidase immobilization on SiO 2 surfaces
NASA Astrophysics Data System (ADS)
Libertino, Sebania; Scandurra, Antonino; Aiello, Venera; Giannazzo, Filippo; Sinatra, Fulvia; Renis, Marcella; Fichera, Manuela
2007-09-01
The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO 2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.
Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model
NASA Technical Reports Server (NTRS)
Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.;
2012-01-01
In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwid, M; Zhang, H
Purpose: The purpose of this study was to evaluate the dosimetric impact of beam energy to the IORT treatment of residual cancer cells with different cancer cell distributions after breast-conserving surgery. Methods: The three dimensional (3D) radiation doses of IORT using a 4-cm spherical applicator at the energy of 40 keV and 50 keV were separately calculated at different depths of the postsurgical tumor bed. The modified linear quadratic model (MLQ) was used to estimate the radiobiological response of the tumor cells assuming different radio-sensitivities and density distributions. The impact of radiation was evaluated for two types of breast cancermore » cell lines (α /β=10, and α /β =3.8) at 20 Gy dose prescribed at the applicator surface. Cancer cell distributions in the postsurgical tissue field were assumed to be a Gaussian with the standard deviations of 0.5, 1 and 2 mm respectively, namely the cancer cell infiltrations of 1.5, 3, and 6 mm respectively. The surface cancer cell percentage was assumed to be 0.01%, 0.1%, 1% and 10% separately. The equivalent uniform doses (EUD) for all the scenarios were calculated. Results: The EUDs were found to be dependent on the distributions of cancer cells, but independent of the cancer cell radio-sensitivities and the density at the surface. EUDs of 50 keV are 1% larger than that of 40 keV. For a prescription dose of 20 Gy, EUDs of 50 keV beam are 17.52, 16.21 and 13.14 Gy respectively for 0.5, 1.0 and 2.0 mm of the standard deviation of cancer cell Gaussian distributions. Conclusion: The impact by selected energies of IORT beams is very minimal. When energy is changed from 50 keV to 40 keV, the EUDs are almost the same for the same cancer cell distribution. 40 keV can be safely used as an alternative of 50 keV beam in IORT.« less
Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma
NASA Technical Reports Server (NTRS)
Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.
1998-01-01
Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid
2010-06-01
We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 muSv). We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
Vaithilingam, Vijayaganapathy; Steinkjer, Bjørg; Ryan, Liv; Larsson, Rolf; Tuch, Bernard Edward; Oberholzer, Jose; Rokstad, Anne Mari
2017-09-15
Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.
Lim, Chang Seon; Lee, Sang Bock; Jin, Gye Hwan
2011-10-01
Personal dosimeters measure the radiation dose from exposure to hazardous sources outside the body. The present manuscript evaluates the performance of a commercially available optically stimulated luminescence (OSL) Al₂O₃ dosimeter using diagnostic energy X-rays. The OSL system satisfies the ANSI N13.11-2001 performance criteria for low dose diagnostic energy X-rays. Non-uniformity of sensitivity, dose linearity, X-ray energy response, and angular performance are all within the criteria of IEC-62387-1(2007). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong
2018-06-01
A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.
Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K
2014-02-18
Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.
A reticle retrofit and dosimetric consideration for a linear accelerator.
Krithivas, V
1996-01-01
An imperfect reticle system in an accelerator causes uncertainties in source-skin distance (SSD), off-axis distance (OAD), isocenter, and so forth. A reticle was designed and fabricated, and its implications on x-ray and electron beam dosimetry were investigated. A new reticle frame was dimensioned to fit snugly in the accelerator. The frame was fabricated to carry a pair of adjustable cross wires and to allow the machine operation in the photon and electron modes. The impact of the cross wires on 6 MV photon and 5-10 MeV electron beam parameters such as dose rate (Gy/monitor unit), beam uniformity, surface dose, and so forth, were studied using suitable ion chambers and phantoms. The retrofitted system offered long-term mechanical stability leading to precise SSD, OAD, and isocenter measurements. Changes introduced by the cross wires on the 6 MV photon and 5-10 MeV electron beams are presented. Long-term stability of a reticle in an accelerator is important for an accurate patient setup and for making reliable dosimetric measurements. Beam characteristrics have to be studied whenever modifications on a reticle system are made.
Algebraic grid adaptation method using non-uniform rational B-spline surface modeling
NASA Technical Reports Server (NTRS)
Yang, Jiann-Cherng; Soni, B. K.
1992-01-01
An algebraic adaptive grid system based on equidistribution law and utilized by the Non-Uniform Rational B-Spline (NURBS) surface for redistribution is presented. A weight function, utilizing a properly weighted boolean sum of various flow field characteristics is developed. Computational examples are presented to demonstrate the success of this technique.
Al-Jundi, J; Ulanovsky, A; Pröhl, G
2009-10-01
The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.
Open-air direct current plasma jet: Scaling up, uniformity, and cellular control
NASA Astrophysics Data System (ADS)
Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.
2012-10-01
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Du, Ping; Du, Ju; Smyth, Hugh D C
2017-01-01
Previously, granulated lactose carriers were shown to improve uniformity and aerosolization of a low-dose model drug. In the present study, the blending uniformity and aerosol dispersion performance were assessed for 2 model drugs salbutamol sulfate (SS) and rifampicin (RIF), blended at high loadings (10% or 30% drug) with granulated lactose carriers. The model drug powders differed in particle size distribution, morphology, density, and surface energies. Content uniformity of RIF blends was better than that of SS. Aerosolization studies showed that all blend formulations had acceptable emitted fractions (>70%). The SS blends showed low induction-port deposition (6%-10%) compared to RIF (5%-30%). This difference was greater at high flow rates. At 90 L/min, the low induction port deposition of SS blends allowed high fine particle fraction (FPF) of 73%-81%, whereas the FPF of the RIF blends was around 43%-45% with higher induction port deposition. However, SS blends exhibited strong flow rate-dependent performance. Increasing the flow rate from 30 L/min to 90 L/min increased SS FPF from approximately 20% to 80%. Conversely, RIF blends were flow rate and drug loading independent. It was concluded that the aerosolization of high drug-loaded dry powder inhaler formulations using granulated lactose, particularly flow rate dependency, varies with active pharmaceutical ingredient properties. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Jing, Lei; Wang, Yao; Zhao, Huifu; Ke, Hongliang; Wang, Xiaoxun; Gao, Qun
2017-06-10
In order to meet the requirements of uniform illumination for optical palm/fingerprint instruments and overcome the shortcomings of the poor uniform illumination on the working plane of the optical palm/fingerprint prism, a novel secondary optical lens with a free-form surface, compact structure, and high uniformity is presented in this paper. The design of the secondary optical lens is based on emission properties of the near-infrared light-emitting diode (LED) and basic principles of non-imaging optics, especially considering the impact of the thickness of the prism in the design. Through the numerical solution of Snell's law in geometric optics, we obtain the profile of the free-form surface of the lens. Using the optical software TracePro, we trace and simulate the illumination system. The results show that the uniformity is 89.8% on the working plane of the prism, and the test results show that the actual uniformity reaches 85.7% in the experiment, which provides an effective way for realizing a highly uniform illumination system with high-power near-infrared LED.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Currey, A; Li, X
2015-06-15
Purpose: MRI-guided radiation therapy (RT) delivery would be beneficial for breast irradiation. The electron return effect due to the presence of a transverse magnetic field (TMF) may cause dosimetric issues on dose on skin and at the lung-tissue interface. The purpose of this study is to investigate these issues. Methods: IMRT plans with tangential beams and VMAT plans with 200 degree arcs to cover ipsilateral breast were generated for 10 randomly selected breast cancer cases using a research planning system (Monaco, Elekta) utilizing Monte Carlo dose calculation with or without a TMF of 1.5 T. Plans were optimized to delivermore » uniform dose to the whole breast with an exclusion of 5 mm tissue under the skin (PTV-EVAL). All four plans for each patient were re-scaled to have the same PTV-EVAL volume to receive the same prescription dose. The skin is defined as the first 5 mm of ipsilateral-breast tissue, plus extensions in the surrounding region. Results: The presence of 1.5 T TMF resulted in (1)increased skin dose, with the mean and maximum skin dose increase of 5% and 9%, respectively; (2) similar dose homogeneity within the PTV-EVAL; (3) the slightly improved (3%) dose homogeneity in the whole breast; (4) Averages of 9 and 16% increases in V5 and V20, respectively, for ipsilateral lung; and (5) increased the mean heart dose by 34%. VMAT plans don’t improve whole breast dose uniformity as compared that to the tangential plans. Conclusion: The presence of transverse magnetic field in MRI-guided RT delivery for whole breast irradiation can Result in slightly improved dose homogeneity in the whole breast, increased dose to the ipsilateral lung, heart, and skin. Plan optimization with additional specific dose volume constraints may eliminate/reduce these dose increases. This work is partially supported by Elekta Inc.« less
Torrey, Jessica D.; Kirschling, Teresa L.; Greenlee, Lauren F.
2015-01-01
The quartz-crystal microbalance is a sensitive and versatile tool for measuring adsorption of a variety of compounds (e.g. small molecules, polymers, biomolecules, nanoparticles and cells) to surfaces. While the technique has traditionally been used for measuring adsorption to flat surfaces and thin ridged films, it can also be extended to study adsorption to nanoparticle surfaces when the nanoparticles are fixed to the crystal surface. The sensitivity and accuracy of the measurement depend on the users’ ability to reproducibly prepare a thin uniform nanoparticle coating. This study evaluated four coating techniques, including spin coating, spray coating, drop casting, and electrophoretic deposition, for two unique particle chemistries [nanoscale zero valent iron (nZVI) and titanium dioxide (TiO2)] to produce uniform and reproducible nanoparticle coatings for real-time quartz-crystal microbalance measurements. Uniform TiO2 coatings were produced from a 50 mg/mL methanol suspension via spin coating. Nanoscale zero-valent iron was best applied by spray coating a low concentration 1.0 mg/mL suspended in methanol. The application of multiple coatings, rather than an increase in the suspension concentration, was the best method to increase the mass of nanoparticles on the crystal surface while maintaining coating uniformity. An upper mass threshold was determined to be approximately 96 µg/cm2; above this mass, coatings no longer maintained their uniform rigid characteristic, and a low signal to noise ratio resulted in loss of measurable signal from crystal resonances above the fundamental. PMID:26958434
Effect of surface deposits on electromagnetic propagation in uniform ducts
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1991-01-01
A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.
Uniform insulation applied-B ion diode
Seidel, David B.; Slutz, Stephen A.
1988-01-01
An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.
Poster - 42: TB - ARC: A Total Body photon ARC technique using a commercially available linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Michael D. C.; Ruo, Russell; Patrocinio, Ho
We have developed a total body photon irradiation technique using multiple overlapping open field arcs (TB-ARC). This simple technique uses predetermined arc-weights, with MUs calculated as a function of prescription depth only. Patients lie on a stretcher, in the prone/supine treatment position with AP/PA arcs. This treatment position has many advantages including ease of delivery (especially for tall, pediatric or compromised patients), dose uniformity, simplicity for organ shielding, and imaging capabilities. Using a Varian TrueBeam linac, 14 arcs using 40×40 cm{sup 2} 6 MV open photon beams, sweeping across 10 degrees each, complete a 140 degree arc. The nominal SSDmore » at zero degrees is 200 cm. Arcs at the sweep limits (+/− 70 degrees) are differentially weighted and deliver a dose within 10% of the prescription on central axis, at a depth of 10 cm over a superior-inferior length of 275 cm. CT planning using Varian Eclipse enables dose evaluation. A custom made beam spoiler, consisting of a 2.5 m sheet of polycarbonate (6 mm thick) increases the surface dose from 45% to 90%. This beam spoiler also serves as a support in the event that differential attenuation is required for organs such as lung, heart, liver, kidneys. The geometry of the sweeping beam technique limits organ dose (using varying thicknesses of melting alloy) to about 20% and 40% of prescription at dmax and midplane respectively. Digital imaging with a portable DR cassette enables proper attenuator location prior to treatment.« less
SU-E-J-152: Evaluation of TrueBeam OBI V. 1.5 CBCT Performance in An Adaptive RT Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, S; Studenski, M; Giaddui, T
2014-06-01
Purpose: To evaluate the image quality and imaging dose of the Varian TrueBeam OBIv.1.5 CBCT system in a clinical adaptive radiation therapy environment, simulated by changing phantom thickness. Methods: Various OBI CBCT protocols(Head, Pelvis, Thorax, Spotlight) were used to acquire images of Catphan504 phantom(nominal phantom thickness and 10 cm additional phantom thickness). The images were analyzed for low contrast detectability(CNR), uniformity(UI), and HU sensitivity. These results were compared to the same image sets for planning CT(pCT)(GE LightSpeed 16- slice). Imaging dose measurements were performed with Gafchromic XRQA2 film for various OBI protocols (Pelvis, Thorax, Spotlight) in a pelvic-sized phantom(nominal thicknessmore » and 4cm additional thickness). Dose measurements were acquired in the interior and at the surface of the phantom. Results: The nominal CNR[additional thickness CNR] for OBI was—Pelvis:1.45[0.81],Thorax:0.86[0.48], Spotlight:0.67[0.39],Head:0.28 [0.10]. The nominal CNR[additional thickness CNR] for pCT was— Pelvis:0.87[0.41],Head:0.60[0.22]. The nominal UI[additional thickness UI] for OBI was—Pelvis:11.5[24.1],Thorax:17.0[20.6], Spotlight:23.2[23.2], Head:15.6[59.9]. The nominal UI[additional thickness UI] for pCT was— Pelvis:9.2[8.6],Head:2.1[2.9]. The HU difference(averaged over all material inserts) between nominal and additional thickness scans for OBI: 8.26HU(Pelvis), 33.39HU(Thorax), 178.98HU(Head), 108.20HU (Spotlight); for pCT: 16.00HU(Pelvis), 19.85HU(Head). Uncertainties in electron density were calculated based on HU values with varying phantom thickness. Average electron-density deviations (ρ(water)=1)for GE-Pelvis, GE-Head, OBI-Pelvis, OBI-Thorax, OBI-Spotlight, and OBI-Head were: 0.0182, 0.0180, 0.0058, 0.0478, 0.2750, and 0.3115, respectively.The average phantom interior dose was(OBI-nominal):2.35cGy(Pelvis), 0.60cGy(Thorax), 1.87cGy(Spotlight); OBI-increased thickness: 1.77cGy(Pelvis), 0.43cGy(Thorax), 1.53cGy (Spotlight). Average surface dose(OBI-nominal): 2.29cGy(Pelvis), 0.56cGy(Thorax), 1.79cGy (Spotlight); OBI-increased thickness: 1.94cGy(Pelvis), 0.48cGy(Thorax), 1.47cGy (Spotlight). Conclusion: The OBI-Pelvis protocol offered comparable CNR and HU constancy to pCT for each geometry; other protocols, particularly Spotlight and Head, exhibited lower HU constancy and CNR. The uniformity of pCT was superior to OBI for all protocols. CNR and UI were degraded for both systems/scan types with increased thickness. The OBI interior dose decreased by approximately 30% with additional thickness. This work was funded, in part, under a grant with the Pennsylvania Department of Health. The Department of Health specifically declaims responsibility for any analyses, interpretations, or conclusions.« less
Growth of WSi2 in phosphorous-implanted W/«Si» couples
NASA Astrophysics Data System (ADS)
Ma, E.; Lim, B. S.; Nicolet, M.-A.; Alvi, N. S.; Hamdi, A. H.
1988-05-01
The thermal reaction of rf-sputter-deposited tungsten films with a (100) silicon substrate is investigated by vacuum furnace annealing and rapid thermal annealing. An irradiation of the W/Si interface by a phosphorous ion beam at room temperature prior to annealing promotes a uniform interfacial growth of WSi2. The growth of WSi2 follows diffusion-controlled kinetics during both furnace annealing and rapid thermal processing. A growth law of x2 = kt is obtained for furnace annealing between 690 and 740° C, where x is the thickness of the compound, t is the annealing duration after an initial incubation period and k = 62 (cm2/s) exp (--3.0 eV/kT). The surface smoothness of the suicide films improves with increasing ion dose.
The derivation of water quality criteria of copper in Biliu River
NASA Astrophysics Data System (ADS)
Zheng, Hongbo; Jia, Xinru
2018-03-01
Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.
NASA Astrophysics Data System (ADS)
Cardarelli, Gene A.
The primary goal in radiation oncology is to deliver lethal radiation doses to tumors, while minimizing dose to normal tissue. IMRT has the capability to increase the dose to the targets and decrease the dose to normal tissue, increasing local control, decrease toxicity and allow for effective dose escalation. This advanced technology does present complex dose distributions that are not easily verified. Furthermore, the dose inhomogeneity caused by non-uniform dose distributions seen in IMRT treatments has caused the development of biological models attempting to characterize the dose-volume effect in the response of organized tissues to radiation. Dosimetry of small fields can be quite challenging when measuring dose distributions for high-energy X-ray beams used in IMRT. The proper modeling of these small field distributions is essential in reproducing accurate dose for IMRT. This evaluation was conducted to quantify the effects of small field dosimetry on IMRT plan dose distributions and the effects on four biological model parameters. The four biological models evaluated were: (1) the generalized Equivalent Uniform Dose (gEUD), (2) the Tumor Control Probability (TCP), (3) the Normal Tissue Complication Probability (NTCP) and (4) the Probability of uncomplicated Tumor Control (P+). These models are used to estimate local control, survival, complications and uncomplicated tumor control. This investigation compares three distinct small field dose algorithms. Dose algorithms were created using film, small ion chamber, and a combination of ion chamber measurements and small field fitting parameters. Due to the nature of uncertainties in small field dosimetry and the dependence of biological models on dose volume information, this examination quantifies the effects of small field dosimetry techniques on radiobiological models and recommends pathways to reduce the errors in using these models to evaluate IMRT dose distributions. This study demonstrates the importance of valid physical dose modeling prior to the use of biological modeling. The success of using biological function data, such as hypoxia, in clinical IMRT planning will greatly benefit from the results of this study.
Mucker, Eric M; Chapman, Jennifer; Huzella, Louis M; Huggins, John W; Shamblin, Joshua; Robinson, Camenzind G; Hensley, Lisa E
2015-01-01
Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox.
Smith, S D; Bolwell, B J; Rybicki, L A; Brown, S; Dean, R; Kalaycio, M; Sobecks, R; Andresen, S; Hsi, E D; Pohlman, B; Sweetenham, J W
2007-08-01
The role of high-dose therapy and autologous stem cell transplantation (ASCT) for patients with peripheral T-cell lymphoma (PTCL) is poorly defined. Comparisons of outcomes between PTCL and B-cell non-Hodgkin's lymphoma (NHL) have yielded conflicting results, in part due to the rarity and heterogeneity of PTCL. Some retrospective studies have found comparable survival rates for patients with T- and B-cell NHL. In this study, we report our single-center experience of ASCT over one decade using a uniform chemotherapy-only high-dose regimen. Thirty-two patients with PTCL-unspecified (PTCL-u; 11 patients) and anaplastic large-cell lymphoma (21 patients) underwent autologous stem cell transplant, mostly for relapsed or refractory disease. The preparative regimen consisted of busulfan, etoposide and cyclophosphamide. Kaplan-Meier 5-year overall survival (OS) and relapse-free survival (RFS) are 34 and 18%, respectively. These results suggest a poor outcome for patients with PTCL after ASCT, and new therapies for T-cell lymphoma are needed.
Mucker, Eric M.; Chapman, Jennifer; Huzella, Louis M.; Huggins, John W.; Shamblin, Joshua; Robinson, Camenzind G.; Hensley, Lisa E.
2015-01-01
Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox. PMID:26147658
Gentry, J R; DeWerd, L A
1996-06-01
An analysis is presented of the exposures received by TLDs placed on the breasts of 4400 women obtaining mammograms at 170 institutions across the United States. Mean glandular dose and exposure were examined as a function of compressed breast thickness. The exposure and mean glandular dose were found to increase linearly with breast thickness. The mean glandular dose typically delivered by the institutions was well below the limit of 3.0 mGy for the 4.5-cm breast. However, some institutions tend to uniformly give higher doses. In such institutions approximately 25% of 4.5-cm-thick breasts received a mean glandular dose exceeding 3.0 mGy.
SU-F-T-424: Mitigation of Increased Surface Dose When Treating Through A Carbon Fiber Couch Top
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, E; Misgina, F
Purpose: To study the effect of the Varian carbon fiber couch top on surface dose for patients being treated using single PA beams in the supine position and to identify simple methods for surface dose reduction. Methods: Measurements of surface dose were obtained in Solid Water phantoms using both a parallel plate ionization chamber (PTW Advanced Markus) and EBT2 Radiochromic films for both 6 and 10MV photons. All measurements were referenced to a depth considered a typical for PA Spine fields. Techniques used to reduce the surface dose included introducing an air standoff using Styrofoam sheets to suspend the phantommore » surface above the couch top and by adding a thin high Z scattering foil on the table surface. Surface doses were evaluated for typical field sizes, standoff heights, and various scattering materials. Comparisons were made to the surface dose obtainable when treating through a Varian Mylar covered tennis racket style couch top. Results: Dependence on typical spine field sizes was relatively minor. Dependence on air gap was much more significant. Surface doses decreased exponentially with increases in air standoff distance. Surface doses were reduced by approximately 50% for an air gap of 10cm and 40% for a 15cm air gap. Surface doses were reduced by an additional 15% by the addition of a 1mm Tin scattering foil. Conclusion: Using simple techniques, it is possible to reduce the surface dose when treating single PA fields through the Varian carbon fiber couch top. Surface doses can be reduced to levels observed when treating though transparent Mylar tops by adding about 15 cm of air gap. Further reductions are possible by adding thin scattering foils, such as Tin or Lead, on the couch surface. This is a low cost approach to reduce surface dose when using the Varian carbon fiber couch top.« less
Ahmad, M; Nath, R
2001-02-20
The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.
Uniform refraction in negative refractive index materials.
Gutiérrez, Cristian E; Stachura, Eric
2015-11-01
We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.
Dosimetry of gamma chamber blood irradiator using PAGAT gel dosimeter and Monte Carlo simulations
Mohammadyari, Parvin; Zehtabian, Mehdi; Sina, Sedigheh; Tavasoli, Ali Reza
2014-01-01
Currently, the use of blood irradiation for inactivating pathogenic microbes in infected blood products and preventing graft‐versus‐host disease (GVHD) in immune suppressed patients is greater than ever before. In these systems, dose distribution and uniformity are two important concepts that should be checked. In this study, dosimetry of the gamma chamber blood irradiator model Gammacell 3000 Elan was performed by several dosimeter methods including thermoluminescence dosimeters (TLD), PAGAT gel dosimetry, and Monte Carlo simulations using MCNP4C code. The gel dosimeter was put inside a glass phantom and the TL dosimeters were placed on its surface, and the phantom was then irradiated for 5 min and 27 sec. The dose values at each point inside the vials were obtained from the magnetic resonance imaging of the phantom. For Monte Carlo simulations, all components of the irradiator were simulated and the dose values in a fine cubical lattice were calculated using tally F6. This study shows that PAGAT gel dosimetry results are in close agreement with the results of TL dosimetry, Monte Carlo simulations, and the results given by the vendor, and the percentage difference between the different methods is less than 4% at different points inside the phantom. According to the results obtained in this study, PAGAT gel dosimetry is a reliable method for dosimetry of the blood irradiator. The major advantage of this kind of dosimetry is that it is capable of 3D dose calculation. PACS number: 87.53.Bn PMID:24423829
Cusumano, Davide; Fumagalli, Maria L; Marchetti, Marcello; Fariselli, Laura; De Martin, Elena
2015-01-01
Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses using this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk. Copyright © 2015 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusumano, Davide, E-mail: davide.cusumano@unimi.it; Fumagalli, Maria L.; Marchetti, Marcello
2015-10-01
Aim of this study is to examine the feasibility of using the new Gafchromic EBT3 film in a high-dose stereotactic radiosurgery and radiotherapy quality assurance procedure. Owing to the reduced dimensions of the involved lesions, the feasibility of scanning plan verification films on the scanner plate area with the best uniformity rather than using a correction mask was evaluated. For this purpose, signal values dispersion and reproducibility of film scans were investigated. Uniformity was then quantified in the selected area and was found to be within 1.5% for doses up to 8 Gy. A high-dose threshold level for analyses usingmore » this procedure was established evaluating the sensitivity of the irradiated films. Sensitivity was found to be of the order of centiGray for doses up to 6.2 Gy and decreasing for higher doses. The obtained results were used to implement a procedure comparing dose distributions delivered with a CyberKnife system to planned ones. The procedure was validated through single beam irradiation on a Gafchromic film. The agreement between dose distributions was then evaluated for 13 patients (brain lesions, 5 Gy/die prescription isodose ~80%) using gamma analysis. Results obtained using Gamma test criteria of 5%/1 mm show a pass rate of 94.3%. Gamma frequency parameters calculation for EBT3 films showed to strongly depend on subtraction of unexposed film pixel values from irradiated ones. In the framework of the described dosimetric procedure, EBT3 films proved to be effective in the verification of high doses delivered to lesions with complex shapes and adjacent to organs at risk.« less
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
NASA Astrophysics Data System (ADS)
Chung, C. K.; Hong, Y. Z.
2007-02-01
The effect of O2 plasma treatment on the surface property of exposed and unexposed SU8 photoresist has been investigated for the fabrication of a monolithic MEMS microstructure. It can solve the non-uniformity problem of second resist coating on the SU8 with high intrinsic shrinkage after exposure and post-exposure baking (PEB) in the fabrication of the stacked polymer-metal or polymer-polymer structure, which was used in the application of microfluid, bio and chemistry. The thickness difference of untreated SU8 before PEB between the exposed and unexposed SU8 was about 0.3% while that after PEB increased to about 6%. It could result in large non-uniformity of about 18 µm thickness difference for the following second resist coating on the hydrophobic surface without plasma treatment. The surface property of SU8 in terms of the contact angle and surface energy can be adjusted by O2 plasma treatment for enhancing the coating uniformity of the following resist. The measured contact angles of the exposed and unexposed SU8 decrease with O2 plasma time, corresponding to the increased surface energy determined by the Lifshitz-van der Waals/Lewis acid-base approach. It displayed that the similar hydrophilic surface property can minimize the thickness difference of second resist coating on the first shrunken SU8. A monolithic nozzle plate with a physical resolution of 600 dpi in a single column was demonstrated for an inkjet application based on the improved uniformity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, Johan de; Wolf, Anne Lisa; Szeto, Yenny Z.
2015-04-01
Purpose: Rotations of the prostate gland induce considerable geometric uncertainties in prostate cancer radiation therapy. Collimator and gantry angle adjustments can correct these rotations in intensity modulated radiation therapy. Modern volumetric modulated arc therapy (VMAT) treatments, however, include a wide range of beam orientations that differ in modulation, and corrections require dynamic collimator rotations. The aim of this study was to implement a rotation correction strategy for VMAT dose delivery and validate it for left-right prostate rotations. Methods and Materials: Clinical VMAT treatment plans of 5 prostate cancer patients were used. Simulated left-right prostate rotations between +15° and −15° weremore » corrected by collimator rotations. We compared corrected and uncorrected plans by dose volume histograms, minimum dose (D{sub min}) to the prostate, bladder surface receiving ≥78 Gy (S78) and rectum equivalent uniform dose (EUD; n=0.13). Each corrected plan was delivered to a phantom, and its deliverability was evaluated by γ-evaluation between planned and delivered dose, which was reconstructed from portal images acquired during delivery. Results: On average, clinical target volume minimum dose (D{sub min}) decreased up to 10% without corrections. Negative left-right rotations were corrected almost perfectly, whereas D{sub min} remained within 4% for positive rotations. Bladder S78 and rectum EUD of the corrected plans matched those of the original plans. The average pass rate for the corrected plans delivered to the phantom was 98.9% at 3% per 3 mm gamma criteria. The measured dose in the planning target volume approximated the original dose, rotated around the simulated left-right angle, well. Conclusions: It is feasible to dynamically adjust the collimator angle during VMAT treatment delivery to correct for prostate rotations. This technique can safely correct for left-right prostate rotations up to 15°.« less
NASA Astrophysics Data System (ADS)
Sharma, Mamta; Hazra, Purnima; Singh, Satyendra Kumar
2018-05-01
Since the beginning of semiconductor fabrication technology evolution, clean and passivated substrate surface is one of the prime requirements for fabrication of Electronic and optoelectronic device fabrication. However, as the scale of silicon circuits and device architectures are continuously decreased from micrometer to nanometer (from VLSI to ULSI technology), the cleaning methods to achieve better wafer surface qualities has raised research interests. The development of controlled and uniform silicon dioxide is the most effective and reliable way to achieve better wafer surface quality for fabrication of electronic devices. On the other hand, in order to meet the requirement of high environment safety/regulatory standards, the innovation of cleaning technology is also in demand. The controlled silicon dioxide layer formed by oxidant de-ionized ozonated water has better uniformity. As the uniformity of the controlled silicon dioxide layer is improved on the substrate, it enhances the performance of the devices. We can increase the thickness of oxide layer, by increasing the ozone time treatment. We reported first time to measurement of thickness of controlled silicon dioxide layer and obtained the uniform layer for same ozone time.
Fluid surface compensation in digital holographic microscopy for topography measurement
NASA Astrophysics Data System (ADS)
Lin, Li-Chien; Tu, Han-Yen; Lai, Xin-Ji; Wang, Sheng-Shiun; Cheng, Chau-Jern
2012-06-01
A novel technique is presented for surface compensation and topography measurement of a specimen in fluid medium by digital holographic microscopy (DHM). In the measurement, the specimen is preserved in a culture dish full of liquid culture medium and an environmental vibration induces a series of ripples to create a non-uniform background on the reconstructed phase image. A background surface compensation algorithm is proposed to account for this problem. First, we distinguish the cell image from the non-uniform background and a morphological image operation is used to reduce the noise effect on the background surface areas. Then, an adaptive sampling from the background surface is employed, taking dense samples from the high-variation area while leaving the smooth region mostly untouched. A surface fitting algorithm based on the optimal bi-cubic functional approximation is used to establish a whole background surface for the phase image. Once the background surface is found, the background compensated phase can be obtained by subtracting the estimated background from the original phase image. From the experimental results, the proposed algorithm performs effectively in removing the non-uniform background of the phase image and has the ability to obtain the specimen topography inside fluid medium under environmental vibrations.
Tabulated dose uniformity ratio and minimum dose data: rectangular 60Co source plaques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanter, L.
1971-01-01
The data tabulated herein extend to rectangular cobalt-60 plaques the information presented for square plaques in BNL 50145 (Revised). The user is referred to BNL 50145 (Revised) and to the other reports listed for a complete discussion of the parameters involved in data generation and for instructions on the use of these data in gamma irradiator design.
Mathematical model of the metal mould surface temperature optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz; Srb, Radek, E-mail: radek.srb@tul.cz
2015-11-30
The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensitymore » is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.« less
Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach
Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.
2015-01-01
We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574
Evaporation of nanoscale water on a uniformly complete wetting surface at different temperatures.
Guo, Yuwei; Wan, Rongzheng
2018-05-03
The evaporation of nanoscale water films on surfaces affects many processes in nature and industry. Using molecular dynamics (MD) simulations, we show the evaporation of a nanoscale water film on a uniformly complete wetting surface at different temperatures. With the increase in temperature, the growth of the water evaporation rate becomes slow. Analyses show that the hydrogen bond (H-bond) lifetimes and orientational autocorrelation times of the outermost water film decrease slowly with the increase in temperature. Compared to a thicker water film, the H-bond lifetimes and orientational autocorrelation times of a monolayer water film are much slower. This suggests that the lower evaporation rate of the monolayer water film on a uniformly complete wetting surface may be caused by the constriction of the water rotation due to the substrate. This finding may be helpful for controlling nanoscale water evaporation within a certain range of temperatures.
Plane hydroelastic beam vibrations due to uniformly moving one axle vehicle
NASA Astrophysics Data System (ADS)
Fleischer, D.; Park, S.-K.
2004-06-01
The hydroelastic vibrations of a beam with rectangular cross-section is analyzed under the effect of an uniformly moving single axle vehicle using modal analysis and two-dimensional potential flow theory of the fluid neglecting the effect of surface waves aside the beam. For the special case of homogeneous beam resting on the surface of a water filled prismatic basin, the normal modes are determined considering surface waves in beam direction under the condition of compensating the volume of the enclosed fluid. The way to determine the vertical acceleration of the single axle vehicle is shown, which governs the response of the system. As analysis results the course of wheel load, the surface waves along the beam and the flow velocity distribution of the fluid is demonstrated for a continuous floating bridge under the passage of a rolling mass moving with uniform speed.
Cesium injection system for negative ion duoplasmatrons
Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J
1978-01-01
Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.
Simulation of angular and energy distributions of the PTB beta secondary standard.
Faw, R E; Simons, G G; Gianakon, T A; Bayouth, J E
1990-09-01
Calculations and measurements have been performed to assess radiation doses delivered by the PTB Secondary Standard that employs 147Pm, 204Tl, and 90Sr:90Y sources in prescribed geometries, and features "beam-flattening" filters to assure uniformity of delivered doses within a 5-cm radius of the axis from source to detector plane. Three-dimensional, coupled, electron-photon Monte Carlo calculations, accounting for transmission through the source encapsulation and backscattering from the source mounting, led to energy spectra and angular distributions of electrons penetrating the source encapsulation that were used in the representation of pseudo sources of electrons for subsequent transport through the atmosphere, filters, and detectors. Calculations were supplemented by measurements made using bare LiF TLD chips on a thick polymethyl methacrylate phantom. Measurements using the 204Tl and 90Sr:90Y sources revealed that, even in the absence of the beam-flattening filters, delivered dose rates were very uniform radially. Dosimeter response functions (TLD:skin dose ratios) were calculated and confirmed experimentally for all three beta-particle sources and for bare LiF TLDs ranging in mass thickness from 10 to 235 mg cm-2.
Gamma-H2AX-based dose estimation for whole and partial body radiation exposure.
Horn, Simon; Barnard, Stephen; Rothkamm, Kai
2011-01-01
Most human exposures to ionising radiation are partial body exposures. However, to date only limited tools are available for rapid and accurate estimation of the dose distribution and the extent of the body spared from the exposure. These parameters are of great importance for emergency triage and clinical management of exposed individuals. Here, measurements of γ-H2AX immunofluorescence by microscopy and flow cytometry were compared as rapid biodosimetric tools for whole and partial body exposures. Ex vivo uniformly X-irradiated blood lymphocytes from one donor were used to generate a universal biexponential calibration function for γ-H2AX foci/intensity yields per unit dose for time points up to 96 hours post exposure. Foci--but not intensity--levels remained significantly above background for 96 hours for doses of 0.5 Gy or more. Foci-based dose estimates for ex vivo X-irradiated blood samples from 13 volunteers were in excellent agreement with the actual dose delivered to the targeted samples. Flow cytometric dose estimates for X-irradiated blood samples from 8 volunteers were in excellent agreement with the actual dose delivered at 1 hour post exposure but less so at 24 hours post exposure. In partial body exposures, simulated by mixing ex vivo irradiated and unirradiated lymphocytes, foci/intensity distributions were significantly over-dispersed compared to uniformly irradiated lymphocytes. For both methods and in all cases the estimated fraction of irradiated lymphocytes and dose to that fraction, calculated using the zero contaminated Poisson test and γ-H2AX calibration function, were in good agreement with the actual mixing ratios and doses delivered to the samples. In conclusion, γ-H2AX analysis of irradiated lymphocytes enables rapid and accurate assessment of whole body doses while dispersion analysis of foci or intensity distributions helps determine partial body doses and the irradiated fraction size in cases of partial body exposures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Austin; Ding, George X., E-mail: george.ding@vanderbilt.edu
2014-01-01
Craniospinal irradiation (CSI) requires abutting fields at the cervical spine. Junction shifts are conventionally used to prevent setup error–induced overdosage/underdosage from occurring at the same location. This study compared the dosimetric differences at the cranial-spinal junction between a single-gradient junction technique and conventional multiple-junction shifts and evaluated the effect of setup errors on the dose distributions between both techniques for a treatment course and single fraction. Conventionally, 2 lateral brain fields and a posterior spine field(s) are used for CSI with weekly 1-cm junction shifts. We retrospectively replanned 4 CSI patients using a single-gradient junction between the lateral brain fieldsmore » and the posterior spine field. The fields were extended to allow a minimum 3-cm field overlap. The dose gradient at the junction was achieved using dose painting and intensity-modulated radiation therapy planning. The effect of positioning setup errors on the dose distributions for both techniques was simulated by applying shifts of ± 3 and 5 mm. The resulting cervical spine doses across the field junction for both techniques were calculated and compared. Dose profiles were obtained for both a single fraction and entire treatment course to include the effects of the conventional weekly junction shifts. Compared with the conventional technique, the gradient-dose technique resulted in higher dose uniformity and conformity to the target volumes, lower organ at risk (OAR) mean and maximum doses, and diminished hot spots from systematic positioning errors over the course of treatment. Single-fraction hot and cold spots were improved for the gradient-dose technique. The single-gradient junction technique provides improved conformity, dose uniformity, diminished hot spots, lower OAR mean and maximum dose, and one plan for the entire treatment course, which reduces the potential human error associated with conventional 4-shifted plans.« less
NASA Astrophysics Data System (ADS)
Adamus-Górka, Magdalena; Mavroidis, Panayiotis; Brahme, Anders; Lind, Bengt K.
2008-11-01
Radiobiological models for estimating normal tissue complication probability (NTCP) are increasingly used in order to quantify or optimize the clinical outcome of radiation therapy. A good NTCP model should fulfill at least the following two requirements: (a) it should predict the sigmoid shape of the corresponding dose-response curve and (b) it should accurately describe the probability of a specified response for arbitrary non-uniform dose delivery for a given endpoint as accurately as possible, i.e. predict the volume dependence. In recent studies of the volume effect of a rat spinal cord after irradiation with narrow and broad proton beams the authors claim that none of the existing NTCP models is able to describe their results. Published experimental data have been used here to try to quantify the change in the effective dose (D50) causing 50% response for different field sizes. The present study was initiated to describe the induction of white matter necrosis in a rat spinal cord after irradiation with narrow proton beams in terms of the mean dose to the effective volume of the functional subunit (FSU). The physically delivered dose distribution was convolved with a function describing the effective size or, more accurately, the sensitivity distribution of the FSU to obtain the effective mean dose deposited in it. This procedure allows the determination of the mean D50 value of the FSUs of a certain size which is of interest for example if the cell nucleus of the oligodendrocyte is the sensitive target. Using the least-squares method to compare the effective doses for different sizes of the functional subunits with the experimental data the best fit was obtained with a length of about 9 mm. For the non-uniform dose distributions an effective FSU length of 8 mm gave the optimal fit with the probit dose-response model. The method could also be used to interpret the so-called bath and shower experiments where the heterogeneous dose delivery was used in the convolution process. The assumption of an effective FSU size is consistent with most of the effects seen when different portions of the rat spinal cord are irradiated to different doses. The effective FSU length from these experiments is about 8.5 ± 0.5 mm. This length could be interpreted as an effective size of the functional subunits in a rat spinal cord, where multiple myelin sheaths are connected by a single oligodendrocyte and repair is limited by the range of oligodendrocyte progenitor cell diffusion. It was even possible to suggest a more likely than uniform effective FSU sensitivity distribution from the experimental data.
Investigation of effective decision criteria for multiobjective optimization in IMRT.
Holdsworth, Clay; Stewart, Robert D; Kim, Minsun; Liao, Jay; Phillips, Mark H
2011-06-01
To investigate how using different sets of decision criteria impacts the quality of intensity modulated radiation therapy (IMRT) plans obtained by multiobjective optimization. A multiobjective optimization evolutionary algorithm (MOEA) was used to produce sets of IMRT plans. The MOEA consisted of two interacting algorithms: (i) a deterministic inverse planning optimization of beamlet intensities that minimizes a weighted sum of quadratic penalty objectives to generate IMRT plans and (ii) an evolutionary algorithm that selects the superior IMRT plans using decision criteria and uses those plans to determine the new weights and penalty objectives of each new plan. Plans resulting from the deterministic algorithm were evaluated by the evolutionary algorithm using a set of decision criteria for both targets and organs at risk (OARs). Decision criteria used included variation in the target dose distribution, mean dose, maximum dose, generalized equivalent uniform dose (gEUD), an equivalent uniform dose (EUD(alpha,beta) formula derived from the linear-quadratic survival model, and points on dose volume histograms (DVHs). In order to quantatively compare results from trials using different decision criteria, a neutral set of comparison metrics was used. For each set of decision criteria investigated, IMRT plans were calculated for four different cases: two simple prostate cases, one complex prostate Case, and one complex head and neck Case. When smaller numbers of decision criteria, more descriptive decision criteria, or less anti-correlated decision criteria were used to characterize plan quality during multiobjective optimization, dose to OARs and target dose variation were reduced in the final population of plans. Mean OAR dose and gEUD (a = 4) decision criteria were comparable. Using maximum dose decision criteria for OARs near targets resulted in inferior populations that focused solely on low target variance at the expense of high OAR dose. Target dose range, (D(max) - D(min)), decision criteria were found to be most effective for keeping targets uniform. Using target gEUD decision criteria resulted in much lower OAR doses but much higher target dose variation. EUD(alpha,beta) based decision criteria focused on a region of plan space that was a compromise between target and OAR objectives. None of these target decision criteria dominated plans using other criteria, but only focused on approaching a different area of the Pareto front. The choice of decision criteria implemented in the MOEA had a significant impact on the region explored and the rate of convergence toward the Pareto front. When more decision criteria, anticorrelated decision criteria, or decision criteria with insufficient information were implemented, inferior populations are resulted. When more informative decision criteria were used, such as gEUD, EUD(alpha,beta), target dose range, and mean dose, MOEA optimizations focused on approaching different regions of the Pareto front, but did not dominate each other. Using simple OAR decision criteria and target EUD(alpha,beta) decision criteria demonstrated the potential to generate IMRT plans that significantly reduce dose to OARs while achieving the same or better tumor control when clinical requirements on target dose variance can be met or relaxed.
Genina, Natalja; Fors, Daniela; Vakili, Hossein; Ihalainen, Petri; Pohjala, Leena; Ehlers, Henrik; Kassamakov, Ivan; Haeggström, Edward; Vuorela, Pia; Peltonen, Jouko; Sandler, Niklas
2012-10-09
We combined conventional inkjet printing technology with flexographic printing to fabricate drug delivery systems with accurate doses and tailored drug release. Riboflavin sodium phosphate (RSP) and propranolol hydrochloride (PH) were used as water-soluble model drugs. Three different paper substrates: A (uncoated woodfree paper), B (triple-coated inkjet paper) and C (double-coated sheet fed offset paper) were used as porous model carriers for drug delivery. Active pharmaceutical ingredient (API) containing solutions were printed onto 1 cm × 1 cm substrate areas using an inkjet printer. The printed APIs were coated with water insoluble polymeric films of different thickness using flexographic printing. All substrates were characterized with respect to wettability, surface roughness, air permeability, and cell toxicity. In addition, content uniformity and release profiles of the produced solid dosage forms before and after coating were studied. The substrates were nontoxic for the human cell line assayed. Substrate B was smoothest and least porous. The properties of substrates B and C were similar, whereas those of substrate A differed significantly from those of B, C. The release kinetics of both printed APIs was slowest from substrate B before and after coating with the water insoluble polymer film, following by substrate C, whereas substrate A showed the fastest release. The release rate decreased with increasing polymer coating film thickness. The printed solid dosage forms showed excellent content uniformity. So, combining the two printing technologies allowed fabricating controlled-release oral dosage forms that are challenging to produce using a single technique. The approach opens up new perspectives in the manufacture of flexible doses and tailored drug-delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
Lithographically defined microporous carbon structures
Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.
2013-01-08
A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Process For Patterning Dispenser-Cathode Surfaces
NASA Technical Reports Server (NTRS)
Garner, Charles E.; Deininger, William D.
1989-01-01
Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.
Use of radiochromic film as a high-spatial resolution dosimeter by Raman spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirza, Jamal Ahmad; Park, Hyeonsuk
Purpose: Due to increasing demand for high-spatial resolution dosimetry, radiochromic films have been investigated as potential candidates but are often limited by the scanning system, e.g., flatbed optical scanner. In this study, Raman spectroscopy in conjunction with a microscope was selected as an alternative method for high-spatial resolution dosimetry of radiochromic film. Methods: Unlaminated Gafchromic™ EBT3 films were irradiated with doses between 0 and 50 Gy using 6 MV x-rays of a clinical linear accelerator. Depth profiling from the surface of unlaminated film was performed to acquire the maximum Raman intensity peaks of C≡C and C=C stretching bands of diacetylenemore » polymer. The Raman mapping technique for a region of interest (200 × 200, 30 × 30 μm{sup 2}) was developed to reduce a large variation in a Raman spectrum produced with a sampling resolution of a few μm. The preprocessing of Raman spectra was carried out to determine a dosimetric relationship with the amount of diacetylene polymerization. Results: Due to partial diacetylene polymerization upon irradiation, two Raman peaks of C=C and C≡C stretching bands were observed around 1447 and 2060 cm{sup −1}, respectively. The maximum intensities of the two peaks were obtained by positioning a focused laser spot on the surface of unlaminated film. For the dose range of 0–50 Gy, the band heights of both C≡C and C=C peaks increase asymptotically with increasing doses and can be fit with an exponential function of two components. The relative standard deviation in Raman mapping was found to be less than ±5%. By using this technique, dose uniformity was found to be within ±2%. Conclusions: The Raman intensity for C=C and C≡C peaks increases with an increase in the amount of diacetylene polymerization due to an increase in dose. This study shows the potential of Raman spectroscopy as an alternative for absolute dosimetry verifications with a high-spatial resolution of a few μm, but these findings need to be further validated for the purpose of microdosimetry.« less
Yusof, Fasihah Hanum; Ung, Ngie Min; Wong, Jeannie Hsiu Ding; Jong, Wei Loong; Ath, Vannyat; Phua, Vincent Chee Ee; Heng, Siew Ping; Ng, Kwan Hoong
2015-01-01
This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments. PMID:26052690
Characterization of Dispersive Ultrasonic Rayleigh Surface Waves in Asphalt Concrete
NASA Astrophysics Data System (ADS)
In, Chi-Won; Kim, Jin-Yeon; Jacobs, Laurence J.; Kurtis, Kimberly E.
2008-02-01
This research focuses on the application of ultrasonic Rayleigh surface waves to nondestructively characterize the mechanical properties and structural defects (non-uniformly distributed aggregate) in asphalt concrete. An efficient wedge technique is developed in this study to generate Rayleigh surface waves that is shown to be effective in characterizing Rayleigh waves in this highly viscoelastic (attenuating) and heterogeneous medium. Experiments are performed on an asphalt-concrete beam produced with uniformly distributed aggregate. Ultrasonic techniques using both contact and non-contact sensors are examined and their results are compared. Experimental results show that the wedge technique along with an air-coupled sensor appears to be effective in characterizing Rayleigh waves in asphalt concrete. Hence, measurement of theses material properties needs to be investigated in non-uniformly distributed aggregate material using these techniques.
Cryogenic target formation using cold gas jets
Hendricks, Charles D.
1981-01-01
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
Cryogenic target formation using cold gas jets
Hendricks, Charles D. [Livermore, CA
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
A quantitative experimental phantom study on MRI image uniformity.
Felemban, Doaa; Verdonschot, Rinus G; Iwamoto, Yuri; Uchiyama, Yuka; Kakimoto, Naoya; Kreiborg, Sven; Murakami, Shumei
2018-05-23
Our goal was to assess MR image uniformity by investigating aspects influencing said uniformity via a method laid out by the National Electrical Manufacturers Association (NEMA). Six metallic materials embedded in a glass phantom were scanned (i.e. Au, Ag, Al, Au-Ag-Pd alloy, Ti and Co-Cr alloy) as well as a reference image. Sequences included spin echo (SE) and gradient echo (GRE) scanned in three planes (i.e. axial, coronal, and sagittal). Moreover, three surface coil types (i.e. head and neck, Brain, and temporomandibular joint coils) and two image correction methods (i.e. surface coil intensity correction or SCIC, phased array uniformity enhancement or PURE) were employed to evaluate their effectiveness on image uniformity. Image uniformity was assessed using the National Electrical Manufacturers Association peak-deviation non-uniformity method. Results showed that temporomandibular joint coils elicited the least uniform image and brain coils outperformed head and neck coils when metallic materials were present. Additionally, when metallic materials were present, spin echo outperformed gradient echo especially for Co-Cr (particularly in the axial plane). Furthermore, both SCIC and PURE improved image uniformity compared to uncorrected images, and SCIC slightly surpassed PURE when metallic metals were present. Lastly, Co-Cr elicited the least uniform image while other metallic materials generally showed similar patterns (i.e. no significant deviation from images without metallic metals). Overall, a quantitative understanding of the factors influencing MR image uniformity (e.g. coil type, imaging method, metal susceptibility, and post-hoc correction method) is advantageous to optimize image quality, assists clinical interpretation, and may result in improved medical and dental care.
Surface dose measurements for highly oblique electron beams.
Ostwald, P M; Kron, T
1996-08-01
Clinical applications of electrons may involve oblique incidence of beams, and although dose variations for angles up to 60 degrees from normal incidence are well documented, no results are available for highly oblique beams. Surface dose measurements in highly oblique beams were made using parallel-plate ion chambers and both standard LiF:Mg, Ti and carbon-loaded LiF Thermoluminescent Dosimeters (TLD). Obliquity factors (OBF) or surface dose at an oblique angle divided by the surface dose at perpendicular incidence, were obtained for electron energies between 4 and 20 MeV. Measurements were performed on a flat solid water phantom without a collimator at 100 cm SSD. Comparisons were also made to collimated beams. The OBFs of surface doses plotted against the angle of incidence increased to a maximum dose followed by a rapid dropoff in dose. The increase in OBF was more rapid for higher energies. The maximum OBF occurred at larger angles for higher-energy beams and ranged from 73 degrees for 4 MeV to 84 degrees for 20 MeV. At the dose maximum, OBFs were between 130% and 160% of direct beam doses, yielding surface doses of up to 150% of Dmax for the 20 MeV beam. At 2 mm depth the dose ratio was found to increase initially with angle and then decrease as Dmax moved closer to the surface. A higher maximum dose was measured at 2 mm depth than at the surface. A comparison of ion chamber types showed that a chamber with a small electrode spacing and large guard ring is required for oblique dose measurement. A semiempirical equation was used to model the dose increase at the surface with different energy electron beams.
Spelleken, E; Crowe, S B; Sutherland, B; Challens, C; Kairn, T
2018-03-01
Gafchromic EBT3 film is widely used for patient specific quality assurance of complex treatment plans. Film dosimetry techniques commonly involve the use of transmission scanning to produce TIFF files, which are analysed using a non-linear calibration relationship between the dose and red channel net optical density (netOD). Numerous film calibration techniques featured in the literature have not been independently verified or evaluated. A range of previously published film dosimetry techniques were re-evaluated, to identify whether these methods produce better results than the commonly-used non-linear, netOD method. EBT3 film was irradiated at calibration doses between 0 and 4000 cGy and 25 pieces of film were irradiated at 200 cGy to evaluate uniformity. The film was scanned using two different scanners: The Epson Perfection V800 and the Epson Expression 10000XL. Calibration curves, uncertainty in the fit of the curve, overall uncertainty and uniformity were calculated following the methods described by the different calibration techniques. It was found that protocols based on a conventional film dosimetry technique produced results that were accurate and uniform to within 1%, while some of the unconventional techniques produced much higher uncertainties (> 25% for some techniques). Some of the uncommon methods produced reliable results when irradiated to the standard treatment doses (< 400 cGy), however none could be recommended as an efficient or accurate replacement for a common film analysis technique which uses transmission scanning, red colour channel analysis, netOD and a non-linear calibration curve for measuring doses up to 4000 cGy when using EBT3 film.
Predictive value of tracer studies for /sup 131/I treatment in hyperthyroid cats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, M.R.; Turrel, J.M.; Hays, M.T.
In 76 cats with hyperthyroidism, peak thyroidal radioiodine (/sup 131/I) uptakes and effective half-lives were determined after administration of tracer and therapeutic activities of /sup 131/I. In 6 additional hyperthyroid cats, only peak thyroidal uptakes after administration of tracer and therapeutic activities of /sup 131/I were determined. Good correlation was found between peak thyroidal uptakes of tracer and therapeutic /sup 131/I; however, only fair correlation was observed between effective half-lives. In 79% of the cats, the effective half-life for therapeutic /sup 131/I was longer than that for tracer /sup 131/I. After administration of therapeutic activity of /sup 131/I, monoexponential andmore » biphasic decay curves were observed in 51 and 16 cats, respectively. Using therapeutic kinetic data, radiation doses to the thyroid gland were calculated retrospectively on the basis of 2 methods for determining the activity of /sup 131/I administered: (1) actual administration of tracer-compensated activity and (2) hypothetic administration of uniform activity (3 mCi). Because of the good predictive ability of tracer kinetic data for the therapeutic kinetic data, the tracer-compensated radiation doses came significantly (P = 0.008) closer to the therapeutic goal than did the uniform-activity doses. In addition, the use of tracer kinetic information reduced the extent of the tendency for consistently high uniform-activity doses. A manual method for acquiring tracer kinetic data was developed and was an acceptable alternative to computerized techniques. Adoption of this method gives individuals and institutions with limited finances the opportunity to characterize the iodine kinetics in cats before proceeding with administration of therapeutic activities of /sup 131/I.« less
Moharram, B M; Suliman, M N; Zahran, N F; Shennawy, S E; El Sayed, A R
2012-01-01
Using of building materials containing naturally occurring radionuclides as (238)U, (232)Th and (40)K and their progeny results in an external exposures of the housing of such buildings. In the present study, indoor dose rates for typical Egyptian rooms are calculated using the analytical method and activity concentrations of natural radionuclides in some building materials. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling assumed. Different room models are assumed to discuss variation of indoor dose rates according to variation in room construction. Activity concentrations of (238)U, (232)Th and (40)K content in eight samples representative Clay soil and different building materials used in most recent Egyptian building were measured using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The specific activity for (238)U, (232)Th and (40)K, from the selected samples, were in the range 14.15-60.64, 2.75-84.66 and 7.35-554.4Bqkg(-1), respectively. The average indoor absorbed dose rates in air ranged from 0.005μGyh(-1) to 0.071μGyh(-1) and the corresponding population-weighted annual effective dose due to external gamma radiation varies from 0.025 to 0.345mSv. An outdoor dose rate for typical building samples in addition to some radiological hazards has been introduced for comparison. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acar, Hilal; Chiu-Tsao, Sou-Tung; Oezbay, Ismail
Purpose: (1) To measure absolute dose distributions in eye phantom for COMS eye plaques with {sup 125}I seeds (model I25.S16) using radiochromic EBT film dosimetry. (2) To determine the dose correction function for calculations involving the TG-43 formalism to account for the presence of the COMS eye plaque using Monte Carlo (MC) method specific to this seed model. (3) To test the heterogeneous dose calculation accuracy of the new version of Plaque Simulator (v5.3.9) against the EBT film data for this seed model. Methods: Using EBT film, absolute doses were measured for {sup 125}I seeds (model I25.S16) in COMS eyemore » plaques (1) along the plaque's central axis for (a) uniformly loaded plaques (14-20 mm in diameter) and (b) a 20 mm plaque with single seed, and (2) in off-axis direction at depths of 5 and 12 mm for all four plaque sizes. The EBT film calibration was performed at {sup 125}I photon energy. MC calculations using MCNP5 code for a single seed at the center of a 20 mm plaque in homogeneous water and polystyrene medium were performed. The heterogeneity dose correction function was determined from the MC calculations. These function values at various depths were entered into PS software (v5.3.9) to calculate the heterogeneous dose distributions for the uniformly loaded plaques (of all four sizes). The dose distributions with homogeneous water assumptions were also calculated using PS for comparison. The EBT film measured absolute dose rate values (film) were compared with those calculated using PS with homogeneous assumption (PS Homo) and heterogeneity correction (PS Hetero). The values of dose ratio (film/PS Homo) and (film/PS Hetero) were obtained. Results: The central axis depth dose rate values for a single seed in 20 mm plaque measured using EBT film and calculated with MCNP5 code (both in ploystyrene phantom) were compared, and agreement within 9% was found. The dose ratio (film/PS Homo) values were substantially lower than unity (mostly between 0.8 and 0.9) for all four plaque sizes, indicating dose reduction by COMS plaque compared with homogeneous assumption. The dose ratio (film/PS Hetero) values were close to unity, indicating the PS Hetero calculations agree with those from the film study. Conclusions: Substantial heterogeneity effect on the {sup 125}I dose distributions in an eye phantom for COMS plaques was verified using radiochromic EBT film dosimetry. The calculated doses for uniformly loaded plaques using PS with heterogeneity correction option enabled were corroborated by the EBT film measurement data. Radiochromic EBT film dosimetry is feasible in measuring absolute dose distributions in eye phantom for COMS eye plaques loaded with single or multiple {sup 125}I seeds. Plaque Simulator is a viable tool for the calculation of dose distributions if one understands its limitations and uses the proper heterogeneity correction feature.« less
The effect of anterior proton beams in the setting of a prostate-rectum spacer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christodouleas, John P., E-mail: christojo@uphs.upenn.edu; Tang, Shikui; Susil, Robert C.
2013-10-01
Studies suggest that anterior beams with in vivo range verification would improve rectal dosimetry in proton therapy for prostate cancer. We investigated whether prostate-rectum spacers would enhance or diminish the benefits of anterior proton beams in these treatments. Twenty milliliters of hydrogel was injected between the prostate and rectum of a cadaver using a transperineal approach. Computed tomography (CT) and magnetic resonance (MR) images were used to generate 7 uniform scanning (US) and 7 single-field uniform dose pencil-beam scanning (PBS) plans with different beam arrangements. Pearson correlations were calculated between rectal, bladder, and femoral head dosimetric outcomes and beam arrangementmore » anterior scores, which characterize the degree to which dose is delivered anteriorly. The overall quality of each plan was compared using a virtual dose-escalation study. For US plans, rectal mean dose was inversely correlated with anterior score, but for PBS plans there was no association between rectal mean dose and anterior score. For both US and PBS plans, full bladder and empty bladder mean doses were correlated with anterior scores. For both US and PBS plans, femoral head mean doses were inversely correlated with anterior score. For US plans and a full bladder, 4 beam arrangements that included an anterior beam tied for the highest maximum prescription dose (MPD). For US plans and an empty bladder, the arrangement with 1 anterior and 2 anterior oblique beams achieved the highest MPD in the virtual dose-escalation study. The dose-escalation study did not differentiate beam arrangements for PBS. All arrangements in the dose-escalation study were limited by bladder constraints except for the arrangement with 2 posterior oblique beams. The benefits of anterior proton beams in the setting of prostate-rectum spacers appear to be proton modality dependent and may not extend to PBS.« less
The effect of anterior proton beams in the setting of a prostate-rectum spacer
Christodouleas, John P.; Tang, Shikui; Susil, Robert C.; McNutt, Todd R.; Song, Danny Y.; Bekelman, Justin; Deville, Curtiland; Vapiwala, Neha; DeWeese, Theodore L.; Lu, Hsiao-Ming; Both, Stefan
2014-01-01
Studies suggest that anterior beams with in vivo range verification would improve rectal dosimetry in proton therapy for prostate cancer. We investigated whether prostate-rectum spacers would enhance or diminish the benefits of anterior proton beams in these treatments. Twenty milliliters of hydrogel was injected between the prostate and rectum of a cadaver using a transperineal approach. Computed tomography (CT) and magnetic resonance (MR) images were used to generate 7 uniform scanning (US) and 7 single-field uniform dose pencil-beam scanning (PBS) plans with different beam arrangements. Pearson correlations were calculated between rectal, bladder, and femoral head dosimetric outcomes and beam arrangement anterior scores, which characterize the degree to which dose is delivered anteriorly. The overall quality of each plan was compared using a virtual dose-escalation study. For US plans, rectal mean dose was inversely correlated with anterior score, but for PBS plans there was no association between rectal mean dose and anterior score. For both US and PBS plans, full bladder and empty bladder mean doses were correlated with anterior scores. For both US and PBS plans, femoral head mean doses were inversely correlated with anterior score. For US plans and a full bladder, 4 beam arrangements that included an anterior beam tied for the highest maximum prescription dose (MPD). For US plans and an empty bladder, the arrangement with 1 anterior and 2 anterior oblique beams achieved the highest MPD in the virtual dose-escalation study. The dose-escalation study did not differentiate beam arrangements for PBS. All arrangements in the dose-escalation study were limited by bladder constraints except for the arrangement with 2 posterior oblique beams. The benefits of anterior proton beams in the setting of prostate-rectum spacers appear to be proton modality dependent and may not extend to PBS. PMID:23578497
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, TK
Purpose In proton beam configuration for spot scanning proton therapy (SSPT), one can define the spacing between spots and lines of scanning as a ratio of given spot size. If the spacing increases, the number of spots decreases which can potentially decrease scan time, and so can whole treatment time, and vice versa. However, if the spacing is too large, the uniformity of scanned field decreases. Also, the field uniformity can be affected by motion during SSPT beam delivery. In the present study, the interplay between spot/ line spacing and motion is investigated. Methods We used four Gaussian-shape spot sizesmore » with 0.5cm, 1.0cm, 1.5cm, and 2.0cm FWHM, three spot/line spacing that creates uniform field profile which are 1/3*FWHM, σ/3*FWHM and 2/3*FWHM, and three random motion amplitudes within, +/−0.3mm, +/−0.5mm, and +/−1.0mm. We planned with 2Gy uniform single layer of 10×10cm2 and 20×20cm2 fields. Then, mean dose within 80% area of given field size, contrubuting MU per each spot assuming 1cGy/MU calibration for all spot sizes, number of spots and uniformity were calculated. Results The plans with spot/line spacing equal to or smaller than 2/3*FWHM without motion create ∼100% uniformity. However, it was found that the uniformity decreases with increased spacing, and it is more pronounced with smaller spot sizes, but is not affected by scanned field sizes. Conclusion It was found that the motion during proton beam delivery can alter the dose uniformity and the amount of alteration changes with spot size which changes with energy and spot/line spacing. Currently, robust evaluation in TPS (e.g. Eclipse system) performs range uncertainty evaluation using isocenter shift and CT calibration error. Based on presented study, it is recommended to add interplay effect evaluation to robust evaluation process. For future study, the additional interplay between the energy layers and motion is expected to present volumetric effect.« less
Dose Distribution in Cone-Beam Breast Computed Tomography: An Experimental Phantom Study
NASA Astrophysics Data System (ADS)
Russo, Paolo; Lauria, Adele; Mettivier, Giovanni; Montesi, Maria Cristina; Villani, Natalia
2010-02-01
We measured the spatial distribution of absorbed dose in a 14 cm diameter PMMA half-ellipsoid phantom simulating the uncompressed breast, using an X-ray cone-beam breast computed tomography apparatus, assembled for laboratory tests. Thermoluminescent dosimeters (TLD-100) were placed inside the phantom in six positions, both axially and at the phantom periphery. To study the dose distribution inside the PMMA phantom two experimental setups were adopted with effective energies in the range 28.7-44.4 keV. Different values of effective energies were obtained by combining different configurations of added Cu filtration (0.05 mm or 0.2 mm) and tube voltages (from 50 kVp to 80 kVp). Dose values obtained by TLDs in different positions inside the PMMA are reported. To evaluate the dose distribution in the breast shaped volume, the values measured were normalized to the one obtained in the inner position inside the phantom. Measurements with a low energy setup show a gradual increment of dose going from the "chest wall" to the "nipple" (63% more at the "nipple" compared to the central position). Likewise, a gradual increment is observed going from the breast axis toward the periphery (82% more at the "skin" compared to the central position). A more uniform distribution of dose inside the PMMA was obtained with a high energy setup (the maximum variation was 33% at 35.5 keV effective energy in the radial direction). The most uniform distribution is obtained at 44.4 keV. The results of this study show how the dose is distributed: it varies as a function of effective energy of the incident X-ray beam and as a function of the position inside the volume (axial or peripheral position).
Jung, Caroline; Greco, Santo; Nguyen, Hanh H T; Ho, Jui T; Lewis, John G; Torpy, David J; Inder, Warrick J
2014-11-26
Glucocorticoid replacement is essential in patients with primary and secondary adrenal insufficiency, but many patients remain on higher than recommended dose regimens. There is no uniformly accepted method to monitor the dose in individual patients. We have compared cortisol concentrations in plasma, saliva and urine achieved following "physiological" and "stress" doses of hydrocortisone as potential methods for monitoring glucocorticoid replacement. Cortisol profiles were measured in plasma, saliva and urine following "physiological" (20 mg oral) or "stress" (50 mg intravenous) doses of hydrocortisone in dexamethasone-suppressed healthy subjects (8 in each group), compared to endogenous cortisol levels (12 subjects). Total plasma cortisol was measured half-hourly, and salivary cortisol and urinary cortisol:creatinine ratio were measured hourly from time 0 (between 0830 and 0900) to 5 h. Endogenous plasma corticosteroid-binding globulin (CBG) levels were measured at time 0 and 5 h, and hourly from time 0 to 5 h following administration of oral or intravenous hydrocortisone. Plasma free cortisol was calculated using Coolens' equation. Plasma, salivary and urine cortisol at 2 h after oral hydrocortisone gave a good indication of peak cortisol concentrations, which were uniformly supraphysiological. Intravenous hydrocortisone administration achieved very high 30 minute cortisol concentrations. Total plasma cortisol correlated significantly with both saliva and urine cortisol after oral and intravenous hydrocortisone (P <0.0001, correlation coefficient between 0.61 and 0.94). There was no difference in CBG levels across the sampling period. An oral dose of hydrocortisone 20 mg is supraphysiological for routine maintenance, while stress doses above 50 mg 6-hourly would rarely be necessary in managing acute illness. Salivary cortisol and urinary cortisol:creatinine ratio may provide useful alternatives to plasma cortisol measurements to monitor replacement doses in hypoadrenal patients.
SU-D-201-02: Prediction of Delivered Dose Based On a Joint Histogram of CT and FDG PET Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Choi, Y; Cho, A
2015-06-15
Purpose: To investigate whether pre-treatment images can be used in predicting microsphere distribution in tumors. When intra-arterial radioembolization using Y90 microspheres was performed, the microspheres were often delivered non-uniformly within the tumor, which could lead to an inefficient therapy. Therefore, it is important to estimate the distribution of microspheres. Methods: Early arterial phase CT and FDG PET images were acquired for patients with primary liver cancer prior to radioembolization (RE) using Y90 microspheres. Tumor volume was delineated on CT images and fused with FDG PET images. From each voxel (3.9×3.9×3.3 mm3) in the tumor, the Hounsfield unit (HU) from themore » CT and SUV values from the FDG PET were harvested. We binned both HU and SUV into 11 bins and then calculated a normalized joint-histogram in an 11×11 array.Patients also underwent a post-treatment Y90 PET imaging. Radiation dose for the tumor was estimated using convolution of the Y90 distribution with a dose-point kernel. We also calculated a fraction of the tumor volume that received a radiation dose great than 100Gy. Results: Averaged over 40 patients, 55% of tumor volume received a dose greater than 100Gy (range : 1.1 – 100%). The width of the joint histogram was narrower for patients with a high dose. For patients with a low dose, the width was wider and a larger fraction of tumor volume had low HU. Conclusion: We have shown the pattern of joint histogram of the HU and SUV depends on delivered dose. The patterns can predict the efficacy of uniform intra-arterial delivery of Y90 microspheres.« less
Some Radiation Techniques Used in the GU-3 Gamma Irradiator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodbiba, Andon; Ylli, Ariana; Stamo, Iliriana
2007-04-23
Different radiation techniques, measurement of dose and its distibution throughout the irradiated materials are the main problems treated in this paper. The oscillometry method combined with the ionization chamber, as an absolute dosimeter, is used for calibration of routine ECB dosimeters. The dose uniformity, for the used radiation techniques in our GU-3 Gamma Irradiator with Cs-137, is from 93% up to 99%.
NASA Astrophysics Data System (ADS)
Widesott, L.; Strigari, L.; Pressello, M. C.; Benassi, M.; Landoni, V.
2008-03-01
We investigated the role and the weight of the parameters involved in the intensity modulated radiation therapy (IMRT) optimization based on the generalized equivalent uniform dose (gEUD) method, for prostate and head-and-neck plans. We systematically varied the parameters (gEUDmax and weight) involved in the gEUD-based optimization of rectal wall and parotid glands. We found that the proper value of weight factor, still guaranteeing planning treatment volumes coverage, produced similar organs at risks dose-volume (DV) histograms for different gEUDmax with fixed a = 1. Most of all, we formulated a simple relation that links the reference gEUDmax and the associated weight factor. As secondary objective, we evaluated plans obtained with the gEUD-based optimization and ones based on DV criteria, using the normal tissue complication probability (NTCP) models. gEUD criteria seemed to improve sparing of rectum and parotid glands with respect to DV-based optimization: the mean dose, the V40 and V50 values to the rectal wall were decreased of about 10%, the mean dose to parotids decreased of about 20-30%. But more than the OARs sparing, we underlined the halving of the OARs optimization time with the implementation of the gEUD-based cost function. Using NTCP models we enhanced differences between the two optimization criteria for parotid glands, but no for rectum wall.
NASA Astrophysics Data System (ADS)
Garnica-Garza, H. M.
2009-09-01
Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360° arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.
Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys
Kephart, Alan R.
1991-01-01
An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.
On the Heat Transfer through a Solid Slab Heated Uniformly and Continuously on One of Its Surfaces
ERIC Educational Resources Information Center
Marin, E.; Lara-Bernal, A.; Calderon, A.; Delgado-Vasallo, O.
2011-01-01
Some peculiarities of the heat transfer through a sample that is heated by the superficial absorption of light energy under continuous uniform illumination are discussed. We explain, using a different approach to that presented in a recent article published in this journal (Salazar "et al" 2010 "Eur. J. Phys." 31 1053-9), that the front surface of…
Performance characteristics of dedicated molecular breast imaging systems at low doses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Zaiyang; Conners, Amy L.; Hunt, Katie N.
Purpose: The purpose of this study was to compare the system performance characteristics and lesion detection capability of two molecular breast imaging (MBI) systems: a multicrystal sodium iodide (NaI)-based single-head system and a cadmium zinc telluride (CZT)-based dual-head system at low administered doses (150–300 MBq) of Tc-99m sestamibi. Methods: System performance characteristics including count sensitivity, uniformity, energy resolution, and spatial resolution were measured using standard NEMA methods, or a modified version thereof in cases where the standard NEMA protocol could not be applied. A contrast-detail phantom with 48 lesions at varying depths from the collimator surface was used to assessmore » lesion contrast-to-noise-ratio (CNR) using background count densities comparable to those observed in patient studies performed with administered doses of 150 MBq Tc-99m sestamibi. Lesions with CNR >3 were deemed to be detectable. Thirty patients undergoing MBI examinations with administered doses of 150–300 MBq were scanned for an additional view on the pixelated NaI system. CNR was calculated for lesions observed on patient images. Background count densities of patient images were measured and compared between the two systems. Results: Over the central field of view, integral and differential uniformity were 6.1% and 4.2%, respectively, for the pixelated NaI system, and 3.8% and 2.7%, respectively, for the CZT system. Count sensitivity was 10.8 kcts/min/MBq for the NaI system and 32.9 kcts/min/MBq for the CZT system. Energy resolution was 13.5% on the pixelated NaI system and 4.5% on the CZT system. Spatial resolution (full-width at half-maximum) for the pixelated NaI detector was 4.2 mm at a distance of 1.2 cm from the collimator and 5.2 mm at 3.1 cm. Spatial resolution of a single CZT detector was 2.9 mm at a distance of 1.2 cm from the collimator and 4.7 mm at 3.1 cm. Effective spatial resolution obtained with dual-head CZT was below 4.7 mm throughout a simulated breast thickness of 6 cm. From contrast-detail phantom images of lesions at distances of 1.5–4.5 cm from the collimator face, the CZT system detected 124 of 144 (86%) of lesions compared to 97 of 144 (67%) with the NaI system. In patient studies, from comparison of the same view with both systems, a total of 7 breast lesions were identified on CZT system in seven patients, and 4 of 7 (57%) were detected on NaI system. Patient image background count densities on the CZT system were on average 3.4 times higher than those on the NaI system. Conclusions: The CZT system demonstrated better uniformity, count sensitivity, spatial resolution, energy resolution, and lesion detection in phantom and patient studies compared to the NaI system. At administered doses of 150–300 MBq Tc-99m sestamibi, patient results obtained with CZT systems may not be directly translatable to NaI systems.« less
NASA Astrophysics Data System (ADS)
Rafique, Mohsin; Butt, M. Z.; Ahmad, Sajjad
2017-09-01
Zircaloy-4 specimens were irradiated with 3.5 MeV hydrogen ions (dose range: 1 × 1013 H+1 cm-2 to 1 × 1015 H+1 cm-2) using a Pelletron accelerator. FESEM studies reveal formation of hydrogen micro-bubbles, bubbles induced blisters of irregular shapes, and development of cracks on the specimen surface, as in the case of pure zirconium. However, for the highest irradiation dose of 1 × 1015 H+1 cm-2, agglomeration of flower-shape blisters is observed. XRD analysis shows that the most preferentially oriented crystallographic plane is (0 0 4) with texture coefficient values 1.832-2.308 depending on the ions dose. Its diffraction peak intensity first decreases with the increase in ions dose up to 5 × 1013 H+1 cm-2 and later increases up to 1 × 1015 H+1 cm-2. Opposite is found in case of diffraction peak width. Crystallite size and lattice strain determined by Williamson-Hall analysis display a linear relationship between the two with positive slope. Mechanical strength, namely yield stress (YS), ultimate tensile strength (UTS), and fracture stress (FS), increases sharply with ions dose up to 5 × 1013 H+1 cm-2. For 1 × 1014 H+1 cm-2 dose there is a sudden drop of stress to a lowest value and then a slow steady increase in stress up to the highest dose 1 × 1015 H+1 cm-2. Same pattern is followed by uniform elongation and total elongation. All three stress parameters YS, UTS, and FS follow Inverse Hall-Petch relation.
Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid
2010-01-01
Background We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent <5 μSv). Methods We used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. Results The reconstructed attenuation coefficient of water at 140 keV was .150 ± .003/cm in the uniform region of the ACR phantom, .151 ± .003/cm and .151 ± .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 ± 6.5 before and 87.9 ± 3.3 after AC (average ± standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. Conclusion The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC. PMID:20169476
Glass microspheres for medical applications
NASA Astrophysics Data System (ADS)
Conzone, Samuel David
Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass microspheres containing 3.7 GBq of 186Re and 8.5 GBq of 188Re could be used to deliver a 100 Gy dose to a cancerous tumor, while limiting the total body dose caused by rhenium dissolution to approximately 1 mGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, L; Deng, G; Xie, J
2015-06-15
Purpose: To compare the dosimetric characteristics of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for left-sided breast cancer patients with modified radical mastectomy. Methods: Twenty-four left-sided breast cancer patients treated with modified radical mastectomy were selected in this study. The planning target volume (PTV) was generated by using 7-mm uniform expansion of the clinical target volume (CTV) in all direction except the skin surface. The organs at risk (OARs) included heart, left lung, right lung, and right breast. Dose volume histograms (DVHs) were utilized to evaluate the dose distribution in PTV and OARs. Results: Bothmore » VMAT and IMRT plans met the requirement of PTV coverage. VMAT was superior to IMRT in terms of conformity, with a statistically significant difference (p=0.024). Mean doses, V5 and V10 of heart and both lungs in VMAT plans were significantly decreased compared to IMRT plans (P<0.05), but in terms of heart volume irradiated by high doses (V30 and V45), no significant differences were observed (P>0.05). For right breast, VMAT showed the reduction of V5 in comparison with IMRT (P<0.05). Additionally, the mean number of monitor units (MU) and treatment time in VMAT (357.21, 3.62 min) were significantly less than those in IMRT (1132.85, 8.74 min). Conclusion: VMAT showed similar PTV coverage and significant advantage in OARs sparing compared with IMRT, especially in terms of decreased volumes irradiated by low doses, while significantly reducing the treatment time and MU number.« less
Spectral and spatial shaping of a laser-produced ion beam for radiation-biology experiments
NASA Astrophysics Data System (ADS)
Pommarel, L.; Vauzour, B.; Mégnin-Chanet, F.; Bayart, E.; Delmas, O.; Goudjil, F.; Nauraye, C.; Letellier, V.; Pouzoulet, F.; Schillaci, F.; Romano, F.; Scuderi, V.; Cirrone, G. A. P.; Deutsch, E.; Flacco, A.; Malka, V.
2017-03-01
The study of radiation biology on laser-based accelerators is most interesting due to the unique irradiation conditions they can produce, in terms of peak current and duration of the irradiation. In this paper we present the implementation of a beam transport system to transport and shape the proton beam generated by laser-target interaction for in vitro irradiation of biological samples. A set of four permanent magnet quadrupoles is used to transport and focus the beam, efficiently shaping the spectrum and providing a large and relatively uniform irradiation surface. Real time, absolutely calibrated, dosimetry is installed on the beam line, to enable shot-to-shot control of dose deposition in the irradiated volume. Preliminary results of cell sample irradiation are presented to validate the robustness of the full system.
Drug release from slabs and the effects of surface roughness.
Kalosakas, George; Martini, Dimitra
2015-12-30
We discuss diffusion-controlled drug release from slabs or thin films. Analytical and numerical results are presented for slabs with flat surfaces, having a uniform thickness. Then, considering slabs with rough surfaces, the influence of a non-uniform slab thickness on release kinetics is numerically investigated. The numerical release profiles are obtained using Monte Carlo simulations. Release kinetics is quantified through the stretched exponential (or Weibull) function and the resulting dependence of the two parameters of this function on the thickness of the slab, for flat surfaces, and the amplitude of surface fluctuations (or the degree of thickness variability) in case of roughness. We find that a higher surface roughness leads to a faster drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel
2007-06-21
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-01-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality. PMID:29515883
Li, Jian; Fei, Ze-Yuan; Xu, Yi-Feng; Wang, Jie; Fan, Bing-Feng; Ma, Xue-Jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
NASA Astrophysics Data System (ADS)
Li, Jian; Fei, Ze-yuan; Xu, Yi-feng; Wang, Jie; Fan, Bing-feng; Ma, Xue-jin; Wang, Gang
2018-02-01
Metal-organic chemical vapour deposition (MOCVD) is a key technique for fabricating GaN thin film structures for light-emitting and semiconductor laser diodes. Film uniformity is an important index to measure equipment performance and chip processes. This paper introduces a method to improve the quality of thin films by optimizing the rotation speed of different substrates of a model consisting of a planetary with seven 6-inch wafers for the planetary GaN-MOCVD. A numerical solution to the transient state at low pressure is obtained using computational fluid dynamics. To evaluate the role of the different zone speeds on the growth uniformity, single factor analysis is introduced. The results show that the growth rate and uniformity are strongly related to the rotational speed. Next, a response surface model was constructed by using the variables and the corresponding simulation results. The optimized combination of the matching of different speeds is also proposed as a useful reference for applications in industry, obtained by a response surface model and genetic algorithm with a balance between the growth rate and the growth uniformity. This method can save time, and the optimization can obtain the most uniform and highest thin film quality.
Diffuse-Illumination Systems for Growing Plants
NASA Technical Reports Server (NTRS)
May, George; Ryan, Robert
2010-01-01
Agriculture in both terrestrial and space-controlled environments relies heavily on artificial illumination for efficient photosynthesis. Plant-growth illumination systems require high photon flux in the spectral range corresponding with plant photosynthetic active radiation (PAR) (400 700 nm), high spatial uniformity to promote uniform growth, and high energy efficiency to minimize electricity usage. The proposed plant-growth system takes advantage of the highly diffuse reflective surfaces on the interior of a sphere, hemisphere, or other nearly enclosed structure that is coated with highly reflective materials. This type of surface and structure uniformly mixes discrete light sources to produce highly uniform illumination. Multiple reflections from within the domelike structures are exploited to obtain diffuse illumination, which promotes the efficient reuse of photons that have not yet been absorbed by plants. The highly reflective surfaces encourage only the plant tissue (placed inside the sphere or enclosure) to absorb the light. Discrete light sources, such as light emitting diodes (LEDs), are typically used because of their high efficiency, wavelength selection, and electronically dimmable properties. The light sources are arranged to minimize shadowing and to improve uniformity. Different wavelengths of LEDs (typically blue, green, and red) are used for photosynthesis. Wavelengths outside the PAR range can be added for plant diagnostics or for growth regulation
Toward microscale flow control using non-uniform electro-osmotic flow
NASA Astrophysics Data System (ADS)
Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran
2018-02-01
We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.
NASA Astrophysics Data System (ADS)
Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng
2017-11-01
The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.
Laser surface treatment of pre-prepared Rene 41 surface
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Akhtar, S.; Karatas, C.
2012-11-01
Laser controlled melting of pre-prepared Rene 41 surface is carried out. A carbon film composing of uniformly distributed 5% TiC carbide particles is formed at the surface prior to laser treatment process. The carbon film provides increased absorption of the incident radiation and facilitates embedding of TiC particles at the surface region of the workpiece during the treatment process. Nitrogen at high pressure is used as assisting gas during the controlled melting. It is found that laser treated layer extents 40 μm below the surface with almost uniform thickness. Fine grains and ultra-short dendrites are formed at the surface region of the laser treated layer. Partially dissolved TiC particles and γ, γ' and γ'N phases are observed in the treated layer.
Investigation of non-uniform radiation damage observed in the ZEUS Beam Pipe Calorimeter at HERA
NASA Astrophysics Data System (ADS)
Bohnet, I.; Fricke, U.; Surrow, B.; Wick, K.
1999-08-01
The ZEUS Beam Pipe Calorimeter (BPC) is a small tungsten/scintillator sampling calorimeter. It is positioned at a distance of approximately 4 cm from the HERA beams and approximately 3 m from the interaction point. The accumulated doses measured at the front side of the BPC during the HERA runs 1995, 1996 and 1997 were 12 kGy, 11 kGy and 2.5 kGy, respectively. The radiation dose influenced the optical components of the BPC. The degradation of some of the scintillators due to radiation damage has been examined using different monitoring systems. A simulation code was developed which describes quantitatively the effects of non-uniform radiation damage. The following report describes the radiation monitoring, the effects on the scintillator material and the impact on the energy linearity of the BPC.
Dose computation for therapeutic electron beams
NASA Astrophysics Data System (ADS)
Glegg, Martin Mackenzie
The accuracy of electron dose calculations performed by two commercially available treatment planning computers, Varian Cadplan and Helax TMS, has been assessed. Measured values of absorbed dose delivered by a Varian 2100C linear accelerator, under a wide variety of irradiation conditions, were compared with doses calculated by the treatment planning computers. Much of the motivation for this work was provided by a requirement to verify the accuracy of calculated electron dose distributions in situations encountered clinically at Glasgow's Beatson Oncology Centre. Calculated dose distributions are required in a significant minority of electron treatments, usually in cases involving treatment to the head and neck. Here, therapeutic electron beams are subject to factors which may cause non-uniformity in the distribution of dose, and which may complicate the calculation of dose. The beam shape is often irregular, the beam may enter the patient at an oblique angle or at an extended source to skin distance (SSD), tissue inhomogeneities can alter the dose distribution, and tissue equivalent material (such as wax) may be added to reduce dose to critical organs. Technological advances have allowed the current generation of treatment planning computers to implement dose calculation algorithms with the ability to model electron beams in these complex situations. These calculations have, however, yet to be verified by measurement. This work has assessed the accuracy of calculations in a number of specific instances. Chapter two contains a comparison of measured and calculated planar electron isodose distributions. Three situations were considered: oblique incidence, incidence on an irregular surface (such as that which would be arise from the use of wax to reduce dose to spinal cord), and incidence on a phantom containing a small air cavity. Calculations were compared with measurements made by thermoluminescent dosimetry (TLD) in a WTe electron solid water phantom. Chapter three assesses the planning computers' ability to model electron beam penumbra at extended SSD. Calculations were compared with diode measurements in a water phantom. Further measurements assessed doses in the junction region produced by abutting an extended SSD electron field with opposed photon fields. Chapter four describes an investigation of the size and shape of the region enclosed by the 90% isodose line when produced by limiting the electron beam with square and elliptical apertures. The 90% isodose line was chosen because clinical treatments are often prescribed such that a given volume receives at least 90% dose. Calculated and measured dose distributions were compared in a plane normal to the beam central axis. Measurements were made by film dosimetry. While chapters two to four examine relative doses, chapter five assesses the accuracy of absolute dose (or output) calculations performed by the planning computers. Output variation with SSD and field size was examined. Two further situations already assessed for the distribution of relative dose were also considered: an obliquely incident field, and a field incident on an irregular surface. The accuracy of calculations was assessed against criteria stipulated by the International Commission on Radiation Units and Measurement (ICRU). The Varian Cadplan and Helax TMS treatment planning systems produce acceptable accuracy in the calculation of relative dose from therapeutic electron beams in most commonly encountered situations. When interpreting clinical dose distributions, however, knowledge of the limitations of the calculation algorithm employed by each system is required in order to identify the minority of situations where results are not accurate. The calculation of absolute dose is too inaccurate to implement in a clinical environment. (Abstract shortened by ProQuest.).
Luxton, Gary; Keall, Paul J; King, Christopher R
2008-01-07
To facilitate the use of biological outcome modeling for treatment planning, an exponential function is introduced as a simpler equivalent to the Lyman formula for calculating normal tissue complication probability (NTCP). The single parameter of the exponential function is chosen to reproduce the Lyman calculation to within approximately 0.3%, and thus enable easy conversion of data contained in empirical fits of Lyman parameters for organs at risk (OARs). Organ parameters for the new formula are given in terms of Lyman model m and TD(50), and conversely m and TD(50) are expressed in terms of the parameters of the new equation. The role of the Lyman volume-effect parameter n is unchanged from its role in the Lyman model. For a non-homogeneously irradiated OAR, an equation relates d(ref), n, v(eff) and the Niemierko equivalent uniform dose (EUD), where d(ref) and v(eff) are the reference dose and effective fractional volume of the Kutcher-Burman reduction algorithm (i.e. the LKB model). It follows in the LKB model that uniform EUD irradiation of an OAR results in the same NTCP as the original non-homogeneous distribution. The NTCP equation is therefore represented as a function of EUD. The inverse equation expresses EUD as a function of NTCP and is used to generate a table of EUD versus normal tissue complication probability for the Emami-Burman parameter fits as well as for OAR parameter sets from more recent data.
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam.
Tran, Van Hung; Tran, Khac An
2010-06-01
By using MCNP code and ethanol-chlorobenzene (ECB) dosimeters the simulations and measurements of absorbed dose distribution in a tote-box of the Cobalt-60 irradiator, SVST-Co60/B at VINAGAMMA have been done. Based on the results Dose Uniformity Ratios (DUR), positions and values of minimum and maximum dose extremes in a tote-box, and efficiency of the irradiator for the different dummy densities have been gained. There is a good agreement between simulation and experimental results in comparison and they have valuable meanings for operation of the irradiator. Copyright 2010 Elsevier Ltd. All rights reserved.
The structural coloration of textile materials using self-assembled silica nanoparticles
NASA Astrophysics Data System (ADS)
Gao, Weihong; Rigout, Muriel; Owens, Huw
2017-09-01
The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.
Lu, Jennifer Q; Yi, Sung Soo
2006-04-25
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.
The structural coloration of textile materials using self-assembled silica nanoparticles.
Gao, Weihong; Rigout, Muriel; Owens, Huw
2017-01-01
The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.
Filippov, Alexander E; Gorb, Stanislav N
2015-02-06
One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such clusters are much larger than original fibres and, because they are less flexible, form much worse adhesive contacts especially with the rough surfaces. Main problem here is that the forces responsible for the clusterization are the same intermolecular forces which attract fibres to fractal surface of the substrate. However, arrays of real gecko setae are much less susceptible to this problem. One of the possible reasons for this is that ends of the seta have more sophisticated non-uniformly distributed three-dimensional structure than that of existing artificial systems. In this paper, we simulated three-dimensional spatial geometry of non-uniformly distributed branches of nanofibres of the setal tip numerically, studied its attachment-detachment dynamics and discussed its advantages versus uniformly distributed geometry.
Free-surface flow of liquid oxygen under non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min
2017-01-01
The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.
Marlowe, Zora T; Davio, Stephen R
2014-01-01
Loteprednol etabonate (LE) ophthalmic gel 0.5% (Lotemax®) is a new polycarbophil-based, nonsettling topical ophthalmic formulation. The formulation is a semisolid gel at rest and a shear thinning fluid when expressed through a dropper tip. The present study was undertaken to determine how the nonsettling character of LE ophthalmic gel affects dose uniformity. Prednisolone acetate ophthalmic suspension 1% (Pred Forte®) and a generic prednisolone acetate suspension 1% were used as comparators. Drug concentrations of LE ophthalmic gel, Pred Forte, and a generic prednisolone acetate suspension were determined following simulated dosing - consisting of 2 drops, expressed four times daily for 2 weeks, with bottles that were shaken or not shaken immediately prior to expressing the drops. Drug concentrations were determined using a reverse-phase high-performance liquid chromatography (HPLC) method and reported as a percentage of the declared (labeled) concentration. Comparative kinetics of drug particle sedimentation were also determined for each formulation, using dispersion analysis under gravity. Mean drug concentrations in drops of all three formulations were within a few percentage points of the declared concentration when the bottles were shaken for 5 seconds prior to dispensing. Only LE ophthalmic gel showed consistent and on-target concentrations when the bottles were unshaken prior to dispensing, with a mean (standard deviation [SD]) percent declared concentration of 102% (1.92%) over the 2-week dosing regimen. Drug concentrations for the branded and generic prednisolone acetate suspensions following expression from unshaken bottles were highly variable (overall relative SDs of 16.8% and 20.3%, respectively), with mean concentrations for both falling significantly below the declared concentration for drops expressed at the beginning of the 2-week dosing regimen and significantly above the declared concentration for drops expressed near the end of the dosing regimen. Dispersion analysis at 120× g showed no drug particle sedimentation for LE ophthalmic gel over the 24-hour testing period, whereas the prednisolone acetate suspensions settled in less than 6 hours. LE ophthalmic gel 0.5% provided consistent dose uniformity at the declared concentration whether or not the bottle was shaken prior to dispensing, whereas Pred Forte® and the generic prednisolone acetate required shaking to provide consistent drug concentrations. LE ophthalmic gel may be beneficial to patients because it eliminates the potential impact on the clinical response of both under- and overdosing.
Cryogenic target formation using cold gas jets
Hendricks, C.D.
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.
X-ray surface dose measurements using TLD extrapolation.
Kron, T; Elliot, A; Wong, T; Showell, G; Clubb, B; Metcalfe, P
1993-01-01
Surface dose measurements in therapeutic x-ray beams are of importance in determining the dose to the skin of patients undergoing radiotherapy. Measurements were performed in the 6-MV beam of a medical linear accelerator with LiF thermoluminescence dosimeters (TLD) using a solid water phantom. TLD chips (surface area 3.17 x 3.17 cm2) of three different thicknesses (0.230, 0.099, and 0.038 g/cm2) were used to extrapolate dose readings to an infinitesimally thin layer of LiF. This surface dose was measured for field sizes ranging from 1 x 1 cm2 to 40 x 40 cm2. The surface dose relative to maximum dose was found to be 10.0% for a field size of 5 x 5 cm2, 16.3% for 10 x 10 cm2, and 26.9% for 20 x 20 cm2. Using a 6-mm Perspex block tray in the beam increased the surface dose in these fields to 10.7%, 17.7%, and 34.2% respectively. Due to the small size of the TLD chips, TLD extrapolation is applicable also for intracavity and exit dose determinations. The technique used for in vivo dosimetry could provide clinicians information about the build up of dose up to 1-mm depth in addition to an extrapolated surface dose measurement.
NASA Astrophysics Data System (ADS)
Sánchez-Guerrero, Guillermo E.; Viera-González, Perla M.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar
2016-09-01
Extraction light in light-pipes with different specular surfaces was analyzed. In the analysis, the impact of the surface shape in all properties of the extracted light in order to obtain an efficient extraction and a uniform illumination using a LED as light source. Also, several parameters of the specular surface to obtain spatial uniformity inside the light-pipe are considered. In this case, the simulation was made for a rectangular lightpipe. One objective of this work is to compare how the front face shape of the specular surface can affect the extraction of light in the lateral face of the light-pipe, only straight and elliptical front faces were used in this work and the comparison between them at different tilts and lengths were made. The main purpose of the front face was extract the light uniformly at the lateral face and this was done by studying simulations on OpticStudio Zemax. The results show how the extraction length is lower in the elliptical front but its total power performs better than the line front.
Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics.
El-Say, Khalid M; Ahmed, Tarek A; Abdelbary, Maged F; Ali, Bahaa E; Aljaeid, Bader M; Zidan, Ahmed S
2015-12-01
This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for pre- and post-compression characteristics. The prepared OD-mini-tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.
Vertical uniformity of cells and nuclei in epithelial monolayers.
Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P
2016-01-22
Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.
Aneurysm permeability following coil embolization: packing density and coil distribution
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-01-01
Background Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Methods Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. Results All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r2=0.73) than with packing density alone (r2=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. Conclusions A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. PMID:25031179
A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film
Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka
2012-01-01
The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169
Elastic Solutions in a Semi-Infinite Solid with an Ellipsoidal Inclusion
1990-01-25
the free surface has been solved for a spherical inclusion with pure dilatational eigenstrain ( stress free transformation strain ) ( Mindlin and Cheng...1950B ), an ellipsoidal inclusion with pure dilatational eigenstrains ( Seo and Mura, 1979 ) and a cuboidal inclusion with uniform eigenstrains ...solution of a half-space under normal surface traction on the full space solution due to a cuboidal inclusion and its image with the uniform eigenstrains
Air Bag Applies Uniform Bonding Pressure
NASA Technical Reports Server (NTRS)
Gillespie, C. A.
1982-01-01
Air-bag box applies constant uniform pressure to tiles and other objects undergoing adhesive bonding. Box is basically a compliant clamp with adjustable force and position. Can be used on irregular surfaces as well as on flat ones. Pressurized air is fed to bag through a tube so that it expands, filling the box and pressing against work. Bag adopts a contour that accommodates surface under open side of box.
Duan, Si-Bo; Li, Zhao-Liang; Tang, Bo-Hui; Wu, Hua; Ma, Lingling; Zhao, Enyu; Li, Chuanrong
2013-01-01
To evaluate the in-flight performance of a new hyperspectral sensor onboard an unmanned aerial vehicle (UAV-HYPER), a comprehensive field campaign was conducted over the Baotou test site in China on 3 September 2011. Several portable reference reflectance targets were deployed across the test site. The radiometric performance of the UAV-HYPER sensor was assessed in terms of signal-to-noise ratio (SNR) and the calibration accuracy. The SNR of the different bands of the UAV-HYPER sensor was estimated to be between approximately 5 and 120 over the homogeneous targets, and the linear response of the apparent reflectance ranged from approximately 0.05 to 0.45. The uniform and non-uniform Lambertian land surface reflectance was retrieved and validated using in situ measurements, with root mean square error (RMSE) of approximately 0.01–0.07 and relative RMSE of approximately 5%–12%. There were small discrepancies between the retrieved uniform and non-uniform Lambertian land surface reflectance over the homogeneous targets and under low aerosol optical depth (AOD) conditions (AOD = 0.18). However, these discrepancies must be taken into account when adjacent pixels had large land surface reflectance contrast and under high AOD conditions (e.g. AOD = 1.0). PMID:23785513
NASA Astrophysics Data System (ADS)
Jasenak, Brian
2017-02-01
Ultraviolet light-emitting diode (UV LED) adoption is accelerating; they are being used in new applications such as UV curing, germicidal irradiation, nondestructive testing, and forensic analysis. In many of these applications, it is critically important to produce a uniform light distribution and consistent surface irradiance. Flat panes of fused quartz, silica, or glass are commonly used to cover and protect UV LED arrays. However, they don't offer the advantages of an optical lens design. An investigation was conducted to determine the effect of a secondary glass optic on the uniformity of the light distribution and irradiance. Glass optics capable of transmitting UV-A, UV-B, and UV-C wavelengths can improve light distribution, uniformity, and intensity. In this work, two simulation studies were created to illustrate distinct irradiance patterns desirable for potential real world applications. The first study investigates the use of a multi-UV LED array and optic to create a uniform irradiance pattern on the flat two dimensional (2D) target surface. The uniformity was improved by designing both the LED array and molded optic to produce a homogenous pattern. The second study investigated the use of an LED light source and molded optic to improve the light uniformity on the inside of a canister. The case study illustrates the requirements for careful selection of LED based on light distribution and subsequent design of optics. The optic utilizes total internal reflection to create optimized light distribution. The combination of the LED and molded optic showed significant improvement in uniformity on the inner surface of the canister. The simulations illustrate how the application of optics can significantly improve UV light distribution which can be critical in applications such as UV curing and sterilization.
NASA Astrophysics Data System (ADS)
Pasternack, Gregory B.; Bounrisavong, Michael K.; Parikh, Kaushal K.
2008-07-01
SummaryThe importance of channel non-uniformity to natural hydrogeomorphic and ecological processes in gravel-bed rivers is becoming increasingly known, but its use in channel rehabilitation lags behind. Many projects still use methods that assume steady, uniform flow and simple channel geometries. One aspect of channel non-uniformity that has not been considered much is its role in controlling backwater conditions and thus potentially influencing patterns of physical habitat and channel stability in sequences of riffles and pools. In this study, 2D hydrodynamic models of two non-uniform pool-riffle-pool configurations were used to systematically explore the effects of four different downstream water surface elevations at three different discharges (24 total simulations) on riffle-pool ecohydraulics. Downstream water surface elevations tested included backwater, uniform, accelerating, and critical conditions, which are naturally set by downstream riffle-crest morphology but may also be re-engineered artificially. Discharges included a fish-spawning low flow, summer fish-attraction flow, and a peak snowmelt pulse. It was found that the occurrence of a significant area of high-quality fish spawning habitat at low flow depends on riffles being imposed upon by backwater conditions, which also delay the onset of full bed mobility on riffles during floods. The assumption of steady, uniform flow was found to be inappropriate for gravel-bed rivers, since their non-uniformity controls spatial patterns of habitat and sediment transport. Also, model results indicated that a "reverse domino" mechanism can explain catastrophic failure and re-organization of a sequence of riffles based on the water surface elevation response to scour on downstream riffles, which then increases scour on upstream riffles.
A Technique for Murine Irradiation in a Controlled Gas Environment
Walb, M. C.; Moore, J. E.; Attia, A.; Wheeler, K. T.; Miller, M. S.; Munley, M. T.
2013-01-01
NASA’s extra-vehicular activities (EVAs) involve exposure to high energy photons while breathing 100% oxygen. Using previously verified mouse models, our laboratory is studying whether low dose irradiation under these hyperoxic conditions could lead to an increase in carcinogenic potential. To simulate the environment astronauts encounter during an EVA, enclosed chambers were constructed that allowed for mouse movement, controlled gas conditions, and uniform radiation dose delivery. Custom-built gas chambers with input/output gas valves and dividers that allowed for uniform gas flow were used to keep 6 unanesthetized mice separated while they were irradiated. The chambers were supplied with 100% oxygen or air using ball valves linked together with T-splitters. A calibrated ion chamber was used to verify the radiation dose distribution across an entire chamber. Mice were placed in the gas environments for 0.5 h, irradiated with a 10 or 18 MV photon beam from a medical linear accelerator, and left in their gas environment for 2 h post-irradiation. We irradiated 200 mice (5 different doses between 0–1000 mGy) under normoxic or 100% oxygen conditions. For the next step of this research, these mice will be euthanized 9 months post-irradiation, and lung tumors will be counted and sized to determine if hyperoxia increases the carcinogenic effect for this model. PMID:22846321
Automatic 3D Extraction of Buildings, Vegetation and Roads from LIDAR Data
NASA Astrophysics Data System (ADS)
Bellakaout, A.; Cherkaoui, M.; Ettarid, M.; Touzani, A.
2016-06-01
Aerial topographic surveys using Light Detection and Ranging (LiDAR) technology collect dense and accurate information from the surface or terrain; it is becoming one of the important tools in the geosciences for studying objects and earth surface. Classification of Lidar data for extracting ground, vegetation, and buildings is a very important step needed in numerous applications such as 3D city modelling, extraction of different derived data for geographical information systems (GIS), mapping, navigation, etc... Regardless of what the scan data will be used for, an automatic process is greatly required to handle the large amount of data collected because the manual process is time consuming and very expensive. This paper is presenting an approach for automatic classification of aerial Lidar data into five groups of items: buildings, trees, roads, linear object and soil using single return Lidar and processing the point cloud without generating DEM. Topological relationship and height variation analysis is adopted to segment, preliminary, the entire point cloud preliminarily into upper and lower contours, uniform and non-uniform surface, non-uniform surfaces, linear objects, and others. This primary classification is used on the one hand to know the upper and lower part of each building in an urban scene, needed to model buildings façades; and on the other hand to extract point cloud of uniform surfaces which contain roofs, roads and ground used in the second phase of classification. A second algorithm is developed to segment the uniform surface into buildings roofs, roads and ground, the second phase of classification based on the topological relationship and height variation analysis, The proposed approach has been tested using two areas : the first is a housing complex and the second is a primary school. The proposed approach led to successful classification results of buildings, vegetation and road classes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, I; Hossain, S; Syzek, E
Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relativemore » surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not affect image-quality and may be used as the default in the different imaging techniques.« less
Background radiation: natural and man-made.
Thorne, M C
2003-03-01
A brief overview and comparison is given of dose rates arising from natural background radiation and the fallout from atmospheric testing of nuclear weapons. Although there are considerable spatial variations in exposure to natural background radiation, it is useful to give estimates of worldwide average overall exposures from the various components of that background. Cosmic-ray secondaries of low linear energy transfer (LET), mainly muons and photons, deliver about 280 microSv a(-1). Cosmic-ray neutrons deliver about another 100 microSv a(-1). These low- and high-LET exposures are relatively uniform to the whole body. The effective dose rate from cosmogenic radionuclides is dominated by the contribution of 12 microSv a(-1) from 14C. This is due to relatively uniform irradiation of all organs and tissues from low-energy beta particles. Primordial radionuclides and their progeny (principally the 238U and 232Th series, and 40K) contribute about 480 microSv a(-1) of effective dose by external irradiation. This is relatively uniform photon irradiation of the whole body. Internally incorporated 40K contributes a further 165 microSv a(-1) of effective dose in adults, mainly from beta particles, but with a significant gamma component. Equivalent doses from 40K are somewhat higher in muscle than other soft tissues, but the distinction is less than a factor of three. Uranium and thorium series radionuclides give rise to an average effective dose rate of around 120 microSv a(-1). This includes a major alpha particle component, and exposures of radiosensitive tissues in lung, liver, kidney and the skeleton are recognised as important contributors to effective dose. Overall, these various sources give a worldwide average effective dose rate of about 1160 microSv a(-1). Exposure to 222Rn, 220Rn and their short-lived progeny has to be considered separately. This is very variable both within and between countries. For 222Rn and its progeny, a worldwide average effective dose rate is about 1105 microSv a(-1). For 220Rn and its progeny, the corresponding value is 91 microSv a(-1). In both cases, the effective dose is mainly due to a particle irradiation of the bronchial tissues of the lungs. Overall, the worldwide average effective dose rate from natural background is about 2400 microSv a(-1) or 2.4 mSv a(-1). For comparison, worldwide average effective dose rates from weapons fallout peaked at 113 microSv a(-1) (about 5% of natural background) in 1963 and have since fallen to about 5.5 microSv a(-1) (about 0.2% of natural background). These values perhaps serve to emphasise that even gross insults to the natural environment from anthropogenic releases of radioactive materials are likely to be of limited significance when set in the context of the ambient radioactive environment within which all organisms, including humans, have developed.
NASA Astrophysics Data System (ADS)
Chang, Y. J.; Lin, J. Q.; Hsieh, B. T.; Chen, C. H.
2013-06-01
This study investigated the reproducibility and spatial uniformity of N-isopropylacrylamide (NIPAM) polymer gel as well as the reproducibility of a NIPAM polymer gel dosimeter. A commercial 10X fast optical computed tomography scanner (OCTOPUS-10X, MGS Research, Inc., Madison, CT, USA) was used as the readout tool of the NIPAM polymer gel dosimeter. A cylindrical NIPAM gel phantom measuring 10 cm (diameter) by 10 cm (height) by 3 mm (thickness) was irradiated by the four-field box treatment with a field size of 3 cm × 3 cm. The dose profiles were found to be consistent at the depths of 2.0 cm to 5.0 cm for two independent gel phantom batches, and the average uncertainty was less than 2%. The gamma pass rates were calculated to be between 94% and 95% at depths of 40 mm for two independent gel phantom batches using 4% dose difference and 4 mm distance-to-agreement criterion. The NIPAM polymer gel dosimeter was highly reproducible and spatially uniform. The results highlighted the potential of the NIPAM polymer gel dosimeter in radiotherapy.
Dosage variability of topical ocular hypotensive products: a densitometric assessment.
Gaynes, Bruce I; Singa, Ramesh M; Cao, Ying
2009-02-01
To ascertain consequence of variability in drop volume obtained from multiuse topical ocular hypotensive products in terms of uniformity of product dosage. Densitometric assessment of drop volume dispensed from 2 alternative bottle positions. All except one product demonstrated a statistically significant difference in drop volume when administered at either a 45-degree or 90-degree bottle angle (Student t test, P<0.001). Product-specific drop volume ranged from a nadir of 22.36 microL to a high of 53.54 microL depending on bottle angle of administration. Deviation in drop dose was directly proportional to variability in drop volume. Variability in per drop dosage was conspicuous among products with a coefficient of variation from 1.49% to 15.91%. In accordance with drop volume, all products demonstrated a statistically significant difference in drop dose at 45-degree versus 90-degree administration angles. Drop volume was found unrelated to drop uniformity (Spearman r=0.01987 and P=0.9463). Variability and lack of uniformity in drop dosage is clearly evident among select ocular hypotensive products and is related to angle of drop administration. Erratic dosage of topical ocular hypotensive therapy may contribute in part to therapeutic failure and/or toxicity.
NASA Astrophysics Data System (ADS)
Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.
2016-01-01
To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.
Sealable stagnation flow geometries for the uniform deposition of materials and heat
McCarty, Kevin F.; Kee, Robert J.; Lutz, Andrew E.; Meeks, Ellen
2001-01-01
The present invention employs a constrained stagnation flow geometry apparatus to achieve the uniform deposition of materials or heat. The present invention maximizes uniform fluxes of reactant gases to flat surfaces while minimizing the use of reagents and finite dimension edge effects. This results, among other things, in large area continuous films that are uniform in thickness, composition and structure which is important in chemical vapor deposition processes such as would be used for the fabrication of semiconductors.
Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti.
Nail, I; Horowitz, Y S; Oster, L; Brandan, M E; Rodríguez-Villafuerte, M; Buenfil, A E; Ruiz-Trejo, C; Gamboa-Debuen, I; Avila, O; Tovar, V M; Olko, P; Ipe, N
2006-01-01
Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supralinearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/electron radiation of various energies.
Sim, GS; Ng, KH
2013-01-01
Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two‐dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three‐field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high‐dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution. PACS number: 87.55.Qr PMID:23835383
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Xu, H; Mutaf, Y
2015-06-15
Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speedmore » of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.« less
Path planning and parameter optimization of uniform removal in active feed polishing
NASA Astrophysics Data System (ADS)
Liu, Jian; Wang, Shaozhi; Zhang, Chunlei; Zhang, Linghua; Chen, Huanan
2015-06-01
A high-quality ultrasmooth surface is demanded in short-wave optical systems. However, the existing polishing methods have difficulties meeting the requirement on spherical or aspheric surfaces. As a new kind of small tool polishing method, active feed polishing (AFP) could attain a surface roughness of less than 0.3 nm (RMS) on spherical elements, although AFP may magnify the residual figure error or mid-frequency error. The purpose of this work is to propose an effective algorithm to realize uniform removal of the surface in the processing. At first, the principle of the AFP and the mechanism of the polishing machine are introduced. In order to maintain the processed figure error, a variable pitch spiral path planning algorithm and the dwell time-solving model are proposed. For suppressing the possible mid-frequency error, the uniformity of the synthesis tool path, which is generated by an arbitrary point at the polishing tool bottom, is analyzed and evaluated, and the angular velocity ratio of the tool spinning motion to the revolution motion is optimized. Finally, an experiment is conducted on a convex spherical surface and an ultrasmooth surface is finally acquired. In conclusion, a high-quality ultrasmooth surface can be successfully obtained with little degradation of the figure and mid-frequency errors by the algorithm.
Surface nematic order in iron pnictides
NASA Astrophysics Data System (ADS)
Song, Kok Wee; Koshelev, Alexei E.
2016-09-01
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .
SU-E-T-76: Comparing Homogeneity Between Gafchromic Film EBT2 and EBT3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, H; Sumida, I; Ogawa, K
2014-06-01
Purpose: We found out that homogeneity of EBT2 was different among lot numbers in previous study. Variation in local homogeneity of EBT3 among several lot numbers has not been reported. In this study, we investigated film homogeneity of Gafcrhomic EBT3 films compared with EBT2 films. Methods: All sheets from five lots were cut into 12 pieces to investigate film homogeneity, and were irradiated at 0.5, 2, and 3 Gy. To investigate intra- and inter-sheet uniformity, five sheets from five lots were exposed to 2 Gy: intra-sheet uniformity was evaluated by the coefficient of variation of homogeneity for all pieces ofmore » a single sheet, and inter-sheet uniformity was evaluated by the coefficient of variation of homogeneity among the same piece numbers in the five sheets. To investigate the difference of ADC value in various doses, a single sheet from each of five lots was irradiated at 0.5 Gy and 3 Gy in addition to 2 Gy. A scan resolution of 72 dots per inch (dpi) and color depth of 48-bit RGB were used. Films were analyzed by the inhouse software; Average of ADC value in center ROI and profile X and Y axis were measured. Results and Conclusion: Intra-sheet uniformity of non-irradiated EBT2 films were ranged from 0.1% to 0.4%, however that of irradiated EBT2 films were ranged from 0.2% to 1.5%. On the other hand, intra-sheet uniformity of irradiated and non-irradiated EBT3 films were from 0.2% to 0.6%. Inter-sheet uniformity of all films were less than 0.5%. It was interesting point that homogeneity of EBT3 between no-irradiated and irradiated films were similar value, whereas EBT2 had dose dependence of homogeneity in ADC value evaluation. These results suggested that EBT3 homogeneity was corrected by this feature.« less
NASA Astrophysics Data System (ADS)
Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven
2008-05-01
Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed. The wedge gives a more uniform dose distribution than commonly used techniques. Further development and shape optimization may be necessary prior to clinical implementation.
Troeller, A; Soehn, M; Yan, D
2012-06-01
Introducing an extended, phenomenological, generalized equivalent uniform dose (eEUD) that incorporates multiple volume-effect parameters for different dose-ranges. The generalized EUD (gEUD) was introduced as an estimate of the EUD that incorporates a single, tissue-specific parameter - the volume-effect-parameter (VEP) 'a'. As a purely phenomenological concept, its radio-biological equivalency to a given inhomogeneous dose distribution is not a priori clear and mechanistic models based on radio-biological parameters are assumed to better resemble the underlying biology. However, for normal organs mechanistic models are hard to derive, since the structural organization of the tissue plays a significant role. Consequently, phenomenological approaches might be especially useful in order to describe dose-response for normal tissues. However, the single parameter used to estimate the gEUD may not suffice in accurately representing more complex biological effects that have been discussed in the literature. For instance, radio-biological parameters and hence the effects of fractionation are known to be dose-range dependent. Therefore, we propose an extended phenomenological eEUD formula that incorporates multiple VEPs accounting for dose-range dependency. The eEUD introduced is a piecewise polynomial expansion of the gEUD formula. In general, it allows for an arbitrary number of VEPs, each valid for a certain dose-range. We proved that the formula fulfills required mathematical and physical criteria such as invertibility of the underlying dose-effect and continuity in dose. Furthermore, it contains the gEUD as a special case, if all VEPs are equal to 'a' from the gEUD model. The eEUD is a concept that expands the gEUD such that it can theoretically represent dose-range dependent effects. Its practicality, however, remains to be shown. As a next step, this will be done by estimating the eEUD from patient data using maximum-likelihood based NTCP modelling in the same way it is commonly done for the gEUD. © 2012 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
McCall, Keisha C.
Identification and monitoring of sub-tumor targets will be a critical step for optimal design and evaluation of cancer therapies in general and biologically targeted radiotherapy (dose-painting) in particular. Quantitative PET imaging may be an important tool for these applications. Currently radiotherapy planning accounts for tumor motion by applying geometric margins. These margins create a motion envelope to encompass the most probable positions of the tumor, while also maintaining the appropriate tumor control and normal tissue complication probabilities. This motion envelope is effective for uniform dose prescriptions where the therapeutic dose is conformed to the external margins of the tumor. However, much research is needed to establish the equivalent margins for non-uniform fields, where multiple biological targets are present and each target is prescribed its own dose level. Additionally, the size of the biological targets and close proximity make it impractical to apply planning margins on the sub-tumor level. Also, the extent of high dose regions must be limited to avoid excessive dose to the surrounding tissue. As such, this research project is an investigation of the uncertainty within quantitative PET images of moving and displaced dose-painting targets, and an investigation of the residual errors that remain after motion management. This included characterization of the changes in PET voxel-values as objects are moved relative to the discrete sampling interval of PET imaging systems (SPECIFIC AIM 1). Additionally, the repeatability of PET distributions and the delineating dose-painting targets were measured (SPECIFIC AIM 2). The effect of imaging uncertainty on the dose distributions designed using these images (SPECIFIC AIM 3) has also been investigated. This project also included analysis of methods to minimize motion during PET imaging and reduce the dosimetric impact of motion/position-induced imaging uncertainty (SPECIFIC AIM 4).
Electronic compensation technique to deliver a total body dose
NASA Astrophysics Data System (ADS)
Lakeman, Tara E.
Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been conventionally used to compensate for the varying thickness throughout the body in large-field TBI. The goal of this study is to pursue utilizing the modern electronic compensation technique to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the electronic compensation to deliver a total body dose were created retrospectively for patients for whom CT data had been previously acquired. Each treatment plan includes two pair of parallel opposed fields. One pair of large fields is used to encompass the majority of the patient's anatomy. The other pair are very small open fields focused only on the thin bottom portion of the patient's anatomy, which requires much less radiation than the rest of the body to reach 100% of the prescribed dose. A desirable fluence pattern was manually painted within each of the larger fields for each patient to provide a more uniform distribution. Results: Dose-volume histograms (DVH) were calculated for evaluating the electronic compensation technique. In the electronically compensated plans, the maximum body doses calculated from the DVH were reduced from the conventionally-compensated plans by an average of 15%, indicating a more uniform dose. The mean body doses calculated from the electronically compensated DVH remained comparable to that of the conventionally-compensated plans, indicating an accurate delivery of the prescription dose using electronic compensation. All calculated monitor units were within clinically acceptable limits. Conclusion: Electronic compensation technique for TBI will not increase the beam on time beyond clinically acceptable limits while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGeachy, P; Villarreal-Barajas, JE; Khan, R
2015-06-15
Purpose: The dosimetric outcome of optimized treatment plans obtained by modulating the photon beamlet energy and fluence on a small cohort of four Head and Neck (H and N) patients was investigated. This novel optimization technique is denoted XMRT for modulated photon radiotherapy. The dosimetric plans from XMRT for H and N treatment were compared to conventional, 6 MV intensity modulated radiotherapy (IMRT) optimization plans. Methods: An arrangement of two non-coplanar and five coplanar beams was used for all four H and N patients. Both XMRT and IMRT were subject to the same optimization algorithm, with XMRT optimization allowing bothmore » 6 and 18 MV beamlets while IMRT was restricted to 6 MV only. The optimization algorithm was based on a linear programming approach with partial-volume constraints implemented via the conditional value-at-risk method. H and N constraints were based off of those mentioned in the Radiation Therapy Oncology Group 1016 protocol. XMRT and IMRT solutions were assessed using metrics suggested by International Commission on Radiation Units and Measurements report 83. The Gurobi solver was used in conjunction with the CVX package to solve each optimization problem. Dose calculations and analysis were done in CERR using Monte Carlo dose calculation with VMC{sub ++}. Results: Both XMRT and IMRT solutions met all clinical criteria. Trade-offs were observed between improved dose uniformity to the primary target volume (PTV1) and increased dose to some of the surrounding healthy organs for XMRT compared to IMRT. On average, IMRT improved dose to the contralateral parotid gland and spinal cord while XMRT improved dose to the brainstem and mandible. Conclusion: Bi-energy XMRT optimization for H and N patients provides benefits in terms of improved dose uniformity to the primary target and reduced dose to some healthy structures, at the expense of increased dose to other healthy structures when compared with IMRT.« less
Niedzielski, Joshua S; Yang, Jinzhong; Mohan, Radhe; Titt, Uwe; Mirkovic, Dragan; Stingo, Francesco; Liao, Zhongxing; Gomez, Daniel R; Martel, Mary K; Briere, Tina M; Court, Laurence E
2017-11-15
To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ 2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedicini, Piernicola, E-mail: ppiern@libero.it; Caivano, Rocchina; Fiorentino, Alba
2012-01-01
To evaluate a nonstandard RapidArc (RA) modality as alternative to high-dose-rate brachytherapy (HDR-BRT) or IMRT treatments of the vaginal vault in patients with gynecological cancer (GC). Nonstandard (with vaginal applicator) and standard (without vaginal applicator) RapidArc plans for 27 women with GC were developed to compare with HDR-BRT and IMRT. Dosimetric and radiobiological comparison were performed by means of dose-volume histogram and equivalent uniform dose (EUD) for planning target volume (PTV) and organs at risk (OARs). In addition, the integral dose and the overall treatment times were evaluated. RA, as well as IMRT, results in a high uniform dose onmore » PTV compared with HDR-BRT. However, the average of EUD for HDR-BRT was significantly higher than those with RA and IMRT. With respect to the OARs, standard RA was equivalent of IMRT but inferior to HDR-BRT. Furthermore, nonstandard RA was comparable with IMRT for bladder and sigmoid and better than HDR-BRT for the rectum because of a significant reduction of d{sub 2cc}, d{sub 1cc}, and d{sub max} (p < 0.01). Integral doses were always higher than HDR-BRT, although the values were very low. Delivery times were about the same and more than double for HDR-BRT compared with IMRT and RA, respectively. In conclusion, the boost of dose on vaginal vault in patients affected by GC delivered by a nonstandard RA technique was a reasonable alternative to the conventional HDR-BRT because of a reduction of delivery time and rectal dose at substantial comparable doses for the bladder and sigmoid. However HDR-BRT provides better performance in terms of PTV coverage as evidenced by a greater EUD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Chung, H; Mutaf, Y
Purpose: To test a novel total body irradiation (TBI) system using conformal partial arc with patient lying on the stationary couch which is biologically equivalent to a moving couch TBI. This improves the scanning field TBI, which is previously presented. Methods: The Uniform MU Modulated arc Segments TBI or UMMS-TBI scans the treatment plane with a constant machine dose rate and a constant gantry rotation speed. A dynamic MLC pattern which moves while gantry rotates has been designed so that the treatment field moves same distance at the treatment plane per each gantry angle, while maintaining same treatment field sizemore » (34cm) at the plane. Dose across the plane varies due to the geometric differences including the distance from the source to a point of interest and the different attenuation from the slanted depth which changes the effective depth. Beam intensity is modulated to correct the dose variation across the plane by assigning the number of gantry angles inversely proportional to the uncorrected dose. Results: Measured dose and calculated dose matched within 1 % for central axis and 3% for off axis for various patient scenarios. Dose from different distance does not follow the inverse square relation as it is predicted from calculation. Dose uniformity better than 5% across 180 cm at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 200 MU/min. Conclusion: This novel technique, yet accurate but easy to implement enables TBI treatment in a small treatment room with less program development preparation than other techniques. The VMAT function of treatment delivery is not required to modulate beams. One delivery pattern can be used for different patients by changing the monitor units.« less
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.J.; Warner, J.A.; LeBarron, N.
Processes that use energetic ions for large substrates require that the time-averaged erosion effects from the ion flux be uniform across the surface. A numerical model has been developed to determine this flux and its effects on surface etching of a silica/photoresist combination. The geometry of the source and substrate is very similar to a typical deposition geometry with single or planetary substrate rotation. The model was used to tune an inert ion-etching process that used single or multiple Kaufman sources to less than 3% uniformity over a 30-cm aperture after etching 8 {micro}m of material. The same model canmore » be used to predict uniformity for ion-assisted deposition (IAD).« less
Ahsan, Syed Saad; Pereyra, Brandon; Jung, Erica E; Erickson, David
2014-10-20
Most existing photobioreactors do a poor job of distributing light uniformly due to shading effects. One method by which this could be improved is through the use of internal wave-guiding structures incorporating engineered light scattering schemes. By varying the density of these scatterers, one can control the spatial distribution of light inside the reactor enabling better uniformity of illumination. Here, we compare a number of light scattering schemes and evaluate their ability to enhance biomass accumulation. We demonstrate a design for a gradient distribution of surface scatterers with uniform lateral scattering intensity that is superior for algal biomass accumulation, resulting in a 40% increase in the growth rate.
Pellicle transmission uniformity requirements
NASA Astrophysics Data System (ADS)
Brown, Thomas L.; Ito, Kunihiro
1998-12-01
Controlling critical dimensions of devices is a constant battle for the photolithography engineer. Current DUV lithographic process exposure latitude is typically 12 to 15% of the total dose. A third of this exposure latitude budget may be used up by a variable related to masking that has not previously received much attention. The emphasis on pellicle transmission has been focused on increasing the average transmission. Much less, attention has been paid to transmission uniformity. This paper explores the total demand on the photospeed latitude budget, the causes of pellicle transmission nonuniformity and examines reasonable expectations for pellicle performance. Modeling is used to examine how the two primary errors in pellicle manufacturing contribute to nonuniformity in transmission. World-class pellicle transmission uniformity standards are discussed and a comparison made between specifications of other components in the photolithographic process. Specifications for other materials or parameters are used as benchmarks to develop a proposed industry standard for pellicle transmission uniformity.
Derivation and application of a class of generalized impedance boundary conditions, part 2
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Senior, T. B. A.; Jin, J.-M.
1989-01-01
Boundary conditions involving higher order derivatives are presented by simulating surfaces whose reflection coefficients are known analytically, numerically, or experimentally. Procedures for determining the coefficients of the derivatives are discussed, along with the effect of displacing the surface where the boundary conditions are applied. Provided the coefficients satisfy a duality relation, equivalent forms of the boundary conditions involving tangential field components are deduced, and these provide the natural extension to non-planar surfaces. As an illustration, the simulation of metal-backed uniform and three-layer dielectric coatings is given. It is shown that fourth order conditions are capable of providing an accurate simulation for the uniform coating at least a quarter of a wavelength in thickness. Provided, though, some compromise in accuracy is acceptable, it is also shown that a third order condition may be sufficient for practical purposes when simulating uniform coatings.
Conformable apparatus in a drill string
Hall, David R [Provo, UT; Hall, Jr., H. Tracy; Pixton, David S [Lehi, UT; Fox, Joe [Spanish Fork, UT
2007-08-28
An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.
SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Feygelman, V; Moros, E
2016-06-15
Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less
Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection.
Kontson, Kimberly; Jennings, Robert J
2015-09-01
For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the penelope Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using penelope and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from penelope show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.
Bowtie filters for dedicated breast CT: Analysis of bowtie filter material selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontson, Kimberly, E-mail: Kimberly.Kontson@fda.hhs.gov; Jennings, Robert J.
Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures. Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designsmore » were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the PENELOPE Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using PENELOPE and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated. Results: Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from PENELOPE show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3. Conclusions: With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.« less
Surface modified stainless steels for PEM fuel cell bipolar plates
Brady, Michael P [Oak Ridge, TN; Wang, Heli [Littleton, CO; Turner, John A [Littleton, CO
2007-07-24
A nitridation treated stainless steel article (such as a bipolar plate for a proton exchange membrane fuel cell) having lower interfacial contact electrical resistance and better corrosion resistance than an untreated stainless steel article is disclosed. The treated stainless steel article has a surface layer including nitrogen-modified chromium-base oxide and precipitates of chromium nitride formed during nitridation wherein oxygen is present in the surface layer at a greater concentration than nitrogen. The surface layer may further include precipitates of titanium nitride and/or aluminum oxide. The surface layer in the treated article is chemically heterogeneous surface rather than a uniform or semi-uniform surface layer exclusively rich in chromium, titanium or aluminum. The precipitates of titanium nitride and/or aluminum oxide are formed by the nitriding treatment wherein titanium and/or aluminum in the stainless steel are segregated to the surface layer in forms that exhibit a low contact resistance and good corrosion resistance.
Within-wafer CD variation induced by wafer shape
NASA Astrophysics Data System (ADS)
Huang, Chi-hao; Yang, Mars; Yang, Elvis; Yang, T. H.; Chen, K. C.
2016-03-01
In order to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories, 3D stacked vertical flash cell array has been proposed. In constructing 3D NAND flash memories, the bit number per unit area is increased as increasing the number of stacked layers. However, the increased number of stacked layers has made the film stress control extremely important for maintaining good process quality. The residual film stress alters the wafer shape accordingly several process impacts have been readily observed across wafer, such as film deposition non-uniformity, etch rate non-uniformity, wafer chucking error on scanner, materials coating/baking defects, overlay degradation and critical dimension (CD) non-uniformity. The residual tensile and compressive stresses on wafers will result in concave and convex wafer shapes, respectively. This study investigates within-wafer CD uniformity (CDU) associated with wafer shape change induced by the 3D NAND flash memory processes. Within-wafer CDU was correlated with several critical parameters including different wafer bow heights of concave and convex wafer shapes, photo resists with different post exposure baking (PEB) temperature sensitivities, and DoseMapper compensation. The results indicated the trend of within-wafer CDU maintains flat for convex wafer shapes with bow height up to +230um and concave wafer shapes with bow height ranging from 0 ~ -70um, while the within-wafer CDU trends up from -70um to -246um wafer bow heights. To minimize the within-wafer CD distribution induced by wafer warpage, carefully tailoring the film stack and thermal budget in the process flow for maintaining the wafer shape at CDU friendly range is indispensable and using photo-resist materials with lower PEB temperature sensitivity is also suggested. In addition, DoseMapper compensation is also an alternative to greatly suppress the within-wafer CD non-uniformity but the photo-resist profile variation induced by across-wafer PEB temperature non-uniformity attributed to wafer warpage is uncorrectable, and the photo-resist profile variation is believed to affect across-wafer etch bias uniformity to some degree.
Apipunyasopon, Lukkana; Srisatit, Somyot; Phaisangittisakul, Nakorn
2013-09-06
The purpose of the study was to investigate the use of the equivalent square formula for determining the surface dose from a rectangular photon beam. A 6 MV therapeutic photon beam delivered from a Varian Clinac 23EX medical linear accelerator was modeled using the EGS4nrc Monte Carlo simulation package. It was then used to calculate the dose in the build-up region from both square and rectangular fields. The field patterns were defined by various settings of the X- and Y-collimator jaw ranging from 5 to 20 cm. Dose measurements were performed using a thermoluminescence dosimeter and a Markus parallel-plate ionization chamber on the four square fields (5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2). The surface dose was acquired by extrapolating the build-up doses to the surface. An equivalent square for a rectangular field was determined using the area-to-perimeter formula, and the surface dose of the equivalent square was estimated using the square-field data. The surface dose of square field increased linearly from approximately 10% to 28% as the side of the square field increased from 5 to 20 cm. The influence of collimator exchange on the surface dose was found to be not significant. The difference in the percentage surface dose of the rectangular field compared to that of the relevant equivalent square was insignificant and can be clinically neglected. The use of the area-to-perimeter formula for an equivalent square field can provide a clinically acceptable surface dose estimation for a rectangular field from a 6 MV therapy photon beam.
NASA Astrophysics Data System (ADS)
Dobrynin, Danil
2013-09-01
Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.
Electron beam processed transdermal delivery system for administration of an anti-anginal agent
NASA Astrophysics Data System (ADS)
Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.
2002-12-01
Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.
Reload of an industrial cylindrical cobalt source rack
NASA Astrophysics Data System (ADS)
Gharbi, F.; Kadri, O.; Trabelsi, A.
2006-10-01
This work presents a Monte Carlo study of the cylindrical cobalt source rack geometry of the Tunisian gamma irradiation facility, using the GEANT code developed at CERN. The study investigates the question of the reload of the source rack. The studied configurations consist in housing four new cobalt pencils, two in the upper and two in the lower cylinder of the source rack. Global dose rate uniformity inside a "dummy" product for the case of routine and nonroutine irradiation, and as function of the product bulk density, was calculated for eight hypothetical configurations. The same calculation was also performed for both of the original and the ideal (but not practical) configurations. It was shown that hypothetical cases produced dose uniformity variations, according to product density, that were statistically no different than the original and the ideal configurations and that the reload procedure cannot improve the irradiation quality inside the facilities using cylindrical cobalt source racks.
Biological Effects of Nuclear Explosions (BENE) Domain Guide
2012-09-01
DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From – To) Technical Report October 2004-April 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER...greatly increased in the nearby region because increasing amounts of contaminated earth and debris are sucked up into the radioactive cloud. In the case...or a denial scenario involving radioisotopes will be non-uniform exposure with various doses and dose rates producing very large variations in
Surface Wave Metrology for Copper/Low-k Interconnects
NASA Astrophysics Data System (ADS)
Gostein, M.; Maznev, A. A.; Mazurenko, A.; Tower, J.
2005-09-01
We review recent advances in the application of laser-induced surface acoustic wave metrology to issues in copper/low-k interconnect development and manufacturing. We illustrate how the metrology technique can be used to measure copper thickness uniformity on a range of features from solid pads to arrays of lines, focusing on specific processing issues in copper electrochemical deposition (ECD) and chemical-mechanical polishing (CMP). In addition, we review recent developments in surface wave metrology for the characterization of low-k dielectric elastic modulus, including the ability to measure within-wafer uniformity of elastic modulus and to characterize porous, anisotropic films.
Pan, Jui-Wen; Tu, Sheng-Han
2012-05-20
A cost-effective, high-throughput, and high-yield method for the efficiency enhancement of an optical mouse lighting module is proposed. We integrated imprinting technology and free-form surface design to obtain a lighting module with high illumination efficiency and uniform intensity distribution. The imprinting technique can increase the light extraction efficiency and modulate the intensity distribution of light-emitting diodes. A modulated light source was utilized to add a compact free-form surface element to create a lighting module with 95% uniformity and 80% optical efficiency.
Sintered wire cesium dispenser photocathode
Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R
2014-03-04
A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.
NASA Astrophysics Data System (ADS)
Henstridge, Martin C.; Batchelor-McAuley, Christopher; Gusmão, Rui; Compton, Richard G.
2011-11-01
Two simple models of electrode surface inhomogeneity based on Marcus-Hush theory are considered; a distribution in formal potentials and a distribution in electron tunnelling distances. Cyclic voltammetry simulated using these models is compared with that simulated using Marcus-Hush theory for a flat, uniform and homogeneous electrode surface, with the two models of surface inhomogeneity yielding broadened peaks with decreased peak-currents. An edge-plane pyrolytic graphite electrode is covalently modified with ferrocene via 'click' chemistry and the resulting voltammetry compared with each of the three previously considered models. The distribution of formal potentials is seen to fit the experimental data most closely.
TH-C-12A-04: Dosimetric Evaluation of a Modulated Arc Technique for Total Body Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsiamas, P; Czerminska, M; Makrigiorgos, G
2014-06-15
Purpose: A simplified Total Body Irradiation (TBI) was developed to work with minimal requirements in a compact linac room without custom motorized TBI couch. Results were compared to our existing fixed-gantry double 4 MV linac TBI system with prone patient and simultaneous AP/PA irradiation. Methods: Modulated arc irradiates patient positioned in prone/supine positions along the craniocaudal axis. A simplified inverse planning method developed to optimize dose rate as a function of gantry angle for various patient sizes without the need of graphical 3D treatment planning system. This method can be easily adapted and used with minimal resources. Fixed maximum fieldmore » size (40×40 cm2) is used to decrease radiation delivery time. Dose rate as a function of gantry angle is optimized to result in uniform dose inside rectangular phantoms of various sizes and a custom VMAT DICOM plans were generated using a DICOM editor tool. Monte Carlo simulations, film and ionization chamber dosimetry for various setups were used to derive and test an extended SSD beam model based on PDD/OAR profiles for Varian 6EX/ TX. Measurements were obtained using solid water phantoms. Dose rate modulation function was determined for various size patients (100cm − 200cm). Depending on the size of the patient arc range varied from 100° to 120°. Results: A PDD/OAR based beam model for modulated arc TBI therapy was developed. Lateral dose profiles produced were similar to profiles of our existing TBI facility. Calculated delivery time and full arc depended on the size of the patient (∼8min/ 100° − 10min/ 120°, 100 cGy). Dose heterogeneity varied by about ±5% − ±10% depending on the patient size and distance to the surface (buildup region). Conclusion: TBI using simplified modulated arc along craniocaudal axis of different size patients positioned on the floor can be achieved without graphical / inverse 3D planning.« less
NASA Astrophysics Data System (ADS)
Zhang, Zhe; Zhang, Jing; Zhang, Bailin; Tang, Jilin
2012-12-01
Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs.Mussels have been shown to attach to virtually all types of inorganic and organic surfaces via their adhesive proteins. The adhesive proteins secreted by mussels contain high concentrations of catechol and amine functional groups, which have similar functional groups with polydopamine (PDA). Inspired by mussels, a mild and environmentally friendly method was used to synthesize Ag nanoparticles (Ag NPs) on functionalized PDA-graphene nanosheets (PDA-GNS) with uniform and high dispersion. First, a uniform layer of PDA was coated on graphene oxide (GO) by polymerizing dopamine (DA) at room temperature. During the process GO was reduced by the DA. The PDA layer on the surface of GNS can be used as a nanoscale guide to form uniform Ag NPs on the surface of PDA-GNS. The obtained Ag-PDA-GNS hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, UV-vis spectroscopy, Raman spectroscopy, X-ray photo-electron spectroscopy, X-ray diffraction, and thermal gravimetric analysis. The resultant Ag-PDA-GNS hybrid materials exhibited strong antibacterial properties to both Gram-negative and Gram-positive bacteria due to the synergistic effect of GNS and Ag NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32092d
Fine, Daniel; Grattoni, Alessandro; Hosali, Sharath; Ziemys, Arturas; De Rosa, Enrica; Gill, Jaskaran; Medema, Ryan; Hudson, Lee; Kojic, Milos; Milosevic, Miljan; Brousseau Iii, Louis; Goodall, Randy; Ferrari, Mauro; Liu, Xuewu
2010-11-21
This manuscript demonstrates a mechanically robust implantable nanofluidic membrane capable of tunable long-term zero-order release of therapeutic agents in ranges relevant for clinical applications. The membrane, with nanochannels as small as 5 nm, allows for the independent control of both dosage and mechanical strength through the integration of high-density short nanochannels parallel to the membrane surface with perpendicular micro- and macrochannels for interfacing with the ambient solutions. These nanofluidic membranes are created using precision silicon fabrication techniques on silicon-on-insulator substrates enabling exquisite control over the monodispersed nanochannel dimensions and surface roughness. Zero-order release of analytes is achieved by exploiting molecule to surface interactions which dominate diffusive transport when fluids are confined to the nanoscale. In this study we investigate the nanofluidic membrane performance using custom diffusion and gas testing apparatuses to quantify molecular release rate and process uniformity as well as mechanical strength using a gas based burst test. The kinetics of the constrained zero-order release is probed with molecules presenting a range of sizes, charge states, and structural conformations. Finally, an optimal ratio of the molecular hydrodynamic diameter to the nanochannel dimension is determined to assure zero-order release for each tested molecule.
[Prophylaxis of alcoholic disease of the liver].
Beliakin, S A
2009-08-01
Military doctors should have a uniform position to the use of alcohol. Now alcohol is the basic pathogenic factor in development of a lethal cirrhosis of a liver. The most known sayings justifying the use of alcohol, are insolvent. Useful doses of alcohol does not exist. The quantity of used alcohol has the great value. Only at achievement of age 21 year it is possible to use safe doses of alcohol. A safe dose of pure alcohol (ethanol) less than 30,0 in day. In a basis of prophylaxis of a cirrhosis of a liver there is a medical educational activity.
Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat
NASA Astrophysics Data System (ADS)
Singh, Bhupinder; Datta, P. S.
2010-02-01
Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.
Satory, P R
2012-03-01
This work is the development of a MOSFET based surface in vivo dosimetry system for total body irradiation patients treated with bilateral extended SSD beams using PMMA missing tissue compensators adjacent to the patient. An empirical formula to calculate midplane dose from MOSFET measured entrance and exit doses has been derived. The dependency of surface dose on the air-gap between the spoiler and the surface was investigated by suspending a spoiler above a water phantom, and taking percentage depth dose measurements (PDD). Exit and entrances doses were measured with MOSFETs in conjunction with midplane doses measured with an ion chamber. The entrance and exit doses were combined using an exponential attenuation formula to give an estimate of midplane dose and were compared to the midplane ion chamber measurement for a range of phantom thicknesses. Having a maximum PDD at the surface simplifies the prediction of midplane dose, which is achieved by ensuring that the air gap between the compensator and the surface is less than 10 cm. The comparison of estimated midplane dose and measured midplane dose showed no dependence on phantom thickness and an average correction factor of 0.88 was found. If the missing tissue compensators are kept within 10 cm of the patient then MOSFET measurements of entrance and exit dose can predict the midplane dose for the patient.
Optical design of an in vivo laparoscopic lighting system
NASA Astrophysics Data System (ADS)
Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J.; Tan, Jindong
2017-12-01
This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region.
Evaluation of a novel triple-channel radiochromic film analysis procedure using EBT2.
van Hoof, Stefan J; Granton, Patrick V; Landry, Guillaume; Podesta, Mark; Verhaegen, Frank
2012-07-07
A novel approach to read out radiochromic film was introduced recently by the manufacturer of GafChromic film. In this study, the performance of this triple-channel film dosimetry method was compared against the conventional single-red-channel film dosimetry procedure, with and without inclusion of a pre-irradiation (pre-IR) film scan, using EBT2 film and kilo- and megavoltage photon beams up to 10 Gy. When considering regions of interest averaged doses, the triple-channel method and both single-channel methods produced equivalent results. Absolute dose discrepancies between the triple-channel method, both single-channel methods and the treatment planning system calculated dose values, were no larger than 5 cGy for dose levels up to 2.2 Gy. Signal to noise in triple-channel dose images was found to be similar to signal to noise in single-channel dose images. The accuracy of resulting dose images from the triple- and single-channel methods with inclusion of pre-IR film scan was found to be similar. Results of a comparison of EBT2 data from a kilovoltage depth dose experiment to corresponding Monte Carlo depth dose data produced dose discrepancies of 9.5 ± 12 cGy and 7.6 ± 6 cGy for the single-channel method with inclusion of a pre-IR film scan and the triple-channel method, respectively. EBT2 showed to be energy sensitive at low kilovoltage energies with response differences of 11.9% and 15.6% in the red channel at 2 Gy between 50-225 kVp and 80-225 kVp photon spectra, respectively. We observed that the triple-channel method resulted in non-uniformity corrections of ±1% and consistency values of 0-3 cGy for the batches and dose levels studied. Results of this study indicate that the triple-channel radiochromic film read-out method performs at least as well as the single-channel method with inclusion of a pre-IR film scan, reduces film non-uniformity and saves time with elimination of a pre-IR film scan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, L.; Bareno, J.; Trask, S.
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Somerville, L.; Bareno, J.; Trask, S.; ...
2016-10-22
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Coherence and Chaos Phenomena in Josephson Oscillators for Superconducting Electronics.
1989-01-25
represents dissipation due j+(a+/b)+ b--i(a-) to the surface resistance of the superconducting films , y is the uniform bias current normalized to the...represents series loss due series of time-dependent Fourier spatial compo- to surface resistance of the superconducting films , nents. Tis approach provides...case is that in which there is no ing films , y is the spatially uniform bias current normal- external magnetic field applied to the junction. In this
Femtosecond laser-induced subwavelength ripples formed by asymmetrical grating splitting
NASA Astrophysics Data System (ADS)
Feng, Pin; Jiang, Lan; Li, Xin; Zhang, Kaihu; Shi, Xuesong; Li, Bo; Lu, Yongfeng
2016-05-01
The formation process and mechanism of subwavelength ripples were studied upon irradiation of ZnO by a femtosecond laser (800 nm, 50 fs, 1 kHz). An abnormally asymmetrical grating-splitting phenomenon was discovered. At relatively high laser fluences (F = 0.51-0.63 J/cm2), near-wavelength ripples were split asymmetrically to create subwavelength laser-induced periodic surface structures (LIPSS) with dual gaps (˜230 nm and ˜430 nm) on the primary grooves. At relatively low laser fluences (F = 0.4-0.45 J/cm2), near-wavelength ripples were split symmetrically, leading to the formation of uniform subwavelength structures with a period of ˜340 nm. The splitting phenomena are related to the varying laser beam dose induced by the overlapping during line scanning. The two grating-splitting types further imply that the dominated mechanism for LIPSS formation may be changed under different processing conditions.
Dosimetric Consistency of Co-60 Teletherapy Unit- a ten years Study.
Baba, Misba H; Mohib-Ul-Haq, M; Khan, Aijaz A
2013-01-01
The goal of the Radiation standards and Dosimetry is to ensure that the output of the Teletherapy Unit is within ±2% of the stated one and the output of the treatment dose calculation methods are within ±5%. In the present paper, we studied the dosimetry of Cobalt-60 (Co-60) Teletherapy unit at Sher-I-Kashmir Institute of Medical Sciences (SKIMS) for last 10 years. Radioactivity is the phenomenon of disintegration of unstable nuclides called radionuclides. Among these radionuclides, Cobalt-60, incorporated in Telecobalt Unit, is commonly used in therapeutic treatment of cancer. Cobalt-60 being unstable decays continuously into Ni-60 with half life of 5.27 years thereby resulting in the decrease in its activity, hence dose rate (output). It is, therefore, mandatory to measure the dose rate of the Cobalt-60 source regularly so that the patient receives the same dose every time as prescribed by the radiation oncologist. The under dosage may lead to unsatisfactory treatment of cancer and over dosage may cause radiation hazards. Our study emphasizes the consistency between actual output and output obtained using decay method. The methodology involved in the present study is the calculations of actual dose rate of Co-60 Teletherapy Unit by two techniques i.e. Source to Surface Distance (SSD) and Source to Axis Distance (SAD), used for the External Beam Radiotherapy, of various cancers, using the standard methods. Thereby, a year wise comparison has been made between average actual dosimetric output (dose rate) and the average expected output values (obtained by using decay method for Co-60.). The present study shows that there is a consistency in the average output (dose rate) obtained by the actual dosimetry values and the expected output values obtained using decay method. The values obtained by actual dosimetry are within ±2% of the expected values. The results thus obtained in a year wise comparison of average output by actual dosimetry done regularly as a part of Quality Assurance of the Telecobalt Radiotherapy Unit and its deviation from the expected output data is within the permissible limits. Thus our study shows a trend towards uniformity and a better dose delivery.
Cylindrically distributing optical fiber tip for uniform laser illumination of hollow organs
NASA Astrophysics Data System (ADS)
Buonaccorsi, Giovanni A.; Burke, T.; MacRobert, Alexander J.; Hill, P. D.; Essenpreis, Matthias; Mills, Timothy N.
1993-05-01
To predict the outcome of laser therapy it is important to possess, among other things, an accurate knowledge of the intensity and distribution of the laser light incident on the tissue. For irradiation of the internal surfaces of hollow organs, modified fiber tips can be used to shape the light distribution to best suit the treatment geometry. There exist bulb-tipped optical fibers emitting a uniform isotropic distribution of light suitable for the treatment of organs which approximate a spherical geometry--the bladder, for example. For the treatment of organs approximating a cylindrical geometry--e.g. the oesophagus--an optical fiber tip which emits a uniform cylindrical distribution of light is required. We report on the design, development and testing of such a device, the CLD fiber tip. The device was made from a solid polymethylmethacrylate (PMMA) rod, 27 mm in length and 4 mm in diameter. One end was shaped and 'silvered' to form a mirror which reflected the light emitted from the delivery fiber positioned at the other end of the rod. The shape of the mirror was such that the light fell with uniform intensity on the circumferential surface of the rod. This surface was coated with BaSO4 reflectance paint to couple the light out of the rod and onto the surface of the tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kok Wee; Koshelev, Alexei E.
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less
An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Wen, Ning; Kumarasiri, Akila; Nurushev, Teamour; Burmeister, Jay; Xing, Lei; Liu, Dezhi; Glide-Hurst, Carri; Kim, Jinkoo; Zhong, Hualiang; Movsas, Benjamin; Chetty, Indrin J.
2013-11-01
The purpose of this work is to present the results of a margin reduction study involving dosimetric and radiobiologic assessment of cumulative dose distributions, computed using an image guided adaptive radiotherapy based framework. Eight prostate cancer patients, treated with 7-9, 6 MV, intensity modulated radiation therapy (IMRT) fields, were included in this study. The workflow consists of cone beam CT (CBCT) based localization, deformable image registration of the CBCT to simulation CT image datasets (SIM-CT), dose reconstruction and dose accumulation on the SIM-CT, and plan evaluation using radiobiological models. For each patient, three IMRT plans were generated with different margins applied to the CTV. The PTV margin for the original plan was 10 mm and 6 mm at the prostate/anterior rectal wall interface (10/6 mm) and was reduced to: (a) 5/3 mm, and (b) 3 mm uniformly. The average percent reductions in predicted tumor control probability (TCP) in the accumulated (actual) plans in comparison to the original plans over eight patients were 0.4%, 0.7% and 11.0% with 10/6 mm, 5/3 mm and 3 mm uniform margin respectively. The mean increase in predicted normal tissue complication probability (NTCP) for grades 2/3 rectal bleeding for the actual plans in comparison to the static plans with margins of 10/6, 5/3 and 3 mm uniformly was 3.5%, 2.8% and 2.4% respectively. For the actual dose distributions, predicted NTCP for late rectal bleeding was reduced by 3.6% on average when the margin was reduced from 10/6 mm to 5/3 mm, and further reduced by 1.0% on average when the margin was reduced to 3 mm. The average reduction in complication free tumor control probability (P+) in the actual plans in comparison to the original plans with margins of 10/6, 5/3 and 3 mm was 3.7%, 2.4% and 13.6% correspondingly. The significant reduction of TCP and P+ in the actual plan with 3 mm margin came from one outlier, where individualizing patient treatment plans through margin adaptation based on biological models, might yield higher quality treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, A; Chow, J
Purpose: This study investigated the surface dose variation in preclinical irradiation using small animal, when monoenergetic photon beams with energy range from 50 keV to 1.25 MeV were used. Methods: Inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom based on the same CT image set were used. The homogeneous and bone-tissue homogeneous phantom were created with the relative electron density of all and only bone voxels of the mouse overridden to one, respectively. Monte Carlo simulation based on the EGSnrc-based code was used to calculate the surface dose, when the phantoms were irradiated by a 360° photon arc with energies rangingmore » from 50 keV to 1.25 MeV. The mean surface doses of the three phantoms were calculated. In addition, the surface doses from partial arcs, 45°–315°, 125°–225°, 45°–125° and 225°–315° covering the anterior, posterior, right lateral and left lateral region of the mouse were determined using different photon beam energies. Results: When the prescribed dose at the isocenter of the mouse was 2 Gy, the maximum mean surface doses, found at the 50-keV photon beams, were 0.358 Gy, 0.363 Gy and 0.350 Gy for the inhomogeneous, homogeneous and bone-tissue homogeneous mouse phantom, respectively. The mean surface dose of the mouse was found decreasing with an increase of the photon beam energy. For surface dose in different orientations, the lateral regions of the mouse were receiving lower dose than the anterior and posterior regions. This may be due to the increase of beam attenuation along the horizontal (left-right) axis than the vertical (anterior-posterior) in the mouse. Conclusion: It is concluded that consideration of phantom inhomogeneity in the dose calculation resulted in a lower mean surface dose of the mouse. The mean surface dose also decreased with an increase of photon beam energy in the kilovoltage range.« less
Friction surfaced Stellite6 coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid, E-mail: khalidrafi@gmail.com
2012-08-15
Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material formore » friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.« less
Using high-speed texture measurements to improve the uniformity of hot-mix asphalt.
DOT National Transportation Integrated Search
2003-01-01
This study introduces Virginia's efforts to apply high-speed texture measurement as a tool to improve the uniformity of hot-mix asphalt (HMA) pavements. Three approaches for detecting and quantifying HMA segregation through measuring pavement surface...
Foley, Shane J; McEntee, Mark F; Achenbach, Stephan; Brennan, Patrick C; Rainford, Louise S; Dodd, Jonathan D
2011-08-01
The purpose of this study was to prospectively evaluate the effect of cranial breast displacement and lead shielding on in vivo breast surface radiation dose in women undergoing coronary CT angiography. Fifty-four women (mean age, 59.2 ± 9.8 years) prospectively underwent coronary 64-MDCT angiography for evaluation of chest pain. The patients were randomly assigned to a control group (n = 16), breast displacement group (n = 22), or breast displacement plus lead shielding group (n = 16). Thermoluminescent dosimeters (TLDs) were placed superficially on each breast quadrant and the areolar region of both breasts. Breast surface radiation doses, the degree of breast displacement, and coronary image quality were compared between groups. A phantom dose study was conducted to compare breast doses with z-axis positioning on the chest wall. A total of 1620 TLD dose measurements were recorded. Compared with control values, the mean breast surface dose was reduced 23% in the breast displacement group (24.3 vs 18.6 mGy, p = 0.015) and 36% in the displacement plus lead shielding group (24.3 vs 15.6 mGy, p = 0.0001). Surface dose reductions were greatest in the upper outer (displacement alone, 66%; displacement plus shielding, 63%), upper inner (65%, 58%), and areolar quadrants (44%, 53%). The smallest surface dose reductions were recorded for A-cup breasts: 7% for the displacement group and 3% for the displacement plus lead group (p = 0.741). Larger reductions in surface dose were recorded for B-cup (25% and 56%, p = 0.273), C-cup (38% and 60%, p = 0.001), and D-cup (31% and 25%, p = 0.095) sizes. Most of the patients (79%) had either good (< 50% of breast above scan range) or excellent (< 75% of breast above the scan range) breast displacement. No significant difference in coronary image quality was detected between groups. The phantom dose study showed that surface TLD measurements were underestimates of absorbed tissue dose by a mean of 9% and that a strong negative correlation exists between the amount of cranial displacement and breast dose. Use of breast displacement during coronary CTA substantially reduces the radiation dose to the breast surface.
NASA Astrophysics Data System (ADS)
Solomon, Justin; Ba, Alexandre; Diao, Andrew; Lo, Joseph; Bier, Elianna; Bochud, François; Gehm, Michael; Samei, Ehsan
2016-03-01
In x-ray computed tomography (CT), task-based image quality studies are typically performed using uniform background phantoms with low-contrast signals. Such studies may have limited clinical relevancy for modern non-linear CT systems due to possible influence of background texture on image quality. The purpose of this study was to design and implement anatomically informed textured phantoms for task-based assessment of low-contrast detection. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find the CLB parameters that were most reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, a cylinder phantom (165 mm in diameter and 30 mm height) was designed, containing 20 low-contrast spherical signals (6 mm in diameter at targeted contrast levels of ~3.2, 5.2, 7.2, 10, and 14 HU, 4 repeats per signal). The phantom was voxelized and input into a commercial multi-material 3D printer (Object Connex 350), with custom software for voxel-based printing. Using principles of digital half-toning and dithering, the 3D printer was programmed to distribute two base materials (VeroWhite and TangoPlus, nominal voxel size of 42x84x30 microns) to achieve the targeted spatial distribution of x-ray attenuation properties. The phantom was used for task-based image quality assessment of a clinically available iterative reconstruction algorithm (Sinogram Affirmed Iterative Reconstruction, SAFIRE) using a channelized Hotelling observer paradigm. Images of the textured phantom and a corresponding uniform phantom were acquired at six dose levels and observer model performance was estimated for each condition (5 contrasts x 6 doses x 2 reconstructions x 2 backgrounds = 120 total conditions). Based on the observer model results, the dose reduction potential of SAFIRE was computed and compared between the uniform and textured phantom. The dose reduction potential of SAFIRE was found to be 23% based on the uniform phantom and 17% based on the textured phantom. This discrepancy demonstrates the need to consider background texture when assessing non-linear reconstruction algorithms.
Improving MRI surface coil decoupling to reduce B1 distortion
NASA Astrophysics Data System (ADS)
Larson, Christian
As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.
Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays
NASA Astrophysics Data System (ADS)
Bommena, R.; Velicu, S.; Boieriu, P.; Lee, T. S.; Grein, C. H.; Tedjojuwono, K. K.
2007-04-01
Inductively coupled plasma (ICP) chemistry based on a mixture of CH 4, Ar, and H II was investigated for the purpose of delineating HgCdTe mesa structures and vias typically used in the fabrication of second and third generation infrared photo detector arrays. We report on ICP etching uniformity results and correlate them with plasma controlling parameters (gas flow rates, total chamber pressure, ICP power and RF power). The etching rate and surface morphology of In-doped MWIR and LWIR HgCdTe showed distinct dependences on the plasma chemistry, total pressure and RF power. Contact stylus profilometry and cross-section scanning electron microscopy (SEM) were used to characterize the anisotropy of the etched profiles obtained after various processes and a standard deviation of 0.06 μm was obtained for etch depth on 128 x 128 format array vias. The surface morphology and the uniformity of the etched surfaces were studied by plan view SEM. Atomic force microscopy was used to make precise assessments of surface roughness.
NASA Astrophysics Data System (ADS)
Kim, Sunkyu; Jung, Minkyeong; Kim, Moonsu; Choi, Jinsub
2017-06-01
A uniformly colored TiO2, on which the surface is functionalized with nanotubes to control wettability, was prepared by a two-step anodization; the first anodization was carried out to prepare nanotubes for a super-hydrophilic or -hydrophobic surface and the second anodization was performed to fabricate a thin film barrier oxide to ensure uniform coloring. The effect of the nanotubes on barrier oxide coloring was examined by spectrophotometry and UV-vis-IR spectroscopy. We found four different regimes governing the color changes in terms of anodization voltage, indicating that the color of the duplex TiO2 was primarily determined by the thickness of the barrier oxide layer formed during the second anodization step. The surface wettability, as confirmed by the water contact angle, revealed that the single barrier TiO2 yielded 74.6° ± 2.1, whereas the nanotubes on the barrier oxide imparted super-hydrophilic properties as a result of increasing surface roughness as well as imparting a higher hydrophobicity after organic acid treatment.
NASA Astrophysics Data System (ADS)
Chung, Jin-Beom; Kim, Jae-Sung; Kim, In-Ah; Lee, Jeong-Woo
2012-10-01
This study is intended to investigate the effects of surface dose from air gaps under the bolus in clinically used oblique photon beams by using a Markus parallel-plate chamber and a metal-oxide semiconductor field-effect transistor (MOSFET) dosimeter. To evaluate the performances of the two detectors, the percentage surface doses of the MOSFET dosimeters in without an air gap under the bolus material were measured and compared with those of the Markus parallel-plate chamber. MOSFET dosimeters at the surface provided results mostly in good agreement with the parallelplate chamber. The MOSFET dosimeters seemed suitable for surface dose measurements having excellent accuracy for clinical used photon beams. The relative surface doses were measured with air gaps (2, 5, 10 mm) and without an air gap under 3 different bolus setups: (1) unbolused (no bolus), (2) 5-mm bolus, and (3) 10-mm bolus. The reductions in the surface dose substantially increased with small field size, thick bolus, and large air gap. The absolute difference in the reductions of the surface dose between the MOSFET dosimeter and the Markus parallel-plate chamber was less than 1.1%. Results at oblique angles of incidence showed larger reductions in surface dose with increasing angle of incidence. The largest reduction in surface dose was recorded for a 6 × 6 cm2 field at a 60° angle of incidence with an 10-mm air gap under a 10-mm bolus. When a 10-mm bolus was used, a reduction in the surface dose with an air gap of up to 10.5% could be achieved by varying the field size and the incident angle. Therefore, air gaps under the bolus should be avoided in radiotherapy treatment, especially for photon beam with highly oblique angles of incidence.
Dose gradient curve: A new tool for evaluating dose gradient.
Sung, KiHoon; Choi, Young Eun
2018-01-01
Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.
Surface nematic order in iron pnictides
Song, Kok Wee; Koshelev, Alexei E.
2016-09-09
Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less
Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.
Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C
2017-01-01
Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either fractionated or hypofractionated radiotherapy. N/A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, N; Chen, C; Gans, S
Purpose: A fixed-beam room could be underutilized in a multi-room proton center. We investigated the use of proton pencil beam scanning (PBS) on a fixed-beam as an alternative for posterior fossa tumor bed (PF-TB) boost treatments which were usually treating on a gantry with uniform scanning. Methods: Five patients were treated with craniospinal irradiation (CSI, 23.4 or 36.0 Gy(RBE)) followed by a PF-TB boost to 54 Gy(RBE) with proton beams. Three PF-TB boost plans were generated for each patient: (1) a uniform scanning (US) gantry plan with 4–7 posterior fields shaped with apertures and compensators (2) a PBS plan usingmore » bi-lateral and vertex fields with a 3-mm planning organ-at-risk volume (PRV) expansion around the brainstem and (3) PBS fields using same beam arrangement but replacing the PRV with robust optimization considering a 3-mm setup uncertainty. Results: A concave 54-Gy(RBE) isodose line surrounding the brainstem could be achieved using all three techniques. The mean V95% of the PTV was 99.7% (range: 97.6% to 100%) while the V100% of the PTV ranged from 56.3% to 93.1% depending on the involvement of the brainstem with the PTV. The mean doses received by 0.05 cm{sup 3} of the brainstem were effectively identical: 54.0 Gy(RBE), 53.4 Gy(RBE) and 53.3 Gy(RBE) for US, PBS optimized with PRV, and PBS optimized with robustness plans respectively. The cochlea mean dose increased by 23% of the prescribed boost dose in average from the bi-lateral fields used in the PBS plan. Planning time for the PBS plan with PRV was 5–10 times less than the US plan and the robustly optimized PBS plan. Conclusion: We have demonstrated that a fixed-beam with PBS can deliver a dose distribution comparable to a gantry plan using uniform scanning. Planning time can be reduced substantially using a PRV around the brainstem instead of robust optimization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, C; Liu, H; Indiana University Bloomington, Bloomington, IN
Purpose: A rapid cycling proton beam has several distinct characteristics superior to a slow extraction synchrotron: The beam energy and energy spread, beam intensity and spot size can be varied spot by spot. The feasibility of using a spot scanning beam from a rapidc-ycling-medical-synchrotron (RCMS) at 10 Hz repetition frequency is investigated in this study for its application in proton therapy. Methods: The versatility of the beam is illustrated by two examples in water phantoms: (1) a cylindrical PTV irradiated by a single field and (2) a spherical PTV irradiated by two parallel opposed fields. A uniform dose distribution ismore » to be delivered to the volumes. Geant4 Monte Carlo code is used to validate the dose distributions in each example. Results: Transverse algorithms are developed to produce uniform distributions in each transverseplane in the two examples with a cylindrical and a spherical PTV respectively. Longitudinally, different proton energies are used in successive transverse planes toproduce the SOBP required to cover the PTVs. In general, uniformity of dosedistribution within 3% is obtained for the cylinder and 3.5% for the sphere. The transversealgorithms requires only few hundred beam spots for each plane The algorithms may beapplied to larger volumes by increasing the intensity spot by spot for the same deliverytime of the same dose. The treatment time can be shorter than 1 minute for any fieldconfiguration and tumor shape. Conclusion: The unique beam characteristics of a spot scanning beam from a RCMS at 10 Hz repetitionfrequency are used to design transverse and longitudinal algorithms to produce uniformdistribution for any arbitrary shape and size of targets. The proposed spot scanning beam ismore versatile than existing spot scanning beams in proton therapy with better beamcontrol and lower neutron dose. This work is supported in part by grants from the US Department of Energy under contract; DE-FG02-12ER41800 and the National Science Foundation NSF PHY-1205431.« less
Preservative-free triamcinolone acetonide suspension developed for intravitreal injection.
Bitter, Christoph; Suter, Katja; Figueiredo, Verena; Pruente, Christian; Hatz, Katja; Surber, Christian
2008-02-01
All commercially available triamcinolone acetonide (TACA) suspensions, used for intravitreal treatment, contain retinal toxic vehicles (e.g., benzyl alcohol, solubilizer). Our aim was to find a convenient and reproducible method to compound a completely preservative-free TACA suspension, adapted to the intraocular physiology, with consistent quality (i.e., proven sterility and stability, constant content and dose uniformity, defined particle size, and 1 year shelf life). We evaluated two published (Membrane-filter, Centrifugation) and a newly developed method (Direct Suspending) to compound TACA suspensions for intravitreal injection. Parameters as TACA content (HPLC), particle size (microscopy and laser spectrometry), sterility, and bacterial endotoxins were assessed. Stability testing (at room temperature and 40 degrees C) was performed: color and homogeneity (visually), particle size (microscopically), TACA content and dose uniformity (HPLC) were analyzed according to International Conference on Harmonisation guidelines. Contrary to the known methods, the direct suspending method is convenient, provides a TACA suspension, which fulfills all compendial requirements, and has a 2-year shelf life. We developed a simple, reproducible method to compound stable, completely preservative-free TACA suspensions with a reasonable shelf-life, which enables to study the effect of intravitreal TACA--not biased by varying doses and toxic compounds or their residues.
Dynamic scan control in STEM: Spiral scans
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.; ...
2016-06-13
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
Dynamic scan control in STEM: Spiral scans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupini, Andrew R.; Borisevich, Albina Y.; Kalinin, Sergei V.
Here, scanning transmission electron microscopy (STEM) has emerged as one of the foremost techniques to analyze materials at atomic resolution. However, two practical difficulties inherent to STEM imaging are: radiation damage imparted by the electron beam, which can potentially damage or otherwise modify the specimen and slow-scan image acquisition, which limits the ability to capture dynamic changes at high temporal resolution. Furthermore, due in part to scan flyback corrections, typical raster scan methods result in an uneven distribution of dose across the scanned area. A method to allow extremely fast scanning with a uniform residence time would enable imaging atmore » low electron doses, ameliorating radiation damage and at the same time permitting image acquisition at higher frame-rates while maintaining atomic resolution. The practical complication is that rastering the STEM probe at higher speeds causes significant image distortions. Non-square scan patterns provide a solution to this dilemma and can be tailored for low dose imaging conditions. Here, we develop a method for imaging with alternative scan patterns and investigate their performance at very high scan speeds. A general analysis for spiral scanning is presented here for the following spiral scan functions: Archimedean, Fermat, and constant linear velocity spirals, which were tested for STEM imaging. The quality of spiral scan STEM images is generally comparable with STEM images from conventional raster scans, and the dose uniformity can be improved.« less
Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani
2012-01-01
Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947
Hydroetching of high surface area ceramics using moist supercritical fluids
Fryxell, Glen; Zemanian, Thomas S.
2004-11-02
Aerogels having a high density of hydroxyl groups and a more uniform pore size with fewer bottlenecks are described. The aerogel is exposed to a mixture of a supercritical fluid and water, whereupon the aerogel forms a high density of hydroxyl groups. The process also relaxes the aerogel into a more open uniform internal structure, in a process referred to as hydroetching. The hydroetching process removes bottlenecks from the aerogels, and forms the hydrogels into more standard pore sizes while preserving their high surface area.
NASA Astrophysics Data System (ADS)
Zhao, Qingya
2011-12-01
Proton radiotherapy has advantages to deliver accurate high conformal radiation dose to the tumor while sparing the surrounding healthy tissue and critical structures. However, the treatment effectiveness is degraded greatly due to patient free breathing during treatment delivery. Motion compensation for proton radiotherapy is especially challenging as proton beam is more sensitive to the density change along the beam path. Tumor respiratory motion during treatment delivery will affect the proton dose distribution and the selection of optimized parameters for treatment planning, which has not been fully addressed yet in the existing approaches for proton dose calculation. The purpose of this dissertation is to develop an approach for more accurate dose delivery to a moving tumor in proton radiotherapy, i.e., 4D proton dose calculation and delivery, for the uniform scanning proton beam. A three-step approach has been carried out to achieve this goal. First, a solution for the proton output factor calculation which will convert the prescribed dose to machine deliverable monitor unit for proton dose delivery has been proposed and implemented. The novel sector integration method is accurate and time saving, which considers the various beam scanning patterns and treatment field parameters, such as aperture shape, aperture size, measuring position, beam range, and beam modulation. Second, tumor respiratory motion behavior has been statistically characterized and the results have been applied to advanced image guided radiation treatment. Different statistical analysis and correlation discovery approaches have been investigated. The internal / external motion correlation patterns have been simulated, analyzed, and applied in a new hybrid gated treatment to improve the target coverage. Third, a dose calculation method has been developed for 4D proton treatment planning which integrates the interplay effects of tumor respiratory motion patterns and proton beam delivery mechanism. These three steps provide an innovative integrated framework for accurate 4D proton dose calculation and treatment planning for a moving tumor, which extends the functionalities of existing 3D planning systems. In short, this dissertation work addresses a few important problems for effective proton radiotherapy to a moving target. The outcomes of the dissertation are very useful for motion compensation with advanced image guided proton treatment.
High-dose MVCT image guidance for stereotactic body radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.
Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machinemore » by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.« less
High-dose MVCT image guidance for stereotactic body radiation therapy.
Westerly, David C; Schefter, Tracey E; Kavanagh, Brian D; Chao, Edward; Lucas, Dan; Flynn, Ryan T; Miften, Moyed
2012-08-01
Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.
TU-CD-304-06: Using FFF Beams Improves Tumor Control in Radiotherapy of Lung Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassiliev, O; Wang, H
Purpose: Electron disequilibrium at the lung-tumor interface results in an under-dosage of tumor regions close to its surface. This under-dosage is known to be significant and can compromise tumor control. Previous studies have shown that in FFF beams, disequilibrium effects are less pronounced, which is manifested in an increased skin dose. In this study we investigate the improvement in tumor dose coverage that can be achieved with FFF beams. The significance of this improvement is evaluated by comparing tumor control probabilities of FFF beams and conventional flattened beams. Methods: The dosimetric coverage was investigated in a virtual phantom representing themore » chest wall, lung tissue and the tumor. A range of tumor sizes was investigated, and two tumor locations – central and adjacent to the chest wall. Calculations were performed with BEAMnrc Monte Carlo code. Parallel-opposed and multiple coplanar 6-MV beams were simulated. The tumor control probabilities were calculated using the logistic model with parameters derived from clinical data for non-small lung cancer patients. Results: FFF beams were not entirely immune to disequilibrium effects. They nevertheless consistently delivered more uniform dose distribution throughout the volume of the tumor, and eliminated up to ∼15% of under-dosage in the most affected by disequilibrium 1-mm thick surface region of the tumor. A voxel-by-voxel comparison of tumor control probabilities between FFF and conventional flattened beams showed an advantage of FFF beams that, depending on the set up, was from a few to ∼9 percent. Conclusion: A modest improvement in tumor control probability on the order of a few percent can be achieved by replacing conventional flattened beams with FFF beams. However, given the large number of lung cancer patients undergoing radiotherapy, these few percent can potentially prevent local tumor recurrence for a significant number of patients.« less
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.
Lee, Hsiao-Wen; Lin, Bor-Shyh
2012-11-05
LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, A; Schoenfeld, A; Poppinga, D
Purpose: The quantification of the relative surface dose enhancement in dependence on the angle of incidence and the atomic number Z of the surface material. Methods: Experiments were performed with slabs made of aluminum, titanium, copper, silver, dental gold and lead. The metal slabs with equal sizes of 1.0×8.0×8.8mm{sup 3} were embedded in an Octavius 4D phantom (PTW Freiburg, Germany). Radiochromic EBT3 films were used to measure the surface dose for angles of incidence ranging from 0° to 90°. The setup with the metals slabs at the isocenter was irradiated with acceleration voltages of 6MV and 10MV. Water reference measurementsmore » were taken under equal conditions. Results: The surface dose enhancement is highest for angles of incidence below 30° and drops significantly for higher. The surface dose enhancement produced by lead and dental gold at 6MV showed a peak of 65%. At 90°, the surface dose enhancement dropped to 15% for both materials. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 32%, 22% and 12% at 0°, respectively. At an angle of incidence of 80°, the values dropped to 22%, 18%, 12% und 6%. The values for 10MV were very similar. Lead and dental gold showed peaks of 65% und 60%. Their values dropped to 18% at an angle of 90°. The surface dose enhancements for silver, copper, titanium and aluminum were 45%, 30%, 20% and 8% at 0°. At 80° the values dropped to 30%, 20%, 12% and 5%. A dependence of the magnitude of the surface dose enhancement on the atomic number of the surface material can be seen, which is in consistence with literature. Conclusion: The results show that the surface dose enhancements near implant materials with high Z-values should be taken into consideration in radio therapy, even when the angle of incidence is flat.« less
Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.
Grime, John M A; Khan, Malek O
2010-10-12
A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.
A step-up test procedure to find the minimum effective dose.
Wang, Weizhen; Peng, Jianan
2015-01-01
It is of great interest to find the minimum effective dose (MED) in dose-response studies. A sequence of decreasing null hypotheses to find the MED is formulated under the assumption of nondecreasing dose response means. A step-up multiple test procedure that controls the familywise error rate (FWER) is constructed based on the maximum likelihood estimators for the monotone normal means. When the MED is equal to one, the proposed test is uniformly more powerful than Hsu and Berger's test (1999). Also, a simulation study shows a substantial power improvement for the proposed test over four competitors. Three R-codes are provided in Supplemental Materials for this article. Go to the publishers online edition of Journal of Biopharmaceutical Statistics to view the files.
Adhesion of voids to bimetal interfaces with non-uniform energies
Zheng, Shijian; Shao, Shuai; Zhang, Jian; ...
2015-10-21
Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less
Reproducible direct exposure environmental testing of metal-based magnetic media
NASA Technical Reports Server (NTRS)
Sides, Paul J.
1994-01-01
A flow geometry and flow rate for mixed flowing gas testing is proposed. Use of an impinging jet of humid polluted air can provide a uniform and reproducible exposure of coupons of metal-based magnetic media. Numerical analysis of the fluid flow and mass transfer in such as system has shown that samples confined within a distance equal to the nozzle radius on the surface of impingement are uniformly accessible to pollutants in the impinging gas phase. The critical factor is the nozzle height above the surface of impingement. In particular, the uniformity of exposure is less than plus/minus 2% for a volumetric flow rate of 1600 cm(exp 3)/minute total flow with the following specifications: For a one inch nozzle, the height of the nozzle opening above the stage should be 0.177 inches; for a 2 inch nozzle - 0.390 inches. Not only is the distribution uniform, but one can calculate the maximum delivery rate of pollutants to the samples for comparison with the observed deterioration.
Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A. (Inventor)
2007-01-01
A method for increasing the compressive modulus of aerogels comprising: providing aerogel substrate comprising a bubble matrix in a chamber; providing monomer to the chamber, the monomer comprising vapor phase monomer which polymerizes substantially free of polymerization byproducts; depositing monomer from the vapor phase onto the surface of the aerogel substrate under deposition conditions effective to produce a vapor pressure sufficient to cause the vapor phase monomer to penetrate into the bubble matrix and deposit onto the surface of the aerogel substrate, producing a substantially uniform monomer film; and, polymerizing the substantially uniform monomer film under polymerization conditions effective to produce polymer coated aerogel comprising a substantially uniform polymer coating substantially free of polymerization byproducts.Polymer coated aerogel comprising aerogel substrate comprising a substantially uniform polymer coating, said polymer coated aerogel comprising porosity and having a compressive modulus greater than the compressive modulus of the aerogel substrate, as measured by a 100 lb. load cell at 1 mm/minute in the linear range of 20% to 40% compression.
Dose gradient curve: A new tool for evaluating dose gradient
Choi, Young Eun
2018-01-01
Purpose Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. Methods The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Results Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. Conclusions The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice. PMID:29698471
Aneurysm permeability following coil embolization: packing density and coil distribution.
Chueh, Ju-Yu; Vedantham, Srinivasan; Wakhloo, Ajay K; Carniato, Sarena L; Puri, Ajit S; Bzura, Conrad; Coffin, Spencer; Bogdanov, Alexei A; Gounis, Matthew J
2015-09-01
Rates of durable aneurysm occlusion following coil embolization vary widely, and a better understanding of coil mass mechanics is desired. The goal of this study is to evaluate the impact of packing density and coil uniformity on aneurysm permeability. Aneurysm models were coiled using either Guglielmi detachable coils or Target coils. The permeability was assessed by taking the ratio of microspheres passing through the coil mass to those in the working fluid. Aneurysms containing coil masses were sectioned for image analysis to determine surface area fraction and coil uniformity. All aneurysms were coiled to a packing density of at least 27%. Packing density, surface area fraction of the dome and neck, and uniformity of the dome were significantly correlated (p<0.05). Hence, multivariate principal components-based partial least squares regression models were used to predict permeability. Similar loading vectors were obtained for packing and uniformity measures. Coil mass permeability was modeled better with the inclusion of packing and uniformity measures of the dome (r(2)=0.73) than with packing density alone (r(2)=0.45). The analysis indicates the importance of including a uniformity measure for coil distribution in the dome along with packing measures. A densely packed aneurysm with a high degree of coil mass uniformity will reduce permeability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Aerodynamic analysis of three advanced configurations using the TranAir full-potential code
NASA Technical Reports Server (NTRS)
Madson, M. D.; Carmichael, R. L.; Mendoza, J. P.
1989-01-01
Computational results are presented for three advanced configurations: the F-16A with wing tip missiles and under wing fuel tanks, the Oblique Wing Research Aircraft, and an Advanced Turboprop research model. These results were generated by the latest version of the TranAir full potential code, which solves for transonic flow over complex configurations. TranAir embeds a surface paneled geometry definition in a uniform rectangular flow field grid, thus avoiding the use of surface conforming grids, and decoupling the grid generation process from the definition of the configuration. The new version of the code locally refines the uniform grid near the surface of the geometry, based on local panel size and/or user input. This method distributes the flow field grid points much more efficiently than the previous version of the code, which solved for a grid that was uniform everywhere in the flow field. TranAir results are presented for the three configurations and are compared with wind tunnel data.
Uniform hexagonal graphene flakes and films grown on liquid copper surface.
Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi
2012-05-22
Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.
Uniform hexagonal graphene flakes and films grown on liquid copper surface
Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi
2012-01-01
Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density. PMID:22509001
NASA Astrophysics Data System (ADS)
Wilson, S. K.
1993-05-01
Analytical and numerical techniques are used to analyze the effect of a uniform vertical magnetic field on the onset of steady Benard-Marangoni convection in a horizontal layer of quiescent, electrically conducting fluid subject to a uniform vertical temperature gradient. Marangoni numbers for the onset of steady convection are found to be critically dependent on the nondimensional Crispation and Bond numbers. Two different asymptotic limits of strong surface tension and strong magnetic field are analyzed. Data obtained indicate that the presence of the magnetic field always has a stabilizing effect on the layer. Assuming that the Marangoni number is a critical parameter, it is shown that, if the free surface is nondeformable, then any particular disturbance can be stabilized with a sufficiently strong magnetic field. If the free surface is deformable and gravity waves are excluded, then the layer is always unstable to infinitely long wavelength disturbances with or without a magnetic field.
Integrating uniform design and response surface methodology to optimize thiacloprid suspension
Li, Bei-xing; Wang, Wei-chang; Zhang, Xian-peng; Zhang, Da-xia; Mu, Wei; Liu, Feng
2017-01-01
A model 25% suspension concentrate (SC) of thiacloprid was adopted to evaluate an integrative approach of uniform design and response surface methodology. Tersperse2700, PE1601, xanthan gum and veegum were the four experimental factors, and the aqueous separation ratio and viscosity were the two dependent variables. Linear and quadratic polynomial models of stepwise regression and partial least squares were adopted to test the fit of the experimental data. Verification tests revealed satisfactory agreement between the experimental and predicted data. The measured values for the aqueous separation ratio and viscosity were 3.45% and 278.8 mPa·s, respectively, and the relative errors of the predicted values were 9.57% and 2.65%, respectively (prepared under the proposed conditions). Comprehensive benefits could also be obtained by appropriately adjusting the amount of certain adjuvants based on practical requirements. Integrating uniform design and response surface methodology is an effective strategy for optimizing SC formulas. PMID:28383036
Tablet splitting of a narrow therapeutic index drug: a case with levothyroxine sodium.
Shah, Rakhi B; Collier, Jarrod S; Sayeed, Vilayat A; Bryant, Arthur; Habib, Muhammad J; Khan, Mansoor A
2010-09-01
Levothyroxine is a narrow therapeutic index, and to avoid adverse effect associated with under or excessive dosage, the dose response is carefully titrated. The tablets are marketed with a score providing an option to split. However, there are no systematic studies evaluating the effect of splitting on dose accuracy, and current study was undertaken to evaluate effects of splitting and potential causes for uniformity failures by measuring assay and content uniformity in whole and split tablets. Stability was evaluated by assaying drug for a period of 8 weeks. Effect of formulation factors on splittability was evaluated by a systematic investigation of formulation factors by preparing levothyroxine tablets in house by varying the type of excipients (binder, diluent, disintegrant, glidant) or by varying the processing factors (granulating liquid, mixing type, compression pressure). The tablets were analyzed using novel analytical tool such as near infrared chemical imaging to visualize the distribution of levothyroxine. Assay was not significantly different for whole versus split tablets irrespective of method of splitting (hand or splitter), and splitting also had no measurable impact on the stability. Split tablets either by hand or splitter showed higher rate of content uniformity failures as compared to whole tablets. Tablet splitter produced more fragmentation and, hence, more content uniformity and friability failures. Chemical imaging data revealed that the distribution of levothyroxine was heterogeneous and was dependent on type of binder and the process used in the manufacture of tablets. Splitting such tablets could prove detrimental if sub- or super-potency becomes an issue.
NASA Astrophysics Data System (ADS)
Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.
2018-03-01
Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.
Enclosure for small animals during awake animal imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddard, Jr., James S
An enclosure or burrow restrains an awake animal during an imaging procedure. A tubular body, made from a radiolucent material that does not attenuate x-rays or gamma rays, accepts an awake animal. A proximal end of the body includes an attachment surface that corresponds to an attachment surface of an optically transparent and optically uniform window. An anti-reflective coating may be applied to an inner surface, an outer surface, or both surfaces of the window. Since the window is a separate element of the enclosure and it is not integrally formed as part of the body, it can be mademore » with optically uniform thickness properties for improved motion tracking of markers on the animal with a camera during the imaging procedure. The motion tracking information is then used to compensate for animal movement in the image.« less
Surface dose measurement with Gafchromic EBT3 film for intensity modulated radiotherapy technique
NASA Astrophysics Data System (ADS)
Akbas, Ugur; Kesen, Nazmiye Donmez; Koksal, Canan; Okutan, Murat; Demir, Bayram; Becerir, Hatice Bilge
2017-09-01
Accurate dose measurement in the buildup region is extremely difficult. Studies have reported that treatment planning systems (TPS) cannot calculate surface dose accurately. The aim of the study was to compare the film measurements and TPS calculations for surface dose in head and neck cancer treatment using intensity modulated radiation therapy (IMRT). IMRT plans were generated for 5 head and neck cancer patients by using Varian Eclipse TPS. Quality assurance (QA) plans of these IMRT plans were created on rando phantoms for surface dose measurements. EBT3 films were cut in size of 2.5 x 2.5 cm2 and placed on the left side, right side and the center of larynx and then the films were irradiated with 6 MV photon beams. The measured doses were compared with TPS. The results of TPS calculations were found to be lower compared to the EBT3 film measurements at all selected points. The lack of surface dose calculation in TPS should be considered while evaluating the radiotherapy plans.
Dankers, Frank; Wijsman, Robin; Troost, Esther G C; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L
2017-05-07
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
NASA Astrophysics Data System (ADS)
Dankers, Frank; Wijsman, Robin; Troost, Esther G. C.; Monshouwer, René; Bussink, Johan; Hoffmann, Aswin L.
2017-05-01
In our previous work, a multivariable normal-tissue complication probability (NTCP) model for acute esophageal toxicity (AET) Grade ⩾2 after highly conformal (chemo-)radiotherapy for non-small cell lung cancer (NSCLC) was developed using multivariable logistic regression analysis incorporating clinical parameters and mean esophageal dose (MED). Since the esophagus is a tubular organ, spatial information of the esophageal wall dose distribution may be important in predicting AET. We investigated whether the incorporation of esophageal wall dose-surface data with spatial information improves the predictive power of our established NTCP model. For 149 NSCLC patients treated with highly conformal radiation therapy esophageal wall dose-surface histograms (DSHs) and polar dose-surface maps (DSMs) were generated. DSMs were used to generate new DSHs and dose-length-histograms that incorporate spatial information of the dose-surface distribution. From these histograms dose parameters were derived and univariate logistic regression analysis showed that they correlated significantly with AET. Following our previous work, new multivariable NTCP models were developed using the most significant dose histogram parameters based on univariate analysis (19 in total). However, the 19 new models incorporating esophageal wall dose-surface data with spatial information did not show improved predictive performance (area under the curve, AUC range 0.79-0.84) over the established multivariable NTCP model based on conventional dose-volume data (AUC = 0.84). For prediction of AET, based on the proposed multivariable statistical approach, spatial information of the esophageal wall dose distribution is of no added value and it is sufficient to only consider MED as a predictive dosimetric parameter.
[Study on Hollow Brick Wall's Surface Temperature with Infrared Thermal Imaging Method].
Tang, Ming-fang; Yin, Yi-hua
2015-05-01
To address the characteristic of uneven surface temperature of hollow brick wall, the present research adopts soft wares of both ThermaCAM P20 and ThermaCAM Reporter to test the application of infrared thermal image technique in measuring surface temperature of hollow brick wall, and further analyzes the thermal characteristics of hollow brick wall, and building material's impact on surface temperature distribution including hollow brick, masonry mortar, and so on. The research selects the construction site of a three-story-high residential, carries out the heat transfer experiment, and further examines the exterior wall constructed by 3 different hollow bricks including sintering shale hollow brick, masonry mortar and brick masonry. Infrared thermal image maps are collected, including 3 kinds of sintering shale hollow brick walls under indoor heating in winter; and temperature data of wall surface, and uniformity and frequency distribution are also collected for comparative analysis between 2 hollow bricks and 2 kinds of mortar masonry. The results show that improving heat preservation of hollow brick aid masonry mortar can effectively improve inner wall surface temperature and indoor thermal environment; non-uniformity of surface temperature decreases from 0. 6 to 0. 4 °C , and surface temperature frequency distribution changes from the asymmetric distribution into a normal distribution under the condition that energy-saving sintering shale hollow brick wall is constructed by thermal mortar replacing cement mortar masonry; frequency of average temperature increases as uniformity of surface temperature increases. This research provides a certain basis for promotion and optimization of hollow brick wall's thermal function.
Permethrin exposure from fabric-treated military uniforms under different wear-time scenarios.
Proctor, Susan P; Maule, Alexis L; Heaton, Kristin J; Adam, Gina E
2014-11-01
The objective of the project was to ascertain whether urinary biomarkers of permethrin exposure are detected after wearing post-tailored, fabric-treated military uniforms under two different wear-time exposure scenarios. Study A occurred over 3.5 days and involved six participants wearing treated uniforms continuously for 30-32 h. Urine collection occurred at scheduled time points before, during, and after wearing the uniform. Study B, conducted over 19 days, included 11 participants wearing treated uniforms for 3 consecutive days, 8 h each day (with urine collection before, during, and after wear). Urinary biomarkers of permethrin (3-phenoxybenzoic acid (3PBA), cis- 2,2-(dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cDCCA), trans- 2,2-(dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (tDCCA)) were detected during and after wear. Biomarker detection generally occurred over the 10- to 12-h period after putting on the uniform and subsided 24 h following uniform removal (in both Study A and B scenarios). Those wearing permethrin-treated uniforms under the longer wear-time scenario (Study A) excreted significantly higher cumulative mean levels compared with those in Study B (3.29 times higher for 3PBA and 2.23 times higher for the sum of c/tDCCA (P≤0.001)). Findings suggest that wearing permethrin-treated clothing does increase absorbed, internal dose levels of permethrin above population levels and is significantly related to wear-time duration.
NASA Astrophysics Data System (ADS)
Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali
2012-12-01
The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.
Kakamu, Takeyasu; Kanda, Hideyuki; Tsuji, Masayoshi; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Katsuda, Shin-ichiro; Mori, Yayoi; Okouchi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito
2013-01-01
After the Great East Japan Earthquake on 11 March 2011, the environmental radiation dose in Fukushima City increased. On 11 April, 1 mo after the earthquake, the environmental radiation dose rate at various surfaces in the same area differed greatly by surface property. Environmental radiation measurements continue in order to determine the estimated time to 50% reduction in environmental radiation dose rates by surface property in order to make suggestions for decontamination in Fukushima. The measurements were carried out from 11 April to 11 November 2011. Forty-eight (48) measurement points were selected, including four kinds of ground surface properties: grass (13), soil (5), artificial turf (7), and asphalt (23). Environmental radiation dose rate was measured at heights of 100 cm above the ground surface. Time to 50% reduction of environmental radiation dose rates was estimated for each ground surface property. Radiation dose rates on 11 November had decreased significantly compared with those on 11 April for all surface properties. Artificial turf showed the longest time to 50% reduction (544.32 d, standard error: 96.86), and soil showed the shortest (213.20 d, standard error: 35.88). The authors found the environmental radiation dose rate on artificial materials to have a longer 50% reduction time than that on natural materials. These results contribute to determining an order of priority for decontamination after nuclear disasters.
Surface dose measurement for helical tomotherapy.
Snir, Jonatan A; Mosalaei, Homeira; Jordan, Kevin; Yartsev, Slav
2011-06-01
To compare the surface dose measurements made by different dosimeters for the helical tomotherapy (HT) plan in the case of the target close to the surface. Surface dose measurements in different points for the HT plan to deliver 2 Gy to the planning target volume (PTV) at 5 mm below the surface of the cylindrical phantom were performed by radiochromic films, single use metal oxide semiconductor field-effect transistor (MOSFET) dosimeters, silicon IVD QED diode, and optically stimulated luminescence (OSL) dosimeters. The measured doses by all dosimeters were within 12 +/- 8% difference of each other. Radiochromic films, EBT, and EBT2, provide high spatial resolution, although it is difficult to get accurate measurements of dose. Both the OSL and QED measured similar dose to that of the MOSFET detectors. The QED dosimeter is promising as a reusable on-line wireless dosimeter, while the OSL dosimeters are easier to use, require minimum setup time and are very precise.
Advection and Taylor-Aris dispersion in rivulet flow
NASA Astrophysics Data System (ADS)
Al Mukahal, F. H. H.; Duffy, B. R.; Wilson, S. K.
2017-11-01
Motivated by the need for a better understanding of the transport of solutes in microfluidic flows with free surfaces, the advection and dispersion of a passive solute in steady unidirectional flow of a thin uniform rivulet on an inclined planar substrate driven by gravity and/or a uniform longitudinal surface shear stress are analysed. Firstly, we describe the short-time advection of both an initially semi-infinite and an initially finite slug of solute of uniform concentration. Secondly, we describe the long-time Taylor-Aris dispersion of an initially finite slug of solute. In particular, we obtain the general expression for the effective diffusivity for Taylor-Aris dispersion in such a rivulet, and discuss in detail its different interpretations in the special case of a rivulet on a vertical substrate.
Directed flow fluid rinse trough
Kempka, Steven N.; Walters, Robert N.
1996-01-01
Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.
De Harven, E; He, S; Hanna, W; Bootsma, G; Connolly, J G
1987-10-01
The deletion of ABH blood group antigens from the luminal surface of the bladder mucosa in cases of well differentiated transitional cell carcinomata, and the formation of pleomorphic microvilli have both been associated with aggressive biological behaviour and invasiveness of the tumors. We have studied cold cup biopsies from 8 normal mucosae and 17 papillary transitional cell carcinomata of the urinary bladder. The aim of our study was to correlate the formation of uniform or pleomorphic microvilli with the extent of deletion of the ABH blood group antigens on the surface of normal and transformed bladder urothelium. Immunogold scanning electron microscopy (SEM) in the backscattered electron (BE) imaging mode was used for this purpose. In the normal urothelium, uniform labeling of the luminal cells was demonstrated. In well differentiated tumors, the superficial cells exhibited uniform microvilli and a heterogeneous expression of the ABH antigens, giving characteristic 'mosaic' patterns of the antigenic labeling across the mucosal surface. These patterns were sharply delimitated at cell junctions when viewed by SEM; these observations were confirmed by transmission electron microscopy. In higher grade tumors, decreased ABH antigen expression, pleomorphic microvilli and/or featureless luminal cells were observed. In the transformed urothelium, the formation of uniform microvilli appeared to precede the loss of ABH antigen in most cases.
Optical design of an in vivo laparoscopic lighting system.
Liu, Xiaolong; Abdolmalaki, Reza Yazdanpanah; Mancini, Gregory J; Tan, Jindong
2017-12-01
This paper proposes an in vivo laparoscopic lighting system design to address the illumination issues, namely poor lighting uniformity and low optical efficiency, existing in the state-of-the-art in vivo laparoscopic cameras. The transformable design of the laparoscopic lighting system is capable of carrying purposefully designed freeform optical lenses for achieving lighting performance with high illuminance uniformity and high optical efficiency in a desired target region. To design freeform optical lenses for extended light sources such as LEDs with Lambertian light intensity distributions, we present an effective and complete freeform optical design method. The procedures include (1) ray map computation by numerically solving a standard Monge-Ampere equation; (2) initial freeform optical surface construction by using Snell's law and a lens volume restriction; (3) correction of surface normal vectors due to accumulated errors from the initially constructed surfaces; and (4) feedback modification of the solution to deal with degraded illuminance uniformity caused by the extended sizes of the LEDs. We employed an optical design software package to evaluate the performance of our laparoscopic lighting system design. The simulation results show that our design achieves greater than 95% illuminance uniformity and greater than 89% optical efficiency (considering Fresnel losses) for illuminating the target surgical region. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Josefsson, Sarah; Leonardsson, Kjell; Gunnarsson, Jonas S; Wiberg, Karin
2011-11-01
The bioaccumulation of buried polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) added to specific depths in sediment (2.0-2.5, 5.0-5.5 and 10.0-10.5cm) was studied in two infaunal species with similar feeding habits (surface deposit-feeders) but different bioturbation modes. The deep-burrowing polychaetes Marenzelleria spp. (Mz) displayed up to 36 times higher tissue concentrations of buried (spiked) contaminants than the surface-dwelling biodiffusing amphipod Monoporeia affinis. The differences in bioaccumulation were most pronounced for less hydrophobic contaminants due to the bioirrigating activity of Mz. Contaminants buried at shallow depths displayed higher accumulation than more deeply buried contaminants. In contrast, the bioaccumulation of unspiked (native) contaminants with a uniform vertical distribution in the sediment was similar between the species. For Mz, the BSAFs increased with increased K(OW) for the uniformly distributed contaminants, but decreased for the buried contaminants, which indicates that the dominant uptake routes of the buried contaminants can differ from the uniformly distributed contaminants. The surface sediment concentration of buried contaminants increased in Mz treatments, showing that Mz bioturbation can remobilize historically buried contaminants to the biologically active surface layer and increase the exposure for surface-dwelling species. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method.
Qu, Jie; Lu, Xiong; Li, Dan; Ding, Yonghui; Leng, Yang; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio
2011-04-01
Hydroxyapatite (HA) coatings loaded with nanosilver particles is an attractive method to impart the HA coating with antibacterial properties. Producing Ag/HA coatings on porous Ti substrates have been an arduous job since commonly used line-of-sight techniques are not able to deposit uniform coatings on the inner pore surfaces of the porous Ti. In this study, porous Ti scaffolds with high porosity and interconnected structures were prepared by polymer impregnating method. A sol-gel process was used to produce uniform Ag/HA composite coatings on the surfaces of porous Ti substrates. Ca(NO(3) )(2) ·4H(2) O and P(2) O(5) in an ethyl alcohol based system was selected to prepare the sol, which ensured the homogeneous distribution of Ag in the sol. The characterization revealed that silver particles uniformly distributed in the coatings without agglomeration. High antibacterial ratio (>95%), against E. coli and S. albus was expressed by the silver-containing coatings (Ag/HA 0.8 and 1.6 wt %). The biocompatibility of the Ag/HA 0.8 surfaces was as good as that of pure HA surface, as revealed by culturing osteoblasts on them. The results indicated that Ag/HA 0.8 had the good balance between the biocompatibility and antibacterial properties of the coatings. Copyright © 2011 Wiley Periodicals, Inc.
van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J
2015-08-01
Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.
Comparison of different phantoms used in digital diagnostic imaging
NASA Astrophysics Data System (ADS)
Bor, Dogan; Unal, Elif; Uslu, Anil
2015-09-01
The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.
Fulkerson, Regina K.; Micka, John A.; DeWerd, Larry A.
2014-01-01
Purpose: Historically, treatment of malignant surface lesions has been achieved with linear accelerator based electron beams or superficial x-ray beams. Recent developments in the field of brachytherapy now allow for the treatment of surface lesions with specialized conical applicators placed directly on the lesion. Applicators are available for use with high dose rate (HDR) 192Ir sources, as well as electronic brachytherapy sources. Part I of this paper will discuss the applicators used with electronic brachytherapy sources; Part II will discuss those used with HDR 192Ir sources. Although the use of these applicators has gained in popularity, the dosimetric characteristics including depth dose and surface dose distributions have not been independently verified. Additionally, there is no recognized method of output verification for quality assurance procedures with applicators like these. Existing dosimetry protocols available from the AAPM bookend the cross-over characteristics of a traditional brachytherapy source (as described by Task Group 43) being implemented as a low-energy superficial x-ray beam (as described by Task Group 61) as observed with the surface applicators of interest. Methods: This work aims to create a cohesive method of output verification that can be used to determine the dose at the treatment surface as part of a quality assurance/commissioning process for surface applicators used with HDR electronic brachytherapy sources (Part I) and 192Ir sources (Part II). Air-kerma rate measurements for the electronic brachytherapy sources were completed with an Attix Free-Air Chamber, as well as several models of small-volume ionization chambers to obtain an air-kerma rate at the treatment surface for each applicator. Correction factors were calculated using MCNP5 and EGSnrc Monte Carlo codes in order to determine an applicator-specific absorbed dose to water at the treatment surface from the measured air-kerma rate. Additionally, relative dose measurements of the surface dose distributions and characteristic depth dose curves were completed in-phantom. Results: Theoretical dose distributions and depth dose curves were generated for each applicator and agreed well with the measured values. A method of output verification was created that allows users to determine the applicator-specific dose to water at the treatment surface based on a measured air-kerma rate. Conclusions: The novel output verification methods described in this work will reduce uncertainties in dose delivery for treatments with these kinds of surface applicators, ultimately improving patient care. PMID:24506635
Progress on thermobrachytherapy surface applicator for superficial tissue disease
NASA Astrophysics Data System (ADS)
Arunachalam, Kavitha; Craciunescu, Oana I.; Maccarini, Paolo F.; Schlorff, Jaime L.; Markowitz, Edward; Stauffer, Paul R.
2009-02-01
This work reports the ongoing development of a combination applicator for simultaneous heating of superficial tissue disease using a 915 MHz DCC (dual concentric conductor) array and High Dose Rate (HDR) brachytherapy delivered via an integrated conformal catheter array. The progress includes engineering design changes in the waterbolus, DCC configurations and fabrication techniques of the conformal multilayer applicator. The dosimetric impact of the thin copper DCC array is also assessed. Steady state fluid dynamics of the new waterbolus bag indicates nearly uniform flow with less than 1°C variation across a large (19×32cm) bolus. Thermometry data of the torso phantom acquired with computer controlled movement of fiberoptic temperature probes inside thermal mapping catheters indicate feasibility of real time feedback control for the DCC array. MR (magnetic resonance) scans of a torso phantom indicate that the waterbolus thickness across the treatment area is controlled by the pressure applied by the surrounding inflatable airbladder and applicator securing straps. The attenuation coefficient of the DCC array was measured as 3+/- 0.001% and 2.95+/-0.03 % using an ion chamber and OneDose dosimeters respectively. The performance of the combination applicator on patient phantoms provides valuable feedback to optimize the applicator prior use in the patient clinic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarzycki, Piotr P.; Rosso, Kevin M.
Replica Kinetic Monte Carlo simulations were used to study the characteristic time scales of potentiometric titration of the metal oxides and (oxy)hydroxides. The effect of surface heterogeneity and surface transformation on the titration kinetics were also examined. Two characteristic relaxation times are often observed experimentally, with the trailing slower part attributed to surface non-uniformity, porosity, polymerization, amorphization, and other dynamic surface processes induced by unbalanced surface charge. However, our simulations show that these two characteristic relaxation times are intrinsic to the proton binding reaction for energetically homogeneous surfaces, and therefore surface heterogeneity or transformation do not necessarily need to bemore » invoked. However, all such second-order surface processes are found to intensify the separation and distinction of the two kinetic regimes. The effect of surface energetic-topographic non-uniformity, as well dynamic surface transformation, interface roughening/smoothing were described in a statistical fashion. Furthermore, our simulations show that a shift in the point-of-zero charge is expected from increased titration speed and the pH-dependence of the titration measurement error is in excellent agreement with experimental studies.« less
Laser-Based Surface Modification of Microstructure for Carbon Fiber-Reinforced Plastics
NASA Astrophysics Data System (ADS)
Yang, Wenfeng; Sun, Ting; Cao, Yu; Li, Shaolong; Liu, Chang; Tang, Qingru
2018-05-01
Bonding repair is a powerful feature of carbon fiber-reinforced plastics (CFRP). Based on the theory of interface bonding, the interface adhesion strength and reliability of the CFRP structure will be directly affected by the microscopic features of the CFRP surface, including the microstructure, physical, and chemical characteristics. In this paper, laser-based surface modification was compared to Peel-ply, grinding, and polishing to comparatively evaluate the surface microstructure of CFRP. The surface microstructure, morphology, fiber damage, height and space parameters were investigated by scanning electron microscopy (SEM) and laser confocal microscopy (LCM). Relative to the conventional grinding process, laser modification of the CFRP surface can result in more uniform resin removal and better processing control and repeatability. This decreases the adverse impact of surface fiber fractures and secondary damage. The surface properties were significantly optimized, which has been reflected such things as the obvious improvement of surface roughness, microstructure uniformity, and actual area. The improved surface microstructure based on laser modification is more conducive to interface bonding of CFRP structure repair. This can enhance the interfacial adhesion strength and reliability of repair.
Joumaa, Venus; Bertrand, Fanny; Liu, Shuyue; Poscente, Sophia; Herzog, Walter
2018-05-16
The aim of this study was to determine the role of titin in preventing the development of sarcomere length non-uniformities following activation and after active and passive stretch, by determining the effect of partial titin degradation on sarcomere length non-uniformities and force in passive and active myofibrils. Selective partial titin degradation was performed using a low dose of trypsin. Myofibrils were set at a sarcomere length of 2.4 µm and then passively stretched to sarcomere lengths of 3.4 µm and 4.4 µm. In the active condition, myofibrils were set at a sarcomere length of 2.8µm, activated and actively stretched by 1 µm/sarcomere. The extent of sarcomere length non-uniformities was calculated for each sarcomere as the absolute difference between sarcomere length and the mean sarcomere length of the myofibril. Our main finding is that partial titin degradation does not increase sarcomere length non-uniformities after passive stretch and activation compared to when titin is intact, but increases the extent of sarcomere length non-uniformities after active stretch. Furthermore, when titin was partially degraded, active and passive stresses were substantially reduced. These results suggest that titin plays a crucial role in actively stretched myofibrils and is likely involved in active and passive force production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-David, Merav A.; Diamante, Maximiliano; Radawski, Jeffrey D.
Purpose: To assess the prevalence and dosimetric and clinical predictors of mandibular osteoradionecrosis (ORN) in patients with head and neck cancer who underwent a pretherapy dental evaluation and prophylactic treatment according to a uniform policy and were treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Between 1996 and 2005, all patients with head-and-neck cancer treated with parotid gland-sparing IMRT in prospective studies underwent a dental examination and prophylactic treatment according to a uniform policy that included extractions of high-risk, periodontally involved, and nonrestorable teeth in parts of the mandible expected to receive high radiation doses, fluoride supplements, and the placementmore » of guards aiming to reduce electron backscatter off metal teeth restorations. The IMRT plans included dose constraints for the maximal mandibular doses and reduced mean parotid gland and noninvolved oral cavity doses. A retrospective analysis of Grade 2 or worse (clinical) ORN was performed. Results: A total of 176 patients had a minimal follow-up of 6 months. Of these, 31 (17%) had undergone teeth extractions before RT and 13 (7%) after RT. Of the 176 patients, 75% and 50% had received {>=}65 Gy and {>=}70 Gy to {>=}1% of the mandibular volume, respectively. Falloff across the mandible characterized the dose distributions: the average gradient (in the axial plane containing the maximal mandibular dose) was 11 Gy (range, 1-27 Gy; median, 8 Gy). At a median follow-up of 34 months, no cases of ORN had developed (95% confidence interval, 0-2%). Conclusion: The use of a strict prophylactic dental care policy and IMRT resulted in no case of clinical ORN. In addition to the dosimetric advantages offered by IMRT, meticulous dental prophylactic care is likely an essential factor in reducing ORN risk.« less
Lee, T-F; Ting, H-M; Chao, P-J; Wang, H-Y; Shieh, C-S; Horng, M-F; Wu, J-M; Yeh, S-A; Cho, M-Y; Huang, E-Y; Huang, Y-J; Chen, H-C; Fang, F-M
2012-01-01
Objective We compared and evaluated the differences between two models for treating bilateral breast cancer (BBC): (i) dose–volume-based intensity-modulated radiation treatment (DV plan), and (ii) dose–volume-based intensity-modulated radiotherapy with generalised equivalent uniform dose-based optimisation (DV-gEUD plan). Methods The quality and performance of the DV plan and DV-gEUD plan using the Pinnacle3® system (Philips, Fitchburg, WI) were evaluated and compared in 10 patients with stage T2–T4 BBC. The plans were delivered on a Varian 21EX linear accelerator (Varian Medical Systems, Milpitas, CA) equipped with a Millennium 120 leaf multileaf collimator (Varian Medical Systems). The parameters analysed included the conformity index, homogeneity index, tumour control probability of the planning target volume (PTV), the volumes V20 Gy and V30 Gy of the organs at risk (OAR, including the heart and lungs), mean dose and the normal tissue complication probability. Results Both plans met the requirements for the coverage of PTV with similar conformity and homogeneity indices. However, the DV-gEUD plan had the advantage of dose sparing for OAR: the mean doses of the heart and lungs, lung V20 Gy, and heart V30 Gy in the DV-gEUD plan were lower than those in the DV plan (p<0.05). Conclusions A better result can be obtained by starting with a DV-generated plan and then improving it by adding gEUD-based improvements to reduce the number of iterations and to improve the optimum dose distribution. Advances to knowledge The DV-gEUD plan provided superior dosimetric results for treating BBC in terms of PTV coverage and OAR sparing than the DV plan, without sacrificing the homogeneity of dose distribution in the PTV. PMID:23091290
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanasamy, G; Zhang, X; Paudel, N
Purpose: The aim of this project is to study the therapeutic ratio (TR) for helical Tomotherapy (HT) based spatially fractionated radiotherapy (GRID). Estimation of TR was based on the linear-quadratic cell survival model by comparing the normal cell survival in a HT GRID to that of a uniform dose delivery in an open-field for the same tumor survival. Methods: HT GRID plan was generated using a patient specific virtual GRID block pattern of non-divergent, cylinder shaped holes using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT GRID irradiation to an open field irradiationmore » with an equivalent dose that result in the same tumor cell SF. The ratio was estimated from DVH data on ten patient plans with deep seated, bulky tumor approved by the treating radiation oncologist. Dependence of the TR values on radio-sensitivity of the tumor cells and prescription dose were also analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0±0.7 (range: 3.1 to 5.5) for the 10 patients with single fraction dose of 20 Gy and tumor cell SF of 0.5 at 2 Gy. In addition, mean±SD of TR = 1±0.1 and 18.0±5.1 were found for tumor with SF of 0.3 and 0.7, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the TR to 2.0±0.2 and 1.2±0.04 for a tumor cell SF of 0.5 at 2 Gy. In this study, the SF of normal cells was assumed to be 0.5 at 2 Gy. Conclusion: HT GRID displayed a significant therapeutic advantage over uniform dose from an open field irradiation. TR increases with the radioresistance of the tumor cells and with prescription dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oborn, B; Ge, Y; Hardcastle, N
Purpose: To report on significant dose enhancement effects caused by magnetic fields aligned parallel to 6MV photon beam radiotherapy of small lung tumors. Findings are applicable to future inline MRI-guided radiotherapy systems. Methods: 9 clinical lung plans were recalculated using Monte Carlo methods and external inline (parallel to the beam direction) magnetic fields of 0.5 T, 1.0 T and 3 T were included. Three plans were 6MV 3D-CRT and six were 6MV IMRT. The GTV’s ranged from 0.8 cc to 73 cc, while the PTV ranged from 1 cc to 180 cc. Results: The inline magnetic field has a moderatemore » impact in lung dose distributions by reducing the lateral scatter of secondary electrons and causing a small local dose increase. Superposition of multiple small beams acts to superimpose the small dose increases and can lead to significant dose enhancements, especially when the GTV is low density. Two plans with very small, low mean density GTV’s (<1 cc, ρ(mean)<0.35g/cc) showed uniform increases of 16% and 23% at 1 T throughout the PTV. Three plans with moderate mean density PTV’s (3–13 cc, ρ(mean)=0.58–0.67 g/cc) showed 6% mean dose enhancement at 1 T in the PTV, however not uniform throughout the GTV/PTV. Replanning would benefit these cases. The remaining 5 plans had large dense GTV’s (∼ 1 g/cc) and so only a minimal (<2%) enhancement was seen. In general the mean dose enhancement at 0.5 T was 60% less than 1 T, while 5–50% higher at 3 T. Conclusions: A paradigm shift in the efficacy of small lung tumor radiotherapy is predicted with future inline MRI-linac systems. This will be achieved by carefully taking advantage of the reduction of lateral electronic disequilibrium withing lung tissue that is induced naturally inside strong inline magnetic fields.« less
Lin, Hui; Jing, Jia; Xu, Liangfeng; Wu, Dongsheng; Xu, Yuanying
2012-06-01
The Lyman-Kutcher-Burman (LKB) normal tissue complication probability (NTCP) model is often used to estimate the damage level to normal tissue. However, it does not manifestly involve the influence of radiosensitivity parameters. This work replaces the generalized mean equivalent uniform dose (gEUD) with the equivalent uniform dose (EUD) in the LKB model to investigate the effect of a variety of radiobiological parameters on the NTCP to characterize the toxicity of five types of radionuclides. The dose for 50 % complication probability (D (50)) is replaced by the corresponding EUD for 50 % complication probability (EUD(50)). The properties of a variety of radiobiological characteristics, such as biologically effective dose (BED), NTCP, and EUD, for five types of radioisotope ((131)I, (186)Re, (188)Re, (90)Y, and (67)Cu) are investigated by various radiosensitivity parameters such as intrinsic radiosensitivity α, alpha-beta ratio α/β, cell repair half-time, cell mean clonogen doubling time, etc. The high-energy beta emitters ((90)Y and (188)Re) have high initial dose rate and mean absorbed dose per injected activity in kidney, and their kidney toxicity should be of greater concern if they are excreted through kidneys. The radiobiological effect of (188)Re changes most sharply with the radiobiological parameters due to its high-energy electrons and very short physical half-life. The dose for a probability of 50% injury within 5y (D (50/5)) 28 Gy for whole-kidney irradiation should be adjusted according to different radionuclides and different radiosensitivity of individuals. The D (50/5) of individuals with low α/β or low α, or low biological clearance half-time, will be less than 28 Gy. The 50 % complication probability dose for (67)Cu and (188)Re could be 25 Gy and 22 Gy. The same mean absorbed dose generally corresponds to different degrees of damage for tissues of different radiosensitivity and different radionuclides. The influence of various radiobiological parameters should be taken into consideration in the NTCP model.
Maeng, Sung Jun; Kim, Jinhwan; Cho, Gyuseong
2018-03-15
ICRP (2011) revised the dose limit to the eye lens to 20 mSv/y based on a recent epidemiological study of radiation-induced cataracts. Maintenance of steam generators at nuclear power plants is one of the highest radiation-associated tasks within a non-uniform radiation field. This study aims to evaluate eye lens doses in the steam generators of the Korean OPR1000 design. The source term was characterized based on the CRUD-specific activity, and both the eye lens dose and organ dose were simulated using MCNP6 combined with an ICRP voxel phantom and a mesh phantom, respectively. The eye lens dose was determined to be 5.39E-02-9.43E-02 Sv/h, with a negligible effect by beta particles. As the effective dose was found to be 0.81-1.21 times the lens equivalent dose depending on the phantom angles, the former can be used to estimate the lens dose in the SG of the OPR1000 for radiation monitoring purposes.
A 3D isodose manipulation tool for interactive dose shaping
NASA Astrophysics Data System (ADS)
Kamerling, C. P.; Ziegenhein, P.; Heinrich, H.; Oelfke, U.
2014-03-01
The interactive dose shaping (IDS) planning paradigm aims to perform interactive local dose adaptations of an IMRT plan without compromising already established valuable dose features in real-time. In this work we introduce an interactive 3D isodose manipulation tool which enables local modifications of a dose distribution intuitively by direct manipulation of an isodose surface. We developed an in-house IMRT TPS framework employing an IDS engine as well as a 3D GUI for dose manipulation and visualization. In our software an initial dose distribution can be interactively modified through an isodose surface manipulation tool by intuitively clicking on an isodose surface. To guide the user interaction, the position of the modification is indicated by a sphere while the mouse cursor hovers the isodose surface. The sphere's radius controls the locality of the modification. The tool induces a dose modification as a direct change of dose in one or more voxels, which is incrementally obtained by fluence adjustments. A subsequent recovery step identifies voxels with violated dose features and aims to recover their original dose. We showed a proof of concept study for the proposed tool by adapting the dose distribution of a prostate case (9 beams, coplanar). Single dose modifications take less than 2 seconds on an actual desktop PC.
NASA Astrophysics Data System (ADS)
Seo, Youngmi; Kim, Jung Hyeun
2011-06-01
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.
Luminal surface fabrication for cardiovascular prostheses
NASA Technical Reports Server (NTRS)
Deininger, William D. (Inventor); Gabriel, Stephen B. (Inventor)
1988-01-01
A method is provided for forming a mold surface with microscopic upstanding pillars for molding the inside surface of a vascular prostheses (synthetic blood vessel). The mold article is formed from a quantity of Teflon (polytetrafluoroethylene) which has a polished, flat surface on which a gold film has been sputter deposited. A photoresist layer, which cannot adhere directly to Teflon, adheres to the gold. The photoresist is exposed and developed leaving a sputter resistant mask defining the desired pillar locations, and the resulting workpiece is ion etched to form the pillars in the Teflon. A synthetic blood vessel material is cast against the Teflon mold to form blind recesses on the inside of the synthetic blood vessel, with the recesses being of predetermined uniform cross section and present in a predetermined uniform pattern.
NASA Technical Reports Server (NTRS)
Hu, Fang; Pizzo, Michelle E.; Nark, Douglas M.
2017-01-01
It has been well-known that under the assumption of a constant uniform mean flow, the acoustic wave propagation equation can be formulated as a boundary integral equation, in both the time domain and the frequency domain. Compared with solving partial differential equations, numerical methods based on the boundary integral equation have the advantage of a reduced spatial dimension and, hence, requiring only a surface mesh. However, the constant uniform mean flow assumption, while convenient for formulating the integral equation, does not satisfy the solid wall boundary condition wherever the body surface is not aligned with the uniform mean flow. In this paper, we argue that the proper boundary condition for the acoustic wave should not have its normal velocity be zero everywhere on the solid surfaces, as has been applied in the literature. A careful study of the acoustic energy conservation equation is presented that shows such a boundary condition in fact leads to erroneous source or sink points on solid surfaces not aligned with the mean flow. A new solid wall boundary condition is proposed that conserves the acoustic energy and a new time domain boundary integral equation is derived. In addition to conserving the acoustic energy, another significant advantage of the new equation is that it is considerably simpler than previous formulations. In particular, tangential derivatives of the solution on the solid surfaces are no longer needed in the new formulation, which greatly simplifies numerical implementation. Furthermore, stabilization of the new integral equation by Burton-Miller type reformulation is presented. The stability of the new formulation is studied theoretically as well as numerically by an eigenvalue analysis. Numerical solutions are also presented that demonstrate the stability of the new formulation.