Sample records for unipedal stance time

  1. Unipedal stance testing in the assessment of peripheral neuropathy.

    PubMed

    Hurvitz, E A; Richardson, J K; Werner, R A

    2001-02-01

    To define further the relation between unipedal stance testing and peripheral neuropathy. Prospective cohort. Electroneuromyography laboratory of a Veterans Affairs medical center and a university hospital. Ninety-two patients referred for lower extremity electrodiagnostic studies. A standardized history and physical examination designed to detect peripheral neuropathy, 3 trials of unipedal stance, and electrodiagnostic studies. Peripheral neuropathy was identified by electrodiagnostic testing in 32%. These subjects had a significantly shorter (p <.001) unipedal stance time (15.7s, longest of 3 trials) than the patients without peripheral neuropathy (37.1s). Abnormal unipedal stance time (<45s) identified peripheral neuropathy with a sensitivity of 83% and a specificity of 71%, whereas a normal unipedal stance time had a negative predictive value of 90%. Abnormal unipedal stance time was associated with an increased risk of having peripheral neuropathy on univariate analysis (odds ratio = 8.8, 95% confidence interval = 2.5--31), and was the only significant predictor of peripheral neuropathy in the regression model. Aspects of the neurologic examination did not add to the regression model compared with abnormal unipedal stance time. Unipedal stance testing is useful in the clinical setting both to identify and to exclude the presence of peripheral neuropathy.

  2. Unipedal stance testing as an indicator of fall risk among older outpatients.

    PubMed

    Hurvitz, E A; Richardson, J K; Werner, R A; Ruhl, A M; Dixon, M R

    2000-05-01

    To test the hypothesis that a decreased unipedal stance time (UST) is associated with a history of falling among older persons. Fifty-three subjects underwent a standardized history and physical examination and three trials of timed unipedal stance. The electroneuromyography laboratories of tertiary care Veterans Administration and university hospitals. Ambulatory outpatients 50 years and older referred for electrodiagnostic studies. UST and fall histories during the previous year. Twenty subjects (38%) reported falling. Compared with the subjects who had not fallen, those who fell had a significantly shorter UST (9.6 [SD 11.6] vs 31.3 [SD 16.3] seconds, using the longest of the three trials, p < .00001). An abnormal UST (<30sec) was associated with an increased risk of having fallen on univariate analysis and in a regression model (odds ratio 108; 95% confidence interval 3.8, >100; p < .007). The sensitivity of an abnormal UST in the regression model was 91% and the specificity 75%. When UST was considered age was not a predictor of a history of falls. UST of <30sec in an older ambulatory outpatient population is associated with a history of falling, while a UST of > or = 30sec is associated with a low risk of falling.

  3. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time

    PubMed Central

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K.

    2011-01-01

    Introduction Changes occur in muscles and nerves with aging. This study aimed to explore the relationship between unipedal stance time (UST) and frontal plane hip and ankle sensorimotor function in subjects with diabetic neuropathy. Methods UST, quantitative measures of frontal plane ankle proprioceptive thresholds, and ankle and hip motor function were tested in forty-one persons with a spectrum of lower limb sensorimotor function, ranging from healthy to moderately severe diabetic neuropathy. Results Frontal plane hip and ankle sensorimotor function demonstrated significant relationships with UST. Multivariate analysis identified only composite hip strength, composite ankle proprioceptive threshold, and age to be significant predictors of UST (R2=0.73); they explained 46%, 24% and 3% of the variance, respectively. Discussion/Conclusions Frontal plane hip strength was the single best predictor of UST and appeared to compensate for less precise ankle proprioceptive thresholds. This finding is clinically relevant given the possibility of strengthening the hip, even in patients with significant PN. . PMID:22431092

  4. Frontal plane hip and ankle sensorimotor function, not age, predicts unipedal stance time.

    PubMed

    Allet, Lara; Kim, Hogene; Ashton-Miller, James; De Mott, Trina; Richardson, James K

    2012-04-01

    Changes occur in muscles and nerves with aging. In this study we explore the relationship between unipedal stance time (UST) and frontal plane hip and ankle sensorimotor function in subjects with diabetic neuropathy. UST, quantitative measures of frontal plane ankle proprioceptive thresholds, and ankle and hip motor function were tested in 41 subjects with a spectrum of lower limb sensorimotor function ranging from healthy to moderately severe diabetic neuropathy. Frontal plane hip and ankle sensorimotor function demonstrated significant relationships with UST. Multivariate analysis identified only composite hip strength, ankle proprioceptive threshold, and age to be significant predictors of UST (R(2) = 0.73), explaining 46%, 24%, and 3% of the variance, respectively. Frontal plane hip strength was the single best predictor of UST and appeared to compensate for less precise ankle proprioceptive thresholds. This finding is clinically relevant given the possibility of strengthening the hip, even in patients with significant peripheral neuropathy. Copyright © 2011 Wiley Periodicals, Inc.

  5. Moderate peripheral neuropathy impairs weight transfer and unipedal balance in the elderly.

    PubMed

    Richardson, J K; Ashton-Miller, J A; Lee, S G; Jacobs, K

    1996-11-01

    To quantitatively assess the performance of elderly with and without moderate, electrodiagnostically confirmed peripheral neuropathy (PN) on tasks of weight shifting and maintenance of unipedal balance. A case control study with PN subjects selected from a computerized data bank of all patients who had undergone electrodiagnostic studies at a university-based referral center. Control subjects of similar age and same gender were selected from the same source. Clinical examination included neurological and gross motor components. Quantitative evaluation included testing while the subjects stood with a force plate under each foot. Center of reaction (CR) excursions and ground reaction forces were quantified in: (1) six trials as subjects transferred their weight from bipedal stance to unipedal stance, on command, and attempted to maintain it for at least 3 seconds; and (2) in two additional trials in which subjects held unipedal stance for as long as possible. No subjects in either group had difficulty with level gait, a 180-degree turn, or required examiner assistance during an eyes-closed Romberg test. Biomechanical testing revealed that although the PN group used the same time to transfer their weight onto one foot as the C group, they achieved a significantly (1) lower rate of success in reliably maintaining 3 seconds of unipedal stance (.12 vs .58, p = .021), and (2) shorter mean maximum unipedal stance time (3.8 vs 32.3sec, p < .001). Furthermore, the PN group experienced greater difficulty in maintaining unipedal stance, as evidenced by significantly greater fluctuations in their ground reaction forces. The demonstrated impairment in reliability of unipedal stance in elderly with PN likely contributes to their known high rate of falls. Furthermore, unipedal stance testing serves to sharpen the physical examination by verifying the functional significance of impaired distal sensation-a common finding in the elderly.

  6. The influence of initial bipedal stance width on the clinical measurement of unipedal balance time

    PubMed Central

    Richardson, James K.; Tang, Chi; Nwagwu, Chijioke; Nnodim, Joseph

    2012-01-01

    Objective To determine the effect of varying initial bipedal stance width (ISW) on the clinical measurement of unipedal balance time (UBT). Design Observational, cross sectional study. Setting Academic physiatric outpatient facility. Subjects Thirty-one clinic subjects with neuromuscular and/or musculoskeletal conditions known to influence mobility, and 30 similarly-aged healthy subjects. Methods Demographic and clinical information were recorded. UBT was determined under three distinct conditions by varying bipedal inter-malleolar distance: 1) ISW of 0.3 body height; 2) ISW of 0.05 body height; and 3) ISW of 0 body height. The last was accomplished by subjects assuming unipedal balance while using the hands on a horizontal surface for stabilization. Subjects lifted the contralateral foot (or hands in the case of 0 body height condition) in response to a cadenced command to minimize variation in rate of weight transfer Main Outcome Measurements UBT under each of the three ISW conditions. Results Mean UBT increased with decreasing ISW, and the differences were significant when comparing each ISW with the next smaller. Healthy subjects demonstrated greater UBT than clinic subjects at each ISW, but the magnitude of these group differences were similar across ISW condition. A UBT > 10 seconds in the 0.3 body height ISW was the best discriminator between clinic and healthy subjects. Conclusions Because UBT varies with ISW, standardization of ISW is necessary for accurate within subject, and between subject, comparisons in UBT. Healthy subjects were best differentiated from clinic subjects by UBT > 10 sec in the 0.3 body height ISW condition. PMID:20430326

  7. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    PubMed

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Do ankle orthoses improve ankle proprioceptive thresholds or unipedal balance in older persons with peripheral neuropathy?

    PubMed

    Son, Jaebum; Ashton-Miller, James A; Richardson, James K

    2010-05-01

    To determine whether ankle orthoses that provide medial and lateral support, and have been found to decrease gait variability in older persons with peripheral neuropathy, decrease (improve) frontal plane ankle proprioceptive thresholds or increase unipedal stance time in that same population. Observational study in which unipedal stance time was determined with a stopwatch, and frontal plane ankle (inversion and eversion) proprioceptive thresholds were quantified during bipedal stance using a foot cradle system and a series of 100 rotational stimuli, in 11 older neuropathic subjects (8 men; age 72 +/- 7.1 yr) with and without ankle orthoses. The subjects demonstrated no change in combined frontal plane (inversion + eversion) proprioceptive thresholds or unipedal stance time with vs. without the orthoses (1.06 +/- 0.56 vs. 1.13 +/- 0.39 degrees, respectively; P = 0.955 and 6.1 +/- 6.5 vs. 6.2 +/- 5.4 secs, respectively; P = 0.922). Ankle orthoses that provide medial-lateral support do not seem to change ankle inversion/eversion proprioceptive thresholds or unipedal stance time in older persons with diabetic peripheral neuropathy. Previously identified improvements in gait variability using orthoses in this population are therefore likely related to an orthotically induced stiffening of the ankle rather than a change in ankle afferent function.

  9. Do Ankle Orthoses Improve Ankle Proprioceptive Thresholds or Unipedal Balance in Older Persons with Peripheral Neuropathy?

    PubMed Central

    Son, Jaebum; Ashton-Miller, James A.; Richardson, James K.

    2010-01-01

    Objective To determine whether ankle orthoses that provide medial and lateral support, and have been found to decrease gait variability in older persons with peripheral neuropathy, decrease (improve) frontal plane ankle proprioceptive thresholds or increase unipedal stance time in that same population. Design Observational study in which unipedal stance time was determined with a stopwatch, and frontal plane ankle (inversion and eversion) proprioceptive thresholds were quantified during bipedal stance with and without the ankle orthoses, in 11 older diabetic subjects with peripheral neuropathy (8 men; age 72 ± 7.1 years) using a foot cradle system which presented a series of 100 rotational stimuli. Results The subjects demonstrated no change in combined frontal plane (inversion + eversion) proprioceptive thresholds or unipedal stance time with versus without the orthoses (1.06 ± 0.56 versus 1.13 ± 0.39 degrees, respectively; p = 0.955 and 6.1 ± 6.5 versus 6.2 ± 5.4 seconds, respectively; p = 0.922). Conclusion Ankle orthoses which provide medial-lateral support do not appear to change ankle inversion/eversion proprioceptive thresholds or unipedal stance time in older persons with diabetic peripheral neuropathy. Previously identified improvements in gait variability using orthoses in this population are therefore likely related to an orthotically-induced stiffening of the ankle rather than a change in ankle afferent function. PMID:20407302

  10. Effect of expertise in shooting and Taekwondo on bipedal and unipedal postural control isolated or concurrent with a reaction-time task.

    PubMed

    Negahban, Hossein; Aryan, Najmolhoda; Mazaheri, Masood; Norasteh, Ali Asghar; Sanjari, Mohammad Ali

    2013-06-01

    It was hypothesized that training in 'static balance' or 'dynamic balance' sports has differential effects on postural control and its attention demands during quiet standing. In order to test this hypothesis, two groups of female athletes practicing shooting, as a 'static balance' sport, and Taekwondo, as a 'dynamic balance' sport, and a control group of non-physically active females voluntarily participated in this study. Postural control was assessed during bipedal and unipedal stance with and without performing a Go/No-go reaction time task. Visual and/or support surface conditions were manipulated in bipedal and unipedal stances in order to modify postural difficulty. Mixed model analysis of variance was used to determine the effects of dual tasking on postural and cognitive performance. Similar pattern of results were found in bipedal and unipedal stances, with Taekwondo practitioners displaying larger sway, shooters displaying lower sway and non-athletes displaying sway characteristics intermediate to Taekwondo and shooting athletes. Larger effect was found in bipedal stance. Single to dual-task comparison of postural control showed no significant effect of mental task on sway velocity in shooters, indicating less cognitive effort invested in balance control during bipedal stance. We suggest that expertise in shooting has a more pronounced effect on decreased sway in static balance conditions. Furthermore, shooters invest less attention in postures that are more specific to their training, i.e. bipedal stance. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Assessing Somatosensory Utilization during Unipedal Postural Control.

    PubMed

    Goel, Rahul; De Dios, Yiri E; Gadd, Nichole E; Caldwell, Erin E; Peters, Brian T; Reschke, Millard F; Bloomberg, Jacob J; Oddsson, Lars I E; Mulavara, Ajitkumar P

    2017-01-01

    Multisensory-visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects "stood" supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control.

  12. Assessing Somatosensory Utilization during Unipedal Postural Control

    PubMed Central

    Goel, Rahul; De Dios, Yiri E.; Gadd, Nichole E.; Caldwell, Erin E.; Peters, Brian T.; Reschke, Millard F.; Bloomberg, Jacob J.; Oddsson, Lars I. E.; Mulavara, Ajitkumar P.

    2017-01-01

    Multisensory—visual, vestibular and somatosensory information is integrated for appropriate postural control. The primary goal of this study was to assess somatosensory utilization during a functional motor task of unipedal postural control, in normal healthy adults. Assessing individual bias in the utilization of individual sensory contributions during postural control may help customization of rehabilitation protocols. In this study, a test paradigm of unipedal stance control in supine orientation with and without vision was assessed. Postural control in this test paradigm was hypothesized to utilize predominantly contributions of somatosensory information from the feet and ankle joint, with minimal vestibular input. Fourteen healthy subjects “stood” supine on their dominant leg while strapped to a backpack frame that was freely moving on air-bearings, to remove available otolith tilt cues with respect to gravity that influences postural control when standing upright. The backpack was attached through a cable to a pneumatic cylinder that provided a gravity-like load. Subjects performed three trials each with Eyes-open (EO) and Eyes-closed (EC) while loaded with 60% body weight. There was no difference in unipedal stance time (UST) across the two conditions with EC condition challenging the postural control system greater than the EO condition. Stabilogram-diffusion analysis (SDA) indicated that the critical mean square displacement was significantly different between the two conditions. Vestibular cues, both in terms of magnitude and the duration for which relevant information was available for postural control in this test paradigm, were minimized. These results support our hypothesis that maintaining unipedal stance in supine orientation without vision, minimizes vestibular contribution and thus predominantly utilizes somatosensory information for postural control. PMID:28443004

  13. Normative values for the unipedal stance test with eyes open and closed.

    PubMed

    Springer, Barbara A; Marin, Raul; Cyhan, Tamara; Roberts, Holly; Gill, Norman W

    2007-01-01

    Limited normative data are available for the unipedal stance test (UPST), making it difficult for clinicians to use it confidently to detect subtle balance impairments. The purpose of this study was to generate normative values for repeated trials of the UPST with eyes opened and eyes closed across age groups and gender. This prospective, mixed-model design was set in a tertiary care medical center. Healthy subjects (n= 549), 18 years or older, performed the UPST with eyes open and closed. Mean and best of 3 UPST times for males and females of 6 age groups (18-39, 40-49, 50-59, 60-69, 70-79, and 80+) were documented and inter-rater reliability was tested. There was a significant age dependent decrease in UPST time during both conditions. Inter-rater reliability for the best of 3 trials was determined to be excellent with an intra-class correlation coefficient of 0.994 (95% confidence interval 0.989-0.996) for eyes open and 0.998 (95% confidence interval 0.996-0.999) for eyes closed. This study adds to the understanding of typical performance on the UPST. Performance is age-specific and not related to gender. Clinicians now have more extensive normative values to which individuals can be compared.

  14. A reliable unipedal stance test for the assessment of balance using a force platform.

    PubMed

    Ponce-González, J G; Sanchis-Moysi, J; González-Henriquez, J J; Arteaga-Ortiz, R; Calbet, J A L; Dorado, C

    2014-02-01

    The aim was to develop a unipedal stance test for the assessment of balance using a force platform. A single-leg balance test was conducted in 23 students (mean ± SD) age: 23 ± 3 years) in a standard position limiting the movement of the arms and non-supporting leg. Six attempts, with both the jumping (JL) and the contralateral leg (CL), were performed under 3 conditions: 1) eyes opened; 2) eyes closed; 3) eyes opened and executing a precision task. The same protocol was repeated two-week apart. The mean and the best result of the six attempts performed each day were taken as representative of balance. The speed of the centre of pressure (CP-Speed) showed excellent reliability for the "best result" analysis in all tests (ICCs 0.87-0.97), except in the test with the eyes closed performed on the CL (ICC<0.4). The CP-Speed had better reliability with the "best result" than with the "mean result" analysis (P<0.05), whilst no significant differences were observed between the JL and the CL (P=0.71 and P=0.96 for mean and best results analysis, respectively). A lower dispersion in the Bland and Altman graph was observed with the eyes opened than closed, and the dynamic test. The single-leg stance balance test proposed is a reliable method to assess balance, especially when performed in a static position, with the eyes opened and using the best result of six attempts as reference, independently of the stance leg.

  15. Association of unipedal standing time and bone mineral density in community-dwelling Japanese women.

    PubMed

    Sakai, A; Toba, N; Takeda, M; Suzuki, M; Abe, Y; Aoyagi, K; Nakamura, T

    2009-05-01

    Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.

  16. [Unipedal stance time and fall risk in the elderly].

    PubMed

    Domínguez-Carrillo, Luis Gerardo; Arellano-Aguilar, Gregorio; Leos-Zierold, Héctor

    2007-01-01

    We undertook this study to relate unipodal stance time (UST) as a falls indicator in the elderly and to corroborate with UST exercise increments. One hundred sixty eight elderly subjects (age >70 years) with two or more falls during the previous 12 months were compared with 150 similar subjects without falls. UST chronometry and quadriceps and triceps brachialis strength dynamometry were used. Equilibrium and antigravity muscle-strengthening exercise program with 20 work sessions were carried out. Results were analyzed with chi(2), Student's t-test, and Fisher tests. UST of the control group showed 28.84 +/- 4.73 sec (mean +/- SD). The UST sample showed 19.18 +/- 4.24 sec. The test was initially impossible to carry out in 42 cases (p = 0.05). The final evaluation showed 142 cases with 30 sec of UST (p = 0.00001), isometric force increased in 70% and 30%, respectively (p = 0.05). At 6-month follow-up, 53 falls were reported, 29 were in patients who could not accomplish UST measurement on initial evaluation. UST <30 sec is an indicator of falls in elderly people, and exercise programs increase UST.

  17. [Relationship between unipedal stance test score and center of pressure velocity in elderly].

    PubMed

    Rodrigo Antonio, Guzmán; Rony, Silvestre; Francisco Aniceto, Rodríguez; David Andrés, Arriagada; Pablo Andrés, Ortega

    2011-01-01

    Frequent falls are one of the most important health problems in the elderly population. The unipedal stance test (UPST), asses postural stability and is used in fall risk measures. Despite this, there is little information about its relationship with posturographic parameters (PP) that characterizes postural stability. Center of pressure velocity (CoPV) is one of the best PP that describes postural stability. The aim of this study was to analyze the relation between UST score and CoPV in elderly population. A sample of 38 healthy elderly subjects where divided in two groups according to their UPST score, low performance (LP, n=11) and high performance (HP, n=27). The correlation between UPST score and COP mean velocity (CoPmV), recorded from a posturographic test, was analyzed between both groups. An inverse correlation between UPST score and CoPmV was found in both groups. However, this was higher in the LP group (r=-0.69, P=.02) compared to the HP (r=-0.39, P=.04). Based on the results of this investigation, it may be concluded that the achievement on UPST has an inverse relationship with CoPmV, especially in subjects with low performance in the UPST. Copyright © 2010 SEGG. Published by Elsevier Espana. All rights reserved.

  18. Testing the assumption of normality in body sway area calculations during unipedal stance tests with an inertial sensor.

    PubMed

    Kyoung Jae Kim; Lucarevic, Jennifer; Bennett, Christopher; Gaunaurd, Ignacio; Gailey, Robert; Agrawal, Vibhor

    2016-08-01

    The quantification of postural sway during the unipedal stance test is one of the essentials of posturography. A shift of center of pressure (CoP) is an indirect measure of postural sway and also a measure of a person's ability to maintain balance. A widely used method in laboratory settings to calculate the sway of body center of mass (CoM) is through an ellipse that encloses 95% of CoP trajectory. The 95% ellipse can be computed under the assumption that the spatial distribution of the CoP points recorded from force platforms is normal. However, to date, this assumption of normality has not been demonstrated for sway measurements recorded from a sacral inertial measurement unit (IMU). This work provides evidence for non-normality of sway trajectories calculated at a sacral IMU with injured subjects as well as healthy subjects.

  19. Asymmetric balance control between legs for quiet but not for perturbed stance.

    PubMed

    Vieira, Osvaldo; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2014-10-01

    Interlateral performance asymmetry in upright balance control was evaluated in this investigation by comparing unipedal stance on the right versus the left leg. Participants were healthy young adults, hand-foot congruent preference for the right body side. Balance performance was evaluated in unperturbed quiet stance and in the recovery of balance stability following a mechanical perturbation induced by unexpected load release. Evaluation was made under availability of full sensory information, and under deprivation of vision combined with distortion of sensory inputs from the feet soles. Results from perturbed posture revealed that muscular response latency and postural sway were symmetric between the legs. Unipedal stance was more stable when the body was supported on the right as compared with the left leg. No interaction was found between leg and sensory condition. Our findings are interpreted as resulting from specialization of the sensorimotor system controlling the right leg for continuous low-magnitude postural adjustments, while corrections to large-scale stance sway are symmetrically controlled between body sides.

  20. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Frontal plane ankle proprioceptive thresholds and unipedal balance

    PubMed Central

    Son, Jaebum; Ashton-Miller, James A.; Richardson, James K.

    2012-01-01

    Reliable unipedal balance is fundamental to safe ambulation. Accordingly, older persons with peripheral neuropathy (PN), who are at increased risk for falls, demonstrate impaired unipedal balance. To explore the relationship between afferent function and unipedal balance, frontal plane proprioceptive thresholds at the ankle were quantified in 22 subjects (72.5 ± 6.3 years; 11 with PN and 11 matched controls) while they were standing using a foot cradle system and a staircase series of 100 rotational stimuli. PN subjects, as compared to controls, demonstrated shorter median unipedal balance times (3.4 ± 2.7 versus 14.3 ± 8.9 seconds; p = 0.0017) and greater (less precise) combined ankle inversion/eversion proprioceptive thresholds (1.17 ± 0.36 versus 0.65 ± 0.37 degrees; p = 0.0055). Combined ankle inversion/eversion proprioceptive thresholds explained approximately half the variance in unipedal balance time (R2 = 0.5138; p = 0.0004). Given prior work demonstrating a similarly strong relationship between ankle torque generation and unipedal balance, neuropathy-associated impairments in ankle frontal plane afferent and efferent function appear to be equally responsible for the inability of older persons with PN to reliably balance on one foot. They therefore provide distinct targets for intervention. PMID:19145650

  2. Determining the activation of gluteus medius and the validity of the single leg stance test in chronic, nonspecific low back pain.

    PubMed

    Penney, Tracy; Ploughman, Michelle; Austin, Mark W; Behm, David G; Byrne, Jeannette M

    2014-10-01

    To determine the activation of the gluteus medius in persons with chronic, nonspecific low back pain compared with that in control subjects, and to determine the association of the clinical rating of the single leg stance (SLS) with chronic low back pain (CLBP) and gluteus medius weakness. Cohort-control comparison. Academic research laboratory. Convenience sample of people (n=21) with CLBP (>12wk) recruited by local physiotherapists, and age- and sex-matched controls (n=22). Subjects who received specific pain diagnoses were excluded. Not applicable. Back pain using the visual analog scale (mm); back-related disability using the Oswestry Back Disability Index (%); strength of gluteus medius measured using a hand dynamometer (N/kg); SLS test; gluteus medius onset and activation using electromyography during unipedal stance on a forceplate. Individuals in the CLBP group exhibited significant weakness in the gluteus medius compared with controls (right, P=.04; left, P=.002). They also had more pain (CLBP: mean, 20.50mm; 95% confidence interval [CI], 13.11-27.9mm; control subjects: mean, 1.77mm; 95% CI, -.21 to 3.75mm) and back-related disability (CLBP: mean, 18.52%; 95% CI, 14.46%-22.59%; control subjects: mean, .68%; 95% CI, -.41% to 1.77%), and reported being less physically active. Weakness was accompanied by increased gluteus medius activation during unipedal stance (R=.50, P=.001) but by no difference in muscle onset times. Although greater gluteus medius weakness was associated with greater pain and disability, there was no difference in muscle strength between those scoring positive and negative on the SLS test (right: F=.002, P=.96; left: F=.1.75, P=.19). Individuals with CLBP had weaker gluteus medius muscles than control subjects without back pain. Even though there was no significant difference in onset time of the gluteus medius when moving to unipedal stance between the groups, the CLBP group had greater gluteus medius activation. A key finding was that

  3. Unipedal balance in healthy adults: effect of visual environments yielding decreased lateral velocity feedback.

    PubMed

    Deyer, T W; Ashton-Miller, J A

    1999-09-01

    To test the (null) hypotheses that the reliability of unipedal balance is unaffected by the attenuation of visual velocity feedback and that, relative to baseline performance, deterioration of balance success rates from attenuated visual velocity feedback will not differ between groups of young men and older women, and the presence (or absence) of a vertical foreground object will not affect balance success rates. Single blind, single case study. University research laboratory. Two volunteer samples: 26 healthy young men (mean age, 20.0yrs; SD, 1.6); 23 healthy older women (mean age, 64.9 yrs; SD, 7.8). Normalized success rates in unipedal balance task. Subjects were asked to transfer to and maintain unipedal stance for 5 seconds in a task near the limit of their balance capabilities. Subjects completed 64 trials: 54 trials of three experimental visual scenes in blocked randomized sequences of 18 trials and 10 trials in a normal visual environment. The experimental scenes included two that provided strong velocity/weak position feedback, one of which had a vertical foreground object (SVWP+) and one without (SVWP-), and one scene providing weak velocity/strong position (WVSP) feedback. Subjects' success rates in the experimental environments were normalized by the success rate in the normal environment in order to allow comparisons between subjects using a mixed model repeated measures analysis of variance. The normalized success rate was significantly greater in SVWP+ than in WVSP (p = .0001) and SVWP- (p = .013). Visual feedback significantly affected the normalized unipedal balance success rates (p = .001); neither the group effect nor the group X visual environment interaction was significant (p = .9362 and p = .5634, respectively). Normalized success rates did not differ significantly between the young men and older women in any visual environment. Near the limit of the young men's or older women's balance capability, the reliability of transfer to unipedal

  4. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial.

    PubMed

    Romero-Franco, Natalia; Jiménez-Reyes, Pedro

    2015-11-01

    The purpose of this study was to analyze the immediate effects of a plyometric training protocol on unipedal postural balance and countermovement jumps. In addition, we analyzed the effects of a warm-up on these parameters. Thirty-two amateur male sprinters (24.9 ± 4.1 years; 72.3 ± 10.7 kg; 1.78 ± 0.05 m; 22.6 ± 3.3 kg·m) were randomly sorted into a control group (n = 16) (they did not perform any physical activity) and a plyometric training group (n = 16) (they performed a 15-minute warm-up and a high-intensity plyometric protocol consisting of 10 sets of 15 vertical jumps). Before and after the warm-up, and immediately after and 5 minutes after the plyometric protocol, all athletes indicated the perceived exertion on calf and quad regions on a scale from 0 (no exertion) to 10 (maximum exertion). They also carried out a maximum countermovement jump and a unipedal postural balance test (athletes would remain as still as possible for 15 seconds in a left leg and right leg support stance). Results showed that, in the plyometric group, length and velocity of center-of-pressure movement in right leg support stance increased compared with baseline (p = 0.001 and p = 0.004, respectively) and to the control group (p = 0.035 and p = 0.029, respectively) immediately after the plyometric protocol. In addition, the countermovement jump height decreased right after the plyometric protocol (p < 0.001). The perceived exertion on calf and quad regions increased after the plyometry (p < 0.001). Five minutes later, these parameters remained deteriorated despite a slight recovery (length: p = 0.044; velocity: p = 0.05; countermovement jump height: p < 0.001; local exertion: p < 0.001). Data also showed that countermovement jump height improved after the warm-up (p = 0.021), but unipedal postural balance remained unaltered. As a conclusion, high-intensity plyometric exercises blunt unipedal postural balance and countermovement jump performance. The deterioration lasts at least

  5. Use of a unipedal standing test to assess the ambulation reacquisition time during the early postoperative stage after hip fracture in elderly Japanese: prospective study.

    PubMed

    Murata, Koichi; Sugitani, Shigeki; Yoshioka, Hiroki; Noguchi, Takashi; Aoto, Toshiyuki; Nakamura, Takashi

    2010-01-01

    The aim of this study was to predict the ambulation reacquisition time after hip fracture in elderly people using the unipedal standing test during the early postoperative stage. Patients with an intertrochanteric fracture treated with internal fixation (n = 35) and patients with a femoral neck fracture treated with hemiarthroplasty (n = 22) were included. A unipedal standing test using the nonoperated leg was performed on days 3 and 7 after the operation. Among the patients with an intertrochanteric fracture, those with a positive result on the unipedal standing test on postoperative day (POD) 3 attained gait with parallel guide bars (BG) and walker-assisted gait (WG) significantly earlier than did patients with a negative result on the unipedal standing test. Patients with a positive result on the unipedal standing test on POD 7 attained BG, WG, and cane-assisted gait (CG) significantly earlier than did patients with a negative test. Among patients with a femoral neck fracture, those with a positive unipedal standing test result on POD 3 attained BG, WG, and CG significantly earlier than did patients with a negative test. Those with a positive test result on POD 7 attained BG, WG, and CG significantly earlier than did patients with a negative test. The unipedal standing test given during the early postoperative stage is a good test for predicting the ambulation reacquisition time. Moreover, it gives information that can help determine the need for subacute rehabilitation and about discharge planning and health service provision.

  6. Physical Performance Measures Associated With Locomotive Syndrome in Middle-Aged and Older Japanese Women.

    PubMed

    Nakamura, Misa; Hashizume, Hiroshi; Oka, Hiroyuki; Okada, Morihiro; Takakura, Rie; Hisari, Ayako; Yoshida, Munehito; Utsunomiya, Hirotoshi

    2015-01-01

    The Japanese Orthopaedic Association proposed a concept called locomotive syndrome (LS) to identify middle-aged and older adults at high risk of requiring health care services because of problems with locomotion. It is important to identify factors associated with the development of LS. Physical performance measures such as walking speed and standing balance are highly predictive of subsequent disability and mortality in older adults. However, there is little evidence about the relationship between physical performance measures and LS. To determine the physical performance measures associated with LS, the threshold values for discriminating individuals with and without LS, and the odds ratio of LS according to performance greater than or less than these thresholds in middle-aged and older Japanese women. Participants were 126 Japanese women (mean age = 61.8 years). Locomotive syndrome was defined as a score of 16 or more on the 25-question Geriatric Locomotive Function Scale. Physical performance was evaluated using grip strength, unipedal stance time with eyes open, seated toe-touch, and normal and fast 6-m walk time (6 MWT). Variables were compared between LS and non-LS groups. Fourteen participants (11.1%) were classed as having LS. Unipedal stance time, normal 6 MWT, and fast 6 MWT were significantly different between the 2 groups. The LS group had a shorter unipedal stance time and a longer normal and fast 6 MWT than the non-LS group. For these 3 variables, the area under the receiver operating characteristic curve was greater than 0.7, and the threshold for discriminating the non-LS and LS groups was 15 s for unipedal stance time, 4.8 s for normal 6 MWT and 3.6 s for fast 6 MWT. These variables were entered into a multiple logistic regression analysis, which indicated that unipedal stance time less than 15 s was significantly related to LS (odds ratio = 8.46; P < .01). Unipedal stance time was the physical performance measure that was most strongly associated

  7. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    PubMed

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  8. Effects of external pelvic compression on electromyographic activity of the hamstring muscles during unipedal stance in sportsmen with and without hamstring injuries.

    PubMed

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2015-06-01

    There is some evidence that hamstring function can be influenced by interventions focusing on the pelvis via an anatomic and neurophysiologic link between these two segments. Previous research demonstrated increased electromyographic activity from injured hamstrings during transition from bipedal to unipedal stance (BUS). The aim of this study was to investigate the effects of a pelvic compression belt (PCB) on electromyographic activity of selected muscles during BUS in sportsmen with and without hamstring injury. Electromyographic amplitudes (normalised to maximum voluntary isometric contraction [MVIC]) of the hamstrings, gluteus maximus, gluteus medius and lumbar multifidus were obtained during BUS from 20 hamstring-injured participants (both sides) and 30 healthy participants (one side, randomly selected). There was an increase in biceps femoris (by 1.23 ± 2.87 %MVIC; p = 0.027) and gluteus maximus (by 0.63 ± 1.13 %MVIC; p = 0.023) electromyographic activity for the hamstring-injured side but no significant differences other than a decrease in multifidus activity (by 1.36 ± 2.92 %MVIC; p = 0.023) were evident for healthy participants while wearing the PCB. However, the effect sizes for these findings were small. Wearing the PCB did not significantly change electromyographic activity of other muscles in either participant group (p > 0.050). Moreover, the magnitude of change induced by the PCB was not significantly different between groups (p > 0.050) for the investigated muscles. Thus, application of a PCB to decrease electromyographic activity of injured hamstrings during BUS is likely to have little effect. Similar research is warranted in participants with acute hamstring injury. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Lower Limb Interjoint Postural Coordination One Year after First-Time Lateral Ankle Sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Patterson, Matthew R; Delahunt, Eamonn

    2015-11-01

    Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of lower limb interjoint coordination and stabilometry to evaluate static unipedal stance with the eyes open (condition 1) and closed (condition 2) in a group of participants with chronic ankle instability (CAI) compared to lateral ankle sprain "copers" (both recruited 12 months after sustaining an acute first-time lateral ankle sprain) and a group of noninjured controls. Twenty-eight participants with CAI, 42 lateral ankle sprain "copers," and 20 noninjured controls completed three 20-s single-limb stance trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb three-dimensional kinematic data for similarity to establish patterns of interjoint coordination. The fractal dimension of the stance limb center of pressure path was also calculated. Between-group analyses revealed that participants with CAI displayed notable increases in ankle-hip linked coordination compared with both lateral ankle sprain "copers" (-0.52 (1.05) vs 0.28 (0.9), P = 0.007) and controls (-0.52 (1.05) vs 0.63 (0.64), P = 0.006) in condition 1 and compared with controls only (0.62 (1.92) vs 0.1 (1.0) P = 0.002) in condition 2. Participants with CAI also exhibited a decrease in the fractal dimension of the center-of-pressure path during condition 2 compared with both controls and lateral ankle sprain "copers." Participants with CAI present with a hip-dominant strategy of eyes-open and eyes-closed static unipedal stance. This coincided with reduced complexity of the stance limb center of pressure path in the eyes-closed condition.

  10. Unipedal postural stability in nonathletes with core instability after intensive abdominal drawing-in maneuver.

    PubMed

    Lee, Nam G; You, Joshua Sung H; Kim, Tae H; Choi, Bong S

    2015-02-01

    The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Controlled laboratory study. University research laboratory. A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t(18) = 3.691, P = .002) and erector spinae (t(18) = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t(18) range, 3.953-5.775, P < .001), an increased muscle-thickness ratio for the transverse abdominis (t(18) = -2.327, P = .03), and a reduction in

  11. Halo vest effect on balance.

    PubMed

    Richardson, J K; Ross, A D; Riley, B; Rhodes, R L

    2000-03-01

    To determine the effect of a halo vest, a cervical orthosis, on clinically relevant balance parameters. Subjects performed unipedal stance (with eyes open and closed, on both firm and soft surfaces) and functional reach, with and without the application of a halo vest. A convenience sample of 12 healthy young subjects, with an equal number of men and women. Seconds for unipedal stance (maximum 45); inches for functional reach. Both unipedal stance times and functional reach (mean +/- standard deviation) were significantly decreased with the halo vest as compared to without it (29.1+/-5.8 vs. 32.8+/-6.4 seconds, p = .002; 12.9+/-1.4 vs. 15.1+/-2.1 inches, p<.01). A halo vest causes an acute impairment in balance in the healthy young. It is likely that the impairment would be greater in older or injured patients, thus increasing their risk for a fall, which could have devastating consequences.

  12. Fatigue-induced balance impairment in young soccer players.

    PubMed

    Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe

    2014-01-01

    Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Crossover study. Biomechanics laboratory and outdoor soccer field. Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance.

  13. Effect of posterior tibial tendon dysfunction on unipedal standing balance test.

    PubMed

    Kulig, Kornelia; Lee, Szu-Ping; Reischl, Stephen F; Noceti-DeWit, Lisa

    2015-01-01

    Foot pain and diminished functional capacity are characteristics of tibialis posterior tendon dysfunction (TPTD). This study tested the hypotheses that women with TPTD would have impaired performance of a unipedal standing balance test (USBT) and that balance performance would be related to the number of single limb heel raises (SLHR). Thirty-nine middle-aged women, 19 with early stage TPTD (stage I and II), were instructed to perform 2 tasks; a USBT and repeated SLHR. Balance success was defined as a 10-second stance. For those who were successful, center of pressure (COP) data in anterior-posterior (AP) and medial-lateral (ML) directions were recorded as a measure of postural sway. SLHR performance was divided into 3 bins (≤2; 3-9 and > 10 repetitions). The between-balance success on performing the SLHR test was analyzed using the Fisher's exact test (2 × 3). Independent t tests were used to compare between-group differences in postural sway. Relationship of postural sway to the number of heel raises was assessed using Spearman's rho. The success rate of the USBT was significantly lower in women with TPTD than the controls (47% vs 85%, P = .041). In addition, women with TPTD who completed the USBT exhibited increased AP COP displacement (14.0 ± 7.4 vs 8.4 ± 1.3 mm, P = .008), and a strong trend of increased ML COP displacement (8.3 ± 4.5 vs 6.1 ± 1.2 mm, P = .050). The success rate of USBT was correlated with the number of SLHR (P = .01). The AP and ML COP displacement were correlated with SLHR (r = -.538 and .495), respectively. Women with TPTD have difficulty in performing the USBT. Performance of the USBT and SLHR are highly correlated and predictive of each other. A unipedal balance test may be used as a proxy TPTD assessment tool to the heel raising test when pain prevents performance. Level III, case control study. © The Author(s) 2014.

  14. Soccer players have a better standing balance in nondominant one-legged stance

    PubMed Central

    Barone, Rosario; Macaluso, Filippo; Traina, Marcello; Leonardi, Vincenza; Farina, Felicia; Di Felice, Valentina

    2011-01-01

    The purpose of this study was to analyze the differences in standing balance during dominant and nondominant one-legged stance among athletes of different sports and sedentary subjects. The right-footed subjects of four groups (sedentary, n = 20; soccer, n = 20; basketball, n = 20; windsurfer n = 20) underwent 5-sec unipedal (left and right foot) stabilometric analysis with open eyes and closed eyes to measure center of pressure (COP) sway path and COP velocity (mean value, anteroposterior, and laterolateral in millimeters per second). The soccer group showed better standing balance on the left leg than the sedentary group (P < 0.05). No other significant differences were observed within and amongst groups. The soccer players have a better standing balance on the nondominant leg because of soccer activity. PMID:24198563

  15. Intensive Abdominal Drawing-In Maneuver After Unipedal Postural Stability in Nonathletes With Core Instability

    PubMed Central

    Lee, Nam G.; You, Joshua (Sung) H.; Kim, Tae H.; Choi, Bong S.

    2015-01-01

    Context: The exact neuromechanical nature and relative contribution of the abdominal drawing-in maneuver (ADIM) to postural instability warrants further investigation in uninjured and injured populations. Objective: To determine the effects of the ADIM on static core and unipedal postural stability in nonathletes with core instability. Design: Controlled laboratory study. Setting: University research laboratory. Patients or Other Participants: A total of 19 nonathletes (4 women: age = 22.3 ± 1.3 years, height = 164.0 ± 1.7 cm, mass = 56.0 ± 4.6 kg; 15 men: age = 24.6 ± 2.8 years, height = 172.6 ± 4.7 cm, mass = 66.8 ± 7.6 kg) with core instability. Intervention(s): Participants received ADIM training with visual feedback 20 minutes each day for 7 days each week over a 2-week period. Main Outcome Measures(s): Core instability was determined using a prone formal test and measured by a pressure biofeedback unit. Unipedal postural stability was determined by measuring the center-of-pressure sway and associated changes in the abdominal muscle-thickness ratios. Electromyographic activity was measured concurrently in the external oblique, erector spinae, gluteus medius, vastus medialis oblique, tibialis anterior, and medial gastrocnemius muscles. Results: All participants initially were unable to complete the formal test. However, after the 2-week ADIM training period, all participants were able to reduce the pressure biofeedback unit by a range of 4 to 10 mm Hg from an initial 70 mm Hg and maintain it at 60 to 66 mm Hg with minimal activation of the external oblique (t18 = 3.691, P = .002) and erector spinae (t18 = 2.823, P = .01) muscles. Monitoring of the pressure biofeedback unit and other muscle activations confirmed that the correct muscle contraction defining the ADIM was accomplished. This core stabilization was well maintained in the unipedal-stance position, as evidenced by a decrease in the center-of-pressure sway measures (t18 range, 3.953–5.775, P

  16. Fatigue-Induced Balance Impairment in Young Soccer Players

    PubMed Central

    Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe

    2014-01-01

    Context: Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. Objective: To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Design: Crossover study. Setting: Biomechanics laboratory and outdoor soccer field. Patients or Other Participants: Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Intervention(s): Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). Main Outcome Measure(s): On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Results: Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Conclusions: Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance. PMID:24568227

  17. Bipedal vs. unipedal: a comparison between one-foot and two-foot driving in a driving simulator.

    PubMed

    Wang, Dong-Yuan Debbie; Richard, F Dan; Cino, Cullen R; Blount, Trevin; Schmuller, Joseph

    2017-04-01

    Is it better to drive with one foot or with two feet? Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. The current study compared traditional unipedal (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (two-foot driving, using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator study. Each of 30 undergraduate participants drove in a simulated driving scenario. They responded to a STOP sign displayed on the centre of the screen by bringing their vehicle to a complete stop. Brake RT was shorter under the bipedal condition, while throttle RT showed advantage under the unipedal condition. Stopping time and distance showed a bipedal advantage, however. We discuss further limitations of the current study and implications in a driving task. Before drawing any conclusions from the simulator study, further on-road driving tests are necessary to confirm these obtained bipedal advantages. Practitioner Summary: Traditional unipedal (using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a driving simulator were compared. Our results showed a bipedal advantage. Promotion: Although two-foot driving has fostered interminable debate in the media, no scientific and systematic research has assessed this issue and federal and local state governments have provided no answers. Traditional (one-foot driving, using the right foot to control the accelerator and the brake pedal) with bipedal (using the right foot to control the accelerator and the left foot to control the brake pedal) responses to a visual stimulus in a simulated driving study were

  18. Inter-joint coordination strategies during unilateral stance 6-months following first-time lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-02-01

    Longitudinal analyses of participants with a history of lateral ankle sprain are lacking. This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants, 6-months after they sustained an acute, first-time lateral ankle sprain in comparison to a control group. Sixty-nine participants with a 6-month history of first-time lateral ankle sprain and 20 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-dimensional kinematic data for similarity in the aim of establishing patterns of lower-limb inter-joint coordination. The fractal dimension of the stance limb centre of pressure path was also calculated. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2, and in the fractal dimension of the centre-of-pressure path for condition 2 only. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.15 [0.14] vs 0.06 [0.04]; η(2)=.19; sagittal/transverse plane: 0.14 [0.11] vs 0.09 [0.05]; η(2)=0.14) and condition 2 (sagittal/frontal plane: 0.15 [0.12] vs 0.08 [0.06]; η(2)=0.23), with an associated decrease in the fractal dimension of the centre-of-pressure path (injured limb: 1.23 [0.13] vs 1.36 [0.13]; η(2)=0.20). Participants with a 6-month history of first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Inter-joint coordination strategies during unilateral stance following first-time, acute lateral ankle sprain: A brief report.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Sweeney, Kevin; Delahunt, Eamonn

    2015-07-01

    This investigation combined measures of inter-joint coordination and stabilometry to evaluate eyes-open (condition 1) and eyes-closed (condition 2) static unilateral stance performance in a group of participants with an acute, first-time lateral ankle sprain injury in comparison to a control group. Sixty-six participants with an acute first-time lateral ankle sprain and 19 non-injured controls completed three 20-second unilateral stance task trials in conditions 1 and 2. An adjusted coefficient of multiple determination statistic was used to compare stance limb 3-D kinematic data for similarity in the aim of establishing patterns of inter-joint coordination for these groups. Between-group analyses revealed significant differences in stance limb inter-joint coordination strategies for conditions 1 and 2. Injured participants displayed increases in ankle-hip linked coordination compared to controls in condition 1 (sagittal/frontal plane: 0.12 [0.09] vs 0.06 [0.04]; η(2)=.16) and condition 2 (sagittal/frontal plane: 0.18 [0.13] vs 0.08 [0.06]; η(2)=0.37). Participants with acute first-time lateral ankle sprain exhibit a hip-dominant coordination strategy for static unilateral stance compared to non-injured controls. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Facilitation of Hoffmann reflexes of ankle muscles in prone but not standing positions by focal ankle-joint cooling.

    PubMed

    Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2015-05-01

    Focal ankle-joint cooling (FAJC) has been shown to increase Hoffmann (H) reflex amplitudes of select leg muscles while subjects lie prone, but it is unknown whether the neurophysiological cooling effects persist in standing. To assess the effects of FAJC on H-reflexes of the soleus and fibularis longus during 3 body positions (prone, bipedal, and unipedal stances) in individuals with and without chronic ankle instability (CAI). Crossover. Laboratory. 15 young adults with CAI (9 male, 6 female) and 15 healthy controls. All subjects received both FAJC and sham treatments on separate days in a randomized order. FAJC was accomplished by applying a 1.5-L plastic bag filled with crushed ice to the ankle for 20 min. Sham treatment involved room-temperature candy corn. Maximum amplitudes of H-reflexes and motor (M) waves were recorded while subjects lay prone and then stood in quiet bipedal and unipedal stances before and immediately after each treatment. Primary outcome measures were H(max):M(max) ratios for the soleus and fibularis longus. Three-factor (group × treatment condition × time) repeated-measures ANOVAs and Fisher LSD tests were performed for statistical analyses. Significant interactions of treatment condition by time for prone H(max):M(max) ratios were found in the soleus (P = .001) and fibularis longus (P = .003). In both muscles, prone H(max):M(max) ratios moderately increased after FAJC but not after sham treatment. The CAI and healthy groups responded similarly to FAJC. In contrast, there were no significant interactions or main effects in the bipedal and unipedal stances in either muscle (P > .05). FAJC moderately increased H-reflex amplitudes of the soleus and fibularis longus while subjects were prone but not during bipedal or unipedal standing. These results were not different between groups with and without CAI.

  1. A cane reduces loss of balance in patients with peripheral neuropathy: results from a challenging unipedal balance test.

    PubMed

    Ashton-Miller, J A; Yeh, M W; Richardson, J K; Galloway, T

    1996-05-01

    To test the hypothesis that use of a cane in the nondominant hand during challenging balance tasks would significantly decrease loss of balance in patients with peripheral neuropathy while transferring from bipedal to unipedal stance on an unsteady surface. Nonrandomized control study. Tertiary-care institution. Eight consecutive patients with peripheral neuropathy (PN) and eight age- and gender-matched controls (C) with a mean (SD) age of 65 (8.2) years. Subjects were asked to transfer their weight onto their right foot, despite a rapid +/- 2 degrees or +/- 4 degrees frontal plane tilt of the support surface at 70% of weight transfer, and balance unipedally for at least 3 seconds. The efficacy of their weight transfer was evaluated over 112 consecutive randomized and blocked trials by calculating loss of balance as failure rates (%FR) with and without visual feedback, and with and without use of a cane in the nondominant (left) hand. Results were analyzed using a 2 x 2 x 2 x 2 x 2 repeated-measures analysis of variance (rm-ANOVA) and post hoc t tests. The rm-ANOVA showed that the FR of the PN subjects (47.6% [18.1%]) was significantly higher than C (29.2% [15.2%], p = .036). Removing visual feedback, simulating the dark of night, increased the FR fourfold (p = .000). Use of a cane in the contralateral nondominant hand significantly reduced the FR (p = .000), particularly in the PN group (cane x disease interaction: p = .055). Post hoc t tests showed that with or without visual feedback, the cane reduced the FR of the PN group fourfold and enabled them to perform more reliably than matched controls not using a cane (p = .011). An inversion perturbation resulted in a higher FR than an eversion perturbation (p = .007). The PN group employed larger mean peak cane forces (21.9% BW) than C (13.6% BW) in restoring their balance (p = .000). Use of a cane by PN patients significantly reduced their risk of losing balance on unstable surfaces, especially under low

  2. Modulation of the Fibularis Longus Hoffmann Reflex and Postural Instability Associated With Chronic Ankle Instability

    PubMed Central

    Kim, Kyung-Min; Hart, Joseph M.; Saliba, Susan A.; Hertel, Jay

    2016-01-01

    Context: Individuals with chronic ankle instability (CAI) present with decreased modulation of the Hoffmann reflex (H-reflex) from a simple to a more challenging task. The neural alteration is associated with impaired postural control, but the relationship has not been investigated in individuals with CAI. Objective: To determine differences in H-reflex modulation and postural control between individuals with or without CAI and to identify if they are correlated in individuals with CAI. Design: Descriptive laboratory study. Setting: Laboratory. Patients or Other Participants: A total of 15 volunteers with CAI (9 males, 6 females; age = 22.6 ± 5.8 years, height = 174.7 ± 8.1 cm, mass = 74.9 ± 12.8 kg) and 15 healthy sex-matched volunteers serving as controls (9 males, 6 females; age = 23.8 ± 5.8 years, height = 171.9 ± 9.9 cm, mass = 68.9 ± 15.5 kg) participated. Intervention(s): Maximum H-reflex (Hmax) and motor wave (Mmax) from the soleus and fibularis longus were recorded while participants lay prone and then stood in unipedal stance. We assessed postural tasks of unipedal stance with participants' eyes closed for 10 seconds using a forceplate. Main Outcome Measure(s): We normalized Hmax to Mmax to obtain Hmax : Mmax ratios for the 2 positions. For each muscle, H-reflex modulation was quantified using the percentage change scores in Hmax : Mmax ratios calculated from prone position to unipedal stance. Center-of-pressure data were used to compute 4 time-to-boundary variables. Separate independent-samples t tests were performed to determine group differences. Pearson product moment correlation coefficients were calculated between the modulation and balance measures in the CAI group. Results: The CAI group presented less H-reflex modulation in the soleus (t26 = −3.77, P = .001) and fibularis longus (t25 = −2.59, P = .02). The mean of the time-to-boundary minima in the anteroposterior direction was lower in the CAI group (t28 = −2.06, P = .048

  3. A Correlation-based Framework for Evaluating Postural Control Stochastic Dynamics

    PubMed Central

    Hernandez, Manuel E.; Snider, Joseph; Stevenson, Cory; Cauwenberghs, Gert; Poizner, Howard

    2016-01-01

    The inability to maintain balance during varying postural control conditions can lead to falls, a significant cause of mortality and serious injury among older adults. However, our understanding of the underlying dynamical and stochastic processes in human postural control have not been fully explored. To further our understanding of the underlying dynamical processes, we examine a novel conceptual framework for studying human postural control using the center of pressure (COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish postural control differences in unipedal versus bipedal stance trials with and without vision in healthy individuals. More specifically, both a unipedal stance and lack of visual feedback increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to experimental data. This work suggests that we can further extend our understanding of the underlying mechanisms behind postural control in quiet stance under varying stance conditions using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions. PMID:26011886

  4. Exploring individual differences in preschoolers' causal stance.

    PubMed

    Alvarez, Aubry; Booth, Amy E

    2016-03-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In this study, we explored the coherence and short-term stability of individual differences in children's causal stance. We also began to investigate the origins of this variability, focusing particularly on the potential role of mothers' explanatory talk in shaping the causal stance of their children. Two measures of causal stance correlated with each other, as well as themselves across time. Both also revealed internal consistency of response. The strength of children's causal stance also correlated with mother's responses on the same tasks and the frequency with which mothers emphasized causality during naturalistic joint activities with their children. Implications for theory and practice are discussed. (c) 2016 APA, all rights reserved).

  5. Effect of stance position on kick performance in taekwondo.

    PubMed

    Estevan, Isaac; Jandacka, Daniel; Falco, Coral

    2013-01-01

    In taekwondo, the stance position can potentially affect kick performance. The aim of this study was to analyse mechanical variables in the roundhouse kick in taekwondo according to three stance positions (0°, 45°, 90°). Nine experienced taekwondo athletes performed consecutive kicking trials in a random order according to these three relative positions of the feet on the ground. Measurements for the mechanical analysis were performed using two 3D force plates and an eight-camera motion capture system. The taekwondo athletes' reaction and execution times were shorter when starting from the 0° and 45° stance positions than from the 90° position (P < 0.05). Moreover, the ground reaction force was negatively correlated with execution time and positively with velocity of thigh and shank. Our results suggest that the stance position affects the execution technique of taekwondo athletes' kicks. It is suggested that athletes should not adopt the 90° stance position because it will not enable them to achieve the best performance in the roundhouse kick.

  6. Obesity Impact on the Attentional Cost for Controlling Posture

    PubMed Central

    Mignardot, Jean-Baptiste; Olivier, Isabelle; Promayon, Emmanuel; Nougier, Vincent

    2010-01-01

    Background This study investigated the effects of obesity on attentional resources allocated to postural control in seating and unipedal standing. Methods Ten non obese adults (BMI = 22.4±1.3, age = 42.4±15.1) and 10 obese adult patients (BMI = 35.2±2.8, age = 46.2±19.6) maintained postural stability on a force platform in two postural tasks (seated and unipedal). The two postural tasks were performed (1) alone and (2) in a dual-task paradigm in combination with an auditory reaction time task (RT). Performing the RT task together with the postural one was supposed to require some attentional resources that allowed estimating the attentional cost of postural control. 4 trials were performed in each condition for a total of 16 trials. Findings (1) Whereas seated non obese and obese patients exhibited similar centre of foot pressure oscillations (CoP), in the unipedal stance only obese patients strongly increased their CoP sway in comparison to controls. (2) Whatever the postural task, the additional RT task did not affect postural stability. (3) Seated, RT did not differ between the two groups. (4) RT strongly increased between the two postural conditions in the obese patients only, suggesting that body schema and the use of internal models was altered with obesity. Interpretation Obese patients needed more attentional resources to control postural stability during unipedal stance than non obese participants. This was not the case in a more simple posture such as seating. To reduce the risk of fall as indicated by the critical values of CoP displacement, obese patients must dedicate a strong large part of their attentional resources to postural control, to the detriment of non-postural events. Obese patients were not able to easily perform multitasking as healthy adults do, reflecting weakened psycho-motor abilities. PMID:21187914

  7. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    PubMed

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  8. Leg strength or velocity of movement: which is more influential on the balance of mobility limited elders?

    PubMed

    Mayson, Douglas J; Kiely, Dan K; LaRose, Sharon I; Bean, Jonathan F

    2008-12-01

    To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01-1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance (BERG 14.23 [1.84-109.72], performance-oriented mobility assessment 33.92 [3.69-312.03], and Dynamic Gait Index 35.80 [4.77-268.71]). Strength was only associated with the BERG 1.08 (1.01-1.14). Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity.

  9. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  10. Effects of unipedal standing balance exercise on the prevention of falls and hip fracture among clinically defined high-risk elderly individuals: a randomized controlled trial.

    PubMed

    Sakamoto, Keizo; Nakamura, Toshitaka; Hagino, Hiroshi; Endo, Naoto; Mori, Satoshi; Muto, Yoshiteru; Harada, Atsushi; Nakano, Tetsuo; Itoi, Eiji; Yoshimura, Mitsuo; Norimatsu, Hiromichi; Yamamoto, Hiroshi; Ochi, Takahiro

    2006-10-01

    The aim of this study was to assess the effectiveness of the unipedal standing balance exercise for 1 min to prevent falls and hip fractures in high-risk elderly individuals with a randomized controlled trial. This control study was designed as a 6-month intervention trial. Subjects included 553 clinically defined high-risk adults who were living in residences or in the community. They were randomized to an exercise group and a control group. Randomization to the subjects was performed by a table of random numbers. A unipedal standing balance exercise with open eyes was performed by standing on each leg for 1 min three times per day. As a rule, subjects of the exercise group stood on one leg without holding onto any support, but unstable subjects were permitted to hold onto a bar during the exercise time. Falls and hip fractures were reported by nurses, physical therapists, or facility staff with a survey sheet every month. This survey sheet was required every month for both groups. Registered subjects were 553 persons ranging in age from 37 to 102 years (average, 81.6 years of age). Twenty-six subjects dropped out. The number of falls and hip fractures for the 6-month period after the trial for 527 of the 553 subjects for whom related data were available were assessed. The exercise group comprised 315 subjects and the control group included 212 subjects. The cumulative number of falls of the exercise group, with 1 multiple faller omitted, was 118, and the control group recorded 121 falls. A significant intergroup difference was observed. However, the cumulative number of hip fractures was only 1 case in both groups. This difference was not statistically significant. The unipedal standing balance exercise is effective to prevent falls but was not shown to be statistically significant in the prevention of hip fracture in this study.

  11. Unipedal standing exercise and hip bone mineral density in postmenopausal women: a randomized controlled trial.

    PubMed

    Sakai, Akinori; Oshige, Toshihisa; Zenke, Yukichi; Yamanaka, Yoshiaki; Nagaishi, Hitoshi; Nakamura, Toshitaka

    2010-01-01

    The aim of this study was to test the effect of unipedal standing exercise on bone mineral density (BMD) of the hip in postmenopausal women. Japanese postmenopausal women (n = 94) were assigned at random to an exercise or control group (no exercise). The 6-month exercise program consisted of standing on a single foot for 1 min per leg 3 times per day. BMD of the hip was measured by dual-energy X-ray absorptiometry. There was no significant difference in age and baseline hip BMD between the exercise group (n = 49) and control group (n = 45). Exercise did not improve hip BMD compared with the control group. Stepwise regression analysis identified old age as a significant determinant (p = 0.034) of increased hip total BMD at 6 months after exercise. In 31 participants aged >/=70 years, the exercise group (n = 20) showed significant increase in the values of hip BMD at the areas of total (p = 0.008), intertrochanteric (p = 0.023), and Ward's triangle (p = 0.032). The same parameters were decreased in the control group (n = 11). The percent changes in hip BMD of the exercise group were not significantly different from those of the control group either in the participants with low baseline hip total BMD (<80% of the young adult mean) or high baseline hip total BMD (> or =80% of the young adult mean). In conclusion, unipedal standing exercise for 6 months did not improve hip BMD in Japanese postmenopausal women. Effect of exercise on hip total BMD was age dependent. In participants aged > or =70 years, the exercise significantly increased hip total BMD.

  12. Using a Stance Corpus to Learn about Effective Authorial Stance-Taking: A Textlinguistic Approach

    ERIC Educational Resources Information Center

    Chang, Peichin

    2012-01-01

    Presenting a persuasive authorial stance is a major challenge for second language (L2) writers in writing academic research. Failure to present an effective authorial stance often results in poor evaluation, which compromises a writer's research potential. This study proposes a "textlinguistic" approach to advanced academic writing to complement a…

  13. Effects of affective picture viewing on postural control.

    PubMed

    Stins, John F; Beek, Peter J

    2007-10-04

    Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and

  14. Interpreting the Need for Initial Support to Perform Tandem Stance Tests of Balance

    PubMed Central

    Brach, Jennifer S.; Perera, Subashan; Wert, David M.; VanSwearingen, Jessie M.; Studenski, Stephanie A.

    2012-01-01

    Background Geriatric rehabilitation reimbursement increasingly requires documented deficits on standardized measures. Tandem stance performance can characterize balance, but protocols are not standardized. Objective The purpose of this study was to explore the impact of: (1) initial support to stabilize in position and (2) maximum hold time on tandem stance tests of balance in older adults. Design A cross-sectional secondary analysis of observational cohort data was conducted. Methods One hundred seventeen community-dwelling older adults (71% female, 12% black) were assigned to 1 of 3 groups based on the need for initial support to perform tandem stance: (1) unable even with support, (2) able only with support, and (3) able without support. The able without support group was further stratified on hold time in seconds: (1) <10 (low), (2) 10 to 29, (medium), and (3) 30 (high). Groups were compared on primary outcomes (gait speed, Timed “Up & Go” Test performance, and balance confidence) using analysis of variance. Results Twelve participants were unable to perform tandem stance, 14 performed tandem stance only with support, and 91 performed tandem stance without support. Compared with the able without support group, the able with support group had statistically or clinically worse performance and balance confidence. No significant differences were found between the able with support group and the unable even with support group on these same measures. Extending the hold time to 30 seconds in a protocol without initial support eliminated ceiling effects for 16% of the study sample. Limitations Small comparison groups, use of a secondary analysis, and lack of generalizability of results were limitations of the study. Conclusions Requiring initial support to stabilize in tandem stance appears to reflect meaningful deficits in balance-related mobility measures, so failing to consider support may inflate balance estimates and confound hold time comparisons

  15. Leg Strength or Velocity of Movement Which Is More Influential on the Balance of Mobility Limited Elders?

    PubMed Central

    Mayson, Douglas J.; Kiely, Dan K.; LaRose, Sharon I.; Bean, Jonathan F.

    2009-01-01

    Objective To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. Design In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Results Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01–1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance [BERG 14.23 (1.84–109.72), performance-oriented mobility assessment 33.92 (3.69–312.03), and Dynamic Gait Index 35.80 (4.77–268.71))]. Strength was only associated with the BERG 1.08 (1.01–1.14). Conclusions Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity. PMID:19033758

  16. The effect of vision elimination during quiet stance tasks with different feet positions.

    PubMed

    Sarabon, Nejc; Rosker, Jernej; Loefler, Stefan; Kern, Helmut

    2013-09-01

    Literature confirms the effects of vision and stance on body sway and indicates possible interactions between the two. However, no attempts have been made to systematically compare the effect of vision on the different types of stance which are frequently used in clinical and research practice. The biomechanical changes that occur after changing shape and size of the support surface suggest possible sensory re-weighting might take place. The purpose of this study was to assess the effect of vision on body sway in relation to different stance configurations and width. Thirty-eight volunteers performed four quiet stance configurations (parallel, semi-tandem, tandem and single leg), repeating them with open and closed eyes. Traditional parameters, recurrence quantification analysis and sample entropy were analyzed from the CoP trajectory signal. Traditional and recurrence quantification analysis parameters were affected by vision removal and stance type. Exceptions were frequency of oscillation, entropy and trapping time. The most prominent effect of vision elimination on traditional parameters was observed for narrower stances. A significant interaction effect between vision removal and stance type was present for most of the parameters observed (p<0.05). The interaction effect between medio-lateral and antero-posterior traditional parameters differed in linearity between stances. The results confirm the effect of vision removal on the body sway. However, for the medio-lateral traditional parameters, the effects did not increase linearly with the change in width and stance type. This suggests that removal of vision could be more effectively compensated by other sensory systems in semi-tandem stance, tandem and single legged stance. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Effect of stance width on multidirectional postural responses

    NASA Technical Reports Server (NTRS)

    Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    2001-01-01

    The effect of stance width on postural responses to 12 different directions of surface translations was examined. Postural responses were characterized by recording 11 lower limb and trunk muscles, body kinematics, and forces exerted under each foot of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. A quasi-static approach of force analysis was done, examining force integrals in three different epochs (background, passive, and active periods). The latency and amplitude of muscle responses were quantified for each direction, and muscle tuning curves were used to determine the spatial activation patterns for each muscle. The results demonstrate that the horizontal force constraint exerted at the ground was lessened in the wide, compared with narrow, stance for humans, a similar finding to that reported by Macpherson for cats. Despite more trunk displacement in narrow stance, there were no significant changes in body center of mass (CoM) displacement due to large changes in center of pressure (CoP), especially in response to lateral translations. Electromyographic (EMG) magnitude decreased for all directions in wide stance, particularly for the more proximal muscles, whereas latencies remained the same from narrow to wide stance. Equilibrium control in narrow stance was more of an active postural strategy that included regulating the loading/unloading of the limbs and the direction of horizontal force vectors. In wide stance, equilibrium control relied more on an increase in passive stiffness resulting from changes in limb geometry. The selective latency modulation of the proximal muscles with translation direction suggests that the trunk was being actively controlled in all directions. The similar EMG latencies for both narrow and wide stance, with modulation of only the muscle activation magnitude as stance width changed, suggest that the same postural synergy was only slightly modified

  18. Generation of the Human Biped Stance by a Neural Controller Able to Compensate Neurological Time Delay

    PubMed Central

    Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun

    2016-01-01

    The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271

  19. Feedforward ankle strategy of balance during quiet stance in adults

    PubMed Central

    Gatev, Plamen; Thomas, Sherry; Kepple, Thomas; Hallett, Mark

    1999-01-01

    We studied quiet stance investigating strategies for maintaining balance. Normal subjects stood with natural stance and with feet together, with eyes open or closed. Kinematic, kinetic and EMG data were evaluated and cross-correlated.Cross-correlation analysis revealed a high, positive, zero-phased correlation between anteroposterior motions of the centre of gravity (COG) and centre of pressure (COP), head and COG, and between linear motions of the shoulder and knee in both sagittal and frontal planes. There was a moderate, negative, zero-phased correlation between the anteroposterior motion of COP and ankle angular motion.Narrow stance width increased ankle angular motion, hip angular motion, mediolateral sway of the COG, and the correlation between linear motions of the shoulder and knee in the frontal plane. Correlations between COG and COP and linear motions of the shoulder and knee in the sagittal plane were decreased. The correlation between the hip angular sway in the sagittal and frontal planes was dependent on interaction between support and vision.Low, significant positive correlations with time lags of the maximum of cross-correlation of 250-300 ms were found between the EMG activity of the lateral gastrocnemius muscle and anteroposterior motions of the COG and COP during normal stance. Narrow stance width decreased both correlations whereas absence of vision increased the correlation with COP.Ankle mechanisms dominate during normal stance especially in the sagittal plane. Narrow stance width decreased the role of the ankle and increased the role of hip mechanisms in the sagittal plane, while in the frontal plane both increased.The modulation pattern of the lateral gastrocnemius muscle suggests a central program of control of the ankle joint stiffness working to predict the loading pattern. PMID:9882761

  20. Comparison of Human and Humanoid Robot Control of Upright Stance

    PubMed Central

    Peterka, Robert J.

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to ~1 Hz) dynamic characteristics of human stance control. These subsystems are 1) a “sensory integration” mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions, and 2) an “effort control” mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions were humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the constraints on

  1. Comparison of human and humanoid robot control of upright stance.

    PubMed

    Peterka, Robert J

    2009-01-01

    There is considerable recent interest in developing humanoid robots. An important substrate for many motor actions in both humans and biped robots is the ability to maintain a statically or dynamically stable posture. Given the success of the human design, one would expect there are lessons to be learned in formulating a postural control mechanism for robots. In this study we limit ourselves to considering the problem of maintaining upright stance. Human stance control is compared to a suggested method for robot stance control called zero moment point (ZMP) compensation. Results from experimental and modeling studies suggest there are two important subsystems that account for the low- and mid-frequency (DC to approximately 1Hz) dynamic characteristics of human stance control. These subsystems are (1) a "sensory integration" mechanism whereby orientation information from multiple sensory systems encoding body kinematics (i.e. position, velocity) is flexibly combined to provide an overall estimate of body orientation while allowing adjustments (sensory re-weighting) that compensate for changing environmental conditions and (2) an "effort control" mechanism that uses kinetic-related (i.e., force-related) sensory information to reduce the mean deviation of body orientation from upright. Functionally, ZMP compensation is directly analogous to how humans appear to use kinetic feedback to modify the main sensory integration feedback loop controlling body orientation. However, a flexible sensory integration mechanism is missing from robot control leaving the robot vulnerable to instability in conditions where humans are able to maintain stance. We suggest the addition of a simple form of sensory integration to improve robot stance control. We also investigate how the biological constraint of feedback time delay influences the human stance control design. The human system may serve as a guide for improved robot control, but should not be directly copied because the

  2. Postural control of typical developing boys during the transition from double-leg stance to single-leg stance.

    PubMed

    Deschamps, Kevin; Staes, Filip; Peerlinck, Kathelijne; Van Geet, Kristel; Hermans, Cedric; Lobet, Sebastien

    2017-02-01

    Literature is lacking information about postural control performance of typically developing children during a transition task from double-leg stance to single-leg stance. The purpose of the present study was therefore to evaluate the clinical feasibility of a transition task in typical developing age groups as well as to study the correlation between associated balance measures and age.Thirty-three typically developing boys aged 6-20 years performed a standard transition task from DLS to SLS with eyes open (EO) and eyes closed (EC). Balance features derived from the center of pressure displacement captured by a single force platform were correlated with age on the one hand and considered for differences in the perspective of limb dominance on the other hand.All TDB (typically developing boys) were able to perform the transition task with EO. With respect to EC condition, all TDB from the age group 6-7 years and the youngest of the age group 8-12 years (N = 4) were unable to perform the task. No significant differences were observed between the balance measures of the dominant and non-dominant limbs.With respect to EO condition, correlation analyses indicated that time to new stability point (TNSP) as well as the sway measure after this TNSP were correlated with age (p < 0.0001). For the EC condition, only the anthropometrically scaled sway measure was found to be correlated (p = 0.03). The results provide additional insight into balance development in childhood and may serve as a useful basis for assessing balance impairments in higher functioning children with musculoskeletal problems. What is Known: • Reference data regarding postural balance of typically developing children during walking, running, sit-to-stand, and bipodal and unipodal stance has been well documented in the literature. • These reference data provided not only insight into the maturation process of the postural control system, but also served in diagnosing and managing functional

  3. Relationships between self-reported ankle function and modulation of Hoffmann reflex in patients with chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2016-01-01

    To examine relationships between self-reported ankle function and Hoffmann (H) reflex modulation during changes in body positions in patients with chronic ankle instability (CAI). Observational. Laboratory. Thirty-one young adults with CAI (19 males, 12 females) participated. There were two subscales of Foot and Ankle Ability Measure (FAAM) to quantify self-reported ankle function during activities of daily living (ADL) and sports activities. Maximum H-reflexes (H-max) and motor waves (M-max) from soleus and fibularis longus were recorded while participants lied prone and stood in bipedal and unipedal stances. For each muscle, percent change scores in Hmax:Mmax ratios were calculated between each pair of positions: prone-to-bipedal, bipedal-to-unipedal, and prone-to-unipedal, and used as a measure of H-reflex modulation. Pearson correlation coefficients were calculated between FAAM and H-reflex modulation measures. There were significant correlations between: (1) FAAM-ADL and soleus prone-to-unipedal modulation (r = 0.384, p = 0.04), (2) FAAM-Sport and soleus prone-to-unipedal modulation (r = 0.505, p = 0.005), (3) FAAM-Sport and fibular bipedal-to-unipedal modulation (r = 0.377, p = 0.05), and (4) FAAM-Sport and fibular prone-to-unipedal modulation (r = 0.396, p = 0.04). CAI patients presented moderate, positive relationships between self-reported ankle function and H-reflex modulation during changes in body positions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effects of affective picture viewing on postural control

    PubMed Central

    Stins, John F; Beek, Peter J

    2007-01-01

    Background Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. Results The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. Conclusion Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical

  5. Characterizing Postural Sway during Quiet Stance Based on the Intermittent Control Hypothesis

    NASA Astrophysics Data System (ADS)

    Nomura, Taishin; Nakamura, Toru; Fukada, Kei; Sakoda, Saburo

    2007-07-01

    This article illustrates a signal processing methodology for the time series of postural sway and accompanied electromyographs from the lower limb muscles during quiet stance. It was shown that the proposed methodology was capable of identifying the underlying postural control mechanisms. A preliminary application of the methodology provided evidence that supports the intermittent control hypothesis alternative to the conventional stiffness control hypothesis during human quiet upright stance.

  6. [Recognition of walking stance phase and swing phase based on moving window].

    PubMed

    Geng, Xiaobo; Yang, Peng; Wang, Xinran; Geng, Yanli; Han, Yu

    2014-04-01

    Wearing transfemoral prosthesis is the only way to complete daily physical activity for amputees. Motion pattern recognition is important for the control of prosthesis, especially in the recognizing swing phase and stance phase. In this paper, it is reported that surface electromyography (sEMG) signal is used in swing and stance phase recognition. sEMG signal of related muscles was sampled by Infiniti of a Canadian company. The sEMG signal was then filtered by weighted filtering window and analyzed by height permitted window. The starting time of stance phase and swing phase is determined through analyzing special muscles. The sEMG signal of rectus femoris was used in stance phase recognition and sEMG signal of tibialis anterior is used in swing phase recognition. In a certain tolerating range, the double windows theory, including weighted filtering window and height permitted window, can reach a high accuracy rate. Through experiments, the real walking consciousness of the people was reflected by sEMG signal of related muscles. Using related muscles to recognize swing and stance phase is reachable. The theory used in this paper is useful for analyzing sEMG signal and actual prosthesis control.

  7. Visual analysis of online social media to open up the investigation of stance phenomena

    PubMed Central

    Kucher, Kostiantyn; Schamp-Bjerede, Teri; Kerren, Andreas; Paradis, Carita; Sahlgren, Magnus

    2015-01-01

    Online social media are a perfect text source for stance analysis. Stance in human communication is concerned with speaker attitudes, beliefs, feelings and opinions. Expressions of stance are associated with the speakers' view of what they are talking about and what is up for discussion and negotiation in the intersubjective exchange. Taking stance is thus crucial for the social construction of meaning. Increased knowledge of stance can be useful for many application fields such as business intelligence, security analytics, or social media monitoring. In order to process large amounts of text data for stance analyses, linguists need interactive tools to explore the textual sources as well as the processed data based on computational linguistics techniques. Both original texts and derived data are important for refining the analyses iteratively. In this work, we present a visual analytics tool for online social media text data that can be used to open up the investigation of stance phenomena. Our approach complements traditional linguistic analysis techniques and is based on the analysis of utterances associated with two stance categories: sentiment and certainty. Our contributions include (1) the description of a novel web-based solution for analyzing the use and patterns of stance meanings and expressions in human communication over time; and (2) specialized techniques used for visualizing analysis provenance and corpus overview/navigation. We demonstrate our approach by means of text media on a highly controversial scandal with regard to expressions of anger and provide an expert review from linguists who have been using our tool. PMID:29249903

  8. Visual analysis of online social media to open up the investigation of stance phenomena.

    PubMed

    Kucher, Kostiantyn; Schamp-Bjerede, Teri; Kerren, Andreas; Paradis, Carita; Sahlgren, Magnus

    2016-04-01

    Online social media are a perfect text source for stance analysis. Stance in human communication is concerned with speaker attitudes, beliefs, feelings and opinions. Expressions of stance are associated with the speakers' view of what they are talking about and what is up for discussion and negotiation in the intersubjective exchange. Taking stance is thus crucial for the social construction of meaning. Increased knowledge of stance can be useful for many application fields such as business intelligence, security analytics, or social media monitoring. In order to process large amounts of text data for stance analyses, linguists need interactive tools to explore the textual sources as well as the processed data based on computational linguistics techniques. Both original texts and derived data are important for refining the analyses iteratively. In this work, we present a visual analytics tool for online social media text data that can be used to open up the investigation of stance phenomena. Our approach complements traditional linguistic analysis techniques and is based on the analysis of utterances associated with two stance categories: sentiment and certainty. Our contributions include (1) the description of a novel web-based solution for analyzing the use and patterns of stance meanings and expressions in human communication over time; and (2) specialized techniques used for visualizing analysis provenance and corpus overview/navigation. We demonstrate our approach by means of text media on a highly controversial scandal with regard to expressions of anger and provide an expert review from linguists who have been using our tool.

  9. Negotiating treatment preferences: Physicians' formulations of patients' stance.

    PubMed

    Landmark, Anne Marie Dalby; Svennevig, Jan; Gulbrandsen, Pål

    2016-01-01

    Eliciting patients' values and treatment preferences is an essential element in models of shared decision making, yet few studies have investigated the interactional realizations of how physicians do this in authentic encounters. Drawing on video-recorded encounters from Norwegian secondary care, the present study uses the fine-grained empirical methodology of conversation analysis (CA) to identify one conversational practice physicians use, namely, formulations of patients' stance, in which physicians summarize or paraphrase their understanding of the patient's stance towards treatment. The purpose of this study is twofold: (1) to explore what objectives formulations of patients' stance achieve while negotiating treatment and (2) to discuss these objectives in relation to core requirements in shared decision making. Our analysis demonstrates that formulating the patient's stance is a practice physicians use in order to elicit, check, and establish patients' attitudes towards treatment. This practice is in line with general recommendations for making shared decisions, such as exploring and checking patients' preferences and values. However, the formulations may function as a device for doing more than merely checking and establishing common ground and bringing up patients' preferences and views: Accompanied by subtle deprecating expressions, they work to delegitimize the patients' stances and indirectly convey the physicians' opposing stance. Once established, these positions can be used as a basis for challenging and potentially altering the patient's attitude towards the decision, thereby making it more congruent with the physician's view. Therefore, in addition to bringing up patients' views towards treatment, we argue that physicians may use formulations of patients' stance as a resource for directing the patient towards decisions that are congruent with the physician's stance in situations with potential disagreement, whilst (ostensibly) avoiding a more

  10. Association of Family History of Exceptional Longevity With Decline in Physical Function in Aging.

    PubMed

    Ayers, Emmeline; Barzilai, Nir; Crandall, Jill P; Milman, Sofiya; Verghese, Joe

    2017-11-09

    Although many genetic and nongenetic factors interact to determine an individual's physical phenotype, there has been limited examination of the contribution of family history of exceptional parental longevity on decline in physical function in aging. The LonGenity study recruited a relatively genetically homogenous cohort of Ashkenazi Jewish adults age 65 and older, who were defined as either offspring of parents with exceptional longevity ([OPEL]: having at least one parent who lived to age 95 or older) or offspring of parents with usual survival ([OPUS]: neither parent survived to age 95). Decline in performance on objective measures of strength (grip strength), balance (unipedal stance), and mobility (gait speed) as well as a composite physical function measure, the Short physical performance battery (SPPB), were compared between the two groups over a median follow-up of 3.2 years, accounting for age, sex, education, and comorbidities. Of the 984 LonGenity participants (mean age 76, 55% women), 448 were OPEL and 536 were OPUS. Compared to OPUS, OPEL had slower decline on measures of unipedal stance (-0.03 log-units/year, p = .026), repeated chair rise (0.13 s/year, p = .020) and SPPB (-0.11 points/year, p = .002). OPEL women had slower decline on chair rise and SPPB scores compared to OPUS women, although OPEL men had slower decline on unipedal stance compared to OPUS men. Our findings provide evidence that variation in late-life decline in physical function is associated with familial longevity, and may vary for men and women. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Stance controlled knee flexion improves stimulation driven walking after spinal cord injury

    PubMed Central

    2013-01-01

    Background Functional neuromuscular stimulation (FNS) restores walking function after paralysis from spinal cord injury via electrical activation of muscles in a coordinated fashion. Combining FNS with a controllable orthosis to create a hybrid neuroprosthesis (HNP) has the potential to extend walking distance and time by mechanically locking the knee joint during stance to allow knee extensor muscle to rest with stimulation turned off. Recent efforts have focused on creating advanced HNPs which couple joint motion (e.g., hip and knee or knee and ankle) to improve joint coordination during swing phase while maintaining a stiff-leg during stance phase. Methods The goal of this study was to investigate the effects of incorporating stance controlled knee flexion during loading response and pre-swing phases on restored gait. Knee control in the HNP was achieved by a specially designed variable impedance knee mechanism (VIKM). One subject with a T7 level spinal cord injury was enrolled and served as his own control in examining two techniques to restore level over-ground walking: FNS-only (which retained a stiff knee during stance) and VIKM-HNP (which allowed controlled knee motion during stance). The stimulation pattern driving the walking motion remained the same for both techniques; the only difference was that knee extensor stimulation was constant during stance with FNS-only and modulated together with the VIKM to control knee motion during stance with VIKM-HNP. Results Stance phase knee angle was more natural during VIKM-HNP gait while knee hyperextension persisted during stiff-legged FNS-only walking. During loading response phase, vertical ground reaction force was less impulsive and instantaneous gait speed was increased with VIKM-HNP, suggesting that knee flexion assisted in weight transfer to the leading limb. Enhanced knee flexion during pre-swing phase also aided flexion during swing, especially when response to stimulation was compromised. Conclusions

  12. Time domain characteristics of hoof-ground interaction at the onset of stance phase.

    PubMed

    Burn, J F

    2006-11-01

    Little is known about the interaction of the hoof with the ground at the onset of stance phase although is it widely believed that high power collisions are involved in the aetiopathology of several conditions causing lameness. To answer 3 questions regarding the fundamental nature of hoof-ground collision: (1) is the collision process deterministic for ground surfaces that present a consistent mechanical interface (2) do collision forces act on the hoof in a small or large range of directions and (3) Is the hoof decelerated to near-zero velocity by the initial deceleration peak following ground contact? Hoof acceleration during the onset of stance phase was recorded using biaxial accelerometry for horses trotting on a tarmac surface and on a sand surface. Characteristics of the collision process were identified both from vector plots and time series representations of hoof acceleration, velocity and displacement. The response of the hoof to collision with smooth tarmac was predominantly deterministic and consistent with the response of a spring-damper system following shock excitation. The response to collision with sand was predominantly random. The deceleration peak following ground contact did not decelerate the hoof to near-zero velocity on tarmac but appeared to on sand. On both surfaces, collision forces acted on the hoof in a wide range of directions. The study suggests the presence of stiff, viscoelastic structures within the foot that may act as shock absorbers isolating the limb from large collision forces. The study indicates objectives for future in vivo and in vitro research into the shock absorbing mechanism within the equine foot; and the effects of shoe type and track surface properties on the collision forces experienced during locomotion. Studies of this nature should help to establish a link between musculoskeletal injury, hoof function and hoof-ground interaction if, indeed, one exists.

  13. Visual-somatosensory integration and balance: evidence for psychophysical integrative differences in aging.

    PubMed

    Mahoney, Jeannette R; Holtzer, Roee; Verghese, Joe

    2014-01-01

    Research detailing multisensory integration (MSI) processes in aging and their association with clinically relevant outcomes is virtually non-existent. To our knowledge, the relationship between MSI and balance has not been well-established in aging. Given known alterations in unisensory processing with increasing age, the aims of the current study were to determine differential behavioral patterns of MSI in aging and investigate whether MSI was significantly associated with balance and fall-risk. Seventy healthy older adults (M = 75 years; 58% female) participated in the current study. Participants were instructed to make speeded responses to visual, somatosensory, and visual-somatosensory (VS) stimuli. Based on reaction times (RTs) to all stimuli, participants were classified into one of two groups (MSI or NO MSI), depending on their MSI RT benefit. Static balance was assessed using mean unipedal stance time. Overall, results revealed that RTs to VS stimuli were significantly shorter than those elicited to constituent unisensory conditions. Further, the current experimental design afforded differential patterns of multisensory processing, with 75% of the elderly sample demonstrating multisensory enhancements. Interestingly, 25% of older adults did not demonstrate multisensory RT facilitation; a finding that was attributed to extremely fast RTs overall and specifically in response to somatosensory inputs. Individuals in the NO MSI group maintained significantly better unipedal stance times and reported less falls, compared to elders in the MSI group. This study reveals the existence of differential patterns of multisensory processing in aging, while describing the clinical translational value of MSI enhancements in predicting balance and falls risk.

  14. Visual-Somatosensory Integration and Balance: Evidence for Psychophysical Integrative Differences in Aging

    PubMed Central

    Mahoney, Jeannette R.; Holtzer, Roee; Verghese, Joe

    2014-01-01

    Research detailing multisensory integration (MSI) processes in aging and their association with clinically relevant outcomes is virtually non-existent. To our knowledge, the relationship between MSI and balance has not been well-established in aging. Given known alterations in unisensory processing with increasing age, the aims of the current study were to determine differential behavioral patterns of MSI in aging and investigate whether MSI was significantly associated with balance and fall-risk. Seventy healthy older adults (M = 75 years; 58% female) participated in the current study. Participants were instructed to make speeded responses to visual, somatosensory, and visual-somatosensory (VS) stimuli. Based on reaction times (RTs) to all stimuli, participants were classified into one of two groups (MSI or NO MSI), depending on their MSI RT benefit. Static balance was assessed using mean unipedal stance time. Overall, results revealed that RTs to VS stimuli were significantly shorter than those elicited to constituent unisensory conditions. Further, the current experimental design afforded differential patterns of multisensory processing, with 75% of the elderly sample demonstrating multisensory enhancements. Interestingly, 25% of older adults did not demonstrate multisensory RT facilitation; a finding that was attributed to extremely fast RTs overall and specifically in response to somatosensory inputs. Individuals in the NO MSI group maintained significantly better unipedal stance times and reported less falls, compared to elders in the MSI group. This study reveals the existence of differential patterns of multisensory processing in aging, while describing the clinical translational value of MSI enhancements in predicting balance and falls risk. PMID:25102664

  15. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance.

    PubMed

    Kiers, Henri; van Dieën, Jaap; Dekkers, Henk; Wittink, Harriët; Vanhees, Luc

    2013-11-01

    In many sports, maintaining balance is necessary to compete at a high level. Also, in many health problems, balance is impaired. Postural sway (PS) is often used as an indicator of upright balance control, and physical activity (PA) might enhance balance control. However, the relationship between PS and PA has never been systematically reviewed. Our objective was to summarize the evidence regarding the relationship between PS in upright bipedal and unipedal standing and PA. We conducted a literature search in MEDLINE, EmBase, CINAHL, the Cochrane Database, and PEDro, up to March 2012, with no limit on the starting date. Characteristics and methodological aspects of each article were extracted by two reviewers. We used centre of pressure (CoP) velocity, and variables related to the CoP area, to compare studies. A total of 39 articles were reviewed from an initial yield of 2,058. Of these 39 studies, 37 used a comparative design, one was a cohort study, and one was a randomized controlled trial. The main conclusion was that in general, sport practitioners sway less than controls, and high-level athletes sway less than low-level athletes. Additionally, we identified specific effects dependent on the use of vision, sport-specific postures, and frequency and duration of the (sports) activity. PS in unperturbed bipedal stance appears to have limited sensitivity to detect subtle differences between groups of healthy people.

  16. A focused exercise regimen improves clinical measures of balance in patients with peripheral neuropathy.

    PubMed

    Richardson, J K; Sandman, D; Vela, S

    2001-02-01

    To determine the effect of a specific exercise regimen on clinical measures of postural stability and confidence in a population with peripheral neuropathy (PN). Prospective, controlled, single blind study. Outpatient clinic of a university hospital. Twenty subjects with diabetes mellitus and electrodiagnostically confirmed PN. Ten subjects underwent a 3-week intervention exercise regimen designed to increase rapidly available distal strength and balance. The other 10 subjects performed a control exercise regimen. Unipedal stance time, functional reach, tandem stance time, and score on the activities-specific balance and confidence (ABC) scale. The intervention subjects, but not the control subjects, showed significant improvement in all 3 clinical measures of balance and nonsignificant improvement on the ABC scale. A brief, specific exercise regimen improved clinical measures of balance in patients with diabetic PN. Further studies are needed to determine if this result translates into a lower fall frequency in this high-risk population.

  17. Body stability and muscle and motor cortex activity during walking with wide stance

    PubMed Central

    Farrell, Brad J.; Bulgakova, Margarita A.; Beloozerova, Irina N.; Sirota, Mikhail G.

    2014-01-01

    Biomechanical and neural mechanisms of balance control during walking are still poorly understood. In this study, we examined the body dynamic stability, activity of limb muscles, and activity of motor cortex neurons [primarily pyramidal tract neurons (PTNs)] in the cat during unconstrained walking and walking with a wide base of support (wide-stance walking). By recording three-dimensional full-body kinematics we found for the first time that during unconstrained walking the cat is dynamically unstable in the forward direction during stride phases when only two diagonal limbs support the body. In contrast to standing, an increased lateral between-paw distance during walking dramatically decreased the cat's body dynamic stability in double-support phases and prompted the cat to spend more time in three-legged support phases. Muscles contributing to abduction-adduction actions had higher activity during stance, while flexor muscles had higher activity during swing of wide-stance walking. The overwhelming majority of neurons in layer V of the motor cortex, 82% and 83% in the forelimb and hindlimb representation areas, respectively, were active differently during wide-stance walking compared with unconstrained condition, most often by having a different depth of stride-related frequency modulation along with a different mean discharge rate and/or preferred activity phase. Upon transition from unconstrained to wide-stance walking, proximal limb-related neuronal groups subtly but statistically significantly shifted their activity toward the swing phase, the stride phase where most of body instability occurs during this task. The data suggest that the motor cortex participates in maintenance of body dynamic stability during locomotion. PMID:24790167

  18. Detecting Underlying Stance Adopted When Human Construe Behavior of Entities

    NASA Astrophysics Data System (ADS)

    Terada, Kazunori; Ono, Kouhei; Ito, Akira

    Whether or not humans can construe the behaviors of entities depends on their psychological stance. The philosopher Dennett proposed human cognitive strategies (three stances) in which humans construe the behavior of other animated objects, including other humans, artifacts, and physical phenomena:‘intentional’, ‘design’ and ‘physical’ stances. Detecting the psychological stance taken toward entities is difficult, because such mental state attribution is a subjective cognitive process and hard to measure. In the present study, we proposed a novel method for detecting underlying stance adopted when human construe behavior of entities. In our method the subject was asked to select the most suitable action sequence shown in three movies each of which representing Dennett’s three stances. To valid our method we have conducted an experiment in which the subjects were presented thirty short videos and asked to compare them to the three movies. The result indicated that the subjects did not focused on prior knowledge about the entity but could focused on motion characteristics per se, owing to simple and typical motion of an abstract shaped object.

  19. A clinical measure of maximal and rapid stepping in older women.

    PubMed

    Medell, J L; Alexander, N B

    2000-08-01

    In older adults, clinical measures have been used to assess fall risk based on the ability to maintain stance or to complete a functional task. However, in an impending fall situation, a stepping response is often used when strategies to maintain stance are inadequate. We examined how maximal and rapid stepping performance might differ among healthy young, healthy older, and balance-impaired older adults, and how this stepping performance related to other measures of balance and fall risk. Young (Y; n = 12; mean age, 21 years), unimpaired older (UO; n = 12; mean age, 69 years), and balance-impaired older women IO; n = 10; mean age, 77 years) were tested in their ability to take a maximal step (Maximum Step Length or MSL) and in their ability to take rapid steps in three directions (front, side, and back), termed the Rapid Step Test (RST). Time to complete the RST and stepping errors occurring during the RST were noted. The IO group, compared with the Y and UO groups, demonstrated significantly poorer balance and higher fall risk, based on performance on tasks such as unipedal stance. Mean MSL was significantly higher (by 16%) in the Y than in the UO group and in the UO (by 30%) than in the IO group. Mean RST time was significantly faster in the Y group versus the UO group (by 24%) and in the UO group versus the IO group (by 15%). Mean RST errors tended to be higher in the UO than in the Y group, but were significantly higher only in the UO versus the IO group. Both MSL and RST time correlated strongly (0.5 to 0.8) with other measures of balance and fall risk including unipedal stance, tandem walk, leg strength, and the Activities-Specific Balance Confidence (ABC) scale. We found substantial declines in the ability of both unimpaired and balance-impaired older adults to step maximally and to step rapidly. Stepping performance is closely related to other measures of balance and fall risk and might be considered in future studies as a predictor of falls and fall

  20. Postural control strategies during single limb stance following acute lateral ankle sprain.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-06-01

    Single-limb stance is maintained via the integration of visual, vestibular and somatosensory afferents. Musculoskeletal injury challenges the somatosensory system to reweight distorted sensory afferents. This investigation supplements kinetic analysis of eyes-open and eyes-closed single-limb stance tasks with a kinematic profile of lower limb postural orientation in an acute lateral ankle sprain group to assess the adaptive capacity of the sensorimotor system to injury. Sixty-six participants with first-time acute lateral ankle sprain completed a 20-second eyes-open single-limb stance task on their injured and non-injured limbs (task 1). Twenty-three of these participants successfully completed the same 20-second single-limb stance task with their eyes closed (task 2). A non-injured control group of 19 participants completed task 1, with 16 completing task 2. 3-dimensional kinematics of the hip, knee and ankle joints, as well as associated fractal dimension of the center-of-pressure path were determined for each limb during these tasks. Between trial analyses revealed significant differences in stance limb kinematics and fractal dimension of the center-of-pressure path for task 2 only. The control group bilaterally assumed a position of greater hip flexion compared to injured participants on their side-matched "involved"(7.41 [6.1°] vs 1.44 [4.8]°; η(2)=.34) and "uninvolved" (9.59 [8.5°] vs 2.16 [5.6°]; η(2)=.31) limbs, with a greater fractal dimension of the center-of-pressure path (involved limb=1.39 [0.16°] vs 1.25 [0.14°]; uninvolved limb=1.37 [0.21°] vs 1.23 [0.14°]). Bilateral impairment in postural control strategies present following a first time acute lateral ankle sprain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Assessing Muscle-Strength Asymmetry via a Unilateral-Stance Isometric Midthigh Pull.

    PubMed

    Dos'Santos, Thomas; Thomas, Christopher; Jones, Paul A; Comfort, Paul

    2017-04-01

    To investigate the within-session reliability of bilateral- and unilateral-stance isometric midthigh-pull (IMTP) force-time characteristics including peak force (PF), relative PF, and impulse at time bands (0-100, 0-200, 0-250, and 0-300 milliseconds) and to compare isometric force-time characteristics between right and left and dominant (D) and nondominant (ND) limbs. Professional male rugby league and multisport male college athletes (N = 54; age, 23.4 ± 4.2 y; height, 1.80 ± 0.05 m; mass, 88.9 ± 12.9 kg) performed 3 bilateral IMTP trials and 6 unilateral-stance IMTP trials (3 per leg) on a force plate sampling at 600 Hz. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) demonstrated high within-session reliability for bilateral and unilateral IMTP PF (ICC = .94, CV = 4.7-5.5%). Lower reliability measures and greater variability were observed for bilateral and unilateral IMTP impulse at time bands (ICC = .81-.88, CV = 7.7-11.8%). Paired-sample t tests and Cohen d effect sizes revealed no significant differences for all isometric force-time characteristics between right and left limbs in male college athletes (P >.05, d ≤ 0.32) and professional rugby league players (P > .05, d ≤ 0.11); however, significant differences were found between D and ND limbs in male college athletes (P < .001, d = 0.43-0.91) and professional rugby league players (P < .001, d = 0.27-0.46). This study demonstrated high within-session reliability for unilateral-stance IMTP PF, revealing significant differences in isometric force-time characteristics between D and ND limbs in male athletes.

  2. Eldecalcitol improves chair-rising time in postmenopausal osteoporotic women treated with bisphosphonates

    PubMed Central

    Iwamoto, Jun; Sato, Yoshihiro

    2014-01-01

    An open-label randomized controlled trial was conducted to clarify the effect of eldecalcitol (ED) on body balance and muscle power in postmenopausal osteoporotic women treated with bisphosphonates. A total of 106 postmenopausal women with osteoporosis (mean age 70.8 years) were randomly divided into two groups (n=53 in each group): a bisphosphonate group (control group) and a bisphosphonate plus ED group (ED group). Biochemical markers, unipedal standing time (body balance), and five-repetition chair-rising time (muscle power) were evaluated. The duration of the study was 6 months. Ninety-six women who completed the trial were included in the subsequent analyses. At baseline, the age, body mass index, bone mass indices, bone turnover markers, unipedal standing time, and chair-rising time did not differ significantly between the two groups. During the 6-month treatment period, bone turnover markers decreased significantly from the baseline values similarly in the two groups. Although no significant improvement in the unipedal standing time was seen in the ED group, compared with the control group, the chair-rising time decreased significantly in the ED group compared with the control group. The present study showed that ED improved the chair-rising time in terms of muscle power in postmenopausal osteoporotic women treated with bisphosphonates. PMID:24476669

  3. Limited interlimb transfer of locomotor adaptations to a velocity-dependent force field during unipedal walking.

    PubMed

    Houldin, Adina; Chua, Romeo; Carpenter, Mark G; Lam, Tania

    2012-08-01

    Several studies have demonstrated that motor adaptations to a novel task environment can be transferred between limbs. Such interlimb transfer of motor commands is consistent with the notion of centrally driven strategies that can be generalized across different frames of reference. So far, studies of interlimb transfer of locomotor adaptations have yielded disparate results. Here we sought to determine whether locomotor adaptations in one (trained) leg show transfer to the other (test) leg during a unipedal walking task. We hypothesized that adaptation in the test leg to a velocity-dependent force field previously experienced by the trained leg will be faster, as revealed by faster recovery of kinematic errors and earlier onset of aftereffects. Twenty able-bodied adults walked unipedally in the Lokomat robotic gait orthosis, which applied velocity-dependent resistance to the legs. The amount of resistance was scaled to 10% of each individual's maximum voluntary contraction of the hip flexors. Electromyography and kinematics of the lower limb were recorded. All subjects were right-leg dominant and were tested for transfer of motor adaptations from the right leg to the left leg. Catch trials, consisting of unexpected removal of resistance, were presented after the first step with resistance and after a period of adaptation to test for aftereffects. We found no significant differences in the sizes of the aftereffects between the two legs, except for peak hip flexion during swing, or in the rate at which peak hip flexion adapted during steps against resistance between the two legs. Our results indicate that interlimb transfer of these types of locomotor adaptation is not a robust phenomenon. These findings add to our current understanding of motor adaptations and provide further evidence that generalization of adaptations may be dependent on the movement task.

  4. Unipedal Diagnostic Lymphangiography Followed by Sequential CT Examinations in Patients With Idiopathic Chyluria: A Retrospective Study.

    PubMed

    Dong, Jian; Xin, Jianfeng; Shen, Wenbin; Chen, Xiaobai; Wen, Tingguo; Zhang, Chunyan; Wang, Rengui

    2018-04-01

    The objective of our study was to investigate the clinical value of diagnostic lymphangiography followed by sequential CT examinations in patients with idiopathic chyluria. Thirty-six patients with idiopathic chyluria underwent unipedal diagnostic lymphangiography and then underwent sequential CT examinations. The examinations were reviewed separately by two radiologists. Abnormal distribution of contrast medium, lymphourinary leakages, and retrograde flow were noted, and the range and distribution of lymphatic vessel lesions were recorded. The stage of idiopathic chyluria based on CT findings and the stage based on clinical findings were compared. Therapeutic management and follow-up were recorded. Statistical analyses were performed. Compared with CT studies performed after lymphangiography, diagnostic lymphangiography showed a unique capability to depict lymphourinary leakages in three patients. Lymphourinary fistulas and abnormal dilated lymphatic vessels were found in and around kidney in all patients. CT depicted retrograde flow of lymph fluid in 47.2% of patients. The consistency in staging chyluria based on CT findings and clinical findings was fair (κ = 0.455). Twenty-nine patients underwent conservative therapy, and seven underwent surgery. Surgical therapy was superior to conservative management (no recurrence, 85.7% of patients who underwent surgery vs 62.1% of patients who underwent conservative therapy; p = 0.025). From assessing the drainage of contrast medium on unipedal diagnostic lymphangiography and the redistribution of contrast medium on sequential CT examinations, it is possible to detect the existence of lymphourinary fistulas, the precise location of lymphatic anomalies, the distribution of collateral lymphatic vessels, and hydrodynamic pressure abnormality in the lymph circulation in patients with idiopathic chyluria. CT staging of chyluria provides additional information that can be used to guide therapeutic management.

  5. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    PubMed

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were

  6. Social support satisfaction in adults with eating disorders: Does stance matter?

    PubMed

    Geller, Josie; Iyar, Megumi; Srikameswaran, Suja; Zelichowska, Joanna; Dunn, Erin C

    2017-07-01

    Although the role of social support is clearly established in the recovery of youth with eating disorders, little is known about factors that contribute to support satisfaction and improved treatment outcome in adults. This study examined the contribution of patient factors and perceived support stance used by family and friends in determining social support satisfaction. Individuals meeting DSM-IV criteria for an eating disorder (n = 182) completed measures of eating disorder and psychiatric severity, interpersonal functioning, perceived support stance used by family and friends, and social support satisfaction. Correlations indicated that both patient factors (lower psychiatric distress and fewer interpersonal difficulties) and perceived support stance (higher concerned and lower directive support) were associated with patient support satisfaction. Multiple regression analyses indicated that perceived support stance accounted for greater variance in social support satisfaction than did patient factors. Patient age was associated with differences in preferred support stance: expressions of caring were most critical for younger patients, whereas not being criticized or told what to do was most significant for older patients. This research suggests that the stance used when offering support is vital to the care of individuals with eating disorders. © 2017 Wiley Periodicals, Inc.

  7. Limb locomotion--speed distribution analysis as a new method for stance phase detection.

    PubMed

    Peham, C; Scheidl, M; Licka, T

    1999-10-01

    The stance phase is used for the determination of many parameters in motion analysis. In this technical note the authors present a new kinematical method for determination of stance phase. From the high-speed video data, the speed distribution of the horizontal motion of the distal limb is calculated. The speed with the maximum occurrence within the motion cycle defines the stance phase, and this speed is used as threshold for beginning and end of the stance phase. In seven horses the results obtained with the presented method were compared to synchronous stance phase determination using a force plate integrated in a hard track. The mean difference between the results was 10.8 ms, equalling 1.44% of mean stance phase duration. As a test, the presented method was applied to a horse trotting on the treadmill, and to a human walking on concrete. This article describes an easy and safe method for stance phase determination in continuous kinematic data and proves the reliability of the method by comparing it to kinetic stance phase detection. This method may be applied in several species and all gaits, on the treadmill and on firm ground.

  8. Three components of postural control associated with pushing in symmetrical and asymmetrical stance.

    PubMed

    Lee, Yun-Ju; Aruin, Alexander S

    2013-07-01

    A number of occupational and leisure activities that involve pushing are performed in symmetrical or asymmetrical stance. The goal of this study was to investigate early postural adjustments (EPAs), anticipatory postural adjustments (APAs), and compensatory postural adjustments (CPAs) during pushing performed while standing. Ten healthy volunteers stood in symmetrical stance (with feet parallel) or in asymmetrical stance (staggered stance with one foot forward) and were instructed to use both hands to push forward the handle of a pendulum attached to the ceiling. Bilateral EMG activity of the trunk and leg muscles and the center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the EPAs, APAs, and CPAs. The EMG activity and the COP displacement were different between the symmetrical and asymmetrical stance conditions. The COP displacements in the ML direction were significantly larger in staggered stance than in symmetrical stance. In staggered stance, the EPAs and APAs in the thigh muscles of the backward leg were significantly larger, and the CPAs were smaller than in the forward leg. There was no difference in the EMG activity of the trunk muscles between the stance conditions. The study outcome confirmed the existence of the three components of postural control (EPAs, APAs, and CPAs) in pushing. Moreover, standing asymmetrically was associated with asymmetrical patterns of EMG activity in the lower extremities reflecting the stance-related postural control during pushing. The study outcome provides a basis for studying postural control during other daily activities involving pushing.

  9. Whole-body vibration improves neuromuscular parameters and functional capacity in osteopenic postmenopausal women.

    PubMed

    Dutra, Milena C; de Oliveira, Mônica L; Marin, Rosangela V; Kleine, Hellen C R; Silva, Orivaldo L; Lazaretti-Castro, Marise

    2016-08-01

    In this longitudinal, paired-control study, we developed special vibration platforms to evaluate the effects of low-intensity vibration on neuromuscular function and functional capacity in osteopenic postmenopausal women. Women in the platform group (PG; n = 62) stood still and barefoot on the platform for 20 minutes, 5 times a week for 12 months. Each platform vibrated with a frequency of 60 Hz, intensity of 0.6g, and amplitude of less than 1 mm. Women in the control group (CG; n = 60) were followed up and instructed not to modify their physical activity during the study. Every 3 months all volunteers were invited to a visit to check for any change in their lifestyle. Assessments were performed at baseline and at 12 months, and included isometric muscle strength in the hip flexors and back extensors, right handgrip strength, dynamic upper limb strength (arm curl test), upper trunk flexibility (reach test [RT]), mobility (timed up and go test), and static balance (unipedal stance test). Statistical analyses were performed using the intention-to-treat strategy. Both groups were similar for all variables at baseline. At the end of intervention, the PG was significantly better than CG in all parameters but in the RT. When compared with baseline, after 12 months of vibration the PG presented statistically significant improvements in isometric and dynamic muscle strength in the hip flexors (+36.7%), back extensors (+36.5%), handgrip strength (+4.4%), arm curl test (+22.8%), RT (+9.9%), unipedal stance test (+6.8%), and timed up and go test (-9.2%), whereas the CG showed no significant differences during the same period of time. As such, there were no side effects related to the study procedures during the 12 months of intervention. Low-intensity vibration improved balance, motility, and muscle strength in the upper and lower limbs in postmenopausal women.

  10. Body sway at sea for two visual tasks and three stance widths.

    PubMed

    Stoffregen, Thomas A; Villard, Sebastien; Yu, Yawen

    2009-12-01

    On land, body sway is influenced by stance width (the distance between the feet) and by visual tasks engaged in during stance. While wider stance can be used to stabilize the body against ship motion and crewmembers are obliged to carry out many visual tasks while standing, the influence of these factors on the kinematics of body sway has not been studied at sea. Crewmembers of the RN Atlantis stood on a force plate from which we obtained data on the positional variability of the center of pressure (COP). The sea state was 2 on the Beaufort scale. We varied stance width (5 cm, 17 cm, and 30 cm) and the nature of the visual tasks. In the Inspection task, participants viewed a plain piece of white paper, while in the Search task they counted the number of target letters that appeared in a block of text. Search task performance was similar to reports from terrestrial studies. Variability of the COP position was reduced during the Search task relative to the Inspection task. Variability was also reduced during wide stance relative to narrow stance. The influence of stance width was greater than has been observed in terrestrial studies. These results suggest that two factors that influence postural sway on land (variations in stance width and in the nature of visual tasks) also influence sway at sea. We conclude that--in mild sea states--the influence of these factors is not suppressed by ship motion.

  11. Angular-velocity control approach for stance-control orthoses.

    PubMed

    Lemaire, Edward D; Goudreau, Louis; Yakimovich, Terris; Kofman, Jonathan

    2009-10-01

    Currently, stance-control knee orthoses require external control mechanisms to control knee flexion during stance and allow free knee motion during the swing phase of gait. A new angular-velocity control approach that uses a rotary-hydraulic device to resist knee flexion when the knee angular velocity passes a preset threshold is presented. This angular-velocity approach for orthotic stance control is based on the premise that knee-flexion angular velocity during a knee-collapse event, such as a stumble or fall, is greater than that during walking. The new hydraulic knee-flexion control device does not require an external control mechanism to switch from free motion to stance control mode. Functional test results demonstrated that the hydraulic angular-velocity activated knee joint provided free knee motion during walking, engaged upon knee collapse, and supported body weight while the end-user recovered to a safe body position. The joint was tested to 51.6 Nm in single loading tests and passed 200,000 repeated loading cycles with a peak load of 88 Nm per cycle. The hydraulic, angular velocity activation approach has potential to improve safety and security for people with lower extremity weakness or when recovering from joint trauma.

  12. Educating the design stance: issues of coherence and transgression.

    PubMed

    Freeman, Norman H; Allen, Melissa L

    2013-04-01

    Bullot & Reber (B&R) put forth a design stance to fuse psychological and art historical accounts of visual thinking into a single theory. We argue that this aspect of their proposal needs further fine-tuning. Issues of transgression and coherence are necessary to provide stability to the design stance. We advocate looking to Art Education for such fundamentals of picture understanding.

  13. Effects of dual task difficulty in motor and cognitive performance: Differences between adults and adolescents.

    PubMed

    Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier

    2017-10-01

    In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Cross-Cultural Analysis of Stance in Disaster News Reports

    ERIC Educational Resources Information Center

    Liu, Lian; Stevenson, Marie

    2013-01-01

    This study examines stance in cross-cultural media discourse by comparing disaster news reports on the Sichuan earthquake of May 2008 in a Chinese, an Australian Chinese, and an Australian newspaper. The stance taken in the news reports is examined using the Attitude sub-system of Martin and White's (2005) Appraisal framework. The analysis…

  15. Specificity of foot configuration during bipedal stance in ballet dancers.

    PubMed

    Casabona, Antonino; Leonardi, Giuseppa; Aimola, Ettore; La Grua, Giovanni; Polizzi, Cristina Maria; Cioni, Matteo; Valle, Maria Stella

    2016-05-01

    Learning highly specialized upright postures may be of benefit for more common as well as for novel stances. In this study, we asked whether this generalization occurs with foot configurations previously trained or depends on a generic increase in balance difficulty. We also explored the possibility that the benefit may concern not only the level of postural performance but also the structural organization of the upright standing. Ten elite professional ballet dancers were compared to ten untrained subjects, measuring the motion of the center of pressure (COP) across a set of five stances with different foot configurations. The balance stability was measured computing the area, the sway path, and the root mean square of the COP motion, whereas the structure of the postural control was assessed by compute approximate entropy, fractal dimension and the mean power frequency. The foot position included common and challenging stances, with the level of difficulty changed across the configurations. Among these conditions, only one foot configuration was familiar to the dancers. Statistically significant differences between the two groups, for all the parameters, were observed only for the stance with the foot position familiar to the dancers. Stability and structural parameters exhibited comparable differences. We concluded that the benefit from classical ballet is limited to a specific foot configuration, regardless of the level of stance difficulty or the component of postural control. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation.

    PubMed

    Seo, Jeong-Woo; Kang, Dong-Won; Kim, Ju-Young; Yang, Seung-Tae; Kim, Dae-Hyeok; Choi, Jin-Seung; Tack, Gye-Rae

    2014-01-01

    In this study, the accuracy of the inputs required for finite element analysis, which is mainly used for the biomechanical analysis of bones, was improved. To ensure a muscle force and joint contact force similar to the actual values, a musculoskeletal model that was based on the actual gait experiment was used. Gait data were obtained from a healthy male adult aged 29 who had no history of musculoskeletal disease and walked normally (171 cm height and 72 kg weight), and were used as inputs for the musculoskeletal model simulation to determine the muscle force and joint contact force. Among the phases of gait, which is the most common activity in daily life, the stance phase is the most affected by the load. The results data were extracted from five events in the stance phase: heel contact (ST1), loading response (ST2), early mid-stance (ST2), late mid-stance (ST4), and terminal stance (ST5). The results were used as the inputs for the finite element model that was formed using 1.5mm intervals computed tomography (CT) images and the maximum Von-Mises stress and the maximum Von-Mises strain of the right femur were examined. The maximum stress and strain were lowest at the ST4. The maximum values for the femur occurred in the medial part and then in the lateral part after the mid-stance. In this study, the results of the musculoskeletal model simulation using the inverse-dynamic analysis were utilized to improve the accuracy of the inputs, which affected the finite element analysis results, and the possibility of the bone-specific analysis according to the lapse of time was examined.

  17. The relativist stance.

    PubMed

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  18. A study on effects of and stance over tuition fees.

    PubMed

    Karay, Yassin; Matthes, Jan

    2016-01-01

    Regarding tuition fees (that in Germany already have been abrogated) putative drawbacks like prolonged study duration have been suspected while benefits are not clearly proven. We investigated whether tuition fees (500 Euro per semester) affected the course of studies of Cologne medical students and asked for students' stance over tuition fees. Of 1,324 students we analyzed the rate of those passing their first medical exam ("Physikum") within minimum time and students' discontinuation rate, respectively. Regression analysis tested for putative influences of tuition fees and demographic factors. In an additional online survey 400 students answered questions regarding the load by and their stance over tuition fees. We find that fees did not affect rate of Cologne students passing their first medical exam within minimum time or students' discontinuation rate. According to the online survey, at times of tuition fees significantly more students did not attend courses as scheduled. Time spent on earning money was significantly increased. 51% of students who had to pay tuition fees and 71% of those who never had to stated tuition fees to be not justified. More than two thirds of students did not recognize any lasting benefit from tuition fees. Tuition fees did not affect discontinuation rate or study duration of Cologne medical students. However, they obviously influenced the study course due to an increased need to pursue a sideline. Cologne medical students rather refused tuition fees and did not recognize their advantages in terms of enhanced quality of studies.

  19. Stance and influence of Twitter users regarding the Brexit referendum.

    PubMed

    Grčar, Miha; Cherepnalkoski, Darko; Mozetič, Igor; Kralj Novak, Petra

    2017-01-01

    Social media are an important source of information about the political issues, reflecting, as well as influencing, public mood. We present an analysis of Twitter data, collected over 6 weeks before the Brexit referendum, held in the UK in June 2016. We address two questions: what is the relation between the Twitter mood and the referendum outcome, and who were the most influential Twitter users in the pro- and contra-Brexit camps? First, we construct a stance classification model by machine learning methods, and are then able to predict the stance of about one million UK-based Twitter users. The demography of Twitter users is, however, very different from the demography of the voters. By applying a simple age-adjusted mapping to the overall Twitter stance, the results show the prevalence of the pro-Brexit voters, something unexpected by most of the opinion polls. Second, we apply the Hirsch index to estimate the influence, and rank the Twitter users from both camps. We find that the most productive Twitter users are not the most influential, that the pro-Brexit camp was four times more influential, and had considerably larger impact on the campaign than the opponents. Third, we find that the top pro-Brexit communities are considerably more polarized than the contra-Brexit camp. These results show that social media provide a rich resource of data to be exploited, but accumulated knowledge and lessons learned from the opinion polls have to be adapted to the new data sources.

  20. Using metrics to describe the participative stances of members within discussion forums.

    PubMed

    Jones, Ray; Sharkey, Siobhan; Smithson, Janet; Ford, Tamsin; Emmens, Tobit; Hewis, Elaine; Sheaves, Bryony; Owens, Christabel

    2011-01-10

    Researchers using forums and online focus groups need to ensure they are safe and need tools to make best use of the data. We explored the use of metrics that would allow better forum management and more effective analysis of participant contributions. To report retrospectively calculated metrics from self-harm discussion forums and to assess whether metrics add to other methods such as discourse analysis. We asked (1) which metrics are most useful to compare and manage forums, and (2) how metrics can be used to identify the participative stances of members to help manage discussion forums. We studied the use of metrics in discussion forums on self-harm. SharpTalk comprised five discussion forums, all using the same software but with different forum compositions. SharpTalk forums were similar to most moderated forums but combined support and general social chat with online focus groups discussing issues on self-harm. Routinely recorded time-stamp data were used to derive metrics of episodes, time online, pages read, and postings. We compared metrics from the forums with views from discussion threads and from moderators. We identified patterns of participants' online behavior by plotting scattergrams and identifying outliers and clusters within different metrics. In comparing forums, important metrics seem to be number of participants, number of active participants, total time of all participants logged on in each 24 hours, and total number of postings by all participants in 24 hours. In examining participative stances, the important metrics were individuals' time logged per 24 hours, number of episodes, mean length of episodes, number of postings per 24 hours, and location within the forum of those postings. Metric scattergrams identified several participative stances: (1) the "caretaker," who was "always around," logged on for a much greater time than most other participants, posting but mainly in response to others and rarely initiating threads, (2) the

  1. Stance control knee mechanism for lower-limb support in hybrid neuroprosthesis

    PubMed Central

    To, Curtis S.; Kobetic, Rudi; Bulea, Thomas C.; Audu, Musa L.; Schnellenberger, John R.; Pinault, Gilles; Triolo, Ronald J.

    2014-01-01

    A hydraulic stance control knee mechanism (SCKM) was developed to fully support the knee against flexion during stance and allow uninhibited motion during swing for individuals with paraplegia using functional neuromuscular stimulation (FNS) for gait assistance. The SCKM was optimized for maximum locking torque for body-weight support and minimum resistance when allowing for free knee motion. Ipsilateral and contralateral position and force feedback were used to control the SCKM. Through bench and nondisabled testing, the SCKM was shown to be capable of supporting up to 70 N-m, require no more than 13% of the torque achievable with FNS to facilitate free motion, and responsively and repeatedly unlock under an applied flexion knee torque of up to 49 N-m. Preliminary tests of the SCKM with an individual with paraplegia demonstrated that it could support the body and maintain knee extension during stance without the stimulation of the knee extensor muscles. This was achieved without adversely affecting gait, and knee stability was comparable to gait assisted by knee extensor stimulation during stance. PMID:21938668

  2. Intersession reliability of self-selected and narrow stance balance testing in older adults.

    PubMed

    Riemann, Bryan L; Piersol, Kelsey

    2017-10-01

    Despite the common practice of using force platforms to assess balance of older adults, few investigations have examined the reliability of postural screening tests in this population. We sought to determine the test-retest reliability of self-selected and narrow stance balance testing with eyes open and eyes closed in healthy older adults. Thirty older adults (>65 years) completed 45 s trials of eyes open and eyes closed stability tests using self-selected and narrow stances on two separate days (1.9 ± .7 days). Average medial-lateral center of pressure velocity was computed. The ICC results ranged from .74 to .86, and no significant systematic changes (P < .05) occurred between the testing sessions for any of the tests. The standard error of measurement ranged from 15.9 to 23.6%. Reliability estimates were similar between the two stances and visual conditions assessed. Slightly higher coefficients were identified for the self-selected stances compared to the narrow stances under both visual conditions; however, there were negligible differences between the sessions. The within subject session-to-session variability provides a basis for further research to consider differences between fallers and non-fallers. Reliability for eyes open and closed balance testing using self-selected and narrow stances in older adults was established which should provide a foundation for the development of fall risk screening tests.

  3. Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.

    2011-01-01

    Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).

  4. Codeswitching and Stance: Issues in Interpretation

    ERIC Educational Resources Information Center

    Jaffe, Alexandra

    2007-01-01

    This article explores the long-standing problem of ascribing meaning to individual acts of codeswitching. Drawing on ethnographic data from bilingual classrooms in Corsica, I situate the analysis of codeswitching within the more general question of the interpretation of speaker stance, which is defined as speakers' positioning with regard to both…

  5. A study on effects of and stance over tuition fees

    PubMed Central

    Karay, Yassin; Matthes, Jan

    2016-01-01

    Aim: Regarding tuition fees (that in Germany already have been abrogated) putative drawbacks like prolonged study duration have been suspected while benefits are not clearly proven. We investigated whether tuition fees (500 Euro per semester) affected the course of studies of Cologne medical students and asked for students’ stance over tuition fees. Methods: Of 1,324 students we analyzed the rate of those passing their first medical exam (“Physikum”) within minimum time and students’ discontinuation rate, respectively. Regression analysis tested for putative influences of tuition fees and demographic factors. In an additional online survey 400 students answered questions regarding the load by and their stance over tuition fees. Results: We find that fees did not affect rate of Cologne students passing their first medical exam within minimum time or students’ discontinuation rate. According to the online survey, at times of tuition fees significantly more students did not attend courses as scheduled. Time spent on earning money was significantly increased. 51% of students who had to pay tuition fees and 71% of those who never had to stated tuition fees to be not justified. More than two thirds of students did not recognize any lasting benefit from tuition fees. Conclusion: Tuition fees did not affect discontinuation rate or study duration of Cologne medical students. However, they obviously influenced the study course due to an increased need to pursue a sideline. Cologne medical students rather refused tuition fees and did not recognize their advantages in terms of enhanced quality of studies. PMID:26958654

  6. Complex and Simple Clinical Reaction Times Are Associated with Gait, Balance, and Major Fall Injury in Older Subjects with Diabetic Peripheral Neuropathy

    PubMed Central

    Richardson, James K.; Eckner, James T.; Allet, Lara; Kim, Hogene; Ashton-Miller, James

    2016-01-01

    Objective To identify relationships between complex and simple clinical measures of reaction time (RTclin), and indicators of balance in older subjects with and without diabetic peripheral neuropathy (DPN). Design Prospective cohort design. Complex RTclin Accuracy, Simple RTclin Latency, and their ratio were determined using a novel device in 42 subjects (age = 69.1 ± 8.3 yrs), 26 with DPN and 16 without. Dependent variables included unipedal stance time (UST), step width variability and range on an uneven surface, and major fall-related injury over 12 months. Results In the DPN subjects the ratio of Complex RTclin Accuracy:Simple RTclin Latency was strongly associated with longer UST (r/p = .653/.004), and decreased step width variability and range (r/p = −.696/.001 and −.782/<.001, respectively) on an uneven surface. Additionally, the two DPN subjects sustaining major injuries had lower Complex RTclin Accuracy:Simple: RTclin Latency than those without. Conclusions The ratio of Complex RTclin Accuracy:Simple RTclin Latency is a potent predictor of UST and frontal plane gait variability in response to perturbations, and may predict major fall injury in older subjects with DPN. These short latency neurocognitive measures may compensate for lower limb neuromuscular impairments, and provide a more comprehensive understanding of balance and fall risk. PMID:27552354

  7. Phase synchronisation of the three leg joints in quiet human stance.

    PubMed

    Günther, Michael; Putsche, Peter; Leistritz, Lutz; Grimmer, Sten

    2011-03-01

    Quiet human stance is a dynamic multi-segment phenomenon. In literature, coupled ankle and hip actions are in the focus and examinations are usually restricted to frequency contributions below 4 Hz. Very few studies point to the knee playing an active role, and just one study gives evidence of higher frequency contributions. In order to investigate the dynamic coupling of all three leg joints in more depth, we revisited an experimental data set on quiet human stance. Since phase synchronisation is a strong indicator of non-linear coupling behind, we used the phase synchronisation index (PSI) to quantify the degree of leg joint coupling as a function of frequency. One main result is that we did not find any synchronisation between ankle and hip across the whole frequency range examined up to 8 Hz. In contrast, there is significant synchronisation between ankle and knee at a couple of frequencies between 1.25 Hz and 8 Hz when looking at the kinematics. Their joint torques rather synchronise below 2 Hz. There is also synchronisation between knee and hip kinematics above 6 Hz, however, only significant at one frequency bin in our data set. From this, we would infer that the multiple mechanical degrees of freedom contributing to quiet human stance should be chosen according to, thus map, physiology. Thereby, the knee is indispensable and bi-articular muscles play a central role in organising quiet human stance. Examining the non-stationarity of phase synchronisations will probably advance the understanding of self-organisation of quiet human stance. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. The cat vertebral column: stance configuration and range of motion

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Ye, Y.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the configuration of the vertebral column of the cat during independent stance and in various flexed positions. The range of motion in the sagittal plane is similar across most thoracic and lumbar joints, with the exception of a lesser range at the transition region from thoracic-type to lumbar-type vertebrae. The upper thoracic column exhibits most of its range in dorsiflexion and the lower thoracic and lumbar in ventroflexion. Lateral flexion is limited to less than 5 degrees at all segments. The range in torsion is almost 180 degrees and occurs primarily in the midthoracic region, T4-T11. Contrary to the depiction in most atlases, the standing cat exhibits several curvatures, including a mild dorsiflexion in the lower lumbar segments, a marked ventroflexion in the lower thoracic and upper lumbar segments, and a profound dorsiflexion in the upper thoracic (above T9) and cervical segments. The curvatures are not significantly changed by altering stance distance but are affected by head posture. During stance, the top of the scapula lies well above the spines of the thoracic vertebrae, and the glenohumeral joint is just below the bodies of vertebrae T3-T5. Using a simple static model of the vertebral column in the sagittal plane, it was estimated that the bending moment due to gravity is bimodal with a dorsiflexion moment in the lower thoracic and lumbar region and a ventroflexion moment in the upper thoracic and cervical region. Given the bending moments and the position of the scapula during stance, it is proposed that two groups of scapular muscles provide the major antigravity support for the head and anterior trunk. Levator scapulae and serratus ventralis form the lateral group, inserting on the lateral processes of cervical vertebrae and on the ribs. The major and minor rhomboids form the medial group, inserting on the spinous tips of vertebrae from C4 to T4. It is also proposed that the hypaxial muscles, psoas major, minor, and quadratus

  9. Exploring Individual Differences in Preschoolers' Causal Stance

    ERIC Educational Resources Information Center

    Alvarez, Aubry; Booth, Amy E.

    2016-01-01

    Preschoolers, as a group, are highly attuned to causality, and this attunement is known to facilitate memory, learning, and problem solving. However, recent work reveals substantial individual variability in the strength of children's "causal stance," as demonstrated by their curiosity about and preference for new causal information. In…

  10. Five Stances That Have Got to Go

    ERIC Educational Resources Information Center

    Zeigler, Earle F.

    1973-01-01

    The five stances in physical education that have to go are as follows: a) the shotgun approach'' to professional preparation; b) the athletics uber alles approach''; c) the women are all right in their place approach''; d) the body of knowledge approach'' and the password is treadmill' approach.''

  11. Influence of virtual reality on postural stability during movements of quiet stance.

    PubMed

    Horlings, Corinne G C; Carpenter, Mark G; Küng, Ursula M; Honegger, Flurin; Wiederhold, Brenda; Allum, John H J

    2009-02-27

    Balance problems during virtual reality (VR) have been mentioned in the literature but seldom investigated despite the increased use of VR systems as a training or rehabilitation tool. We examined the influence of VR on body sway under different stance conditions. Seventeen young subjects performed four tasks (standing with feet close together or tandem stance on firm and foam surfaces for 60s) under three visual conditions: eyes open without VR, eyes closed, or while viewing a virtual reality scene which moved with body movements. Angular velocity transducers mounted on the shoulder provided measures of body sway in the roll and pitch plane. VR caused increased pitch and roll angles and angular velocities compared to EO. The effects of VR were, for the most part, indistinguishable from eyes closed conditions. Use of a foam surface increased sway compared to a firm surface under eyes closed and VR conditions. During the movements of quiet stance, VR causes an increase in postural sway in amplitude similar to that caused by closing the eyes. This increased sway was present irrespective of stance surface, but was greatest on foam.

  12. Risk Taking in Late Adolescence: Relations between Sociomoral Reasoning, Risk Stance, and Behavior

    ERIC Educational Resources Information Center

    Shaw, Leigh A.; Amsel, Eric; Schillo, Joshua

    2011-01-01

    This study explored relations among late adolescents' sociomoral reasoning about risk taking, risk stance, and behavior. One-hundred and thirty-two participants (18-20-year-olds) were surveyed about their own risk stance (Avoidant, Opportunistic, Curious, Risk Seeking) and behavior in three realms (Alcohol Use, Drug Use, Reckless Driving), and…

  13. A physiological exploration on operational stance and occupational musculoskeletal problem manifestations amongst construction labourers of West Bengal, India.

    PubMed

    Chatterjee, Arijit; Sahu, Subhashis

    2018-03-29

    A huge number of labourers engaged in construction industry in India both in organized and unorganized sectors. The construction labourers most often work for an extended period of time and they are compelled to uphold altered static and dynamic operational stance in awkward positions during the complete period of work which raises the demand on the musculoskeletal system and may lead to work related musculoskeletal disorders (WRMSDs). This study is intended to explore the operational stance and occupation related musculoskeletal manifestations amongst the construction labourers. One sixty four male labourers from different construction sites of West Bengal was randomly taken for this study. A modified Nordic questionnaire on MSD and the 12 item General Health Questionnaire (GHQ12) were administered on the construction labourers. Rapid Entire Body Assessment [REBA] and Ovako Work Analysis System [OWAS] methods were applied to analyze the operational stance. Finally, discomfort levels of the specific operational stance were calculated by the use of risk level and BPD scale. From the study it was revealed that most of the construction labourers habitually in awkward operational stance and were affected by altering musculoskeletal manifestations like pain in low back, neck, and wrist. It has been also found that there is a significant (p< 0.05) association between the intensity of pain feeling, age, year of working experience and risk level of the individual working postures of the labourers. Appropriate work-rest schedule, amendments of some working techniques and use of some ergonomically designed equipment may lessen the WRMSDs and improve the health eminence of construction labourers in unorganized sectors.

  14. A Study of relationship between frailty and physical performance in elderly women.

    PubMed

    Jeoung, Bog Ja; Lee, Yang Chool

    2015-08-01

    Frailty is a disorder of multiple inter-related physiological systems. It is unclear whether the level of physical performance factors can serve as markers of frailty and a sign. The purpose of this study was to examine the relationship between frailty and physical performance in elderly women. One hundred fourteen elderly women participated in this study, their aged was from 65 to 80. We were measured 6-min walk test, grip-strength, 30-sec arm curl test, 30-sec chair stand test, 8 foot Up- and Go, Back scratch, chair sit and reach, unipedal stance, BMI, and the frailty with questionnaire. The collected data were analyzed by descriptive statistics, frequencies, correlation analysis, ANOVA, and simple liner regression using the IBM 21. SPSS program. In results, statistic tests showed that there were significant differences between frailty and 6-min walk test, 30-sec arm curl test, 30-sec chair stand test, grip-strength, Back scratch, and BMI. However, we did not find significant differences between frailty and 8 foot Up- and Go, unipedal stance. When the subjects were divided into five groups according to physical performance level, subjects with high 6-min walk, 30-sec arm curl test, chair sit and reach test, and high grip strength had low score frailty. Physical performance factors were strongly associated with decreased frailty, suggesting that physical performance improvements play an important role in preventing or reducing the frailty.

  15. A Study of relationship between frailty and physical performance in elderly women

    PubMed Central

    Jeoung, Bog Ja; Lee, Yang Chool

    2015-01-01

    Frailty is a disorder of multiple inter-related physiological systems. It is unclear whether the level of physical performance factors can serve as markers of frailty and a sign. The purpose of this study was to examine the relationship between frailty and physical performance in elderly women. One hundred fourteen elderly women participated in this study, their aged was from 65 to 80. We were measured 6-min walk test, grip-strength, 30-sec arm curl test, 30-sec chair stand test, 8 foot Up- and Go, Back scratch, chair sit and reach, unipedal stance, BMI, and the frailty with questionnaire. The collected data were analyzed by descriptive statistics, frequencies, correlation analysis, ANOVA, and simple liner regression using the IBM 21. SPSS program. In results, statistic tests showed that there were significant differences between frailty and 6-min walk test, 30-sec arm curl test, 30-sec chair stand test, grip-strength, Back scratch, and BMI. However, we did not find significant differences between frailty and 8 foot Up- and Go, unipedal stance. When the subjects were divided into five groups according to physical performance level, subjects with high 6-min walk, 30-sec arm curl test, chair sit and reach test, and high grip strength had low score frailty. Physical performance factors were strongly associated with decreased frailty, suggesting that physical performance improvements play an important role in preventing or reducing the frailty. PMID:26331137

  16. How joint torques affect hamstring injury risk in sprinting swing-stance transition.

    PubMed

    Sun, Yuliang; Wei, Shutao; Zhong, Yunjian; Fu, Weijie; Li, Li; Liu, Yu

    2015-02-01

    The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases.

  17. Authorial Stance in Thai Students' Doctoral Dissertation

    ERIC Educational Resources Information Center

    Getkham, Kunyarut

    2016-01-01

    This study investigates how linguistic devices are used to convey authorial stance in 36 Introduction sections and 36 Discussion sections of doctoral dissertations written in English by Thai students graduated in language education from different universities in the United States during the period 2008 to 2013. It also compares the use of…

  18. Organization position statements and the stance of "studied neutrality" on euthanasia in palliative care.

    PubMed

    Johnstone, Megan-Jane

    2012-12-01

    In recent years, palliative care and related organizations have increasingly adopted a stance of "studied neutrality" on the question of whether euthanasia should be legalized as a bona fide medical regimen in palliative care contexts. This stance, however, has attracted criticism from both opponents and proponents of euthanasia. Pro-euthanasia activists see the stance as an official position of indecision that is fundamentally disrespectful of a patient's right to "choose death" when life has become unbearable. Some palliative care constituents, in turn, are opposed to the stance, contending that it reflects an attitude of "going soft" on euthanasia and as weakening the political resistance that has hitherto been successful in preventing euthanasia from becoming more widely legalized. In this article, attention is given to examining critically the notion and possible unintended consequences of adopting a stance of studied neutrality on euthanasia in palliative care. It is argued that although palliative care and related organizations have an obvious stake in the outcome of the euthanasia debate, it is neither unreasonable nor inconsistent for such organizations to be unwilling to take a definitive stance on the issue. It is further contended that, given the long-standing tenets of palliative care, palliative care organizations have both a right and a responsibility to defend the integrity of the principles and practice of palliative care and to resist demands for euthanasia to be positioned either as an integral part or logical extension of palliative care. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  19. Linguistic Markers of Stance in Early and Advanced Academic Writing: A Corpus-Based Comparison

    ERIC Educational Resources Information Center

    Aull, Laura L.; Lancaster, Zak

    2014-01-01

    This article uses corpus methods to examine linguistic expressions of stance in over 4,000 argumentative essays written by incoming first-year university students in comparison with the writing of upper-level undergraduate students and published academics. The findings reveal linguistic stance markers shared across the first-year essays despite…

  20. EFL Doctoral Students' Conceptions of Authorial Stance in Academic Research Writing: An Exploratory Study

    ERIC Educational Resources Information Center

    Chang, Peichin

    2016-01-01

    English as foreign language (EFL) writers are often found to have weaker control of their academic writing, among which presenting an effective authorial stance has been reported as particularly challenging (Hyland, 1998a; Schleppegrell, 2004). In particular, student writers tended to deploy a stronger stance and be less effective with tentative…

  1. Rocker bottom soles alter the postural response to backward translation during stance.

    PubMed

    Albright, Bruce C; Woodhull-Smith, Whitney M

    2009-07-01

    Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. This population also has a high risk for falls. This study analyzed the effects of shoes with rocker bottom soles on the postural response during perturbed stance. Participants were 20 healthy subjects (16 women, 4 men) ages 22-25 years. Canvas shoes were modified by the addition of crepe sole material to represent two forms of rocker bottom shoes and a control shoe. Subjects stood on a dynamic force plate programmed to move backward at a velocity that produced an automatic postural response without stepping. Force plate data were collected for five trials per shoe type. Sway variables for center of pressure (COP) and center of mass (COM) included: mean sway amplitude, sway variance, time to peak, anterior and posterior peak velocities, functional stability margin, and peak duration time. Compared to control, both the experimental shoes had significantly larger COP and COM values for mean sway amplitude, sway variance and peak duration. The functional stability margins were significantly smaller for the experimental shoes while their anterior and posterior peak velocities were slower and time to peaks were significantly longer. In young healthy adults, shoes with rocker bottom soles had a destabilizing effect to perturbed stance, thereby increasing the potential for imbalance. These results raise concerns that footwear with rocker bottom sole modifications to accommodate an insensate foot may increase the risk of falls.

  2. How Joint Torques Affect Hamstring Injury Risk in Sprinting Swing–Stance Transition

    PubMed Central

    SUN, YULIANG; WEI, SHUTAO; ZHONG, YUNJIAN; FU, WEIJIE; LI, LI; LIU, YU

    2015-01-01

    ABSTRACT Purpose The potential mechanisms of hamstring strain injuries in athletes are not well understood. The study, therefore, was aimed at understanding hamstring mechanics by studying loading conditions during maximum-effort overground sprinting. Methods Three-dimensional kinematics and ground reaction force data were collected from eight elite male sprinters sprinting at their maximum effort. Maximal isometric torques of the hip and knee were also collected. Data from the sprinting gait cycle were analyzed via an intersegmental dynamics approach, and the different joint torque components were calculated. Results During the initial stance phase, the ground reaction force passed anteriorly to the knee and hip, producing an extension torque at the knee and a flexion torque at the hip joint. Thus, the active muscle torque functioned to produce flexion torque at the knee and extension torque at the hip. The maximal muscle torque at the knee joint was 1.4 times the maximal isometric knee flexion torque. During the late swing phase, the muscle torque counterbalanced the motion-dependent torque and acted to flex the knee joint and extend the hip joint. The loading conditions on the hamstring muscles were similar to those of the initial stance phase. Conclusions During both the initial stance and late swing phases, the large passive torques at both the knee and hip joints acted to lengthen the hamstring muscles. The active muscle torques generated mainly by the hamstrings functioned to counteract those passive effects. As a result, during sprinting or high-speed locomotion, the hamstring muscles may be more susceptible to high risk of strain injury during these two phases. PMID:24911288

  3. Change of Attitude? A Diachronic Study of Stance

    ERIC Educational Resources Information Center

    Hyland, Ken; Jiang, Feng

    2016-01-01

    Successful research writers construct texts by taking a novel point of view toward the issues they discuss while anticipating readers' imagined reactions to those views. This intersubjective positioning is encompassed by the term stance and, in various guises, has been a topic of interest to researchers of written communication and applied…

  4. The effect of boundary shape and minima selection on single limb stance postural stability.

    PubMed

    Cobb, Stephen C; Joshi, Mukta N; Bazett-Jones, David M; Earl-Boehm, Jennifer E

    2012-11-01

    The effect of time-to-boundary minima selection and stability limit definition was investigated during eyes open and eyes closed condition single-limb stance postural stability. Anteroposterior and mediolateral time-to-boundary were computed using the mean and standard deviation (SD) of all time-to-boundary minima during a trial, and the mean and SD of only the 10 absolute time-to-boundary minima. Time-to-boundary with rectangular, trapezoidal, and multisegmented polygon defined stability limits were also calculated. Spearman's rank correlation coefficient test results revealed significant medium-large correlations between anteroposterior and mediolateral time-to-boundary scores calculated using both the mean and SD of the 10 absolute time-to-boundary minima and of all the time-to-boundary minima. Friedman test results revealed significant mediolateral time-to-boundary differences between boundary shape definitions. Follow-up Wilcoxon signed rank test results revealed significant differences between the rectangular boundary shape and both the trapezoidal and multisegmented polygon shapes during the eyes open and eyes closed conditions when both the mean and the SD of the time-to-boundary minima were used to represent postural stability. Significant differences were also revealed between the trapezoidal and multisegmented polygon definitions during the eyes open condition when the SD of the time-to-boundary minima was used to represent postural stability. Based on these findings, the overall results (i.e., stable versus unstable participants or groups) of studies computing postural stability using different minima selection can be compared. With respect to boundary shape, the trapezoid or multisegmented polygon shapes may be more appropriate than the rectangular shape as they more closely represent the anatomical shape of the stance foot.

  5. Anticipatory postural adjustments and focal performance during bilateral forward-reach task under different stance conditions.

    PubMed

    Yiou, Eric; Mezaour, Malha; Le Bozec, Serge

    2009-04-01

    This study investigated how young healthy subjects control their equilibrium in situations of instability specifically elicited by a reduced capacity of force production in the postural muscle system. Ten subjects displaced a bar forward with both hands at maximal velocity toward a target while standing on the dominant leg (UNID), on the nondominant leg (UNIND), or on both legs. In each stance condition, anticipatory postural adjustments (APAs) were elicited. Along the anteroposterior axis, APAs were two-times longer in UNID and UNIND than in bipedal stance, while the anticipatory inertia forces remained equivalent. The focal performance was maintained without any additive postural perturbation. A small effect of leg dominance could be detected on APAs along the mediolateral axis (i.e., anticipatory inertia forces were higher in UNIND than in UNID). These results stress the adaptability of the central nervous system to the instability specifically elicited by reduced postural muscle system efficiency.

  6. Using the Aesthetic Stance to Achieve Historical Thinking

    ERIC Educational Resources Information Center

    Bassett Dahl, Heather Jane

    2017-01-01

    This research study focuses on how an aesthetic reading stance with dystopian literature can aid teens in the development of historical thinking skills. My research is based on ideas from Louise Rosenblatt's transactional theory and Sam Wineburg's concept and definition for historical thinking along with the UCLA Standards for Historical Thinking.…

  7. Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs.

    PubMed

    Maidment, Susannah C R; Linton, Deborah H; Upchurch, Paul; Barrett, Paul M

    2012-01-01

    The most primitive ornithischian dinosaurs were small bipeds, but quadrupedality evolved three times independently in the clade. The transition to quadrupedality from bipedal ancestors is rare in the history of terrestrial vertebrate evolution, and extant analogues do not exist. Constraints imposed on quadrupedal ornithischians by their ancestral bipedal bauplan remain unexplored, and consequently, debate continues about their stance and gait. For example, it has been proposed that some ornithischians could run, while others consider that none were cursorial. Drawing on biomechanical concepts of limb bone scaling and locomotor theory developed for extant taxa, we use the largest dataset of ornithischian postcranial measurements so far compiled to examine stance and gait in quadrupedal ornithischians. Differences in femoral midshaft eccentricity in hadrosaurs and ceratopsids may indicate that hadrosaurs placed their feet on the midline during locomotion, while ceratopsids placed their feet more laterally, under the hips. More robust humeri in the largest ceratopsids relative to smaller taxa may be due to positive allometry in skull size with body mass in ceratopsids, while slender humeri in the largest stegosaurs may be the result of differences in dermal armor distribution within the clade. Hadrosaurs are found to display the most cursorial morphologies of the quadrupedal ornithischian cades, indicating higher locomotor performance than in ceratopsids and thyreophorans. Limb bone scaling indicates that a previously unrealised diversity of stances and gaits were employed by quadrupedal ornithischians despite apparent convergence in limb morphology. Grouping quadrupedal ornithischians together as a single functional group hides this disparity. Differences in limb proportions and scaling are likely due to the possession of display structures such as horns, frills and dermal armor that may have affected the center of mass of the animal, and differences in locomotor

  8. A study of the relationship between depression symptom and physical performance in elderly women.

    PubMed

    Lee, Yang Chool

    2015-12-01

    Depression is a general public health problem; there is an association between regular exercise or vigorous physical activity and depression. Physical activity has positive physical, mental, and emotional effects. The purpose of this study was to examine the relationship between depression symptom and physical performance in elderly women. A total of 173 elderly women aged 65 to 80 participated in this study. We evaluated elderly women using the 6-min walk, grip-strength, 30-sec arm curl, 30-sec chair stand, 8-foot up and go, back scratch, and chair sit and reach, and unipedal stance, measured the body mass index (BMI), and depression symptom assessed using Korean version of the Geriatric Depression Scale (GDS-K). The collected data were analyzed using descriptive statistics, correlation analysis, paired t-tests, and simple linear regression using IBM SPSS Statistics ver. 21.0. There were significant correlations between GDS-K and the 6-min walk, 30-sec chair stand, 30-sec arm curl, chair sit and reach, 8-foot up and go, and grip strength tests (P<0.05), but not BMI, back strength, and unipedal stance. When divided into two groups (GDS-K score≥14 and GDS-K score<14), there was a difference between the two groups in the 6-min walk, 30-sec chair stand, 30-sec arm curl test, chair sit and reach, 8-foot up and go test, and grip strength test performances. Physical performance factors were strongly associated with depression symptom, suggesting that physical performance improvements may play an important role in preventing depression.

  9. A study of the relationship between depression symptom and physical performance in elderly women

    PubMed Central

    Lee, Yang Chool

    2015-01-01

    Depression is a general public health problem; there is an association between regular exercise or vigorous physical activity and depression. Physical activity has positive physical, mental, and emotional effects. The purpose of this study was to examine the relationship between depression symptom and physical performance in elderly women. A total of 173 elderly women aged 65 to 80 participated in this study. We evaluated elderly women using the 6-min walk, grip-strength, 30-sec arm curl, 30-sec chair stand, 8-foot up and go, back scratch, and chair sit and reach, and unipedal stance, measured the body mass index (BMI), and depression symptom assessed using Korean version of the Geriatric Depression Scale (GDS-K). The collected data were analyzed using descriptive statistics, correlation analysis, paired t-tests, and simple linear regression using IBM SPSS Statistics ver. 21.0. There were significant correlations between GDS-K and the 6-min walk, 30-sec chair stand, 30-sec arm curl, chair sit and reach, 8-foot up and go, and grip strength tests (P<0.05), but not BMI, back strength, and unipedal stance. When divided into two groups (GDS-K score≥14 and GDS-K score<14), there was a difference between the two groups in the 6-min walk, 30-sec chair stand, 30-sec arm curl test, chair sit and reach, 8-foot up and go test, and grip strength test performances. Physical performance factors were strongly associated with depression symptom, suggesting that physical performance improvements may play an important role in preventing depression. PMID:26730389

  10. Ninth Grade Students' Negotiation of Aesthetic, Efferent, and Critical Stances in Response to a Novel Set in Afghanistan

    ERIC Educational Resources Information Center

    Taliaferro, Cheryl

    2011-01-01

    This qualitative, action research study was guided by two primary research questions. First, how do students negotiate aesthetic, efferent, and critical stances when reading a novel set in Afghanistan? Second, how do aesthetic and efferent stances contribute to or hinder the adoption of a critical stance? A large body of research exists that…

  11. Brought-Along Identities and the Dynamics of Ideology: Accomplishing Bivalent Stances in a Multilingual Interaction

    ERIC Educational Resources Information Center

    Williams, Ashley M.

    2008-01-01

    This paper examines how the interconnected aspects of the stance triangle (Du Bois 2007) allow speakers to tap into multiple ideological layers as they take a stance and reveal intra-ethnic group tensions. Using a detailed interaction analysis of a Chinese American family's multilingual interaction, the paper explores how such ideological dynamics…

  12. Single Stance Stability and Proprioceptive Control in Older Adults Living at Home: Gender and Age Differences

    PubMed Central

    Riva, Dario; Mamo, Carlo; Fanì, Mara; Saccavino, Patrizia; Rocca, Flavio; Momenté, Manuel; Fratta, Marianna

    2013-01-01

    In developed countries, falls in older people represent a rising problem. As effective prevention should start before the risk becomes evident, an early predictor is needed. Single stance instability would appear as a major risk factor. Aims of the study were to describe single stance stability, its sensory components, and their correlation with age and gender. A random sample of 597 older adults (319 men, 278 women) living at home, aged 65–84, was studied. Stability tests were performed with an electronic postural station. The single stance test showed the impairment of single stance stability in older individuals (75–84 yrs). The significant decline of stability in the older subjects may be explained by the impairment of proprioceptive control together with the decrease in compensatory visual stabilization and emergency responses. Younger subjects (65–74 yrs) exhibited better, but still inadequate, proprioceptive control with compensatory visual stabilization. Gender differences appeared in older subjects: women were significantly less stable than men. The measurement of the sensory components of single stance stability could aid in the early detection of a decay in antigravity movements many years before the risk of falling becomes evident. Adequate proprioceptive control could mitigate the effects of all other risks of falling. PMID:23984068

  13. Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui

    2012-01-01

    Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562

  14. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis.

    PubMed

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2017-02-01

    There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation ( p = .001), paretic limb health ( p = .04), sounds ( p = .02), and well-being ( p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis devices. The C-Brace offers new functions including controlled

  15. Effects of interactive video-game based system exercise on the balance of the elderly.

    PubMed

    Lai, Chien-Hung; Peng, Chih-Wei; Chen, Yu-Luen; Huang, Ching-Ping; Hsiao, Yu-Ling; Chen, Shih-Ching

    2013-04-01

    This study evaluated the effects of interactive video-game based (IVGB) training on the balance of older adults. The participants of the study included 30 community-living persons over the age of 65. The participants were divided into 2 groups. Group A underwent IVGB training for 6 weeks and received no intervention in the following 6 weeks. Group B received no intervention during the first 6 weeks and then participated in training in the following 6 weeks. After IVGB intervention, both groups showed improved balance based on the results from the following tests: the Berg Balance Scale (BBS), Modified Falls Efficacy Scale (MFES), Timed Up and Go (TUG) test, and the Sway Velocity (SV) test (assessing bipedal stance center pressure with eyes open and closed). Results from the Sway Area (SA) test (assessing bipedal stance center pressure with eyes open and closed) revealed a significant improvement in Group B after IVGB training. Group A retained some training effects after 6 weeks without IVGB intervention. Additionally, a moderate association emerged between the Xavix measured step system stepping tests and BBS, MFES, Unipedal Stance test, and TUG test measurements. In conclusion, IVGB training improves balance after 6 weeks of implementation, and the beneficial effects partially remain after training is complete. Further investigation is required to determine if this training is superior to traditional physical therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Significance of Stance: An Invitation to Aesthetic Response.

    ERIC Educational Resources Information Center

    Molinelli, Paul M.

    This essay explores the concept of reader stance as defined by L. Rosenblatt (1978, 1994) as a useful framework from which to view the relative imbalance between the efferent and aesthetic reading of literature, particularly among schoolage adolescents. It then examines how 4 theoretical models and perspectives offer considerable explanatory…

  17. Stance Taking and Passive Voice in Turkish Academic Discourse

    ERIC Educational Resources Information Center

    Emeksiz, Zeynep Erk

    2015-01-01

    This study aims at describing the functions of passive voice and how authors reflect their stance through those functions in Turkish academic discourse. Depending on the findings of a corpus based research, this study makes a counterpoint to functionalist views on the ground that passivization does not necessarily result in promoting agents in…

  18. Characterization of static balance abilities in elite soccer players by playing position and age.

    PubMed

    Pau, Massimiliano; Ibba, Gianfranco; Leban, Bruno; Scorcu, Marco

    2014-01-01

    In this study, we investigated the static balance of adult and adolescent elite soccer players to understand how expertise and playing position influence postural control. Seventy-one national level players were tested using a force platform to acquire Center-of-Pressure (COP) data in uni- and bipedal stance and calculate sway area (SA), COP path length, velocity and displacements. The results show significant differences in postural sway related to age and playing position only for single-limb stance. In particular, midfielders exhibited significantly lower values of SA with respect to defenders (-48%, p = 0.001) and the under-15 players exhibited SA 42-64% higher than all the others (p = 0.001). In the light of planning training or rehabilitation programs specific for each player's role and age, sway measurements may supply useful, objective and reliable information only for the unipedal test as the bipedal standing appears not challenging enough to let differences in balance abilities emerge.

  19. Safety and walking ability of KAFO users with the C-Brace® Orthotronic Mobility System, a new microprocessor stance and swing control orthosis

    PubMed Central

    Pröbsting, Eva; Kannenberg, Andreas; Zacharias, Britta

    2016-01-01

    Background: There are clear indications for benefits of stance control orthoses compared to locked knee ankle foot orthoses. However, stance control orthoses still have limited function compared with a sound human leg. Objectives: The aim of this study was to evaluate the potential benefits of a microprocessor stance and swing control orthosis compared to stance control orthoses and locked knee ankle foot orthoses in activities of daily living. Study design: Survey of lower limb orthosis users before and after fitting of a microprocessor stance and swing control orthosis. Methods: Thirteen patients with various lower limb pareses completed a baseline survey for their current orthotic device (locked knee ankle foot orthosis or stance control orthosis) and a follow-up for the microprocessor stance and swing control orthosis with the Orthosis Evaluation Questionnaire, a new self-reported outcome measure devised by modifying the Prosthesis Evaluation Questionnaire for use in lower limb orthotics and the Activities of Daily Living Questionnaire. Results: The Orthosis Evaluation Questionnaire results demonstrated significant improvements by microprocessor stance and swing control orthosis use in the total score and the domains of ambulation (p = .001), paretic limb health (p = .04), sounds (p = .02), and well-being (p = .01). Activities of Daily Living Questionnaire results showed significant improvements with the microprocessor stance and swing control orthosis with regard to perceived safety and difficulty of activities of daily living. Conclusion: The microprocessor stance and swing control orthosis may facilitate an easier, more physiological, and safer execution of many activities of daily living compared to traditional leg orthosis technologies. Clinical relevance This study compared patient-reported outcomes of a microprocessor stance and swing control orthosis (C-Brace) to those with traditional knee ankle foot orthosis and stance control orthosis

  20. Non-visual spatial tasks reveal increased interactions with stance postural control.

    PubMed

    Woollacott, Marjorie; Vander Velde, Timothy

    2008-05-07

    The current investigation aimed to contrast the level and quality of dual-task interactions resulting from the combined performance of a challenging primary postural task and three specific, yet categorically dissociated, secondary central executive tasks. Experiments determined the extent to which modality (visual vs. auditory) and code (non-spatial vs. spatial) specific cognitive resources contributed to postural interference in young adults (n=9) in a dual-task setting. We hypothesized that the different forms of executive n-back task processing employed (visual-object, auditory-object and auditory-spatial) would display contrasting levels of interactions with tandem Romberg stance postural control, and that interactions within the spatial domain would be revealed as most vulnerable to dual-task interactions. Across all cognitive tasks employed, including auditory-object (aOBJ), auditory-spatial (aSPA), and visual-object (vOBJ) tasks, increasing n-back task complexity produced correlated increases in verbal reaction time measures. Increasing cognitive task complexity also resulted in consistent decreases in judgment accuracy. Postural performance was significantly influenced by the type of cognitive loading delivered. At comparable levels of cognitive task difficulty (n-back demands and accuracy judgments) the performance of challenging auditory-spatial tasks produced significantly greater levels of postural sway than either the auditory-object or visual-object based tasks. These results suggest that it is the employment of limited non-visual spatially based coding resources that may underlie previously observed visual dual-task interference effects with stance postural control in healthy young adults.

  1. The Stance Leads the Dance: The Emergence of Role in a Joint Supra-Postural Task

    PubMed Central

    Davis, Tehran J.; Pinto, Gabriela B.; Kiefer, Adam W.

    2017-01-01

    Successfully meeting a shared goal usually requires co-actors to adopt complementary roles. However, in many cases, who adopts what role is not explicitly predetermined, but instead emerges as a consequence of the differences in the individual abilities and constraints imposed upon each actor. Perhaps the most basic of roles are leader and follower. Here, we investigated the emergence of “leader-follower” dynamics in inter-personal coordination using a joint supra-postural task paradigm (Ramenzoni et al., 2011; Athreya et al., 2014). Pairs of actors were tasked with holding two objects in alignment (each actor manually controlled one of the objects) as they faced different demands for stance (stable vs. difficult) and control (which actor controlled the larger or smaller object). Our results indicate that when actors were in identical stances, neither led the inter-personal (between actors) coordination by any systematic fashion. Alternatively, when asymmetries in postural demands were introduced, the actor with the more difficult stance led the coordination (as determined using cross-recurrence quantification analysis). Moreover, changes in individual stance difficulty resulted in similar changes in the structure of both intra-personal (individual) and inter-personal (dyadic) coordination, suggesting a scale invariance of the task dynamics. Implications for the study of interpersonal coordination are discussed. PMID:28536547

  2. Approximate analytical solutions to the double-stance dynamics of the lossy spring-loaded inverted pendulum.

    PubMed

    Shahbazi, Mohammad; Saranlı, Uluç; Babuška, Robert; Lopes, Gabriel A D

    2016-12-05

    This paper introduces approximate time-domain solutions to the otherwise non-integrable double-stance dynamics of the 'bipedal' spring-loaded inverted pendulum (B-SLIP) in the presence of non-negligible damping. We first introduce an auxiliary system whose behavior under certain conditions is approximately equivalent to the B-SLIP in double-stance. Then, we derive approximate solutions to the dynamics of the new system following two different methods: (i) updated-momentum approach that can deal with both the lossy and lossless B-SLIP models, and (ii) perturbation-based approach following which we only derive a solution to the lossless case. The prediction performance of each method is characterized via a comprehensive numerical analysis. The derived representations are computationally very efficient compared to numerical integrations, and, hence, are suitable for online planning, increasing the autonomy of walking robots. Two application examples of walking gait control are presented. The proposed solutions can serve as instrumental tools in various fields such as control in legged robotics and human motion understanding in biomechanics.

  3. Dominant side in single-leg stance stability during floor oscillations at various frequencies

    PubMed Central

    2014-01-01

    Background We investigated lateral dominance in the postural stability of single-leg stance with anteroposterior floor oscillations at various frequencies. Methods Thirty adults maintained a single-leg stance on a force platform for 20 seconds per trial. Trials were performed with no oscillation (static condition) and with anteroposterior floor oscillations (2.5-cm amplitude) at six frequencies: 0.25, 0.5, 0.75, 1.0, 1.25 and 1.5 Hz (dynamic condition). A set of three trials was performed on each leg in each oscillation frequency in random order. The mean speed of the center of pressure in the anteroposterior direction (CoPap) was calculated as an index of postural stability, and frequency analysis of CoPap sway was performed. Footedness for carrying out mobilizing activities was assessed with a questionnaire. Results CoPap speed exponentially increased as oscillation frequency increased in both legs. The frequency analysis of CoPap showed a peak <0.3 Hz at no oscillation. The frequency components at 0.25-Hz oscillation included common components with no oscillation and those at 1.5-Hz oscillation showed the maximum amplitude among all conditions. Postural stability showed no significant difference between left- and right-leg stance at no oscillation and oscillations ≤1.25 Hz, but at 1.5-Hz oscillation was significantly higher in the right-leg stance than in the left-leg stance. For the lateral dominance of postural stability at individual levels, the lateral difference in postural stability at no oscillation was positively correlated with that at 0.25-Hz oscillation (r = 0.51) and negatively correlated with that at 1.5-Hz oscillation (r = -0.53). For 70% of subjects, the dominant side of postural stability was different at no oscillation and 1.5-Hz oscillation. In the subjects with left- or right-side dominance at no oscillation, 94% or 38% changed their dominant side at 1.5-Hz oscillation, with a significant difference between these percentages. In

  4. EFL Doctoral Students' Conceptions of Authorial Stance in Academic Knowledge Claims and the Tie to Epistemic Beliefs

    ERIC Educational Resources Information Center

    Chang, Peichin; Tsai, Chin-Chung

    2014-01-01

    Taking an effective authorial stance in research argumentation has been designated as both vitally important and challenging. The study investigated English as a foreign language (EFL) doctoral students' conceptions of authorial stance, the role of domains in affecting their conceptions, and the ties of the conceptions to the participants'…

  5. Are running speeds maximized with simple-spring stance mechanics?

    PubMed

    Clark, Kenneth P; Weyand, Peter G

    2014-09-15

    Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds. Copyright © 2014 the American Physiological Society.

  6. The single-leg-stance test in Parkinson's disease.

    PubMed

    Chomiak, Taylor; Pereira, Fernando Vieira; Hu, Bin

    2015-03-01

    Timed single-leg-stance test (SLST) is widely used to assess postural control in the elderly. In Parkinson's disease (PD), it has been shown that an SLST around 10 seconds or below may be a sensitive indicator of future falls. However, despite its role in fall risk, whether SLST times around 10 seconds marks a clinically important stage of disease progression has largely remained unexplored. A cross-sectional study where 27 people with PD were recruited and instructed to undertake timed SLST for both legs was conducted. Disease motor impairment was assessed with the Unified Parkinson's Disease Rating Scale Part 3 (UPDRS-III). This study found that: 1) the SLST in people with PD shows good test-retest reliability; 2) SLST values can be attributed to two non-overlapping clusters: a low (10.4 ± 6.3 seconds) and a high (47.6 ± 11.7 seconds) value SLST group; 3) only the low value SLST group can be considered abnormal when age-matched normative SLST data are taken into account for comparison; and 4) lower UPDRS-III motor performance, and the bradykinesia sub-score in particular, are only associated with the low SLST group. These results lend further support that a low SLST time around 10 seconds marks a clinically important stage of disease progression with significant worsening of postural stability in PD.

  7. Kung-fu versus swimming training and the effects on balance abilities in young adolescents.

    PubMed

    Baccouch, Rym; Rebai, Haithem; Sahli, Sonia

    2015-11-01

    Our purpose is to investigate the static balance control of young adolescents practicing kung-fu and swimming in order to find out which of these physical activities is the most effective in developing specific balance abilities in young adolescents. Comparative experimental study. University laboratory research. Three groups of 11-13-year-old boys (12 practicing Kung-Fu, 12 practicing swimming and 12 controls). Center of pressure (CoP) excursions were registered in upright bipedal and unipedal stances on a stabilometric force platform in eyes open (EO) and eyes closed (EC) conditions. Kung-fu practitioners control their balance (P < .05) better than controls and swimmers in the unipedal posture when visual inputs are available. Kung-fu training improved (P < .05) the bipedal balance control in the EO condition. However, swimming training developed (P < .05) bipedal balance control in both EO and EC conditions. The swimmers showed a lower reliance on vision (P < .05) compared to kung-fu practitioners. Both of these physical activities could be recommended for young adolescents as recreational or rehabilitation programs as they develop specific balance abilities that could be important for improving and maintaining optimal health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. "Seeing the Everyday through New Lenses": Pedagogies and Practices of Literacy Teacher Educators with a Critical Stance

    ERIC Educational Resources Information Center

    Dharamshi, Pooja

    2018-01-01

    This article explores the practices and pedagogies of six literacy teacher educators with a critical stance. In this qualitative research study, three semi-structured interviews were conducted with each participant over a three-year period. They were able to negotiate a critical stance into their teacher education courses in several ways: using an…

  9. Long-Term Adaptations to Unexpected Surface Perturbations: Postural Control During Stance and Gait in Train Conductors.

    PubMed

    Baumgart, Christian; Hoppe, Matthias Wilhelm; Freiwald, Jürgen

    2016-01-01

    The authors aimed to evaluate the differences in postural control during stance and gait between train conductors and controls. Twenty-one train conductors and 21 office workers performed 6 unilateral and bilateral balance tests on stable and unstable surfaces as well as a gait analysis. In the balance tests, the mean velocity of the center of pressure and unstable surface was measured. In the bilateral balance tests the selected stance width was measured. During gait the length, width, frequency, and velocity of the steps were calculated from the ground reaction forces. Train conductors showed a significantly greater step width during gait (15.4 ± 4.7 vs. 13.0 ± 3.4 cm; p = .035) and stance width during the bilateral stance on the unstable surface (21.0 ± 5.1 vs. 17.8 ± 3.7 cm; p = .026) than the office workers, while no differences were revealed in balance variables. The revealed differences between train conductors and office workers may represent task-specific feedforward control strategies, which increase the base of support and may be helpful to resist unexpected perturbations in trains.

  10. Constructing Language Normativity through the Animation of Stance in Spanish Language Medical Consultations

    PubMed Central

    Vickers, Caroline H.; Deckert, Sharon K.; Goble, Ryan

    2013-01-01

    The purpose of this study is to examine the construction of language normativity as medical providers interact with patients and animate stance within Spanish language medical consultations. The context of the study is a clinic in which providers use Spanish to communicate with monolingual Spanish-speaking patients. This clinic is in the United States, an English-speaking macro-societal context. Findings indicate that providers who are second language users of Spanish animate stance and interact with patients in ways that English is constructed as normative and Spanish as marked. Implications include the need to consider how the construction of language normativity within medical consultations affects health outcomes. PMID:24156518

  11. Acute effects of whole-body vibration on the motor function of patients with stroke: a randomized clinical trial.

    PubMed

    Silva, Adriana Teresa; Dias, Miqueline Pivoto Faria; Calixto, Ruanito; Carone, Antonio Luis; Martinez, Beatriz Bertolaccini; Silva, Andreia Maria; Honorato, Donizeti Cesar

    2014-04-01

    The aim of this study was to investigate the acute effects of whole-body vibration on the motor function of patients with stroke. The present investigation was a randomized clinical trial studying 43 individuals with hemiparesis after stroke, with 33 subjects allocated to the intervention group and 10 subjects allocated to the control group. The intervention group was subjected to one session of vibration therapy (frequency of 50 Hz and amplitude of 2 mm) comprising four 1-min series with 1-min rest intervals between series in three body positions: bipedal stances with the knees flexed to 30 degrees and 90 degrees and a unipedal stance on the paretic limb. The analytical tests were as follows: simultaneous electromyography of the affected and unaffected tibialis anterior and rectus femoris muscles bilaterally in voluntary isometric contraction; the Six-Minute Walk Test; the Stair-Climb Test; and the Timed Get-Up-and-Go Test. The data were analyzed by independent and paired t tests and by analysis of covariance. There was no evidence of effects on the group and time interaction relative to variables affected side rectus femoris, unaffected side rectus femoris, affected side tibialis anterior, unaffected side tibialis anterior, and the Stair-Climb Test (P > 0.05). There was evidence of effects on the group interaction relative to variables Six-Minute Walk Test and Timed Get-Up-and-Go Test (P < 0.05). Whole-body vibration contributed little to improve the functional levels of stroke patients.

  12. Stance and strategy: post-structural perspective and post-colonial engagement to develop nursing knowledge.

    PubMed

    Sochan, Anne M

    2011-07-01

    How should nursing knowledge advance? This exploration contextualizes its evolution past and present. In addressing how it evolved in the past, a probable historical evolution of its development draws on the perspectives of Frank & Gills's World System Theory, Kuhn's treatise on Scientific Revolutions, and Foucault's notions of Discontinuities in scientific knowledge development. By describing plausible scenarios of how nursing knowledge evolved, I create a case for why nursing knowledge developers should adopt a post-structural stance in prioritizing their research agenda(s). Further, by adopting a post-structural stance, I create a case on how nurses can advance their disciplinary knowledge using an engaging post-colonial strategy. Given an interrupted history caused by influence(s) constraining nursing's knowledge development by power structures external, and internal, to nursing, knowledge development can evolve in the future by drawing on post-structural interpretation, and post-colonial strategy. The post-structural writings of Deleuze & Guattari's understanding of 'Nomadology' as a subtle means to resist being constrained by existing knowledge development structures, might be a useful stance to understanding the urgency of why nursing knowledge should advance addressing the structural influences on its development. Furthermore, Bhabha's post-colonial elucidation of 'Hybridity' as an equally discreet means to change the culture of those constraining structures is an appropriate strategy to enact how nursing knowledge developers can engage with existing power structures, and simultaneously influence that engagement. Taken together, 'post-structural stance' and 'post-colonial strategy' can refocus nursing scholarship to learn from its past, in order to develop relevant disciplinary knowledge in its future. © 2011 Blackwell Publishing Ltd.

  13. Mentoring and Community: Inquiry as Stance and Science as Inquiry

    ERIC Educational Resources Information Center

    Melville, Wayne; Bartley, Anthony

    2010-01-01

    In this article, we investigate how mentoring relationships founded on inquiry as stance can work to emphasize the conditions that promote the development of teachers of science as inquiry. Drawing on data collected through semi-structured interviews, we have developed two narrative case studies based on the two mentoring relationships that exist…

  14. Clinical outcomes and frontal plane two-dimensional biomechanics during the 30-second single leg stance test in patients before and after hip abductor tendon reconstructive surgery.

    PubMed

    Huxtable, Rose E; Ackland, Timothy R; Janes, Gregory C; Ebert, Jay R

    2017-07-01

    Hip abductor tendon tears are a common cause of Greater Trochanteric Pain Syndrome. Conservative treatments are often ineffective and surgical reconstruction may be recommended. This study investigated the improvement in clinical outcomes and frontal plane two-dimensional biomechanics during a 30-second single leg stance test, in patients undergoing reconstruction. We hypothesized that clinical scores and pertinent biomechanical variables would significantly improve post-surgery, and these outcomes would be significantly correlated. Twenty-one patients with symptomatic tendon tears underwent reconstruction. Patients were evaluated pre-surgery, and at 6 and 12months post-surgery, using patient-reported outcome measures, assessment of hip abductor strength and six-minute walk capacity. Frontal plane, two-dimensional, biomechanical variables including pelvis-on-femur angle, pelvic drop, trunk lean and lateral pelvic shift, were evaluated throughout a 30-second single leg stance test. ANOVA evaluated outcomes over time, while Pearson's correlations investigated associations between clinical scores, pain, functional and biomechanical outcome variables. While clinical and functional measures significantly improved (P<0.05) over time, no significant group differences (P>0.05) were observed in biomechanical variables from pre- to post-surgery. While five patients displayed a positive Trendelenburg sign pre-surgery, only one was positive post-surgery. Clinical outcomes and biomechanical variables during the single leg stance test were not correlated. Despite improvements in clinical and functional measures over time, biomechanical changes during a weight bearing single leg stance test were not significantly different following tendon repair. Follow up beyond 12months may be required, whereby symptomatic relief may precede functional and biomechanical improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The artistic design stance and the interpretation of Paleolithic art.

    PubMed

    De Smedt, Johan; De Cruz, Helen

    2013-04-01

    The artistic design stance is an important part of art appreciation, but it remains unclear how it can be applied to artworks for which art historical context is no longer available, such as Ice Age art. We propose that some of the designer's intentions can be gathered noninferentially through direct experience with prehistoric artworks.

  16. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism

    PubMed Central

    Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G.; Horak, Fay B.

    2017-01-01

    The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson’s disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4–L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls (p < 0.05) in subjects with iPD with and without FOG, but not in FGD group (p = 0.151). Regarding the balance phase duration, a significant shortening was found in the three parkinsonian groups compared to controls (p < 0.001). Moreover, balance was significantly longer (p < 0.001) in iPD subjects without FOG compared to subjects with FGD and iPD subjects presenting FOG. Strong correlations between balance duration extracted by sensors and clinical mini-BESTest scores were found (ρ > 0.74), demonstrating the method’s validity. Our findings support the validity of the proposed method for

  17. Investigation of Anticipatory Postural Adjustments during One-Leg Stance Using Inertial Sensors: Evidence from Subjects with Parkinsonism.

    PubMed

    Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G; Horak, Fay B

    2017-01-01

    The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson's disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4-L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls ( p  < 0.05) in subjects with iPD with and without FOG, but not in FGD group ( p  = 0.151). Regarding the balance phase duration, a significant shortening was found in the three parkinsonian groups compared to controls ( p  < 0.001). Moreover, balance was significantly longer ( p  < 0.001) in iPD subjects without FOG compared to subjects with FGD and iPD subjects presenting FOG. Strong correlations between balance duration extracted by sensors and clinical mini-BESTest scores were found (ρ > 0.74), demonstrating the method's validity. Our findings support the validity of the proposed method for

  18. Comparison of Ball-And-Racket Impact Force in Two-Handed Backhand Stroke Stances for Different-Skill-Level Tennis Players.

    PubMed

    Lo, Kuo-Cheng; Hsieh, Yung-Chun

    2016-06-01

    This study compared the kinetic roles of the upper extremities in racket impact force generation between the open stance (OS) and square stance (SS) for tennis players with different skill levels in two-handed backhand strokes. Twelve male tennis players were divided into an advanced group (AG) (L3-L2 skill level) and intermediate group (IG) (L7-L6 skill level), and their data were used in a three-dimensional kinetic analysis. Their motions were captured using 21 reflective markers attached to anatomic landmarks for two-handed backhand stroke motion data collection. During the acceleration phase, significant differences were not observed between both stances, but they were observed between the groups with different skill levels for the force of the upper extremities (p = 0.027). The joint forces were significantly lower in the AG than in the IG. Players performing the SS had significantly larger pronation and supination of the wrist joint moment than those in the OS (p = 0.032) during the acceleration phase, irrespective of the playing level. Higher internal rotation moment after impact was observed at each joint, particularly among young intermediate tennis players, regardless of their stance. The AG demonstrated a higher joint force and moment at every joint compared with the IG at impact. Moreover, the AG demonstrated superior stroke efficiency and effectively reduced joint moment after impact and sports injury. Key pointsAdvanced players, regardless of open stance or square stance, have larger joint force and moment at each joint before ball impact resulting in better stroke efficiency and reduced chance of injury.Intermediate players, regardless of stance, have higher internal rotation moment at each joint instead of larger joint force as compared to advanced players before ball impact. The higher internal rotation moment will induce higher joint impact force which makes the player injury-prone.Young intermediate tennis players may want to avoid excessive

  19. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration.

    PubMed

    Fernando, Malindu E; Crowther, Robert G; Lazzarini, Peter A; Sangla, Kunwarjit S; Wearing, Scott; Buttner, Petra; Golledge, Jonathan

    2016-09-15

    Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls). Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm's correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen's d values (standardised mean difference) were reported for all significant outcomes. The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p < 0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p < 0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors. This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether

  20. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation.

    PubMed

    Honeine, Jean-Louis; Schieppati, Marco; Crisafulli, Oscar; Do, Manh-Cuong

    2016-01-01

    Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all

  1. The Neuro-Mechanical Processes That Underlie Goal-Directed Medio-Lateral APA during Gait Initiation

    PubMed Central

    Honeine, Jean-Louis; Schieppati, Marco; Crisafulli, Oscar; Do, Manh-Cuong

    2016-01-01

    Gait initiation (GI) involves passing from bipedal to unipedal stance. It requires a rapid movement of the center of foot pressure (CoP) towards the future swing foot and of the center of mass (CoM) in the direction of the stance foot prior to the incoming step. This anticipatory postural adjustment (APA) allows disengaging the swing leg from the ground and establishing favorable conditions for stepping. This study aimed to describe the neuro-mechanical process that underlies the goal-directed medio-lateral (ML) APA. We hypothesized that controlled knee flexion of the stance leg contributes to the initial ML displacement of the CoP and to the calibration of the first step. Fourteen subjects initiated gait starting from three different initial stance widths of 15 cm (Small), 30 cm (Medium), and 45 cm (Large). Optoelectronic, force platform and electromyogram (EMG) measurements were performed. During APA, soleus activity diminished bilaterally, while tibialis anterior (TA) activity increased, more so in the stance leg than in the swing leg, and to a larger extent with increasing initial stance width. Knee flexion of the stance leg was observed during APA and correlated with the ML CoP displacement towards the swing leg. ML CoP and CoM displacements during APA increased with increasing stance width. The activity of stance-leg TA was correlated with the degree of knee flexion. Swing-leg tensor fasciae latae (TFL) was also active during APA. Across subjects, when stance-leg tibialis activity was low, TFL activity was large and vice versa. The modulation of the ML CoP position during APA allowed the gravity-driven torque to place the CoM just lateral to the stance foot during step execution. Accordingly, the gravity-driven torque, the ML CoM velocity during step execution, and the step width at foot contact (FC) were lower in the Small and greater in the Large condition. Consequently, the position of the stepping foot at FC remained close to the sagittal plane in all

  2. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large

  3. Core muscle activity in a series of balance exercises with different stability conditions.

    PubMed

    Calatayud, Joaquin; Borreani, Sebastien; Martin, Julio; Martin, Fernando; Flandez, Jorge; Colado, Juan C

    2015-07-01

    Literature that provides progression models based on core muscle activity and postural manipulations is scarce. The purpose of this study was to investigate the core muscle activity in a series of balance exercises with different stability levels and additional elastic resistance. A descriptive study of electromyography (EMG) was performed with forty-four healthy subjects that completed 12 exercises in a random order. Exercises were performed unipedally or bipedally with or without elastic tubing as resistance on various unstable (uncontrolled multiaxial and uniaxial movement) and stable surfaces. Surface EMG on the lumbar multífidus spinae (LM), thoracic multífidus spinae (TM), lumbar erector spinae (LE), thoracic erector spinae (TE) and gluteus maximus (GM), on the dominant side of the body were collected to quantify the amount of muscle activity and were expressed as a % of the maximum voluntary isometric contraction (MVIC). Significant differences (p<.001) were found between exercises. The three unipedal standing exercises with additional elastic resistance generated the greatest EMG values, ranging from 19% MVIC to 30% MVIC. Postural manipulations with additional elastic resistance and/or unstable devices increase core muscle activity. An adequate exercise progression based on global core EMG could start with seated positions, progressing to bipedal standing stance (i.e., from either multiaxial or stable surface to uniaxial surface). Following this, unipedal standing positions may be performed (i.e., from either multiaxial or stable surface to uniaxial surface) and finally, elastic resistance must be added in order to increase EMG levels (i.e., from stable surface progressing to any of the used unstable surfaces). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Peripheral neuropathy: an often-overlooked cause of falls in the elderly.

    PubMed

    Richardson, J K; Ashton-Miller, J A

    1996-06-01

    Peripheral neuropathy is common in the elderly and results in impairments in distal proprioception and strength that hinder balance and predispose them to falls. The loss of heel reflexes, decreased vibratory sense that improves proximally, impaired position sense at the great toe, and inability to maintain unipedal stance for 10 seconds in three attempts all suggest functionally significant peripheral neuropathy. Physicians can help their patients with peripheral neuropathy to prevent falls by teaching them and their families about peripheral nerve dysfunction and its effects on balance and by advising patients to substitute vision for the lost somatosensory function, correctly use a cane, wear proper shoes and orthotics, and perform balance and upper extremity strengthening exercises.

  5. Intrarater test-retest reliability of static and dynamic stability indexes measurement using the Biodex Stability System during unilateral stance.

    PubMed

    Arifin, Nooranida; Abu Osman, Noor Azuan; Wan Abas, Wan Abu Bakar

    2014-04-01

    The measurements of postural balance often involve measurement error, which affects the analysis and interpretation of the outcomes. In most of the existing clinical rehabilitation research, the ability to produce reliable measures is a prerequisite for an accurate assessment of an intervention after a period of time. Although clinical balance assessment has been performed in previous study, none has determined the intrarater test-retest reliability of static and dynamic stability indexes during dominant single stance. In this study, one rater examined 20 healthy university students (female=12, male=8) in two sessions separated by 7 day intervals. Three stability indexes--the overall stability index (OSI), anterior/posterior stability index (APSI), and medial/ lateral stability index (MLSI) in static and dynamic conditions--were measured during single dominant stance. Intraclass correlation coefficient (ICC), standard error measurement (SEM) and 95% confidence interval (95% CI) were calculated. Test-retest ICCs for OSI, APSI, and MLSI were 0.85, 0.78, and 0.84 during static condition and were 0.77, 0.77, and 0.65 during dynamic condition, respectively. We concluded that the postural stability assessment using Biodex stability system demonstrates good-to-excellent test-retest reliability over a 1 week time interval.

  6. Elementary Students' Roles and Epistemic Stances during Document-Based History Lessons

    ERIC Educational Resources Information Center

    Nokes, Jeffery D.

    2014-01-01

    This article reports on a study that repositioned elementary students in new roles as active, critical participants in historical inquiry--roles that required a more mature epistemic stance. It reports 5th-grade students' responses to instructional methods intended to help them understand the nature of historical knowledge, appreciate the work of…

  7. [Adaptation of control mechanisms involved in upright undisturbed stance maintenance during prolonged darkness].

    PubMed

    Rougier, P

    2003-04-01

    To assess to which extent the non visual somato-sensorial information may, through a recalibration process, induce a reorganisation by the central nervous system to control undisturbed upright stance. Ten healthy adults were placed in complete darkness for a 24 min period. Their postural performance was recorded through a force platform on which they were required to stand still at regular intervals. Centre of Pressure (CP) displacements, recorded from the platform, were modelled as fractional brownian motion. Through this analysis, one may objectively assess from which distance and for how long the corrective process is initiated with the aim of slowing and retrace its steps. In addition, the degree to which the CP trajectories are successively controlled was determined. Once in complete darkness, an increase of the mean time intervals (Delta(t)) before the corrective process intervenes was observed, the effect being mostly significant for the mediolateral direction. In parallel, the mean distances covered at this Delta(t) were slightly affected for both mediolateral and anteroposterior directions. Lastly, the degree to which the CP trajectories are controlled tended to decrease. These data suggest a reorganisation of the control mechanisms called into play for maintaining an undisturbed upright stance, thus implying participation of the central nervous system. This short-term adaptation is discussed on the basis of our knowledge of long term adaptations previously observed in blind individuals, and also in a rehabilitation perspective.

  8. Effect of walking velocity on hindlimb kinetics during stance in normal horses.

    PubMed

    Khumsap, S; Clayton, H M; Lanovaz, J L

    2001-04-01

    The objectives of this study were to measure the effect of walking velocity on net joint moments and joint powers in the hindlimb during stance and to use the data to predict these variables at different walking velocities. Videographic and force data were collected synchronously from 5 sound horses walking over a force plate at a range of velocities. Force and kinematic data from 56 trials were combined using an inverse dynamic solution to determine net joint moments and joint powers. Analysis by simple regression and correlation (P < 0.05, r2 > or = 0.30, r > 0.50) showed that, in early stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: extensor moment and positive power at the hip, flexor moment and positive power at the stifle, extensor moment, negative and positive power at the tarsus, and flexor moment and negative power at the fetlock. In late stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: flexor moment at the hip, negative power at the stifle and flexor moment and positive power at the tarsus. As velocity increased, the hip showed an increase in energy generation, whereas the tarsus showed increases in both energy generation and absorption. It is concluded that an increase in walking velocity is associated with increases in peak magnitudes of the net joint moments and joint powers in the hindlimb; and that energy generation at the hip makes the largest contribution to the increase in velocity.

  9. Isolated and combined effects of asymmetric stance and pushing movement on the anticipatory and compensatory postural control.

    PubMed

    Lee, Yun-Ju; Aruin, Alexander S

    2014-04-01

    To investigate effects of symmetric and asymmetric stance and pushing movement on anticipatory and compensatory postural adjustments (APAs and CPAs). Ten healthy volunteers stood symmetrically (feet parallel) or asymmetrically (one foot forward and the other backward) and pushed a handle with both hands or right or left hand. Bilateral EMG activity of the trunk and leg muscles and center of pressure (COP) displacements in the anterior-posterior (AP) and medial-lateral (ML) directions were recorded and analyzed during the APAs and CPAs. Isolated asymmetry of stance was associated with larger muscle activity of the backward leg while isolated asymmetry of pushing movement induced larger trunk muscle activity on the contralateral side. A combined asymmetry of stance and pushing movement resulted in the increase or decrease of the thigh muscle activity and ML COP displacement depending on whether both asymmetries were induced on the same side of the body or on opposite sides. Both isolated and combined asymmetries affect APAs and CPAs in pushing. Using combined asymmetry of stance and arm movement might be beneficial in performing pushing activity. The outcome of the study provides a basis for studying postural control in individuals with unilateral impairment while performing daily tasks involving pushing. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. The Single-Leg-Stance Test in Parkinson’s Disease

    PubMed Central

    Chomiak, Taylor; Pereira, Fernando Vieira; Hu, Bin

    2015-01-01

    Background Timed single-leg-stance test (SLST) is widely used to assess postural control in the elderly. In Parkinson’s disease (PD), it has been shown that an SLST around 10 seconds or below may be a sensitive indicator of future falls. However, despite its role in fall risk, whether SLST times around 10 seconds marks a clinically important stage of disease progression has largely remained unexplored. Methods A cross-sectional study where 27 people with PD were recruited and instructed to undertake timed SLST for both legs was conducted. Disease motor impairment was assessed with the Unified Parkinson’s Disease Rating Scale Part 3 (UPDRS-III). Results This study found that: 1) the SLST in people with PD shows good test-retest reliability; 2) SLST values can be attributed to two non-overlapping clusters: a low (10.4 ± 6.3 seconds) and a high (47.6 ± 11.7 seconds) value SLST group; 3) only the low value SLST group can be considered abnormal when age-matched normative SLST data are taken into account for comparison; and 4) lower UPDRS-III motor performance, and the bradykinesia sub-score in particular, are only associated with the low SLST group. Conclusion These results lend further support that a low SLST time around 10 seconds marks a clinically important stage of disease progression with significant worsening of postural stability in PD. PMID:25584104

  11. Relationship between activation of ankle muscles and quasi-joint stiffness in early and middle stances during gait in patients with hemiparesis.

    PubMed

    Sekiguchi, Yusuke; Muraki, Takayuki; Tanaka, Naofumi; Izumi, Shin-Ichi

    2015-09-01

    It is unclear whether muscle contraction is necessary to increase quasi-joint stiffness (QJS) of the ankle joint during gait in patients with hemiparesis. The purpose of the present study was to investigate the relationship between QJS and muscle activation at the ankle joint in the stance phase during gait in patients with hemiparesis. Spatiotemporal and kinetic gait parameters and activation of the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles were measured using a 3-dimensional motion analysis system and surface electromyography, in 21 patients with hemiparesis due to stroke and 10 healthy individuals. In the early stance, the QJS on the paretic side (PS) of patients was greater than that on the non-PS (p<0.05) and not significantly correlated with activation of the three muscles. In the middle stance, the QJS on the PS was lower than that on the non-PS (p<0.05) and that on the right side of controls (p<0.001), which was positively correlated with activation of the MG (r=0.51, p<0.05) and SOL (r=0.49, p<0.05). In the patients with hemiparesis, plantarflexor activation may not contribute to QJS in the early stance. On the other hand, QJS in the middle stance may be attributed to activation of the MG and SOL. Our findings suggest that activation of the MG and SOL in the middle stance on the PS may require to be enhanced to increase QJS during gait in patients with hemiparesis. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.

    PubMed

    Rouse, Elliott J; Hargrove, Levi J; Perreault, Eric J; Peshkin, Michael A; Kuiken, Todd A

    2013-08-01

    The mechanical properties of human joints (i.e., impedance) are constantly modulated to precisely govern human interaction with the environment. The estimation of these properties requires the displacement of the joint from its intended motion and a subsequent analysis to determine the relationship between the imposed perturbation and the resultant joint torque. There has been much investigation into the estimation of upper-extremity joint impedance during dynamic activities, yet the estimation of ankle impedance during walking has remained a challenge. This estimation is important for understanding how the mechanical properties of the human ankle are modulated during locomotion, and how those properties can be replicated in artificial prostheses designed to restore natural movement control. Here, we introduce a mechatronic platform designed to address the challenge of estimating the stiffness component of ankle impedance during walking, where stiffness denotes the static component of impedance. The system consists of a single degree of freedom mechatronic platform that is capable of perturbing the ankle during the stance phase of walking and measuring the response torque. Additionally, we estimate the platform's intrinsic inertial impedance using parallel linear filters and present a set of methods for estimating the impedance of the ankle from walking data. The methods were validated by comparing the experimentally determined estimates for the stiffness of a prosthetic foot to those measured from an independent testing machine. The parallel filters accurately estimated the mechatronic platform's inertial impedance, accounting for 96% of the variance, when averaged across channels and trials. Furthermore, our measurement system was found to yield reliable estimates of stiffness, which had an average error of only 5.4% (standard deviation: 0.7%) when measured at three time points within the stance phase of locomotion, and compared to the independently determined

  13. Segment coupling and coordination variability analyses of the roundhouse kick in taekwondo relative to the initial stance position.

    PubMed

    Estevan, Isaac; Freedman Silvernail, Julia; Jandacka, Daniel; Falco, Coral

    2016-09-01

    The initial stance position (ISP) has been observed as a factor affecting the execution technique during taekwondo kicks. In the present study, authors aimed to analyse a roundhouse kick to the chest by measuring movement coordination and the variability of coordination and comparing this across the different ISP (0°, 45° and 90°). Eight experienced taekwondo athletes performed consecutive kicking trials in random order from every of the three relative positions. The execution was divided into three phases (stance, first swing and second swing phase). A motion capture system was used to measure athletes' angular displacement of pelvis and thigh. A modified vector coding technique was used to quantify the coordination of the segments which contributed to the overall movement. The variability of this coordination (CV) for each ISP was also calculated. Comparative analysis showed that during the stance phase in the transverse plane, athletes coordinated movement of the trunk and thigh with a higher frequency of in-phase and lower frequency of exclusive thigh rotation in the 0° stance than the 90° stance position (P < 0.05). CV was also influenced by the different ISP. During the first swing and the majority of the second swing phase, predominant in-phase coordination of the pelvis and thigh was observed. Including exercises that require in-phase movement could not only help athletes to acquire coordination stability but also efficiency. The existence of a constraint such as ISP implies an increase of the variability when the athletes have to kick from ISP they are not used to adopt (i.e., 0° and 90° ISP) as an evidence of adaptability in the athletes' execution technique.

  14. Radiosteriometric analysis of movement in the sacroiliac joint during a single-leg stance in patients with long-lasting pelvic girdle pain.

    PubMed

    Kibsgård, Thomas J; Røise, Olav; Sturesson, Bengt; Röhrl, Stephan M; Stuge, Britt

    2014-04-01

    Chamberlain's projections (anterior-posterior X-ray of the pubic symphysis) have been used to diagnose sacroiliac joint mobility during the single-leg stance test. This study examined the movement in the sacroiliac joint during the single-leg stance test with precise radiostereometric analysis. Under general anesthesia, tantalum markers were inserted into the dorsal sacrum and the ilium of 11 patients with long-lasting and severe pelvic girdle pain. After two to three weeks, a radiostereometric analysis was conducted while the subjects performed a single-leg stance. Small movements were detected in the sacroiliac joint during the single-leg stance. In both the standing- and hanging-leg sacroiliac join, a total of 0.5 degree rotation was observed; however, no translations were detected. There were no differences in total movement between the standing- and hanging-leg sacroiliac joint. The movement in the sacroiliac joint during the single-leg stance is small and almost undetectable by the precise radiostereometric analysis. A complex movement pattern was seen during the test, with a combination of movements in the two joints. The interpretation of the results of this study is that, the Chamberlain examination likely is inadequate in the examination of sacroiliac joint movement in patients with pelvic girdle pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Fall Risk-Relevant Functional Mobility Outcomes in Dementia Following Dyadic Tai Chi Exercise

    PubMed Central

    Yao, Lan; Giordani, Bruno J.; Algase, Donna L.; You, Mei; Alexander, Neil B.

    2012-01-01

    Whether persons with dementia benefit from fall prevention exercise is unclear. Applying the Positive Emotion-Motivated Tai Chi protocol, preliminary findings concerning adherence and effects of a dyadic Tai Chi exercise program on persons with Alzheimer’s disease (AD) are reported. Using pre/ posttest design, 22 community-dwelling AD-caregiver dyads participated in the program. Fall-risk-relevant functional mobility was measured using Unipedal Stance Time (UST) and Timed Up and Go (TUG) tests. Results showed that 19/22 (86.4%) AD patients completed the 16-week program and final assessment; 16/19 dyads (84.2%) completed the prescribed home program as reported by caregivers. UST adjusted mean improved from 4.0 to 5.1 (Week 4, p < .05) and 5.6 (Week 16, p < .05); TUG improved from 13.2 to 11.6 (Week 4, p < .05) and 11.6 (Week 16, p > .05) post intervention. Retaining dementia patients in an exercise intervention remains challenging. The dyadic Tai Chi approach appears to succeed in keeping AD-caregiver dyads exercising and safe. PMID:22517441

  16. Fall risk-relevant functional mobility outcomes in dementia following dyadic tai chi exercise.

    PubMed

    Yao, Lan; Giordani, Bruno J; Algase, Donna L; You, Mei; Alexander, Neil B

    2013-03-01

    Whether persons with dementia benefit from fall prevention exercise is unclear. Applying the Positive Emotion-Motivated Tai Chi protocol, preliminary findings concerning adherence and effects of a dyadic Tai Chi exercise program on persons with Alzheimer's disease (AD) are reported. Using pre/posttest design, 22 community-dwelling AD-caregiver dyads participated in the program. Fall-risk-relevant functional mobility was measured using Unipedal Stance Time (UST) and Timed Up and Go (TUG) tests. Results showed that 19/22 (86.4%) AD patients completed the 16-week program and final assessment; 16/19 dyads (84.2%) completed the prescribed home program as reported by caregivers. UST adjusted mean improved from 4.0 to 5.1 (Week 4, p < .05) and 5.6 (Week 16, p < .05); TUG improved from 13.2 to 11.6 (Week 4, p < .05) and 11.6 (Week 16, p > .05) post intervention. Retaining dementia patients in an exercise intervention remains challenging. The dyadic Tai Chi approach appears to succeed in keeping AD-caregiver dyads exercising and safe.

  17. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  18. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  19. Stylizing Voices, Stances, and Identities Related to Medium of Education in India

    ERIC Educational Resources Information Center

    Sandhu, Priti

    2015-01-01

    This study analyzes the narrative-based interview data of three Indian women to examine the manner in which they utilize stylization to construct identity-rich, ideological stances related to discriminatory discourses of Hindi and English medium education in the linguistically rich, albeit complex, present-day context of India. Stylization is…

  20. From relational ontology to transformative activist stance on development and learning: expanding Vygotsky's (CHAT) project

    NASA Astrophysics Data System (ADS)

    Stetsenko, Anna

    2008-07-01

    This paper offers steps towards overcoming current fragmentation within sociocultural approaches by expansively reconstructing a broad dialectical view on human development and learning (drawing on Vygotsky's project) underwritten by ideology of social justice. The common foundation for sociocultural approaches is developed by dialectically supplanting relational ontology with the notion that collaborative purposeful transformation of the world is the core of human nature and the principled grounding for learning and development. An activist transformative stance suggests that people come to know themselves and their world as well as ultimately come to be human in and through (not in addition to) the processes of collaboratively transforming the world in view of their goals. This means that all human activities (including psychological processes and the self) are instantiations of contributions to collaborative transformative practices that are contingent on both the past and the vision for the future and therefore are profoundly imbued with ideology, ethics, and values. And because acting, being, and knowing are seen from a transformative activist stance as all rooted in, derivative of, and instrumental within a collaborative historical becoming, this stance cuts across and bridges the gaps (a) between individual and social and (b) among ontological, epistemological, and moral-ethical (ideological) dimensions of activity.

  1. Trunk's natural inclination influences stance limb kinetics, but not body kinematics, during gait initiation in able men.

    PubMed

    Leteneur, Sébastien; Simoneau, Emilie; Gillet, Christophe; Dessery, Yoann; Barbier, Franck

    2013-01-01

    The imposing mass of the trunk in relation to the whole body has an important impact on human motion. The objective of this study is to determine the influence of trunk's natural inclination--forward (FW) or backward (BW) with respect to the vertical--on body kinematics and stance limb kinetics during gait initiation.Twenty-five healthy males were divided based on their natural trunk inclination (FW or BW) during gait initiation. Instantaneous speed was calculated at the center of mass at the first heel strike. The antero-posterior impulse was calculated by integrating the antero-posterior ground reaction force in time. Ankle, knee, hip and thoraco-lumbar (L5) moments were calculated using inverse dynamics and only peaks of the joint moments were analyzed. Among all the investigated parameters, only joint moments present significant differences between the two groups. The knee extensor moment is 1.4 times higher (P<0.001) for the BW group, before the heel contact. At the hip, although the BW group displays a flexor moment 2.4 times higher (P<0.001) before the swing limb's heel-off, the FW group displays an extensor moment 3.1 times higher (P<0.01) during the swing phase. The three L5 extensor peaks after the toe-off are respectively 1.7 (P<0.001), 1.4 (P<0.001) and 1.7 (P<0.01) times higher for the FW group. The main results support the idea that the patterns described during steady-state gait are already observable during gait initiation. This study also provides reference data to further investigate stance limb kinetics in specific or pathologic populations during gait initiation. It will be of particular interest for elderly people, knowing that this population displays atypical trunk postures and present a high risk of falling during this forward stepping.

  2. Communicating Epistemic Stance: How Speech and Gesture Patterns Reflect Epistemicity and Evidentiality

    ERIC Educational Resources Information Center

    Roseano, Paolo; González, Montserrat; Borràs-Comes, Joan; Prieto, Pilar

    2016-01-01

    This study investigates how epistemic stance is encoded and perceived in face-to-face communication when language is regarded as comprised by speech and gesture. Two studies were conducted with this goal in mind. The first study consisted of a production task in which participants performed opinion reports. Results showed that speakers communicate…

  3. Postural Performance and Strategy in the Unipedal Stance of Soccer Players at Different Levels of Competition

    PubMed Central

    Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe

    2006-01-01

    Context: Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. Objective: To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Design: Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Setting: Sports performance laboratory. Patients or Other Participants: Fifteen national male soccer players (age = 24 ± 3 years, height = 179 ± 5 cm, mass = 72 ± 3 kg) and 15 regional male soccer players (age = 23 ± 3 years, height = 174 ± 4 cm, mass = 68 ± 5 kg) participated in the study. Intervention(s): The subjects performed posturographic tests with eyes open and closed. Main Outcome Measure(s): While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Results: Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. Conclusions: In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies. PMID:16791302

  4. Postural performance and strategy in the unipedal stance of soccer players at different levels of competition.

    PubMed

    Paillard, Thierry; Noé, Frédéric; Rivière, Terence; Marion, Vincent; Montoya, Richard; Dupui, Philippe

    2006-01-01

    Sport training enhances the ability to use somatosensory and otolithic information, which improves postural capabilities. Postural changes are different according to the sport practiced, but few authors have analyzed subjects' postural performances to discriminate the expertise level among highly skilled athletes within a specific discipline. To compare the postural performance and the postural strategy between soccer players at different levels of competition (national and regional). Repeated measures with 1 between-groups factor (level of competition: national or regional) and 1 within-groups factor (vision: eyes open or eyes closed). Dependent variables were center-of-pressure surface area and velocity; total spectral energy; and percentage of low-, medium-, and high-frequency band. Sports performance laboratory. Fifteen national male soccer players (age = 24 +/- 3 years, height = 179 +/- 5 cm, mass = 72 +/- 3 kg) and 15 regional male soccer players (age = 23 +/- 3 years, height = 174 +/- 4 cm, mass = 68 +/- 5 kg) participated in the study. The subjects performed posturographic tests with eyes open and closed. While subjects performed static and dynamic posturographic tests, we measured the center of foot pressure on a force platform. Spatiotemporal center-of-pressure measurements were used to evaluate the postural performance, and a frequency analysis of the center-of-pressure excursions (fast Fourier transform) was conducted to estimate the postural strategy. Within a laboratory task, national soccer players produced better postural performances than regional players and had a different postural strategy. The national players were more stable than the regional players and used proprioception and vision information differently. In the test conditions specific to playing soccer, level of playing experience influenced postural control performance measures and strategies.

  5. Forefoot-rearfoot coupling patterns and tibial internal rotation during stance phase of barefoot versus shod running.

    PubMed

    Eslami, Mansour; Begon, Mickaël; Farahpour, Nader; Allard, Paul

    2007-01-01

    Based on twisted plate and mitered hinge models of the foot and ankle, forefoot-rearfoot coupling motion patterns can contribute to the amount of tibial rotation. The present study determined the differences of forefoot-rearfoot coupling patterns as well as excessive excursion of tibial internal rotation in shod versus barefoot conditions during running. Sixteen male subjects ran 10 times at 170 steps per minute under the barefoot and shod conditions. Forefoot-rearfoot coupling motions were assessed by measuring mean relative phase angle during five intervals of stance phase for the main effect of five time intervals and two conditions (ANOVA, P<0.05). Tibial internal rotation excursion was compared between the shod and barefoot conditions over the first 50% of stance phase using paired t-test, (P<0.05). Forefoot adduction/abduction and rearfoot eversion/inversion coupling motion patterns were significantly different between the conditions and among the intervals (P<0.05; effect size=0.47). The mean absolute relative angle was significantly modified to 37 degrees in-phase relationship at the heel-strike of running with shoe wears. No significant differences were noted in the tibial internal rotation excursion between shod and barefoot conditions. Significant variations in the forefoot adduction/abduction and rearfoot eversion/inversion coupling patterns could have little effect on the amount of tibial internal rotation excursion. Yet it remains to be determined whether changes in the frontal plane forefoot-rearfoot coupling patterns influence the tibia kinematics for different shoe wears or foot orthotic interventions. The findings question the rational for the prophylactic use of forefoot posting in foot orthoses.

  6. Origins of Children's Externalizing Behavior Problems in Low-Income Families: Toddlers’ Willing Stance toward their Mothers as the Missing Link

    PubMed Central

    Kochanska, Grazyna; Kim, Sanghag; Boldt, Lea J.

    2013-01-01

    Although children's active role in socialization has been long acknowledged, relevant research has typically focused on children's difficult temperament or negative behaviors that elicit coercive and adversarial processes, largely overlooking their capacity to act as positive, willing, even enthusiastic, active socialization agents. We studied the willing, receptive stance toward their mothers in 186 24-44-month-old children in a low-income sample. Confirmatory Factor Analysis supported a latent construct of willing stance, manifested as children's responsiveness to mothers in naturalistic interactions, responsive imitation in teaching contexts, and committed compliance with maternal prohibitions, all observed in the laboratory. Structural Equation Modeling analyses confirmed that ecological adversity undermined maternal responsiveness and responsiveness, in turn, was linked to children's willing stance. A compromised willing stance predicted externalizing behavior problems, assessed 10 months later, and fully mediated the links between maternal responsiveness and those outcomes. Ecological adversity had a direct, unmediated effect on internalizing behavior problems. Considering children's active role as willing, receptive agents capable of embracing parental influence can lead to a more complete understanding of detrimental mechanisms that link ecological adversity with antisocial developmental pathways. It can also inform research on the normative socialization process, consistent with the objectives of developmental psychopathology. PMID:24229537

  7. Anteroposterior Stability of the Knee during the Stance Phase of Gait after Anterior Cruciate Ligament Deficiency

    PubMed Central

    Chen, CH; Li, JS; Hosseini, A; Gadikota, HR; Gill, TJ; Li, G

    2011-01-01

    Quadriceps avoidance and higher flexion strategy have been assumed as effects of ACL deficiency on knee joint function during gait. However, the effect of ACL deficiency on anteroposterior stability of the knee during gait is not well defined. In this study, ten patients with unilateral acute ACL ruptures and the contralateral side intact performed gait on a treadmill. Flexion angles and anteroposterior translation of the ACL injured and the intact controlateral knees were measured at every 10% of the stance phase of the gait (from heel strike to toe-off) using a combined MRI and dual fluoroscopic image system (DFIS). The data indicated that during the stance phase of the gait, the ACL-deficient knees showed higher flexion angles compared to the intact contralateral side, consistent with the assumption of a higher flexion gait strategy. However, the data also revealed that the ACL-deficient knees had higher anterior tibial translation compared to the intact contralateral side during the stance phase of the gait. The higher flexion gait strategy was not shown to correlate to a reduction of the anterior tibial translation in ACL deficient knees. These data may provide indications for conservative treatment or surgical reconstruction of the ACL injured knees in restoration of the knee kinematics during daily walking activities. PMID:22169387

  8. Potential roles of force cues in human stance control.

    PubMed

    Cnyrim, Christian; Mergner, Thomas; Maurer, Christoph

    2009-04-01

    Human stance is inherently unstable. A small deviation from upright body orientation is enough to yield a gravitational component in the ankle joint torque, which tends to accelerate the body further away from upright ('gravitational torque'; magnitude is related to body-space lean angle). Therefore, to maintain a given body lean position, a corresponding compensatory torque must be generated. It is well known that subjects use kinematic sensory information on body-space lean from the vestibular system for this purpose. Less is known about kinetic cues from force/torque receptors. Previous work indicated that they are involved in compensating external contact forces such as a pull or push having impact on the body. In this study, we hypothesized that they play, in addition, a role when the vestibular estimate of the gravitational torque becomes erroneous. Reasons may be sudden changes in body mass, for instance by a load, or an impairment of the vestibular system. To test this hypothesis, we mimicked load effects on the gravitational torque in normal subjects and in patients with chronic bilateral vestibular loss (VL) with eyes closed. We added/subtracted extra torque to the gravitational torque by applying an external contact force (via cable winches and a body harness). The extra torque was referenced to body-space lean, using different proportionality factors. We investigated how it affected body-space lean responses that we evoked using sinusoidal tilts of the support surface (motion platform) with different amplitudes and frequencies (normals +/-1 degrees, +/-2 degrees, and +/-4 degrees at 0.05, 0.1, 0.2, and 0.4 Hz; patients +/-1 degrees and +/-2 degrees at 0.05 and 0.1 Hz). We found that added/subtracted extra torque scales the lean response in a systematic way, leading to increase/decrease in lean excursion. Expressing the responses in terms of gain and phase curves, we compared the experimental findings to predictions obtained from a recently published

  9. Teachers' Inquiry Stance: Collaboration through Data Analysis in a Professional Learning Community

    ERIC Educational Resources Information Center

    Haack, Darin Marcus

    2017-01-01

    The purpose of this qualitative case study was to understand how teachers experience a stance toward inquiry through participation in Professional Learning Communities (PLCs). In order to meet this objective, the following questions framed this research: (1) How do individual teachers make meaning of the epistemological and dialogic aspects of…

  10. The Construction of Stance in Reporting Clauses: A Cross-Disciplinary Study of Theses

    ERIC Educational Resources Information Center

    Charles, Maggie

    2006-01-01

    Using a corpus-based approach, this paper investigates the construction of stance in finite reporting clauses with "that"-clause complementation. The data are drawn from two corpora of theses in contrasting disciplines: a social science--politics--and a natural science--materials science. A network for the analysis of reporting clauses is…

  11. Symposium Introduction: Stepping into Their Power--The Development of a Teacher Leadership Stance

    ERIC Educational Resources Information Center

    Smulyan, Lisa

    2016-01-01

    This introduction to the symposium on Teacher Leadership describes how a group of teachers have developed a definition of teacher leadership as a stance. The article explores how prior definitions of teacher leadership tend to focus on individual skills or roles. Neoliberal educational policies that emphasize market-based policy, privatization,…

  12. Development of a sliding mode control model for quiet upright stance.

    PubMed

    Zhang, Hongbo; Nussbaum, Maury A; Agnew, Michael J

    2016-02-01

    Human upright stance appears maintained or controlled intermittently, through some combination of passive and active ankle torques, respectively representing intrinsic and contractile contributions of the ankle musculature. Several intermittent postural control models have been proposed, though it has been challenging to accurately represent actual kinematics and kinetics and to separately estimate passive and active ankle torque components. Here, a simplified single-segment, 2D (sagittal plane) sliding mode control model was developed for application to track kinematics and kinetics during upright stance. The model was implemented and evaluated using previous experimental data consisting of whole body angular kinematics and ankle torques. Tracking errors for the whole-body center-of-mass (COM) angle and angular velocity, as well as ankle torque, were all within ∼10% of experimental values, though tracking performance for COM angular acceleration was substantially poorer. The model also enabled separate estimates of the contributions of passive and active ankle torques, with overall contributions estimated here to be 96% and 4% of the total ankle torque, respectively. Such a model may have future utility in understanding human postural control, though additional work is needed, such as expanding the model to multiple segments and to three dimensions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. EMG responses to maintain stance during multidirectional surface translations

    NASA Technical Reports Server (NTRS)

    Henry, S. M.; Fung, J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    To characterize muscle synergy organization underlying multidirectional control of stance posture, electromyographic activity was recorded from 11 lower limb and trunk muscles of 7 healthy subjects while they were subjected to horizontal surface translations in 12 different, randomly presented directions. The latency and amplitude of muscle responses were quantified for each perturbation direction. Tuning curves for each muscle were examined to relate the amplitude of the muscle response to the direction of surface translation. The latencies of responses for the shank and thigh muscles were constant, regardless of perturbation direction. In contrast, the latencies for another thigh [tensor fascia latae (TFL)] and two trunk muscles [rectus abdominis (RAB) and erector spinae (ESP)] were either early or late, depending on the perturbation direction. These three muscles with direction-specific latencies may play different roles in postural control as prime movers or as stabilizers for different translation directions, depending on the timing of recruitment. Most muscle tuning curves were within one quadrant, having one direction of maximal activity, generally in response to diagonal surface translations. Two trunk muscles (RAB and ESP) and two lower limb muscles (semimembranosus and peroneus longus) had bipolar tuning curves, with two different directions of maximal activity, suggesting that these muscle can play different roles as part of different synergies, depending on translation direction. Muscle tuning curves tended to group into one of three regions in response to 12 different directions of perturbations. Two muscles [rectus femoris (RFM) and TFL] were maximally active in response to lateral surface translations. The remaining muscles clustered into one of two diagonal regions. The diagonal regions corresponded to the two primary directions of active horizontal force vector responses. Two muscles (RFM and adductor longus) were maximally active orthogonal to

  14. Pedagogical Stances of High School ESL Teachers: "Huelgas" in High School ESL Classrooms

    ERIC Educational Resources Information Center

    del Carmen Salazar, Maria

    2010-01-01

    This article presents a qualitative case study of the pedagogical stances of high school English as a Second Language (ESL) teachers, and the subsequent responses of resistance or conformity by their English Language Learners (ELLs). The participants include three high school ESL teachers and 60 high school ESL students of Mexican origin. Findings…

  15. Divergent Effects of Cognitive Load on Quiet Stance and Task-Linked Postural Coordination

    ERIC Educational Resources Information Center

    Mitra, Suvobrata; Knight, Alec; Munn, Alexandra

    2013-01-01

    Performing a cognitive task while maintaining upright stance can lead to increased or reduced body sway depending on tasks and experimental conditions. Because greater sway is commonly taken to indicate loosened postural control, and vice versa, the precise impact of cognitive load on postural stability has remained unclear. In much of the large…

  16. Changing and Changed Stance toward Norm Selection in Philippine Universities: Its Pedagogical Implications

    ERIC Educational Resources Information Center

    Bernardo, Alejandro S.

    2014-01-01

    This paper reports the results of a survey which involved College English teachers from three leading universities in the Philippines. The results point to one conclusion--College English teachers now have a changing and changed stance toward norm selection in Philippine Universities. The results give the impression that a good number of College…

  17. Obese children experience higher plantar pressure and lower foot sensitivity than non-obese.

    PubMed

    da Rocha, Emmanuel Souza; Bratz, Denise Tiane Klein; Gubert, Larissa Colaço; de David, Ana; Carpes, Felipe P

    2014-08-01

    Children obesity is a risk factor for several dysfunctions and diseases, with negative effects on the morphology of the locomotor system, plantar pressure and body stability. A relationship between postural control and sensorimotor information has been assumed. However, there is few data on the effects of children obesity on the availability of sensorial information from the foot during standing. Twenty obese and twenty non-obese children were evaluated for foot sensitivity and plantar pressure during unipedal and bipedal stance. Data were compared between obese and non-obese participants, between foot regions and between legs. Obese children experiences higher plantar pressure and have lower foot sensitivity than non-obese. Additionally, obese children had similar sensitivity for different foot regions, as compared to the non-obese. Children obesity negatively influences foot sensitivity. Bipedal stance seemed more sensitive to differentiate between obese and non-obese. Higher plantar pressure and lower foot sensitivity in obese children may affect performance of weight bearing activities, contribute to higher risk of foot injuries and have potential implication for children footwear design and clinical physical examination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Alterations in knee contact forces and centers in stance phase of gait: A detailed lower extremity musculoskeletal model.

    PubMed

    Marouane, H; Shirazi-Adl, A; Adouni, M

    2016-01-25

    Evaluation of contact forces-centers of the tibiofemoral joint in gait has crucial biomechanical and pathological consequences. It involves however difficulties and limitations in in vitro cadaver and in vivo imaging studies. The goal is to estimate total contact forces (CF) and location of contact centers (CC) on the medial and lateral plateaus using results computed by a validated finite element model simulating the stance phase of gait for normal as well as osteoarthritis, varus-valgus and posterior tibial slope altered subjects. Using foregoing contact results, six methods commonly used in the literature are also applied to estimate and compare locations of CC at 6 periods of stance phase (0%, 5%, 25%, 50%, 75% and 100%). TF joint contact forces are greater on the lateral plateau very early in stance and on the medial plateau thereafter during 25-100% stance periods. Large excursions in the location of CC (>17mm), especially on the medial plateau in the mediolateral direction, are computed. Various reported models estimate quite different CCs with much greater variations (~15mm) in the mediolateral direction on both plateaus. Compared to our accurately computed CCs taken as the gold standard, the centroid of contact area algorithm yielded least differences (except in the mediolateral direction on the medial plateau at ~5mm) whereas the contact point and weighted center of proximity algorithms resulted overall in greatest differences. Large movements in the location of CC should be considered when attempting to estimate TF compartmental contact forces in gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Postural steadiness during quiet stance does not associate with ability to recover balance in older women.

    PubMed

    Mackey, Dawn C; Robinovitch, Stephen N

    2005-10-01

    Fall risk depends on ability to maintain balance during daily activities, and on ability to recover balance following a perturbation such as a slip or trip. We examined whether similar neuromuscular variables govern these two domains of postural stability. We conducted experiments with 25 older women (mean age=78 yrs, SD=7 yrs). We acquired measures of postural steadiness during quiet stance (mean amplitude, velocity, and frequency of centre-of-pressure movement when standing with eyes open or closed, on a rigid or compliant surface). We also measured ability to recover balance using the ankle strategy after release from a forward leaning position (based on the maximum release angle where recovery was possible, and corresponding values of reaction time, rate of ankle torque generation, and peak ankle torque). We found that balance recovery variables were not strongly or consistently correlated with postural steadiness variables. The maximum release angle associated with only three of the sixteen postural steadiness variables (mean frequency in rigid, eyes open condition (r=0.36, P=.041), and mean amplitude (r=0.41, P=.038) and velocity (r=0.49, P=.015) in compliant, eyes closed condition). Reaction time and peak torque did not correlate with any steadiness variables, and rate of torque generation correlated moderately with the mean amplitude and velocity of the centre-of-pressure in the compliant, eyes closed condition (r=0.48-0.60). Our results indicate that postural steadiness during quiet stance is not predictive of ability to recover balance with the ankle strategy. Accordingly, balance assessment and fall prevention programs should individually target these two components of postural stability.

  20. [Timed up and go right and left unipodal stance results in Chilean older people with different degrees of disability].

    PubMed

    Mancilla S, Eladio; Valenzuela H, José; Escobar C, Máximo

    2015-01-01

    The Preventive Health Examination of older people in Chile incorporates the timed up and go (TUG) and right and left unipodal stance test (RUPS and LUPS) as functional assessment methods. To assess if TUG and LUPS discriminate older people with different degrees of disability. TUG, RUPS and LUPS were assessed in 860 participants aged 71.3 ± 6.9 years (591 females) attending a primary health care clinic. The results of the three tests were expressed in seconds. Participants were classified as non-disabled without any risk, non-disabled with risk and in risk of dependence, using the Functional Assessment of Older People of EFAM (the Spanish acronym), previously validated for Chilean older people. In all participants TUG, LUPS and RUPS values were 8.9 ± 3.6, 10 ± 10.6 and 9.7 ± 10.3 seconds (sec) respectively. Among non-disabled participants without risk, the values for TUG, RUPS and LUPS were: 7.9 ± 2.3, 12.7 ± 11.1 and 12.2 ± 10.9 sec respectively. The figures for non-disabled participants with risk were 8.4 ± 2.6, 8.8 ± 9.8 and 8.9 ± 9.8 sec respectively. The figures for participants in risk of dependence were 11.7 ± 5.3, 5.1 ± 7.8 and 4.5 ± 7.1 sec, respectively. In this group of older participants there is an association between the degree of disability and the results of TUG, RUPS and LUPS.

  1. Turkish Language Teachers' Stance Taking Movements in the Discourse on Globalization and Language

    ERIC Educational Resources Information Center

    Coskun, Ibrahim

    2013-01-01

    This study investigates how Turkish teachers take and give stances in the discourse on globalization and language by using linguistic resources. According to the findings obtained through the discourse analysis of the corpus that consisted of 36 h of recording of the discussion among 4 teachers with 5 to 10 years of teaching experience, the…

  2. Muscle contributions to knee extension in the early stance phase in patients with knee osteoarthritis.

    PubMed

    Ogaya, Shinya; Kubota, Ryo; Chujo, Yuta; Hirooka, Eiko; Kwang-Ho, Kim; Hase, Kimitaka

    2017-10-01

    The aim of this study was to analyze individual muscle contributions to knee angular acceleration using a musculoskeletal simulation analysis and evaluate knee extension mechanics in the early stance phase in patients with knee osteoarthritis (OA). The subjects comprised 15 patients with medial knee OA and 14 healthy elderly individuals. All participants underwent gait performance test using 8 infrared cameras and two force plates to measure the kinetic and kinematic data. The simulation was driven by 92 Hill-type muscle-tendon units of the lower extremities and a trunk with 23° of freedom. We analyzed each muscle contribution to knee angular acceleration in the 5%-15% and 15%-25% periods of the stance phase (% SP) using an induced acceleration analysis. We compared accelerations by individual muscles between the two groups using an analysis of covariance for controlling gait speed. Patients with knee OA had a significantly lesser knee extension acceleration by the vasti muscles and higher knee acceleration by hip adductors than those in controls in 5-15% SP. In addition, knee OA resulted in significantly lesser knee extension acceleration by the vasti muscles in 15-25% SP. These results indicate that patients with knee OA have decreased dependency on the vasti muscles to control knee movements during early stance phase. Hip adductor muscles, which mainly control mediolateral motion, partly compensate for the weak knee extension by the vasti muscles in patients with knee OA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Variability of single-leg versus double-leg stance radiographs in the varus knee.

    PubMed

    Chen, Andrew; Rich, Valerie; Bain, Elizabeth; Sterett, William I

    2009-07-01

    We evaluated measured radiographic parameter variability between single-leg stance (SLS) and double-leg stance (DLS) radiographs in patients with varus knee malalignment, indicated for high tibial osteotomy. Fifty-three consecutive knees (mean, 49 years; range, 18-79 years) were evaluated for varus thrust. SLS and DLS radiographs were obtained. A single blinded observer measured mechanical axis angles and weight-bearing line (WBL) deviation using a goniometer. Mechanical axis angles averaged 9.1 degrees (DLS) and 11.3 degrees (SLS). SLS radiographs averaged 9% greater WBL medialization than did DLS. Medial opening averaged 16.4 mm (DLS) and 18.8 mm (SLS). DLS and SLS radiographs showed no significant differences in patients without varus thrust. Patients with varus thrust demonstrated differences in mechanical axis angles (DLS, 9.4 degrees; SLS, 12.2 degrees), WBL deviation (12.1% less), medialization (DLS), and medial opening necessary for correction (DLS, 16.6 mm; SLS, 20.3 mm). In varus thrust, SLS radiographs more closely replicate dynamic knee malalignment, possibly providing more accurate measurements of angular deformity.

  4. The Professional Stance of Ethics and Religious Culture Teachers in Québec

    ERIC Educational Resources Information Center

    Estivalèzes, Mireille

    2017-01-01

    In September 2008, a new Ethics and Religious Culture programme was implemented in Québec's elementary and secondary schools. One of the main pedagogical challenges of this new course has been the requirement that teachers adopt a professional stance of impartiality. Teachers must refrain from sharing their points of view, so as not to influence…

  5. Anteroposterior stability of the knee during the stance phase of gait after anterior cruciate ligament deficiency.

    PubMed

    Chen, Chih-Hui; Li, Jing-Sheng; Hosseini, Ali; Gadikota, Hemanth R; Gill, Thomas J; Li, Guoan

    2012-03-01

    Quadriceps avoidance and higher flexion strategies have been assumed as effects of ACL deficiency on knee joint function during gait. However, the effect of ACL deficiency on anteroposterior stability of the knee during gait is not well defined. In this study, 10 patients with unilateral acute ACL ruptures and the contralateral side intact performed gait on a treadmill. Flexion angles and anteroposterior translation of the ACL injured and the intact controlateral knees were measured at every 10% of the stance phase of the gait (from heel strike to toe-off) using a combined MRI and dual fluoroscopic imaging system (DFIS). The data indicated that during the stance phase of the gait, the ACL-deficient knees showed higher flexion angles compared to the intact contralateral side, consistent with the assumption of a higher flexion gait strategy. However, the data also revealed that the ACL-deficient knees had higher anterior tibial translation compared to the intact contralateral side during the stance phase of the gait. The higher flexion gait strategy was not shown to correlate to a reduction of the anterior tibial translation in ACL deficient knees. These data may provide indications for conservative treatment or surgical reconstruction of the ACL injured knees in restoration of the knee kinematics during daily walking activities. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Tandem Stance Avoidance Using Adaptive and Asymmetric Admittance Control for Fall Prevention.

    PubMed

    Nakagawa, Shotaro; Hasegawa, Yasuhisa; Fukuda, Toshio; Kondo, Izumi; Tanimoto, Masanori; Di, Pei; Huang, Jian; Huang, Qiang

    2016-05-01

    Fall prevention is one of the most important functions of walking assistance devices for user's safety. It is preferable that these devices prevent the user from being in the state where the risk of falling is high rather than helping them recovering from falling motion. During turning, when the user is in the tandem stance, a state where both legs form a line along walking direction, a support base that is surrounded by two legs becomes small, and a stability margin becomes small. This paper therefore aims to prevent the tandem stance by using nonwearable robot "intelligent cane" for the elderly or physically challenged person. Generally, the behavior of the lower limb follows the upper body turning. This paper therefore introduces a cane robot control method which constrains the behavior of user's upper body. By adjusting an admittance parameter of the robot according to the positions of a support leg, the robot resists to turn while a support leg is on the same side of the turning direction. A swing leg on the turning direction side therefore freely moves to the turning direction, while a swing leg on the opposite direction side of turning hardly move to the turning direction.

  7. Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults.

    PubMed

    Cho, Be-long; Scarpace, Diane; Alexander, Neil B

    2004-07-01

    To determine the relationships between two tests of stepping ability (the maximal step length (MSL) and rapid step test (RST)) and standard tests of standing balance, gait, mobility, and functional impairment in a group of at-risk older adults. Cross-sectional study. University-based laboratory. One hundred sixty-seven mildly balance-impaired older adults recruited for a balance-training and fall-reduction program (mean age 78, range 65-90). Measures of stepping maximally (MSL, the ability to maximally step out and return to the initial position) and rapidly (RST, the time taken to step out and return in multiple directions as fast as possible); standard measures of balance, gait, and mobility including timed tandem stance (TS), tandem walk (TW, both timing and errors), timed unipedal stance (US), timed up and go (TUG), performance oriented mobility assessment (POMA), and 6-minute walk (SMW); measures of leg strength (peak knee and ankle torque and power at slow and fast speeds); self-report measures of frequent falls (>2 per 12 months), disability (Established Population for Epidemiologic Studies of the Elderly (EPESE) physical function), and confidence to avoid falls (Activity-specific Balance Confidence (ABC) Scale). Spearman and Pearson correlation, intraclass correlation coefficient, logistic regression, and linear regression were used for data analysis. MSL consistently predicted a number of self-report and performance measures at least as well as other standard balance measures. MSL correlations with EPESE physical function, ABC, TUG, and POMA scores; SMW; and peak maximum knee and ankle torque and power were at least as high as those correlations seen with TS, TW, or US. MSL score was associated with the risk of being a frequent faller. In addition, the six MSL directions were highly correlated (up to 0.96), and any one of the leg directions yielded similar relationships with functional measures and a history of falls. Relationships between RST and these

  8. Stance and Engagement in Pure Mathematics Research Articles: Linking Discourse Features to Disciplinary Practices

    ERIC Educational Resources Information Center

    McGrath, Lisa; Kuteeva, Maria

    2012-01-01

    Recent ESP research into academic writing has shown how writers convey their stance and interact with readers across different disciplines. However, little research has been carried out into the disciplinary writing practices of the pure mathematics academic community from an ESP genre analysis perspective. This study begins to address this gap by…

  9. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    PubMed

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The association between later cortical potentials and later phases of postural reactions evoked by perturbations to upright stance.

    PubMed

    Quant, Sylvia; Maki, Brian E; McIlroy, William E

    2005-06-24

    Previous studies have suggested that early cortical potentials (e.g. N1) that are evoked by perturbations to upright stance are associated with sensory processing of the initial perturbation and that later potentials may represent cognitive processing of this perturbation. However, it has also been suggested that later cortical potentials could reflect sensory and motor processing of later phases of the postural reaction. The current study set out to provide additional insight into the association between perturbation-evoked cortical potentials and postural reactions evoked by whole-body perturbations. By altering the deceleration onset of the perturbation, which altered the timing of later postural responses, we determined whether changes in later postural responses were associated with changes in later potentials. Based on previous work, we hypothesized that later potentials would not be associated with changes in later postural responses. During stance, seven healthy young adults were instructed to maintain their balance following two types of perturbations: (1) acceleration phase immediately followed by a deceleration phase (TASK 1), and (2) acceleration phase followed by a delayed deceleration phase (TASK 2). In spite of profound task differences in later postural responses, results revealed no significant differences in later potentials. This work provides additional support for the idea that latter elements of perturbation-evoked cortical responses are likely independent of evoked motor reactions required to maintain stability.

  11. Epistemic Stance in Spoken L2 English: The Effect of Task and Speaker Style

    ERIC Educational Resources Information Center

    Gablasova, Dana; Brezina, Vaclav; Mcenery, Tony; Boyd, Elaine

    2017-01-01

    The article discusses epistemic stance in spoken L2 production. Using a subset of the Trinity Lancaster Corpus of spoken L2 production, we analysed the speech of 132 advanced L2 speakers from different L1 and cultural backgrounds taking part in four speaking tasks: one largely monologic presentation task and three interactive tasks. The study…

  12. From Tununak to Beaufort: Taking a Critical Inquiry Stance as a First Year Teacher

    ERIC Educational Resources Information Center

    Fecho, Bob; Price, Kim; Read, Chris

    2004-01-01

    In this article, the authors show how two first year teachers a continent apart--Kim in the village of Tununak on the Bering Sea in Alaska and Chris in Beaufort, South Carolina, on the Atlantic Ocean--were able to take inquiry stances on their classrooms. In particular, through analysis of e-mails written in Chris' and Kim's first years of…

  13. "We make choices we think are going to save us": Debate and stance identification for online breast cancer CAM discussions.

    PubMed

    Zhang, Shaodian; Qiu, Lin; Chen, Frank; Zhang, Weinan; Yu, Yong; Elhadad, Noémie

    2017-04-01

    Patients discuss complementary and alternative medicine (CAM) in online health communities. Sometimes, patients' conflicting opinions toward CAM-related issues trigger debates in the community. The objectives of this paper are to identify such debates, identify controversial CAM therapies in a popular online breast cancer community, as well as patients' stances towards them. To scale our analysis, we trained a set of classifiers. We first constructed a supervised classifier based on a long short-term memory neural network (LSTM) stacked over a convolutional neural network (CNN) to detect automatically CAM-related debates from a popular breast cancer forum. Members' stances in these debates were also identified by a CNN-based classifier. Finally, posts automatically flagged as debates by the classifier were analyzed to explore which specific CAM therapies trigger debates more often than others. Our methods are able to detect CAM debates with F score of 77%, and identify stances with F score of 70%. The debate classifier identified about 1/6 of all CAM-related posts as debate. About 60% of CAM-related debate posts represent the supportive stance toward CAM usage. Qualitative analysis shows that some specific therapies, such as Gerson therapy and usage of laetrile, trigger debates frequently among members of the breast cancer community. This study demonstrates that neural networks can effectively locate debates on usage and effectiveness of controversial CAM therapies, and can help make sense of patients' opinions on such issues under dispute. As to CAM for breast cancer, perceptions of their effectiveness vary among patients. Many of the specific therapies trigger debates frequently and are worth more exploration in future work.

  14. [Variables determining the amount of care for very preterm neonates: the concept of medical stance].

    PubMed

    Burguet, A; Menget, A; Chary-Tardy, A-C; Savajols, E; Abed, N; Thiriez, G

    2014-02-01

    To compare the amount of medical interventions on very preterm neonates (24-31 weeks of gestation) in two French university tertiary care centers, one of which is involved in a Neonatal Developmental Care program. A secondary objective is to assess whether this difference in medical interventions can be linked to a difference in mortality and morbidity rates. We prospectively included all very preterm neonates free from lethal malformation born live in these two centers between 2006 and 2010. These inclusion criteria were met by 1286 patients, for whom we compared the rate of five selected medical interventions: birth by caesarean section, chest intubation in the delivery room, surfactant therapy, pharmacological treatment of patent ductus arteriosus, and red blood cell transfusion. The rates of the five medical interventions were systematically lower in the center that is involved in Neonatal Developmental Care. There was no significant difference in survival at discharge with no severe cerebral ultrasound scan abnormalities between the two centers. There were, however, significantly higher rates of bronchopulmonary dysplasia and nosocomial sepsis and longer hospital stays when the patients were not involved in a Neonatal Developmental Care program. This benchmarking study shows that in France, in the first decade of the 21st century, there are as many ways to handle very preterm neonates as there are centers in which they are born. This brings to light the concept of medical stance, which is the general care approach prior to the treatment itself. This medical stance creates the overall framework for the staff's decision-making regarding neonate care. The different parameters structuring medical stance are discussed. Moreover, this study raises the problematic issue of the aftermath of benchmarking studies when the conclusion is an increase of morbidity in cases where procedure leads to more interventions. Copyright © 2013 Elsevier Masson SAS. All rights

  15. Towards a Critical Health Equity Research Stance: Why Epistemology and Methodology Matter More Than Qualitative Methods.

    PubMed

    Bowleg, Lisa

    2017-10-01

    Qualitative methods are not intrinsically progressive. Methods are simply tools to conduct research. Epistemology, the justification of knowledge, shapes methodology and methods, and thus is a vital starting point for a critical health equity research stance, regardless of whether the methods are qualitative, quantitative, or mixed. In line with this premise, I address four themes in this commentary. First, I criticize the ubiquitous and uncritical use of the term health disparities in U.S. public health. Next, I advocate for the increased use of qualitative methodologies-namely, photovoice and critical ethnography-that, pursuant to critical approaches, prioritize dismantling social-structural inequities as a prerequisite to health equity. Thereafter, I discuss epistemological stance and its influence on all aspects of the research process. Finally, I highlight my critical discourse analysis HIV prevention research based on individual interviews and focus groups with Black men, as an example of a critical health equity research approach.

  16. Influence of physicians' life stances on attitudes to end-of-life decisions and actual end-of-life decision-making in six countries.

    PubMed

    Cohen, J; van Delden, J; Mortier, F; Löfmark, R; Norup, M; Cartwright, C; Faisst, K; Canova, C; Onwuteaka-Philipsen, B; Bilsen, J

    2008-04-01

    To examine how physicians' life stances affect their attitudes to end-of-life decisions and their actual end-of-life decision-making. Practising physicians from various specialties involved in the care of dying patients in Belgium, Denmark, The Netherlands, Sweden, Switzerland and Australia received structured questionnaires on end-of-life care, which included questions about their life stance. Response rates ranged from 53% in Australia to 68% in Denmark. General attitudes, intended behaviour with respect to two hypothetical patients, and actual behaviour were compared between all large life-stance groups in each country. Only small differences in life stance were found in all countries in general attitudes and intended and actual behaviour with regard to various end-of-life decisions. However, with regard to the administration of drugs explicitly intended to hasten the patient's death (PAD), physicians with specific religious affiliations had significantly less accepting attitudes, and less willingness to perform it, than non-religious physicians. They had also actually performed PAD less often. However, in most countries, both Catholics (up to 15.7% in The Netherlands) and Protestants (up to 20.4% in The Netherlands) reported ever having made such a decision. The results suggest that religious teachings influence to some extent end-of-life decision-making, but are certainly not blankly accepted by physicians, especially when dealing with real patients and circumstances. Physicians seem to embrace religious belief in a non-imperative way, allowing adaptation to particular situations.

  17. Towards a Critical Health Equity Research Stance: Why Epistemology and Methodology Matter More than Qualitative Methods

    ERIC Educational Resources Information Center

    Bowleg, Lisa

    2017-01-01

    Qualitative methods are not intrinsically progressive. Methods are simply tools to conduct research. Epistemology, the justification of knowledge, shapes methodology and methods, and thus is a vital starting point for a critical health equity research stance, regardless of whether the methods are qualitative, quantitative, or mixed. In line with…

  18. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    PubMed

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p < 0.005) and BF (PM < AM, p = 0.008) activity was observed in control participants. Conversely no circadian variation was seen in any muscles in the RLS patients. RLS patients had an increased TA and GL activity (RLS > Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Self-reported walking ability predicts functional mobility performance in frail older adults.

    PubMed

    Alexander, N B; Guire, K E; Thelen, D G; Ashton-Miller, J A; Schultz, A B; Grunawalt, J C; Giordani, B

    2000-11-01

    To determine how self-reported physical function relates to performance in each of three mobility domains: walking, stance maintenance, and rising from chairs. Cross-sectional analysis of older adults. University-based laboratory and community-based congregate housing facilities. Two hundred twenty-one older adults (mean age, 79.9 years; range, 60-102 years) without clinical evidence of dementia (mean Folstein Mini-Mental State score, 28; range, 24-30). We compared the responses of these older adults on a questionnaire battery used by the Established Populations for the Epidemiologic Study of the Elderly (EPESE) project, to performance on mobility tasks of graded difficulty. Responses to the EPESE battery included: (1) whether assistance was required to perform seven Katz activities of daily living (ADL) items, specifically with walking and transferring; (2) three Rosow-Breslau items, including the ability to walk up stairs and walk a half mile; and (3) five Nagi items, including difficulty stooping, reaching, and lifting objects. The performance measures included the ability to perform, and time taken to perform, tasks in three summary score domains: (1) walking ("Walking," seven tasks, including walking with an assistive device, turning, stair climbing, tandem walking); (2) stance maintenance ("Stance," six tasks, including unipedal, bipedal, tandem, and maximum lean); and (3) chair rise ("Chair Rise," six tasks, including rising from a variety of seat heights with and without the use of hands for assistance). A total score combines scores in each Walking, Stance, and Chair Rise domain. We also analyzed how cognitive/ behavioral factors such as depression and self-efficacy related to the residuals from the self-report and performance-based ANOVA models. Rosow-Breslau items have the strongest relationship with the three performance domains, Walking, Stance, and Chair Rise (eta-squared ranging from 0.21 to 0.44). These three performance domains are as strongly

  20. Trans-tibial amputee gait: time-distance parameters and EMG activity.

    PubMed

    Isakov, E; Keren, O; Benjuya, N

    2000-12-01

    Gait analysis of trans-tibial (TT) amputees discloses asymmetries in gait parameters between the amputated and sound legs. The present study aimed at outlining differences between both legs with regard to kinematic parameters and activity of the muscles controlling the knees. The gait of 14 traumatic TT amputees, walking at a mean speed of 74.96 m/min, was analysed by means of an electronic walkway, video camera, and portable electromyography system. Results showed differences in kinematic parameters. Step length, step time and swing time were significantly longer, while stance time and single support time were significantly shorter on the amputated side. A significant difference was also found between knee angle in both legs at heel strike. The biceps femoris/vastus medialis ratio in the amputated leg, during the first half of stance phase, was significantly higher when compared to the same muscle ratio in the sound leg. This difference was due to the higher activity of the biceps femoris, almost four times higher than the vastus medialis in the amputated leg. The observed differences in time-distance parameters are due to stiffness of the prosthesis ankle (the SACH foot) that impedes the normal forward advance of the amputated leg during the first half of stance. The higher knee flexion at heel strike is due to the necessary socket alignment. Unlike in the sound leg, the biceps femoris in the amputated leg reaches maximal activity during the first half of stance, cocontracting with the vastus medialis, to support body weight on the amputated leg. The obtained data can serve as a future reference for evaluating the influence of new prosthetic components on the quality of TT amputee's gait.

  1. “We make choices we think are going to save us”: Debate and stance identification for online breast cancer CAM discussions

    PubMed Central

    Zhang, Shaodian; Qiu, Lin; Chen, Frank; Zhang, Weinan; Yu, Yong; Elhadad, Noémie

    2017-01-01

    Patients discuss complementary and alternative medicine (CAM) in online health communities. Sometimes, patients’ conflicting opinions toward CAM-related issues trigger debates in the community. The objectives of this paper are to identify such debates, identify controversial CAM therapies in a popular online breast cancer community, as well as patients’ stances towards them. To scale our analysis, we trained a set of classifiers. We first constructed a supervised classifier based on a long short-term memory neural network (LSTM) stacked over a convolutional neural network (CNN) to detect automatically CAM-related debates from a popular breast cancer forum. Members’ stances in these debates were also identified by a CNN-based classifier. Finally, posts automatically flagged as debates by the classifier were analyzed to explore which specific CAM therapies trigger debates more often than others. Our methods are able to detect CAM debates with F score of 77%, and identify stances with F score of 70%. The debate classifier identified about 1/6 of all CAM-related posts as debate. About 60% of CAM-related debate posts represent the supportive stance toward CAM usage. Qualitative analysis shows that some specific therapies, such as Gerson therapy and usage of laetrile, trigger debates frequently among members of the breast cancer community. This study demonstrates that neural networks can effectively locate debates on usage and effectiveness of controversial CAM therapies, and can help make sense of patients’ opinions on such issues under dispute. As to CAM for breast cancer, perceptions of their effectiveness vary among patients. Many of the specific therapies trigger debates frequently and are worth more exploration in future work. PMID:28967000

  2. Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.

    PubMed

    Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo

    2015-10-01

    Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The Transformative Power of Taking an Inquiry Stance on Practice: Practitioner Research as Narrative and Counter-Narrative

    ERIC Educational Resources Information Center

    Ravitch, Sharon M.

    2014-01-01

    Within the ever-developing, intersecting, and overlapping contexts of globalization, top-down policy, mandates, and standardization of public and higher education, many conceptualize and position practitioner research as a powerful stance and a tool of social, communal, and educational transformation, a set of methodological processes that…

  4. Taking an Evaluative Stance to Decision-Making about Professional Development Options in Early Childhood Education and Care

    ERIC Educational Resources Information Center

    Brownlee, Joanne Lunn; Sumsion, Jennifer; Irvine, Susan; Berthelsen, Donna; Farrell, Ann; Walsh, Kerryann; Ryan, Sharon; Mulhearn, Gerry

    2015-01-01

    This article builds on our ongoing work in conceptualising an "evaluative stance" framework to assist in understanding how leaders in the field of early childhood education and care (ECEC) make decisions about the selection of professional development options for themselves and their staff. It introduces the notion that evaluative…

  5. Neural Correlates of Task Cost for Stance Control with an Additional Motor Task: Phase-Locked Electroencephalogram Responses

    PubMed Central

    Hwang, Ing-Shiou; Huang, Cheng-Ya

    2016-01-01

    With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634

  6. [The stance of abortion in the Brazilian printed media ahead of the 2010 presidential elections: the exclusion of public health from the debate].

    PubMed

    Fontes, Maria Lucineide Andrade

    2012-07-01

    this article presents the results of research to monitor the Brazilian printed media in order to identify the stance of the abortion issue during the period from July 6 to October 29, 2010, which was the period of the official presidential campaign in Brazil. based on the monitoring of 28 printed media vehicles (newspapers and magazines) with nationwide circulation, the research selected 464 texts, of which 434 were considered valid for the study. The media studied included stories, reports, notes, opinion columns, interviews and letters from readers. although abortion was widely mentioned in Brazilian news coverage of the presidential campaign in 2010, with an average of four texts published per day, the stance adopted for the issue was not from the standpoint of public health. Among the 434 texts analyzed, only one report explicitly addressed epidemiological data linking abortion to women's health. In the other texts, the positioning of abortion was guided by the electoral stance that associated it with the dispute for the votes of the religious communities and conservative voters.

  7. Auditory biofeedback substitutes for loss of sensory information in maintaining stance.

    PubMed

    Dozza, Marco; Horak, Fay B; Chiari, Lorenzo

    2007-03-01

    The importance of sensory feedback for postural control in stance is evident from the balance improvements occurring when sensory information from the vestibular, somatosensory, and visual systems is available. However, the extent to which also audio-biofeedback (ABF) information can improve balance has not been determined. It is also unknown why additional artificial sensory feedback is more effective for some subjects than others and in some environmental contexts than others. The aim of this study was to determine the relative effectiveness of an ABF system to reduce postural sway in stance in healthy control subjects and in subjects with bilateral vestibular loss, under conditions of reduced vestibular, visual, and somatosensory inputs. This ABF system used a threshold region and non-linear scaling parameters customized for each individual, to provide subjects with pitch and volume coding of their body sway. ABF had the largest effect on reducing the body sway of the subjects with bilateral vestibular loss when the environment provided limited visual and somatosensory information; it had the smallest effect on reducing the sway of subjects with bilateral vestibular loss, when the environment provided full somatosensory information. The extent that all subjects substituted ABF information for their loss of sensory information was related to the extent that each subject was visually dependent or somatosensory-dependent for their postural control. Comparison of postural sway under a variety of sensory conditions suggests that patients with profound bilateral loss of vestibular function show larger than normal information redundancy among the remaining senses and ABF of trunk sway. The results support the hypothesis that the nervous system uses augmented sensory information differently depending both on the environment and on individual proclivities to rely on vestibular, somatosensory or visual information to control sway.

  8. Visual judgements of steadiness in one-legged stance: reliability and validity.

    PubMed

    Haupstein, T; Goldie, P

    2000-01-01

    There is a paucity of information about the validity and reliability of clinicians' visual judgements of steadiness in one-legged stance. Such judgements are used frequently in clinical practice to support decisions about treatment in the fields of neurology, sports medicine, paediatrics and orthopaedics. The aim of the present study was to address the validity and reliability of visual judgements of steadiness in one-legged stance in a group of physiotherapists. A videotape of 20 five-second performances was shown to 14 physiotherapists with median clinical experience of 6.75 years. Validity of visual judgement was established by correlating scores obtained from an 11-point rating scale with criterion scores obtained from a force platform. In addition, partial correlations were used to control for the potential influence of body weight on the relationship between the visual judgements and criterion scores. Inter-observer reliability was quantified between the physiotherapists; intra-observer reliability was quantified between two tests four weeks apart. Mean criterion-related validity was high, regardless of whether body weight was controlled for statistically (Pearson's r = 0.84, 0.83, respectively). The standard error of estimating the criterion score was 3.3 newtons. Inter-observer reliability was high (ICC (2,1) = 0.81 at Test 1 and 0.82 at Test 2). Intra-observer reliability was high (on average ICC (2,1) = 0.88; Pearson's r = 0.90). The standard error of measurement for the 11-point scale was one unit. The finding of higher accuracy of making visual judgements than previously reported may be due to several aspects of design: use of a criterion score derived from the variability of the force signal which is more discriminating than variability of centre of pressure; use of a discriminating visual rating scale; specificity and clear definition of the phenomenon to be rated.

  9. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.

    PubMed

    Burnfield, Judith M; Eberly, Valerie J; Gronely, Joanne K; Perry, Jacquelin; Yule, William Jared; Mulroy, Sara J

    2012-03-01

    Microprocessor controlled prosthetic knees (MPK) offer opportunities for improved walking stability and function, but some devices' swing phase features may exceed needs of users with invariable cadence. One MPK offers computerized control of only stance (C-Leg Compact). To assess Medicare Functional Classification Level K2 walkers' ramp negotiation performance, function and balance while using a non-MPK (NMPK) compared to the C-Leg Compact. Crossover. Gait while ascending and descending a ramp (stride characteristics, kinematics, electromyography) and function were assessed in participant's existing NMPK and again in the C-Leg Compact following accommodation. Ramp ascent and descent were markedly faster in the C-Leg Compact compared to the NMPK (p ≤ 0.006), owing to increases in stride length (p ≤ 0.020) and cadence (p ≤ 0.020). Residual limb peak knee flexion and ankle dorsiflexion were significantly greater (12.9° and 4.9° more, respectively) during single limb support while using the C-Leg Compact to descend ramps. Electromyography (mean, peak) did not differ significantly between prosthesis. Function improved in the C-Leg Compact as evidenced by a significantly faster Timed Up and Go and higher functional questionnaire scores. Transfemoral K2 walkers exhibited significantly improved function and balance while using the stance-phase only MPK compared to their traditional NMPK.

  10. Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking

    PubMed Central

    Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.

    2013-01-01

    Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662

  11. Primary mechanical factors contributing to foot eversion moment during the stance phase of running.

    PubMed

    Tsujimoto, Norio; Nunome, Hiroyuki; Ikegami, Yasuo

    2017-05-01

    Rearfoot external eversion moments due to ground reaction forces (GRF) during running have been suggested to contribute to overuse running injuries. This study aimed to identify primary factors inducing these rearfoot external eversion moments. Fourteen healthy men ran barefoot across a force plate embedded in the middle of 30-m runway with 3.30 ± 0.17 m · s -1 . Total rearfoot external eversion/inversion moments (Mtot) were broken down into the component Mxy due to medio-lateral GRF (Fxy) and the component Mz due to vertical GRF (Fz). Ankle joint centre height and medio-lateral distance from the centre of pressure to the ankle joint centre (a_cop) were calculated as the moment arm of these moments. Mxy dominated Mtot just after heel contact, with the magnitude strongly dependent on Fxy, which was most likely caused by the medio-lateral foot velocity before heel contact. Mz then became the main generator of Mtot throughout the first half of the stance phase, during which a_cop was the critical factor influencing the magnitude. Medio-lateral foot velocity before heel contact and medio-lateral distance from the centre of pressure to the ankle joint centre throughout the first half of the stance phase were identified as primary factors inducing the rearfoot external eversion moment.

  12. How providing more or less time to solve a cognitive task interferes with upright stance control; a posturographic analysis on healthy young adults.

    PubMed

    Rougier, Patrice R; Bonnet, Cédrick T

    2016-06-01

    emphasized how undisturbed upright stance control can be impacted by mental tasks requiring attention, whatever their nature (calculation or navigation) and their relative difficulty. Depending on the provided instructions, i.e. focusing our attention on body movements or on the opposite diverting this attention toward other objectives, the evaluation of upright stance control capacities might be drastically altered. Copyright © 2016. Published by Elsevier B.V.

  13. "It's a wild thing, waiting to get me": stance analysis of African Americans with diabetes.

    PubMed

    Davis, Boyd H; Pope, Charlene; Mason, Peyton R; Magwood, Gayenell; Jenkins, Carolyn M

    2011-01-01

    This mixed methods study uses a unique approach from social science and linguistics methodologies, a combination of positioning theory and stance analysis, to examine how 20 African Americans with type 2 diabetes make sense of the practices that led to recurrent emergency department visits to identify needs for more effective intervention. In a purposive sample of postemergency department visit interviews with a same-race interviewer, people responded to open-ended questions reflecting on the decision to seek emergency department care. As applied to diabetes education, positioning theory explains that people use their language to position themselves toward their disease, their medications, and the changes in their lives. Transcriptions were coded using discourse analysis to categorize themes. As a form of triangulation, stance analysis measured language patterns using factor analysis to see when and how speakers revealed affect, attitude, and agentive choices for action. Final analysis revealed that one third of the sample exhibited high scores for positive agency or capacity for decision-making and self-management, while the rest expressed less control and more negative emotions and fears that may preclude self-management. This approach suggests a means to tailor diabetes education considering alternative approaches focused on communication for those facing barriers.

  14. Using Argument-Driven Inquiry to enhance students' argument sophistication when supporting a stance in the context of Socioscientific Issues

    NASA Astrophysics Data System (ADS)

    Grooms, Jonathon A.

    This quasi-experimental study assesses the extent to which the Argument-Driven Inquiry (ADI) instructional model enhances undergraduate students' abilities to generate quality arguments supporting their stance in the context of a Socioscientific Issue (SSI) as compared to students experiencing a traditional style of instruction. Enhancing the quality of undergraduate students' arguments in the context of SSI can serve as an indirect measure of their scientific literacy and their ability to make sound decisions on issues that are inherently scientific but also involve social implications. Data collected in this study suggest that the undergraduate students experiencing the ADI instruction more readily provide rationales in their arguments supporting their decisions regarding two SSI-tasks as compared to a group of undergraduate students experiencing traditional instruction. This improvement in argument quality and gain in scientific literacy was achieved despite the overall lower SSI related content knowledge of the ADI students. Furthermore, the gap between the argument quality of those students with high versus low SSI related content knowledge was closed within the ADI group, while the same gap persisted post-intervention within the traditional instruction students. The role of students' epistemological sophistication was also investigated, which showed that neither instructional strategy was effective at shifting students' epistemological sophistication toward an evaluativist stance. However, the multiplists within the ADI group were able to significantly increase the sophistication of their arguments whereas the traditional students were not. There were no differences between the quality of arguments generated by the evaluativist students with either the treatment or comparison groups. Finally, the nature of the justifications used by the students revealed that the students (both comparison and treatment groups) did not invoke science-based justifications when

  15. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis.

    PubMed

    Chen, W P; Tang, F T; Ju, C W

    2001-08-01

    To quantify stress distribution of the foot during mid-stance to push-off in barefoot gait using 3-D finite element analysis. To simulate the foot structure and facilitate later consideration of footwear. Finite element model was generated and loading condition simulating barefoot gait during mid-stance to push-off was used to quantify the stress distributions. A computational model can provide overall stress distributions of the foot subject to various loading conditions. A preliminary 3-D finite element foot model was generated based on the computed tomography data of a male subject and the bone and soft tissue structures were modeled. Analysis was performed for loading condition simulating barefoot gait during mid-stance to push-off. The peak plantar pressure ranged from 374 to 1003 kPa and the peak von Mises stress in the bone ranged from 2.12 to 6.91 MPa at different instants. The plantar pressure patterns were similar to measurement result from previous literature. The present study provides a preliminary computational model that is capable of estimating the overall plantar pressure and bone stress distributions. It can also provide quantitative analysis for normal and pathological foot motion. This model can identify areas of increased pressure and correlate the pressure with foot pathology. Potential applications can be found in the study of foot deformities, footwear, surgical interventions. It may assist pre-treatment planning, design of pedorthotic appliances, and predict the treatment effect of foot orthosis.

  16. Interlimb coordination during the stance phase of gait in subjects with stroke.

    PubMed

    Sousa, Andreia S P; Silva, Augusta; Santos, Rubim; Sousa, Filipa; Tavares, João Manuel R S

    2013-12-01

    To analyze the relation between contralesional and ipsilesional limbs in subjects with stroke during step-to-step transition of walking. Observational, transversal, analytical study with a convenience sample. Physical medicine and rehabilitation clinic. Subjects (n=16) with poststroke hemiparesis with the ability to walk independently and healthy controls (n=22). Not applicable. Bilateral lower limbs electromyographic activity of the soleus (SOL), gastrocnemius medialis, tibialis anterior, biceps femoris, rectus femoris, and vastus medialis (VM) muscles and the ground reaction force were analyzed during double-support and terminal stance phases of gait. The propulsive impulse of the contralesional trailing limb was negatively correlated with the braking impulse of the leading limb during double support (r=-.639, P=.01). A moderate functional relation was observed between thigh muscles (r=-.529, P=.035), and a strong and moderate dysfunctional relation was found between the plantar flexors of the ipsilesional limb and the vastus medialis of the contralesional limb, respectively (SOL-VM, r=-.80, P<.001; gastrocnemius medialis-VM, r=-.655, P=.002). Also, a functional moderate negative correlation was found between the SOL and rectus femoris muscles of the ipsilesional limb during terminal stance and between the SOL (r=-.506, P=.046) and VM (r=-.518, P=.04) muscles of the contralesional limb during loading response, respectively. The trailing limb relative impulse contribution of the contralesional limb was lower than the ipsilesional limb of subjects with stroke (P=.02) and lower than the relative impulse contribution of the healthy limb (P=.008) during double support. The findings obtained suggest that the lower performance of the contralesional limb in forward propulsion during gait is related not only to contralateral supraspinal damage but also to a dysfunctional influence of the ipsilesional limb. Copyright © 2013 American Congress of Rehabilitation Medicine

  17. Effect of fibular repositioning taping in adult basketball players with chronic ankle instability: a randomized, placebo-controlled, crossover trial.

    PubMed

    Alves, Yanina; Ribeiro, Fernando; Silva, Anabela G

    2017-07-05

    Chronic ankle instability presents a high incidence and prevalence in basketbal players. It's important to develop strategies to reduce the functional and mechanical limitations resulting from this condition. To compare the effect of Mulligan ́s fibular repositioning taping with a placebo taping immediatly after application and after a running test (Yo-Yo IRT). 16 adult basketball players (10 male, 6 female) with chronic ankle instability and mean age 21.50 ± 2.76 years old. Assessment of static postural control (15 seconds of unipedal stance test with eyes closed in a force platform), functional performance (figure 8 hop test and lateral hop test) and neuromuscular control (peroneus longus latency time in sudden inversion) in two conditions: Mulligan and Placebo. No significant effect was found for the intervantion factor in both hop tests (p>0.170), but there was a significant effect for the time factor (p<0.03). For the peroneus longus latency time, there was a significant interaction between factors (p=0.028) and also for time (p=0.042). No significant effect was found for any of the static postural control variables (area, speed and total displacement) (p≥0.10). There was no differences between Mulligan's fibular repositioning taping and Placebo taping in postural control and functional performance in basketball players with chronic ankle instability. However, Mulligan's taping appears to reduce peroneus longus latency time after a running when compared with a placebo taping.

  18. (Positive) Power to the Child: The Role of Children's Willing Stance toward Parents in Developmental Cascades from Toddler Age to Early Preadolescence

    PubMed Central

    Kochanska, Grazyna; Kim, Sanghag; Boldt, Lea J.

    2015-01-01

    In contrast to once dominant views of children as passive in the parent-led process of socialization, they are now seen as active agents who can considerably influence that process. But those newer perspectives typically focus on the child's antagonistic influence, due either to a difficult temperament or aversive, resistant, negative behaviors that elicit adversarial responses from the parent and lead to future coercive cascades in the relationship. Children's capacity to act as receptive, willing, even enthusiastic, active socialization agents is largely overlooked. Informed by attachment theory and other relational perspectives, we depict children as able to adopt an active willing stance and to exert robust positive influence in the mutually cooperative socialization enterprise. A longitudinal study of 100 community families (mothers, fathers, and children) demonstrates that willing stance (a) is a latent construct, observable in diverse parent-child contexts parallel at 38, 52, and 67 months, and longitudinally stable, (b) originates within an early secure parent-child relationship at 25 months, and (c) promotes a positive future cascade toward adaptive outcomes at age 10. The outcomes include the parent's observed and child-reported positive, responsive behavior, as well as child-reported internal obligation to obey the parent and parent-reported low level of child behavior problems. The construct of willing stance has implications for basic research in typical socialization and in developmental psychopathology, and for prevention and intervention. PMID:26439058

  19. A Secure Base from which to Cooperate: Security, Child and Parent Willing Stance, and Adaptive and Maladaptive Outcomes in two Longitudinal Studies.

    PubMed

    Goffin, Kathryn C; Boldt, Lea J; Kochanska, Grazyna

    2017-10-17

    Early secure attachment plays a key role in socialization by inaugurating a long-term mutual positive, collaborative interpersonal orientation within the parent-child dyad. We report findings from Family Study (community mothers, fathers, and children, from age 2 to 12, N = 102, 51 girls) and Play Study (exclusively low-income mothers and children, from age 3.5 to 7, N = 186, 90 girls). We examined links among observed secure attachment at toddler age, child and parent receptive, willing stance to each other, observed in parent-child contexts at early school age, and developmental outcomes. The developmental outcomes included parent-rated child antisocial behavior problems and observed positive mutuality with regard to conflict issues at age 12 in Family Study, and mother-rated child antisocial behavior problems and observed child regard for rules and moral self at age 7 in Play Study. In mother-child relationships, the child's willing stance mediated indirect effects of child security on positive mutuality in Family Study and on all outcomes in Play Study. In father-child relationships, both the child's and the parent's willing stance mediated indirect effects of child security on both outcomes. Early security initiates an adaptive developmental cascade by enlisting the child and the parent as active, willingly receptive and cooperative agents in the socialization process. Implications for children's parenting interventions are noted.

  20. Analysis of Change in Population Stance on Infrastructure Using a Cultural Geography Model for Stability Operations

    DTIC Science & Technology

    2009-09-01

    modeling platforms in an attempt to model cultural geography, but were limited by the original purpose of the software’s design. For example, PYTHAGORAS ...2008) concludes that a major fault of an attempt to model cultural geography 2 through PYTHAGORAS is an absence of a link between the agent’s...beliefs of the relevant issues and his position or stance on those same issues. Seitz (2008) determines that PYTHAGORAS is well-suited for military

  1. A comparison of balance control during stance and gait in patients with inflammatory and non-inflammatory polyneuropathy

    PubMed Central

    van der Logt, Rens; Nedeltchev, Krassen; Achtnichts, Lutz; Allum, John H. J.

    2018-01-01

    Introduction We compared changes in balance control due to chronic inflammatory demyelinating polyneuropathy (CIDP) and non-inflammatory (non-inf) polyneuropathy (PNP) to each other and with respect to healthy controls (HCs). Differences in patients’ subjective impressions of balance capabilities were also compared. Methods Balance control of 11 CIDP patients (mean age 61.1±(sd) 11, 8 male) and 10 non-inf PNP patients (mean age 68.5±11.7, all male) was examined and compared to that of 18 age- and gender-matched healthy controls. Balance control during stance and gait tasks was measured as trunk sway angles and angular velocities with body-worn gyroscopes. Patients’ subjective impressions of balance were obtained using the Dizziness Handicap Inventory (DHI). The Neuropathy Impairment Score in the Lower Limbs (NIS-LL) was used to measure clinical disease status. Results Non-inf PNP patients had slightly lower NIS-LL (13.5±7.2 vs. 17.9±15.1) and DHI scores (22.6±17.1 vs 27.6±16.3). Gait tasks showed a significant decrease in gait speed with respect to HCs for both patient groups but reduced trunk sway for non-inf PNP patients. Trunk sway during tandem walking and walking on the heels was greater for both groups than that of HCs. Sway during 2-legged stance tasks with eyes closed on a firm or foam surface was also greater than for HCs. Discussion Compared to HCs both groups of patients have significantly greater sway for most stance and gait tasks accompanied by reduced gait speed. As for HCs, non-inf PNP patients reduced trunk sway with slower gait speed. In CIDP patients this compensatory strategy was absent, possibly due to a greater deficit of efferent and motor nerve fibers. An interpretation of these findings is that CIDP patients have reduced ability to decrease trunk sway with slower gait speed and is possibly associated with an increased risk of falls. PMID:29474369

  2. Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking

    PubMed Central

    Lee, Kyoung-Hyun; Chong, Raymond K.

    2017-01-01

    Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM) just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter) was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome. PMID:28496403

  3. Effects of body lean and visual information on the equilibrium maintenance during stance.

    PubMed

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  4. Stance control is not affected by paresis and reflex hyperexcitability: the case of spastic patients

    PubMed Central

    Nardone, A; Galante, M; Lucas, B; Schieppati, M

    2001-01-01

    OBJECTIVES—Spastic patients were studied to understand whether stance unsteadiness is associated with changes in the control of voluntary force, muscle tone, or reflex excitability, rather than to abnormal posture connected to the motor deficit itself.
METHODS—Twenty four normal subjects, 12 patients affected by amyotrophic lateral sclerosis (ALS), seven by spastic paraparesis, and 14 by hemiparesis were studied. All patients featured various degrees of spasticity and paresis but were free from clinically evident sensory deficits. Body sway during quiet upright stance was assessed through a stabilometric platform under both eyes open (EO) and eyes closed (EC) conditions. The sudden rotation of a supporting platform, in a toe up and toe down direction respectively, evoked short (SLR) and medium latency (MLR) reflex responses to stretch of the soleus or the tibialis anterior (TA) muscle.
RESULTS—No relation was found between clinical findings (tone, muscle strength, tendon reflexes, plantar response, and duration of disease) and body sway. On average, all patient groups exhibited a forward shift of the centre of foot pressure (CFP) with respect to normal subjects; in addition, paraparetic and to a much larger extent hemiparetic patients showed a lateral shift of CFP. Body sway area was significantly increased only in the hemiparetic patients. No relation was found between position of the CFP and sway within any patient group. Soleus SLR was increased in all patients with respect to normal subjects. TA SLR was often seen in both patients with ALS and paraparetic patients, but only rarely in normal subjects and hemiparetic patients. However, no relation was found between amplitude of soleus or TA SLRs and stabilometric variables. The frequency and size of soleus MLR and TA MLR were decreased in all patients. These responses were decreased in size and not modulated by background EMG in the affected leg of hemiparetic patients, suggesting a disturbed control of

  5. Effect of vision, touch and stance on cerebellar vermian-related sway and tremor: a quantitative physiological and MRI study.

    PubMed

    Sullivan, Edith V; Rose, Jessica; Pfefferbaum, Adolf

    2006-08-01

    Postural balance is impaired in individuals with pathology of the anterior superior vermis of the cerebellum. Chronic alcoholism, with its known vermian pathology, provides a viable model for studying the relationship between cerebellar pathology and postural stability. Decades of separate study of recovering alcoholics and post-mortem neuroanatomical analysis have demonstrated vermian pathology but few studies have used quantitative posturography, acquired concurrently with quantitative neuroimaging, to establish whether this brain structure-function relationship is selective in vivo. Here, 30 healthy men and 39 chronic alcoholic men, abstinent from alcohol for several months, underwent MRI for volumetric quantitation of the cerebellar vermis and three comparison brain regions, the cerebellar hemispheres, supratentorial cortex and corpus callosum. All subjects also participated in an experiment involving a force platform that measured sway path length and tremor during static standing balance under four sensory conditions and two stance conditions. Three novel findings emerged: (i) sway path length, a physiological index of postural control, was selectively related to volume of the cerebellar vermis and not to any comparison brain region in the alcoholics; (ii) spectral analysis revealed sway prominence in the 2-5 Hz band, another physiological sign of vermian lesions and also selectively related to vermian volume in the alcoholics; and (iii) despite substantial postural sway in the patients, they successfully used vision, touch and stance to normalize sway and reduce tremor. The selective relationship of sway path to vermian but not lateral cerebellar volume provides correlational evidence for functional differentiation of these cerebellar regions. Improvement to virtual normal levels in balance and reduction in sway and tremor with changes in vision, touch and stance provide evidence that adaptive mechanisms recruiting sensorimotor integration can be invoked to

  6. Folk-Psychological Interpretation of Human vs. Humanoid Robot Behavior: Exploring the Intentional Stance toward Robots.

    PubMed

    Thellman, Sam; Silvervarg, Annika; Ziemke, Tom

    2017-01-01

    People rely on shared folk-psychological theories when judging behavior. These theories guide people's social interactions and therefore need to be taken into consideration in the design of robots and other autonomous systems expected to interact socially with people. It is, however, not yet clear to what degree the mechanisms that underlie people's judgments of robot behavior overlap or differ from the case of human or animal behavior. To explore this issue, participants ( N = 90) were exposed to images and verbal descriptions of eight different behaviors exhibited either by a person or a humanoid robot. Participants were asked to rate the intentionality, controllability and desirability of the behaviors, and to judge the plausibility of seven different types of explanations derived from a recently proposed psychological model of lay causal explanation of human behavior. Results indicate: substantially similar judgments of human and robot behavior, both in terms of (1a) ascriptions of intentionality/controllability/desirability and in terms of (1b) plausibility judgments of behavior explanations; (2a) high level of agreement in judgments of robot behavior - (2b) slightly lower but still largely similar to agreement over human behaviors; (3) systematic differences in judgments concerning the plausibility of goals and dispositions as explanations of human vs. humanoid behavior. Taken together, these results suggest that people's intentional stance toward the robot was in this case very similar to their stance toward the human.

  7. Folk-Psychological Interpretation of Human vs. Humanoid Robot Behavior: Exploring the Intentional Stance toward Robots

    PubMed Central

    Thellman, Sam; Silvervarg, Annika; Ziemke, Tom

    2017-01-01

    People rely on shared folk-psychological theories when judging behavior. These theories guide people’s social interactions and therefore need to be taken into consideration in the design of robots and other autonomous systems expected to interact socially with people. It is, however, not yet clear to what degree the mechanisms that underlie people’s judgments of robot behavior overlap or differ from the case of human or animal behavior. To explore this issue, participants (N = 90) were exposed to images and verbal descriptions of eight different behaviors exhibited either by a person or a humanoid robot. Participants were asked to rate the intentionality, controllability and desirability of the behaviors, and to judge the plausibility of seven different types of explanations derived from a recently proposed psychological model of lay causal explanation of human behavior. Results indicate: substantially similar judgments of human and robot behavior, both in terms of (1a) ascriptions of intentionality/controllability/desirability and in terms of (1b) plausibility judgments of behavior explanations; (2a) high level of agreement in judgments of robot behavior – (2b) slightly lower but still largely similar to agreement over human behaviors; (3) systematic differences in judgments concerning the plausibility of goals and dispositions as explanations of human vs. humanoid behavior. Taken together, these results suggest that people’s intentional stance toward the robot was in this case very similar to their stance toward the human. PMID:29184519

  8. The impact of previous knee injury on force plate and field-based measures of balance.

    PubMed

    Baltich, Jennifer; Whittaker, Jackie; Von Tscharner, Vinzenz; Nettel-Aguirre, Alberto; Nigg, Benno M; Emery, Carolyn

    2015-10-01

    Individuals with post-traumatic osteoarthritis demonstrate increased sway during quiet stance. The prospective association between balance and disease onset is unknown. Improved understanding of balance in the period between joint injury and disease onset could inform secondary prevention strategies to prevent or delay the disease. This study examines the association between youth sport-related knee injury and balance, 3-10years post-injury. Participants included 50 individuals (ages 15-26years) with a sport-related intra-articular knee injury sustained 3-10years previously and 50 uninjured age-, sex- and sport-matched controls. Force-plate measures during single-limb stance (center-of-pressure 95% ellipse-area, path length, excursion, entropic half-life) and field-based balance scores (triple single-leg hop, star-excursion, unipedal dynamic balance) were collected. Descriptive statistics (mean within-pair difference; 95% confidence intervals) were used to compare groups. Linear regression (adjusted for injury history) was used to assess the relationship between ellipse-area and field-based scores. Injured participants on average demonstrated greater medio-lateral excursion [mean within-pair difference (95% confidence interval); 2.8mm (1.0, 4.5)], more regular medio-lateral position [10ms (2, 18)], and shorter triple single-leg hop distances [-30.9% (-8.1, -53.7)] than controls, while no between group differences existed for the remaining outcomes. After taking into consideration injury history, triple single leg hop scores demonstrated a linear association with ellipse area (β=0.52, 95% confidence interval 0.01, 1.01). On average the injured participants adjusted their position less frequently and demonstrated a larger magnitude of movement during single-limb stance compared to controls. These findings support the evaluation of balance outcomes in the period between knee injury and post-traumatic osteoarthritis onset. Copyright © 2015 Elsevier Ltd. All rights

  9. The Effect of Increasing Jump Steps on Stance Leg Joint Kinetics in Bounding.

    PubMed

    Kariyama, Yasushi; Hobara, Hiroaki; Zushi, Koji

    2018-06-20

    Jump distance per step in bounding exercises from the standing position increases with increasing number of steps. We examined the hypothesis that the joint kinetic variables of the stance leg would also increase accordingly. Eleven male athletes (sprinters and jumpers) performed bounding exercise, starting from the double-leg standing posture, and covered the longest distance possible by performing a series of seven forward alternating single-leg jumps. Kinematic and kinetic data were calculated using the data by a motion capture system and force platforms. Hip extension joint work were decreased at third step (1 st : 1.07±0.22, 3 rd : 0.45±0.15, 5 th : 0.47±0.14 J•kg -1 ; partial η 2 : 0.86), and hip abduction joint power were increased (1 st : 7.53±3.29, 3 rd : 13.50±4.44, 5 th : 21.37±9.93 W•kg -1 ; partial η 2 : 0.58); the knee extension joint power were increased until the third step (1 st : 14.43±4.94, 3 rd : 17.13±3.59, 5 th : 14.28±2.86 W•kg -1 ; partial η 2 : 0.29), and ankle plantar flexion joint power increased (1 st : 34.14±5.33, 3 rd : 37.46±4.45, 5 th : 40.11±5.66 W•kg -1 ; partial η 2 : 0.53). These results contrast with our hypothesis, and indicate that increasing the jump distance during bounding exercises is not necessarily accompanied by increases in joint kinetics of stance leg. Moreover, changes in joint kinetics vary at different joints and anatomical axes. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Government Stance and Internal Diversity of Protest: A Comparative Study of Protest against the War in Iraq in Eight Countries

    ERIC Educational Resources Information Center

    Walgrave, Stefaan; Verhulst, Joris

    2009-01-01

    This study tackles the question to what extent the composition of protest events is determined by the stance of governments. Established contextual theories do not formulate propositions on how context affects individual protesters. The article engages in empirically testing whether the macro-context affects the internal diversity of the crowds…

  11. Reading Sacred Texts in the Classroom: The Alignment between Students and Their Teacher's Interpretive Stances When Reading the Hebrew Bible

    ERIC Educational Resources Information Center

    Hassenfeld, Ziva R.

    2016-01-01

    This study investigated the voices of students interpreting Hebrew Bible texts in one fourth-grade classroom. Through think-alouds on the Biblical text with each student, exit interviews, teacher interviews, and classroom observations, this study found that those students whose interpretive stances were more aligned with the teacher's were given…

  12. Postflight Quiet Stance Stability of Astronauts Following Recovery From a Simulated Fall

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Harm, D. L.; Kulecz, W.; Mulavara, A. P.; Fiedler, M. J.; hide

    2010-01-01

    INTRODUCTION: Astronauts returning from space flight universally present with postural ataxia. Throughout the Space Shuttle Program, measurement of ataxia has concentrated on sway in the anterior-posterior plane. Implementation of an interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes has allowed the investigation of postural instability by characterizing dynamic stabilographic sway patterns. METHODS: Six astronauts from short-duration (Shuttle) and three from long-duration (ISS) flights were required to recover from a simulated fall. Subjects with eyes open, wearing running shoes lay prone on the floor for 2 minutes and then quickly stood up, maintained a quiet stance for 3 minutes, arms relaxed along the side of the body, and feet comfortably placed on the force plate. Crewmembers were tested twice before flight, on landing day (Shuttle only), and 1, 6, and 30 days after flight. Anterior-posterior (AP) and medial-lateral (ML) center-of-pressure (COP) coordinates were calculated from the ground reaction forces collected at 500 Hz. The 3-minute quiet stance trial was broken into three 1-minute segments for stabilogram diffusion analysis. A mean sway speed (rate of change of COP displacement) was also calculated as an additional postural stability parameter. RESULTS/CONCLUSION: While there was considerable variation, most of crewmembers tested exhibited increased stochastic activity evidenced by larger short-term COP diffusion coefficients postflight in both the AP and ML planes, suggesting significant changes in postural control mechanisms, particularly control of lower limb muscle function. As expected, postural instability of ISS astronauts on the first day postflight was similar to that of Shuttle crewmembers on landing day. Recoveries of stochastic activity and mean sway speed to baseline levels were typically observed by the 30th day

  13. Relationships between age at menarche, walking gait base of support, and stance phase frontal plane knee biomechanics in adolescent females

    PubMed Central

    Grannis, Kimberly A.; Sherwood, Richard J.; Duren, Dana L

    2016-01-01

    Background Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. Objective To test the hypothesis that earlier menarche is related to post-pubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Design Cross-sectional observational study. Setting University research facility. Participants Healthy, post-menarcheal, adolescent females. Methods Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected using a three-dimensional quantitative motion analysis system, and three force plates recorded kinetic data. Main Outcome Measures Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; dynamic knee frontal plane angles and moments during stance. Results Earlier menarche was significantly correlated with abbreviated pubertal growth and post-pubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Conclusions Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee

  14. Issues in Discipline-Based Art Education: Strengthening the Stance, Extending the Horizons. Seminar Proceedings (Cincinnati, Ohio, May 21-24, 1987).

    ERIC Educational Resources Information Center

    Getty Center for Education in the Arts, Los Angeles, CA.

    The rationale for this seminar was to strengthen the discipline-based art education (DBAE) stance and extend its horizons. The format of the proceedings featured a speaker followed by a respondent and group discussions on each of the four issues addressed by the seminar. Dennie Wolf explained how current research in child development and cognitive…

  15. Initiation of movement from quiet stance: comparison of gait and stepping in elderly subjects of different levels of functional ability.

    PubMed

    Brunt, Denis; Santos, Valeria; Kim, Hyeong Dong; Light, Kathye; Levy, Charles

    2005-04-01

    This study describes how elderly subjects initiate gait, and step from a position of quiet stance. Based on scores from selected standardized tests subjects were placed in either a high (HFL) or low functional level (LFL) group and were asked to initiate gait, step onto a 10 cm high, 1.22 m wide curb and step over a 10 cm high, 9 cm wide obstacle at a self paced speed. Stepping conditions affected the velocity of movement. It was clear that all subjects decreased initiation velocity for both curb and obstacle compared to gait initiation. Swing and stance limb acceleration ground reaction forces and EMG amplitude were modulated according to initiation velocity. Toe clearance was greater for obstacle than curb and gait initiation. Swing toe-off was significantly earlier and there was a trend for obstacle clearance to be greater for the HFL group. Those in the LFL group appear to be at a greater risk for falling due to the possible effect of slower rate of toe-off that could influence toe clearance over the obstacle.

  16. Stance Postural Strategies in Patients with Chronic Inflammatory Demyelinating Polyradiculoneuropathy

    PubMed Central

    Missori, Paolo; Trompetto, Carlo; Fattapposta, Francesco

    2016-01-01

    Introduction Polyneuropathy leads to postural instability and an increased risk of falling. We investigated how impaired motor impairment and proprioceptive input due to neuropathy influences postural strategies. Methods Platformless bisegmental posturography data were recorded in healthy subjects and patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Each subject stood on the floor, wore a head and a hip electromagnetic tracker. Sway amplitude and velocity were recorded and the mean direction difference (MDD) in the velocity vector between trackers was calculated as a flexibility index. Results Head and hip postural sway increased more in patients with CIDP than in healthy controls. MDD values reflecting hip strategies also increased more in patients than in controls. In the eyes closed condition MDD values in healthy subjects decreased but in patients remained unchanged. Discussion Sensori-motor impairment changes the balance between postural strategies that patients adopt to maintain upright quiet stance. Motor impairment leads to hip postural strategy overweight (eyes open), and prevents strategy re-balancing when the sensory context predominantly relies on proprioceptive input (eyes closed). PMID:26977594

  17. Ethical Considerations for Psychologists Taking a Public Stance on Controversial Issues: The Balance Between Personal and Professional Life

    PubMed Central

    Haeny, Angela M.

    2014-01-01

    Previous literature has documented the general issues psychologists often face while balancing their personal and professional lives. The struggle stems from attempting to satisfy the need to maintain a life outside of work while having the professional obligation to follow the American Psychological Association’s (APA’s) Ethical Principles of Psychologists and Code of Conduct (Ethics Code) to prevent their personal lives from interfering with their professional roles and relationships. The present paper analyzes the subject of psychologists taking a public position on controversial public issues. Although the APA Ethics Code does not restrict how psychologists conduct themselves during their personal time, taking a public stance on a controversial issue could potentially strain professional relationships and inadvertently reflect negatively on the profession. The present paper examines ethical issues that a) should be taken into account before psychologists take a public position on a controversial issue, and b) are in conflict with APA’s Ethics Code or current research. PMID:25342876

  18. Ethical Considerations for Psychologists Taking a Public Stance on Controversial Issues: The Balance Between Personal and Professional Life.

    PubMed

    Haeny, Angela M

    2014-07-01

    Previous literature has documented the general issues psychologists often face while balancing their personal and professional lives. The struggle stems from attempting to satisfy the need to maintain a life outside of work while having the professional obligation to follow the American Psychological Association's (APA's) Ethical Principles of Psychologists and Code of Conduct (Ethics Code) to prevent their personal lives from interfering with their professional roles and relationships. The present paper analyzes the subject of psychologists taking a public position on controversial public issues. Although the APA Ethics Code does not restrict how psychologists conduct themselves during their personal time, taking a public stance on a controversial issue could potentially strain professional relationships and inadvertently reflect negatively on the profession. The present paper examines ethical issues that a) should be taken into account before psychologists take a public position on a controversial issue, and b) are in conflict with APA's Ethics Code or current research.

  19. Computational stability of human knee joint at early stance in Gait: Effects of muscle coactivity and anterior cruciate ligament deficiency.

    PubMed

    Sharifi, M; Shirazi-Adl, A; Marouane, H

    2017-10-03

    As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0-10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted asan ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Knowing When to Doubt: Developing a Critical Stance When Learning From Others

    PubMed Central

    Mills, Candice M.

    2013-01-01

    Children may be biased towards accepting information as true, but the fact remains that children are exposed to misinformation from many sources, and mastering the intricacies of doubt is necessary. The current article examines this issue, focusing on understanding developmental changes and consistencies in children’s ability to take a critical stance towards information. Research is reviewed on children’s ability to detect ignorance, inaccuracy, incompetence, deception, and distortion. Particular emphasis is placed on what this research indicates about how children are reasoning about when to trust and when to doubt. The remainder of the article proposes a framework to evaluate preexisting research and encourage further research, closing with a discussion of several other overarching questions that need to be considered in order to develop a model to explain developmental, individual, and situational differences in children’s ability to evaluate information. PMID:22889395

  1. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  2. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  3. Kinematics and Kinetics of Squat and Deadlift Exercises with Varying Stance Widths

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Fincke, Renita S.; Logan, Rachel L.

    2011-01-01

    The primary motion of squat and deadlift exercise involves flexion and extension of the hips, knees, and ankles, but each exercise can be performed with variations in stance width. These variations may result in differing kinematics and ground reaction forces (GRF), which may in turn affect joint loading. PURPOSE: The purpose of this investigation was to compare ankle, knee, and hip kinematics and kinetics of normal squat (NS), wide-stance squat (WS), normal deadlift (ND), and sumo deadlift (SD). We hypothesized that hip joint kinematics and work at each joint would differ between exercise variations. METHODS: Six subjects (3 m/3 f; 70.0 plus or minus 13.7 kg; 168 plus or minus 9.9 cm) performed each lift in normal gravity on the ground-based version of the Advanced Resistive Exercise Device (ARED) used on the International Space Station. The ARED provided resistance with a combination vacuum tube/flywheel mechanism designed to replicate the gravitational and inertial forces of free weights. Subjects completed each lift with their 10-repetition maximum load. Kinematic data were collected at 250 Hz by a 12-camera motion-capture system (Smart-D, BTS Bioengineering, Milan, Italy), and GRF data were collected at 1000 Hz with independent force platforms for each leg (Model 9261, Kistler Instruments AG, Winterhur, Switzerland). All data were captured simultaneously on a single workstation. The right leg of a single lift for each motion was analyzed. Modeling software (OpenSim 2.2.0, Simbios, Palo Alto, CA) determined joint kinematics and net positive and negative work at each lower extremity joint. Total work was found as the sum of work across all joints and was normalized by system mass. Effect sizes and their 95% confidence intervals were computed between conditions. RESULTS: Peak GRF were similar for each lift. There were no differences between conditions in hip flexion range of motion (ROM). For hip adduction ROM, there were no differences between the NS, WS, and SD

  4. The effect of activity history and current activity on static and dynamic postural balance in older adults.

    PubMed

    Bulbulian, R; Hargan, M L

    2000-01-01

    The purpose of this study was to investigate the effects of former athleticism and current activity status on static and dynamic postural balance in older adults. Fifty-six subjects participated in four study groups including former athletes, currently active (AA; n = 15; 69.1+/-4.4 years.; 77.8+/-9.8 kg), former athletes, currently inactive (AI; n = 12; 66.7 years.; 87.2+/-15.1 kg), controls currently active (CA; n = 14; 68.6 +/- 4.5 years.; 73.9+/-15 kg), and controls currently inactive (CI; n = 15; 72.8+/-4.8 years; 81.1+/-14.8). All subjects were tested for height, weight, flexibility, thigh circumference, and static (sharpened Romberg/unipedal stance), and dynamic (step length and width) balance tests. The sharpened Romberg (eyes open) test showed that AA (60.0+/-0 s) and CA (59.4+/- 0.5 s) balanced significantly longer than AI (41.5+/-7.2 s), and CI (41.8+/-6.1 s) (p<0.05). The unipedal (eyes open) test balance scores for AA, CA, AI, and CI were respectively 40.0+/-4.5, 55.1+/- 3.4, 33.0+/-7.1, and 27.5+/-6.1 s, with CA significantly better than CI (p<0.05). In dynamic balance AA and CA (746.1+/-28.0 and 724.6+/-24.3 mm) showed significantly longer step lengths (p<0.05) than CI (643.7+/-26.5 mm). The eyes closed test results for relative group comparisons were similar. Overall, two-way analysis of variance showed a significant activity main effect for all dependent variables measured (p<0.05). The results indicated that current activity status plays a key role on balance performance in older adults. Furthermore, former athletic activity history provides no protection for the age related onset of postural imbalance.

  5. The influence of hip abductor muscle performance on dynamic postural stability in females with patellofemoral pain.

    PubMed

    Lee, Szu-Ping; Souza, Richard B; Powers, Christopher M

    2012-07-01

    Hip abductors play an important role in maintaining trunk and pelvis stability during unipedal tasks. The purpose of the study was to compare postural stability between individuals with patellofemoral pain (PFP) and pain-free controls. A secondary purpose was to evaluate the effect of a hip stabilizing brace on postural stability. Twenty females with PFP (27.3±6.3 years) and 19 controls (26.1±4.5 years) participated. Each subject performed a unipedal step-down balance task with the stance leg on a force platform from which center of pressure (COP) excursion was recorded. Quantitative COP excursion patterns (mean and peak displacements) were used as measures of postural stability. For subjects with PFP, postural stability also was quantified following the application of a hip stabilizing brace. Hip abductor strength was significantly lower in PFP group compared to the control group (1.39±0.4 vs. 1.62±0.26 N/kg-BW, p=0.046). Peak and mean medial-lateral COP displacements during the balance task were greater in the PFP group (39.8±6.7 vs. 24.3±3.8 mm, p<0.001; 24.7±16.3 vs. 13.5±4.4 mm, p=0.005). Application of the hip stabilizing brace reduced the peak and mean COP displacement (39.8±6.7 vs. 24.7±4.7 mm, p<0.001; 24.7±16.3 vs. 16.8±15.1 mm, p=0.02). Our results demonstrate that females with PFP exhibit impaired medial-lateral postural stability when compared to control subjects. Application of a hip stabilizing brace significantly improved stability to a level comparable to the controls. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts

    PubMed Central

    Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z.

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS / LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye. PMID:26637132

  7. Electro-tactile stimulation of the posterior neck induces body anteropulsion during upright stance.

    PubMed

    De Nunzio, A M; Yavuz, U S; Martinez-Valdes, E; Farina, D; Falla, D

    2018-05-01

    Sensory information conveyed along afferent fibers from muscle and joint proprioceptors play an important role in the control of posture and gait in humans. In particular, proprioceptive information from the neck is fundamental in supplying the central nervous system with information about the orientation and movement of the head relative to the rest of the body. The previous studies have confirmed that proprioceptive afferences originating from the neck region, evoked via muscle vibration, lead to strong body-orienting effects during static conditions (e.g., leaning of the body forwards or backwards, depending on location of vibration). However, it is not yet certain in humans, whether the somatosensory receptors located in the deep skin (cutaneous mechanoreceptors) have a substantive contribution to postural control, as vibratory stimulation encompasses the receptive field of all the somatosensory receptors from the skin to the muscles. The aim of this study was to investigate the postural effect of cutaneous mechanoreceptor afferences using electro-tactile stimulation applied to the neck. Ten healthy volunteers (8M, 2F) were evaluated. The average position of their centre of foot pressure (CoP) was acquired before, during, and after a subtle electro-tactile stimulation over their posterior neck (mean ± SD = 5.1 ± 2.3 mA at 100 Hz-140% of the perception threshold) during upright stance with their eyes closed. The electro-tactile stimulation led to a body-orienting effect with the subjects consistently leaning forward. An average shift of the CoP of 12.1 ± 11.9 mm (mean ± SD) was reported, which significantly (p < 0.05) differed from its average position under a control condition (no stimulation). These results indicate that cutaneous mechanoreceptive inflow from the neck is integrated to control stance. The findings are relevant for the exploitation of electro-tactile stimulation for rehabilitation interventions where induced

  8. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    PubMed

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P < 0.003, η p 2  > 0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P < 0.001). Increased postural sway in children and seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  9. Effect of body mass index and fat mass on balance force platform measurements during a one-legged stance in older adults.

    PubMed

    Pereira, Camila; Silva, Rubens A da; de Oliveira, Marcio R; Souza, Rejane D N; Borges, Renata J; Vieira, Edgar R

    2018-05-01

    The purpose of this study was to evaluate the impact of body mass index (BMI) and fat mass on balance force platform measurements in older adults. The sample consisted of 257 participants who were stratified into four groups by BMI: low weight, normal weight, pre-obesity and obesity. For fat mass variables, older individuals were classified into low and high-fat mass. All groups investigated performed three trials of one-legged stance balance on a force platform. Center of pressure (COP) domain parameters were computed from the mean across trials. Analysis of variance results revealed no significant interactions for groups and sexes for all COP parameters. Comparable balance results were found for BMI and fat groups for all COP parameters. A statistical effect (P < 0.05) was only reported for sex differences for COP parameters, regardless of BMI and fat mass variables. Overall, women presented better balance than men. In conclusion, BMI and fat mass do not seem to influence the balance of older adults during a one-leg stance task.

  10. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    PubMed

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  11. Balance Training Does Not Alter Reliance on Visual Information during Static Stance in Those with Chronic Ankle Instability: A Systematic Review with Meta-Analysis.

    PubMed

    Song, Kyeongtak; Rhodes, Evan; Wikstrom, Erik A

    2018-04-01

    Visual, vestibular, and somatosensory systems contribute to postural control. Chronic ankle instability (CAI) patients have been observed to have a reduced ability to dynamically shift their reliance among sources of sensory information and rely more heavily on visual information during a single-limb stance relative to uninjured controls. Balance training is proven to improve postural control but there is a lack of evidence regarding the ability of balance training programs to alter the reliance on visual information in CAI patients. Our objective was to determine if balance training alters the reliance on visual information during static stance in CAI patients. The PubMed, CINAHL, and SPORTDiscus databases were searched from their earliest available date to October 2017 using a combination of keywords. Study inclusion criteria consisted of (1) using participants with CAI; (2) use of a balance training intervention; and (3) calculation of an objective measure of static postural control during single-limb stance with eyes open and eyes closed. Sample sizes, means, and standard deviations of single-leg balance measures for eyes-open and eyes-closed testing conditions before and after balance training were extracted from the included studies. Eyes-open to eyes-closed effect sizes [Hedges' g and 95% confidence intervals (CI)] before and after balance training were calculated, and between-study variability for heterogeneity and potential risks of publication bias were examined. Six studies were identified. The overall eyes-open to eyes-closed effect size difference between pre- and post-intervention assessments was not significant (Hedges' g effect size = 0.151, 95% CI = - 0.151 to 0.453, p = 0.26). This result indicates that the utilization of visual information in individuals with CAI during the single-leg balance is not altered after balance training. Low heterogeneity (Q(5) = 2.96, p = 0.71, I 2  = 0%) of the included studies and no publication bias were

  12. The short version of the Activities-specific Balance Confidence (ABC) scale: its validity, reliability, and relationship to balance impairment and falls in older adults.

    PubMed

    Schepens, Stacey; Goldberg, Allon; Wallace, Melissa

    2010-01-01

    A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  13. A kinematic analysis of the rapid step test in balance-impaired and unimpaired older women.

    PubMed

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2007-04-01

    Little is known about the kinematic and kinetic determinants that might explain age and balance-impairment alterations in the results of volitional stepping performance tests. Maximal unipedal stance time (UST) was used to distinguish "balance-impaired" old (BI, UST<10s, N=15, mean age=76 years) from unimpaired old (O, UST>30s, N=12, mean age=71 years) before they and healthy young females (Y, UST>30s, N=13, mean age=23 years) performed the rapid step test (RST). The RST evaluates the time required to take volitional front, side, and back steps of at least 80% maximum step length in response to verbal commands. Kinematic and kinetic data were recorded during the RST. The results indicate that the initiation phase of the step was the major source of age- and balance impairment-related delays. The delays in BI were primarily caused by increased postural adjustments prior to step initiation, as measured by center-of-pressure (COP) path length (p<0.003). The Step landing phase showed similar, but non-significant, temporal trends. Step length and peak center-of-mass (COM) deceleration during the Step-Out landing decreased in O by 18% (p=0.0002) and 24% (p=0.001), respectively, and a further 12% (p=0.04) and 18% (p=0.08) in BI. We conclude that the delay in BI step initiation was due to the increase in their postural adjustments prior to step initiation.

  14. Relationships Between Age at Menarche, Walking Gait Base of Support, and Stance Phase Frontal Plane Knee Biomechanics in Adolescent Girls.

    PubMed

    Froehle, Andrew W; Grannis, Kimberly A; Sherwood, Richard J; Duren, Dana L

    2017-05-01

    Age at menarche impacts patterns of pubertal growth and skeletal development. These effects may carry over into variation in biomechanical profiles involved in sports-related traumatic and overuse knee injuries. The present study investigated whether age at menarche is a potential indicator of knee injury risk through its influence on knee biomechanics during normal walking. To test the hypothesis that earlier menarche is related to postpubertal biomechanical risk factors for knee injuries, including a wider, more immature gait base of support, and greater valgus knee angles and moments. Cross-sectional observational study. University research facility. Healthy, postmenarcheal, adolescent girls. Age at menarche was obtained by recall questionnaire. Pubertal growth and anthropometric data were collected by using standard methods. Biomechanical data were taken from tests of walking gait at self-selected speed. Reflective marker position data were collected with a 3-dimensional quantitative motion analysis system, and 3 force plates recorded kinetic data. Age at menarche; growth and anthropometric measurements; base of support; static knee frontal plane angle; and dynamic knee frontal plane angles and moments during stance. Earlier menarche was correlated significantly with abbreviated pubertal growth and postpubertal retention of immature traits, including a wider base of support. Earlier menarche and wider base of support were both correlated with more valgus static knee angles, more valgus knee abduction angles and moments at foot-strike, and a more valgus peak knee abduction angle during stance. Peak knee abduction moment during stance was not correlated with age at menarche or base of support. Earlier menarche and its effects on growth are associated with retention of a relatively immature gait base of support and a tendency for static and dynamic valgus knee alignment. This biomechanical profile may put girls with earlier menarche at greater risk for sports

  15. Achieving an empathic stance: dialogical sequence analysis of a change episode.

    PubMed

    Tikkanen, Soile; Stiles, William B; Leiman, Mikael

    2013-01-01

    Abstract This study examined a client's therapeutic progress within one session of an 18-session child neurological assessment. The analysis focused on a parent-psychologist dialogue in one session of the assessment process. Dialogical sequence analysis (DSA; Leiman, 2004, 2012) was used as a micro-analytic method to examine the developing discourse. The analysis traced the mother's developing of a reflective stance toward herself and her problematic ways of interacting with her daughter, who was the client. During the dialogue, the mother began to recognize her own contribution in maintaining the problematic pattern. Her gradual acknowledgment of the child's perspective and her growing sense of the child's otherness were mediated by an observer position (third-person view) toward the problematic pattern, which allowed a flexible exchange between the perspectives of self and the other. The results demonstrate the parallel development of intrapersonal and interpersonal empathy shown previously to characterize the transition from stage 3 (problem statement/clarification) to stage 4 (understanding/insight) in the assimilation of problematic experiences sequence (Brinegar, Salvi, Stiles, & Greenberg, 2006).

  16. Exercise training program based on minimum weekly frequencies: effects on blood pressure and physical fitness in elderly hypertensive patients.

    PubMed

    Moraes, Wilson M De; Souza, Pamella R M; Pinheiro, Mônica H N P; Irigoyen, Maria C; Medeiros, Alessandra; Koike, Marcia K

    2012-04-01

    Exercise training (ET) can reduce blood pressure (BP) and prevent functional disability. However, the effects of low volumes of training have been poorly studied, especially in elderly hypertensive patients. To investigate the effects of a multi-component ET program (aerobic training, strength, flexibility, and balance) on BP, physical fitness, and functional ability of elderly hypertensive patients. Thirty-six elderly hypertensive patients with optimal clinical treatment underwent a multi-component ET program: two 60-minute sessions a week for 12 weeks at a Basic Health Unit. Compared to pre-training values, systolic and diastolic BP were reduced by 3.6% and 1.2%, respectively (p<0.001), body mass index was reduced by 1.1% (p<0.001), and peripheral blood glucose was reduced by 2.5% (p=0.002). There were improvements in all physical fitness domains: muscle strength (chair-stand test and elbow flexor test; p<0.001), static balance test (unipedal stance test; p<0.029), aerobic capacity (stationary gait test; p<0.001), except for flexibility (sit and reach test). Moreover, there was a reduction in the time required to perform two functional ability tests: "put on sock" and "sit down, stand up, and move around the house" (p<0.001). Lower volumes of ET improved BP, metabolic parameters, and physical fitness and reflected in the functional ability of elderly hypertensive patients. Trial Registration RBR-2xgjh3.

  17. Cognitive motor intervention for gait and balance in Parkinson's disease: systematic review and meta-analysis.

    PubMed

    Wang, Xue-Qiang; Pi, Yan-Ling; Chen, Bing-Lin; Wang, Ru; Li, Xin; Chen, Pei-Jie

    2016-02-01

    We performed a systematic review and meta-analysis to assess the effect of cognitive motor intervention (CMI) on gait and balance in Parkinson's disease. PubMed, Embase, Cochrane Library, CINAHL, Web of Science, PEDro, and China Biology Medicine disc. We included randomized controlled trials (RCTs) and non RCTs. Two reviewers independently evaluated articles for eligibility and quality and serially abstracted data. A standardized mean difference ± standard error and 95% confidence interval (CI) was calculated for each study using Hedge's g to quantify the treatment effect. Nine trials with 181 subjects, four randomized controlled trials, and five single group intervention studies were included. The pooling revealed that cognitive motor intervention can improve gait speed (Hedge's g = 0.643 ± 0.191; 95% CI: 0.269 to 1.017, P = 0.001), stride time (Hedge's g = -0.536 ± 0.167; 95% CI: -0.862 to -0.209, P = 0.001), Berg Balance Scale (Hedge's g = 0.783 ± 0.289; 95% CI: 0.218 to 1.349, P = 0.007), Unipedal Stance Test (Hedge's g = 0.440 ± 0.189; 95% CI: 0.07 to 0.81, P =0.02). The systematic review demonstrates that cognitive motor intervention is effective for gait and balance in Parkinson's disease. However, the paper is limited by the quality of the included trials. © The Author(s) 2015.

  18. Transcranial Doppler and Lower Extremity Function in Older Adults: Einstein Aging Study.

    PubMed

    Ezzati, Ali; Rundek, Tatjana; Verghese, Joe; Derby, Carol A

    2017-12-01

    To determine whether transcranial Doppler ultrasound (TCD) measures of mean blood flow velocity (MBFV) in the major cerebral arteries are associated with measures of lower extremity function in community-dwelling older adults. Cross-sectional study. Community sample. Individuals aged 70 and older (mean 79.5, 54% female) without dementia participating in the Einstein Aging Study (N = 200). All participants underwent TCD assessments and tests of lower extremity function at an annual clinic visit. Average MBFV for anterior (left and right anterior and middle cerebral arteries (MCAs)) and posterior (vertebral (VA) and basilar (BA) artery) circulation was measured using a standardized TCD protocol. Lower extremity function was characterized according to gait speed (cm/s) measured using an instrumented walkway, balance according to unipedal stance time (UPST, seconds), and lower extremity strength according to timed repeated chair rise (seconds). Multiple regression models adjusted for age, sex, race, education, and medical comorbidities showed that lower MBFV in the MCA was associated with slower gait speed and chair rise time but not with UPST. Ordinal regression models showed that lower MBFV in the VA and BA is associated with shorter UPST. Low MBFV in the anterior and posterior cerebral circulation was associated with worse lower extremity function and balance in older adults. This might be indicative of the importance of age-related changes in cerebral hemodynamics in the function of brain regions involved in specific aspects of physical performance. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  19. Postural control as a function of time-of-day: influence of a prior strenuous running exercise or demanding sustained-attention task

    PubMed Central

    2013-01-01

    Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958

  20. [Outcomes vs. Attributable Outcomes: Rational Choice Theory Must Take a Stance Towards Action Theory].

    PubMed

    Lübbe, Weyma

    2017-07-01

    The reply concentrates on advancing again my third thesis, which has not directly been taken up by Breyer and Kliemt. The thesis says that both criticisms against the Rule of Rescue - the irrationality objection, which Breyer and Kliemt try to defend, and the objection that the Rule is discriminatory, which they do not defend - are the results of insufficient action-theoretical reflection. I argue that Breyer's and Kliemt's objection to the Rule, unstable as it is in their comment, is not even clearly identifiable if they do not take a stance towards the central question: Do they want to - and, if so, can they consistently - incorporate people's interest in taking account of the attributability of an outcome to a decision maker into their utility concept? © Georg Thieme Verlag KG Stuttgart · New York.

  1. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance

    PubMed Central

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G.; Nomura, Taishin

    2016-01-01

    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold (kinematic-UCM). A control strategy related to this hypothesis (CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors (intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also

  2. Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance.

    PubMed

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro G; Nomura, Taishin

    2016-01-01

    Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM ). A control strategy related to this hypothesis ( CoM-control-strategy ) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy ) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM , when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We

  3. Repeatability of stance phase kinematics from a multi-segment foot model in people aged 50 years and older.

    PubMed

    Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic

    2013-06-01

    Confidence in 3D multi-segment foot models has been limited by a lack of repeatability data, particularly in older populations that may display unique functional foot characteristics. This study aimed to determine the intra and inter-observer repeatability of stance phase kinematic data from a multi-segment foot model described by Leardini et al. [2] in people aged 50 years or older. Twenty healthy adults participated (mean age 65.4 years SD 8.4). A repeated measures study design was used with data collected from four testing sessions on two days from two observers. Intra (within-day and between-day) and inter-observer coefficient of multiple correlations revealed moderate to excellent similarity of stance phase joint range of motion (0.621-0.975). Relative to the joint range of motion (ROM), mean differences (MD) between sessions were highest for the within-day comparison for all planar ROM at the metatarsus-midfoot articulation (sagittal plane ROM 5.2° vs. 3.9°, MD 3.1°; coronal plane ROM 3.9 vs. 3.1°, MD 2.3°; transverse plane ROM 6.8° vs. 5.16°, MD 3.5°). Consequently, data from the metatarsus-midfoot articulation in the Istituto Ortopedico Rizzoli (IOR) foot model in adults aged over 50 years needs to be considered with respect to the findings of this study. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  4. Postural asymmetries in response to holding evenly and unevenly distributed loads during self-selected stance.

    PubMed

    Haddad, Jeffrey M; Rietdyk, Shirley; Ryu, Joong Hyun; Seaman, Jessica M; Silver, Tobin A; Kalish, Julia A; Hughes, Charmayne M L

    2011-01-01

    The authors examined postural asymmetries during quiet stance and while holding evenly or unevenly distributed loads. Right-hand dominant subjects preferentially loaded their right lower limb when holding no load or a load evenly distributed in both hands, but no differences in center of pressure (CoP) were observed between the left and right limbs. However, longer CoP displacement was observed under the preferentially loaded limb, which may reflect a functional asymmetry that allows quick movement of one limb in response to a potential perturbation. When a load was held only in the nondominant hand, sample entropy decreased in the left (loaded) limb but increased in the right (unloaded) limb, suggesting the unloaded foot compensated for a loss of control flexibility in the loaded foot.

  5. Challenging Postural Tasks Increase Asymmetry in Patients with Parkinson’s Disease

    PubMed Central

    Beretta, Victor Spiandor; Gobbi, Lilian Teresa Bucken; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Barbieri, Fabio Augusto

    2015-01-01

    The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing. PMID:26367032

  6. Relationships between the center of pressure and the movements of the ankle and knee joints during the stance phase in patients with severe medial knee osteoarthritis.

    PubMed

    Fukaya, Takashi; Mutsuzaki, Hirotaka; Okubo, Tomoyuki; Mori, Koichi; Wadano, Yasuyoshi

    2016-08-01

    The knee joint movement during the stance phase is affected by altered ankle movement and the center of pressure (COP). However the relationships between changes in the center of pressure (COP) and the altered kinematics and kinetics of the ankle and knee joints in patients with osteoarthritis (OA) of the knee are not well understood. The purpose of this study was to determine the relationships between changes in the COP and the altered kinematic and kinetic variables in ankle and knee joints during the stance phase in patients with medial knee OA. Fourteen patients with knee OA (21 knees) and healthy subjects were assessed by gait analysis using an eight-camera motion analysis system to record forward and lateral shifts in the COP and the angle and net internal moments of the knee and ankle joint. Spearman rank-correlation coefficients were used to determine the relationship between these results. In knees with medial OA, lateral shifts in the COP were correlated with knee flexion angle. Lateral shifts in the COP were correlated with the second peak of the knee extensor moment and correlated with the knee abductor moment. In patients with medial knee OA, lateral shifts in the COP were negatively correlated with the kinematic and kinetic variables in the sagittal plane of the knee joints. Controlling such lateral shifts in the COP may thus be an effective intervention for mechanical loads on the knee during the stance phase in patients with knee OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Shoe drop reduction influences the lower limb biomechanics of children tennis players during an open stance forehand: A longitudinal study.

    PubMed

    Herbaut, Alexis; Simoneau-Buessinger, Emilie; Barbier, Franck; Gillet, Christophe; Roux, Maxime; Guéguen, Nils; Chavet, Pascale

    2017-11-01

    Compared to traditional tennis shoes, using 0-drop shoes was shown to induce an immediate switch from rear- to forefoot strike pattern to perform an open stance tennis forehand for 30% of children tennis players. The purpose of the study was to examine the long-term effects of a gradual reduction in the shoe drop on the biomechanics of children tennis players performing open stance forehands. Thirty children tennis players participated in 2 laboratory biomechanical test sessions (intermediate: +4 months and final: +8 months) after an inclusion visit where they were randomly assigned to control (CON) or experimental (EXP) group. CON received 12-mm-drop shoes twice, whereas EXP received 8 mm then 4-mm-drop shoes. Strike index indicated that all CON were rearfoot strikers in intermediate and final test sessions. All EXP were rearfoot strikers in intermediate test session, but half the group switched towards a forefoot strike pattern in final test session. This switch resulted in a decreased loading rate of the ground reaction force (-73%, p = .005) but increased peak ankle plantarflexors moment (+47%, p = .050) and peak ankle power absorption (+107%, p = .005) for these participants compared with CON. Biomechanical changes associated with the long-term use of partial minimalist shoes suggest a reduction in heel compressive forces but an increase in Achilles tendon tensile forces.

  8. Lower extremity balance is improved at time of return to throwing in baseball players after an ulnar collateral ligament reconstruction when compared to pre-operative measurements.

    PubMed

    Hannon, Joseph; Garrison, J Craig; Conway, John

    2014-05-01

    / Lower extremity balance deficits have been shown to lead to altered kinematics and increased injury risk in lower extremity athletes. The purpose of this study was to compare lower extremity balance in baseball players with an ulnar collateral ligament (UCL) tear pre-operatively and post-operatively at the beginning of the pre-return to throwing program stage of rehabilitation (3 months). Thirty-three competitive high school and collegiate male baseball players (18.5 ± 3.2) with a diagnosed UCL tear volunteered for the study. Of the 33 baseball players 29 were pitchers, 1 was a catcher, and 3 were infielders. Participants were seen pre-operatively and at 3 months post operatively. This 3 month point was associated with a follow-up visit to the orthopedic surgeon and subsequent release to begin the pre-return to throwing mark for baseball players following their surgery. Following surgery, each participant followed a standard UCL protocol which included focused lower extremity balance and neuromuscular control exercises. Participants were tested for single leg balance using the Y-Balance Test™ - Lower Quadrant (YBT-LQ) on both their lead and stance limbs. YBT-LQ composite scores were calculated for the stance and lead limbs pre- and post-operatively and compared over time. Paired t-tests were used to calculate differences between time 1 and time 2 (p < 0.05). Baseball players with diagnosed UCL tears demonstrated significant balance deficits on their stance (p < .001) and lead (p = .009) limbs prior to surgery compared to balance measures at the 3-month follow up (Stance Pre-Op = 89.4 ± 7.5%; Stance 3 Month = 94.9 ± 9.5%) (Lead Pre-Op = 90.2 ± 6.7%; Lead 3 Month = 93.6 ± 7.2%). Based on the results of this study, lower extremity balance is altered in baseball players with UCL tears prior to surgery. Statistically significant improvements were seen and balance measures improved at the time of return to throwing. Level 2b.

  9. Processing time of addition or withdrawal of single or combined balance-stabilizing haptic and visual information

    PubMed Central

    Honeine, Jean-Louis; Crisafulli, Oscar; Sozzi, Stefania

    2015-01-01

    We investigated the integration time of haptic and visual input and their interaction during stance stabilization. Eleven subjects performed four tandem-stance conditions (60 trials each). Vision, touch, and both vision and touch were added and withdrawn. Furthermore, vision was replaced with touch and vice versa. Body sway, tibialis anterior, and peroneus longus activity were measured. Following addition or withdrawal of vision or touch, an integration time period elapsed before the earliest changes in sway were observed. Thereafter, sway varied exponentially to a new steady-state while reweighting occurred. Latencies of sway changes on sensory addition ranged from 0.6 to 1.5 s across subjects, consistently longer for touch than vision, and were regularly preceded by changes in muscle activity. Addition of vision and touch simultaneously shortened the latencies with respect to vision or touch separately, suggesting cooperation between sensory modalities. Latencies following withdrawal of vision or touch or both simultaneously were shorter than following addition. When vision was replaced with touch or vice versa, adding one modality did not interfere with the effect of withdrawal of the other, suggesting that integration of withdrawal and addition were performed in parallel. The time course of the reweighting process to reach the new steady-state was also shorter on withdrawal than addition. The effects of different sensory inputs on posture stabilization illustrate the operation of a time-consuming, possibly supraspinal process that integrates and fuses modalities for accurate balance control. This study also shows the facilitatory interaction of visual and haptic inputs in integration and reweighting of stance-stabilizing inputs. PMID:26334013

  10. The spanning set indicates that variability during the stance period of running is affected by footwear.

    PubMed

    Kurz, Max J; Stergiou, Nicholas

    2003-04-01

    Sensory information the foot receives appears to be related to kinematic variability. Since footwear material densities affect sensory information, footwear may be an important factor that dictates variability. This study hypothesized that modifications in footwear would result in changes in kinematic variability during the running stance period. Subjects ran on a treadmill for three conditions: hard shoe, soft shoe and barefoot. The spanning sets of the mean ensemble curves of the knee and ankle changes for each condition were used to define variability. Variability was significantly larger in the barefoot condition in comparison with the two footwear conditions for both joints. These results suggest that variability can be affected by peripheral sensory information. The spanning set methodology can be utilized to examine changes in variability.

  11. A novel virtual motor rehabilitation system for Guillain-Barré syndrome. Two single case studies.

    PubMed

    Albiol-Pérez, S; Forcano-García, M; Muñoz-Tomás, M T; Manzano-Fernández, P; Solsona-Hernández, S; Mashat, M A; Gil-Gómez, J A

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "New Methodologies for Patients Rehabilitation". For Guillain-Barré patients, motor rehabilitation programs are helpful at the onset to prevent the complications of paralysis and in cases of persistent motor impairment. Traditional motor rehabilitation programs may be tedious and monotonous, resulting in low adherence to the treatments. A Virtual Motor Rehabilitation system has been tested in Guillain-Barré patients to increase patient adherence and to improve clinical results. Two people with Guillain-Barré performed 20 rehabilitation sessions. We tested a novel system based on Motor Virtual Rehabilitation in three periods of time (baseline evaluation, final evaluation, and follow-up. In the training program, the participants carried out a specific treatment using the Active Balance Rehabilitation system (ABAR). The system is composed of customizable virtual games to perform static and dynamic balance rehabilitation. Significant improvements in clinical results were obtained by both participants, with significant results in the static balance clinical test of the Anterior Reach test in the standing position and unipedal stance time. Other significant results were found in dynamic balance clinical tests in the Berg Balance Scale test and the 30-second Sit-to-Stand test. With regard to acceptance of the system, both patients enjoyed the experience, and both patients thought that this system was helpful for their rehabilitation. The results show that Virtual Motor Rehabilitation for Guillain-Barré patients provides clinical improvements in an entertaining way.

  12. The influence of foot hyperpronation on pelvic biomechanics during stance phase of the gait: A biomechanical simulation study.

    PubMed

    Yazdani, Farzaneh; Razeghi, Mohsen; Karimi, Mohammad Taghi; Raeisi Shahraki, Hadi; Salimi Bani, Milad

    2018-05-01

    Despite the theoretical link between foot hyperpronation and biomechanical dysfunction of the pelvis, the literature lacks evidence that confirms this assumption in truly hyperpronated feet subjects during gait. Changes in the kinematic pattern of the pelvic segment were assessed in 15 persons with hyperpronated feet and compared to a control group of 15 persons with normally aligned feet during the stance phase of gait based on biomechanical musculoskeletal simulation. Kinematic and kinetic data were collected while participants walked at a comfortable self-selected speed. A generic OpenSim musculoskeletal model with 23 degrees of freedom and 92 muscles was scaled for each participant. OpenSim inverse kinematic analysis was applied to calculate segment angles in the sagittal, frontal and horizontal planes. Principal component analysis was employed as a data reduction technique, as well as a computational tool to obtain principal component scores. Independent-sample t-test was used to detect group differences. The difference between groups in scores for the first principal component in the sagittal plane was statistically significant (p = 0.01; effect size = 1.06), but differences between principal component scores in the frontal and horizontal planes were not significant. The hyperpronation group had greater anterior pelvic tilt during 20%-80% of the stance phase. In conclusion, in persons with hyperpronation we studied the role of the pelvic segment was mainly to maintain postural balance in the sagittal plane by increasing anterior pelvic inclination. Since anterior pelvic tilt may be associated with low back symptoms, the evaluation of foot posture should be considered in assessing the patients with low back and pelvic dysfunction.

  13. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.

    PubMed

    Diffo Kaze, Arnaud; Maas, Stefan; Arnoux, Pierre-Jean; Wolf, Claude; Pape, Dietrich

    2017-12-07

    Results of finite element (FE) analyses can give insight into musculoskeletal diseases if physiological boundary conditions, which include the muscle forces during specific activities of daily life, are considered in the FE modelling. So far, many simplifications of the boundary conditions are currently made. This study presents an approach for FE modelling of the lower limb for which muscle forces were included. The stance phase of normal gait was simulated. Muscle forces were calculated using a musculoskeletal rigid body (RB) model of the human body, and were subsequently applied to a FE model of the lower limb. It was shown that the inertial forces are negligible during the stance phase of normal gait. The contact surfaces between the parts within the knee were modelled as bonded. Weak springs were attached to the distal tibia for numerical reasons. Hip joint reaction forces from the RB model and those from the FE model were similar in magnitude with relative differences less than 16%. The forces of the weak spring were negligible compared to the applied muscle forces. The maximal strain was 0.23% in the proximal region of the femoral diaphysis and 1.7% in the contact zone between the tibia and the fibula. The presented approach based on FE modelling by including muscle forces from inverse dynamic analysis of musculoskeletal RB model can be used to perform analyses of the lower limb with very realistic boundary conditions. In the present form, this model can be used to better understand the loading, stresses and strains of bones in the knee area and hence to analyse osteotomy fixation devices.

  14. Improvement in the physiological function and standing stability based on kinect multimedia for older people

    PubMed Central

    Chen, Chih-Chen

    2016-01-01

    [Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people’ physiological function and standing stability. PMID:27190480

  15. Improvement in the physiological function and standing stability based on kinect multimedia for older people.

    PubMed

    Chen, Chih-Chen

    2016-04-01

    [Purpose] The increase in the Taiwanese older population is associated with age-related inconveniences. Finding adequate and simple physical activities to help the older people maintaining their physiological function and preventing them from falls has become an urgent social issue. [Subjects and Methods] This study aimed to design a virtual exercise training game suitable for Taiwanese older people. This system will allow for the maintenance of the physiological function and standing stability through physical exercise, while using a virtual reality game. The participants can easily exercise in a carefree, interactive environment. This study will use Kinect for Windows for physical movement detection and Unity software for virtual world development. [Results] Group A and B subjects were involved in the exercise training method of Kinect interactive multimedia for 12 weeks. The results showed that the functional reach test and the unipedal stance test improved significantly. [Conclusion] The physiological function and standing stability of the group A subjects were examined at six weeks post training. The results showed that these parameters remained constant. This proved that the proposed system provide substantial support toward the preservation of the Taiwanese older people' physiological function and standing stability.

  16. Investigation of the effect of changes in muscle strength in gestational age upon fear of falling and quality of life.

    PubMed

    Atay, Emrah; Başalan Iz, Fatma

    2015-01-01

    The aim of this study is the investigation of the effect of changes in muscle strength in gestational age upon fear of falling and quality of life. This longitudinal, descriptive study included a sample of 37 pregnant women who volunteered to participate. The research data were collected at 20 and 32 weeks of gestation. Data collection instruments included a newly developed questionnaire form, the Tinetti Falls Efficacy Scale, a visual analog scale, and the Turkish language version of the WHO Quality of Life Scale. Upper body flexibility was measured by the back scratch test, while muscle strength was measured by a handgrip dynamometer and balance by the unipedal stance test. It was found that, as pregnancy advanced, pregnant women had an increased fear of falling, as well as elevated systolic and diastolic blood pressure levels. Participants suffered significant impairments in their balance, handgrip strength, and quality of life within the physical, psychological, and environmental domains. As pregnancy advances, muscle strength decreases and the fear of falling experienced by pregnant women increases, which significantly impairs the quality of life in the domains of environment, physical, and mental health.

  17. Association of exceptional parental longevity and physical function in aging.

    PubMed

    Ayers, Emmeline; Barzilai, Nir; Crandall, Jill P; Milman, Sofiya; Verghese, Joe

    2014-01-01

    Offspring of parents with exceptional longevity (OPEL), who are more likely to carry longevity-associated genotypes, may age more successfully than offspring of parents with usual survival (OPUS). Maintenance of physical function is a key attribute of successful aging. While many genetic and non-genetic factors interact to determine physical phenotype in aging, examination of the contribution of exceptional parental longevity to physical function in aging is limited. The LonGenity study recruited a relatively genetically homogenous cohort of Ashkenazi Jewish (AJ) adults age 65 and older, who were defined as either OPEL (having at least one parent who lived to age 95 or older) or OPUS (neither parent survived to age 95). Subjective and objective measures of physical function were compared between the two groups, accounting for potential confounders. Of the 893 LonGenity subjects, 365 were OPEL and 528 were OPUS. OPEL had better objective and subjective measures of physical function than OPUS, especially on unipedal stance (p = 0.009) and gait speed (p = 0.002). Results support the protective role of exceptional parental longevity in preventing decline in physical function, possibly via genetic mechanisms that should be further explored.

  18. The development of intention-based sociomoral judgment and distribution behavior from a third-party stance.

    PubMed

    Li, Jing; Tomasello, Michael

    2018-03-01

    The current study investigated children's intention-based sociomoral judgments and distribution behavior from a third-party stance. An actor puppet showed either positive or negative intention toward a target puppet, which had previously performed a prosocial or antisocial action toward others (i.e., children witnessed various types of indirect reciprocity). Children (3- and 5-year-olds) were asked to make sociomoral judgments and to distribute resources to the actor puppet. Results showed that 5-year-olds were more likely than 3-year-olds to be influenced by intention when they made their judgment and distributed resources. The target's previous actions affected only 5-year-olds' intent-based social preference. These results suggest that children's judgments about intent-based indirect reciprocity develop from ages 3 to 5 years. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    PubMed

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  20. Factors associated with falls in older patients with diffuse polyneuropathy.

    PubMed

    Richardson, James K

    2002-11-01

    To identify clinical factors associated with falls by older persons with polyneuropathy (PN). A cross-sectional study of 82 subjects aged 50 to 85 with clinical and electrodiagnostic evidence of PN. Electrodiagnostic and biomechanical research laboratories. Patients referred to the electrodiagnostic laboratory. History and physical examination, including semiquantitative methods of peripheral nerve function, and clinical balance testing. Falls were defined by retrospective self-report over a 2-year period. Forty (48.8%), 28 (34.1%), and 18 (22.0%) subjects reported a history of at least one fall, multiple falls, and injurious falls, respectively. Factors associated with single and multiple falls were similar, so only results for multiple and injurious falls are reported. Bivariate analysis showed that an increased body mass index (BMI) and more severe PN (as determined by the Michigan Diabetes Neuropathy Score) were associated with both fall categories. Men reporting falls also demonstrated a decreased unipedal stance time. Age, sex, nerve conduction study parameters, Romberg testing, medications, and comorbidities were not consistently associated with either fall category. Logistic regression demonstrated that multiple and injurious falls were associated with an increased BMI and more severe PN, controlling for age, sex, medications, and comorbidities (pseudo R2 = 0.458 and 0.484, respectively). Although previous work has demonstrated that all older persons with PN are at increased risk for falls, patients with increased BMI and more severe PN are at particularly high risk and should be targeted for intervention.

  1. Time-dependent influence of sensorimotor set on automatic responses in perturbed stance

    NASA Technical Reports Server (NTRS)

    Chong, R. K.; Horak, F. B.; Woollacott, M. H.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    These experiments tested the hypothesis that the ability to change sensorimotor set quickly for automatic responses depends on the time interval between successive surface perturbations. Sensorimotor set refers to the influence of prior experience or context on the state of the sensorimotor system. Sensorimotor set for postural responses was influenced by first giving subjects a block of identical backward translations of the support surface, causing forward sway and automatic gastrocnemius responses. The ability to change set quickly was inferred by measuring the suppression of the stretched antagonist gastrocnemius responses to toes-up rotations causing backward sway, following the translations. Responses were examined under short (10-14 s) and long (19-24 s) inter-trial intervals in young healthy subjects. The results showed that subjects in the long-interval group changed set immediately by suppressing gastrocnemius to 51% of translation responses within the first rotation and continued to suppress them over succeeding rotations. In contrast, subjects in the short-interval group did not change set immediately, but required two or more rotations to suppress gastrocnemius responses. By the last rotation, the short-interval group suppressed gastrocnemius responses to 33%, similar to the long-interval group of 29%. Associated surface plantarflexor torque resulting from these responses showed similar results. When rotation and translation perturbations alternated, however, the short-interval group was not able to suppress gastrocnemius responses to rotations as much as the long-interval group, although they did suppress more than in the first rotation trial after a series of translations. Set for automatic responses appears to linger, from one trial to the next. Specifically, sensorimotor set is more difficult to change when surface perturbations are given in close succession, making it appear as if set has become progressively stronger. A strong set does not mean

  2. Dynamics of quiet human stance: computer simulations of a triple inverted pendulum model.

    PubMed

    Günther, Michael; Wagner, Heiko

    2016-01-01

    For decades, the biomechanical description of quiet human stance has been dominated by the single inverted pendulum (SIP) paradigm. However, in the past few years, the SIP model family has been falsified as an explanatory approach. Double inverted pendulum models have recently proven to be inappropriate. Human topology with three major leg joints suggests in a natural way to examine triple inverted pendulum (TIP) models as an appropriate approach. In this study, we focused on formulating a TIP model that can synthesise stable balancing attractors based on minimalistic sensor information and actuation complexity. The simulated TIP oscillation amplitudes are realistic in vertical direction. Along with the horizontal ankle, knee and hip positions, though, all simulated joint angle amplitudes still exceed the measured ones about threefold. It is likely that they could be eventually brought down to the physiological range by using more sensor information. The TIP systems' eigenfrequency spectra come out as another major result. The eigenfrequencies spread across about 0.1 Hz...20 Hz. Our main result is that joint stiffnesses can be reduced even below statically required values by using an active hip torque balancing strategy. When reducing mono- and bi-articular stiffnesses further down to levels threatening dynamic stability, the spectra indicate a change from torus-like (stable) to strange (chaotic) attractors. Spectra of measured ground reaction forces appear to be strange-attractor-like. We would conclude that TIP models are a suitable starting point to examine more deeply the dynamic character of and the essential structural properties behind quiet human stance. Abbreviations and technical terms Inverted pendulum body exposed to gravity and pivoting in a joint around position of unstable equilibrium (operating point) SIP single inverted pendulum: one rigid body pivoting around fixation to the ground (external joint) DIP double inverted pendulum: two bodies

  3. Undisturbed upright stance control in the elderly: Part 2. Postural-control impairments of elderly fallers.

    PubMed

    Berger, L; Chuzel, M; Buisson, G; Rougier, P

    2005-09-01

    A common way of predicting falling risks in elderly people can be to study center of pressure (CP) trajectories during undisturbed upright stance maintenance. By estimating the difference between CP and center of gravity (CG) motions (CP - CGv), one can estimate the neuromuscular activity. The results of this study, which included 34 sedentary elderly persons aged over 75 years (21 fallers and 13 nonfallers), demonstrated significantly increased CGh and CP - CGv motions in both axes for the fallers. In addition, the fallers presented larger CGh motions in the mediolateral axis, suggesting an enlarged loading-unloading mechanism, which could have reflected the adoption of a step-initiating strategy. As highlighted by fractional Brownian motion modeling, the distance covered by the CP - CGv motions before the successive control mechanisms switched was enhanced for the fallers in both axes, therefore increasing the risk that the CG would be outside of the base of support.

  4. Increased sensory noise and not muscle weakness explains changes in non-stepping postural responses following stance perturbations in healthy elderly.

    PubMed

    Afschrift, Maarten; De Groote, Friedl; Verschueren, Sabine; Jonkers, Ilse

    2018-01-01

    The response to stance perturbations changes with age. The shift from an ankle to a hip strategy with increasing perturbation magnitude occurs at lower accelerations in older than in young adults. This strategy shift has been related to age-related changes in muscle and sensory function. However, the effect of isolated changes in muscle or sensory function on the responses following stance perturbations cannot be determined experimentally since changes in muscle and sensory function occur simultaneously. Therefore, we used predictive simulations to estimate the effect of isolated changes in (rates of change in) maximal joint torques, functional base of support, and sensory noise on the response to backward platform translations. To evaluate whether these modeled changes in muscle and sensory function could explain the observed changes in strategy; simulated postural responses with a torque-driven double inverted pendulum model controlled using optimal state feedback were compared to measured postural responses in ten healthy young and ten healthy older adults. The experimentally observed peak hip angle during the response was significantly larger (5°) and the functional base of support was smaller (0.04m) in the older than in the young adults but peak joint torques and rates of joint torque were similar during the recovery. The addition of noise to the sensed states in the predictive simulations could explain the observed increase in peak hip angle in the elderly, whereas changes in muscle function could not. Hence, our results suggest that strength training alone might be insufficient to improve postural control in elderly. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot

    PubMed Central

    Pasma, Jantsje H.; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C.

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This

  6. Evidence in Support of the Independent Channel Model Describing the Sensorimotor Control of Human Stance Using a Humanoid Robot.

    PubMed

    Pasma, Jantsje H; Assländer, Lorenz; van Kordelaar, Joost; de Kam, Digna; Mergner, Thomas; Schouten, Alfred C

    2018-01-01

    The Independent Channel (IC) model is a commonly used linear balance control model in the frequency domain to analyze human balance control using system identification and parameter estimation. The IC model is a rudimentary and noise-free description of balance behavior in the frequency domain, where a stable model representation is not guaranteed. In this study, we conducted firstly time-domain simulations with added noise, and secondly robot experiments by implementing the IC model in a real-world robot (PostuRob II) to test the validity and stability of the model in the time domain and for real world situations. Balance behavior of seven healthy participants was measured during upright stance by applying pseudorandom continuous support surface rotations. System identification and parameter estimation were used to describe the balance behavior with the IC model in the frequency domain. The IC model with the estimated parameters from human experiments was implemented in Simulink for computer simulations including noise in the time domain and robot experiments using the humanoid robot PostuRob II. Again, system identification and parameter estimation were used to describe the simulated balance behavior. Time series, Frequency Response Functions, and estimated parameters from human experiments, computer simulations, and robot experiments were compared with each other. The computer simulations showed similar balance behavior and estimated control parameters compared to the human experiments, in the time and frequency domain. Also, the IC model was able to control the humanoid robot by keeping it upright, but showed small differences compared to the human experiments in the time and frequency domain, especially at high frequencies. We conclude that the IC model, a descriptive model in the frequency domain, can imitate human balance behavior also in the time domain, both in computer simulations with added noise and real world situations with a humanoid robot. This

  7. Climate Literacy for Kids: Finding Medium, Message, and Stance

    NASA Astrophysics Data System (ADS)

    Fisher, D. K.; Leon, N.; Jackson, R.; Greene, M. P.

    2011-12-01

    . Various recycling bins (glass, plastic, metal, and paper) are lined up on the left and right sides of the screen, with a trash bin at the bottom. As an item drops, the player must quickly decide what kind of material it is made of and whether it is recyclable, then guide it into the appropriate bin. As the rate of items entering play increases, any missed items fall into the trash and stay there for a length of time proportional to their decomposition time. If the trash bin gets full, the game is over. While enjoying the increasing challenge of the game, players learn to identify many items as recyclable that they may not have recognized as recyclable before. Another feature on Climate Kids is "Climate Tales," a slightly edgy animated cartoon series (two episodes so far) about the adventures of a blundering polar bear, a chirpy tamarin monkey, and a grumpy old fish as "accidental tourists" around the planet, observing and dealing with the environmental conditions they encounter. Fairly complex concepts (such as reasons and implications of the declining abundance of phytoplankton) are woven into the tales. Climate Kids is a fun site for kids, educational and realistic, and yet positive and hopeful-the only reasonable stance to present to this young audience.

  8. Effects of external loads on balance control during upright stance: experimental results and model-based predictions.

    PubMed

    Qu, Xingda; Nussbaum, Maury A

    2009-01-01

    The purpose of this study was to identify the effects of external loads on balance control during upright stance, and to examine the ability of a new balance control model to predict these effects. External loads were applied to 12 young, healthy participants, and effects on balance control were characterized by center-of-pressure (COP) based measures. Several loading conditions were studied, involving combinations of load mass (10% and 20% of individual body mass) and height (at or 15% of stature above the whole-body COM). A balance control model based on an optimal control strategy was used to predict COP time series. It was assumed that a given individual would adopt the same neural optimal control mechanisms, identified in a no-load condition, under diverse external loading conditions. With the application of external loads, COP mean velocity in the anterior-posterior direction and RMS distance in the medial-lateral direction increased 8.1% and 10.4%, respectively. Predicted COP mean velocity and RMS distance in the anterior-posterior direction also increased with external loading, by 11.1% and 2.9%, respectively. Both experimental COP data and model-based predictions provided the same general conclusion, that application of larger external loads and loads more superior to the whole body center of mass lead to less effective postural control and perhaps a greater risk of loss of balance or falls. Thus, it can be concluded that the assumption about consistency in control mechanisms was partially supported, and it is the mechanical changes induced by external loads that primarily affect balance control.

  9. Time scale dependence of the center of pressure entropy: What characteristics of the neuromuscular postural control system influence stabilographic entropic half-life?

    PubMed

    Federolf, Peter; Zandiyeh, Payam; von Tscharner, Vinzenz

    2015-12-01

    The center of pressure (COP) movement in studies of postural control reveals a highly regular structure (low entropy) over short time periods and a highly irregular structure over large time scales (high entropy). Entropic half-life (EnHL) is a novel measure that quantifies the time over which short-term temporal correlations in a time series deteriorate to an uncorrelated, random structure. The current study suggested and tested three hypotheses about how characteristics of the neuromuscular postural control system may affect stabilometric EnHL: (H1) control system activity hypothesis: EnHL decreases with increased frequency of control system interventions adjusting COP motion; (H2) abundance of states hypothesis: EnHL decreases with increased number of mechanically equivalent states available to the postural system; and (H3) neurologic process hierarchy hypothesis: EnHL increases if postural control functions shift from the spinal level to the motor cortex. Thirty healthy participants performed quiet stance tests for 90 s in 18 different conditions: stance (bipedal, one-legged, and tandem); footwear (bare foot, regular sports shoe, and rocker sole shoes); and simultaneous cognitive task (two-back working memory task, no challenge). A four-way repeated-measures ANOVA revealed significant changes in EnHL for the different stance positions and for different movement directions (medio-lateral, anterior-posterior). These changes support H1 and H2. Significant differences were also found between rocker sole shoes and normal or barefoot standing, which supports H3. This study contributes to the understanding of how and why EnHL is a useful measure to monitor neuromuscular control of balance.

  10. A Study on the Defensive Stance and Position of Handball Goalkeepers: Facing a Forward Jump Shot Made from 9 Meters.

    PubMed

    Yang, Jong Hyun; Lee, Young Suk

    2016-10-01

    The purpose of this study was to find the defensive stance and calculate an optimal defense position for goalkeepers while blocking forward jump shots made from a distance of 9 m. Nine men's handball matches were recorded and 78 video clips were selected for analysis. These are the top class goalkeepers, which included players from the national team and reserve team of Korea. The goalkeeper's actual defensive position was significantly different from instructional suggestions; the width of both feet of the goalkeeper was approximately 2.5 times the width of the shoulders, and the hands were at waist height. The goalkeeper's actual defense position was about 1.10 (± 0.3) m from the goal line and also significantly different than instructional material (0.75 m). The optimal defense position, which was calculated from the goalkeeper's actual movement, was 1.44 m from the goal line, because the ratio of goalkeeper's defensive area in relation to the total area to be defended is highest at this point. In summary, we recommended that handball goalkeepers move forward, about a half step (0.34 m), when defending a forward jump shot made from 9 m, and instructional material should be modified according to the findings from this study.

  11. A lower-limb training program to improve balance in healthy elderly women using the T-bow device.

    PubMed

    Chulvi-Medrano, Iván; Colado, Juan C; Pablos, Carlos; Naclerio, Fernando; García-Massó, Xavier

    2009-06-01

    Ageing impairs balance, which increases the risk of falls. Fall-related injuries are a serious health problem associated with dependency and disability in the elderly and results in high costs to public health systems. This study aims to determine the effects of a training program to develop balance using a new device called the T-Bow. A total of 28 women > 65 years were randomly assigned to an experimental group (EG) (n = 18; 69.50 [0.99] years), or a control group (CG) (n = 10; 70.70 [2.18] years). A program for lower limbs was applied for 8 weeks using 5 exercises on the T-Bow: squat, lateral and frontal swings, lunges, and plantarflexions. The intensity of the exercises was controlled by time of exposure, support base, and ratings of perceived exertion. Clinical tests were used to evaluate variables of balance. Static balance was measured by a 1-leg balance test (unipedal stance test), dynamic balance was measured by the 8-foot-up-and-go test, and overall balance was measured using the Tinetti test. Results for the EG showed an increase of 35.2% in static balance (P < 0.005), 12.7% in dynamic balance (P < 0.005), and 5.9% in overall balance (P > 0.05). Results for the CG showed a decline of 5.79% in static balance (P > 0.05) but no change in the other balance variables. Thus the data suggest that implementing a training program using the T-Bow could improve balance in healthy older women.

  12. Reachability and Real-Time Actuation Strategies for the Active SLIP Model

    DTIC Science & Technology

    2015-06-01

    spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for analyzing running and hopping. In this work we consider an actuated...forced symmetry of the stance phase for the Spring-Loaded Inverted Pendulum , In Proceedings of the 2012 IEEE International Conference on Robotics and...Networks. Automatica, 49(1):206-213, 2013 (v) G. Piovan and K. Byl. Enforced symmetry of the stance phase for the spring-loaded inverted pendulum . In

  13. Is IPT Time-Limited Psychodynamic Psychotherapy?

    PubMed Central

    Markowitz, John C.; Svartberg, Martin; Swartz, Holly A.

    1998-01-01

    Interpersonal psychotherapy (IPT) has sometimes but not always been considered a psychodynamic psychotherapy. The authors discuss similarities and differences between IPT and short-term psychodynamic psychotherapy (STPP), comparing eight aspects: 1) time limit, 2) medical model, 3) dual goals of solving interpersonal problems and syndromal remission, 4) interpersonal focus on the patient solving current life problems, 5) specific techniques, 6) termination, 7) therapeutic stance, and 8) empirical support. The authors then apply both approaches to a case example of depression. They conclude that despite overlaps and similarities, IPT is distinct from STPP.(The Journal of Psychotherapy Practice and Research 1998; 7:185–195) PMID:9631340

  14. Objective evaluation of female feet and leg joint conformation at time of selection and post first parity in swine.

    PubMed

    Stock, J D; Calderón Díaz, J A; Rothschild, M F; Mote, B E; Stalder, K J

    2018-06-09

    Feet and legs of replacement females were objectively evaluated at selection, i.e. approximately 150 days of age (n=319) and post first parity, i.e. any time after weaning of first litter and before 2nd parturition (n=277) to 1) compare feet and leg joint angle ranges between selection and post first parity; 2) identify feet and leg joint angle differences between selection and first three weeks of second gestation; 3) identify feet and leg join angle differences between farms and gestation days during second gestation; and 4) obtain genetic variance components for conformation angles for the two time points measured. Angles for carpal joint (knee), metacarpophalangeal joint (front pastern), metatarsophalangeal joint (rear pastern), tarsal joint (hock), and rear stance were measured using image analysis software. Between selection and post first parity significant differences were observed for all joints measured (P < 0.05). Knee, front and rear pastern angles were less (more flexion), and hock angles were greater (less flexion) as age progressed (P < 0.05), while the rear stance pattern was less (feet further under center) at selection than post first parity (only including measures during first three weeks of second gestation). Only using post first parity leg conformation information, farm was a significant source of variation for front and rear pasterns and rear stance angle measurements (P < 0.05). Knee angle was less (more flexion) (P < 0.05) as gestation age progressed. Heritability estimates were low to moderate (0.04 - 0.35) for all traits measured across time points. Genetic correlations between the same joints at different time points were high (> 0.8) between the front leg joints and low (<0.2) between the rear leg joints. High genetic correlations between time points indicate that the trait can be considered the same at either time point, and low genetic correlations indicate that the trait at different time points should be considered as two separate

  15. Trunk repositioning errors are increased in balance-impaired older adults.

    PubMed

    Goldberg, Allon; Hernandez, Manuel Enrique; Alexander, Neil B

    2005-10-01

    Controlling the flexing trunk is critical in recovering from a loss of balance and avoiding a fall. To investigate the relationship between trunk control and balance in older adults, we measured trunk repositioning accuracy in young and balance-impaired and unimpaired older adults. Young adults (N = 8, mean age 24.3 years) and two groups of community-dwelling older adults defined by unipedal stance time (UST)-a balance-unimpaired group (UST > 30 seconds, N = 7, mean age 73.9 years) and a balance-impaired group (UST < 5 seconds, N = 8, mean age 79.6 years)-were tested in standing trunk control ability by reproducing a approximately 30 degrees trunk flexion angle under three visual-surface conditions: eyes opened and closed on the floor, and eyes opened on foam. Errors in reproducing the angle were defined as trunk repositioning errors (TREs). Clinical measures related to balance, trunk extensor strength, and self-reported disability were obtained. TREs were significantly greater in the balance-impaired group than in the other groups, even when controlling for trunk extensor strength and body mass. In older adults, there were significant correlations between TREs and three clinical measures of balance and fall risk, UST and maximum step length (-0.65 to -0.75), and Timed Up & Go score (0.55), and between TREs and age (0.63-0.76). In each group TREs were similar under the three visual-surface conditions. Test-retest reliability for TREs was good to excellent (intraclass correlation coefficients > or =0.74). Older balance-impaired adults have larger TREs, and thus poorer trunk control, than do balance-unimpaired older individuals. TREs are reliable and valid measures of underlying balance impairment in older adults, and may eventually prove to be useful in predicting the ability to recover from losses of balance and to avoid falls.

  16. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2015-03-04

    Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p < 0.001). These findings were also not affected by high

  17. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.

    PubMed

    Eberly, Valerie J; Mulroy, Sara J; Gronley, JoAnne K; Perry, Jacquelin; Yule, William J; Burnfield, Judith M

    2014-12-01

    For individuals with transfemoral amputation, walking with a prosthesis presents challenges to stability and increases the demand on the hip of the prosthetic limb. Increasing age or comorbidities magnify these challenges. Computerized prosthetic knee joints improve stability and efficiency of gait, but are seldom prescribed for less physically capable walkers who may benefit from them. To compare level walking function while wearing a microprocessor-controlled knee (C-Leg Compact) prosthesis to a traditionally prescribed non-microprocessor-controlled knee prosthesis for Medicare Functional Classification Level K-2 walkers. Crossover. Stride characteristics, kinematics, kinetics, and electromyographic activity were recorded in 10 participants while walking with non-microprocessor-controlled knee and Compact prostheses. Walking with the Compact produced significant increase in velocity, cadence, stride length, single-limb support, and heel-rise timing compared to walking with the non-microprocessor-controlled knee prosthesis. Hip and thigh extension during late stance improved bilaterally. Ankle dorsiflexion, knee extension, and hip flexion moments of the prosthetic limb were significantly improved. Improvements in walking function and stability on the prosthetic limb were demonstrated by the K-2 level walkers when using the C-Leg Compact prosthesis. Understanding the impact of new prosthetic designs on gait mechanics is essential to improve prescription guidelines for deconditioned or older persons with transfemoral amputation. Prosthetic designs that improve stability for safety and walking function have the potential to improve community participation and quality of life. © The International Society for Prosthetics and Orthotics 2013.

  18. "Not Brain-washed, but Heart-washed": A Qualitative Analysis of Benevolent Sexism in the Anti-Choice Stance.

    PubMed

    Duerksen, Kari N; Lawson, Karen L

    2017-12-01

    In recent years, anti-choice dialog has shifted from a focus on the fetus to a focus on the woman. This new movement constructs itself as positive and pro-woman, while perpetuating harmful stereotypes about women and the effects of abortion. Research has shown a relationship between benevolent sexism (beliefs that women are morally pure creatures in need of protection and nurturing) and restrictive attitudes towards abortion, although no research has qualitatively explored this relationship. The present study seeks to explore this by interpreting the content of one-on-one interviews with Canadian individuals holding an anti-choice stance through the theoretical framework of benevolent sexism. Thematic analysis of the interviews revealed three main themes: (1) protective paternalism, (2) complementary gender differentiation, and (3) the categorization of women. These themes connect strongly with benevolent sexism, providing evidence that abortion is still a stigmatized procedure. This stigma has shifted from viewing women who have abortions in an overtly negative way to viewing them as pitiable and poor decision makers.

  19. Effects of Vestibular Rehabilitation on Balance Control in Older People with Chronic Dizziness: A Randomized Clinical Trial.

    PubMed

    Ricci, Natalia Aquaroni; Aratani, Mayra Cristina; Caovilla, Heloísa Helena; Ganança, Fernando Freitas

    2016-04-01

    The aim of this study was to compare the effects of vestibular rehabilitation protocols on balance control in elderly with dizziness. This is a randomized clinical trial with 3-mo follow-up period. The sample was composed of 82 older individuals with chronic dizziness from vestibular disorders. The control group was treated according to the Conventional Cawthorne & Cooksey protocol (n = 40), and the experimental group was submitted to a Multimodal Cawthorne & Cooksey protocol (n = 42). Measures included Dynamic Gait Index, fall history, hand grip strength, Time Up-and-Go Test, sit-to-stand test, multidirectional reach, and static balance tests. With the exception of history of falls, Forward Functional Reach, Unipedal Right and Left Leg Eyes Closed, and Sensorial Romberg Eyes Open, all outcomes improved after treatments. Such results persisted at follow-up period, with the exception of the Tandem Eyes Open and the Timed Up-and-Go manual. The between-group differences for Sensorial Romberg Eyes Closed (4.27 secs) and Unipedal Left Leg Eyes Open (4.08 secs) were significant after treatment, favoring the Multimodal protocol. Both protocols resulted in improvement on elderly's balance control, which was maintained during a short-term period. The multimodal protocol presented better performance on specific static balance tests.

  20. Immediate Beneficial Effects of Mental Rotation Using Foot Stimuli on Upright Postural Stability in Healthy Participants

    PubMed Central

    Kawasaki, Tsubasa

    2013-01-01

    The present study was designed to investigate whether an intervention during which participants were involved in mental rotation (MR) of a foot stimulus would have immediate beneficial effects on postural stability (Experiment 1) and to confirm whether it was the involvement of MR of the foot, rather than simply viewing foot stimuli, that could improve postural stability (Experiment 2). Two different groups of participants (n = 16 in each group) performed MR intervention of foot stimuli in each of the two experiments. Pre- and postmeasurements of postural stability during unipedal and bipedal standing were made using a force plate for the intervention. Consistently, postural sway values for unipedal standing, but not for bipedal standing, were decreased immediately after the MR intervention using the foot stimuli. Such beneficial effects were not observed after the MR intervention using car stimuli (Experiment 1) or when participants observed the same foot stimuli during a simple reaction task (Experiment 2). These findings suggest that the MR intervention using the foot stimuli could contribute to improving postural stability, at least when it was measured immediately after the intervention, under a challenging standing condition (i.e., unipedal standing). PMID:24459588

  1. Are there specific conditions for which expertise in gymnastics could have an effect on postural control and performance?

    PubMed

    Asseman, François B; Caron, Olivier; Crémieux, Jacques

    2008-01-01

    The first aim of this study was to analyse the effect of elite training, linked to expertise, in gymnastics on postural performance and control. For this purpose, body sway of expert gymnasts was compared to other sportsmen, non-experts and non-gymnasts, in two different postures: bipedal (easy and unspecific to gymnasts) and unipedal (difficult and fairly specific). The second aim was to compare the groups in the same tasks but in a visual condition for which they were not trained, i.e. with eyes closed. Postural performance was assessed by centre of gravity motion, which was computed from centre of pressure motion, estimating postural control. A significant difference between the two groups was observed for postural performance in the unipedal posture and with eyes open only. Regardless of their posture, the groups were similarly affected by removal of vision. Expertise in gymnastics seemed to improve postural performances only in situations for which their practise is related to, i.e. unipedal with eyes open. These reveal the importance of choosing a relevant postural configuration and visual condition according to the people's training or by extension experience.

  2. Performance-based measures associate with frailty in patients with end-stage liver disease

    PubMed Central

    Lai, Jennifer C.; Volk, Michael L; Strasburg, Debra; Alexander, Neil

    2016-01-01

    Background Physical frailty, as measured by the Fried Frailty Index, is increasingly recognized as a critical determinant of outcomes in cirrhotics. However, its utility is limited by the inclusion of self-reported components. We aimed to identify performance-based measures associated with frailty in patients with cirrhosis. Methods Cirrhotics ≥50 years underwent: 6-minute walk test (6MWT, cardiopulmonary endurance), chair stands in 30 seconds (muscle endurance), isometric knee extension (lower extremity strength), unipedal stance time (static balance), and maximal step length (dynamic balance/coordination). Linear regression associated each physical performance test with frailty. Principal components exploratory factor analysis evaluated the inter-relatedness of frailty and the 5 physical performance tests. Results Of forty cirrhotics, with a median age of 64 years and Model for End-stage Liver Disease (MELD) MELD of 12,10 (25%) were frail by Fried Frailty Index ≥3. Frail cirrhotics had poorer performance in 6MWT distance (231 vs. 338 meters), 30 second chair stands (7 vs. 10), isometric knee extension (86 vs. 122 Newton meters), and maximal step length (22 vs. 27 inches) [p≤0.02 for each]. Each physical performance test was significantly associated with frailty (p<0.01), even after adjustment for MELD or hepatic encephalopathy. Principal component factor analysis demonstrated substantial, but unique, clustering of each physical performance test to a single factor – frailty. Conclusion Frailty in cirrhosis is a multi-dimensional construct that is distinct from liver dysfunction and incorporates endurance, strength, and balance. Our data provide specific targets for prehabilitation interventions aimed at reducing frailty in cirrhotics in preparation for liver transplantation. PMID:27495749

  3. Increased trunk extension endurance is associated with meaningful improvement in balance among older adults with mobility problems.

    PubMed

    Suri, Pradeep; Kiely, Dan K; Leveille, Suzanne G; Frontera, Walter R; Bean, Jonathan F

    2011-07-01

    To determine whether trunk extension endurance changes with training are associated with clinically meaningful improvements in balance among mobility-limited older adults. Longitudinal data from a randomized controlled trial. Outpatient rehabilitation research center. Community-dwelling older adults (N=64; mean age, 75.9y) with mobility limitations as defined by a score of 4 to 10 on the Short Physical Performance Battery. Sixteen weeks of progressive resistance training. Outcomes were the Berg Balance Scale (BBS) and the Unipedal Stance Time (UST). Predictors included leg strength, leg power, trunk extension endurance, and the product of heart rate and blood pressure (RPP) at the final stage of an exercise tolerance test. We performed an analysis of data from participants who completed 16 weeks of training by using binary outcomes defined by a clinically meaningful change (CMC) from baseline to completion of the intervention (BBS=4 units; UST=5s). The association of predictor variables with balance outcomes was examined separately and together in multivariate adjusted logistic regression models. Trunk extension endurance in seconds (1.04 [1.00-1.09]) was independently associated with CMC on the BBS. Trunk extension endurance (1.02 [1.00-1.03]) was independently associated with CMC on the UST. Other physical attributes were not associated with meaningful change in balance. Improvements in trunk extension endurance were independently associated with CMCs in balance in older adults. Leg strength, leg power, and RPP were not associated with CMC in balance. Poor trunk extension endurance may be a rehabilitative impairment worthy of further study as a modifiable factor linked to balance among older adults. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Performance-Based Measures Associate With Frailty in Patients With End-Stage Liver Disease.

    PubMed

    Lai, Jennifer C; Volk, Michael L; Strasburg, Debra; Alexander, Neil

    2016-12-01

    Physical frailty, as measured by the Fried Frailty Index, is increasingly recognized as a critical determinant of outcomes in patients with cirrhosis. However, its utility is limited by the inclusion of self-reported components. We aimed to identify performance-based measures associated with frailty in patients with cirrhosis. Patients with cirrhosis, aged 50 years or older, underwent: 6-minute walk test (cardiopulmonary endurance), chair stands in 30 seconds (muscle endurance), isometric knee extension (lower extremity strength), unipedal stance time (static balance), and maximal step length (dynamic balance/coordination). Linear regression associated each physical performance test with frailty. Principal components exploratory factor analysis evaluated the interrelatedness of frailty and the 5 physical performance tests. Of 40 patients with cirrhosis, with a median age of 64 years and Model for End-stage Liver Disease (MELD) MELD of 12.10 (25%) were frail by Fried Frailty Index ≥3. Frail patients with cirrhosis had poorer performance in 6-minute walk test distance (231 vs 338 m), 30-second chair stands (7 vs 10), isometric knee extension (86 vs 122 Newton meters), and maximal step length (22 vs 27 in. (P ≤ 0.02 for each). Each physical performance test was significantly associated with frailty (P < 0.01), even after adjustment for MELD or hepatic encephalopathy. Principal component factor analysis demonstrated substantial, but unique, clustering of each physical performance test to a single factor-frailty. Frailty in cirrhosis is a multidimensional construct that is distinct from liver dysfunction and incorporates endurance, strength, and balance. Our data provide specific targets for prehabilitation interventions aimed at reducing frailty in patients with cirrhosis in preparation for liver transplantation.

  5. Clinical measures of balance in people with type two diabetes: A systematic literature review.

    PubMed

    Dixon, C J; Knight, T; Binns, E; Ihaka, B; O'Brien, D

    2017-10-01

    Approximately 422 million people have diabetes mellitus worldwide, with the majority diagnosed with type 2 diabetes mellitus (T2DM). The complications of diabetes mellitus include diabetic peripheral neuropathy (DPN) and retinopathy, both of which can lead to balance impairments. Balance assessment is therefore an integral component of the clinical assessment of a person with T2DM. Although there are a variety of balance measures available, it is uncertain which measures are the most appropriate for this population. Therefore, the aim of this study was to conduct a systematic review on clinical balance measures used with people with T2DM and DPN. Databases searched included: CINAHL plus, MEDLINE, SPORTDiscus, Dentistry and Oral Sciences source, and SCOPUS. Key terms, inclusion and exclusion criteria were used to identify appropriate studies. Identified studies were critiqued using the Downs and Black appraisal tool. Eight studies were included, these studies incorporated a total of ten different clinical balance measures. The balance measures identified included the Dynamic Balance Test, balance walk, tandem and unipedal stance, Functional Reach Test, Clinical Test of Sensory Interaction and Balance, Berg Balance Scale, Tinetti Performance-Oriented Mobility Assessment, Activity-Specific Balance Confidence Scale, Timed Up and Go test, and the Dynamic Gait Index. Numerous clinical balance measures were used for people with T2DM. However, the identified balance measures did not assess all of the systems of balance, and most had not been validated in a T2DM population. Therefore, future research is needed to identify the validity of a balance measure that assesses these systems in people with T2DM. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Time-varying impedance of the human ankle in the sagittal and frontal planes during straight walk and turning steps.

    PubMed

    Ficanha, Evandro M; Ribeiro, Guilherme A; Knop, Lauren; Rastgaar, Mo

    2017-07-01

    This paper describes the methods and experiment protocols for estimation of the human ankle impedance during turning and straight line walking. The ankle impedance of two human subjects during the stance phase of walking in both dorsiflexion plantarflexion (DP) and inversion eversion (IE) were estimated. The impedance was estimated about 8 axes of rotations of the human ankle combining different amounts of DP and IE rotations, and differentiating among positive and negative rotations at 5 instants of the stance length (SL). Specifically, the impedance was estimated at 10%, 30%, 50%, 70% and 90% of the SL. The ankle impedance showed great variability across time, and across the axes of rotation, with consistent larger stiffness and damping in DP than IE. When comparing straight walking and turning, the main differences were in damping at 50%, 70%, and 90% of the SL with an increase in damping at all axes of rotation during turning.

  7. Effects of disease severity and medication state on postural control asymmetry during challenging postural tasks in individuals with Parkinson's disease.

    PubMed

    Barbieri, Fabio A; Polastri, Paula F; Baptista, André M; Lirani-Silva, Ellen; Simieli, Lucas; Orcioli-Silva, Diego; Beretta, Victor S; Gobbi, Lilian T B

    2016-04-01

    The aim of this study was to investigate the effects of disease severity and medication state on postural control asymmetry during challenging tasks in individuals with Parkinson's disease (PD). Nineteen people with PD and 11 neurologically healthy individuals performed three standing task conditions: bipedal standing, tandem and unipedal adapted standing; the individuals with PD performed the tasks in ON and OFF medication state. The participants with PD were distributed into 2 groups according to disease severity: unilateral group (n=8) and bilateral group (n=11). The two PD groups performed the evaluations both under and without the medication. Two force plates were used to analyze the posture. The symmetric index was calculated for various of center of pressure. ANOVA one-way (groups) and two-way (PD groups×medication), with repeated measures for medication, were calculated. For main effects of group, the bilateral group was more asymmetric than CG. For main effects of medication, only unipedal adapted standing presented effects of PD medication. There was PD groups×medication interaction. Under the effects of medication, the unilateral group presented lower asymmetry of RMS in anterior-posterior direction and area than the bilateral group in unipedal adapted standing. In addition, the unilateral group presented lower asymmetry of mean velocity, RMS in anterior-posterior direction and area in unipedal standing and area in tandem adapted standing after a medication dose. Postural control asymmetry during challenging postural tasks was dependent on disease severity and medication state in people with PD. The bilateral group presented higher postural control asymmetry than the control and unilateral groups in challenging postural tasks. Finally, the medication dose was able to reduce postural control asymmetry in the unilateral group during challenging postural tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Dual processing of visual rotation for bipedal stance control.

    PubMed

    Day, Brian L; Muller, Timothy; Offord, Joanna; Di Giulio, Irene

    2016-10-01

    component decreased with faster visual rotation, while the later component increased. Furthermore, the decrease in size of the early component was not achieved by a simple attenuation of gain, but by a change in its temporal structure. We conclude that the two components represent expressions of different motor functions, both pertinent to the control of bipedal stance. We propose that the early response stems from the balance control system attempting to minimise unintended body motion, while the later response arises from the postural control system attempting to align the body with gravity. © 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  9. Effect of arch type and Body Mass Index on plantar pressure distribution during stance phase of gait.

    PubMed

    O'Brien, Davida Louise; Tyndyk, Magdalena

    2014-01-01

    Several factors have been associated with the presence of abnormally high plantar foot pressure including: (i) increased body weight, (ii) foot structure and (iii) walking strategy. It is predicted that the biomechanics of the foot is influenced by the structure of the foot, primarily the Medial Longitudinal Arch. The objective of this study was to examine if Body Mass Index and the foot arch have a direct effect on dynamic peak plantar pressure for healthy subjects. Following a clinical lower limb examination, the Tekscan HR mat was utilised for this study, plantar pressure was profiled at specific events during stance phase of gait including heel strike, midstance and toe off. Results indicated to the preferable normal arch as this produced a low plantar pressure distribution in all cases. The 2nd and 3rd metatarsal head region recorded the highest pressure for all arch types during dynamic analysis. The lowest pressure for the normal and overweight BMI was at toe-off. While the obese BMI group showed highest pressure during toe-off. The obese BMI flat arch subcategory indicated to functional ambulation differences. Future work involves comparing this healthy database to a demographically matched diabetic group.

  10. Why do flamingos stand on one leg?

    PubMed

    Anderson, Matthew J; Williams, Sarah A

    2010-01-01

    A series of observational studies of captive Caribbean flamingos Phoenicopterus ruber were conducted to determine why flamingos rest on one leg. While frequently asked by the general public, this basic question has remained unanswered by the scientific community. Here we suggest that the latency of flamingos to initiate forward locomotion following resting on one leg is significantly longer than following resting on two, discounting the possibility that unipedal resting reduces muscle fatigue or enhances predatory escape. Additionally, we demonstrate that flamingos do not display lateral preferences at the individual or group levels when resting on one leg, with each bird dividing its resting time across both legs. We show that while flamingos prefer resting on one leg to two regardless of location, the percentage of birds resting on one leg is significantly higher among birds standing in the water than among those on land. Finally, we demonstrate a negative relationship between temperature and the percentage of observed birds resting on one leg, such that resting on one leg decreases as temperature rises. Results strongly suggest that unipedal resting aids flamingos in thermoregulation. (c) 2009 Wiley-Liss, Inc.

  11. [Effects of training on static and dynamic balance in elderly subjects who have had a fall or not].

    PubMed

    Toulotte, C; Thévenon, A; Fabre, C

    2004-11-01

    To evaluate the effects of a physical training program on static and dynamic balance during single and dual task conditions in elderly subjects who have had a fall or not. Two groups, comprising a total of 33 elderly subjects, were trained: 16 who had a fall were 69.2 +/- 5.0 years old and 17 who had not had a fall were 67.3 +/- 3.8 years. All subjects underwent an unipedal test with eyes open and eyes closed, followed by gait assessment during single and dual motor task conditions, before and after a physical training program. All subjects showed a significant decrease, by six times for subjects who had fallen and four times by those who had not, in the number of touch-downs in the unipedal test with eyes open (P < 0.05), and by 2.5 and 2 times, respectively, with eyes closed (P < 0.05) after the training program. All subjects showed a significant increase in speed (P < 0.05), cadence (P < 0.05) and stride length (P < 0.05) and a significant decrease in the single support time (P < 0.05) and stride time (P < 0.05) in gait assessment during single and dual task conditions after the training program. During the training program, no subjects fell. The physical training program improved static balance and quality of gait in elderly subjects who had had a fall and those who had not, which could contribute to minimizing and/or retarding the effects of aging and maintaining physical independence.

  12. Is there a relationship between complaints of impaired balance and postural control disorder in community-dwelling elderly women? A cross-sectional study with the use of posturography

    PubMed Central

    Tanaka, Erika H.; Santos, Paulo F.; Reis, Júlia G.; Rodrigues, Natalia C.; Moraes, Renato; Abreu, Daniela C. C.

    2015-01-01

    Background: Risk of falls increases as age advances. Complaints of impaired balance are very common in the elderly age group. Objectives: The objective of this study was to investigate whether the subjective perception of impaired balance was associated with deficits in postural control (objective analysis) in elderly community-dwelling women. Method: Static posturography was used in two groups: elderly women with (WC group) and without (NC group) complaints of impaired balance. The area, mean sway amplitude and mean speed of the center of pressure (COP) in the anterior-posterior (AP) and medial-lateral (ML) directions were analyzed in three stances: single-leg stance, double-leg stance and tandem stance, with eyes open or closed on two different surfaces: stable (firm) and unstable (foam). A digital chronometer was activated to measure the time limit (Tlimit) in the single-leg stance. Kruskal-Wallis tests followed by Mann-Whitney tests, Friedman analyses followed by post hoc Wilcoxon tests and Bonferroni corrections, and Spearman statistical tests were used in the data analysis. Differences of p<0.05 were considered statistically significant. Results: The results of posturography variables revealed no differences between groups. The timed single-leg stance test revealed a shorter Tlimit in the left single-leg stance (p=0.01) in WC group compared to NC group. A negative correlation between posturography variables and Tlimit was detected. Conclusions: Posturography did not show any differences between the groups; however, the timed single-leg stance allowed the authors to observe differences in postural control performance between elderly women with and those without complaints of impaired balance. PMID:26083602

  13. Is there a relationship between complaints of impaired balance and postural control disorder in community-dwelling elderly women? A cross-sectional study with the use of posturography.

    PubMed

    Tanaka, Erika H; Santos, Paulo F; Reis, Júlia G; Rodrigues, Natalia C; Moraes, Renato; Abreu, Daniela C C

    2015-01-01

    Risk of falls increases as age advances. Complaints of impaired balance are very common in the elderly age group. The objective of this study was to investigate whether the subjective perception of impaired balance was associated with deficits in postural control (objective analysis) in elderly community-dwelling women. Static posturography was used in two groups: elderly women with (WC group) and without (NC group) complaints of impaired balance. The area, mean sway amplitude and mean speed of the center of pressure (COP) in the anterior-posterior (AP) and medial-lateral (ML) directions were analyzed in three stances: single-leg stance, double-leg stance and tandem stance, with eyes open or closed on two different surfaces: stable (firm) and unstable (foam). A digital chronometer was activated to measure the time limit (Tlimit) in the single-leg stance. Kruskal-Wallis tests followed by Mann-Whitney tests, Friedman analyses followed by post hoc Wilcoxon tests and Bonferroni corrections, and Spearman statistical tests were used in the data analysis. Differences of p<0.05 were considered statistically significant. The results of posturography variables revealed no differences between groups. The timed single-leg stance test revealed a shorter Tlimit in the left single-leg stance (p=0.01) in WC group compared to NC group. A negative correlation between posturography variables and Tlimit was detected. Posturography did not show any differences between the groups; however, the timed single-leg stance allowed the authors to observe differences in postural control performance between elderly women with and those without complaints of impaired balance.

  14. Compressive Sensing of Foot Gait Signals and Its Application for the Estimation of Clinically Relevant Time Series.

    PubMed

    Pant, Jeevan K; Krishnan, Sridhar

    2016-07-01

    A new signal reconstruction algorithm for compressive sensing based on the minimization of a pseudonorm which promotes block-sparse structure on the first-order difference of the signal is proposed. Involved optimization is carried out by using a sequential version of Fletcher-Reeves' conjugate-gradient algorithm, and the line search is based on Banach's fixed-point theorem. The algorithm is suitable for the reconstruction of foot gait signals which admit block-sparse structure on the first-order difference. An additional algorithm for the estimation of stride-interval, swing-interval, and stance-interval time series from the reconstructed foot gait signals is also proposed. This algorithm is based on finding zero crossing indices of the foot gait signal and using the resulting indices for the computation of time series. Extensive simulation results demonstrate that the proposed signal reconstruction algorithm yields improved signal-to-noise ratio and requires significantly reduced computational effort relative to several competing algorithms over a wide range of compression ratio. For a compression ratio in the range from 88% to 94%, the proposed algorithm is found to offer improved accuracy for the estimation of clinically relevant time-series parameters, namely, the mean value, variance, and spectral index of stride-interval, stance-interval, and swing-interval time series, relative to its nearest competitor algorithm. The improvement in performance for compression ratio as high as 94% indicates that the proposed algorithms would be useful for designing compressive sensing-based systems for long-term telemonitoring of human gait signals.

  15. Receiving shadows: governance and liminality in the night-time economy.

    PubMed

    Hobbs, D; Lister, S; Hadfield, P; Winlow, S; Hall, S

    2000-12-01

    This paper focuses upon the emergence of the night-time economy both materially and culturally as a powerful manifestation of post-industrial society. This emergence features two key processes: firstly a shift in economic development from the industrial to the post-industrial; secondly a significant orientation of urban governance involving a move away from the traditional managerial functions of local service provision, towards an entrepreneurial stance primarily focused on the facilitation of economic growth. Central to this new economic era is the identification and promotion of liminality. The State's apparent inability to control these new leisure zones constitutes the creation of an urban frontier that is governed by commercial imperatives.

  16. The effects of transverse rotation angle on compression and effective lever arm of prosthetic feet during simulated stance.

    PubMed

    Major, Matthew J; Howard, David; Jones, Rebecca; Twiste, Martin

    2012-06-01

    Unlike sagittal plane prosthesis alignment, few studies have observed the effects of transverse plane alignment on gait and prosthesis behaviour. Changes in transverse plane rotation angle will rotate the points of loading on the prosthesis during stance and may alter its mechanical behaviour. This study observed the effects of increasing the external transverse plane rotation angle, or toe-out, on foot compression and effective lever arm of three commonly prescribed prosthetic feet. The roll-over shape of a SACH, Flex and single-axis foot was measured at four external rotation angle conditions (0°, 5°, 7° and 12° relative to neutral). Differences in foot compression between conditions were measured as average distance between roll-over shapes. Increasing the transverse plane rotation angle did not affect foot compression. However, it did affect the effective lever arm, which was maximized with the 5° condition, although differences between conditions were small. Increasing the transverse plane rotation angle of prosthetic feet by up to 12° beyond neutral has minimal effects on their mechanical behaviour in the plane of walking progression during weight-bearing.

  17. The clinical identification of peripheral neuropathy among older persons.

    PubMed

    Richardson, James K

    2002-11-01

    To identify simple clinical rules for the detection of a diffuse peripheral neuropathy among older outpatients. Observational, blinded, controlled study. A tertiary-care electrodiagnostic laboratory and biomechanics laboratory. One hundred research subjects, 68 with electrodiagnostic evidence of peripheral neuropathy, between the ages of 50 and 80 years. Not applicable. One examiner, unaware of the results of electrodiagnostic testing, evaluated Achilles' and patellar reflexes, Romberg testing, semiquantified vibration, and position sense at the toe and ankle in all subjects, and unipedal stance time and the Michigan Diabetes Neuropathy Score in a subset of subjects. Significant group differences were present in all clinical measures tested. Three signs, Achilles' reflex (absent despite facilitation), vibration (128Hz tuning fork perceived for <10s), and position sense (<8/10 1-cm trials) at the toe, were the best predictors of peripheral neuropathy on both univariate and logistic regression (pseudo R(2)=.744) analyses. The presence of 2 or 3 signs versus 0 or 1 sign identified peripheral neuropathy with sensitivity, specificity, and positive and negative predictive values of 94.1%, 84.4%, 92.8%, and 87.1%, respectively. Values were similar among subgroups of subjects with and without diabetes mellitus. When other clinicians applied the technique to 12 more subjects, excellent interrater reliability regarding the presence of peripheral neuropathy (kappa=.833) and good to excellent interrater reliability for each sign (kappa range,.667-1.00) were shown. Among older persons, the presence of 2 or 3 of the 3 clinical signs strongly suggested electrodiagnostic evidence of a peripheral neuropathy, regardless of etiology. Age-related decline in peripheral nerve function need not be a barrier to the clinical recognition of a diffuse peripheral neuropathy among older persons. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of

  18. Comprehensive, blinded assessment of balance in orthostatic tremor.

    PubMed

    Bhatti, Danish; Thompson, Rebecca; Xia, Yiwen; Hellman, Amy; Schmaderer, Lorene; Suing, Katie; McKune, Jennifer; Penke, Cynthia; Iske, Regan; Roeder, Bobbi Jo; Siu, Ka-Chun; Bertoni, John M; Torres-Russotto, Diego

    2018-02-01

    Orthostatic Tremor (OT) is a movement disorder characterized by a sensation of unsteadiness and tremors in the 13-18 Hz range present upon standing. The pathophysiology of OT is not well understood but there is a relationship between the sensation of instability and leg tremors. Despite the sensation of unsteadiness, OT patients do not fall often and balance in OT has not been formally assessed. We present a prospective blinded study comparing balance assessment in patients with OT versus healthy controls. We prospectively enrolled 34 surface Electromyography (EMG)-confirmed primary OT subjects and 21 healthy controls. Participants underwent evaluations of balance by blinded physical therapists (PT) with standardized, validated, commonly used balance scales and tasks. OT subjects were mostly female (30/34, 88%) and controls were majority males (13/20, 65%). The average age of OT subjects was 68.5 years (range 54-87) and for controls was 69.4 (range 32-86). The average duration of OT symptoms was 18 years. OT subjects did significantly worse on all the balance scales and on most balance tasks including Berg Balance Scale, Functional Gait Assessment, Dynamic Gait Index, Unipedal Stance Test, Functional Reach Test and pull test. Gait speed and five times sit to stand were normal in OT. Common validated balance scales are significantly abnormal in primary OT. Despite the objective finding of impaired balance, OT patients do not commonly have falls. The reported sensation of unsteadiness in this patient population seems to be out of proportion to the number of actual falls. Further studies are needed to determine which components of commonly used balance scales are affected by a sensation of unsteadiness and fear of falling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking

    PubMed Central

    Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.

    2013-01-01

    This work presents a framework for selection of subject-specific quasi-stiffness of hip orthoses and exoskeletons, and other devices that are intended to emulate the biological performance of this joint during walking. The hip joint exhibits linear moment-angular excursion behavior in both the extension and flexion stages of the resilient loading-unloading phase that consists of terminal stance and initial swing phases. Here, we establish statistical models that can closely estimate the slope of linear fits to the moment-angle graph of the hip in this phase, termed as the quasi-stiffness of the hip. Employing an inverse dynamics analysis, we identify a series of parameters that can capture the nearly linear hip quasi-stiffnesses in the resilient loading phase. We then employ regression analysis on experimental moment-angle data of 216 gait trials across 26 human adults walking over a wide range of gait speeds (0.75–2.63 m/s) to obtain a set of general-form statistical models that estimate the hip quasi-stiffnesses using body weight and height, gait speed, and hip excursion. We show that the general-form models can closely estimate the hip quasi-stiffness in the extension (R2 = 92%) and flexion portions (R2 = 89%) of the resilient loading phase of the gait. We further simplify the general-form models and present a set of stature-based models that can estimate the hip quasi-stiffness for the preferred gait speed using only body weight and height with an average error of 27% for the extension stage and 37% for the flexion stage. PMID:24349136

  20. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H

    2013-04-26

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction.

    PubMed

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-07-01

    Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.

  2. Estimating the Mechanical Behavior of the Knee Joint during Crouch Gait: Implications for Real-Time Motor Control of Robotic Knee Orthoses

    PubMed Central

    Damiano, Diane L.; Bulea, Thomas C.

    2016-01-01

    Individuals with cerebral palsy frequently exhibit crouch gait, a pathological walking pattern characterized by excessive knee flexion. Knowledge of the knee joint moment during crouch gait is necessary for the design and control of assistive devices used for treatment. Our goal was to 1) develop statistical models to estimate knee joint moment extrema and dynamic stiffness during crouch gait, and 2) use the models to estimate the instantaneous joint moment during weight-acceptance. We retrospectively computed knee moments from 10 children with crouch gait and used stepwise linear regression to develop statistical models describing the knee moment features. The models explained at least 90% of the response value variability: peak moment in early (99%) and late (90%) stance, and dynamic stiffness of weight-acceptance flexion (94%) and extension (98%). We estimated knee extensor moment profiles from the predicted dynamic stiffness and instantaneous knee angle. This approach captured the timing and shape of the computed moment (root-mean-squared error: 2.64 Nm); including the predicted early-stance peak moment as a correction factor improved model performance (root-mean-squared error: 1.37 Nm). Our strategy provides a practical, accurate method to estimate the knee moment during crouch gait, and could be used for real-time, adaptive control of robotic orthoses. PMID:27101612

  3. Rehabilitation after hallux valgus surgery: importance of physical therapy to restore weight bearing of the first ray during the stance phase.

    PubMed

    Schuh, Reinhard; Hofstaetter, Stefan G; Adams, Samuel B; Pichler, Florian; Kristen, Karl-Heinz; Trnka, Hans-Joerg

    2009-09-01

    Operative treatment of people with hallux valgus can yield favorable clinical and radiographic results. However, plantar pressure analysis has demonstrated that physiologic gait patterns are not restored after hallux valgus surgery. The purpose of this study was to illustrate the changes of plantar pressure distribution during the stance phase of gait in patients who underwent hallux valgus surgery and received a multimodal rehabilitation program. This was a prospective descriptive study. Thirty patients who underwent Austin (n=20) and scarf (n=10) osteotomy for correction of mild to moderate hallux valgus deformity were included in this study. Four weeks postoperatively they received a multimodal rehabilitation program once per week for 4 to 6 weeks. Plantar pressure analysis was performed preoperatively and 4 weeks, 8 weeks, and 6 months postoperatively. In addition, range of motion of the first metatarsophalangeal joint was measured, and the American Orthopaedic Foot and Ankle Society (AOFAS) forefoot questionnaire was administered preoperatively and at 6 months after surgery. The mean AOFAS score significantly increased from 60.7 points (SD=11.9) preoperatively to 94.5 points (SD=4.5) 6 months after surgery. First metatarsophalangeal joint range of motion increased at 6 months postoperatively, with a significant increase in isolated dorsiflexion. In the first metatarsal head region, maximum force increased from 117.8 N to 126.4 N and the force-time integral increased from 37.9 N.s to 55.6 N.s between the preoperative and 6-month assessments. In the great toe region, maximum force increased from 66.1 N to 87.2 N and the force-time integral increased from 18.7 N.s to 24.2 N.s between the preoperative and 6-month assessments. A limitation of the study was the absence of a control group due to the descriptive nature of the study. The results suggest that postoperative physical therapy and gait training may lead to improved function and weight bearing of the first

  4. Evidence for differential control of tibial position in perturbed unilateral stance after acute ACL rupture.

    PubMed

    Chmielewski, T L; Ramsey, D K; Snyder-Mackler, L

    2005-01-01

    Functional outcomes in anterior cruciate ligament-deficient "potential copers" and "non-copers" may be related to their knee stabilization strategies. Therefore, the purpose of this study was to differentiate dynamic knee stabilization strategies of potential copers and non-copers through analysis of sagittal plane knee angle and tibia position during disturbed and undisturbed unilateral standing. Ten uninjured potential coper and non-coper subjects stood in unilateral stance on a platform that translated anteriorly, posteriorly and laterally. Knee angle and tibia position with reference to the femur were calculated before and after platform movement. During perturbation trials, potential copers maintained kinematics that were similar to uninjured subjects across conditions. Conversely, non-copers stood with greater knee flexion than uninjured subjects and a tibia position that was more posterior than the other groups. Both non-copers and potential copers demonstrated small changes in tibia position following platform movement, but direction of movement was not similar. The similarities between the knee kinematics of potential copers and uninjured subjects suggest that potential copers compensated well from their injury by utilizing analogous dynamic knee stabilization strategies. In comparison to the other groups, by keeping the knee in greater flexion and the tibia in a more posterior position, non-copers appear to constrain the tibia in response to a challenging task, which is consistent with a "stiffening strategy". Based on the poor functional outcomes of non-copers, a stiffening strategy does not lead to dynamic knee stability, and the strategy may increase compressive forces which could contribute to or exacerbate articular cartilage degeneration.

  5. Use of motor abundance in old adults in the regulation of a narrow-based stance.

    PubMed

    Hsu, Wei-Li; Lin, Kwan-Hwa; Yang, Rong-Sen; Cheng, Chih-Hsiu

    2014-02-01

    The ability to maintain stable balance while standing decreases with age. The body must coordinate multiple joints using "freeze" or "free" strategy, or a combination of both to ensure balance stability. The purpose of this study was to examine age-related changes in the use of motor abundance during upright stance on a narrow base without visual input. Uncontrolled manifold (UCM) analysis was used to decompose the movement variability of joints into goal-equivalent variability (GEV) and non-goal-equivalent variability (NGEV). The ratio between GEV and NGEV (UCM(ratio)) quantifies the joint coordination related to postural stability, and a high UCM(ratio) value indicates flexible control of joints. To perform balance tests, participants in this study (healthy young and old adults, 20 each) were asked to stand on a flat platform and on narrow wooden blocks with their eyes open and then eyes closed. In upright balance tests, both old and young adults maintained postural stability. GEV was greater than NGEV across all participants and conditions. However, GEV was higher in the young adults than in the old adults, whereas NGEV was higher in the old adults than in the young adults. Therefore, the old adults exhibited a lower UCM(ratio) than the young adults. The old adults were unable to exploit motor abundance and used a less flexible multi-joint coordination pattern to achieve stable balance. The UCM(ratio) value reflects the quality of postural control and can be used for assessing joint coordination in balance disorders.

  6. Effects of Combining Running and Practical Duration Stretching on Proprioceptive Skills of National Sprinters.

    PubMed

    Romero-Franco, Natalia; Párraga-Montilla, Juan Antonio; Molina-Flores, Enrique M; Jiménez-Reyes, Pedro

    2018-06-01

    Romero-Franco, N, Párraga-Montilla, JA, Molina-Flores, EM, and Jiménez-Reyes, P. Effects of combining running and practical duration stretching on proprioceptive skills of national sprinters. J Strength Cond Res XX(X): 000-000, 2018-Practical duration stretching after aerobic activities is a recommended component of the first part of warm-up because of its effects on performance. However, its effects on proprioceptive skills are unknown. This study aimed to analyze the effects of running and practical duration static stretching (SS) and dynamic stretching (DS) on postural balance and the joint position sense (JPS) of national sprinters. Thirty-two national sprinters were randomly classified into a SS group (n = 11), DS group (n = 11), or control group (n = 10). Static stretching performed 5 minutes of running and short-duration (20 seconds) static stretches; DS performed 5 minutes of running and short-duration dynamic (20 seconds) stretches; and the control group performed 5 minutes of running. Before and after the intervention, unipedal static postural balance and knee JPS were evaluated. Static stretching exhibited a more centralized center of pressure in the medial-lateral plane for unipedal static postural balance in right-leg support after stretching (p = 0.005, d = 1.24), whereas DS showed values further from the center after stretching for the same unipedal support compared with baseline (p = 0.042, d = 0.49), and the control group remained stable (p > 0.05). Joint position sense did not show significant differences in any group (p > 0.05). In conclusion, combining running and practical duration SS may be beneficial for right-leg postural stabilization, whereas DS may be partly and slightly deleterious. Both SS and DS combined with running and running alone have neutral effects on knee JPS. Sports professionals should consider running and practical duration SS as part of the warm-up of sprinters to partly improve unipedal static postural balance.

  7. Time-Limited Psychotherapy With Adolescents

    PubMed Central

    Shefler, Gaby

    2000-01-01

    Short-term dynamic therapies, characterized by abbreviated lengths (10–40 sessions) and, in many cases, preset termination dates, have become more widespread in the past three decades. Short-term therapies are based on rapid psychodynamic diagnosis, a therapeutic focus, a rapidly formed therapeutic alliance, awareness of termination and separation processes, and the directive stance of the therapist. The emotional storm of adolescence, stemming from both developmental and psychopathological sources, leaves many adolescents in need of psychotherapy. Many adolescents in need of therapy resist long-term attachment and involvement in an ambiguous relationship, which they experience as a threat to their emerging sense of independence and separateness. Short-term dynamic therapy can be the treatment of choice for many adolescents because it minimizes these threats and is more responsive to their developmental needs. The article presents treatment and follow-up of a 17-year-old youth, using James Mann's time-limited psychotherapy method. PMID:10793128

  8. Reliability of the Achilles tendon tap reflex evoked during stance using a pendulum hammer.

    PubMed

    Mildren, Robyn L; Zaback, Martin; Adkin, Allan L; Frank, James S; Bent, Leah R

    2016-01-01

    The tendon tap reflex (T-reflex) is often evoked in relaxed muscles to assess spinal reflex circuitry. Factors contributing to reflex excitability are modulated to accommodate specific postural demands. Thus, there is a need to be able to assess this reflex in a state where spinal reflex circuitry is engaged in maintaining posture. The aim of this study was to determine whether a pendulum hammer could provide controlled stimuli to the Achilles tendon and evoke reliable muscle responses during normal stance. A second aim was to establish appropriate stimulus parameters for experimental use. Fifteen healthy young adults stood on a forceplate while taps were applied to the Achilles tendon under conditions in which postural sway was constrained (by providing centre of pressure feedback) or unconstrained (no feedback) from an invariant release angle (50°). Twelve participants repeated this testing approximately six months later. Within one experimental session, tap force and T-reflex amplitude were found to be reliable regardless of whether postural sway was constrained (tap force ICC=0.982; T-reflex ICC=0.979) or unconstrained (tap force ICC=0.968; T-reflex ICC=0.964). T-reflex amplitude was also reliable between experimental sessions (constrained ICC=0.894; unconstrained ICC=0.890). When a T-reflex recruitment curve was constructed, optimal mid-range responses were observed using a 50° release angle. These results demonstrate that reliable Achilles T-reflexes can be evoked in standing participants without the need to constrain posture. The pendulum hammer provides a simple method to allow researchers and clinicians to gather information about reflex circuitry in a state where it is involved in postural control. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Bilingual Education: An Idea Whose Time Has Come.

    ERIC Educational Resources Information Center

    Shaw, Frederick

    1975-01-01

    Bilingual education is not entirely a new idea. In the 18th and 19th centuries it was practiced in church schools, particularly in German and Spanish. Most communities, however, assumed a strongly assimilationist stance for their public schools, especially after World War I. In recent years, however, this attitude has been partly reversed under…

  10. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents.

    PubMed

    Emery, Carolyn A; Cassidy, J David; Klassen, Terry P; Rosychuk, Rhonda J; Rowe, Brian B

    2005-06-01

    There is a need in sports medicine for a static and dynamic standing balance measure to quantify balance ability in adolescents. The purposes of this study were to determine the test-retest reliability of timed static (eyes open) and dynamic (eyes open and eyes closed) unipedal balance measurements and to examine factors associated with balance. Adolescents (n=123) were randomly selected from 10 Calgary high schools. This study used a repeated-measures design. One rater measured unipedal standing balance, including timed eyes-closed static (ECS), eyes-open dynamic (EOD), and eyes-closed dynamic (ECD) balance at baseline and 1 week later. Dynamic balance was measured on a foam surface. Reliability was examined using both intraclass correlation coefficients (ICCs) and Bland and Altman statistical techniques. Multiple linear regressions were used to examine other potentially influencing factors. Based on ICCs, test-retest reliability was adequate for ECS, EOD, and ECD balance (ICC=.69, .59, and .46, respectively). The results of Bland and Altman methods, however, suggest that caution is required in interpreting reliability based on ICCs alone. Although both ECS balance and ECD balance appear to demonstrate adequate test-retest reliability by ICC, Bland and Altman methods of agreement demonstrate sufficient reliability for ECD balance only. Thirty percent of the subjects reached the 180-second maximum on EOD balance, suggesting that this test is not appropriate for use in this population. Balance ability (ECS and ECD) was better in adolescents with no past history of lower-extremity injury. Timed ECD balance is an appropriate and reliable clinical measurement for use in adolescents and is influenced by previous injury.

  11. A preliminary study of static and dynamic balance in sedentary obese young adults: the relationship between BMI, posture and postural balance.

    PubMed

    do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R

    2017-12-01

    The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.

  12. Submaximal oxygen uptake kinetics, functional mobility, and physical activity in older adults with heart failure and reduced ejection fraction

    PubMed Central

    Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B

    2016-01-01

    Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875

  13. The role of neuropsychological performance in the relationship between chronic pain and functional physical impairment.

    PubMed

    Pulles, Wiesje L J A; Oosterman, Joukje M

    2011-12-01

      In this study, the relationship between pain intensity, neuropsychological, and physical function in adult chronic pain patients was examined.   Thirty participants with chronic pain completed neuropsychological tests tapping mental processing speed, memory, and executive function. Pain intensity was measured with three visual analog scales and the Pain Rating Index of the McGill Pain Questionnaire. A grip strength test, the 6-minute walk test, the Unipedal Stance Test and the Lifting Low Test were administered in order to obtain a performance-based measure of physical capacity. Self-reported physical ability was assessed with the Disability Rating Index and the Short Form-36 Physical Functioning, and Role Physical scales. Psychosocial function was examined using the Mental Health and Role Emotional subscales of the Short Form-36.   The study was set in two outpatient physical therapy clinics in The Netherlands.   The analysis showed that a lower mental processing speed was related to a higher level of pain, as well as to a lower performance-based and self-reported physical functioning. In addition, both performance-based and self-reported physical function revealed an inverse correlation with pain intensity. Psychosocial function turned out to be an important mediator of the relationship between pain and self-reported, but not performance-based, physical function. Mental processing speed, on the other hand, was found to mediate the relationship between pain and performance-based physical functioning.   The results suggest that in chronic pain patients, mental processing speed mediates the relationship between pain and physical function. Wiley Periodicals, Inc.

  14. Philip Morris's website and television commercials use new language to mislead the public into believing it has changed its stance on smoking and disease

    PubMed Central

    Friedman, Lissy C

    2007-01-01

    Objectives This paper analyses Philip Morris's evolving website and the legal strategies employed in its creation and dissemination. Methods Internal tobacco documents were searched and examined and their substance verified and triangulated using media accounts, legal and public health research papers, and visits to Philip Morris's website. Various drafts of website language, as well as informal discussion of the website's creation, were located in internal Philip Morris documents. I compared website statements pertaining to Philip Morris's stance on cigarette smoking and disease with statements made in tobacco trials. Results Philip Morris created and disseminated its website's message that it agreed that smoking causes disease and is addictive in an effort to sway public opinion, while maintaining in a litigation setting its former position that it cannot be proved that smoking causes disease or is addictive. Conclusions Philip Morris has not changed its position on smoking and health or addiction in the one arena where it has the most to lose—in the courtroom, under oath. PMID:18048599

  15. Influence of Electrotactile Tongue Feedback on Controlling Upright Stance during Rotational and/or Translational Sway-referencing with Galvanic Vestibular Stimulation

    NASA Technical Reports Server (NTRS)

    Wood, Scott J.; Tyler, Mitchell E.; Bach-y-Rita, Paul; MacDougall, Hamish G.; Moore, Steven T.; Stallings, Valerie L.; Paloski, William H.; Black, F. Owen

    2007-01-01

    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y-Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. MacDougall et al. (2006) recently demonstrated that unpredictably varying Galvanic vestibular stimulation (GVS) significantly increased anterior-posterior (AP) sway during rotational sway referencing with eyes closed. The purpose of this study was to assess the influence of electrotactile feedback on postural control performance with pseudorandom binaural bipolar GVS. Postural equilibrium was measured with a computerized hydraulic platform in 10 healthy adults (6M, 4F, 24-65 y). Tactile feedback (TF) of pitch and roll body orientation was derived from a two-axis linear accelerometer mounted on a torso belt and displayed on a 144-point electrotactile array held against the anterior dorsal tongue (BrainPort, Wicab, Inc., Middleton, WI). Subjects were trained to use TF by voluntarily swaying to draw figures on their tongue, both with and without GVS. Subjects were required to keep the intraoral display in their mouths on all trials, including those that did not provide TF. Subjects performed 24 randomized trials (20 s duration with eyes closed) including four support surface conditions (fixed, rotational sway-referenced, translating the support surface proportional to AP sway, and combined rotational-translational sway-referencing), each repeated twice with and without GVS, and with combined GVS and TF. Postural performance was assessed using deviations from upright (peak-to-peak and RMS sway) and convergence toward stability limits (time and distance to base of support boundaries). Postural stability was impaired with GVS in all platform conditions, with larger decrements in performance during trials with rotation sway

  16. Nurses' daily life: gender relations from the time spent in hospital.

    PubMed

    Pereira, Audrey Vidal

    2015-01-01

    to analyze the everyday life of nurses through the sexual work division as well as through interdependence relations and the time in hospital. quanti-qualitative study, based on the Time Use Survey and in Norbert Elias's Configuration Theory of Interdependencies. Daily shifts distribution record, directed by 42 participants--with self-confrontation--by interviews which drew dialogues on subjective aspects of the everyday experiences related to use of time, based on a job at a university hospital. The theoretical intake that founded data analysis was based on concepts of conflicts of interest, power struggles, sexual work division and polychronic-monochronic concepts--whether the work environment demands multitasking nurses or not. time records allowed to observe differences between the groups studied, useful to identify conflicts, tensions, power struggles and gender inequalities in interviewees' everyday affairs that do not only affect physical and mental health, but also their way of life. the analytical path pointed out the need for public policies that promote equity in gender relations, keeping at sight the exercise of plural discourses and tolerant stances capable to respect differences between individual and collective time.

  17. Effects of the removal of vision on body sway during different postures in elite gymnasts.

    PubMed

    Asseman, F; Caron, O; Crémieux, J

    2005-03-01

    The aim of this study was to analyse the effects of the removal of vision on postural performance and postural control in function of the difficulty and specificity of the posture. Twelve elite gymnasts were instructed to be as stable as possible with eyes open and eyes closed in three postures: bipedal, unipedal, and handstand ranked from the less difficult and less specific to the more difficult and more specific. The ratios eyes closed on eyes open, computed on CP surface and CP mean velocity, which respectively represents postural performance and postural control, were similar in the bipedal and handstand postures. They were highly increased in the unipedal one. The effect of the removal of vision and so the role of vision on body sway was not directly linked to the difficulty or specificity of the posture; other tasks' characteristics like the segments configuration also played a role.

  18. Improving balance skills in patients who had stroke through virtual reality treadmill training.

    PubMed

    Yang, Saiwei; Hwang, Wei-Hsung; Tsai, Yi-Ching; Liu, Fu-Kang; Hsieh, Lin-Fen; Chern, Jen-Suh

    2011-12-01

    The aim of this study was to evaluate the effects of virtual reality (VR) treadmill training on the balance skills of patients who have had a stroke. A total of 14 patients with strokes were recruited and randomly assigned to receive VR treadmill or traditional treadmill training. The outcome measures that were included for the study were center of pressure (COP) sway excursion, COP maximum sway in anterior-posterior direction, COP maximum sway in medial-lateral direction, COP sway area, bilateral limb-loading symmetric index, the sway excursion values for the paretic foot (sway excursion/P), paretic limb stance time (stance time/P), number of steps of the paretic limb (number of steps/P), and contact area of the paretic foot (contact A/P) during quiet stance, sit-to-stand transfer, and level walking. There were no significant improvements in COP-related measures and symmetric index during the quiet stance, either in the VR treadmill or traditional treadmill training group (P > 0.05). However, the difference between groups after training in COP maximum sway in medial-lateral direction during the quiet stance was significant (P = 0.038). Traditional treadmill training failed to improve sit-to-stand performance, whereas VR treadmill training improved symmetric index (P = 0.028) and sway excursion (P = 0.046) significantly during sit-to-stand transfer. The changes of symmetric index between groups were markedly different (P = 0.045). Finally, both groups improved significantly in stance time/P, but only VR treadmill training increased contact A/P (P = 0.034) after training during level walking. The difference between groups during level walking was not significant. Neither traditional treadmill nor VR treadmill training had any effect on balance skill during quiet stance, but VR treadmill training improved balance skill in the medial-lateral direction better than traditional training did. VR treadmill training also improved balance skill during sit-to-stand transfers

  19. Head, withers and pelvic movement asymmetry and their relative timing in trot in racing Thoroughbreds in training.

    PubMed

    Pfau, T; Noordwijk, K; Sepulveda Caviedes, M F; Persson-Sjodin, E; Barstow, A; Forbes, B; Rhodin, M

    2018-01-01

    Horses show compensatory head movement in hindlimb lameness and compensatory pelvis movement in forelimb lameness but little is known about the relationship of withers movement symmetry with head and pelvic asymmetry in horses with naturally occurring gait asymmetries. To document head, withers and pelvic movement asymmetry and timing differences in horses with naturally occurring gait asymmetries. Retrospective analysis of gait data. Head, withers and pelvic movement asymmetry and timing of displacement minima and maxima were quantified from inertial sensors in 163 Thoroughbreds during trot-ups on hard ground. Horses were divided into 4 subgroups using the direction of head and withers movement asymmetry. Scatter plots of head vs. pelvic movement asymmetry illustrated how the head-withers relationship distinguishes between contralateral and ipsilateral head-pelvic movement asymmetry. Independent t test or Mann-Whitney U test (P<0.05) compared pelvic movement asymmetry and timing differences between groups. The relationship between head and withers asymmetry (i.e. same sided or opposite sided asymmetry) predicts the relationship between head and pelvic asymmetry in 69-77% of horses. Pelvic movement symmetry was significantly different between horses with same sign vs. opposite sign of head-withers asymmetry (P<0.0001). Timing of the maximum head height reached after contralateral ('sound') stance was delayed compared to withers (P = 0.02) and pelvis (P = 0.04) in horses with contralateral head-withers asymmetry. The clinical lameness status of the horses was not investigated. In the Thoroughbreds with natural gait asymmetries investigated here, the direction of head vs. withers movement asymmetry identifies the majority of horses with ipsilateral and contralateral head and pelvic movement asymmetries. Withers movement should be further investigated for differentiating between forelimb and hindlimb lame horses. Horses with opposite sided head and withers

  20. Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking

    PubMed Central

    Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.

    2013-01-01

    Characterizing the quasi-stiffness and work of lower extremity joints is critical for evaluating human locomotion and designing assistive devices such as prostheses and orthoses intended to emulate the biological behavior of human legs. This work aims to establish statistical models that allow us to predict the ankle quasi-stiffness and net mechanical work for adults walking on level ground. During the stance phase of walking, the ankle joint propels the body through three distinctive phases of nearly constant stiffness known as the quasi-stiffness of each phase. Using a generic equation for the ankle moment obtained through an inverse dynamics analysis, we identify key independent parameters needed to predict ankle quasi-stiffness and propulsive work and also the functional form of each correlation. These parameters include gait speed, ankle excursion, and subject height and weight. Based on the identified form of the correlation and key variables, we applied linear regression on experimental walking data for 216 gait trials across 26 subjects (speeds from 0.75–2.63 m/s) to obtain statistical models of varying complexity. The most general forms of the statistical models include all the key parameters and have an R2 of 75% to 81% in the prediction of the ankle quasi-stiffnesses and propulsive work. The most specific models include only subject height and weight and could predict the ankle quasi-stiffnesses and work for optimal walking speed with average error of 13% to 30%. We discuss how these models provide a useful framework and foundation for designing subject- and gait-specific prosthetic and exoskeletal devices designed to emulate biological ankle function during level ground walking. PMID:23555839

  1. Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance

    PubMed Central

    Baudry, Stéphane; Duchateau, Jacques

    2012-01-01

    This study investigated the modulation of Ia afferent input in young and elderly adults during quiet upright stance in normal and modified visual and proprioceptive conditions. The surface EMG of leg muscles, recruitment curve of the soleus (SOL) Hoffmann (H) reflex and presynaptic inhibition of Ia afferents from SOL, assessed with the D1 inhibition and single motor unit methods, were recorded when young and elderly adults stood with eyes open or closed on two surfaces (rigid vs. foam) placed over a force platform. The results showed that elderly adults had a longer path length for the centre of pressure and larger antero-posterior body sway across balance conditions (P < 0.05). Muscle EMG activities were greater in elderly compared with young adults (P < 0.05), whereas the Hmax expressed as a percentage of the Hmax was lower (P = 0.048) in elderly (38 ± 16%) than young adults (58 ± 16%). The conditioned H reflex/test H reflex ratio (D1 inhibition method) increased with eye closure and when standing on foam (P < 0.05), with greater increases for elderly adults (P = 0.019). These changes were accompanied by a reduced peak motor unit discharge probability when standing on rigid and foam surfaces (P ≤ 0.001), with a greater effect for elderly adults (P = 0.026). Based on these latter results, the increased conditioned H reflex/test H reflex ratio in similar sensory conditions is likely to reflect occlusion at the level of presynaptic inhibitory interneurones. Together, these findings indicate that elderly adults exhibit greater modulation of Ia presynaptic inhibition than young adults with variation in the sensory conditions during upright standing. PMID:22946095

  2. Accuracy of clinical techniques for evaluating lower limb sensorimotor functions associated with increased fall risk

    PubMed Central

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K.

    2015-01-01

    Background In prior work laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. Objective To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (HipRTD) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Design Prospective, observational study. Setting Biomechanical research laboratory. Participants Forty-one older subjects (age 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Assessments Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time (LPT), defined as the number seconds the laterally lying subject could lift hips from the support surface. Foot/ankle evaluation included Achilles reflex, and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Main Outcome Measures HipRTD, abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Results Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with HipRTD (r/p = .61/<.001 and .67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/p = .31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of < 12 seconds yielded a sensitivity/specificity of 91%/80% for identifying HipRTD < .25 (body size in Newton-meters), and vibratory perception of < 8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO > 1

  3. Accuracy of Clinical Techniques for Evaluating Lower Limb Sensorimotor Functions Associated With Increased Fall Risk.

    PubMed

    Donaghy, Alex; DeMott, Trina; Allet, Lara; Kim, Hogene; Ashton-Miller, James; Richardson, James K

    2016-04-01

    In prior work, laboratory-based measures of hip motor function and ankle proprioceptive precision were critical to maintaining unipedal stance and fall/fall-related injury risk. However, the optimal clinical evaluation techniques for predicting these measures are unknown. To evaluate the diagnostic accuracy of common clinical maneuvers in predicting laboratory-based measures of frontal plane hip rate of torque development (Hip(RTD)) and ankle proprioceptive thresholds (AnkPRO) associated with increased fall risk. Prospective, observational study. Biomechanical research laboratory. A total of 41 older subjects (aged 69.1 ± 8.3 years), 25 with varying degrees of diabetic distal symmetric polyneuropathy and 16 without. Clinical hip strength was evaluated by manual muscle testing (MMT) and lateral plank time, defined as the number of seconds that the laterally lying subject could lift the hips from the support surface. Foot/ankle evaluation included Achilles reflex and vibratory, proprioceptive, monofilament, and pinprick sensations at the great toe. Hip(RTD), abduction and adduction, using a custom whole-body dynamometer. AnkPRO determined with subjects standing using a foot cradle system and a staircase series of 100 frontal plane rotational stimuli. Pearson correlation coefficients (r) and receiver operator characteristic (ROC) curves revealed that LPT correlated more strongly with Hip(RTD) (r/P = 0.61/<.001 and 0.67/<.001, for abductor/adductor, respectively) than did hip abductor MMT (r/P = 0.31/.044). Subjects with greater vibratory and proprioceptive sensation, and intact Achilles reflexes, monofilament, and pin sensation had more precise AnkPRO. LPT of <12 seconds yielded a sensitivity/specificity of 91%/80% for identifying Hip(RTD) < 0.25 (body size in Newton-meters), and vibratory perception of <8 seconds yielded a sensitivity/specificity of 94%/80% for the identification of AnkPRO >1.0°. LPT is a more effective measure of Hip(RTD) than MMT. Similarly

  4. Relevance of nerve conduction velocity in the assessment of balance performance in older adults with diabetes mellitus.

    PubMed

    Wang, Ting-Yun; Chen, Shih-Ching; Peng, Chih-Wei; Kang, Chun-Wei; Chen, Yu-Luen; Chen, Chun-Lung; Chou, Yi-Lin; Lai, Chien-Hung

    2017-03-01

    Purpose This study investigated the relationship between peripheral nerve conduction velocity (NCV) and balance performance in older adults with diabetes. Methods Twenty older adults with diabetes were recruited to evaluate the NCV of their lower limbs and balance performance. The balance assessments comprised the timed up and go (TUG) test, Berg balance scale (BBS), unipedal stance test (UST), multidirectional reach test (MDRT), maximum step length (MSL) test and quiet standing with eyes open and closed. The relationship between NCV and balance performance was evaluated by Pearson's correlation coefficients, and the balance performances of the diabetic patients with and without peripheral neuropathy were compared by using Mann-Whitney U tests. Results The NCV in the lower limbs exhibited a moderate to strong correlation with most of the balance tests including the TUG (r = -0.435 to -0.520, p < 0.05), BBS (r = 0.406-0.554, p < 0.05), UST (r = 0.409-0.647, p < 0.05) and MSL (r = 0.399-0.585, P < 0.05). In addition, patients with diabetic peripheral neuropathy had a poorer TUG (p < 0.05), BBS (p < 0.01), UST (p < 0.05) and MSL performance (p < 0.05) compared with those without peripheral neuropathy (p < 0.05). Conclusion Our findings revealed that a decline in peripheral nerve conduction in the lower limb is not only an indication of nerve dysfunction, but may also be related to the impairment of balance performance in patients with diabetes. Implications for Rehabilitation Nerve conduction velocity in the lower limbs of diabetic older adults showed moderate to strong correlations with most of the results of balance tests, which are commonly used in clinics. Decline in nerve conduction velocity of the lower limbs may be related to the impairment of balance control in patients with diabetes. Diabetic older adults with peripheral neuropathy exhibited greater postural instability than those without peripheral

  5. Performance on physical function tests and the risk of fractures and admissions: Findings from a national health screening of 557,648 community-dwelling older adults.

    PubMed

    Chun, So Hyun; Cho, Belong; Yang, Hyung-Kook; Ahn, Eunmi; Han, Min Kyu; Oh, Bumjo; Shin, Dong Wook; Son, Ki Young

    Falls and fractures in older adults are often preventable, yet remain major health concerns as comprehensive physical function assessment may not be readily available. This study investigated whether simple timed up and go test (TUG) and unipedal stance test (UST) are effective in identifying people with an increased risk of fractures, femoral fractures, or admissions due to femoral fractures. Community-dwelling Korean older adults aged 66 years participated in the Korean National Screening Program for the Transitional Ages (n=557,648) between 2007 and 2010. Overall fractures, femoral fractures, and admissions due to femoral fracture during this period were outcome measures. The outcome measures were overall fractures, femoral fractures, and admissions due to femoral fracture after the health screening. The associations between inferior physical function test results and outcome measures were evaluated. A total of 523,502 subjects were followed-up for a mean period of 1.42 years, which resulted in 12,965 subjects with any fractures. Fracture data were retrieved from medical claims record. Subjects who performed poorly on one or both of the two physical function tests experienced higher number of overall fractures (aHR 1.21, 95% CI: 1.16-1.26), femoral fractures (aHR 1.80, 95% CI: 1.59-2.17), and admissions due to femoral fractures (aHR 1.85, 95% CI: 1.55-2.22) as compared to subjects with normal results on both tests. Combining TUG and UST was not superior to performing UST alone in predicting the increased risk of overall fractures (p=0.347), femoral fractures (p=0.402) or admissions due to femoral fractures (p=0.774). Poor performance on physical performance tests is associated with a higher risk of overall fractures, femoral fractures and admissions due to femoral fractures. The TUG and UST can be used to identify community-dwelling older individuals who are more vulnerable to fractures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Lumbopelvic muscle activation patterns in three stances under graded loading conditions: Proposing a tensegrity model for load transfer through the sacroiliac joints.

    PubMed

    Pardehshenas, Hamed; Maroufi, Nader; Sanjari, Mohammad Ali; Parnianpour, Mohamad; Levin, Stephen M

    2014-10-01

    According to the conventional arch model of the pelvis, stability of the sacroiliac joints may require a predominance of form and force closure mechanisms: the greater the vertical shear force at the sacroiliac joints, the greater the reliance on self-bracing by horizontally or obliquely oriented muscles (such as the internal oblique). But what happens to the arch model when a person stands on one leg? In such cases, the pelvis no longer has imposts, leaving both the arch, and the arch model theory, without support. Do lumbopelvic muscle activation patterns in one-legged stances under load suggest compatibility with a different model? This study compares lumbopelvic muscle activation patterns in two-legged and one-legged stances in response to four levels of graded trunk loading in order to further our understanding the stabilization of the sacroiliac joints. Thirty male subjects experienced four levels of trunk loading (0%, 5%, 10% and 15% of body weight) by holding a bucket at one side, at three conditions: 1) two-legged standing with the bucket in the dominant hand, 2) ipsilateral loading: one-legged standing with the bucket in the dominant hand while using the same-side leg, and 3) contralateral loading: one-legged standing using the same leg used in condition 2, but with the bucket in the non-dominant hand. During these tasks, EMG signals from eight lumbopelvic muscles were collected. ANOVA with repeated design was performed on normalized EMG's to test the main effect of load and condition, and interaction effects of load by condition. Latissimus dorsi and erector spinae muscles showed an antagonistic pattern of activity toward the direction of load which may suggest these muscles as lateral trunk stabilizers. Internal oblique muscles showed a co-activation pattern with increasing task demand, which may function to increase lumbopelvic stability (P < 0.05). No unilateral pattern of the internal obliques was observed during all trials. Our results suggest that

  7. Effects of training and detraining on the static and dynamic balance in elderly fallers and non-fallers: a pilot study.

    PubMed

    Toulotte, Claire; Thevenon, Andre; Fabre, Claudine

    2006-01-30

    The aim of this study was to evaluate the effects of training based on static and dynamic balance in single and dual task conditions in order to analyse the effects of detraining on static and dynamic balance in healthy elderly fallers and non-fallers. A group of 16 subjects were trained: eight fallers aged 71.1 +/- 5.0 years and eight non-fallers aged 68.4 +/- 4.5 years. The subjects were evaluated 3 months before the training period, 2 days before the training period, 2 days after the end of the training period and 3 months after the training period. All subjects performed a unipedal test with eyes open and eyes closed. Gait parameters were analysed under single-task and dual motor-task conditions. This study demonstrated a loss of physical capacities over 3 months for stride time, single support time for fallers in both conditions. Physical training significantly improves static and dynamic balance under single and dual task conditions. Lastly, after 3 months of detraining, a loss of the physical training effects were measured for fallers and non-fallers on the different walking parameters in the two conditions and on the unipedal tests. The absence of stimulation before the trained period shows a negative effect of ageing on walking and falls whereas training permits an improvement in static balance and the pattern of walking under single and dual task conditions, which could be due to an increase in muscular strength and a better division of attention. On the other hand, 3 months of detraining inhibited the effects of training, which showed the speed of the decline caused by 'natural' ageing.

  8. Long-term clinical evaluation of the automatic stance-phase lock-controlled prosthetic knee joint in young adults with unilateral above-knee amputation.

    PubMed

    Andrysek, Jan; Wright, F Virginia; Rotter, Karin; Garcia, Daniela; Valdebenito, Rebeca; Mitchell, Carlos Alvarez; Rozbaczylo, Claudio; Cubillos, Rafael

    2017-05-01

    The purpose of this study was to clinically evaluate the automatic stance-phase lock (ASPL) knee mechanism against participants' existing weight-activated braking (WAB) prosthetic knee joint. This prospective crossover study involved 10 young adults with an above-knee amputation. Primary measurements consisted of tests of walking speeds and capacity. Heart rate was measured during the six-minute walk test and the Physiological Cost Index (PCI) which was calculated from heart rate estimated energy expenditure. Activity was measured with a pedometer. User function and quality of life were assessed using the Lower Limb Function Questionnaire (LLFQ) and Prosthetic Evaluation Questionnaire (PEQ). Long-term follow-up over 12 months were completed. Walking speeds were the same for WAB and APSL knees. Energy expenditure (PCI) was lower for the ASPL knees (p = 0.007). Step counts were the same for both knees, and questionnaires indicated ASPL knee preference attributed primarily to knee stability and improved walking, while limitations included terminal impact noise. Nine of 10 participants chose to keep using the ASPL knee as part of the long-term follow-up. Potential benefits of the ASPL knee were identified in this study by functional measures, questionnaires and user feedback, but not changes in activity or the PEQ.

  9. Increased Trunk Extension Endurance is Associated with Meaningful Improvement in Balance among Older Adults with Mobility Problems

    PubMed Central

    Suri, Pradeep; Kiely, Dan K.; Leveille, Suzanne G.; Frontera, Walter R.; Bean, Jonathan. F.

    2011-01-01

    Objective To determine if trunk extension endurance changes with training are associated with clinically meaningful improvements in balance among mobility-limited older adults. Design Longitudinal data from a randomized clinical trial. Setting Outpatient rehabilitation research center. Participants Community-dwelling older adults (N=64; mean age 75.9 y) with mobility limitations as defined by a score of 4 to 10 on the Short Physical Performance Battery. Interventions 16 weeks of progressive resistance training. Main Outcome Measures Outcomes were the Berg Balance Scale (BBS) and the Unipedal Stance Test (UST). Predictors included leg strength, leg power, trunk extension endurance and the product of heart rate and blood pressure (RPP) at the final stage of an exercise tolerance test. We performed an analysis of data from participants who completed 16 weeks of training using binary outcomes defined by a clinically meaningful change from baseline to completion of the intervention (CMC) (BBS= 4 units; UST= 5 seconds). The association of predictor variables with balance outcomes was examined separately and together in multivariate adjusted logistic regression models. Results Trunk extension endurance in seconds (1.04 [1.00– 1.09]) was independently associated with CMC on the BBS. Trunk extension endurance (1.02 [1.00– 1.03]) was independently associated with CMC on the UST. Other physical attributes were not associated with meaningful change in balance. Conclusions Improvements in trunk extension endurance were independently associated with clinically meaningful changes in balance in older adults. Leg strength, leg power, and RPP were not associated with CMC in balance. Poor trunk extension endurance may be a rehabilitative impairment worthy of further study as a modifiable factor linked to balance among older adults. PMID:21636073

  10. Raising the standards of the calf-raise test: a systematic review.

    PubMed

    Hébert-Losier, Kim; Newsham-West, Richard J; Schneiders, Anthony G; Sullivan, S John

    2009-11-01

    The calf-raise test is used by clinicians and researchers in sports medicine to assess properties of the calf muscle-tendon unit. The test generally involves repetitive concentric-eccentric muscle action of the plantar-flexors in unipedal stance and is quantified by the number of raises performed. Although the calf-raise test appears to have acceptable reliability and face validity, and is commonly used for medical assessment and rehabilitation of injuries, no universally acceptable test parameters have been published to date. A systematic review of the existing literature was conducted to investigate the consistency as well as universal acceptance of the evaluation purposes, test parameters, outcome measurements and psychometric properties of the calf-raise test. Nine electronic databases were searched during the period May 30th to September 21st 2008. Forty-nine articles met the inclusion criteria and were quality assessed. Information on study characteristics and calf-raise test parameters, as well as quantitative data, were extracted; tabulated; and statistically analysed. The average quality score of the reviewed articles was 70.4+/-12.2% (range 44-90%). Articles provided various test parameters; however, a consensus was not ascertained. Key testing parameters varied, were often unstated, and few studies reported reliability or validity values, including sensitivity and specificity. No definitive normative values could be established and the utility of the test in subjects with pathologies remained unclear. Although adapted for use in several disciplines and traditionally recommended for clinical assessment, there is no uniform description of the calf-raise test in the literature. Further investigation is recommended to ensure consistent use and interpretation of the test by researchers and clinicians.

  11. Trunk muscle attributes are associated with balance and mobility in older adults: a pilot study.

    PubMed

    Suri, Pradeep; Kiely, Dan K; Leveille, Suzanne G; Frontera, Walter R; Bean, Jonathan F

    2009-10-01

    To determine whether trunk muscle attributes are associated with balance and mobility performance among mobility-limited older adults. Cross-sectional analysis of data from a randomized clinical trial. Outpatient rehabilitation research center. Community-dwelling older adults (N = 70; mean age 75.9 years) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Independent variables included physiologic measures of trunk extension strength, trunk flexion strength, trunk extension endurance, trunk extension endurance, and leg press strength. All measures were well tolerated by the study subjects without the occurrence of any associated injuries or adverse events. The association of each physiologic measure with each outcome was examined by the use of separate multivariate models to calculate the partial variance (R(2)) of each trunk and extremity measure. Balance measured by the Berg Balance Scale and Unipedal Stance Test and mobility performance as measured by the SPPB. Trunk extension endurance (partial R(2) = .14, P = .02), and leg press strength (partial R(2) = .14, P = .003) accounted for the greatest amount of the variance in SPPB performance. Trunk extension endurance (partial R(2) = .17, P = .007), accounted for the greatest amount of the variance in BBS performance. Trunk extension strength (R(2) = .09, P = .03), accounted for the greatest amount of the variance in UST performance. The variance explained by trunk extension endurance equaled or exceeded the variance explained by limb strength across all three performance outcomes. Trunk endurance and strength can be safely measured in mobility-limited older adults and are associated with both balance and mobility performance. Trunk endurance and trunk strength are physiologic attributes worthy of targeting in the rehabilitative care of mobility-limited older adults.

  12. The impact of weight classification on safety: timing steps to adapt to external constraints

    PubMed Central

    Gill, S.V.

    2015-01-01

    Objectives: The purpose of the current study was to evaluate how weight classification influences safety by examining adults’ ability to meet a timing constraint: walking to the pace of an audio metronome. Methods: With a cross-sectional design, walking parameters were collected as 55 adults with normal (n=30) and overweight (n=25) body mass index scores walked to slow, normal, and fast audio metronome paces. Results: Between group comparisons showed that at the fast pace, those with overweight body mass index (BMI) had longer double limb support and stance times and slower cadences than the normal weight group (all ps<0.05). Examinations of participants’ ability to meet the metronome paces revealed that participants who were overweight had higher cadences at the slow and fast paces (all ps<0.05). Conclusions: Findings suggest that those with overweight BMI alter their gait to maintain biomechanical stability. Understanding how excess weight influences gait adaptation can inform interventions to improve safety for individuals with obesity. PMID:25730658

  13. Naturalness as an ethical stance: idea(l)s and practices of care in western herbal medicine in the UK.

    PubMed

    Nissen, Nina

    2015-01-01

    An association of non-biomedical healthcare with appeals to nature and naturalness, and an invocation of a rhetoric of gentleness, goodness, purity and moral power has been noted previously, and some scholars argue that nature has taken on a meaning broadly opposed to the rational scientific order of modernity. Drawing on an ethnographic study of women's practice and use of western herbal medicine (WHM) in the UK, the intertwining of the perceived naturalness of WHM with distinct care practices points to a further avenue for exploration. To examine patients' and herbalists' discourses of the naturalness of WHM and associated idea(l)s and practices of care, understandings of nature and a feminist ethics of care are utilized as analytical frameworks. The analysis presented suggests that, through WHM, patients and herbalists become embedded in a complex spatio-temporal wholeness and web of care that intertwines past, present and future, self and others, and local and global concerns. In the emerging 'ordinary ethics of care', naturalness constitutes a sign of goodness and of a shared humanity within the organic world, while care, underpinned by idea(l)s of natural and holistic care practices, links human and non-human others. Thus, the naturalness of WHM, as perceived by some patients and herbalists, engages and blends with a continually unfolding field of relationships in the lifeworld(s), where care practices, caring relations and collective wellbeing may constitute an ethical stance that raises deeper questions about the significance of relationality, the values of care/caring and the mutual involvement of nature and human being(s).

  14. US definitions, current use, and FDA stance on use of platelet-rich plasma in sports medicine.

    PubMed

    Beitzel, Knut; Allen, Donald; Apostolakos, John; Russell, Ryan P; McCarthy, Mary Beth; Gallo, Gregory J; Cote, Mark P; Mazzocca, Augustus D

    2015-02-01

    With increased utilization of platelet-rich plasma (PRP), it is important for clinicians to understand the United States, the Food and Drug Administration (FDA) regulatory role and stance on PRP. Blood products such as PRP fall under the prevue of FDA's Center for Biologics Evaluation and Research (CBER). CBER is responsible for regulating human cells, tissues, and cellular and tissue-based products. The regulatory process for these products is described in the FDA's 21 CFR 1271 of the Code of Regulations. Under these regulations, certain products including blood products such as PRP are exempt and therefore do not follow the FDA's traditional regulatory pathway that includes animal studies and clinical trials. The 510(k) application is the pathway used to bring PRP preparation systems to the market. The 510(k) application allows devices that are "substantially equivalent" to a currently marketed device to come to the market. There are numerous PRP preparation systems on the market today with FDA clearance; however, nearly all of these systems have 510(k) clearance for producing platelet-rich preparations intended to be used to mix with bone graft materials to enhance bone graft handling properties in orthopedic practices. The use of PRP outside this setting, for example, an office injection, would be considered "off label." Clinicians are free to use a product off-label as long as certain responsibilities are met. Per CBER, when the intent is the practice of medicine, clinicians "have the responsibility to be well informed about the product, to base its use on firm scientific rationale and on sound medical evidence, and to maintain records of the product's use and effects." Finally, despite PRP being exempted, the language in 21 CFR 1271 has caused some recent concern over activated PRP; however to date, the FDA has not attempted to regulate activated PRP. Clinicians using activated PRP should be mindful of these concerns and continued to stay informed. Thieme

  15. Pathological ponto-cerebello-thalamo-cortical activations in primary orthostatic tremor during lying and stance.

    PubMed

    Schöberl, Florian; Feil, Katharina; Xiong, Guoming; Bartenstein, Peter; la Fougére, Christian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Dieterich, Marianne; Zwergal, Andreas

    2017-01-01

    involvement of the pontine tegmentum in the pathophysiology of tremor generation. High frequency oscillatory properties of pontine tegmental neurons have been reported in pathological oscillatory eye movements. It is remarkable that the characteristic activation and deactivation pattern in orthostatic tremor is already present in the supine position without tremor presentation. Multilevel changes of neuronal excitability during upright stance may trigger activation of the orthostatic tremor network. Based on the functional imaging data described in this study, it is hypothesized that a mesiofrontal deactivation is another characteristic feature of orthostatic tremor and plays a pivotal role in development of postural unsteadiness during prolonged standing. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Fast Times and Digital Literacy: Participation Roles and Portfolio Construction within Instant Messaging

    ERIC Educational Resources Information Center

    Jacobs, Gloria E.

    2006-01-01

    The purpose of this study was to develop an understanding of adolescent use of instant messaging. Grounded in the New Literacy Studies stance that literacy is a social practice embedded in local contexts and informed by global ideologies (Street, 1995), I argue that participation in digital literacies such as instant messaging has implications for…

  17. Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking.

    PubMed

    Amitrano, Fernando N; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J

    2016-05-01

    OBJECTIVE To determine and compare the effect of hoof boots (HBs) and shoes with a toe extension on stance duration, ground reaction force, and sole length in contact with the ground in nonlame horses during walking. ANIMALS 6 nonlame Standardbreds. PROCEDURES Force plate gait analyses of the forelimbs were performed while the horses were walking barefoot before manipulation of feet (baseline), while the horses were walking fitted with HBs, while the horses were walking shod with toe-extension shoes, and while the horses were walking barefoot after shoe removal. Horses underwent radiography of both forelimb feet to determine the sole length in contact with the ground when barefoot, wearing HBs, and shod with toe-extension shoes. Stance duration, ground reaction force, and sole length were compared among the various walking sessions. RESULTS Compared with baseline findings, stance duration increased significantly when horses were fitted with HBs (7%) or toe-extension shoes (5%). Peak forelimb ground reaction force was similar among walking sessions; however, time of braking force peak was significantly greater during the stance phase only when horses wore HBs. Also, the sole length in contact with the ground was significantly longer in horses fitted with HBs (14.3 cm) or shod with the toe-extension shoes (17.6 cm), compared with that for one of the barefoot hooves (12.7 cm). CONCLUSIONS AND CLINICAL RELEVANCE In nonlame horses, use of HBs prolonged the stance time and time of braking force peak, which is indicative of a slower deceleration phase during limb impact with the ground. Also, the use of HBs prolonged the deceleration phase of the stride and increased the sole length in contact with the ground.

  18. "The Road to Freedom": How One Salvadoran Youth Takes an Agentive Stance to Narrate the Self across Time and Space

    ERIC Educational Resources Information Center

    McGinnis, Theresa Ann; Garcia, Andrea

    2012-01-01

    In this article, we use narrative theory to analyze and discuss how one Salvadoran youth, Thomas, constructed three different yet overlapping narratives, including a digital story, on his family's movement across borders. We describe how each telling of his narratives is situated in time and space, where Thomas reveals his understandings of…

  19. The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2011-05-01

    The purpose of this study was to determine how gait deviation in one plane (i.e. excessive subtalar inversion/eversion) can affect the dynamic function of the tibialis anterior, gastrocnemius, and soleus to accelerate the subtalar, ankle, knee and hip joints, as well as the body center of mass. Induced acceleration analysis was performed based on a subject-specific three-dimensional linkage model configured by stance phase gait data and driven by one unit of muscle force. Eight healthy adult subjects were examined in gait analysis. The subtalar inversion/eversion was modeled by offsetting up to 20° from the normal subtalar angle while other configurations remained unaltered. This study showed that the gastrocnemius, soleus and tibialis anterior generally functioned as their anatomical definition in normal gait, but counterintuitive function was occasionally found in the bi-articular gastrocnemius. The plantarflexors play important roles in the body support and forward progression. Excessive subtalar eversion was found to enlarge the plantarflexors and tibialis anterior's function. Induced acceleration analysis demonstrated its ability to isolate the contributions of individual muscle to a given factor, and as a means of studying effect of pathological gait on the dynamic muscle functions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Undisturbed upright stance control in the elderly: Part 1. Age-related changes in undisturbed upright stance control.

    PubMed

    Berger, L; Chuzel, M; Buisson, G; Rougier, P

    2005-09-01

    The authors investigated age-related changes in postural control in 33 healthy young adults (18-31 years), 29 seniors (62-75 years), and 22 elderly people (75-96 years). A force platform recorded the results. The horizontal motions of the center of gravity (CGh) and their difference in the plane of support CP - CGv were deduced from the complex center of pressure (CP) trajectories. With fractional Brownian modeling, one can establish that the aging process seems to induce a transition phase in which seniors take more time to initiate the corrective process in the mediolateral (ML) axis than do younger people. The elderly develop a new strategy characterized by the mobilization of higher neuromuscular energy to maintain equilibrium. In the ML axis, the larger displacements could be caused mainly by a hip strategy that could facilitate step initiation. In the anteroposterior (AP) axis, seniors and elderly individuals maintain a relative ability to stabilize their CG into the base of support compared with younger people.

  1. Reliability of the measures of weight-bearing distribution obtained during quiet stance by digital scales in subjects with and without hemiparesis.

    PubMed

    de Araujo-Barbosa, Paulo Henrique Ferreira; de Menezes, Lidiane Teles; Costa, Abraão Souza; Couto Paz, Clarissa Cardoso Dos Santos; Fachin-Martins, Emerson

    2015-05-01

    Described as an alternative way of assessing weight-bearing asymmetries, the measures obtained from digital scales have been used as an index to classify weight-bearing distribution. This study aimed to describe the intra-test and the test/retest reliability of measures in subjects with and without hemiparesis during quiet stance. The percentage of body weight borne by one limb was calculated for a sample of subjects with hemiparesis and for a control group that was matched by gender and age. A two-way analysis of variance was used to verify the intra-test reliability. This analysis was calculated using the differences between the averages of the measures obtained during single, double or triple trials. The intra-class correlation coefficient (ICC) was utilized and data plotted using the Bland-Altman method. The intra-test analysis showed significant differences, only observed in the hemiparesis group, between the measures obtained by single and triple trials. Excellent and moderate ICC values (0.69-0.84) between test and retest were observed in the hemiparesis group, while for control groups ICC values (0.41-0.74) were classified as moderate, progressing from almost poor for measures obtained by a single trial to almost excellent for those obtained by triple trials. In conclusion, good reliability ranging from moderate to excellent classifications was found for participants with and without hemiparesis. Moreover, an improvement of the repeatability was observed with fewer trials for participants with hemiparesis, and with more trials for participants without hemiparesis.

  2. Trains of electrical stimulation of the trapezius muscles redistribute the frequencies of body oscillations during stance.

    PubMed

    Nhouvannasak, V; Clément, S; Manto, M

    2015-09-01

    We investigated the postural effects of trains of electrical stimulation (TES) applied unilaterally or bilaterally on the trapezius muscle in 20 healthy subjects (mean age: 23.1 ± 1.33 years; F/M: 8/12). The anterior-posterior (AP) displacements (AP axis), medio-lateral displacements (ML axis) and total travelled distances (TTW) of the centre of pressure (COP) remained unchanged with TES. However, detailed spectral analysis of COP oscillations revealed a marked decrease of the magnitudes of peak power spectral density (peak PSD) following application of TES. Peak PSD was highly correlated with the intensity of stimulation (P < 0.001 both the AP and ML axes). For the AP axis, the integrals of the sub-bands 0-0.4, 0.4-1.5, 1.5-3 Hz were significantly decreased (P < 0.001), the integrals of the sub-bands 3-5 and 5-8 Hz were not significantly affected (P>0.30) and the integrals of the sub-band 8-10 Hz were significantly increased (P < 0.001). The ratios of the integrals of sub-bands 8-10 Hz/0-3 Hz were markedly enhanced with bilateral TES (P < 0.001). For the ML axis, the effects were striking (P < 0.001) for the sub-bands 0-0.4, 0.4-1.5 and 8-10 Hz. For both the AP and ML axes, a significant inverse linear relationship was found between the intensity of TES and the average speed of COP. We show that TES applied over the trapezius muscles exerts significant and so far unrecognised effects upon oscillations of the COP, decreasing low-frequency oscillations and enhancing high-frequency oscillations. Our data unravel a novel property of the trapezius muscles upon postural control. We suggest that this muscle plays a role of a distributor of low-frequency versus high-frequency sub-bands of frequency during stance. Previous studies have shown that patients with supra-tentorial stroke show an increased peak PSD in low frequencies of body oscillations. Therefore, our findings provide a rationale to assess neurostimulation of the

  3. Trunk Muscle Attributes are Associated with Balance and Mobility in Older Adults: A Pilot Study

    PubMed Central

    Suri, Pradeep; Kiely, Dan K.; Leveille, Suzanne G.; Frontera, Walter R.; Bean, Jonathan. F.

    2010-01-01

    Objective To determine if trunk muscle attributes are associated with balance and mobility performance among mobility-limited older adults. Design Cross-sectional analysis of data from a randomized clinical trial. Setting Outpatient rehabilitation research center. Participants Community-dwelling older adults (N=70; mean age 75.9 y) with mobility limitations as defined by the Short Physical Performance Battery (SPPB). Methods Independent variables included physiologic measures of trunk extension strength, trunk flexion strength, trunk extension endurance, trunk extension endurance and leg press strength. All measures were well tolerated by the study subjects without the occurrence of any associated injuries or adverse events. The association of each physiologic measure with each outcome was examined, using separate multivariate models to calculate the partial variance (R2) of each trunk and extremity measure. Main Outcome Measurements Balance measured by the Berg Balance Scale (BBS) and Unipedal Stance Test (UST), and mobility performance as measured by the SPPB. Results Trunk extension endurance (partial R2=.14, p=.02), and leg press strength (partial R2=.14, p=.003) accounted for the greatest amount of the variance in SPPB performance. Trunk extension endurance (partial R2=.17, p=.007), accounted for the greatest amount of the variance in BBS performance. Trunk extension strength (R2=.09, p=.03), accounted for the greatest amount of the variance in UST performance. The variance explained by trunk extension endurance equaled or exceeded the variance explained by limb strength across all three performance outcomes. Conclusions Trunk endurance and strength can be safely measured in mobility-limited older adults, and are associated with both balance and mobility performance. Trunk endurance and trunk strength are physiologic attributes worthy of targeting in the rehabilitative care of mobility-limited older adults. PMID:19854420

  4. Evaluation of changes in pelvic belt tension during 2 weight-bearing functional tasks.

    PubMed

    Arumugam, Ashokan; Milosavljevic, Stephan; Woodley, Stephanie; Sole, Gisela

    2012-06-01

    The purposes of this study were to evaluate changes in pelvic belt tension during 2 weight-bearing functional tasks (transition from bipedal to unipedal stance [BUS] and walking) and to evaluate the reliability and the percentage variation for belt tension scores from trial to trial. A cross-sectional repeated-measures study was conducted with 10 healthy male participants (mean age, 28.3 ± 8.8years). Participants performed 10 trials of BUS and walking while wearing a nonelastic pelvic compression belt (PCB) applied distal to the anterior superior iliac spines, with a load cell positioned in the center of the belt. The load cell was calibrated using known weights (1-10kg) to define the relationship between the applied tension and voltage change (R(2) = 0.99). Load cell tension values were recorded in voltage signals and then converted to newtons of force using appropriate conversion values (0.012V = 10N). Mean and standard deviation values, intraclass correlation coefficients (ICC 3,1), and percentage standard error of measurements (% SEM) were analyzed for PCB tension recorded during the BUS and walking trials. The mean tension achieved with a PCB was found to be 41.02 (±4.23) N during BUS and 44.07 (±5.80) N during walking. The trial-to-trial reliability (ICC 3,1) was high (ICC ≥0.9), and the variation in PCB tension across 10 trials (% SEM) was 4% or less. The mean tension achieved during the tasks was 44 N or less. The reliability is high, and the variation is low across the trials, which implies that a PCB could be used to produce consistent effects during repetition of the tasks (BUS and walking). Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  5. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis.

    PubMed

    Le Berre, Morgane; Guyot, Marc-Alexandre; Agnani, Olivier; Bourdeauducq, Isabelle; Versyp, Marie-Christine; Donze, Cécile; Thévenon, André; Catanzariti, Jean-Francois

    2017-06-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spinal column of unknown etiology. Multiple factors could be involved, including neurosensory pathways and, potentially, an elective disorder of dynamic proprioception. The purpose of this study was to determine whether routine balance tests could be used to demonstrate an elective alteration of dynamic proprioception in AIS. This was a multicentre case-control study based on prospectively collected clinical data, in three hospitals pediatric, with spine consultation, from January 2013 through April 2015. From an original population of 547 adolescents, inclusion and non-inclusion criteria indentified 114 adolescents with right thoracic AIS (mean age 14.5 ± 1.9 years, Cobb angle 35.7 ± 15.3°) and 81 matched adolescents without scoliosis (mean age 14.1 ± 1.9 years). Participants performed three routine clinical balance tests to assess the static and dynamic proprioception: the Fukuda-Utenberger stepping test (angle of rotation in degrees and distance of displacement in cm) to assess dynamic balance; the sharpened Romberg test and the unipedal stance test (eyes closed) to assess static balance. There was no significant difference between AIS subjects and controls for the static tests, but there was a significant difference for the dynamic test for both measures: distance of displacement (p < 0.01) and angle of rotation (p < 0.0001). This result confirms our initial these: the dynamic proprioception is altered electively in AIS. These findings confirm recent AIS studies. Our results might be related to immature central integration of dynamic proprioceptive input leading to a poorly adapted motor response, particularly for postural control of the, in AIS. These balance tests can be performed in routine practice. Their validity as a biomarker for screening and monitoring purposes should be assessed.

  6. Postural control in subclinical neck pain: a comparative study on the effect of pain and measurement procedures.

    PubMed

    Amaral, Gabriela; Martins, Helena; Silva, Anabela G

    2018-04-25

    This study investigated whether young university students with neck pain (NP) have postural control deficits when compared to sex and age-matched asymptomatic subjects. Centre of pressure (COP) sway area, velocity, anterior-posterior and mediolateral distances were measured in participants with (n=27) and without (n=27) neck pain for different combinations of static standing (narrow stance, tandem stance and single leg stance) and measurement time (90, 60, 30 and 15 s) with eyes closed using a force plate. Additionally, static and dynamic clinical tests of postural control were used. No significant between group differences were found for the COP measurements (p>0.05). However, individuals with subclinical NP were more likely to fail the 90 s tandem test (p<0.05) in the force plate and univariate comparisons revealed significant between group differences in the tandem and single leg stance clinical test measurements. Taken together, the inconsistent results might suggest an emerging postural control deficit in university students with low disability and low intensity chronic idiopathic NP.

  7. Treadmill sideways gait training with visual blocking for patients with brain lesions.

    PubMed

    Kim, Tea-Woo; Kim, Yong-Wook

    2014-09-01

    [Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.

  8. Examination of factors affecting gait properties in healthy older adults: focusing on knee extension strength, visual acuity, and knee joint pain.

    PubMed

    Demura, Tomohiro; Demura, Shin-ichi; Uchiyama, Masanobu; Sugiura, Hiroki

    2014-01-01

    Gait properties change with age because of a decrease in lower limb strength and visual acuity or knee joint disorders. Gait changes commonly result from these combined factors. This study aimed to examine the effects of knee extension strength, visual acuity, and knee joint pain on gait properties of for 181 healthy female older adults (age: 76.1 (5.7) years). Walking speed, cadence, stance time, swing time, double support time, step length, step width, walking angle, and toe angle were selected as gait parameters. Knee extension strength was measured by isometric dynamometry; and decreased visual acuity and knee joint pain were evaluated by subjective judgment whether or not such factors created a hindrance during walking. Among older adults without vision problems and knee joint pain that affected walking, those with superior knee extension strength had significantly greater walking speed and step length than those with inferior knee extension strength (P < .05). Persons with visual acuity problems had higher cadence and shorter stance time. In addition, persons with pain in both knees showed slower walking speed and longer stance time and double support time. A decrease of knee extension strength and visual acuity and knee joint pain are factors affecting gait in the female older adults. Decreased knee extension strength and knee joint pain mainly affect respective distance and time parameters of the gait.

  9. Leveraging Peacekeeping Partners: African Continental Progress One Sub-Region at a Time

    DTIC Science & Technology

    2012-11-01

    mass atrocities, the members of ECOWAS were effectively forced to shift their security stance from conflict management to conflict prevention. 8 In...tack with regards to their role in conflict management across the continent. Following the formation of the AU in the early 2000’s, the AU’s new...Washington, DC: GPO, June 2012). 2 Ibid., 2. 3 Williams, Paul D, “The African Union’s Conflict Management Capabilities,” Council on Foreign

  10. Surface electromyography and plantar pressure during walking in young adults with chronic ankle instability.

    PubMed

    Koldenhoven, Rachel M; Feger, Mark A; Fraser, John J; Saliba, Susan; Hertel, Jay

    2016-04-01

    Lateral ankle sprains are common and can manifest into chronic ankle instability (CAI) resulting in altered gait mechanics that may lead to subsequent ankle sprains. Our purpose was to simultaneously analyse muscle activation patterns and plantar pressure distribution during walking in young adults with and without CAI. Seventeen CAI and 17 healthy subjects walked on a treadmill at 4.8 km/h. Plantar pressure measures (pressure-time integral, peak pressure, time to peak pressure, contact area, contact time) of the entire foot and nine specific foot regions and medial-lateral location of centre of pressure (COP) were measured. Surface electromyography (EMG) root mean square (RMS) amplitudes throughout the entire stride cycle and area under RMS curve for 100 ms pre-initial contact (IC) and 200 ms post-IC for anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius were collected. The CAI group demonstrated a more lateral COP throughout the stance phase (P < 0.001 and Cohen's d > 0.9 for all 10 comparisons) and significantly increased peak pressure (P = 0.025) and pressure-time integral (P = 0.049) under the lateral forefoot. The CAI group had lower anterior tibialis RMS areas (P < 0.001) and significantly higher peroneus longus, medial gastrocnemius, and gluteus medius RMS areas during 100 ms pre-IC (P < 0.003). The CAI group had higher gluteus medius sEMG amplitudes during the final 50 % of stance and first 25% of swing (P < 0.05). The CAI group had large lateral deviations of their COP location throughout the entire stance phase and increased gluteus medius muscle activation amplitude during late stance through early swing phase. III.

  11. Runners do not push off the ground but fall forwards via a gravitational torque.

    PubMed

    Romanov, Nicholas; Fletcher, Graham

    2007-09-01

    The relationship between the affect and timing of the four forces involved in running (gravity, ground reaction force, muscle force, and potential strain energy) is presented. These forces only increase horizontal acceleration of the centre of mass during stance but not flight. The current hierarchical models of running are critiqued because they do not show gravity, a constant force, in affect during stance. A new gravitational model of running is developed, which shows gravity as the motive force. Gravity is shown to cause a torque as the runner's centre of mass moves forward of the support foot. Ground reaction force is not a motive force but operates according to Newton's third law; therefore, the ground can only propel a runner forward in combination with muscle activity. However, leg and hip extensor muscles have consistently proven to be silent during leg extension (mid-terminal stance). Instead, high muscle-tendon forces at terminal stance suggest elastic recoil regains most of the centre of mass's height. Therefore, the only external motive force from mid-terminal stance is gravity via a gravitational torque, which causes a horizontal displacement. The aim of this paper is to establish a definitive biomechanical technique (Pose method) that is easily taught to runners (Romanov, 2002): falling forwards via a gravitational torque while pulling the support foot rapidly from the ground using the hamstring muscles.

  12. Postural stabilization after single-leg vertical jump in individuals with chronic ankle instability.

    PubMed

    Nunes, Guilherme S; de Noronha, Marcos

    2016-11-01

    To investigate the impact different ways to define reference balance can have when analysing time to stabilization (TTS). Secondarily, to investigate the difference in TTS between people with chronic ankle instability (CAI) and healthy controls. Cross-sectional study. Laboratory. Fifty recreational athletes (25 CAI, 25 controls). TTS of the center of pressure (CoP) after maximal single-leg vertical jump using as reference method the single-leg stance, pre-jump period, and post-jump period; and the CoP variability during the reference methods. The post-jump reference period had lower values for TTS in the anterior-posterior (AP) direction when compared to single-leg stance (P = 0.001) and to pre-jump (P = 0.002). For TTS in the medio-lateral (ML) direction, the post-jump reference period showed lower TTS when compared to single-leg stance (P = 0.01). We found no difference between CAI and control group for TTS for any direction. The CAI group showed more CoP variability than control group in the single-leg stance reference period for both directions. Different reference periods will produce different results for TTS. There is no difference in TTS after a maximum vertical jump between groups. People with CAI have more CoP variability in both directions during single-leg stance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evidence for a Time-Invariant Phase Variable in Human Ankle Control

    PubMed Central

    Gregg, Robert D.; Rouse, Elliott J.; Hargrove, Levi J.; Sensinger, Jonathon W.

    2014-01-01

    Human locomotion is a rhythmic task in which patterns of muscle activity are modulated by state-dependent feedback to accommodate perturbations. Two popular theories have been proposed for the underlying embodiment of phase in the human pattern generator: a time-dependent internal representation or a time-invariant feedback representation (i.e., reflex mechanisms). In either case the neuromuscular system must update or represent the phase of locomotor patterns based on the system state, which can include measurements of hundreds of variables. However, a much simpler representation of phase has emerged in recent designs for legged robots, which control joint patterns as functions of a single monotonic mechanical variable, termed a phase variable. We propose that human joint patterns may similarly depend on a physical phase variable, specifically the heel-to-toe movement of the Center of Pressure under the foot. We found that when the ankle is unexpectedly rotated to a position it would have encountered later in the step, the Center of Pressure also shifts forward to the corresponding later position, and the remaining portion of the gait pattern ensues. This phase shift suggests that the progression of the stance ankle is controlled by a biomechanical phase variable, motivating future investigations of phase variables in human locomotor control. PMID:24558485

  14. High-intensity aquatic exercises (HydrOS) improve physical function and reduce falls among postmenopausal women.

    PubMed

    Moreira, Linda Denise Fernandes; Fronza, Fernanda Cerveira Abuana Osorio; dos Santos, Rodrigo Nolasco; Teixeira, Luzimar Raimundo; Kruel, Luis Fernando Martins; Lazaretti-Castro, Marise

    2013-10-01

    This study aims to investigate the effects of an aquatic exercise program (HydrOS) on neuromuscular function and falls among postmenopausal women. One hundred eight postmenopausal women (mean [SD] age, 58.8 [6.4] y) were randomly divided into the control group (CG; n = 44) and the aquatic exercise group (AEG; n = 64). Both groups received elementary calcium 500 mg/day and cholecalciferol 1,000 IU/day. For 24 weeks, the AEG participated in the aquatic exercise program, whereas the CG remained sedentary. The following variables were measured before and after the program: number of falls and fallers (7 mo before and after the intervention); flexibility, using Wells' Sit-and-Reach Test (FLEX); static balance, using the Unipedal Stance Test (UST); mobility, using the Timed-Up-and-Go test (TUG); handgrip strength of the dominant hand (HGS); and maximal isometric strength of back extensor muscles (SBE), strength of hip flexor muscles (SHF), and strength of knee extensor muscles (SKE). The muscle strength tests were considered the primary outcome, whereas the other neuromuscular tests, together with falls, were considered secondary outcomes. Results were significant when P ≤ 0.05. Serum 25-hydroxyvitamin D significantly increased by 21% in the CG and by 23% in the AEG (P < 0.001). The number of falls and fallers after the program remained unchanged in the CG; in the AEG, the mean number of falls decreased from 2.00 to 0.29 (P < 0.0001), and the number of fallers decreased by 44% (P < 0.0001). All neuromuscular variables significantly improved in the AEG: FLEX (26.6%; P < 0.0001), UST (14.1%; P < 0.001), TUG (23.7%; P < 0.001), HGS (13.4%; P < 0.001), SBE (26.2%; P < 0.001), SHF (18.5%; P = 0.039), and SKE (7.7%; P < 0.001). In the CG, significant improvements in FLEX (12.2%; P = 0.009), UST (4.5%; P < 0.001), TUG (10%; P < 0.001), and SHF (5.7%; P = 0.039) were observed and could be explained by increasing serum 25-hydroxyvitamin D level attributable to supplementation

  15. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis

  16. Mean individual muscle activities and ratios of total muscle activities in a selective muscle strengthening experiment: the effects of lower limb muscle activity based on mediolateral slope angles during a one-leg stance.

    PubMed

    Lee, Sang-Yeol

    2016-09-01

    [Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data.

  17. Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.

    PubMed

    Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; Afschrift, Maarten; De Schutter, Joris; Jonkers, Ilse

    2017-03-24

    Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model. Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic data is used in most NR/NP control schemes and is thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or gait analysis in general in/outside of the laboratory.

  18. Providing library services in a time of fiscal crisis: alternatives.

    PubMed Central

    Cheshier, R G

    1977-01-01

    The nature of the fiscal crisis in health science libraries in the United States is in part due to the style of management in these libraries, in part due to the lack of user identification, in part due to the lack of economically valid fees for service, and in part due to the success of the Biomedical Communications Network. These issues are discussed in terms of how they might be approached. A pragmatic stance is advocated for practitioners, the MLA, the NLM, and library schools to jointly address the questions raised. PMID:901951

  19. The Effects of Slackline Balance Training on Postural Control in Older Adults.

    PubMed

    Thomas, Monika; Kalicinski, Michael

    2016-07-01

    The present study investigated whether slackline training enhances postural control in older adults. Twenty-four participants were randomized into an intervention and a control group. The intervention group received 6 weeks of slackline training, two times per week. Pre-post measurement included the time of different standing positions on a balance platform with and without an external disturbance and the acceleration of the balance platform. Results showed significantly improved standing times during one-leg stance without external disturbance and a significantly reduced acceleration of the balance platform for the intervention group after the training period during tandem stance with and without an external disturbance. We conclude that slackline training in older adults has a positive impact on postural control and thus on the reduction of fall risk.

  20. Martial arts: time needed for training.

    PubMed

    Burke, David T; Protopapas, Marina; Bonato, Paolo; Burke, John T; Landrum, Rpbert F

    2011-03-01

    To measure the time needed to teach a series of martial arts techniques to proficiency. Fifteen volunteer subjects without any prior martial arts or self-defense experience were recruited. A panel of martial arts experts selected 21 different techniques including defensive stances, arm blocks, elbow strikes, palm strikes, thumbs to eyes, instep kicks and a carotid neck restraint. The critical elements of each technique were identified by the panel and incorporated into a teaching protocol, and then into a scoring system. Two black belt martial arts instructors directed a total of forty-five 45-minute training sessions. Videotaped proficiency testing was performed weekly. The videotapes were reviewed by the investigators to determine the proficiency levels of each subject for each technique. The techniques were rated by the average number of training sessions needed for an individual to develop proficiency in that technique. The mean number of sessions necessary to train individuals to proficiency ranged from 27 to 38.3. Using this system, the most difficult techniques seemed to be elbow strikes to the rear, striking with thumbs to the eyes and arm blocking. In this study 29 hours of training was necessary to train novice students to be proficient in 21 offensive and defensive martial arts techniques. To our knowledge, this is the first study that attempts to measure the learning curves involved when teaching martial arts techniques.

  1. Step-related discharges of Purkinje cells in the paravermal cortex of the cerebellar anterior lobe in the cat.

    PubMed Central

    Edgley, S A; Lidierth, M

    1988-01-01

    1. Extracellular recordings were made of the simple spike discharges of Purkinje cells in the lateral part of the paravermal cortex of lobule V in the cerebellum of awake cats. The cells were located within the c2 and c3 zones of Oscarsson (1979). 2. The peripheral receptive fields in which light mechanical stimuli could evoke simple spikes were examined in 252 Purkinje cells. Ninety-two per cent were activated by stimulation of the ipsilateral forelimb and 52% of 113 tested cells also discharged simple spikes in response to stimulation of the contralateral forelimb. The receptive fields were concentrated on the distal parts of the limbs: 67% of the 139 cells which were examined in most detail responded to stimulation of the paw or wrist of the ipsilateral forelimb. 3. In 135 of the Purkinje cells, the discharges were recorded during locomotion. Simple spikes were discharged at a mean rate of 54.3 +/- 27.8 impulses/s (S.D., n = 135) during steady walking on a belt moving at 0.5-0.7 m/s. The discharges of each cell were rhythmically modulated in time with the movements of stepping and although the timings of the discharges were highly variable between cells, activity in the population was greatest at the times of transition between the stance and swing phases in the ipsilateral forelimb and least during mid-stance. 4. As a population Purkinje cells with simple spike receptive fields on the distal parts of the forelimb(s) exhibited two activity maxima. These occurred during early stance and during the transition from stance to swing in the ipsilateral forelimb. Cells with receptive fields on the proximal parts of the limb achieved an activity maximum during late swing, and their average discharge rate fell at the time of onset of the swing phase in the ipsilateral forelimb instead of rising as was the case for the distal group. 5. The present results are compared with those from cells located more medially in the paravermal cortex. It is shown that medially located

  2. Concurrent validity and reliability of wireless instrumented insoles measuring postural balance and temporal gait parameters.

    PubMed

    Oerbekke, Michiel S; Stukstette, Mirelle J; Schütte, Kurt; de Bie, Rob A; Pisters, Martijn F; Vanwanseele, Benedicte

    2017-01-01

    The OpenGo seems promising to take gait analysis out of laboratory settings due to its capability of long-term measurements and mobility. However, the OpenGo's concurrent validity and reliability need to be assessed to determine if the instrument is suitable for validation in patient samples. Twenty healthy volunteers participated. Center of pressure data were collected under eyes open and closed conditions with participants performing unilateral stance trials on the gold standard (AMTI OR6-7 force plate) while wearing the OpenGo. Temporal gait data (stance time, gait cycle time, and cadence) were collected at a self-selected comfortable walking speed with participants performing test-retest trials on an instrumented treadmill while wearing the OpenGo. Validity was assessed using Bland-Altman plots. Reliability was assessed with Intraclass Correlation Coefficient (2,1) and smallest detectable changes were calculated. Negative means of differences were found in all measured parameters, illustrating lower scores for the OpenGo on average. The OpenGo showed negative upper limits of agreement in center of pressure parameters on the mediolateral axis. Temporal reliability ICCs ranged from 0.90-0.93. Smallest detectable changes for both stance times were 0.04 (left) and 0.05 (right) seconds, for gait cycle time 0.08s, and for cadence 4.5 steps per minute. The OpenGo is valid and reliable for the measurement of temporal gait parameters during walking. Measurements of center of pressure parameters during unilateral stance are not considered valid. The OpenGo seems a promising instrument for clinically screening and monitoring temporal gait parameters in patients, however validation in patient populations is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Pathological gait in children with Legg-Calvé-Perthes disease and proposal for gait modification to decrease the hip joint loading.

    PubMed

    Svehlík, Martin; Kraus, Tanja; Steinwender, Gerhard; Zwick, Ernst B; Linhart, Wolfgang E

    2012-06-01

    Legg-Calvé-Perthes disease (LCP) severely limits the range of hip motion and hinders a normal gait. Loading of the hip joint is a major consideration in LCP treatment. The aim of this study was to evaluate gait patterns in LCP and identify gait modifications to decrease the load on the affected hip. Forty children with unilateral LCP were divided into three groups based on the time base integral of the hip abductor moments during single stance on the affected side acquired during instrumented 3D gait analysis. X-rays of the affected hip were classified according to Herring and Catterall. Children in the "unloading" group spontaneously adopted a Duchenne-like gait with pelvis elevation, hip abduction and external rotation during single support phase. The "normal-loading" group showed pelvis elevation with a neutral hip position in the frontal plane. In the "overloading" group the pelvis dropped to the swinging limb at the beginning of stance accompanied by prolonged hip adduction. The time base integral of the hip abductor moments during single stance correlated positively with the X-ray classifications of Herring and Catterall, hip abduction angle and age. Older children preferred to walk in hip adduction during single stance, had more impaired hips and tended to overload them. The hip overloading pattern should be avoided in children with LCP. Gait training to unload the hip might become an integral component of conservative treatment in children with LCP.

  4. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Balance failure in single limb stance due to ankle sprain injury: an analysis of center of pressure using the fractal dimension method.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-01-01

    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD).

    PubMed

    Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C; White, Stormi P; Kane, Alex A; Collinsworth, Amy L; Sweeney, John A; Mosconi, Matthew W

    2016-01-01

    Increased postural sway has been repeatedly documented in children with autism spectrum disorder (ASD). Characterizing the control processes underlying this deficit, including postural orientation and equilibrium, may provide key insights into neurophysiological mechanisms associated with ASD. Postural orientation refers to children's ability to actively align their trunk and head with respect to their base of support, while postural equilibrium is an active process whereby children coordinate ankle dorsi-/plantar-flexion and hip abduction/adduction movements to stabilize their upper body. Dynamic engagement of each of these control processes is important for maintaining postural stability, though neither postural orientation nor equilibrium has been studied in ASD. Twenty-two children with ASD and 21 age and performance IQ-matched typically developing (TD) controls completed three standing tests. During static stance, participants were instructed to stand as still as possible. During dynamic stances, participants swayed at a comfortable speed and magnitude in either anterior-posterior (AP) or mediolateral (ML) directions. The center of pressure (COP) standard deviation and trajectory length were examined to determine if children with ASD showed increased postural sway. Postural orientation was assessed using a novel virtual time-to-contact (VTC) approach that characterized spatiotemporal dimensions of children's postural sway (i.e., body alignment) relative to their postural limitation boundary, defined as the maximum extent to which each child could sway in each direction. Postural equilibrium was quantified by evaluating the amount of shared or mutual information of COP time series measured along the AP and ML directions. Consistent with prior studies, children with ASD showed increased postural sway during both static and dynamic stances relative to TD children. In regard to postural orientation processes, children with ASD demonstrated reduced spatial

  7. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking.

    PubMed

    Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S

    2017-12-01

    The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.

  8. Gov. King's stance against utilities upsets both camps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Massachusetts utilities and utility detractors all object to Governor King's position stated at a March press conference and urging regulators to deny rate increases that he claimed would be paying for utility mistakes. Boston Edison's request for a $291 million rate increase would recover the money lost when the utility abandoned its Pilgrim II nuclear plant. Boston Gas is seeking $46 million to recover money lost during last winter's shortage of natural gas. The governor's timing and mode of intervention prompted most of the criticism because of their political ramifications during an election year. Most of his statements drew uponmore » materials from a consumer group called Fair Share, but were stated in a way that the governor's re-election is necessary to secure the desired effects. (DCK)« less

  9. Martial Arts: Time Needed for Training

    PubMed Central

    Burke, David T.; Protopapas, Marina; Bonato, Paolo; Burke, John T.; Landrum, Rpbert F.

    2011-01-01

    Purpose To measure the time needed to teach a series of martial arts techniques to proficiency. Methods Fifteen volunteer subjects without any prior martial arts or self-defense experience were recruited. A panel of martial arts experts selected 21 different techniques including defensive stances, arm blocks, elbow strikes, palm strikes, thumbs to eyes, instep kicks and a carotid neck restraint. The critical elements of each technique were identified by the panel and incorporated into a teaching protocol, and then into a scoring system. Two black belt martial arts instructors directed a total of forty-five 45-minute training sessions. Videotaped proficiency testing was performed weekly. The videotapes were reviewed by the investigators to determine the proficiency levels of each subject for each technique. Results The techniques were rated by the average number of training sessions needed for an individual to develop proficiency in that technique. The mean number of sessions necessary to train individuals to proficiency ranged from 27 to 38.3. Using this system, the most difficult techniques seemed to be elbow strikes to the rear, striking with thumbs to the eyes and arm blocking. Conclusions In this study 29 hours of training was necessary to train novice students to be proficient in 21 offensive and defensive martial arts techniques. To our knowledge, this is the first study that attempts to measure the learning curves involved when teaching martial arts techniques. PMID:22375215

  10. Postural Stability in Young Adults with Down Syndrome in Challenging Conditions

    PubMed Central

    Bieć, Ewa; Zima, Joanna; Wójtowicz, Dorota; Wojciechowska-Maszkowska, Bożena; Kręcisz, Krzysztof; Kuczyński, Michał

    2014-01-01

    To evaluate postural control and performance in subjects with Down syndrome (SwDS), we measured postural sway (COP) in quiet stance in four 20-second tests: with eyes open or closed and on hard or foam surface. Ten SwDS and eleven healthy subjects participated, aged 29.8 (4.8) and 28.4 (3.9), respectively. The time-series recorded with the sampling rate of 100 Hz were used to evaluate postural performance (COP amplitude and mean velocity) and strategies (COP frequency, fractal dimension and entropy). There were no intergroup differences in the amplitude except the stance on foam pad with eyes open when SwDS had larger sway. The COP velocity and frequency were larger in SwDS than controls in all trials on foam pad. During stances on the foam pad SwDS increased fractal dimension showing higher complexity of their equilibrium system, while controls decreased sample entropy exhibiting more conscious control of posture in comparison to the stances on hard support surface. This indicated that each group used entirely different adjustments of postural strategies to the somatosensory challenge. It is proposed that the inferior postural control of SwDS results mainly from insufficient experience in dealing with unpredictable postural stimuli and deficit in motor learning. PMID:24728178

  11. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  12. Reliability analysis of a sensitive and independent stabilometry parameter set

    PubMed Central

    Nagymáté, Gergely; Orlovits, Zsanett

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54–0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals. PMID:29664938

  13. Reliability analysis of a sensitive and independent stabilometry parameter set.

    PubMed

    Nagymáté, Gergely; Orlovits, Zsanett; Kiss, Rita M

    2018-01-01

    Recent studies have suggested reduced independent and sensitive parameter sets for stabilometry measurements based on correlation and variance analyses. However, the reliability of these recommended parameter sets has not been studied in the literature or not in every stance type used in stabilometry assessments, for example, single leg stances. The goal of this study is to evaluate the test-retest reliability of different time-based and frequency-based parameters that are calculated from the center of pressure (CoP) during bipedal and single leg stance for 30- and 60-second measurement intervals. Thirty healthy subjects performed repeated standing trials in a bipedal stance with eyes open and eyes closed conditions and in a single leg stance with eyes open for 60 seconds. A force distribution measuring plate was used to record the CoP. The reliability of the CoP parameters was characterized by using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), coefficient of variation (CV) and CV compliance rate (CVCR). Based on the ICC, SEM and MDC results, many parameters yielded fair to good reliability values, while the CoP path length yielded the highest reliability (smallest ICC > 0.67 (0.54-0.79), largest SEM% = 19.2%). Usually, frequency type parameters and extreme value parameters yielded poor reliability values. There were differences in the reliability of the maximum CoP velocity (better with 30 seconds) and mean power frequency (better with 60 seconds) parameters between the different sampling intervals.

  14. Effects of Wii balance board exercises on balance after posterior cruciate ligament reconstruction.

    PubMed

    Puh, Urška; Majcen, Nia; Hlebš, Sonja; Rugelj, Darja

    2014-05-01

    To establish the effects of training on Wii balance board (WBB) after posterior cruciate ligament (PCL) reconstruction on balance. Included patient injured her posterior cruciate ligament 22 months prior to the study. Training on WBB was performed 4 weeks, 6 times per week, 30-45 min per day. Center of pressure (CoP) sway during parallel and one-leg stance, and body weight distribution in parallel stance were measured. Additionally, measurements of joint range of motion and limb circumferences were taken before and after training. After training, the body weight was almost equally distributed on both legs. Decrease in CoP sway was most significant for one-leg stance with each leg on compliant surface with eyes open and closed. The knee joint range of motion increased and limb circumferences decreased. According to the results of this single case report, we might recommend the use of WBB for balance training after PCL reconstruction. Case series with no comparison group, Level IV.

  15. A simple method of equine limb force vector analysis and its potential applications.

    PubMed

    Hobbs, Sarah Jane; Robinson, Mark A; Clayton, Hilary M

    2018-01-01

    Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t -tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling's T 2 tests on normalized stance phase data using SPM. Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is more influenced by the

  16. A simple method of equine limb force vector analysis and its potential applications

    PubMed Central

    Robinson, Mark A.; Clayton, Hilary M.

    2018-01-01

    Background Ground reaction forces (GRF) measured during equine gait analysis are typically evaluated by analyzing discrete values obtained from continuous force-time data for the vertical, longitudinal and transverse GRF components. This paper describes a simple, temporo-spatial method of displaying and analyzing sagittal plane GRF vectors. In addition, the application of statistical parametric mapping (SPM) is introduced to analyse differences between contra-lateral fore and hindlimb force-time curves throughout the stance phase. The overall aim of the study was to demonstrate alternative methods of evaluating functional (a)symmetry within horses. Methods GRF and kinematic data were collected from 10 horses trotting over a series of four force plates (120 Hz). The kinematic data were used to determine clean hoof contacts. The stance phase of each hoof was determined using a 50 N threshold. Vertical and longitudinal GRF for each stance phase were plotted both as force-time curves and as force vector diagrams in which vectors originating at the centre of pressure on the force plate were drawn at intervals of 8.3 ms for the duration of stance. Visual evaluation was facilitated by overlay of the vector diagrams for different limbs. Summary vectors representing the magnitude (VecMag) and direction (VecAng) of the mean force over the entire stance phase were superimposed on the force vector diagram. Typical measurements extracted from the force-time curves (peak forces, impulses) were compared with VecMag and VecAng using partial correlation (controlling for speed). Paired samples t-tests (left v. right diagonal pair comparison and high v. low vertical force diagonal pair comparison) were performed on discrete and vector variables using traditional methods and Hotelling’s T2 tests on normalized stance phase data using SPM. Results Evidence from traditional statistical tests suggested that VecMag is more influenced by the vertical force and impulse, whereas VecAng is

  17. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  18. The analysis of three-dimensional ground reaction forces during gait in children with autism spectrum disorders.

    PubMed

    Hasan, Che Zawiyah Che; Jailani, Rozita; Md Tahir, Nooritawati; Ilias, Suryani

    2017-07-01

    Minimal information is known about the three-dimensional (3D) ground reaction forces (GRF) on the gait patterns of individuals with autism spectrum disorders (ASD). The purpose of this study was to investigate whether the 3D GRF components differ significantly between children with ASD and the peer controls. 15 children with ASD and 25 typically developing (TD) children had participated in the study. Two force plates were used to measure the 3D GRF data during walking. Time-series parameterization techniques were employed to extract 17 discrete features from the 3D GRF waveforms. By using independent t-test and Mann-Whitney U test, significant differences (p<0.05) between the ASD and TD groups were found for four GRF features. Children with ASD demonstrated higher maximum braking force, lower relative time to maximum braking force, and lower relative time to zero force during mid-stance. Children with ASD were also found to have reduced the second peak of vertical GRF in the terminal stance. These major findings suggest that children with ASD experience significant difficulties in supporting their body weight and endure gait instability during the stance phase. The findings of this research are useful to both clinicians and parents who wish to provide these children with appropriate treatments and rehabilitation programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effects of Dao De Xin Xi Exercise on Balance and Quality of Life in Thai Elderly Women

    PubMed Central

    Intarakamhang, Patrawut; Chintanaprawasee, Pantipa

    2012-01-01

    The objective of this study was to evaluate the effects of a 12-week Dao De Xin Xi exercise, modified short forms of Tai Chi, on balance and quality of life in Thai elderly population. Quasi-Experimental research, pretest-posttest one group design was done at Physical Medicine and Rehabilitation Department, Phramongkutklao Hospital. Thai healthy elderly women over the age of 60, requiring regular Dao De Xin Xi exercise were recruited from either patients or workers in the hospital. A 60-minute Dao De Xin Xi exercise class was set as 3 times per week for 12 weeks. At baseline and 12 weeks, participants were tested in their static balance (Single-Leg Stance Timed Test with eyes open and close), dynamic balance (Expanded Timed Up and Go (ETUG) Test). Quality of life was measured by the abbreviated Thai version of the World Health Organization Quality of Life (WHOQOL-BREF) questionnaire. Fourteen females were studied with mean age of 62.8±4.3 years old. The Single-Leg Stance Timed Test with eyes open and close, Expanded Timed Up and Go (ETUG) Test improved significantly (before versus after exercises p <0.001). Significant improvement in quality of life were also found in each 4 domains, including physical health, psychological, social relationship, and environment (before versus after exercises p =0.001, 0.001, 0.004 and 0.005 respectively). No significant improvement was found only in the right Single-Leg Stance Timed Test with eyes close (p =0.091). A three times per week for 12-week Dao De Xin Xi exercise may help Thai elderly women improve both static, dynamic balance and quality of life. PMID:22980114

  20. Effects of Dao De Xin Xi exercise on balance and quality of life in Thai elderly women.

    PubMed

    Intarakamhang, Patrawut; Chintanaprawasee, Pantipa

    2011-12-29

    The objective of this study was to evaluate the effects of a 12-week Dao De Xin Xi exercise, modified short forms of Tai Chi, on balance and quality of life in Thai elderly population. Quasi-Experimental research, pretest-posttest one group design was done at Physical Medicine and Rehabilitation Department, Phramongkutklao Hospital. Thai healthy elderly women over the age of 60, requiring regular Dao De Xin Xi exercise were recruited from either patients or workers in the hospital. A 60-minute Dao De Xin Xi exercise class was set as 3 times per week for 12 weeks. At baseline and 12 weeks, participants were tested in their static balance (Single-Leg Stance Timed Test with eyes open and close), dynamic balance (Expanded Timed Up and Go (ETUG) Test). Quality of life was measured by the abbreviated Thai version of the World Health Organization Quality of Life (WHOQOL-BREF) questionnaire. Fourteen females were studied with mean age of 62.8±4.3 years old. The Single-Leg Stance Timed Test with eyes open and close, Expanded Timed Up and Go (ETUG) Test improved significantly (before versus after exercises p <0.001). Significant improvement in quality of life were also found in each 4 domains, including physical health, psychological, social relationship, and environment (before versus after exercises p =0.001, 0.001, 0.004 and 0.005 respectively). No significant improvement was found only in the right Single-Leg Stance Timed Test with eyes close (p =0.091). A three times per week for 12-week Dao De Xin Xi exercise may help Thai elderly women improve both static, dynamic balance and quality of life.

  1. Ankle dorsiflexion may play an important role in falls in women with fibromyalgia.

    PubMed

    Góes, Suelen M; Leite, Neiva; Stefanello, Joice M F; Homann, Diogo; Lynn, Scott K; Rodacki, André L F

    2015-07-01

    Fibromyalgia is a chronic pain condition, which involves reduced range of motion. This leads to gait changes and high incidence of falls. The understanding of the gait patterns in subjects with fibromyalgia and their relationship with falls may be useful when designing intervention programs. The purpose of this study was to evaluate the range of motion of the hip and ankle joints during gait in women with and without fibromyalgia. Further, we determined the relationship between joint range of motion and falls in this population. Middle-aged women (16 with fibromyalgia and 16 as control group) were recruited. Pain intensity, physical activity level, and fall prevalence were assessed. Three dimensional gait analysis provided temporal and joint kinematic variables. In general, hip and ankle range of motion were similar between groups, except that fibromyalgia group showed higher plantar flexion during toe-off (P<0.05) and reduced dorsiflexion during stance phase (P<0.05). Additionally, in the fibromyalgia group the higher number of falls was correlated to reduced dorsiflexion during stance phase. This limitation in dorsiflexion was related to longer length of time with fibromyalgia symptoms. Women with fibromyalgia showed a higher number of falls, reduced dorsiflexion during stance phase, and increased plantar flexion during toe-off. Also, the higher number of falls reported in the fibromyalgia group was related to reduced dorsiflexion during stance phase, which was correlated to a longer length of time living with fibromyalgia symptoms. These data suggest that improving ankle kinematics in patients with fibromyalgia may help prevent falls and improve mobility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.

    PubMed

    Psarakis, Michael; Greene, David; Moresi, Mark; Baker, Michael; Stubbs, Peter; Brodie, Matthew; Lord, Stephen; Hoang, Phu

    2017-11-01

    Gait impairment in people with Multiple Sclerosis results from neurological impairment, muscle weakness and reduced range of motion. Restrictions in passive ankle range of motion can result in abnormal heel-to-toe progression (weight transfer) and inefficient gait patterns in people with Multiple Sclerosis. The purpose of this study was to determine the associations between gait impairment, heel-to-toe progression and ankle range of motion in people with Multiple Sclerosis. Twelve participants with Multiple Sclerosis and twelve healthy age-matched participants were assessed. Spatiotemporal parameters of gait and individual footprint data were used to investigate group differences. A pressure sensitive walkway was used to divide each footprint into three phases (contact, mid-stance, propulsive) and calculate the heel-to-toe progression during the stance phase of gait. Compared to healthy controls, people with Multiple Sclerosis spent relatively less time in contact phase (7.8% vs 25.1%) and more time in the mid stance phase of gait (57.3% vs 33.7%). Inter-limb differences were observed in people with Multiple Sclerosis between the affected and non-affected sides for contact (7.8% vs 15.3%) and mid stance (57.3% and 47.1%) phases. Differences in heel-to-toe progression remained significant after adjusting for walking speed and were correlated with walking distance and ankle range of motion. Impaired heel-to-toe progression was related to poor ankle range of motion in people with Multiple Sclerosis. Heel-to-toe progression provided a sensitive measure for assessing gait impairments that were not detectable using standard spatiotemporal gait parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Speaking "Common Sense" about the Soviet Threat: Reagan's Rhetorical Stance.

    ERIC Educational Resources Information Center

    Ivie, Robert L.

    Although for the 15 years preceding his election as President of the United States Ronald Reagan muted his anti-Soviet rhetoric in order to achieve political power, since his election he has returned to anti-Sovietism in an effort to redirect American foreign policy against the Soviets. At the same time, however, he employs a rhetorical strategy…

  4. Reliability of a Seven-Segment Foot Model with Medial and Lateral Midfoot and Forefoot Segments During Walking Gait.

    PubMed

    Cobb, Stephen C; Joshi, Mukta N; Pomeroy, Robin L

    2016-12-01

    In-vitro and invasive in-vivo studies have reported relatively independent motion in the medial and lateral forefoot segments during gait. However, most current surface-based models have not defined medial and lateral forefoot or midfoot segments. The purpose of the current study was to determine the reliability of a 7-segment foot model that includes medial and lateral midfoot and forefoot segments during walking gait. Three-dimensional positions of marker clusters located on the leg and 6 foot segments were tracked as 10 participants completed 5 walking trials. To examine the reliability of the foot model, coefficients of multiple correlation (CMC) were calculated across the trials for each participant. Three-dimensional stance time series and range of motion (ROM) during stance were also calculated for each functional articulation. CMCs for all of the functional articulations were ≥ 0.80. Overall, the rearfoot complex (leg-calcaneus segments) was the most reliable articulation and the medial midfoot complex (calcaneus-navicular segments) was the least reliable. With respect to ROM, reliability was greatest for plantarflexion/dorsiflexion and least for abduction/adduction. Further, the stance ROM and time-series patterns results between the current study and previous invasive in-vivo studies that have assessed actual bone motion were generally consistent.

  5. Calcaneal loading during walking and running

    NASA Technical Reports Server (NTRS)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  6. THE EFFECT OF HAND DOMINANCE ON MARTIAL ARTS STRIKES

    PubMed Central

    Neto, Osmar Pinto; Silva, Jansen Henrique; de Miranda Marzullo, Ana Carolina; Bolander, Richard P.; Bir, Cynthia A.

    2011-01-01

    The main goal of this study was to compare dominant and non-dominant martial arts palm strikes under different circumstances that usually happen during martial arts and combative sports applications. Seven highly experienced (10 ± 5 years) right hand dominant Kung Fu practitioners performed strikes with both hands, stances with left or right lead legs, and with the possibility or not of stepping towards the target (moving stance). Peak force was greater for the dominant hand strikes (1593.76 ± 703.45 N vs. 1042.28 ± 374.16 N; p < .001), whereas no difference was found in accuracy between the hands (p = .141). Additionally, peak force was greater for the strikes with moving stance (1448.75 ± 686.01 N vs. 1201.80 ± 547.98 N; p = .002) and left lead leg stance (1378.06 ± 705.48 N vs.1269.96 ± 547.08 N). Furthermore, the difference in peak force between strikes with moving and stationary stances was statistically significant only for the strikes performed with a left lead leg stance (p = .007). Hand speed was higher for the dominant hand strikes (5.82 ± 1.08 m/s vs. 5.24 ± 0.78 m/s; p = 0.001) and for the strikes with moving stance (5.79 ± 1.01 m/s vs. 5.29 ± 0.90 m/s; p < .001). The difference in hand speed between right and left hand strikes was only significant for strikes with moving stance. In summary, our results suggest that the stronger palm strike for a right-handed practitioner is a right hand strike on a left lead leg stance moving towards the target. PMID:22047701

  7. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton

    PubMed Central

    Young, Aaron J.; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P.

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait. PMID:28337434

  8. Influence of Power Delivery Timing on the Energetics and Biomechanics of Humans Wearing a Hip Exoskeleton.

    PubMed

    Young, Aaron J; Foss, Jessica; Gannon, Hannah; Ferris, Daniel P

    2017-01-01

    A broad goal in the field of powered lower limb exoskeletons is to reduce the metabolic cost of walking. Ankle exoskeletons have successfully achieved this goal by correctly timing a plantarflexor torque during late stance phase. Hip exoskeletons have the potential to assist with both flexion and extension during walking gait, but the optimal timing for maximally reducing metabolic cost is unknown. The focus of our study was to determine the best assistance timing for applying hip assistance through a pneumatic exoskeleton on human subjects. Ten non-impaired subjects walked with a powered hip exoskeleton, and both hip flexion and extension assistance were separately provided at different actuation timings using a simple burst controller. The largest average across-subject reduction in metabolic cost for hip extension was at 90% of the gait cycle (just prior to heel contact) and for hip flexion was at 50% of the gait cycle; this resulted in an 8.4 and 6.1% metabolic reduction, respectively, compared to walking with the unpowered exoskeleton. However, the ideal timing for both flexion and extension assistance varied across subjects. When selecting the assistance timing that maximally reduced metabolic cost for each subject, average metabolic cost for hip extension was 10.3% lower and hip flexion was 9.7% lower than the unpowered condition. When taking into account user preference, we found that subject preference did not correlate with metabolic cost. This indicated that user feedback was a poor method of determining the most metabolically efficient assistance power timing. The findings of this study are relevant to developers of exoskeletons that have a powered hip component to assist during human walking gait.

  9. Use of Visual and Proprioceptive Feedback to Improve Gait Speed and Spatiotemporal Symmetry Following Chronic Stroke: A Case Series

    PubMed Central

    Feasel, Jeff; Wentz, Erin; Brooks, Frederick P.; Whitton, Mary C.

    2012-01-01

    Background and Purpose Persistent deficits in gait speed and spatiotemporal symmetry are prevalent following stroke and can limit the achievement of community mobility goals. Rehabilitation can improve gait speed, but has shown limited ability to improve spatiotemporal symmetry. The incorporation of combined visual and proprioceptive feedback regarding spatiotemporal symmetry has the potential to be effective at improving gait. Case Description A 60-year-old man (18 months poststroke) and a 53-year-old woman (21 months poststroke) each participated in gait training to improve gait speed and spatiotemporal symmetry. Each patient performed 18 sessions (6 weeks) of combined treadmill-based gait training followed by overground practice. To assist with relearning spatiotemporal symmetry, treadmill-based training for both patients was augmented with continuous, real-time visual and proprioceptive feedback from an immersive virtual environment and a dual belt treadmill, respectively. Outcomes Both patients improved gait speed (patient 1: 0.35 m/s improvement; patient 2: 0.26 m/s improvement) and spatiotemporal symmetry. Patient 1, who trained with step-length symmetry feedback, improved his step-length symmetry ratio, but not his stance-time symmetry ratio. Patient 2, who trained with stance-time symmetry feedback, improved her stance-time symmetry ratio. She had no step-length asymmetry before training. Discussion Both patients made improvements in gait speed and spatiotemporal symmetry that exceeded those reported in the literature. Further work is needed to ascertain the role of combined visual and proprioceptive feedback for improving gait speed and spatiotemporal symmetry after chronic stroke. PMID:22228605

  10. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.

    PubMed

    Debaere, Sofie; Vanwanseele, Benedicte; Delecluse, Christophe; Aerenhouts, Dirk; Hagman, Friso; Jonkers, Ilse

    2017-11-01

    The aim of this study was to investigate differences in joint power generation between well-trained adult athletes and young sprinters from block clearance to initial contact of second stance. Eleven under 16 (U16) and 18 under 18 (U18) promising sprinters executed an explosive start action. Fourteen well-trained adult sprinters completed the exact same protocol. All athletes were equipped with 74 spherical reflective markers, while an opto-electronic motion analysis system consisting of 12 infrared cameras (250 Hz, MX3, Vicon, Oxford Metrics, UK) and 2 Kistler force plates (1,000 Hz) was used to collect the three-dimensional marker trajectories and ground reaction forces (Nexus, Vicon). Three-dimensional kinematics, kinetics, and power were calculated (Opensim) and time normalised from the first action after gunshot until initial contact of second stance after block clearance. This study showed that adult athletes rely on higher knee power generation during the first stance to induce longer step length and therefore higher velocity. In younger athletes, power generation of hip was more dominant.

  11. Contrasting Public Opinion Dynamics and Emotional Response during Crisis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkova, Svitlana; Chetviorkin, Ilia; Arendt, Dustin L.

    We propose an approach for contrasting spatiotemporal dynamics of public opinions expressed toward targeted entities, also known as stance detection task, in Russia and Ukraine during crisis. Our analysis relies on a novel corpus constructed from posts on the VKontakte social network, centered on local public opinion of the ongoing Russian-Ukrainian crisis, along with newly annotated resources for predicting expressions of fine-grained emotions including joy, sadness, disgust, anger, surprise and fear. Akin to prior work on sentiment analysis we align traditional public opinion polls with aggregated automatic predictions of sentiments for contrastive geo-locations. We report interesting observations on emotional responsemore » and stance variations across geo-locations. Some of our findings contradict stereotypical misconceptions imposed by media, for example, we found posts from Ukraine that do not support Euromaidan but support Putin, and posts from Russia that are against Putin but in favor USA. Furthermore, we are the first to demonstrate contrastive stance variations over time across geo-locations using storyline visualization technique.« less

  12. Neuromechanical adaptations during a robotic powered exoskeleton assisted walking session.

    PubMed

    Ramanujam, Arvind; Cirnigliaro, Christopher M; Garbarini, Erica; Asselin, Pierre; Pilkar, Rakesh; Forrest, Gail F

    2017-04-20

    To evaluate gait parameters and neuromuscular profiles of exoskeleton-assisted walking under Max Assist condition during a single-session for; (i) able bodied (AB) individuals walking assisted with (EXO) and without (non-EXO) a powered exoskeleton, (ii) non-ambulatory SCI individuals walking assisted with a powered exoskeleton. Single-session. Motion analysis laboratory. Four AB individuals and four individuals with SCI. Powered lower extremity exoskeleton. Temporal-spatial parameters, kinematics, walking velocity and electromyography data. AB individuals in exoskeleton showed greater stance time and a significant reduction in walking velocity (P < 0.05) compared to non-EXO walking. Interestingly, when the AB individuals voluntarily assisted the exoskeleton movements, they walked with an increased velocity and lowered stance time to resemble that of slow walking. For SCI individuals, mean percent stance time was higher and walking velocity was lower compared to all AB walking conditions (P < 0.05). There was muscle activation in several lower limb muscles for SCI group. For AB individuals, there were similarities among EXO and non-EXO walking conditions however there were differences in several lower limb EMGs for phasing of muscle activation. The data suggests that our AB individuals experienced reduction in walking velocity and muscle activation amplitudes while walking in the exoskeleton and moreover with voluntary control there is a greater temporal-spatial response of the lower limbs. Also, there are neuromuscular phasic adaptions for both AB and SCI groups while walking in the exoskeleton that are inconsistent to non-EXO gait muscle activation.

  13. The effect of hand dominance on martial arts strikes.

    PubMed

    Neto, Osmar Pinto; Silva, Jansen Henrique; Marzullo, Ana Carolina de Miranda; Bolander, Richard P; Bir, Cynthia A

    2012-08-01

    The main goal of this study was to compare dominant and non-dominant martial arts palm strikes under different circumstances that usually happen during martial arts and combative sports applications. Seven highly experienced (10±5 years) right hand dominant Kung Fu practitioners performed strikes with both hands, stances with left or right lead legs, and with the possibility or not of stepping towards the target (moving stance). Peak force was greater for the dominant hand strikes (1593.76±703.45 N vs. 1042.28±374.16 N; p<.001), whereas no difference was found in accuracy between the hands (p=.141). Additionally, peak force was greater for the strikes with moving stance (1448.75±686.01 N vs. 1201.80±547.98 N; p=.002) and left lead leg stance (1378.06±705.48 N vs. 1269.96±547.08 N). Furthermore, the difference in peak force between strikes with moving and stationary stances was statistically significant only for the strikes performed with a left lead leg stance (p=.007). Hand speed was higher for the dominant hand strikes (5.82±1.08 m/s vs. 5.24±0.78 m/s; p=.001) and for the strikes with moving stance (5.79±1.01 m/s vs. 5.29±0.90 m/s; p<.001). The difference in hand speed between right and left hand strikes was only significant for strikes with moving stance. In summary, our results suggest that the stronger palm strike for a right-handed practitioner is a right hand strike on a left lead leg stance moving towards the target. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population.

    PubMed

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-07-01

    The purpose of this study was to find "Effect of lower extremity stretching exercises on balance in the geriatric population. 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls.

  15. The southpaw advantage? Lateral preference in mixed martial arts.

    PubMed

    Baker, Joseph; Schorer, Jörg

    2013-01-01

    Performers with a left-orientation have a greater likelihood of obtaining elite levels of performance in many interactive sports. This study examined whether combat stance orientation was related to skill and success in Mixed Martial Arts fighters. Data were extracted for 1468 mixed martial artists from a reliable and valid online data source. Measures included fighting stance, win percentage and an ordinal measure of skill based on number of fights. The overall analysis revealed that the fraction of fighters using a southpaw stance was greater than the fraction of left-handers in the general population, but the relationship between stance and hand-preference is not well-understood. Furthermore, t-tests found no statistically significant relationship between laterality and winning percentage, although there was a significant difference between stances for number of fights. Southpaw fighters had a greater number of fights than those using an orthodox stance. These results contribute to an expanding database on the influence of laterality on sport performance and a relatively limited database on variables associated with success in mixed martial arts.

  16. Three-dimensional gait analysis of obese adults.

    PubMed

    Lai, Peggy P K; Leung, Aaron K L; Li, Agnes N M; Zhang, M

    2008-01-01

    Obesity has been clinically associated with musculoskeletal disorders. However, the findings were mainly focused on the analysis in the sagittal plane. The objectives of this study were to investigate the three-dimensional gait characteristics of Chinese obese adults and to compare the results with normal subjects. Fourteen obese subjects, mean age 35.4 (8.8)years, eight females and six males, with body mass index 33.06 (4.2)kg/m(2) and 14 non-obese subjects, mean age 27.6 (8.6)years, eight females and six males, with body mass index 21.33 (1.5)kg/m(2) participated in this study. All subjects did not have current or past neurological or cardiovascular illness, orthopaedic abnormality, or pain which might affect gait. The kinematics and kinetics data of all subjects were recorded during their self-selected walking speed with a three-dimensional motion analysis system. The obese group walked slower and had a shorter stride length. They also spent more time on stance phase and double support in walking. Greater hip adduction was shown in the obese group during terminal stance and pre-swing. The maximum knee adduction angles of the obese group in both stance and swing phases were significantly higher. The ankle eversion angle of the obese group was significantly higher from mid stance to pre-swing. There were reduction of peak ankle plantar flexor moment, and increase of ankle inversion moment. There were some significant differences in temporal-spatial, joint motion and joint moment data between the obese and the non-obese participants. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce the moment about the knee and the energy expenditure per unit time.

  17. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.

    PubMed

    Creylman, Veerle; Knippels, Ingrid; Janssen, Paul; Biesbrouck, Evelyne; Lechler, Knut; Peeraer, Louis

    2016-12-19

    In transfemoral (TF) amputees, the forward propulsion of the prosthetic leg in swing has to be mainly carried out by hip muscles. With hip strength being the strongest predictor to ambulation ability, an active powered knee joint could have a positive influence, lowering hip loading and contributing to ambulation mobility. To assess this, gait of four TF amputees was measured for level walking, first while using a passive microprocessor-controlled prosthetic knee (P-MPK), subsequently while using an active powered microprocessor-controlled prosthetic knee (A-MPK). Furthermore, to assess long-term effects of the use of an A-MPK, a 4-weeks follow-up case study was performed. The kinetics and kinematics of the gait of four TF amputees were assessed while walking with subsequently the P-MPK and the A-MPK. For one amputee, a follow-up study was performed: he used the A-MPK for 4 weeks, his gait was measured weekly. The range of motion of the knee was higher on both the prosthetic and the sound leg in the A-MPK compared to the P-MPK. Maximum hip torque (HT) during early stance increased for the prosthetic leg and decreased for the sound leg with the A-MPK compared to the P-MPK. During late stance, the maximum HT decreased for the prosthetic leg. The difference between prosthetic and sound leg for HT disappeared when using the A-MPK. Also, an increase in stance phase duration was observed. The follow-up study showed an increase in confidence with the A-MPK over time. Results suggested that, partially due to an induced knee flexion during stance, HT can be diminished when walking with the A-MPK compared to the P-MPK. The single case follow-up study showed positive trends indicating that an adaptation time is beneficial for the A-MPK.

  18. Influence of fear of falling on anticipatory postural control of medio-lateral stability during rapid leg flexion.

    PubMed

    Yiou, E; Deroche, T; Do, M C; Woodman, T

    2011-04-01

    During leg flexion from erect posture, postural stability is organized in advance during "anticipatory postural adjustments" (APA). During these APA, inertial forces are generated that propel the centre of gravity (CoG) laterally towards stance leg side. This study examined how fear of falling (FoF) may influence this anticipatory postural control of medio-lateral (ML) stability. Ten young healthy participants performed a series of leg flexions at maximal velocity from low and high surface heights (6 and 66 cm above ground, respectively). In this latter condition with increased FoF, stance foot was placed at the lateral edge of the support surface to induce maximal postural threat. Results showed that the amplitude of ML inertial forces generated during APA decreased with FoF; this decrease was compensated by an increase in APA duration so that the CoG position at time of swing foot-off was located further towards stance leg side. With these changes in ML APA, the CoG was propelled in the same final (unipodal) position above stance foot as in condition with low FoF. These results contrast with those obtained in the literature during quiet standing which showed that FoF did not have any influence on the ML component of postural control. It is proposed that ML APA are modified with increased FoF, in such a way that the risk of a sideway fall induced by the large CoG motion is attenuated.

  19. Exploratory behavior during stance persists with visual feedback.

    PubMed

    Murnaghan, C D; Horslen, B C; Inglis, J T; Carpenter, M G

    2011-11-10

    Recent evidence showing center of pressure (COP) displacements increase following an external stabilization of the center of mass (COM) supports the theory that postural sway may be exploratory and serve as a means of acquiring sensory information. The aim of the current study was to further test this theory and rule out potential confounding effects of sensory illusions or motor drift on prior observations. Participants stood as still as possible in an apparatus which allowed movements of the COM to be stabilized ("locked") without subject awareness, and they were provided real-time visual feedback of their COM or COP throughout the trial. If there was an influence of sensory illusions or motor drift, we hypothesized that the change in COP displacement with locking would be reduced when participants were provided visual confirmation of COM stabilization (COM feedback), or when they were aware of the position of the COP throughout the trial (COP feedback). Confirming our previous results, increases in COP displacement were observed when movements of the COM were stabilized. In addition, our results showed that increases in COP displacement could not be explained by the presence of sensory illusions or motor drift, since increases in COP were observed despite being provided convincing evidence that the COM had been stabilized, and when participants were aware of their COP position throughout the trial. These results provide further support for an exploratory role of postural sway. The theoretical basis of current clinical practices designed to deal with balance control deficits due to age or disease is typically based on the opinion that increases in sway are a consequence of a failing balance control system. Our results suggest that this may not be the case, and if sway is in fact exploratory, a serious re-evaluation of current clinical practices may be warranted. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Differences in Neuromuscular Strategies Between Landing and Cutting Tasks in Female Basketball and Soccer Athletes

    PubMed Central

    Cowley, Hanni R; Ford, Kevin R; Myer, Gregory D; Kernozek, Thomas W; Hewett, Timothy E

    2006-01-01

    Context: High school female athletes are most likely to sustain a serious knee injury during soccer or basketball, 2 sports that often involve a rapid deceleration before a change of direction or while landing from a jump. Objective: To determine if female high school basketball and soccer players show neuromuscular differences during landing and cutting tasks and to examine neuromuscular differences between tasks and between dominant and nondominant sides. Design: A 3-way mixed factorial design investigating the effects of sport (basketball, soccer), task (jumping, cutting), and side (dominant, nondominant). Setting: Laboratory. Patients or Other Participants: Thirty high school female athletes who listed either basketball or soccer as their only sport of participation (basketball: n = 15, age = 15.1 ± 1.7 years, experience = 6.9 ± 2.2 years, height = 165.3 ± 7.9 cm, mass = 61.8 ± 9.3 kg; soccer: n = 15, age = 14.8 ± 0.8 years, experience = 8.8 ± 2.5 years, height = 161.8 ± 4.1 cm, mass = 54.6 ± 7.6 kg). Main Outcome Measure(s): Ground reaction forces, stance time, valgus angles, and valgus moments were assessed during (1) a drop vertical jump with an immediate maximal vertical jump and (2) an immediate side-step cut at a 45° angle. Results: Basketball athletes had greater ground reaction forces (P < .001) and decreased stance time (P < .001) during the drop vertical jump, whereas soccer players had greater ground reaction forces (P <.001) and decreased stance time (P < .001) during the cut. Subjects in both sports had greater valgus angles (initial contact and maximum, P = .02 and P = .012, respectively) during cutting than during the drop vertical jump. Greater valgus moments (P = .006) were noted on the dominant side during cutting. Conclusions: Our subjects demonstrated differences in ground reaction forces and stance times during 2 movements associated with noncontact anterior cruciate ligament injuries. Knee valgus moment and angle were

  1. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Kay, Jarren C; Ordonez, Genesis; Hampton, Thomas G; Garland, Theodore

    Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that

  2. Differences in activation properties of the hamstring muscles during overground sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2015-09-01

    The purpose of this study was to quantify activation of the biceps femoris (BF) and medial hamstring (MH) during overground sprinting. Lower-extremity kinematics and electromyography (EMG) of the BF and MH were recorded in 13 male sprinters performing overground sprinting at maximum effort. Mean EMG activity was calculated in the early stance, late stance, mid-swing, and late-swing phases. Activation of the BF was significantly greater during the early stance phase than the late stance phase (p<0.01). Activation of the BF muscle was significantly lower during the first half of the mid-swing phase than the other phases (p<0.05). The MH had significantly greater EMG activation relative to its recorded maximum values compared to that for the BF during the late stance (p<0.05) and mid-swing (p<0.01) phases. These results indicate that the BF shows high activation before and after foot contact, while the MH shows high activation during the late stance and mid-swing phases. We concluded that the activation properties of the BF and MH muscles differ within the sprinting gait cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. CHANGES IN PATELLOFEMORAL JOINT STRESS DURING RUNNING WITH THE APPLICATION OF A PREFABRICATED FOOT ORTHOTIC.

    PubMed

    Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M

    2015-12-01

    Foot orthotics are commonly utilized in the treatment of patellofemoral pain (PFP) and have shown clinical benefit; however, their mechanism of action remains unclear. Patellofemoral joint stress (PFJS) is thought to be one of the main etiological factors associated with PFP. The primary purpose of this study was to investigate the effects of a prefabricated foot orthotic with 5 ° of medial rearfoot wedging on the magnitude and the timing of the peak PFJS in a group of healthy female recreational athletes. The hypothesis was that there would be significant reduction in the peak patellofemoral joint stress and a delay in the timing of this peak in the orthotic condition. Cross-sectional. Kinematic and kinetic data were collected during running trials in a group of healthy, female recreational athletes. The knee angle and moment data in the sagittal plane were incorporated into a previously developed model to estimate patellofemoral joint stress. The dependent variables of interest were the peak patellofemoral joint stress as well as the percentage of stance at which this peak occurred, as both the magnitude and the timing of the joint loading are thought to be important in overuse running injuries. The peak patellofemoral joint stress significantly increased in the orthotic condition by 5.8% (p=.02, ES=0.24), which does not support the initial hypothesis. However, the orthotic did significantly delay the timing of the peak during the stance phase by 3.8% (p=.002, ES=0.47). The finding that the peak patellofemoral joint stress increased in the orthotic condition did not support the initial hypothesis. However, the finding that the timing of this peak was delayed to later in the stance phase in the orthotic condition did support the initial hypothesis and may be related to the clinical improvements previously reported in subjects with PFP. Level 4.

  4. Disciplinary Epistemologies, Generic Attributes and Undergraduate Academic Writing in Nursing and Midwifery

    ERIC Educational Resources Information Center

    Gimenez, Julio

    2012-01-01

    Generic attributes such as "holding a critical stance", "using evidence to support claims", and "projecting an impersonal voice" are central to disciplinary academic writing in higher education. These attributes, also referred to as "skills", have for a long time been conceptualised as transferable in that…

  5. Family Correlates of Trajectories of Academic Motivation During a School Transition: A Semiparametric Group-Based Approach

    ERIC Educational Resources Information Center

    Ratelle, Catherine F.; Guay, Frederic; Larose, Simon; Senecal, Caroline

    2004-01-01

    The present study examined whether academic motivations, conceptualized from the stance of self-determination theory, fluctuate over time in a homogeneous or heterogeneous fashion during a school transition. Three objectives were pursued: First, motivational trajectories were studied using the conventional, homogeneous approach. Second, the…

  6. Japan Toughens Pollution Control Stance

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Special responsibility for chemical firms are delineated in three areas: (1) chemical processes that are toxic to man; (2) use best available technology to monitor the safety of effluents; (3) when any doubt of safety exists, the firm should halt operations at once and take preventive action. (DF)

  7. Electromyographic analysis of trunk and hip muscles during resisted lateral band walking.

    PubMed

    Youdas, James W; Foley, Brooke M; Kruger, BreAnna L; Mangus, Jessica M; Tortorelli, Alis M; Madson, Timothy J; Hollman, John H

    2013-02-01

    The purpose of this study was to simultaneously quantify bilateral activation/recruitment levels (% maximum voluntary isometric contraction [MVIC]) for trunk and hip musculature on both moving and stance lower limbs during resisted lateral band walking. Differential electromyographic (EMG) activity was recorded in neutral, internal, and external hip rotation in 21 healthy participants. EMG signals were collected with DE-3.1 double-differential surface electrodes at a sampling frequency of 1,000 Hz during three consecutive lateral steps. Gluteus medius average EMG activation was greater (p = 0.001) for the stance limb (52 SD 18% MVIC) than moving limb (35 SD 16% MVIC). Gluteus maximus EMG activation was greater (p = 0.002) for the stance limb (19 SD 13% MVIC) than moving limb (13 SD 9% MVIC). Erector spinae activation was greater (p = 0.007) in hip internal rotation (30 SD 13% MVIC) than neutral rotation (26 SD 10% MVIC) and the moving limb (31 SD 15% MVIC) was greater (p = 0.039) than the stance limb (23 SD 11% MVIC). Gluteus medius and maximus muscle activation were greater on the stance limb than moving limb during resisted lateral band walking. Therefore, clinicians may wish to consider using the involved limb as the stance limb during resisted lateral band walking exercise.

  8. Discrepancy of alignment in different weight bearing conditions before and after high tibial osteotomy.

    PubMed

    Wang, Joon Ho; Shin, Jung Min; Kim, Hyun Ho; Kang, Seung-Hoon; Lee, Byung Hoon

    2017-01-01

    To evaluate the differences in the amount of varus malalignment and valgus (over) correction in relation to three different weight bearing conditions from whole leg AP radiographs (single-limb (SL) stance, double-limb (DL) stance, supine position (S)) before and after high tibial osteotomy (HTO), and to evaluate which alignment parameters affect the changes for patients in three different weight bearing conditions. A total of 40 consecutive patients (43 knees) with varus osteoarthritis underwent navigation assisted open wedge HTO. Mechanical axis angle (MA) was measured before and after surgery from hip-to-ankle radiographs taken with patients in three different weight bearing conditions. To find significant factors that affect the alignment differences, several variables including patient demographics, soft tissue laxity, pelvic obliquity, and ground mechanical axis deviation of tibia (calculated by the angle between two lines, tibial anatomical axis and weight-bearing line) were evaluated. Pre-operatively, mean MA measured on SL stance radiographs was significantly more varus than on DL stance (10.1° ± 2.4° and 8.0° ± 2.6°, respectively, p < 0.001), which was significantly more varus than on supine position (6.6° ± 2.6°, p < 0.001). Meanwhile, in patients with post-operatively valgus corrected knee, MA did not show the same pattern of change as with pre-operative varus knee. Mean MA measured on DL stance radiographs was more valgus than in supine position (-3.0 o  ± 2.4 o and -2.6 o  ± 3.1 o , p = 0.455), while mean MA on SL stance radiographs (-2.0 o  ± 2.1 o ) was significantly less valgus than on DL stance (p = 0.002). The ground mechanical axis deviation of tibia showed a significant correlation with MA difference between SL and DL stance radiographs before (β = -0.341, p = 0.045) and after surgery (β = -0.536, p = 0.001). In pre-operative varus knee, the mean MA on SL stance was changed to

  9. Impairments in static standing balance are highly prevalent among older adults receiving home-based physical therapy.

    PubMed

    Bohannon, Richard W

    2012-01-01

    Measures of balance are an important component of the physical therapist examination. This study investigated the usefulness of timed static stance durations for identifying balance impairments among patients receiving home-based physical therapy. This study involved the retrospective retrieval of data from the records of 48 patients at least 60 years of age. Their balance was measured under 3 foot configurations; that is, feet apart, feet together, and on each foot. Every patient demonstrated impaired standing balance. Most, but not all could balance 30 seconds with the feet apart or together. Only 19 could maintain balance on each of both feet. Of those who could so balance, none was able to achieve the average time of normal individuals of comparable age. Although not able to identify all aspects of balance, timed durations of stance under different configurations demonstrate a high prevalence of balance impairments among patients receiving home-based physical therapy. As the tests are objective, fast, and require little space, they can be advocated in such a setting.

  10. Changes in in vivo knee contact forces through gait modification.

    PubMed

    Kinney, Allison L; Besier, Thor F; Silder, Amy; Delp, Scott L; D'Lima, Darryl D; Fregly, Benjamin J

    2013-03-01

    Knee osteoarthritis (OA) commonly occurs in the medial compartment of the knee and has been linked to overloading of the medial articular cartilage. Gait modification represents a non-invasive treatment strategy for reducing medial compartment knee force. The purpose of this study was to evaluate the effectiveness of a variety of gait modifications that were expected to alter medial contact force. A single subject implanted with a force-measuring knee replacement walked using nine modified gait patterns, four of which involved different hiking pole configurations. Medial and lateral contact force at 25, 50, and 75% of stance phase, and the average value over all of stance phase (0-100%), were determined for each gait pattern. Changes in medial and lateral contact force values relative to the subject's normal gait pattern were determined by a Kruskal-Wallis test. Apart from early stance (25% of stance), medial contact force was most effectively reduced by walking with long hiking poles and wide pole placement, which significantly reduced medial and lateral contact force during stance phase by up to 34% (at 75% of stance) and 26% (at 50% of stance), respectively. Although this study is based on data from a single subject, the results provide important insight into changes in medial and lateral contact forces through gait modification. The results of this study suggest that an optimal configuration of bilateral hiking poles may significantly reduce both medial and lateral compartment knee forces in individuals with medial knee osteoarthritis. Copyright © 2012 Orthopaedic Research Society.

  11. The hindlimb in walking horses: 2. Net joint moments and joint powers.

    PubMed

    Clayton, H M; Hodson, E; Lanovaz, J L; Colborne, G R

    2001-01-01

    The objective of the study was to describe net joint moments and joint powers in the equine hindlimb during walking. The subjects were 5 sound horses. Kinematic and force data were collected synchronously and combined with morphometric information to determine net joint moments at each hindlimb joint throughout stance and swing. The results showed that the net joint moment was on the caudal/plantar side of all hindlimb joints at the start of stance when the limb was being actively retracted. It moved to the cranial/dorsal side around 24% stride at the hip and stifle and in terminal stance at the more distal joints. It remained on the cranial/dorsal side of all joints during the first half of swing to provide active limb protraction, then moved to the caudal/plantar aspect to reverse the direction of limb motion prior to ground contact. The hip joint was the main source of energy generation throughout the stride. It was assisted by the tarsal joint in both stance and swing phases and by the fetlock joint during the stance phase. The coffin joint acted as an energy damper during stance, whereas the stifle joint absorbed almost equal amounts of energy in the stance and swing phases. The coffin and fetlock joints absorbed energy as the limb was protracted and retracted during the swing phase, suggesting that their movements were driven by inertial forces. Future studies will apply these findings to detect changes in the energy profiles due to specific soft tissue injuries.

  12. Stepping responses to treadmill perturbations vary with severity of motor deficits in human SCI.

    PubMed

    Chu, Virginia Way Tong; Hornby, T George; Schmit, Brian D

    2018-04-18

    In this study, we investigated the responses to tread perturbations during human stepping on a treadmill. Our approach was to test the effects of perturbations to a single leg using a split-belt treadmill in healthy participants and in participants with varying severity of spinal cord injury (SCI). We recruited 11 people with incomplete SCI and 5 noninjured participants. As participants walked on an instrumented treadmill, the belt on one side was stopped or accelerated briefly during mid to late stance. A majority of participants initiated an unnecessary swing when the treadmill was stopped in mid stance, although the likelihood of initiating a step was decreased in participants with more severe SCI. Accelerating or decelerating one belt of the treadmill during stance altered the characteristics of swing. We observed delayed swing initiation when the belt was decelerated (i.e. the hip was in a more flexed position at time of swing) and advanced swing initiation with acceleration (i.e. hip extended at swing initiation). Further, the timing and leg posture of heel strike appeared to remain constant, reflected by a sagittal plane hip angle at heel strike that remained the same regardless of the perturbation. In summary, our results supported the current understanding of the role of sensory feedback and central drive in the control of stepping in participants with incomplete SCI and noninjured participants. In particular, the observation of unnecessary swing during a stop perturbation highlights the interdependence of central and sensory drive in walking control.

  13. Loading and performance of the support leg in kicking.

    PubMed

    Ball, Kevin

    2013-09-01

    The punt kick is important in many football codes and support leg kinematics and ground reaction forces have been implicated in injury and performance in kicking. To evaluate ground reaction forces and support leg kinematics in the punt kick. Cross sectional study. Seven elite Australian football players performed maximal kicks into a net using both the preferred and non-preferred legs. A force plate measured ground reaction forces and an optical motion capture system (200Hz) collected kinematic data during the stance phase of the kick. Preferred and non-preferred legs were compared and performance was evaluated by correlating parameters with foot speed at ball contact. Vertical forces were larger than running at a similar speed but did not reach levels that might be considered an injury risk. Braking forces were directed solely posteriorly, as for soccer kicks, but lateral force patterns varied with some players experiencing greater forces medially and others laterally. A more extended support leg, larger peak vertical and braking force during the stance phase and a shorter stance contact time was associated with larger kick leg foot speed at ball contact. No difference existed between the preferred and non-preferred legs for ground reaction forces or support leg mechanics. To punt kick longer, a straighter support leg, less time on the ground and stronger braking should be encouraged. Conditioning the support leg to provide stronger braking potential is recommended. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Ground reaction forces of Olympic and World Championship race walkers.

    PubMed

    Hanley, Brian; Bissas, Athanassios

    2016-01-01

    Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.

  15. Professional Hubris and its Consequences: Why Organizations of Health-Care Professions Should Not Adopt Ethically Controversial Positions.

    PubMed

    Vogelstein, Eric

    2016-05-01

    In this article, I argue that professional healthcare organizations such as the AMA and ANA ought not to take controversial stances on professional ethics. I address the best putative arguments in favor of taking such stances, and argue that none are convincing. I then argue that the sort of stance-taking at issue has pernicious consequences: it stands to curb critical thought in social, political, and legal debates, increase moral distress among clinicians, and alienate clinicians from their professional societies. Thus, because there are no good arguments in favor of stance-taking and at least some risks in doing so, professional organizations should refrain from adopting the sort of ethically controversial positions at issue. © 2015 John Wiley & Sons Ltd.

  16. The brain and child development: time for some critical thinking.

    PubMed Central

    Bruer, J T

    1998-01-01

    There is widespread interest in the claim that new breakthroughs in neuroscience have radical implications for early child care policy. Yet despite parents', educators', and policy makers' enthusiasm, there are good reasons to be skeptical. The neuroscience cited in the policy arguments is not new, depending primarily on three well-established neurobiological findings: rapid postnatal synapse formation, critical periods in development, and the effects of enriched rearing on brain connectivity in rats. Furthermore, this neuroscience is often oversimplified and misinterpreted. While child care advocates are enthusiastic about potential applications of brain science, for the most part neuroscientists are more cautious and skeptical. After reviewing the evidence and the arguments, the author suggests that in the interest of good science and sound policy, more of us might adopt a skeptical stance. Images p388-a p389-a PMID:9769763

  17. Optimal SSN Tasking to Enhance Real-time Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Ferreira, J., III; Hussein, I.; Gerber, J.; Sivilli, R.

    2016-09-01

    Space Situational Awareness (SSA) is currently constrained by an overwhelming number of resident space objects (RSOs) that need to be tracked and the amount of data these observations produce. The Joint Centralized Autonomous Tasking System (JCATS) is an autonomous, net-centric tool that approaches these SSA concerns from an agile, information-based stance. Finite set statistics and stochastic optimization are used to maintain an RSO catalog and develop sensor tasking schedules based on operator configured, state information-gain metrics to determine observation priorities. This improves the efficiency of sensors to target objects as awareness changes and new information is needed, not at predefined frequencies solely. A net-centric, service-oriented architecture (SOA) allows for JCATS integration into existing SSA systems. Testing has shown operationally-relevant performance improvements and scalability across multiple types of scenarios and against current sensor tasking tools.

  18. Knee Cartilage Thickness, T1ρ and T2 Relaxation Time Are Related to Articular Cartilage Loading in Healthy Adults

    PubMed Central

    Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse

    2017-01-01

    Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431

  19. A quantitative analysis of gait patterns in vestibular neuritis patients using gyroscope sensor and a continuous walking protocol

    PubMed Central

    2014-01-01

    Background Locomotion involves an integration of vision, proprioception, and vestibular information. The parieto-insular vestibular cortex is known to affect the supra-spinal rhythm generators, and the vestibular system regulates anti-gravity muscle tone of the lower leg in the same side to maintain an upright posture through the extra-pyramidal track. To demonstrate the relationship between locomotion and vestibular function, we evaluated the differences in gait patterns between vestibular neuritis (VN) patients and normal subjects using a gyroscope sensor and long-way walking protocol. Methods Gyroscope sensors were attached to both shanks of healthy controls (n=10) and age-matched VN patients (n = 10). We then asked the participants to walk 88.8 m along a corridor. Through the summation of gait cycle data, we measured gait frequency (Hz), normalized angular velocity (NAV) of each axis for legs, maximum and minimum NAV, up-slope and down-slope of NAV in swing phase, stride-swing-stance time (s), and stance to stride ratio (%). Results The most dominant walking frequency in the VN group was not different compared to normal control. The NAVs of z-axis (pitch motion) were significantly larger than the others (x-, y-axis) and the values in VN patients tended to decrease in both legs and the difference of NAV between both group was significant in the ipsi-lesion side in the VN group only (p=0.03). Additionally, the gait velocity of these individuals was decreased relatively to controls (1.11 ± 0.120 and 0.84 ± 0.061 m/s in control and VN group respectively, p<0.01), which seems to be related to the significantly increased stance and stride time of the ipsi-lesion side. Moreover, in the VN group, the maximum NAV of the lesion side was less, and the minimum one was higher than control group. Furthermore, the down-slope and up-slope of NAV decreased on the impaired side. Conclusion The walking pattern of VN patients was highly phase-dependent, and NAV of pitch motion

  20. A quantitative analysis of gait patterns in vestibular neuritis patients using gyroscope sensor and a continuous walking protocol.

    PubMed

    Kim, Soo Chan; Kim, Joo Yeon; Lee, Hwan Nyeong; Lee, Hwan Ho; Kwon, Jae Hwan; Kim, Nam Beom; Kim, Mi Joo; Hwang, Jong Hyun; Han, Gyu Cheol

    2014-04-11

    Locomotion involves an integration of vision, proprioception, and vestibular information. The parieto-insular vestibular cortex is known to affect the supra-spinal rhythm generators, and the vestibular system regulates anti-gravity muscle tone of the lower leg in the same side to maintain an upright posture through the extra-pyramidal track. To demonstrate the relationship between locomotion and vestibular function, we evaluated the differences in gait patterns between vestibular neuritis (VN) patients and normal subjects using a gyroscope sensor and long-way walking protocol. Gyroscope sensors were attached to both shanks of healthy controls (n=10) and age-matched VN patients (n = 10). We then asked the participants to walk 88.8 m along a corridor. Through the summation of gait cycle data, we measured gait frequency (Hz), normalized angular velocity (NAV) of each axis for legs, maximum and minimum NAV, up-slope and down-slope of NAV in swing phase, stride-swing-stance time (s), and stance to stride ratio (%). The most dominant walking frequency in the VN group was not different compared to normal control. The NAVs of z-axis (pitch motion) were significantly larger than the others (x-, y-axis) and the values in VN patients tended to decrease in both legs and the difference of NAV between both group was significant in the ipsi-lesion side in the VN group only (p=0.03). Additionally, the gait velocity of these individuals was decreased relatively to controls (1.11 ± 0.120 and 0.84 ± 0.061 m/s in control and VN group respectively, p<0.01), which seems to be related to the significantly increased stance and stride time of the ipsi-lesion side. Moreover, in the VN group, the maximum NAV of the lesion side was less, and the minimum one was higher than control group. Furthermore, the down-slope and up-slope of NAV decreased on the impaired side. The walking pattern of VN patients was highly phase-dependent, and NAV of pitch motion was significantly decreased in the ipsi

  1. A Collision of Vice and Virtue in Thomas Hardy's Tess of the D'Urbervilles: "A Pure Woman Faithfully Presented" or a Fallen Angel

    ERIC Educational Resources Information Center

    Saleh, Nafiseh Salman; Abbasi, Pyeaam

    2014-01-01

    Heralded as a sympathizer with the oppressed nineteenth century femininity, Thomas Hardy adopted an aggressive stance towards the institutionalized codes of the time, particularly the ideal of femininity which results in presenting him as one of the promethean forerunners of "New Woman" fiction. His outspoken attitudes are tangible in…

  2. The Gandhi Project: Dialogos Philosophical Dialogues and the Ethics and Politics of Intercultural and Interfaith Friendship

    ERIC Educational Resources Information Center

    Helskog, Guro Hansen

    2015-01-01

    The overarching question addressed in this paper is the following: Can Dialogos dialogues conducted over time lead to the development of respect, mutual understanding and friendship among participants with diverse cultural and life stance backgrounds? Dialogos is a pedagogical approach to practical philosophy aimed at enhancing human maturity and…

  3. Contesting the Monolingual Practices of a Bilingual to Multilingual Policy

    ERIC Educational Resources Information Center

    Heugh, Kathleen

    2009-01-01

    English has always occupied the most privileged position in the South African economy, yet legislative and material provision emphasised bilingual or trilingual education prior to political change in 1994. Educational changes since this time have been accompanied by ambiguous stances towards languages other than English in the classroom. Whilst…

  4. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of

  5. The progression of paraspinal muscle recruitment intensity in localized and global strength training exercises is not based on instability alone.

    PubMed

    Colado, Juan C; Pablos, Carlos; Chulvi-Medrano, Ivan; Garcia-Masso, Xavier; Flandez, Jorgez; Behm, David G

    2011-11-01

    To evaluate electromyographic activity of several paraspinal muscles during localized stabilizing exercises and multijoint or global stabilizing exercises. Cross-sectional counterbalanced repeated measures. Research laboratory. Volunteers (N=25) without low-back pain. Subjects performed (1) localized stabilizing exercises (callisthenic exercises with only body weight as resistance): static lumbar extension, stable (on floor) and unstable static unipedal forward flexion, stable dynamic unipedal forward flexion, and unstable supine bridge; and (2) global stabilizing exercises (70% of maximum voluntary isometric contraction [MVIC]): dead lift and lunge. Mean and maximum amplitude of the electromyographic RMS of the lumbar and thoracic multifidus spinae and erector spinae. Electromyographic signals were normalized to the MVIC achieved during a back-extension exercise. Normalizing to the MVIC, paraspinal muscles were significantly (P<.05) most active, with mean and peak amplitudes of 88.1% and 113.4% during the dynamic stable dead lift at 70% of MVIC, respectively. The supine bridge on the unstable surface obtained the significantly lowest values of 29.03% and 30.3%, respectively. The other exercises showed intermediate values that ranged from 35.4% to 61.6%. Findings from this study may be helpful to strength trainers and physical therapists in their choice of exercises for strengthening paraspinal muscles. Our results suggest that in asymptomatic young experienced subjects, the dead lift at 70% of MVIC provides higher levels of mean and peak electromyographic signals than localized stabilizing exercises and other types of global stabilizing exercises. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Wii Fit® training vs. Adapted Physical Activities: which one is the most appropriate to improve the balance of independent senior subjects? A randomized controlled study.

    PubMed

    Toulotte, Claire; Toursel, Cindy; Olivier, Nicolas

    2012-09-01

    To compare the effectiveness of three protocols (Adapted Physical Activities, Wii Fit(®), Adapted Physical Activities + Wii Fit(®)) on the balance of independent senior subjects. Case comparison study. Healthy elderly subjects living in independent community dwellings. Thirty-six subjects, average age 75.09 ± 10.26 years, took part in this study, and were randomly assigned to one of the four experimental groups: G1 followed an Adapted Physical Activities training programme, while the second group (G2) participated in Wii Fit(®) training and the third one (G3) combined both methods. There was no training for the fourth group (G4). All subjects trained once a week (1 hour) for 20 weeks and were assessed before and after treatment. The Tinetti test, unipedal tests and the Wii Fit(®) tests. After training, the scores in the Tinetti test decreased significantly (P < 0.05) for G1, G2 and G3 respectively in static conditions and for G1 and G3 in dynamic conditions. After training, the performance in the unipedal tests decreased significantly (P < 0.05) for G1 and G3. The position of the centre of gravity was modified significantly (P < 0.05) for G2 and G3. After 20 training sessions, G1 (Adapted Physical Activities), G2 (Wii Fit(®)) and G3 (Adapted Physical Activities and Wii Fit(®)) improved their balance. In addition, G1 and G3 increased their dynamic balance. The findings suggest that Adapted Physical Activities training limits the decline in sensorial functions in the elderly.

  7. Evaluative Decision-Making for High-Quality Professional Development: Cultivating an Evaluative Stance

    ERIC Educational Resources Information Center

    Sumsion, Jennifer; Lunn Brownlee, Joanne; Ryan, Sharon; Walsh, Kerryann; Farrell, Ann; Irvine, Susan; Mulhearn, Gerry; Berthelsen, Donna

    2015-01-01

    Unprecedented policy attention to early childhood education internationally has highlighted the crucial need for a skilled early years workforce. Consequently, professional development of early years educators has become a global policy imperative. At the same time, many maintain that professional development research has reached an impasse. In…

  8. Cognitive performance under motor demands - On the influence of task difficulty and postural control.

    PubMed

    Liebherr, Magnus; Weiland-Breckle, Hanna; Grewe, Tanja; Schumacher, Petra B

    2018-04-01

    We often walk around when we have to think about something, but suddenly stop when we are confronted with a demanding cognitive task, such as calculating 1540*24. While previous neurophysiological research investigated cognitive and motor performance separately, findings that combine both are rare. To get a deeper understanding of the influence of motor demands as well as the difficulty of a simultaneously performed cognitive task, we investigated 20 healthy individuals. Participants performed two cognitive tasks with different levels of difficulty while sitting or standing on one leg. In addition to behavioral data, we recorded the electroencephalogram from 26Ag/AgCI scalp electrodes. The critical time-windows, predefined by visual inspection, yielded an early (200-300 ms, P2) and a subsequent positivity (350-500 ms, P3). Statistical analysis of the early time window registered a motor × cognition interaction. Resolution of this interaction revealed an effect of the cognitive task in the one-legged stance motor condition, with a more pronounced positivity for the difficult task. No significant differences between cognitive tasks emerged for the simple motor condition. The time-window between 350 and 500 ms registered main effects of the motor task and a trend for the cognitive task. While the influence of cognitive task difficulty (in the P3) is in accordance with previous studies, the motor task effect is specific to one-legged stance (cf. no effects for running in previous research). The motor-cognition interaction found in the P2 indicates that the more difficult motor task (one-legged stance) facilitates cognitive task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. space and time in ergodic gemorphology

    NASA Astrophysics Data System (ADS)

    Seyed Ebrahimi, S.

    2009-04-01

    Epistemological perspectives rank among the main factors contributing to word coinage in scientific literature. New words come into existence as new epistemological fields evolve (Sack1992). Each field, however, tends to impose its own interpretation on the words associated with it. To illustrate the point, certain words retain formal structure and relate to the same subject area, but can nonetheless be employed in totally different epistemological fields. The semantic content undergoes a drastic change in each case. Granted that numerous theoretical stances can be identified within the discipline of geomorphology, acquaintance with the semantic content of certain words should help toward a more realistic understanding of what the theorists and practitioners in this field have in mind. This paper, which is based on an analysis of these three theoretical positions aims to highlight the importance of the semantic content of the term equilibrium as utilized in ergodic geomorphology, and the ways in which it is construed from different viewpoints. For this purpose, the authors have of necessity availed themselves of dated sources, rather than up-to-date ones. The paper also argues that familiarity with concepts such as these will ensure a better grasp of the paradigms in question.

  10. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.

    PubMed

    De Asha, Alan R; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G

    2014-08-01

    If a prosthetic foot creates resistance to forwards shank rotation as it deforms during loading, it will exert a braking effect on centre of mass progression. The present study determines whether the centre of mass braking effect exerted by an amputee's habitual rigid 'ankle' foot was reduced when they switched to using an 'Echelon' hydraulic ankle-foot device. Nineteen lower limb amputees (eight trans-femoral, eleven trans-tibial) walked overground using their habitual dynamic-response foot with rigid 'ankle' or 'Echelon' hydraulic ankle-foot device. Analysis determined changes in how the centre of mass was transferred onto and above the prosthetic-foot, freely chosen walking speed, and spatio-temporal parameters of gait. When using the hydraulic device both groups had a smoother/more rapid progression of the centre of pressure beneath the prosthetic hindfoot (p≤0.001), and a smaller reduction in centre of mass velocity during prosthetic-stance (p<0.001). As a result freely chosen walking speed was higher in both groups when using the device (p≤0.005). In both groups stance and swing times and cadence were unaffected by foot condition whereas step length tended (p<0.07) to increase bilaterally when using the hydraulic device. Effect size differences between foot types were comparable across groups. Use of a hydraulic ankle-foot device reduced the foot's braking effect for both amputee groups. Findings suggest that attenuation of the braking effect from the foot in early stance may be more important to prosthetic-foot function than its ability to return energy in late stance. Copyright © 2014. Published by Elsevier Ltd.

  11. Medial shoe-ground pressure and specific running injuries: A 1-year prospective cohort study.

    PubMed

    Brund, René B K; Rasmussen, Sten; Nielsen, Rasmus O; Kersting, Uwe G; Laessoe, Uffe; Voigt, Michael

    2017-09-01

    Achilles tendinitis, plantar fasciopathy and medial tibial stress syndrome injuries (APM-injuries) account for approximately 25% of the total number of running injuries amongst recreational runners. Reports on the association between static foot pronation and APM-injuries are contradictory. Possibly, dynamic measures of pronation may display a stronger relationship with the risk of APM-injuries. Therefore, the purpose of the present study was to investigate if running distance until the first APM-injury was dependent on the foot balance during stance phase in recreational male runners. Prospective cohort study. Foot balance for both feet was measured during treadmill running at the fastest possible 5000-m running pace in 79 healthy recreational male runners. Foot balance was calculated by dividing the average of medial pressure with the average of lateral pressure. Foot balance was categorized into those which presented a higher lateral shod pressure (LP) than medial pressure, and those which presented a higher medial shod pressure (MP) than lateral pressure during the stance phase. A time-to-event model was used to compare differences in incidence between foot balance groups. Compared with the LP-group (n=59), the proportion of APM-injuries was greater in the MP-group (n=99) after 1500km of running, resulting in a cumulative risk difference of 16%-points (95% CI=3%-point; 28%-point, p=0.011). Runners displaying a more medial pressure during stance phase at baseline sustained a greater amount of APM-injuries compared to those displaying a lateral shod pressure during stance phase. Prospective studies including a greater amount of runners are needed to confirm this relationship. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.

    PubMed

    Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H

    2008-01-01

    Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.

  13. Mechanisms of Gait Asymmetry Due to Push-off Deficiency in Unilateral Amputees

    PubMed Central

    Adamczyk, Peter Gabriel; Kuo, Arthur D.

    2015-01-01

    Unilateral lower-limb amputees exhibit asymmetry in many gait features, such as ground force, step time, step length, and joint mechanics. Although these asymmetries result from weak prosthetic-side push-off, there is no proven mechanistic explanation of how that impairment propagates to the rest of the body. We used a simple dynamic walking model to explore possible consequences of a unilateral impairment similar to that of a transtibial amputee. The model compensates for reduced push-off work from one leg by performing more work elsewhere, for example during the middle of stance by either or both legs. The model predicts several gait abnormalities, including slower forward velocity of the body center-of-mass (COM) during intact-side stance, greater energy dissipation in the intact side, and more positive work overall. We tested these predictions with data from unilateral transtibial amputees (N = 11) and non-amputee control subjects (N = 10) walking on an instrumented treadmill. We observed several predicted asymmetries, including forward velocity during stance phases and energy dissipation from the two limbs, as well as greater work overall. Secondary adaptations, such as to reduce discomfort, may exacerbate asymmetry, but these simple principles suggest that some asymmetry may be unavoidable in cases of unilateral limb loss. PMID:25222950

  14. Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees.

    PubMed

    Adamczyk, Peter Gabriel; Kuo, Arthur D

    2015-09-01

    Unilateral lower-limb amputees exhibit asymmetry in many gait features, such as ground force, step time, step length, and joint mechanics. Although these asymmetries result from weak prosthetic-side push-off, there is no proven mechanistic explanation of how that impairment propagates to the rest of the body. We used a simple dynamic walking model to explore possible consequences of a unilateral impairment similar to that of a transtibial amputee. The model compensates for reduced push-off work from one leg by performing more work elsewhere, for example during the middle of stance by either or both legs. The model predicts several gait abnormalities, including slower forward velocity of the body center-of-mass during intact-side stance, greater energy dissipation in the intact side, and more positive work overall. We tested these predictions with data from unilateral transtibial amputees (N = 11) and nonamputee control subjects (N = 10) walking on an instrumented treadmill. We observed several predicted asymmetries, including forward velocity during stance phases and energy dissipation from the two limbs, as well as greater work overall. Secondary adaptations, such as to reduce discomfort, may exacerbate asymmetry, but these simple principles suggest that some asymmetry may be unavoidable in cases of unilateral limb loss.

  15. THE BIOMECHANICAL RESPONSE OF PERSONS WITH TRANSFEMORAL AMPUTATION TO VARIATIONS IN PROSTHETIC KNEE ALIGNMENT DURING LEVEL WALKING

    PubMed Central

    Koehler-McNicholas, Sara R.; Lipschutz, Robert D.; Gard, Steven A.

    2017-01-01

    Prosthetic alignment is an important factor in the overall fit and performance of a lower-limb prosthesis. However, the association between prosthetic alignment and control strategies used by persons with transfemoral amputation to coordinate the movement of a passive prosthetic knee is poorly understood. This study investigated the biomechanical response of persons with transfemoral amputation to systematic perturbations in knee joint alignment during a level walking task. Quantitative gait data were collected for three alignment conditions: bench alignment, 2 cm anterior knee translation (ANT), and 2 cm posterior knee translation (POST). In response to a destabilizing alignment perturbation (ANT), subjects significantly increased their early-stance hip extension moment, confirming that persons with transfemoral amputation rely on a hip extensor strategy to maintain knee joint stability. However, subjects also decreased the rate at which they loaded their prosthesis, decreased their step length, increased their trunk flexion, and maintained their limb in a more vertical posture at the time of opposite toe off. Collectively, these results suggest that persons with transfemoral amputation rely on a combination of strategies to coordinate stance-phase knee flexion. Further, no significant changes were observed in response to the POST condition, suggesting that a bias toward posterior alignment may have fewer implications in terms of stance-phase, knee-joint control. PMID:28355034

  16. Home-based balance training programme using Wii Fit with balance board for Parkinsons's disease: a pilot study.

    PubMed

    Esculier, Jean-Francois; Vaudrin, Joanie; Bériault, Patrick; Gagnon, Karine; Tremblay, Louis E

    2012-02-01

    To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson's disease, and to compare the effects with a group of paired healthy subjects. Ten subjects with moderate Parkinson's disease and 8 healthy elderly subjects. Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training. The Parkinson's disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM. This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson's disease.

  17. Alterations to the orientation of the ground reaction force vector affect sprint acceleration performance in team sports athletes.

    PubMed

    Bezodis, Neil E; North, Jamie S; Razavet, Jane L

    2017-09-01

    A more horizontally oriented ground reaction force vector is related to higher levels of sprint acceleration performance across a range of athletes. However, the effects of acute experimental alterations to the force vector orientation within athletes are unknown. Fifteen male team sports athletes completed maximal effort 10-m accelerations in three conditions following different verbal instructions intended to manipulate the force vector orientation. Ground reaction forces (GRFs) were collected from the step nearest 5-m and stance leg kinematics at touchdown were also analysed to understand specific kinematic features of touchdown technique which may influence the consequent force vector orientation. Magnitude-based inferences were used to compare findings between conditions. There was a likely more horizontally oriented ground reaction force vector and a likely lower peak vertical force in the control condition compared with the experimental conditions. 10-m sprint time was very likely quickest in the control condition which confirmed the importance of force vector orientation for acceleration performance on a within-athlete basis. The stance leg kinematics revealed that a more horizontally oriented force vector during stance was preceded at touchdown by a likely more dorsiflexed ankle, a likely more flexed knee, and a possibly or likely greater hip extension velocity.

  18. The influence of aging and attentional demands on recovery from postural instability.

    PubMed

    Stelmach, G E; Zelaznik, H N; Lowe, D

    1990-06-01

    It is well known that the risk of a debilitating injury from a fall is much higher for elderly than for young individuals. In addition, it is well documented that healthy elderly subjects exhibit increased postural sway during normal stance tasks. In the present experiment, we explored the notion that control of minor postural instability in elderly subjects is attention demanding. Postural sway of eight elderly (mean age = 70.0 years) and eight young (mean age = 20.0 years) subjects was measured under two different secondary demands during stable and mildly unstable upright stance. There were two types of work loads. Either a cognitive (math task) or motor (hand-squeeze) task was performed during the second segment of a 50-second standing trial. The effect of these work loads on mean velocity, range, and variability of range of center of foot pressure was measured during the destabilizing activity of arm swinging and subsequent recovery period. Following seven seconds of 1 Hz arm-swinging activity, elderly subjects showed a marked increase in recovery time to normal stance when concurrently performing an arithmetic task. This result suggests that recovery from a posturally destabilizing activity, involving proprioceptive and vestibular information, places increased attentional demands on the postural support system of the elderly.

  19. Influence of restricted vision and knee joint range of motion on gait properties during level walking and stair ascent and descent.

    PubMed

    Demura, Tomohiro; Demura, Shin-ich

    2011-01-01

    Because elderly individuals experience marked declines in various physical functions (e.g., vision, joint function) simultaneously, it is difficult to clarify the individual effects of these functional declines on walking. However, by imposing vision and joint function restrictions on young men, the effects of these functional declines on walking can be clarified. The authors aimed to determine the effect of restricted vision and range of motion (ROM) of the knee joint on gait properties while walking and ascending or descending stairs. Fifteen healthy young adults performed level walking and stair ascent and descent during control, vision restriction, and knee joint ROM restriction conditions. During level walking, walking speed and step width decreased, and double support time increased significantly with vision and knee joint ROM restrictions. Stance time, step width, and walking angle increased only with knee joint ROM restriction. Stance time, swing time, and double support time were significantly longer in level walking, stair descent, and stair ascent, in that order. The effects of vision and knee joint ROM restrictions were significantly larger than the control conditions. In conclusion, vision and knee joint ROM restrictions affect gait during level walking and stair ascent and descent. This effect is marked in stair ascent with knee joint ROM restriction.

  20. Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: a preliminary investigation.

    PubMed

    You, Sung H; Granata, Kevin P; Bunker, Linda K

    2004-08-01

    Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was

  1. Haptic stabilization of posture: changes in arm proprioception and cutaneous feedback for different arm orientations

    NASA Technical Reports Server (NTRS)

    Rabin, E.; Bortolami, S. B.; DiZio, P.; Lackner, J. R.

    1999-01-01

    Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.

  2. Haptic stabilization of posture: changes in arm proprioception and cutaneous feedback for different arm orientations.

    PubMed

    Rabin, E; Bortolami, S B; DiZio, P; Lackner, J R

    1999-12-01

    Postural sway during quiet stance is attenuated by actively maintained contact of the index finger with a stationary surface, even if the level of applied force (<1 N) cannot provide mechanical stabilization. In this situation, changes in force level at the fingertip lead changes in center of foot pressure by approximately 250 ms. These and related findings indicate that stimulation of the fingertip combined with proprioceptive information about the hand and arm can serve as an active sensor of body position relative to the point of contact. A geometric analysis of the relationship between hand and torso displacement during body sway led to the prediction that arm and hand proprioceptive and finger somatosensory information about body sway would be maximized with finger contact in the plane of body sway. Therefore, the most postural stabilization should be possible with such contact. To test this analysis, subjects touched a laterally versus anteriorly placed surface while in each of two stances: the heel-to-toe tandem Romberg stance that reduces medial-lateral stability and the heel-to-heel, toes-outward, knees-bent, "duck stance" that reduces fore-aft stability. Postural sway was always least with finger contact in the unstable plane: for the tandem stance, lateral fingertip contact was significantly more effective than frontal contact, and, for the duck stance, frontal contact was more effective than lateral fingertip contact. Force changes at the fingertip led changes in center of pressure of the feet by approximately 250 ms for both fingertip contact locations for both test stances. These results support the geometric analysis, which showed that 1) arm joint angles change by the largest amount when fingertip contact is maintained in the plane of greatest sway, and 2) the somatosensory cues at the fingertip provide both direction and amplitude information about sway when the finger is contacting a surface in the unstable plane.

  3. Biomechanical analysis of gait waveform data: exploring differences between shod and barefoot running in habitually shod runners.

    PubMed

    Tam, Nicholas; Prins, Danielle; Divekar, Nikhil V; Lamberts, Robert P

    2017-10-01

    The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions. Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p<0.05). Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18-23% of the gait cycle) and swing phase (74-90%); at the ankle early stance (0-6%), mid-stance (28-38%) and swing phase (81-100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4-5%) and knee during early stance (5-11%). Condition differences were also found in vertical ground reaction force during early stance between (3-10%). An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Back to the Future: Reoccurring Issues and Discourses in Health Education in New Zealand Schools

    ERIC Educational Resources Information Center

    Sinkinson, Margaret

    2011-01-01

    A key function of health education in New Zealand schools has always been to educate individuals to be responsible and accountable for their own health status. Educational, economic and political stances on what best constitutes effective health education, however, shift over time. The outcome of these shifts is that a multiplicity of disciplines…

  5. Use of trunk stabilization and locomotor training in an adult with cerebellar ataxia: a single system design.

    PubMed

    Freund, Jane E; Stetts, Deborah M

    2010-10-01

    The purpose of this study is to describe the effects of trunk stabilization training and locomotor training (LT) using body-weight support on a treadmill (BWST) and overground walking on balance, gait, self-reported function, and trunk muscle performance in an adult with severe ataxia secondary to brain injury. There are no studies on the effectiveness of these combined interventions in persons with ataxia. The subject was a 23-year-old male who had a traumatic brain injury 13 months prior. An A-B-A withdrawal single-system design was used. Outcome measures were Berg Balance Test (BBT), timed unsupported stance, Functional Ambulation Category (FAC), 10-meter walk test (10-MWT), Outpatient Physical Therapy Improvement in Movement Assessment Log (OPTIMAL), transverse abdominis (TrA) thickness, and isometric trunk endurance tests. Performance on the BBT, timed unsupported stance, FAC, 10-MWT, and OPTIMAL each improved after 10 weeks of intervention. In additions, TrA symmetry at rest improved as did right side-bridge endurance time. LT, using BWST and overground walking, and trunk stabilization training may be effective in improving balance, gait, function, and trunk performance in individuals with severe ataxia. Further research with additional subjects is indicated.

  6. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits.

    PubMed

    Herbin, Marc; Hommet, Eva; Hanotin-Dossot, Vicky; Perret, Martine; Hackert, Rémi

    2018-06-01

    The gaits of the adult grey mouse lemur Microcebus murinus were studied during treadmill locomotion over a large range of velocities. The locomotion sequences were analysed to determine the gait and the various spatiotemporal gait parameters of the limbs. We found that velocity adjustments are accounted for differently by stride frequency and stride length depending on whether the animal showed a symmetrical or an asymmetrical gait. When using symmetrical gaits the increase in velocity is associated with a constant contribution of the stride length and stride frequency; the increase of the stride frequency being always lower. When using asymmetrical gaits, the increase in velocity is mainly assured by an increase in the stride length which tends to decrease with increasing velocity. A reduction in both stance time and swing time contributed to the increase in stride frequency for both gaits, though with a major contribution from the decrease in stance time. The pattern of locomotion obtained in a normal young adult mouse lemurs can be used as a template for studying locomotor control deficits during aging or in different environments such as arboreal ones which likely modify the kinematics of locomotion.

  7. Overtreating Chronic Back Pain: Time to Back Off?

    PubMed Central

    Deyo, Richard A.; Mirza, Sohail K.; Turner, Judith A.; Martin, Brook I.

    2009-01-01

    Chronic back pain is among the most common patient complaints. Its prevalence and impact have spawned a rapidly expanding range of tests and treatments. Some of these have become widely used for indications that are not well-validated, leading to uncertainty about efficacy and safety, increasing complication rates, and marketing abuses. Recent studies document – over approximately a decade - a 629% increase in Medicare expenditures for epidural steroid injections; a 423% increase in expenditures for opioids for back pain; a 307% increase in the number of lumbar MRIs among Medicare beneficiaries; and a 220% increase in spinal fusion surgery rates. The limited studies available suggest that these increases have not been accompanied by population-level improvements in patient outcomes or disability rates. We suggest a need for a better understanding of the basic science of pain mechanisms; more rigorous and independent trials of many treatments; a stronger regulatory stance toward approval and post-marketing surveillance of new drugs and devices for chronic pain; and a chronic disease model for managing chronic back pain. PMID:19124635

  8. Overtreating chronic back pain: time to back off?

    PubMed

    Deyo, Richard A; Mirza, Sohail K; Turner, Judith A; Martin, Brook I

    2009-01-01

    Chronic back pain is among the most common patient complaints. Its prevalence and impact have spawned a rapidly expanding range of tests and treatments. Some of these have become widely used for indications that are not well validated, leading to uncertainty about efficacy and safety, increasing complication rates, and marketing abuses. Recent studies document a 629% increase in Medicare expenditures for epidural steroid injections; a 423% increase in expenditures for opioids for back pain; a 307% increase in the number of lumbar magnetic resonance images among Medicare beneficiaries; and a 220% increase in spinal fusion surgery rates. The limited studies available suggest that these increases have not been accompanied by population-level improvements in patient outcomes or disability rates. We suggest a need for a better understanding of the basic science of pain mechanisms, more rigorous and independent trials of many treatments, a stronger regulatory stance toward approval and post-marketing surveillance of new drugs and devices for chronic pain, and a chronic disease model for managing chronic back pain.

  9. The Importance and Weaknesses of the Productivist Industrial Model of Knowledge Production

    ERIC Educational Resources Information Center

    Persson, Roland S.

    2010-01-01

    To view contemporary Science as an industry is a very apt and timely stance. Ghassib's (2010) historical analysis of knowledge production, which he terms "A Productivist Industrial Model of Knowledge Production," is an interesting one. It is important, however, to observe that the outline of this model is based entirely on the production of…

  10. Yet Another Fish Tale?

    ERIC Educational Resources Information Center

    Lalasz, Robert

    2008-01-01

    Last month the "Rocky Mountain News" reported that a survey by an emeritus professor at University of Colorado Boulder found that only 23 of 825 faculty members on the campus were registered Republicans. But on his "New York Times" blog, Stanley Fish brushed off the survey's significance from a familiarly Fishian stance. A faculty's political…

  11. An updated feminist view of intimate partner violence.

    PubMed

    George, Jayashree; Stith, Sandra M

    2014-06-01

    In this article, we explore intimate partner violence (IPV) from an intersectional, feminist perspective. We describe how an updated feminist view guides us to a perspective on IPV that is more strongly grounded in an antioppressive, nonviolent, socially just feminist stance than a second-wave gender-essential feminist stance that suggests that patriarchy is the cause of IPV. At the time we began to work together it seemed that a researcher had to be identified as a "family violence" researcher or a "feminist" researcher of violence against women, and that it wasn't possible to be a feminist researcher who looked beyond patriarchy as the cause of IPV. We advocate critically thinking about essentialist practices in clinical work so that we can maintain an antioppressive, socially just, nonviolent approach to working with clients who experience IPV. © 2014 FPI, Inc.

  12. Development of independent locomotion in children with a severe visual impairment.

    PubMed

    Hallemans, Ann; Ortibus, Els; Truijen, Steven; Meire, Francoise

    2011-01-01

    Locomotion of children and adults with a visual impairment (ages 1-44, n = 28) was compared to that of age-related individuals with normal vision (n = 60). Participants walked barefoot at preferred speed while their gait was recorded by a Vicon(®) system. Walking speed, heading angle, step frequency, stride length, step width, stance phase duration and double support time were determined. Differences between groups, relationships with age and possible interaction effects were investigated. With increasing age overall improvements in gait parameters are observed. Differences between groups were a slower walking speed, a shorter stride length, a prolonged duration of stance and of double support in the individuals with a visual impairment. These may be considered either as adaptations to balance problems or as strategies to allow to foot to probe the ground. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke.

    PubMed

    Wright, Rachel L; Bevins, Joseph W; Pratt, David; Sackley, Catherine M; Wing, Alan M

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson's disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling.

  14. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke

    PubMed Central

    Wright, Rachel L.; Bevins, Joseph W.; Pratt, David; Sackley, Catherine M.; Wing, Alan M.

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson’s disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling. PMID:27313563

  15. Reaction times and anticipatory skills of karate athletes.

    PubMed

    Mori, Shuji; Ohtani, Yoshio; Imanaka, Kuniyasu

    2002-07-01

    Two experiments were conducted to investigate the reaction times (RTs) and anticipation of karate athletes. In Experiment 1, choice RTs and simple RTs were measured with two types of stimuli. One was videotaped scenes of opponent's offensive actions, which simulated the athletes' view in real situations, and the other was static filled circles, or dots. In the choice RT task, participants were required to indicate as soon as possible whether the offensive actions would be aimed at the upper or middle level of their body, or the dot was presented either at a higher or a lower position. In the simple RT task, they were required to respond as soon as possible when the offensive action started from a static display of the opponent's ready stance, or a dot appeared on the display. The results showed significant differences between the karate athletes and the novices in the choice RT task, the difference being more marked for the video stimuli than for the dot stimuli. There was no significant difference in simple RT between the two groups of participants, for either type of stimuli. In Experiment 2, the proportions of correct responses (PCRs) were measured for video stimuli which were cut off at the seventh frame from the onset of the opponent's offensive action. The athletes yielded significantly higher PCRs than the novices. Collectively the results of the two experiments demonstrate the superior anticipatory skills of karate athletes regarding the target area of an opponent's attack (Scott, Williams, & Davids, Studies in perception and action II: Posters presented at the VIIth International conference on Event Perception and Action, Erlbaum, Hillsdale, NJ, 1993, p. 217; Wiiliams & Elliot, Journal of Sport & Exercise Psychology 21 (1999) 362), together with their advantage over novices in non-specific sensory functions (e.g., vertical discrimination).

  16. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    PubMed Central

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  17. Gluteal tendinopathy and hip osteoarthritis: Different pathologies, different hip biomechanics.

    PubMed

    Allison, Kim; Hall, Michelle; Hodges, Paul W; Wrigley, Tim V; Vicenzino, Bill; Pua, Yong-Hao; Metcalf, Ben; Grimaldi, Alison; Bennell, Kim L

    2018-03-01

    Gluteal tendinopathy (GT) and hip osteoarthritis (OA) are the most common causes of hip pain and associated disability in older adults. Pain and altered walking biomechanics are common to both conditions. This study aimed to compare three-dimensional walking biomechanics between individuals with unilateral, symptomatic GT and HOA. Sixty individuals with symptomatic unilateral GT confirmed by magnetic-resonance-imaging and 73 individuals with symptomatic unilateral HOA (Kellgren-Lawrence Grade ≥ 2) underwent three-dimensional gait analysis. Maximum and minimum values of the external sagittal hip moment, the first peak, second peak and mid-stance minimum of the hip adduction moment (HAM), sagittal plane hip excursion and hip joint angles, pelvic obliquity and trunk lean, at the three HAM time points during stance phase of walking were compared between groups. Compared to individuals with HOA, those with GT exhibited a greater hip peak extension moment (P < 0.001) and greater HAM throughout the stance phase of walking (P = 0.01-P < 0.001), greater hip adduction (P < 0.001) and internal rotation (P < 0.01-P < 0.001) angles and lower hip flexion angles and excursion (P = 0.02 - P < 0.001). Individuals with HOA exhibited a greater forward trunk lean (P ≤ 0.001) throughout stance, and greater ipsilateral trunk lean in the frontal plane (P < 0.001) than those with GT. Despite presence of pain in both conditions, hip kinematics and kinetics differ between individuals with symptomatic unilateral GT and those with symptomatic unilateral HOA. These condition-specific impairments may be targets for optimization of management of HOA and GT. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Finite element analysis of plantar fascia during walking: a quasi-static simulation.

    PubMed

    Chen, Yen-Nien; Chang, Chih-Wei; Li, Chun-Ting; Chang, Chih-Han; Lin, Cheng-Feng

    2015-01-01

    The plantar fascia is a primary arch supporting structure of the foot and is often stressed with high tension during ambulation. When the loading on the plantar fascia exceeds its capacity, the inflammatory reaction known as plantar fasciitis may occur. Mechanical overload has been identified as the primary causative factor of plantar fasciitis. However, a knowledge gap exists between how the internal mechanical responses of the plantar fascia react to simple daily activities. Therefore, this study investigated the biomechanical responses of the plantar fascia during loaded stance phase by use of the finite element (FE) modeling. A 3-dimensional (3-D) FE foot model comprising bones, cartilage, ligaments, and a complex-shaped plantar fascia was constructed. During the stance phase, the kinematics of the foot movement was reproduced and Achilles tendon force was applied to the insertion site on the calcaneus. All the calculations were made on a single healthy subject. The results indicated that the plantar fascia underwent peak tension at preswing (83.3% of the stance phase) at approximately 493 N (0.7 body weight). Stress concentrated near the medial calcaneal tubercle. The peak von Mises stress of the fascia increased 2.3 times between the midstance and preswing. The fascia tension increased 66% because of the windlass mechanism. Because of the membrane element used in the ligament tissue, this FE model was able to simulate the mechanical structure of the foot. After prescribing kinematics of the distal tibia, the proposed model indicated the internal fascia was stressed in response to the loaded stance phase. Based on the findings of this study, adjustment of gait pattern to reduce heel rise and Achilles tendon force may lower the fascia loading and may further reduce pain in patients with plantar fasciitis. © The Author(s) 2014.

  19. The Improvisational in Teaching Reading.

    ERIC Educational Resources Information Center

    Commeyras, Michelle

    2002-01-01

    Contends that an improvisational stance in teaching avoids disagreements and blockages that can stymie reading instruction. Outlines eight graduate students' experiences teaching improvisationally. Explains that the tutors sought a collaborative teaching stance that was in tune with the individual children's interests and personality. Defines…

  20. Taking a Democratic Stance toward Knowledge

    ERIC Educational Resources Information Center

    Traugh, Cecelia

    2009-01-01

    One of the major priorities that should guide teacher education programs in preparing teachers for their work in a democratic society is to develop a commitment to knowledge that embraces complexity and to place this knowledge into competition with the mainstream vision, which results from a deep reliance on standardized testing and controls much…