Sample records for unique banding pattern

  1. Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers.

    PubMed

    Schnell, R J; Ronning, C M; Knight, R J

    1995-02-01

    Twenty-five accessions of mango were examined for random amplified polymorphic DNA (RAPD) genetic markers with 80 10-mer random primers. Of the 80 primers screened, 33 did not amplify, 19 were monomorphic, and 28 gave reproducible, polymorphic DNA amplification patterns. Eleven primers were selected from the 28 for the study. The number of bands generated was primer- and genotype-dependent, and ranged from 1 to 10. No primer gave unique banding patterns for each of the 25 accessions; however, ten different combinations of 2 primer banding patterns produced unique fingerprints for each accession. A maternal half-sib (MHS) family was included among the 25 accessions to see if genetic relationships could be detected. RAPD data were used to generate simple matching coefficients, which were analyzed phenetically and by means of principal coordinate analysis (PCA). The MHS clustered together in both the phenetic and the PCA while the randomly selected accessions were scattered with no apparent pattern. The uses of RAPD analysis for Mangifera germ plasm classification and clonal identification are discussed.

  2. Nucleolus organizer regions in Physalaemus cuvievi (Anura, Leptodactylidae), with evidence of a unique case of Ag-NOR variability.

    PubMed

    Silva, A P; Haddad, C F; Kasahara, S

    1999-01-01

    We studied ten specimens of Physalaemus cuvieri collected at different localities in Brazil using conventional staining and banding techniques. All specimens had 2n = 22. There were karyotypic variants: distinct patterns in the number and chromosome localization of Ag-NORs as well as in the corresponding secondary constrictions. Preliminary C-banding patterns obtained for specimens from two localities are also suggestive of karyotypic differentiation in P. cuvieri.

  3. Co-residence patterns in hunter-gatherer societies show unique human social structure.

    PubMed

    Hill, Kim R; Walker, Robert S; Bozicević, Miran; Eder, James; Headland, Thomas; Hewlett, Barry; Hurtado, A Magdalena; Marlowe, Frank; Wiessner, Polly; Wood, Brian

    2011-03-11

    Contemporary humans exhibit spectacular biological success derived from cumulative culture and cooperation. The origins of these traits may be related to our ancestral group structure. Because humans lived as foragers for 95% of our species' history, we analyzed co-residence patterns among 32 present-day foraging societies (total n = 5067 individuals, mean experienced band size = 28.2 adults). We found that hunter-gatherers display a unique social structure where (i) either sex may disperse or remain in their natal group, (ii) adult brothers and sisters often co-reside, and (iii) most individuals in residential groups are genetically unrelated. These patterns produce large interaction networks of unrelated adults and suggest that inclusive fitness cannot explain extensive cooperation in hunter-gatherer bands. However, large social networks may help to explain why humans evolved capacities for social learning that resulted in cumulative culture.

  4. [Identification and genetic variability of annatto genotypes (Bixa orellana L.) by means of hydrosoluble proteins and isoenzymes].

    PubMed

    Medina, A M; Michelangeli, C; Ramis, C; Díaz, A

    2001-01-01

    In order to identify and to determine the genetic variability of 36 annatto genotypes (Bixa orellana L.) collected in five Venezuelan regions (Oriente, Centro, Llanos, Andes and Amazonas) and in Brazil, hydrosoluble protein patterns as well as specific isozyme patterns (alpha-esterase, beta-esterase and peroxidase) were studied using extracts of germinated annatto seeds with radicles of 10 to 15 mm long. Each electrophoretic system allowed genotype discrimination by means of unique banding patterns: both the hydrosoluble protein and the electrophoretic system of beta-esterase with nine banding patterns each; whilst alpha-esterase and peroxidase discriminated eight and three genotypes, respectively. On the other hand, a combination of all the systems permitted a greater discrimination since 34 out of 36 genotypes could be distinguished. Eight mayor groups were formed that showed high levels of genetic diversity (40 to 60%) with no association between geographic and genetic distances, probably because of human influence in the aleatory distribution of this crop. Results obtained indicated that using electrophoretic banding patterns, a classification system could be established for identification and genetic variability purposes in this species.

  5. Satellite studies of turbidity and circulation patterns in Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Srna, R.; Treasure, W. M.; Rogers, R.

    1973-01-01

    Satellite imagery from four successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle are interpreted with special emphasis on visibility of suspended sediment and its use as a natural tracer for gross circulation patters. The MSS red band (band 5) appears to give the best contrast, although the sediment patterns are represented by only a few neighboring shades of grey. Color density slicing improves the differentiation of turbidity levels. However, color additive enhancements are of limited value since most of the information is in a single color band. The ability of ERTS-1 to present a synoptic view of the surface circulation over the entire bay is shown to be a valuable and unique contribution of ERTS-1 to coastal oceanography.

  6. Resolution of plasma sample mix-ups through comparison of patient antibody patterns to E. coli.

    PubMed

    Vetter, Beatrice N; Orlowski, Vanessa; Schüpbach, Jörg; Böni, Jürg; Rühe, Bettina; Huder, Jon B

    2015-12-01

    Accidental sample mix-ups and the need for their swift resolution is a challenge faced by every analytical laboratory. To this end, we developed a simple immunoblot-based method, making use of a patient's characteristic plasma antibody profile to Escherichia coli (E. coli) proteins. Nitrocellulose strips of size-separated proteins from E. coli whole-cell lysates were incubated with patient plasma and visualised with an enzyme-coupled secondary antibody and substrate. Plasma samples of 20 random patients as well as five longitudinal samples of three patients were analysed for antibody band patterns, to evaluate uniqueness and consistency over time, respectively. For sample mix-ups, antibody band patterns of questionable samples were compared with samples of known identity. Comparison of anti-E. coli antibody patterns of 20 random patients showed a unique antibody profile for each patient. Antibody profiles remained consistent over time, as shown for three patients over several years. Three example cases demonstrate the use of this methodology in mis-labelling or -pipetting incidences. Our simple method for resolving plasma sample mix-ups between non-related individuals can be performed with basic laboratory equipment and thus can easily be adopted by analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Optical, photonic and optoelectronic properties of graphene, h-NB and their hybrid materials

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Ma, Fengcai; Liang, Wenjie; Wang, Rongming; Sun, Mengtao

    2017-06-01

    Because of the linear dispersion relation and the unique structure of graphene's Dirac electrons, which can be tuned the ultra-wide band, this enables more applications in photonics, electronics and plasma optics. As a substrate, hexagonal boron nitride (h-BN) has an atomic level flat surface without dangling bonds, a weak doping effect and a response in the far ultraviolet area. So the graphene/h-BN heterostructure is very attractive due to its unique optical electronics characteristics. Graphene and h-BN which are stacked in different ways could open the band gap of graphene, and form a moiré pattern for graphene on h-BN and the superlattice in the Brillouin zone, which makes it possible to build photoelectric devices.

  8. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    USGS Publications Warehouse

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  9. Corrective Neuromuscular Approach to the Treatment of Iliotibial Band Friction Syndrome: A Case Report

    PubMed Central

    Pettitt, Robert; Dolski, Angela

    2000-01-01

    Objective: To describe the evaluation and treatment process for inappropriate functional patterns of neuromuscular activity within the scope of an iliotibial band friction syndrome protocol. Background: Runners with iliotibial band friction syndrome are frequently fitted with orthotic devices to restrict excessive midfoot or rearfoot, or both, motions during the stance phase. These devices may fail to yield favorable results when underlying neuromuscular factors are associated with functional iliotibial band tightening. Differential Diagnosis: Distal biceps femoris tendinitis, popliteal tendinitis, lateral meniscus lesion. Treatment: The athlete's physical examination revealed several patterns of inappropriate neuromuscular activity attributed partly to the prolonged daily wear of beach-type sandals. Modifications of casual footwear and a temporary reduction in training volume were recommended initially to prevent exacerbation of the athlete's condition. Stretching, massage, and soft tissue mobilization were administered in accordance with the athlete's specific needs. The protocol included progressions of nonweightbearing and weightbearing therapeutic exercises. Neuromuscular electric stimulation was incorporated into the protocol to re-educate the role of the first ray within the stance phase of the athlete's walking gait. Uniqueness: Upon stationary examination, this athlete presented with normal lumbar and lower extremity postures. Gait analysis, however, revealed inappropriate dorsiflexion of the great toe during ambulation. Further, the athlete's performances on a series of tests to assess neuromuscular function were substandard. This athlete's response to previous treatment and unique physical findings required a corrective neuromuscular approach that deviates from iliotibial band friction syndrome protocols advocating the use of orthotics. Conclusions: While the role of any single treatment in the athlete's recovery remains unknown, it seems that a corrective neuromuscular approach in the management of iliotibial band friction syndrome represents a viable alternative to orthotic intervention. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:16558617

  10. Elastic band prediction equations for combined free-weight and elastic band bench presses and squats.

    PubMed

    Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C

    2010-01-01

    Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.

  11. Analysis of ELA-DQB exon 2 polymorphism in Argentine Creole horses by PCR-RFLP and PCR-SSCP.

    PubMed

    Villegas-Castagnasso, E E; Díaz, S; Giovambattista, G; Dulout, F N; Peral-García, P

    2003-08-01

    The second exon of equine leucocyte antigen (ELA)-DQB genes was amplified from genomic DNA of 32 Argentine Creole horses by PCR. Amplified DNA was analysed by PCR-restriction fragment length polymorphism (RFLP) and PCR-single-strand conformation polymorphism (SSCP). The PCR-RFLP analysis revealed two HaeIII patterns, four RsaI patterns, five MspI patterns and two HinfI patterns. EcoRI showed no variation in the analysed sample. Additional patterns that did not account for known exon 2 DNA sequences were observed, suggesting the existence of novel ELA-DQB alleles. PCR-SSCP analysis exhibited seven different band patterns, and the number of bands per animal ranged from four to nine. Both methods indicated that at least two DQB genes are present. The presence of more than two alleles in each animal showed that the primers employed in this work are not specific for a unique DQB locus. The improvement of this PCR-RFLP method should provide a simple and rapid technique for an accurate definition of ELA-DQB typing in horses.

  12. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    PubMed Central

    Stone, David B.; Coffman, Brian A.; Bustillo, Juan R.; Aine, Cheryl J.; Stephen, Julia M.

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and healthy controls (N = 57) using magnetoencephalography (MEG). Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia. PMID:25414652

  13. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas

    PubMed Central

    Michalareas, Georgios; Vezoli, Julien; van Pelt, Stan; Schoffelen, Jan-Mathijs; Kennedy, Henry; Fries, Pascal

    2016-01-01

    Primate visual cortex is hierarchically organized. Bottom-up and top-down influences are exerted through distinct frequency channels, as was recently revealed in macaques by correlating inter-areal influences with laminar anatomical projection patterns. Because this anatomical data cannot be obtained in human subjects, we selected seven homologous macaque and human visual areas, and correlated the macaque laminar projection patterns to human inter-areal directed influences as measured with magnetoencephalography. We show that influences along feedforward projections predominate in the gamma band, whereas influences along feedback projections predominate in the alpha-beta band. Rhythmic inter-areal influences constrain a functional hierarchy of the seven homologous human visual areas that is in close agreement with the respective macaque anatomical hierarchy. Rhythmic influences allow an extension of the hierarchy to 26 human visual areas including uniquely human brain areas. Hierarchical levels of ventral and dorsal stream visual areas are differentially affected by inter-areal influences in the alpha-beta band. PMID:26777277

  14. What graph theory actually tells us about resting state interictal MEG epileptic activity.

    PubMed

    Niso, Guiomar; Carrasco, Sira; Gudín, María; Maestú, Fernando; Del-Pozo, Francisco; Pereda, Ernesto

    2015-01-01

    Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5-40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower eccentricity than the control subjects for the high frequency bands, without a clear topography. Besides, the frontal focal epileptic patients showed only reduced eccentricity for the theta band over fronto-temporal and central sensors. These outcomes indicate that functional epileptic brain networks are different to those of healthy subjects during interictal stage at rest, with a unique pattern of dissimilarities for each type of epilepsy. Further, when properly selected, three network indices suffice to provide a comprehensive description of these differences. Yet, since such uniqueness in the pattern of differences is also evident in the power spectrum, we conclude that the added value of the graph theory approach in this context should not be overestimated.

  15. The unique karyotype of Henochilus wheatlandii, a critically endangered fish living in a fast-developing region in Minas Gerais State, Brazil.

    PubMed

    Silva, Priscilla C; Santos, Udson; Travenzoli, Natália M; Zanuncio, Jose C; Cioffi, Marcelo de B; Dergam, Jorge A

    2012-01-01

    Henochilus wheatlandii, the only species of this genus, is critically endangered and was considered extinct for over a century. The rediscovery of this fish in 1996 made it possible to study its phylogenetic relationships with other species in the subfamily Bryconinae. The aim of this study was to characterise the karyotype of H. wheatlandii. Standard staining, C-positive heterochromatin and nucleolar organiser region (NOR) banding, chromomycin A(3) staining, and fluorescent in situ hybridisation (FISH) using 5S rDNA and 18S rDNA probes were conducted on nineteen specimens collected in the Santo Antonio River, a sub-basin of the Doce River in Ferros municipality, Minas Gerais State, Brazil. Henochilus wheatlandii shared the same diploid number and chromosome morphology as other species of Bryconinae. However, its heterochromatin distribution patterns, NOR localisation, and FISH patterns revealed a cytogenetic profile unique among Neotropical Bryconinae, emphasizing the evolutionary uniqueness of this threatened species.

  16. The Unique Karyotype of Henochilus wheatlandii, a Critically Endangered Fish Living in a Fast-Developing Region in Minas Gerais State, Brazil

    PubMed Central

    Silva, Priscilla C.; Santos, Udson; Travenzoli, Natália M.; Zanuncio, Jose C.; Cioffi, Marcelo de B.; Dergam, Jorge A.

    2012-01-01

    Henochilus wheatlandii, the only species of this genus, is critically endangered and was considered extinct for over a century. The rediscovery of this fish in 1996 made it possible to study its phylogenetic relationships with other species in the subfamily Bryconinae. The aim of this study was to characterise the karyotype of H. wheatlandii. Standard staining, C-positive heterochromatin and nucleolar organiser region (NOR) banding, chromomycin A3 staining, and fluorescent in situ hybridisation (FISH) using 5S rDNA and 18S rDNA probes were conducted on nineteen specimens collected in the Santo Antonio River, a sub-basin of the Doce River in Ferros municipality, Minas Gerais State, Brazil. Henochilus wheatlandii shared the same diploid number and chromosome morphology as other species of Bryconinae. However, its heterochromatin distribution patterns, NOR localisation, and FISH patterns revealed a cytogenetic profile unique among Neotropical Bryconinae, emphasizing the evolutionary uniqueness of this threatened species. PMID:22848754

  17. Reversible integer wavelet transform for blind image hiding method

    PubMed Central

    Bibi, Nargis; Mahmood, Zahid; Akram, Tallha; Naqvi, Syed Rameez

    2017-01-01

    In this article, a blind data hiding reversible methodology to embed the secret data for hiding purpose into cover image is proposed. The key advantage of this research work is to resolve the privacy and secrecy issues raised during the data transmission over the internet. Firstly, data is decomposed into sub-bands using the integer wavelets. For decomposition, the Fresnelet transform is utilized which encrypts the secret data by choosing a unique key parameter to construct a dummy pattern. The dummy pattern is then embedded into an approximated sub-band of the cover image. Our proposed method reveals high-capacity and great imperceptibility of the secret embedded data. With the utilization of family of integer wavelets, the proposed novel approach becomes more efficient for hiding and retrieving process. It retrieved the secret hidden data from the embedded data blindly, without the requirement of original cover image. PMID:28498855

  18. CELLULAR AND SECRETORY PROTEINS OF THE SALIVARY GLANDS OF SCIARA COPROPHILA DURING THE LARVAL-PUPAL TRANSFORMATION

    PubMed Central

    Been, Anita C.; Rasch, Ellen M.

    1972-01-01

    The cellular and secretory proteins of the salivary gland of Sciara coprophila during the stages of the larval-pupal transformation were examined by electrophoresis in 0.6 mm sheets of polyacrylamide gel with both SDS-continuous and discontinuous buffer systems. After SDS-electrophoresis, all electrophoretograms of both reduced and nonreduced proteins from single glands stained with Coomassie brilliant blue revealed a pattern containing the same 25 bands during the stages of the larval-pupal transformation. With the staining procedures used in this study, qualitative increases and decreases were detected in existing proteins and enzymes. There was no evidence, however, for the appearance of new protein species that could be correlated with the onset of either pupation or gland histolysis. Electrophoretograms of reduced samples of anterior versus posterior gland parts indicated that no protein in the basic pattern of 25 bands was unique to either the anterior or posterior gland part. Electrophoretograms of reduced samples of secretion collected from either actively feeding or "cocoon"-building animals showed an electrophoretic pattern containing up to six of the 25 protein fractions detected in salivary gland samples, with varied amounts of these same six proteins in electrophoretograms of secretion samples from a given stage. Zymograms of non-specific esterases in salivary gland samples revealed a progressive increase in the amount of esterase reaction produce in one major band and some decrease in the second major band during later stages of the larval-pupal transformation. PMID:4116523

  19. EST-SSR marker revealed effective over biochemical and morphological scepticism towards identification of specific turmeric (Curcuma longa L.) cultivars.

    PubMed

    Sahoo, Ambika; Jena, Sudipta; Kar, Basudeba; Sahoo, Suprava; Ray, Asit; Singh, Subhashree; Joshi, Raj Kumar; Acharya, Laxmikanta; Nayak, Sanghamitra

    2017-05-01

    Turmeric (Curcuma longa L., family Zingiberaceae) is one of the most economically important plants for its use in food, medicine, and cosmetic industries. Cultivar identification is a major constraint in turmeric, owing to high degree of morphological similarity that in turn, affects its commercialization. The present study addresses this constraint, using EST-SSR marker based, molecular identification of 8 elite cultivars and 88 accessions in turmeric. Fifty EST-SSR primers were screened against eight cultivars of turmeric (Suroma, Roma, Lakadong, Megha, Alleppey Supreme, Kedaram, Pratibha, and Suvarna); out of which 11 primers showed polymorphic banding pattern. The polymorphic information content (PIC) of these primers ranged from 0.13 to 0.48. However, only three SSR loci (CSSR 14, CSSR 15, and CSSR 18) gave reproducible unique banding pattern clearly distinguishing the cultivars 'Lakadong' and 'Suvarna' from other cultivars tested. These three unique SSR markers also proved to be effective in identification of 'Lakadong' cultivars when analysed with 88 accessions of turmeric collected from different agro-climatic regions. Furthermore, two identified cultivars (Lakadong and Suvarna) could also be precisely differentiated when analysed and based on phylogenetic tree, with other 94 genotypes of turmeric. The novel SSR markers can be used for identification and authentication of two commercially important turmeric cultivars 'Lakadong' and 'Suvarna'.

  20. Zonal flow as pattern formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Jeffrey B.; Krommes, John A.

    2013-10-15

    Zonal flows are well known to arise spontaneously out of turbulence. We show that for statistically averaged equations of the stochastically forced generalized Hasegawa-Mima model, steady-state zonal flows, and inhomogeneous turbulence fit into the framework of pattern formation. There are many implications. First, the wavelength of the zonal flows is not unique. Indeed, in an idealized, infinite system, any wavelength within a certain continuous band corresponds to a solution. Second, of these wavelengths, only those within a smaller subband are linearly stable. Unstable wavelengths must evolve to reach a stable wavelength; this process manifests as merging jets.

  1. Correlation of vapor phase infrared spectra and regioisomeric structure in synthetic cannabinoids

    NASA Astrophysics Data System (ADS)

    Smith, Lewis W.; Thaxton-Weissenfluh, Amber; Abiedalla, Younis; DeRuiter, Jack; Smith, Forrest; Clark, C. Randall

    2018-05-01

    The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest Cdbnd O frequency values for position 2 and 3 giving a narrow range from 1656 to 1654 cm-1. Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671 cm-1. The aliphatic stretching bands in the 2900 cm-1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers.

  2. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities

    PubMed Central

    Miller, Steven D.; Mills, Stephen P.; Elvidge, Christopher D.; Lindsey, Daniel T.; Lee, Thomas F.; Hawkins, Jeffrey D.

    2012-01-01

    Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights. PMID:22984179

  3. Identification and Characterization of Memecylon Species Using Isozyme Profiling

    PubMed Central

    Bharathi, T. R.; Sekhar, Shailasree; Geetha, N.; Niranjana, S. R.; Prakash, H. S.

    2017-01-01

    Background: The protein/isozyme fingerprint is useful in differentiating the species and acts as a biochemical marker for identification and systematic studies of medicinal plant species. Objective: In the present study, protein and isozyme profiles for peroxidase, esterase, acid phosphatase, polyphenol oxidase, alcohol dehydrogenase, and alkaline phosphatase of five species of Memecylon (Melastomataceae), Memecylon umbellatum, Memecylon edule, Memecylon talbotianum, Memecylon malabaricum, and Memecylon wightii were investigated. Materials and Methods: Fresh leaves were used to prepare crude enzyme extract for analyzing the five enzymes isozyme variations. Separation of isozymes was carried out using polyacrylamide gel electrophoresis (PAGE) and the banding patterns of protein were scored. Pair-wise comparisons of genotypes, based on the presence or absence of unique and shared polymorphic products, were used to regenerate similarity coefficients. The similarity coefficients were then used to construct dendrograms, using the unweighted pair group method with arithmetic averages. Results: A total of 50 bands with various Rf values and molecular weight were obtained through PAGE analysis. Among the five Memecylon species, more number of bands was produced in M. wightii and less number of bands was observed in M. edule. The results of similarity indices grouped M. malabaricum and M. wightii in one cluster with 98% similarity and M. umbellatum, M. edule, and M. talbotianum are grouped in another cluster with 79% similarity showing close genetic similarities which is in accordance with the morphological identification of Memecylon species. Conclusion: The protein/isozyme fingerprint is useful in differentiating the species and acts as a biochemical marker for identification of Memecylon species. SUMMARY Biochemical characterization of Memecylon species was evaluated by SDS-PAGE of extracted protein and isozyme profiling on native PAGE.After electrophoresis, each gel was stained with specific stains. Genetic distance relationships were evaluated based on the banding patterns of protein on isozymes.Unique banding pattern of esterase, peroxidase, acid phosphatase, alcohol dehydrogenase and polyphenol oxidase are observed in all the five species of Memecylon, which represent the fingerprint of Memecylon species.SDS-PAGE and isozyme profiling of five Memecylon species revealed that M. malabaricum and M. wightii grouped in one cluster and M. umbellatum, M. edule and M. talbotianum grouped in another cluster showing close genetic similarities which is in accordance with the morphological identification of Memecylon species.This is the first report on the comparison of protein and isozyme profile of five different Memecylon species. Abbreviations Used: SDS-PAGE: Sodium docecyl sulfate polyacrylamide gel electrophoresis; NTSYS PC2: Numerical taxonomy system, version 2.2 for Windows XP, Vista, Win7, Win 8 and Win10 including 64 bit PMID:29263637

  4. The ground subsidence anomaly investigation around Ambala, India by InSAR and spatial analyses: Why and how the Ambala city behaves as the most significant subsidence region in the Northwest India?

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lin, S. Y.; Tsai, Y.; Singh, S.; Singh, T.

    2017-12-01

    A large ground deformation which may be caused by a significant groundwater depletion of the Northwest India Aquifer has been successfully observed throughout space geodesy techniques (Tsai et al, 2016). Employing advanced time-series ScanSAR InSAR analysis and Gravity Recovery and Climate Experiment (GRACE) satellites data, it revealed 400-km wide huge ground deformation in and around Haryana. It was further notified that the Ambala city located in northern Haryana district shown the most significant ground subsidence with maximum cumulative deformation up to 0.2 meters within 3 years in contrast to the nearby cities such as Patiala and Chandigarh that did not present similar subsidence. In this study, we investigated the details of "Ambala Anomaly" employing advanced time-series InSAR and spatial analyses together with local geology and anthropogenic contexts and tried to identify the factors causing such a highly unique ground deformation pattern. To explore the pattern and trend of Ambala' subsidence, we integrated the time-series deformation results of both ascending L-band PALSAR-1 (Phased Array type L-band Synthetic Aperture Radar) from 2007/1 to 2011/1 and descending C-band ASAR (Advanced Synthetic Aperture Radar) from 2008/9 to 2010/8 to process the 3D decomposition, expecting to reveal the asymmetric movement of the surface. In addition. The spatial analyses incorporating detected ground deformations and local economical/social factors were then applied for the interpretation of "Ambala Anomaly". The detailed interrelationship of driving factors of the "Ambala Anomaly" and the spatial pattern of corresponding ground subsidence will be further demonstrated. After all, we determined the uniqueness of Ambala subsidence possibly be driven by both anthropogenic behaviors including the rapid growth rate of population and constructing of industrial centers as well as the natural geological characteristics and sediment deposition.

  5. The end of the unique myocardial band: Part I. Anatomical considerations.

    PubMed

    MacIver, David H; Stephenson, Robert S; Jensen, Bjarke; Agger, Peter; Sánchez-Quintana, Damián; Jarvis, Jonathan C; Partridge, John B; Anderson, Robert H

    2018-01-01

    The concept of the 'unique myocardial band', which proposes that the ventricular myocardial cone is arranged like skeletal muscle, provides an attractive framework for understanding haemodynamics. The original idea was developed by Francisco Torrent-Guasp. Using boiled hearts and blunt dissection, Torrent-Guasp created a single band of ventricular myocardium extending from the pulmonary trunk to the aortic root, with the band thus constructed encircling both ventricular cavities. Cooked hearts can, however, be dissected in many ways. In this review, we show that the band does not exist as an anatomical entity with defined borders. On the contrary, the ventricular cardiomyocytes are aggregated end to end and by their branching produce an intricate meshwork. Across the thickness of the left ventricular wall, the chains of cardiomyocytes exhibit a gradually changing helical angle, with a circumferential zone formed in the middle. There is no abrupt change in helical angle, as could be expected if the wall was constructed of opposing limbs of a single wrapped band, nor does the long axis of the cardiomyocytes consistently match with the long axis of the unique myocardial band. There are, furthermore, no connective tissue structures that could be considered to demarcate its purported boundaries. The unique myocardial band should be consistent with evolution, and although the ventricular wall of fish and reptiles has one or several distinct layers, a single band is not found. In 1965, Lev and Simpkins cautioned that the ventricular muscle mass of a cooked heart can be dissected almost at the whim of the anatomist. We suggest that the unique myocardial band should have ended there. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. Robust Radio Broadcast Monitoring Using a Multi-Band Spectral Entropy Signature

    NASA Astrophysics Data System (ADS)

    Camarena-Ibarrola, Antonio; Chávez, Edgar; Tellez, Eric Sadit

    Monitoring media broadcast content has deserved a lot of attention lately from both academy and industry due to the technical challenge involved and its economic importance (e.g. in advertising). The problem pose a unique challenge from the pattern recognition point of view because a very high recognition rate is needed under non ideal conditions. The problem consist in comparing a small audio sequence (the commercial ad) with a large audio stream (the broadcast) searching for matches.

  7. A novel encryption scheme for high-contrast image data in the Fresnelet domain

    PubMed Central

    Bibi, Nargis; Farwa, Shabieh; Jahngir, Adnan; Usman, Muhammad

    2018-01-01

    In this paper, a unique and more distinctive encryption algorithm is proposed. This is based on the complexity of highly nonlinear S box in Flesnelet domain. The nonlinear pattern is transformed further to enhance the confusion in the dummy data using Fresnelet technique. The security level of the encrypted image boosts using the algebra of Galois field in Fresnelet domain. At first level, the Fresnelet transform is used to propagate the given information with desired wavelength at specified distance. It decomposes given secret data into four complex subbands. These complex sub-bands are separated into two components of real subband data and imaginary subband data. At second level, the net subband data, produced at the first level, is deteriorated to non-linear diffused pattern using the unique S-box defined on the Galois field F28. In the diffusion process, the permuted image is substituted via dynamic algebraic S-box substitution. We prove through various analysis techniques that the proposed scheme enhances the cipher security level, extensively. PMID:29608609

  8. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  9. Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping.

    PubMed

    Nelson, M; Jones, S H; Edwards, C; Ellis, J C

    2008-08-19

    Due to their opportunistic and gregarious nature, gulls may be important reservoirs and vectors for anthropogenically derived fecal pathogens in coastal areas. We used ribotyping, a genotypic bacterial source tracking method, to compare populations of Escherichia coli among herring gulls Larus argentatus, great black-backed gulls L. marinus, wastewater, and landfill trash in New Hampshire and Maine, USA. Concentrations of E. coli in gull feces varied widely among individuals, but were generally high (6.0 x 10(1) to 2.5 x 10(9) g(-1) wet weight). Of 39 E. coli isolates from L. argentatus, 67% had banding patterns that were > or = 90% similar to those from wastewater and trash, whereas only 39% of 36 L. marinus isolates exhibited > or = 90% similarity to these sources. Strains of E. coli from gulls matched (> or = 90% similarity) more strains from wastewater (39% matching) than from trash (15% matching). E. coli isolates from L. marinus feces exhibited a greater diversity of banding patterns than did isolates from L. argentatus. There were more unique E. coli banding patterns in trash samples than in wastewater, and higher diversity indices in the former compared to the latter. These findings suggest that both species of gulls, especially L. argentatus, obtain fecal bacteria from wastewater and landfill trash, which they may transport to recreational beaches and waters. Our results also indicate that E. coli populations may vary widely between gull species, and between the anthropogenic habitats that they frequent, i.e. landfills and wastewater treatment facilities.

  10. Amyloid-β expression in retrosplenial cortex of 3xTg-AD mice: relationship to cholinergic axonal afferents from medial septum

    PubMed Central

    Robertson, Richard T.; Baratta, Janie; Yu, Jen; LaFerla, Frank M.

    2009-01-01

    Triple transgenic (3xTg-AD) mice harboring the presenilin 1, amyloid precursor protein, and tau transgenes (Oddo et al., 2003) display prominent levels of amyloid-beta (Aβ) immunoreactivity in forebrain regions. The Aβ immunoreactivity is first seen intracellularly in neurons and later as extracellular plaque deposits. The present study examined Aβ immunoreactivity that occurs in layer III of the granular division of retrosplenial cortex (RSg). This pattern of Aβ immunoreactivity in layer III of RSg develops relatively late, and is seen in animals older than 14 mo. The appearance of the Aβ immunoreactivity is similar to an axonal terminal field and thus may offer a unique opportunity to study the relationship between afferent projections and the formation of Aβ deposits. Axonal tract tracing techniques demonstrated that the pattern of axon terminal labeling in layer III of RSg, following placement of DiI in medial septum, is remarkably similar to the pattern of cholinergic axons in RSg, as detected by acetylcholinesterase histochemical staining, choline acetyltransferase immunoreactivity, or p75 receptor immunoreactivity; this pattern also is strikingly similar to the band of Aβ immunoreactivity. In animals sustaining early damage to the medial septal nucleus (prior to the advent of Aβ immunoreactivity), the band of Aβ in layer III of RSg does not develop; the corresponding band of cholinergic markers also is eliminated. In older animals (after the appearance of the Aβ immunoreactivity) damage to cholinergic afferents by electrolytic lesions, immunotoxin lesions, or cutting the cingulate bundle, result in a rapid loss of the cholinergic markers and a slower reduction of Aβ immunoreactivity. These results suggest that the septal cholinergic axonal projections transport Aβ or APP to layer III of RSg. PMID:19772895

  11. Muscle activation patterns and motor anatomy of Anna's hummingbirds Calypte anna and zebra finches Taeniopygia guttata.

    PubMed

    Donovan, Edward R; Keeney, Brooke K; Kung, Eric; Makan, Sirish; Wild, J Martin; Altshuler, Douglas L

    2013-01-01

    Flying animals exhibit profound transformations in anatomy, physiology, and neural architecture. Although much is known about adaptations in the avian skeleton and musculature, less is known about neuroanatomy and motor unit integration for bird flight. Hummingbirds are among the most maneuverable and specialized of vertebrate fliers, and two unusual neuromuscular features have been previously reported: (1) the pectoralis major has a unique distribution pattern of motor end plates (MEPs) compared with all other birds and (2) electromyograms (EMGs) from the hummingbird's pectoral muscles, the pectoralis major and the supracoracoideus, show activation bursts composed of one or a few spikes that appear to have a very consistent pattern. Here, we place these findings in a broader context by comparing the MEPs, EMGs, and organization of the spinal motor neuron pools of flight muscles of Anna's hummingbird Calypte anna, zebra finches Taeniopygia guttata, and, for MEPs, several other species. The previously shown MEP pattern of the hummingbird pectoralis major is not shared with its closest taxonomic relative, the swift, and appears to be unique to hummingbirds. MEP arrangements in previously undocumented wing muscles show patterns that differ somewhat from other avian muscles. In the parallel-fibered strap muscles of the shoulder, MEP patterns appear to relate to muscle length, with the smallest muscles having fibers that span the entire muscle. MEP patterns in pennate distal wing muscles were the same regardless of size, with tightly clustered bands in the middle portion of the muscle, not evenly distributed bands over the muscle's entire length. Muscle activations were examined during slow forward flight in both species, during hovering in hummingbirds, and during slow ascents in zebra finches. The EMG bursts of a wing muscle, the pronator superficialis, were highly variable in peak number, size, and distribution across wingbeats for both species. In the pectoralis major, although the individual EMG bursts were much shorter in duration in hummingbirds relative to zebra finches, the variables describing the normalized amplitude and area of the activation bursts were otherwise indistinguishable between taxa during these flight modes. However, the degree of variation in the time intervals between EMG peaks was much lower in hummingbirds, which is a plausible explanation for the "patterned" EMG signals reported previously.

  12. `Fingerprint' Fine Structure in the Solar Decametric Radio Spectrum Solar Physics

    NASA Astrophysics Data System (ADS)

    Zlotnik, E. Y.; Zaitsev, V. V.; Melnik, V. N.; Konovalenko, A. A.; Dorovskyy, V. V.

    2015-07-01

    We study a unique fine structure in the dynamic spectrum of the solar radio emission discovered by the UTR-2 radio telescope (Kharkiv, Ukraine) in the frequency band of 20 - 30 MHz. The structure was observed against the background of a broadband type IV radio burst and consisted of parallel drifting narrow bands of enhanced emission and absorption on the background emission. The observed structure differs from the widely known zebra pattern at meter and decimeter wavelengths by the opposite directions of the frequency drift within a single stripe at a given time. We show that the observed properties can be understood in the framework of the radiation mechanism by virtue of the double plasma resonance effect in a nonuniform coronal magnetic trap. We propose a source model providing the observed frequency drift of the stripes.

  13. Formation of banded vegetation patterns resulted from interactions between sediment deposition and vegetation growth.

    PubMed

    Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan

    2018-03-01

    This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.

  14. An ice-rich flow origin for the banded terrain in the Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Guallini, L.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Sutton, S.; Grindrod, P. M.

    2015-12-01

    The interior of Hellas Basin displays a complex landscape and a variety of geomorphological domains. One of these domains, the enigmatic banded terrain covers much of the northwestern part of the basin. We use high-resolution (Context Camera and High-Resolution Imaging Science Experiment) Digital Terrain Models to show that most of the complex viscous flowing behavior exhibited by the banded terrain is controlled by topography and flow-like interactions between neighboring banded terrain. Furthermore, the interior of the basin hosts several landforms suggestive of the presence of near-surface ice, which include polygonal patterns with elongated pits, scalloped depressions, isolated mounds, and collapse structures. We suggest that thermal contraction cracking and sublimation of near-surface ice are responsible for the formation and the development of most of the ice-related landforms documented in Hellas. The relatively pristine form, lack of superposed craters, and strong association with the banded terrain, suggest an Amazonian (<3 Ga) age of formation for these landforms. Finally, relatively high surface pressures (above the triple point of water) expected in Hellas and summertime temperatures often exceeding the melting point of water ice suggest that the basin may have recorded relatively "temperate" climatic conditions compared to other places on Mars. Therefore, the potentially ice-rich banded terrain may have deformed with lower viscosity and stresses compared to other locations on Mars, which may account for its unique morphology.

  15. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-03-05

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a /sup 32/P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphismmore » was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family.« less

  16. Discovery of a remarkable subpulse drift pattern in PSR B0818-41

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.

    2007-05-01

    We report the discovery of a remarkable subpulse drift pattern in the relatively less-studied wide profile pulsar B0818-41 using high-sensitivity Giant Metrewave Radio Telescope (GMRT) observations. We find simultaneous occurrences of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle α ~ 11°), with an `inner' LOS geometry (impact angle ). We argue that both rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, which support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.

  17. The marginal band system in nymphalid butterfly wings.

    PubMed

    Taira, Wataru; Kinjo, Seira; Otaki, Joji M

    2015-01-01

    Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.

  18. Abnormal early dynamic individual patterns of functional networks in low gamma band for depression recognition.

    PubMed

    Bi, Kun; Chattun, Mahammad Ridwan; Liu, Xiaoxue; Wang, Qiang; Tian, Shui; Zhang, Siqi; Lu, Qing; Yao, Zhijian

    2018-06-13

    The functional networks are associated with emotional processing in depression. The mapping of dynamic spatio-temporal brain networks is used to explore individual performance during early negative emotional processing. However, the dysfunctions of functional networks in low gamma band and their discriminative potentialities during early period of emotional face processing remain to be explored. Functional brain networks were constructed from the MEG recordings of 54 depressed patients and 54 controls in low gamma band (30-48 Hz). Dynamic connectivity regression (DCR) algorithm analyzed the individual change points of time series in response to emotional stimuli and constructed individualized spatio-temporal patterns. The nodal characteristics of patterns were calculated and fed into support vector machine (SVM). Performance of the classification algorithm in low gamma band was validated by dynamic topological characteristics of individual patterns in comparison to alpha and beta band. The best discrimination accuracy of individual spatio-temporal patterns was 91.01% in low gamma band. Individual temporal patterns had better results compared to group-averaged temporal patterns in all bands. The most important discriminative networks included affective network (AN) and fronto-parietal network (FPN) in low gamma band. The sample size is relatively small. High gamma band was not considered. The abnormal dynamic functional networks in low gamma band during early emotion processing enabled depression recognition. The individual information processing is crucial in the discovery of abnormal spatio-temporal patterns in depression during early negative emotional processing. Individual spatio-temporal patterns may reflect the real dynamic function of subjects while group-averaged data may neglect some individual information. Copyright © 2018. Published by Elsevier B.V.

  19. The Hofstadter Butterfly and some physical consequences

    NASA Astrophysics Data System (ADS)

    Claro, Francisco

    Opening its beautiful wings for the first time four decades ago, the Hofstadter Butterfly emerged as a self-similar pattern of bands and gaps displaying the allowed energies for two dimensional crystalline electrons in a perpendicular magnetic field. Within the Harper model, as the external field parameter is varied well defined gaps traverse the spectrum, some closing at a Dirac point where two approaching bands touch. Such band edges degeneracy is lifted in more realistic models. Gaps have a unique label that determines the Hall conductivity of a noninteracting electron system, as observed in recent experiments. When the 2D electron assembly is allowed to interact in the absence of an underlying periodic potential, the mean field approximation predicts a liquid at integer filling fractions and electron density fluctuations otherwise, which if periodic may be represented again by a Harper equation. The intriguing odd denominator rule observed in experiment in the fractional quantum Hall regime is then a natural prediction of the model. Although I have an affiliation (lifetime Granted) I am actually retired (do not have a paid contract).

  20. Penta-graphene: A new carbon allotrope

    DOE PAGES

    Zhang, Shunhong; Zhou, Jian; Wang, Qian; ...

    2015-02-02

    A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed in this paper. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson’s ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnOmore » and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. Finally, the versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics.« less

  1. An efficient ionoluminescence analysis of turquoise gemstone as a weakly luminescent mineral.

    PubMed

    Nikbakht, T; Kakuee, O; Lamehi-Rachti, M

    2017-05-15

    The unique ionization pattern of MeV-energy ion beam is applied for efficient luminescence analysis of a collection of natural turquoise samples. The considerable penetration depth of tens of micrometer and enhancement of energy deposition with depth, suggests ionoluminescence as an appropriate technique for studying weakly luminescent minerals. Herein, the luminescence induced in deeper parts of turquoise samples is extracted through their relatively transparent adjacent host stones. The resulting intense spectra reveal the vibrational structure of the broad green luminescence band of turquoise which probably originates from O 2 - centers. Moreover, owing to the applied ionoluminescence approach, red and blue luminescence bands of turquoise were observed which can be ascribed to Fe 3+ ions and UO 2 2+ centers respectively. The elemental information of the samples is provided using micro-PIXE analysis technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Paternity study in Chilean families using DNA fingerprints and erythrocyte blood markers].

    PubMed

    Aguirre, R; Blanco, R; Cifuentes, L; Chiffelle, I; Armanet, L; Vargas, J; Jara, L

    1992-10-01

    In the last decade, the electromorphic phenotype corresponding to extremely polymorphic zones of DNA, that include variable number of tandem repeat loci (VNTR) of oligonucleotide sequences, have been added to classical markers to elucidate the problems of parenthood identification and ascription in human beings. Using VNTR of several loci, a band profile practically unique for each individual is obtained (DNA-fingerprints). Since the pattern of VNTR electrophoretic bands is inherited from parents in a proportion of 50% from each one, this system is extremely useful for paternity ascription or exclusion. Nine nuclear families were studied, randomly selected from a group of 170 families that were analyzed using 5 erythrocyte genetic markers and with VNTRs detected using the multi locus probe (CAC)5, aiming to explore the concordance of both methods. Results were similar for both methods; however for VNTR, there is no information available on population frequency of polymorphisms.

  3. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments.

    PubMed

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis.

  4. Approach to determine the diversity of Legionella species by nested PCR-DGGE in aquatic environments

    PubMed Central

    Huang, Wen-Chien; Tsai, Hsin-Chi; Tao, Chi-Wei; Chen, Jung-Sheng; Shih, Yi-Jia; Kao, Po-Min; Huang, Tung-Yi; Hsu, Bing-Mu

    2017-01-01

    In this study, we describe a nested PCR-DGGE strategy to detect Legionella communities from river water samples. The nearly full-length 16S rRNA gene was amplified using bacterial primer in the first step. After, the amplicons were employed as DNA templates in the second PCR using Legionella specific primer. The third round of gene amplification was conducted to gain PCR fragments apposite for DGGE analysis. Then the total numbers of amplified genes were observed in DGGE bands of products gained with primers specific for the diversity of Legionella species. The DGGE patterns are thus potential for a high-throughput preliminary determination of aquatic environmental Legionella species before sequencing. Comparative DNA sequence analysis of excised DGGE unique band patterns showed the identity of the Legionella community members, including a reference profile with two pathogenic species of Legionella strains. In addition, only members of Legionella pneumophila and uncultured Legionella sp. were detected. Development of three step nested PCR-DGGE tactic is seen as a useful method for studying the diversity of Legionella community. The method is rapid and provided sequence information for phylogenetic analysis. PMID:28166249

  5. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum.

    PubMed

    Guri, A; Sink, K C

    1988-10-01

    Mesophyll protoplasts of eggplant (cv Black Beauty) and of Solanum torvum (both 2n=2x=24) were fused using a modification of the Menczel and Wolfe PEG/DMSO procedure. Protoplasts post-fusion were plated at 1 × 10(5)/ml in modified KM medium, which inhibited division of S. torvum protoplasts. One week prior to shoot regeneration, ten individual calluses had a unique light-green background and were verified as cell hybrids by the presence of the dimer isozyme patterns for phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT). Hybridity was also confirmed at the plant stage by DNA-DNA hybridization to a pea 45S ribosomal RNA gene probe. The ten somatic hybrid plants were established in the greenhouse and exhibited intermediate morphological characteristics such as leaf size and shape, flower size, shape, color and plant stature. Their chromosome number ranged from 46-48 (expected 2n=4x=48) and pollen viability was 5%-70%. In vitro shoots taken from the ten hybrid plants exhibited resistance to a verticillium wilt extract. Total DNA from the ten hybrids was restricted and hybridized with a 5.9 kb Oenothera chloroplast cytochrome f gene probe, a 2.4 kb EcoRI clone encoding mitochondrial cytochrome oxidase subunit II from maize and a 22.1 kb Sal I mitochondrial clone from Nicotiana sylvestris. Southern blot hybridization patterns showed that eight of ten somatic hybrids contained the eggplant cpDNA, while two plants contained the cpDNA hybridization patterns of both parents. The mtDNA analysis revealed the presence of novel bands, loss of some specific parental bands and mixture of specific bands from both parents in the restriction hybridization profiles of the hybrids.

  6. Tamper-indicating device having a glass body

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.

    2003-04-29

    A tamper-indicating device is described. The device has a first glass body member and a second glass body member that are attached to each other through a hasp. The glass body members of the device can be tempered. The body members can be configured with hollow volumes into which powders, microparticles, liquids, gels, or combinations thereof are sealed. The choice, the amount, and the location of these materials can produce a visible, band pattern to provide each body member with a unique fingerprint identifier, which makes it extremely difficult to repair or replace once it is damaged in order to avoid tamper detection.

  7. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal.

    PubMed

    Göncü, F; Luding, S; Bertoldi, K

    2012-06-01

    The band structure of a two-dimensional granular crystal composed of silicone rubber and polytetrafluoroethylene (PTFE) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Göncü et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations of the crystal are computed at different levels of deformation to demonstrate the tunability of the band structure, which is strongly affected by the pattern transformation that induces new band gaps. Replacement of PTFE particles with rubber ones reveals that the change of the band structure is essentially governed by pattern transformation rather than particles' mechanical properties.

  8. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, P.; Ramesh, R.; Hariharan, K.

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the locationmore » of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.« less

  9. Mating Signals Indicating Sexual Receptiveness Induce Unique Spatio-Temporal EEG Theta Patterns in an Anuran Species

    PubMed Central

    Fang, Guangzhan; Yang, Ping; Cui, Jianguo; Yao, Dezhong; Brauth, Steven E.; Tang, Yezhong

    2012-01-01

    Female mate choice is of importance for individual fitness as well as a determining factor in genetic diversity and speciation. Nevertheless relatively little is known about how females process information acquired from males during mate selection. In the Emei music frog, Babina daunchina, males normally call from hidden burrows and females in the reproductive stage prefer male calls produced from inside burrows compared with ones from outside burrows. The present study evaluated changes in electroencephalogram (EEG) power output in four frequency bands induced by male courtship vocalizations on both sides of the telencephalon and mesencephalon in females. The results show that (1) both the values of left hemispheric theta relative power and global lateralization in the theta band are modulated by the sexual attractiveness of the acoustic stimulus in the reproductive stage, suggesting the theta oscillation is closely correlated with processing information associated with mate choice; (2) mean relative power in the beta band is significantly greater in the mesencephalon than the left telencephalon, regardless of reproductive status or the biological significance of signals, indicating it is associated with processing acoustic features and (3) relative power in the delta and alpha bands are not affected by reproductive status or acoustic stimuli. The results imply that EEG power in the theta and beta bands reflect different information processing mechanisms related to vocal recognition and auditory perception in anurans. PMID:23285010

  10. Novel quad-band terahertz metamaterial absorber based on single pattern U-shaped resonator

    NASA Astrophysics Data System (ADS)

    Wang, Ben-Xin; Wang, Gui-Zhen

    2017-03-01

    A novel quad-band terahertz metamaterial absorber using four different modes of single pattern resonator is demonstrated. Four obvious frequencies with near-perfect absorption are realized. Near-field distributions of the four modes are provided to reveal the physical picture of the multiple-band absorption. Unlike most previous quad-band absorbers that typically require four or more patterns, the designed absorber has only one resonant structure, which is simpler than previous works. The presented quad-band absorber has potential applications in biological sensing, medical imaging, and material detection.

  11. Resting State EEG-based biometrics for individual identification using convolutional neural networks.

    PubMed

    Lan Ma; Minett, James W; Blu, Thierry; Wang, William S-Y

    2015-08-01

    Biometrics is a growing field, which permits identification of individuals by means of unique physical features. Electroencephalography (EEG)-based biometrics utilizes the small intra-personal differences and large inter-personal differences between individuals' brainwave patterns. In the past, such methods have used features derived from manually-designed procedures for this purpose. Another possibility is to use convolutional neural networks (CNN) to automatically extract an individual's best and most unique neural features and conduct classification, using EEG data derived from both Resting State with Open Eyes (REO) and Resting State with Closed Eyes (REC). Results indicate that this CNN-based joint-optimized EEG-based Biometric System yields a high degree of accuracy of identification (88%) for 10-class classification. Furthermore, rich inter-personal difference can be found using a very low frequency band (0-2Hz). Additionally, results suggest that the temporal portions over which subjects can be individualized is less than 200 ms.

  12. Hepatitis C Testing

    PubMed Central

    Rochlani, Maya; Lewis, Jessica H.; Ramsey, Glenn E.; Bontempo, Franklin A.; Shah, Gunjan; Bowman, Rebecca A.; van Thiel, David H.; Starzl, Thomas E.

    2010-01-01

    Plasma samples from 1,182 patients undergoing primary liver transplantation were tested for anti-hepatitis C (HCV) virus by two methods: Ortho HCV ELISA Test System (EIA) and Chiron RIBA HCV Test System (RIBA II). The EIA results, 0 or +, were recorded first, followed by RIBA results, N = negative, P = positive, or I = indeterminate. Concordant results—0N, + P, + I—were found in 1,076 (91%), and discordant results were found in 106 (9%). The EIA optical density did not relate to concordant or discordant results. Band patterns were described by stating the band position (1, 2, 3, or 4) and insetting a dash (−) if no band was visualized. Most + P samples fell into two patterns: 47% showed all four bands, pattern 1234, and 15% showed the two-band pattern, 34. When the EIA was negative, 0P, the opposite was seen: 8% showed the 1234 pattern and 81% showed the 34 pattern. There were 226 samples that formed bands (+ P, 149; 0P, 31; + I, 15; 0I, 31). The frequency of bands was as follows: 4, 32%; 3, 31%; 2, 19%; and 1, 18%. Band 2 and the EIA test detected antibodies to the same c100-3 fragment and showed 74% concordance. No explanation is apparent for the lower concordance rate here than that between the EIA test and bands 3 = 96% or 4 = 88%. The EIA and RIBA II tests, together with positive liver function tests and abnormal tissue pathologic findings, provide a basis for the diagnosis of HCV. PMID:1377442

  13. Observation of topological edge states of acoustic metamaterials at subwavelength scale

    NASA Astrophysics Data System (ADS)

    Dai, Hongqing; Jiao, Junrui; Xia, Baizhan; Liu, Tingting; Zheng, Shengjie; Yu, Dejie

    2018-05-01

    Topological states are of key importance for acoustic wave systems owing to their unique transport properties. In this study, we develop a hexagonal array of hexagonal columns with Helmholtz resonators to obtain subwavelength Dirac cones. Rotation operations are performed to open the Dirac cones and obtain acoustic valley vortex states. In addition, we calculate the angular-dependent frequencies for the band edges at the K-point. Through a topological phase transition, the topological phase of pattern A can change into that of pattern B. The calculations for the bulk dispersion curves show that the acoustic metamaterials exhibit BA-type and AB-type topological edge states. Experimental results demonstrate that a sound wave can transmit well along the topological path. This study could reveal a simple approach to create acoustic topological edge states at the subwavelength scale.

  14. Slow-Theta-to-Gamma Phase–Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories

    PubMed Central

    Lega, Bradley; Burke, John; Jacobs, Joshua; Kahana, Michael J.

    2016-01-01

    Phase–amplitude coupling (PAC) has been proposed as a neural mechanism for coordinating information processing across brain regions. Here we sought to characterize PAC in the human hippocampus, and in temporal and frontal cortices, during the formation of new episodic memories. Intracranial recordings taken as 56 neurosurgical patients studied and recalled lists of words revealed significant hippocampal PAC, with slow-theta activity (2.5–5 Hz) modulating gamma band activity (34–130 Hz). Furthermore, a significant number of hippocampal electrodes exhibited greater PAC during successful than unsuccessful encoding, with the gamma activity at these sites coupled to the trough of the slow-theta oscillation. These same conditions facilitate LTP in animal models, providing a possible mechanism of action for this effect in human memory. Uniquely in the hippocampus, phase preference during item encoding exhibited a biphasic pattern. Overall, our findings help translate between the patterns identified during basic memory tasks in animals and those present during complex human memory encoding. We discuss the unique properties of human hippocampal PAC and how our findings relate to influential theories of information processing based on theta–gamma interactions. PMID:25316340

  15. Variability in glutenin subunit composition of Mediterranean durum wheat germplasm and its relationship with gluten strength.

    PubMed

    Nazco, R; Peña, R J; Ammar, K; Villegas, D; Crossa, J; Moragues, M; Royo, C

    2014-06-01

    The allelic composition at five glutenin loci was assessed by one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) on a set of 155 landraces (from 21 Mediterranean countries) and 18 representative modern varieties. Gluten strength was determined by SDS-sedimentation on samples grown under rainfed conditions during 3 years in north-eastern Spain. One hundred and fourteen alleles/banding patterns were identified (25 at Glu-1 and 89 at Glu-2 / Glu-3 loci); 0·85 of them were in landraces at very low frequency and 0·72 were unreported. Genetic diversity index was 0·71 for landraces and 0·38 for modern varieties. All modern varieties exhibited medium to strong gluten type with none of their 13 banding patterns having a significant effect on gluten-strength type. Ten banding patterns significantly affected gluten strength in landraces. Alleles Glu-B1e (band 20), Glu-A3a (band 6), Glu-A3d (bands 6 + 11), Glu-B3a (bands 2 + 4+15 + 19) and Glu-B2a (band 12) significantly increased the SDS-value, and their effects were associated with their frequency. Two alleles, Glu-A3b (band 5) and Glu-B2b (null), significantly reduced gluten strength, but only the effect of the latter locus could be associated with its frequency. Only three rare banding patterns affected gluten strength significantly: Glu-B1a (band 7), found in six landraces, had a negative effect, whereas banding patterns 2 + 4+14 + 15 + 18 and 2 + 4+15 + 18 + 19 at Glu-B3 had a positive effect. Landraces with outstanding gluten strength were more frequent in eastern than in western Mediterranean countries. The geographical pattern displayed from the frequencies of Glu-A1c is discussed.

  16. Characterization of Trichuris skrjabini by isoenzyme gel electrophoresis: comparative study with Trichuris ovis.

    PubMed

    Cutillas, C; German, P; Arias, P; Guevara, D

    1996-10-01

    Morphological and biometric studies were performed in Trichuris skrjabini (Baskakov, 1924) collected from the caecum of Capra hircus. The LDH (EC 1.1.1.27.), G6PD (EC 1.1.1.49.), GPI (EC 5.3.1.9.), MDH (EC 1.1.1.37) and malic enzyme (ME) (EC 1.1.1.40) isoenzymatic patterns of T. skrjabini were determined by starch gel electrophoresis. The G6PD and GPI isoenzymatic patterns of T. skrjabini displayed two anodic bands for both enzymes: one fast migration band and one band near the origin. This isoenzymatic pattern was interpreted as two gene loci encoding both enzymes. The LDH isoenzymatic pattern of T. skrjabini was characterized by the presence of a cathodically migrating band, while the MDH isoenzymatic pattern showed a very slow cathodic band. These two phenotypes were interpreted as the expression of a homozygous state of a gene locus for LDH and MDH in T. skrjabini. The ME isoenzymatic pattern was characterized by the presence of a single anodic band. Further, comparative isoenzymatic studies were carried out between T. skrjabini and T. ovis. The different G6PD, GPI, LDH, MDH and ME isoenzymatic patterns observed for both species allowed us to distinguish them and therefore to use isoenzymatic patterns as a diagnostic tool to differentiate species of Trichuris.

  17. Multifrequency InSAR height reconstruction through maximum likelihood estimation of local planes parameters.

    PubMed

    Pascazio, Vito; Schirinzi, Gilda

    2002-01-01

    In this paper, a technique that is able to reconstruct highly sloped and discontinuous terrain height profiles, starting from multifrequency wrapped phase acquired by interferometric synthetic aperture radar (SAR) systems, is presented. We propose an innovative unwrapping method, based on a maximum likelihood estimation technique, which uses multifrequency independent phase data, obtained by filtering the interferometric SAR raw data pair through nonoverlapping band-pass filters, and approximating the unknown surface by means of local planes. Since the method does not exploit the phase gradient, it assures the uniqueness of the solution, even in the case of highly sloped or piecewise continuous elevation patterns with strong discontinuities.

  18. Surface contamination detection by means of near-infrared stimulation of thermal luminescence

    NASA Astrophysics Data System (ADS)

    Carrieri, Arthur H.; Roese, Erik S.

    2006-02-01

    A method for remotely detecting liquid chemical contamination on terrestrial surfaces is presented. Concurrent to irradiation by an absorbing near-infrared beam, the subject soil medium liberates radiance called thermal luminescence (TL) comprising middle-infrared energies (numir) that is scanned interferometrically in beam duration tau. Cyclic states of absorption and emission by the contaminant surrogate are rendered from a sequential differential-spectrum measurement [deltaS(numir,tau)] of the scanned TL. Detection of chemical warfare agent simulant wetting soil is performed in this manner, for example, through pattern recognition of its unique, thermally dynamic, molecular vibration resonance bands on display in the deltaS(numir,tau) metric.

  19. Analysis of quasi-periodic pore-network structure of centric marine diatom frustules

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Alvarez, Christine E.; Meyers, Keith; Deheyn, Dimitri D.; Hildebrand, Mark; Kieu, Khanh; Norwood, Robert A.

    2015-03-01

    Diatoms are a common type of phytoplankton characterized by their silica exoskeleton known as a frustule. The diatom frustule is composed of two valves and a series of connecting girdle bands. Each diatom species has a unique frustule shape and valves in particular species display an intricate pattern of pores resembling a photonic crystal structure. We used several numerical techniques to analyze the periodic and quasi-periodic valve pore-network structure in diatoms of the Coscinodiscophyceae order. We quantitatively identify defect locations and pore spacing in the valve and use this information to better understand the optical and biological properties of the diatom.

  20. Multi-band infrared camera systems

    NASA Astrophysics Data System (ADS)

    Davis, Tim; Lang, Frank; Sinneger, Joe; Stabile, Paul; Tower, John

    1994-12-01

    The program resulted in an IR camera system that utilizes a unique MOS addressable focal plane array (FPA) with full TV resolution, electronic control capability, and windowing capability. Two systems were delivered, each with two different camera heads: a Stirling-cooled 3-5 micron band head and a liquid nitrogen-cooled, filter-wheel-based, 1.5-5 micron band head. Signal processing features include averaging up to 16 frames, flexible compensation modes, gain and offset control, and real-time dither. The primary digital interface is a Hewlett-Packard standard GPID (IEEE-488) port that is used to upload and download data. The FPA employs an X-Y addressed PtSi photodiode array, CMOS horizontal and vertical scan registers, horizontal signal line (HSL) buffers followed by a high-gain preamplifier and a depletion NMOS output amplifier. The 640 x 480 MOS X-Y addressed FPA has a high degree of flexibility in operational modes. By changing the digital data pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or noninterlaced format. The thermal sensitivity performance of the second system's Stirling-cooled head was the best of the systems produced.

  1. Characterization of TEM Moiré Patterns Originating from Two Monolayer Graphenes Grown on the Front and Back Sides of a Copper Substrate by CVD Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi

    2018-06-01

    The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.

  2. A preliminary investigation of bird classification by Doppler radar

    NASA Technical Reports Server (NTRS)

    Martinson, L. W.

    1973-01-01

    A preliminary study of the application of Doppler radar to the classification of birds is reported. The desirability for improvements in bird classification stems primarily from the hazards they present to jet aircraft in flight and in the vicinity of airports. A secondary need exists in the study of bird migration. The wing body and tail motion of a bird in flight reflect signals which, when analyzed properly present a signature of wing beat pattern which is unique for each bird species. Although the results of this investigation did not validate the feasibility of classifying bird species, they do indicate that a more thorough investigation is warranted. Certain gross characteristics such as wing beat rates, multiple bird patterns, and bird maneuverability, were indicated clearly in the results. Large birds with slow wing beat rates appear to be the most optimum subject for further study with the X-band Doppler radar used in this investigation.

  3. Separation of man-made and natural patterns in high-altitude imagery of agricultural areas

    NASA Technical Reports Server (NTRS)

    Samulon, A. S.

    1975-01-01

    A nonstationary linear digital filter is designed and implemented which extracts the natural features from high-altitude imagery of agricultural areas. Essentially, from an original image a new image is created which displays information related to soil properties, drainage patterns, crop disease, and other natural phenomena, and contains no information about crop type or row spacing. A model is developed to express the recorded brightness in a narrow-band image in terms of man-made and natural contributions and which describes statistically the spatial properties of each. The form of the minimum mean-square error linear filter for estimation of the natural component of the scene is derived and a suboptimal filter is implemented. Nonstationarity of the two-dimensional random processes contained in the model requires a unique technique for deriving the optimum filter. Finally, the filter depends on knowledge of field boundaries. An algorithm for boundary location is proposed, discussed, and implemented.

  4. Damascus Steel Revisited

    NASA Astrophysics Data System (ADS)

    Verhoeven, J. D.; Pendray, A. H.; Dauksch, W. E.; Wagstaff, S. R.

    2018-05-01

    A review is given of the work we presented in the 1990s that successfully developed a technique for reproducing the surface patterns and internal microstructure of genuine Damascus steel blades. That work showed that a key factor in making these blades was the addition of quite small levels of carbide-forming elements, notably V. Experiments are presented for blades made from slow- and fast-cooled ingots, and the results support our previous hypothesis that the internal banded microstructure results from microsegregation of V between dendrites during ingot solidification. A hypothetical model was presented for the mechanism causing the unique internal microstructure that gives rise to the surface pattern forming during the forging of the ingots from which the blades are made. This article attempts to explain the model more clearly and presents some literature data that offer support to the model. It also discusses an alternate model recently proposed by Foll.

  5. An endangered new species of seasonal killifish of the genus Austrolebias (Cyprinodontiformes: Aplocheiloidei) from the Bermejo river basin in the Western Chacoan Region.

    PubMed

    Alonso, Felipe; Terán, Guillermo Enrique; Calviño, Pablo; García, Ignacio; Cardoso, Yamila; García, Graciela

    2018-01-01

    Austrolebias wichi, new species, is herein described from seasonal ponds of the Bermejo river basin in the Western Chacoan district in northwestern Argentina. This species was found in a single pond, a paleochannel of the Bermejo River, which is seriously disturbed by soybean plantations surrounding it. Despite intensive sampling in the area, this species was only registered in this pond where it was relatively scarce. Therefore, we consider this species as critically endangered. This species is the sister species of A. patriciae in our phylogenetic analyses and is similar, in a general external aspect, to A. varzeae and A. carvalhoi. It can be distinguished among the species of Austrolebias by its unique color pattern in males. Additionally, from A. varzeae by presenting a supraorbital band equal or longer than the infraorbital band (vs. shorter) and from A. patriciae by the convex dorsal profile of head (vs. concave). Further diagnostic characters and additional comments on its ecology and reproduction are provided.

  6. Karyotypic Characteristics of the Ornithophilic Simulium aureum Species Group (Diptera: Simuliidae) Along the Northern Black Sea Coast and the Origin of Chromosomal Reduction.

    PubMed

    Vlasov, Sergey; Adler, Peter H; Topolenko, Varvara; Aibulatov, Sergey; Gorlov, Ivan; Harutyunova, Maria; Harutyunova, Karine

    2018-05-03

    The Simulium aureum group (Diptera: Simuliidae), also known as subgenus Eusimulium Roubaud, is a monophyletic, Holarctic taxon of bird-feeding black flies with a reduced chromosome number of two and remarkably similar external structure in all life stages. We analyzed the banding patterns of the polytene chromosomes to understand the composition of this species group along the northern coast of the Black Sea where two little-known nominal species have their type localities. Our analyses link the names Simulium krymense (Rubtsov) and Simulium maritimum (Rubtsov) with unique chromosomal characters, indicate that both are male chiasmate, and reveal the presence of Simulium angustipes Edwards along the northern coast of the Black Sea for the first time. We show that S. krymense has a banding sequence most similar to the hypothesized ancestral form of the S. aureum group, and that the entire group is derived from within the Simulium vernum group, rendering the latter group and its encompassing subgenus, Nevermannia Enderlein, paraphyletic.

  7. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  8. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barden, Holly E.; Behnsen, Julia; Bergmann, Uwe

    Solenopora jurassica is a fossil calcareous alga that functioned as an important reef-building organism during the Palaeozoic. It is of significant palaeobiological interest due to its distinctive but poorly understood pink and white banding. Though widely accepted as an alga there is still debate over its taxonomic affinity, with recent work arguing that it should be reclassified as a chaetetid sponge. The banding is thought to be seasonal, but there is no conclusive evidence for this. Other recent work has, however demonstrated the presence of a unique organic boron-containing pink/red pigment in the pink bands of S. jurassica. We presentmore » new geochemical evidence concerning the seasonality and pigmentation of S. jurassica. Seasonal growth cycles are demonstrated by X-ray radiography, which shows differences in calcite density, and by varying δ 13C composition of the bands. Temperature variation in the bands is difficult to constrain accurately due to conflicting patterns arising from Mg/Ca molar ratios and δ 18O data. Fluctuating chlorine levels indicate increased salinity in the white bands, when combined with the isotope data this suggests more suggestive of marine conditions during formation of the white band and a greater freshwater component (lower chlorinity) during pink band precipitation (δ 18O). Increased photosynthesis is inferred within the pink bands in comparison to the white, based on δ 13C. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) show the presence of tetramethyl pyrrole, protein moieties and carboxylic acid groups, suggestive of the presence of the red algal pigment phycoerythrin. This is consistent with the pink colour of S. jurassica. As phycoerythrin is only known to occur in algae and cyanobacteria, and no biomarker evidence of bacteria or sponges was detected we conclude S. jurassica is most likely an alga. Pigment analysis may be a reliable classification method for fossil algae.« less

  10. Geochemical Evidence of the Seasonality, Affinity and Pigmenation of Solenopora jurassica

    DOE PAGES

    Barden, Holly E.; Behnsen, Julia; Bergmann, Uwe; ...

    2015-09-14

    Solenopora jurassica is a fossil calcareous alga that functioned as an important reef-building organism during the Palaeozoic. It is of significant palaeobiological interest due to its distinctive but poorly understood pink and white banding. Though widely accepted as an alga there is still debate over its taxonomic affinity, with recent work arguing that it should be reclassified as a chaetetid sponge. The banding is thought to be seasonal, but there is no conclusive evidence for this. Other recent work has, however demonstrated the presence of a unique organic boron-containing pink/red pigment in the pink bands of S. jurassica. We presentmore » new geochemical evidence concerning the seasonality and pigmentation of S. jurassica. Seasonal growth cycles are demonstrated by X-ray radiography, which shows differences in calcite density, and by varying δ 13C composition of the bands. Temperature variation in the bands is difficult to constrain accurately due to conflicting patterns arising from Mg/Ca molar ratios and δ 18O data. Fluctuating chlorine levels indicate increased salinity in the white bands, when combined with the isotope data this suggests more suggestive of marine conditions during formation of the white band and a greater freshwater component (lower chlorinity) during pink band precipitation (δ 18O). Increased photosynthesis is inferred within the pink bands in comparison to the white, based on δ 13C. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) show the presence of tetramethyl pyrrole, protein moieties and carboxylic acid groups, suggestive of the presence of the red algal pigment phycoerythrin. This is consistent with the pink colour of S. jurassica. As phycoerythrin is only known to occur in algae and cyanobacteria, and no biomarker evidence of bacteria or sponges was detected we conclude S. jurassica is most likely an alga. Pigment analysis may be a reliable classification method for fossil algae.« less

  11. Geochemical Evidence of the Seasonality, Affinity and Pigmenation of Solenopora jurassica

    PubMed Central

    Barden, Holly E.; Behnsen, Julia; Bergmann, Uwe; Leng, Melanie J.; Manning, Phillip L.; Withers, Philip J.; Wogelius, Roy A.; van Dongen, Bart E.

    2015-01-01

    Solenopora jurassica is a fossil calcareous alga that functioned as an important reef-building organism during the Palaeozoic. It is of significant palaeobiological interest due to its distinctive but poorly understood pink and white banding. Though widely accepted as an alga there is still debate over its taxonomic affinity, with recent work arguing that it should be reclassified as a chaetetid sponge. The banding is thought to be seasonal, but there is no conclusive evidence for this. Other recent work has, however demonstrated the presence of a unique organic boron-containing pink/red pigment in the pink bands of S. jurassica. We present new geochemical evidence concerning the seasonality and pigmentation of S. jurassica. Seasonal growth cycles are demonstrated by X-ray radiography, which shows differences in calcite density, and by varying δ13C composition of the bands. Temperature variation in the bands is difficult to constrain accurately due to conflicting patterns arising from Mg/Ca molar ratios and δ18O data. Fluctuating chlorine levels indicate increased salinity in the white bands, when combined with the isotope data this suggests more suggestive of marine conditions during formation of the white band and a greater freshwater component (lower chlorinity) during pink band precipitation (δ18O). Increased photosynthesis is inferred within the pink bands in comparison to the white, based on δ13C. Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS) and Fourier Transform Infrared Spectroscopy (FTIR) show the presence of tetramethyl pyrrole, protein moieties and carboxylic acid groups, suggestive of the presence of the red algal pigment phycoerythrin. This is consistent with the pink colour of S. jurassica. As phycoerythrin is only known to occur in algae and cyanobacteria, and no biomarker evidence of bacteria or sponges was detected we conclude S. jurassica is most likely an alga. Pigment analysis may be a reliable classification method for fossil algae. PMID:26367117

  12. A dual-band reconfigurable Yagi-Uda antenna with diverse radiation patterns

    NASA Astrophysics Data System (ADS)

    Saurav, Kushmanda; Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-07-01

    In this paper, a dual-band pattern reconfigurable antenna is proposed. The antenna comprises of a dual-band complementary split ring resonators (CSRRs) loaded dipole as the driven element and two copper strips with varying lengths as parasitic segments on both sides of the driven dipole. PIN diodes are used with the parasitic elements to control their electrical length. The CSRRs loading provide a lower order mode in addition to the reference dipole mode, while the parasitic elements along with the PIN diodes are capable of switching the omni-directional radiation of the dual-band driven element to nine different configurations of radiation patterns which include bi-directional end-fire, broadside, and uni-directional end-fire in both the operating bands. A prototype of the designed antenna together with the PIN diodes and DC bias lines is fabricated to validate the concept of dual-band radiation pattern diversity. The simulation and measurement results are in good agreement. The proposed antenna can be used in wireless access points for PCS and WLAN applications.

  13. Characterization of local goat breeds using RAP-DNA markers

    NASA Astrophysics Data System (ADS)

    Al-Barzinji, Yousif M. S.; Hamad, Aram O.

    2017-09-01

    The present study was conducted on different colors of local goat breeds. A number of 216 does were sampled from the seven groups. Genomic DNA was extracted from the blood samples. From the twenty used RAPD primers 12 of them were amplified, and presence of bands. The total fragment number of 12 primers over all the goat breed samples was 485 fragments. Out of the 485 fragments, 90 of them were Polymorphic fragments numbers (PFN). From all bands obtained, 20 of them possessed unique bands. The highest unique band was found in locus RAP 6 which has 4 unique bands, three of them in the Maraz Brown and one in the local Koor. Nei's gene diversity and Shanon's information index in this study were averaged 0.38 and 0.60, respectively. The genetic distance among several goat breeds ranged from 9.11 to 43.33%. The highest genetic distance 43.33% recorded between Maraz goat and other goat breeds and between local Koor and other goat (except Maraz goats) breeds (37.79%). However, the lowest genetic distance recorded between local white and Pnok. The distance between (local Black and Pnok) and (local Black and local white) was 22.75%. In conclusions, the high distance among these goat breeds, polymorphism and high numbers of unique bands found in present study indicates that these goat breeds have the required amount of genetic variation to made genetic improvement. This study helps us to clarify the image of the genetic diversity of the local goat breeds and the breeders can used it for mating system when need to make the crossing among these goat breeds.

  14. Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface.

    PubMed

    Zhang, Yu; Zhou, Guoxu; Jin, Jing; Wang, Xingyu; Cichocki, Andrzej

    2015-11-30

    Common spatial pattern (CSP) has been most popularly applied to motor-imagery (MI) feature extraction for classification in brain-computer interface (BCI) application. Successful application of CSP depends on the filter band selection to a large degree. However, the most proper band is typically subject-specific and can hardly be determined manually. This study proposes a sparse filter band common spatial pattern (SFBCSP) for optimizing the spatial patterns. SFBCSP estimates CSP features on multiple signals that are filtered from raw EEG data at a set of overlapping bands. The filter bands that result in significant CSP features are then selected in a supervised way by exploiting sparse regression. A support vector machine (SVM) is implemented on the selected features for MI classification. Two public EEG datasets (BCI Competition III dataset IVa and BCI Competition IV IIb) are used to validate the proposed SFBCSP method. Experimental results demonstrate that SFBCSP help improve the classification performance of MI. The optimized spatial patterns by SFBCSP give overall better MI classification accuracy in comparison with several competing methods. The proposed SFBCSP is a potential method for improving the performance of MI-based BCI. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1982-01-01

    A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  16. Determination of circulation and turbidity patterns in Kerr Lake from LANDSAT MSS imagery. [Kerr Lake, Virginia, North Carolina

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1981-01-01

    The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  17. Color pattern analysis of nymphalid butterfly wings: revision of the nymphalid groundplan.

    PubMed

    Otaki, Joji M

    2012-09-01

    To better understand the developmental mechanisms of color pattern variation in butterfly wings, it is important to construct an accurate representation of pattern elements, known as the "nymphalid groundplan". However, some aspects of the current groundplan remain elusive. Here, I examined wing-wide elemental patterns of various nymphalid butterflies and confirmed that wing-wide color patterns are composed of the border, central, and basal symmetry systems. The central and basal symmetry systems can express circular patterns resembling eyespots, indicating that these systems have developmental mechanisms similar to those of the border symmetry system. The wing root band commonly occurs as a distinct symmetry system independent from the basal symmetry system. In addition, the marginal and submarginal bands are likely generated as a single system, referred to as the "marginal band system". Background spaces between two symmetry systems are sometimes light in coloration and can produce white bands, contributing significantly to color pattern diversity. When an element is enlarged with a pale central area, a visually similar (yet developmentally distinct) white band is produced. Based on the symmetric relationships of elements, I propose that both the central and border symmetry systems are comprised of "core elements" (the discal spot and the border ocelli, respectively) and a pair of "paracore elements" (the distal and proximal bands and the parafocal elements, respectively). Both core and paracore elements can be doubled, or outlined. Developmentally, this system configuration is consistent with the induction model, but not with the concentration gradient model for positional information.

  18. Hilbert-Curve Fractal Antenna With Radiation- Pattern Diversity

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Miranda, Felix A.; Zaman, Afroz

    2007-01-01

    A printed, folded, Hilbert-curve fractal microwave antenna has been designed and built to offer advantages of compactness and low mass, relative to other antennas designed for the same operating frequencies. The primary feature of the antenna is that it offers the advantage of radiation-pattern diversity without need for electrical or mechanical switching: it can radiate simultaneously in an end-fire pattern at a frequency of 2.3 GHz (which is in the S-band) and in a broadside pattern at a frequency of 16.8 GHz (which is in the Ku-band). This radiation-pattern diversity could be utilized, for example, in applications in which there were requirements for both S-band ground-to-ground communications and Ku-band ground-to-aircraft or ground-to-spacecraft communications. The lack of switching mechanisms or circuitry makes this antenna more reliable, easier, and less expensive to fabricate than it otherwise would be.

  19. Electron Localization States in Asymmetric Shape Carbon Nanotubes Caused by Hydrogen Adsorption

    NASA Astrophysics Data System (ADS)

    Pan, L. J.; Chen, W. G.

    2017-12-01

    In this paper, we presented pseudopotential-based density functional theory studies on energy, structure, energy band structure of hydrogenated single-walled carbon nanotube. The stability of the configuration mainly depends on hydrogen coverage. According to the adsorption energies, the stability deteriorates with the increase of the hydrogen adsorption. The cross section of configurations become various shapes such as “beetle” or “lip” appearance without the balanced effects of hydrogen atoms. We also explored the energy band structures of configurations in three typical adsorption patterns, showing that the disparate trends of energy band gap as the hydrogen atoms concentrate. For C32H24, the band gap may reach the large value of 2.79 eV for the adsorption pattern A configuration and reduce to be zero for the adsorption pattern C case, the values of band gap for pattern A configurations decrease, which is opposite of the pattern B configurations as the adsorption hydrogen becomes more disperse. It is deduced that the hydrogen adsorption has significant effect on the electrical properties of the carbon nanotube.

  20. Updates to WFC3/UVIS Filter-Dependent and Filter-Distinct Distortion Corrections

    NASA Astrophysics Data System (ADS)

    Martlin, Catherine; Kozhurina-Platais, Vera; McKay, Myles; Sabbi, Elena

    2018-06-01

    The WFC3/UVIS filter wheel contains 63 filters that cover a large range of wavelengths from near ultraviolet to the near infrared. Previously, analysis was completed on the 14 most used UVIS filters to calibrate geometric distortions. These distortions are due to a combination of the optical assembly of HST as well as the variabilities in the composition of individual filters. We report recent updates to reference files that aid in correcting for these distortions of an additional 22 UVIS narrow and medium band filters and 4 unique UVIS filters. They were created following a calibration of the large-scale optical distortions and fine-scale filter-dependent distortions. Furthermore, we present results on a study into a selection of unique polynomial coefficient terms from all solved filters which allows us to better investigate the filter-dependent patterns across a large range of wavelengths.These updates will provide important enhancements for HST/WFC3 users as they allow more accurate alignment of images across the range of UVIS filters.

  1. Comparative evaluation of an automated repetitive-sequence-based PCR instrument versus pulsed-field gel electrophoresis in the setting of a Serratia marcescens nosocomial infection outbreak.

    PubMed

    Ligozzi, Marco; Fontana, Roberta; Aldegheri, Marco; Scalet, Giovanna; Lo Cascio, Giuliana

    2010-05-01

    A semiautomated, repetitive-sequence-based PCR (rep-PCR) instrument (DiversiLab system) was evaluated in comparison with pulsed-field gel electrophoresis (PFGE) to investigate an outbreak of Serratia marcescens infections in a neonatal intensive care unit (NICU). A selection of 36 epidemiologically related and 8 epidemiologically unrelated isolates was analyzed. Among the epidemiologically related isolates, PFGE identified five genetically unrelated patterns. Thirty-two isolates from patients and wet nurses showed the same PFGE profile (pattern A). Genetically unrelated PFGE patterns were found in one patient (pattern B), in two wet nurses (patterns C and D), and in an environmental isolate from the NICU (pattern G). Rep-PCR identified seven different patterns, three of which included the 32 isolates of PFGE type A. One or two band differences in isolates of these three types allowed isolates to be categorized as similar and included in a unique cluster. Isolates of different PFGE types were also of unrelated rep-PCR types. All of the epidemiologically unrelated isolates were of different PFGE and rep-PCR types. The level of discrimination exhibited by rep-PCR with the DiversiLab system allowed us to conclude that this method was able to identify genetic similarity in a spatio-temporal cluster of S. marcescens isolates.

  2. Myosin isoform switching during assembly of the Drosophila flight muscle thick filament lattice.

    PubMed

    Orfanos, Zacharias; Sparrow, John C

    2013-01-01

    During muscle development myosin molecules form symmetrical thick filaments, which integrate with the thin filaments to produce the regular sarcomeric lattice. In Drosophila indirect flight muscles (IFMs) the details of this process can be studied using genetic approaches. The weeP26 transgenic line has a GFP-encoding exon inserted into the single Drosophila muscle myosin heavy chain gene, Mhc. The weeP26 IFM sarcomeres have a unique MHC-GFP-labelling pattern restricted to the sarcomere core, explained by non-translation of the GFP exon following alternative splicing. Characterisation of wild-type IFM MHC mRNA confirmed the presence of an alternately spliced isoform, expressed earlier than the major IFM-specific isoform. The two wild-type IFM-specific MHC isoforms differ by the presence of a C-terminal 'tailpiece' in the minor isoform. The sequential expression and assembly of these two MHCs into developing thick filaments suggest a role for the tailpiece in initiating A-band formation. The restriction of the MHC-GFP sarcomeric pattern in weeP26 is lifted when the IFM lack the IFM-specific myosin binding protein flightin, suggesting that it limits myosin dissociation from thick filaments. Studies of flightin binding to developing thick filaments reveal a progressive binding at the growing thick filament tips and in a retrograde direction to earlier assembled, proximal filament regions. We propose that this flightin binding restricts myosin molecule incorporation/dissociation during thick filament assembly and explains the location of the early MHC isoform pattern in the IFM A-band.

  3. Keeping the band together: evidence for false boundary disruptive coloration in a butterfly.

    PubMed

    Seymoure, B M; Aiello, A

    2015-09-01

    There is a recent surge of evidence supporting disruptive coloration, in which patterns break up the animal's outline through false edges or boundaries, increasing survival in animals by reducing predator detection and/or preventing recognition. Although research has demonstrated that false edges are successful for reducing predation of prey, research into the role of internal false boundaries (i.e. stripes and bands) in reducing predation remains warranted. Many animals have stripes and bands that may function disruptively. Here, we test the possible disruptive function of wing band patterning in a butterfly, Anartia fatima, using artificial paper and plasticine models in Panama. We manipulated the band so that one model type had the band shifted to the wing margin (nondisruptive treatment) and another model had a discontinuous band located on the wing margin (discontinuous edge treatment). We kept the natural wing pattern to represent the false boundary treatment. Across all treatment groups, we standardized the area of colour and used avian visual models to confirm a match between manipulated and natural wing colours. False boundary models had higher survival than either the discontinuous edge model or the nondisruptive model. There was no survival difference between the discontinuous edge model and the nondisruptive model. Our results demonstrate the importance of wing bands in reducing predation on butterflies and show that markings set in from the wing margin can reduce predation more effectively than marginal bands and discontinuous marginal patterns. This study demonstrates an adaptive benefit of having stripes and bands. © 2015 European Society For Evolutionary Biology.

  4. Internal hernia due to adjustable gastric band tubing: review of the literature and illustrative case video.

    PubMed

    Hamed, Osama H; Simpson, Lashondria; Lomenzo, Emanuele; Kligman, Mark D

    2013-11-01

    Laparoscopic adjustable gastric banding (LAGB) is a commonly performed bariatric procedure. Device-related morbidity is typically associated with the subcutaneous port or the band itself. Complications related to band tubing are unusual. Small bowel obstruction (SBO) after LAGB is a unique and serious complication; there is the potential of delayed diagnosis and the risk of closed-loop bowel obstruction. SBO secondary to internal hernia caused by band tubing is very rare, with only five cases reported in the literature. In this article, we describe our experience and provide an illustrative video of a case of SBO related to band tubing. We also provide a detailed review of the few previously published case reports. Based on the common features of our case and other published case reports, we hypothesize some risk factors that might lead to this unique morbidity of adjustable gastric band tubing and provide potential solutions to prevent this problem. Tubing-related SBO is a serious complication with the risk of closed-loop bowel obstruction. Urgent operative exploration is required to avoid bowel strangulation. To prevent recurrence we advise functionally shortening the tubing by tucking it to the right upper quadrant above the liver and also provide some omental coverage between the bowel and band tubing if possible.

  5. An outbreak of neonatal toxic shock syndrome-like exanthematous disease (NTED) caused by methicillin-resistant Staphylococcus aureus (MRSA) in a neonatal intensive care unit.

    PubMed

    Nakano, Miyo; Miyazawa, Hirofumi; Kawano, Yasushi; Kawagishi, Mika; Torii, Keizo; Hasegawa, Tadao; Iinuma, Yoshitsugu; Ohta, Michio

    2002-01-01

    Neonatal toxic shock syndrome-like exanthematous disease (NTED) is a new entity of methicillin-resistant Staphylococcus aureus (MRSA) infection. Most of NTED cases reported previously in the literature were sporadic ones. In the present report, we describe an outbreak of NTED that occurred in a neonatal intensive care unit (NICU) between April, 1999 and April, 2000 in Japan. All MRSA strains isolated from 14 patients (6 NTED, 2 infections and 6 colonizations) in this outbreak belonged to the group of coagulase II and produced toxic shock syndrome toxin 1 (TSST-1). Of these, 14 strains produced staphylococcal enterotoxin C (SEC). No other superantigenic toxins were produced by these strains. The pulsed field gel electrophoresis (PFGE) patterns of genomic DNA digested with SmaI were indistinguishable each other due to no band shifting in all of the 13 strains except for strain O-21 and M56. Strain M56 was different from the dominant type in the positions of only 2 bands, whereas the pattern of strain O-21 had no similarity with the other pattern, suggesting that this outbreak was associated with the spread of a unique MRSA strain in the NICU. Two-dimensional electrophoresis (2-DE) analysis of exoproteins revealed that the patterns of these 14 strains were very indistinguishable to each other, and that these strains produced very large amounts of TSST-1 and SEC3 subtype superantigens, as measured with computer-assisted image analysis of the intensity of 2-DE spots. The 2-DE gel of O-21 showed the different pattern from the others. These results as well as the profiles of toxin production also supported the conclusion drawn from PFGE analysis. Based on these results, the involvement of TSST-1 and SEC3 in the pathogenesis of NTED is discussed.

  6. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations.

    PubMed

    Gazoni, Thiago; Gruber, Simone L; Silva, Ana P Z; Araújo, Olivia G S; Narimatsu, Hideki; Strüssmann, Christine; Haddad, Célio F B; Kasahara, Sanae

    2012-12-26

    The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation. Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents. Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning.

  7. Cytogenetic analyses of eight species in the genus Leptodactylus Fitzinger, 1843 (Amphibia, Anura, Leptodactylidae), including a new diploid number and a karyotype with multiple translocations

    PubMed Central

    2012-01-01

    Background The karyotypes of Leptodactylus species usually consist of 22 bi-armed chromosomes, but morphological variations in some chromosomes and even differences in the 2n have been reported. To better understand the mechanisms responsible for these differences, eight species were analysed using classical and molecular cytogenetic techniques, including replication banding with BrdU incorporation. Results Distinct chromosome numbers were found: 2n = 22 in Leptodactylus chaquensis, L. labyrinthicus, L. pentadactylus, L. petersii, L. podicipinus, and L. rhodomystax; 2n = 20 in Leptodactylus sp. (aff. podicipinus); and 2n = 24 in L. marmoratus. Among the species with 2n = 22, only three had the same basic karyotype. Leptodactylus pentadactylus presented multiple translocations, L. petersii displayed chromosome morphological discrepancy, and L. podicipinus had four pairs of telocentric chromosomes. Replication banding was crucial for characterising this variability and for explaining the reduced 2n in Leptodactylus sp. (aff. podicipinus). Leptodactylus marmoratus had few chromosomes with a similar banding patterns to the 2n = 22 karyotypes. The majority of the species presented a single NOR-bearing pair, which was confirmed using Ag-impregnation and FISH with an rDNA probe. In general, the NOR-bearing chromosomes corresponded to chromosome 8, but NORs were found on chromosome 3 or 4 in some species. Leptodactylus marmoratus had NORs on chromosome pairs 6 and 8. The data from C-banding, fluorochrome staining, and FISH using the telomeric probe helped in characterising the repetitive sequences. Even though hybridisation did occur on the chromosome ends, telomere-like repetitive sequences outside of the telomere region were identified. Metaphase I cells from L. pentadactylus confirmed its complex karyotype constitution because 12 chromosomes appeared as ring-shaped chain in addition to five bivalents. Conclusions Species of Leptodactylus exhibited both major and minor karyotypic differences which were identified by classical and molecular cytogenetic techniques. Replication banding, which is a unique procedure that has been used to obtain longitudinal multiple band patterns in amphibian chromosomes, allowed us to outline the general mechanisms responsible for these karyotype differences. The findings also suggested that L. marmoratus, which was formerly included in the genus Adenomera, may have undergone great chromosomal repatterning. PMID:23268622

  8. Fatigue level estimation of monetary bills based on frequency band acoustic signals with feature selection by supervised SOM

    NASA Astrophysics Data System (ADS)

    Teranishi, Masaru; Omatu, Sigeru; Kosaka, Toshihisa

    Fatigued monetary bills adversely affect the daily operation of automated teller machines (ATMs). In order to make the classification of fatigued bills more efficient, the development of an automatic fatigued monetary bill classification method is desirable. We propose a new method by which to estimate the fatigue level of monetary bills from the feature-selected frequency band acoustic energy pattern of banking machines. By using a supervised self-organizing map (SOM), we effectively estimate the fatigue level using only the feature-selected frequency band acoustic energy pattern. Furthermore, the feature-selected frequency band acoustic energy pattern improves the estimation accuracy of the fatigue level of monetary bills by adding frequency domain information to the acoustic energy pattern. The experimental results with real monetary bill samples reveal the effectiveness of the proposed method.

  9. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, M. E.; Carver, A.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.

    2013-01-01

    In this paper, we present experimental results and band structure calculations that illuminate the unique properties of superlattice-doped detectors. Numerical band structure calculations are presented to analyze the dependencies of surface passivation on dopant profiles and interface trap densities (Figure 3). Experiments and calculations show that quantum-engineered surfaces, grown at JPL by low temperature molecular beam epitaxy, achieve a qualitative as well as quantitative uniqueness in their near-immunity to high densities of surface and interface traps.

  10. Studies on photonic crystal composites: Fabrication and applications

    NASA Astrophysics Data System (ADS)

    Ying, Yurong

    There is considerable interest in developing three-dimensional ordered dielectric structures because of their unique optical property, the photonic band gap. A material containing this photonic band gap can be used to control the propagation of electromagnetic waves. This characteristic can be utilized in fabricating a number of diffractive optical devices. A crystalline colloidal array (CCA) is one such three-dimensional ordered dielectric structure, formed through the self-assembly of monodispersed, surface-charged colloidal particles when they are dispersed in a polar liquid medium. Previous work has demonstrated that monodispersed, negatively charged polystyrene spheres can self-assemble into a face-centered cubic (fcc) structure when they are dispersed in a polar medium. This fee lattice can be locked in a hydrogel-based polymeric network and then encapsulated into a water-free elastomer network. These photonic crystal hydrogel films exhibit a solvatochromic effect. A method has been developed for creating patterns in photonic crystal hydrogel films based on this solvatochromic effect via a direct photopolymerization process. The multicolor pattern generation induced by this method resulted in macro- and micropatterns with a large color contrast, i.e. the difference between the patterned area and the background is greater than 150 nm. Unfortunately, CCA systems often exhibit intrinsic and extrinsic defects. To reduce the extrinsic defects incurred during the film fabrication process, a modified lithographic technique was developed to fabricate a high quality, large area, ca. 1 cm2 and a robust, water-free photonic band gap composite film having a thickness of 35 mum. The optical properties of these composite films change in response to their mechanical deformation. These robust films can change shape and recover after stretching or compression without destroying the order of the crystal. These thin films have a high sensitivity to a pressure variation when they are employed as a window in a pressure cell. In total, a 212 nm stop band shift was achieved as the pressure changed from 0 psi to 2.9 psi. Utilizing its mechanochromic response, this thin PBG composite film also has been employed as part of a resonant cavity to develop a thin film organic laser with a tunable emission wavelength of 32 nm. Since the refractive-index contrast between the polystyrene spheres and the polymeric matrix is relatively low, only a narrow stop band can be observed. To increase the contrast, CCA formed using organic dye doped polystyrene spheres and a crystalline colloidal array templated inverse opal was successfully synthesized.

  11. Mesoscale pattern formation of self-propelled rods with velocity reversal

    NASA Astrophysics Data System (ADS)

    Großmann, Robert; Peruani, Fernando; Bär, Markus

    2016-11-01

    We study self-propelled particles with velocity reversal interacting by uniaxial (nematic) alignment within a coarse-grained hydrodynamic theory. Combining analytical and numerical continuation techniques, we show that the physics of this active system is essentially controlled by the reversal frequency. In particular, we find that elongated, high-density, ordered patterns, called bands, emerge via subcritical bifurcations from spatially homogeneous states. Our analysis reveals further that the interaction of bands is weakly attractive and, consequently, bands fuse upon collision in analogy with nonequilibrium nucleation processes. Moreover, we demonstrate that a renormalized positive line tension can be assigned to stable bands below a critical reversal rate, beyond which they are transversally unstable. In addition, we discuss the kinetic roughening of bands as well as their nonlinear dynamics close to the threshold of transversal instability. Altogether, the reduction of the multiparticle system onto the dynamics of bands provides a unified framework to understand the emergence and stability of nonequilibrium patterns in this self-propelled particle system. In this regard, our results constitute a proof of principle in favor of the hypothesis in microbiology that velocity reversal of gliding rod-shaped bacteria regulates the transitions between various self-organized patterns observed during the bacterial life cycle.

  12. Earth as art three

    USGS Publications Warehouse

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  13. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  14. Probing the mystery of Liesegang band formation: revealing the origin of self-organized dual-frequency micro and nanoparticle arrays.

    PubMed

    Tóth, Rita; Walliser, Roché M; Lagzi, István; Boudoire, Florent; Düggelin, Marcel; Braun, Artur; Housecroft, Catherine E; Constable, Edwin C

    2016-10-12

    Periodic precipitation processes in gels can result in impressive micro- and nanostructured patterns known as periodic precipitation (or Liesegang bands). Under certain conditions, the silver nitrate-chromium(vi) system exhibits the coexistence of two kinds of Liesegang bands with different frequencies. We now present that the two kinds of bands form independently on different time scales and the pH-dependent chromate(vi)-dichromate(vi) equilibrium controls the formation of the precipitates. We determined the spatial distribution and constitution of the particles in the bands using focused ion beam-scanning electron microscopy (FIB-SEM) and scanning transmission X-ray spectromicroscopy (STXM) measurements. This provided the necessary empirical input data to formulate a model for the pattern formation; a model that quantitatively reproduces the experimental observations. Understanding the pattern-forming process at the molecular level enables us to tailor the size and the shape of the bands, which, in turn, can lead to new functional architectures for a range of applications.

  15. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  16. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  17. Vegetation pattern formation in a fog-dependent ecosystem.

    PubMed

    Borthagaray, Ana I; Fuentes, Miguel A; Marquet, Pablo A

    2010-07-07

    Vegetation pattern formation is a striking characteristic of several water-limited ecosystems around the world. Typically, they have been described on runoff-based ecosystems emphasizing local interactions between water, biomass interception, growth and dispersal. Here, we show that this situation is by no means general, as banded patterns in vegetation can emerge in areas without rainfall and in plants without functional root (the Bromeliad Tillandsia landbeckii) and where fog is the principal source of moisture. We show that a simple model based on the advection of fog-water by wind and its interception by the vegetation can reproduce banded patterns which agree with empirical patterns observed in the Coastal Atacama Desert. Our model predicts how the parameters may affect the conditions to form the banded pattern, showing a transition from a uniform vegetated state, at high water input or terrain slope to a desert state throughout intermediate banded states. Moreover, the model predicts that the pattern wavelength is a decreasing non-linear function of fog-water input and slope, and an increasing function of plant loss and fog-water flow speed. Finally, we show that the vegetation density is increased by the formation of the regular pattern compared to the density expected by the spatially homogeneous model emphasizing the importance of self-organization in arid ecosystems. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns.

    PubMed

    Reed, Robert D; McMillan, W Owen; Nagy, Lisa M

    2008-01-07

    Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.

  19. An endangered new species of seasonal killifish of the genus Austrolebias (Cyprinodontiformes: Aplocheiloidei) from the Bermejo river basin in the Western Chacoan Region

    PubMed Central

    Terán, Guillermo Enrique; Calviño, Pablo; García, Ignacio; Cardoso, Yamila; García, Graciela

    2018-01-01

    Austrolebias wichi, new species, is herein described from seasonal ponds of the Bermejo river basin in the Western Chacoan district in northwestern Argentina. This species was found in a single pond, a paleochannel of the Bermejo River, which is seriously disturbed by soybean plantations surrounding it. Despite intensive sampling in the area, this species was only registered in this pond where it was relatively scarce. Therefore, we consider this species as critically endangered. This species is the sister species of A. patriciae in our phylogenetic analyses and is similar, in a general external aspect, to A. varzeae and A. carvalhoi. It can be distinguished among the species of Austrolebias by its unique color pattern in males. Additionally, from A. varzeae by presenting a supraorbital band equal or longer than the infraorbital band (vs. shorter) and from A. patriciae by the convex dorsal profile of head (vs. concave). Further diagnostic characters and additional comments on its ecology and reproduction are provided. PMID:29768422

  20. A colored leg banding technique for Amazona parrots

    USGS Publications Warehouse

    Meyers, J.M.

    1995-01-01

    A technique for individual identification of Amazona was developed using plastic leg bands. Bands were made from 5- and 7-mm-wide strips of laminated PVC coiled 2.5 times with an inside diameter 4-5 mm gt the maximum diameter of the parrot's leg. Seventeen parrots were captured in Puerto Rico, marked with individual plastic leg bands, and observed for 204-658 d with only one lost or damaged plastic band. Plastic leg bands did not cause injury to or calluses on parrots' legs. The plastic material used for making leg bands was available in 18 colors in 1994, which would allow unique marking of 306 individuals using one plastic leg band on each leg.

  1. Fresh and aged human lymphocyte metaphase slides are equally usable for GTG banding.

    PubMed

    Sajjad, Naheed; Haque, Sayedul; SBurney, Syed Intesar; Shahid, Syed Muhammad; Zehra, Sitwat; Azhar, Abid

    2014-09-01

    The identification of chromosomes for routine cytogenetic analysis is based on quality of metaphases and good banding pattern. Fresh slides of human lymphocytes have been shown to produce good bands for the identification of chromosomes morphology. G-bands by Trypsin using Giemsa (GTG) banding of aged slides is generally considered hard to get desired band pattern of chromosomes persistently. The current study is focused on GTG banding of aged slides. A total of 340 subjects including 290 primary infertile and 50 fertile were selected. The blood samples were drawn aseptically for cytogenetic analysis. Lymphocytes were cultured and GTG banding was done on 1440 glass slides. Giemsa trypsin banding of aged slides were done by adjusting average trypsin time for each month according to the slide age and metaphase concentration. Correlation analyses showed a significant and positive correlation between slide ageing and trypsin pre-treatment time. The results of this study suggest that, the fresh and aged human lymphocyte metaphases are equally usable for GTG banding.

  2. User applications unique to mobile satellites

    NASA Technical Reports Server (NTRS)

    Castiel, David

    1990-01-01

    As AMSC enters the market with its mobile satellite services, it faces a sophisticated user group that has already experimented with a wide range of communications services, including cellular radio and Ku-band satellite messaging. AMSC's challenge is to define applications unique to the capabilities of its dedicated L band satellite and consistent with the provisions outlined in its FCC license. Through a carefully researched approach to its three main markets (aeronautical, land mobile, and maritime) AMSC is discovering a wellspring of interest in corporate and general aviation, trucking companies, pipeline monitoring and control companies, maritime management firms, telecommunications companies, and government agencies. A general overview is provided of AMSC's FCC license and corporate history, and the specific applications unique to each user group is discussed.

  3. Unique Positioning for Using Elastic Resistance Band in Providing Strengthening Exercise to the Muscles Surrounding the Ankle

    PubMed Central

    Bandy, William D.

    2007-01-01

    Ankle sprains are among the most common injuries incurred by participants in athletics. Conservative management of the patient after an ankle sprain includes a comprehensive rehabilitation program of which the resistance exercises are a part and are frequently advised by the clinician, many times as part of a home exercise program. The purpose of this Clinical Suggestion is to present a unique method of using elastic resistance band to provide strengthening activities to the inverters, ever-tors, plantarflexors, and dorsiflexors of the ankle. The method is unique, as well as convenient and efficient, as it allows the subject to perform all four exercises with a minimum of change in position, while staying seated in a chair. PMID:21522203

  4. Method of improving a digital image

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor); Rahman, Zia-ur (Inventor)

    1999-01-01

    A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.

  5. TDRSS S-shuttle unique receiver equipment

    NASA Astrophysics Data System (ADS)

    Weinberg, A.; Schwartz, J. J.; Spearing, R.

    1985-01-01

    Beginning with STS-9, the Tracking and Date Relay Satellite system (TDRSS) will start providing S- and Ku-band communications and tracking support to the Space Shuttle and its payloads. The most significant element of this support takes place at the TDRSS White Sands Ground Terminal, which processes the Shuttle return link S- and Ku-band signals. While Ku-band hardware available to other TDRSS users is also applied to Ku-Shuttle, stringent S-Shuttle link margins have precluded the application of the standard TDRSS S-band processing equipment to S-Shuttle. It was therfore found necessary to develop a unique S-Shuttle Receiver that embodies state-of-the-art digital technology and processing techniques. This receiver, developed by Motorola, Inc., enhances link margins by 1.5 dB relative to the standard S-band equipment and its bit error rate performance is within a few tenths of a dB of theory. An overview description of the Space Shuttle Receiver Equipment (SSRE) is presented which includes the presentation of block diagrams and salient design features. Selected, measured performance results are also presented.

  6. Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.

  7. Modeling activity patterns of wildlife using time-series analysis.

    PubMed

    Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo

    2017-04-01

    The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.

  8. A technique to produce aluminum color bands for avian research

    USGS Publications Warehouse

    Koronkiewicz, T.J.; Paxton, E.H.; Sogge, M.K.

    2005-01-01

    We developed a technique to produce metal (aluminum) color bands, in response to concerns about leg injuries caused by celluloid-plastic color bands applied to Willow Flycatchers (Empidonax traillii). The technique involves color-anodized aluminum bands (unnumbered blanks and federal numbered bands), with auto pin-striping tape and flexible epoxy sealant, to create a variety of solid, half- and triple-split colors. This allows for hundreds of unique, high-contrast color combinations. During six consecutive years of application, these colored metal bands have resisted color fade compared to conventional celluloid-plastic bands, and have reduced leg injuries in the flycatcher. Although not necessarily warranted for all color-banding studies, these metal bands may provide a lower-impact option for studies of species known to be impacted by plastic color bands.

  9. Intra-annual patterns in adult band-tailed pigeon survival estimates

    USGS Publications Warehouse

    Casazza, Michael L.; Coates, Peter S.; Overton, Cory T.; Howe, Kristy H.

    2015-01-01

    Implications: We present the first inter-seasonal analysis of survival probability of the Pacific coast race of band-tailed pigeons and illustrate important temporal patterns that may influence future species management including harvest strategies and disease monitoring.

  10. Direction of information flow in large-scale resting-state networks is frequency-dependent.

    PubMed

    Hillebrand, Arjan; Tewarie, Prejaas; van Dellen, Edwin; Yu, Meichen; Carbo, Ellen W S; Douw, Linda; Gouw, Alida A; van Straaten, Elisabeth C W; Stam, Cornelis J

    2016-04-05

    Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-to-posterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequency-dependent reentry loops that are dominated by flow from parieto-occipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.

  11. Shuttle Ku-band and S-band communications implementations study

    NASA Technical Reports Server (NTRS)

    Huth, G. K.; Nessibou, T.; Nilsen, P. W.; Simon, M. K.; Weber, C. L.

    1979-01-01

    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas.

  12. Task-specific Aspects of Goal-directed Word Generation Identified via Simultaneous EEG-fMRI.

    PubMed

    Shapira-Lichter, Irit; Klovatch, Ilana; Nathan, Dana; Oren, Noga; Hendler, Talma

    2016-09-01

    Generating words according to a given rule relies on retrieval-related search and postretrieval control processes. Using fMRI, we recently characterized neural patterns of word generation in response to episodic, semantic, and phonemic cues by comparing free recall of wordlists, category fluency, and letter fluency [Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M., & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proceedings of the National Academy of Sciences, U.S.A., 110, 4950-4955, 2013]. Distinct selectivity for each condition was evident, representing discrete aspects of word generation-related memory retrieval. For example, the precuneus, implicated in processing spatiotemporal information, emerged as a key contributor to the episodic condition, which uniquely requires this information. Gamma band is known to play a central role in memory, and increased gamma power has been observed before word generation. Yet, gamma modulation in response to task demands has not been investigated. To capture the task-specific modulation of gamma power, we analyzed the EEG data recorded simultaneously with the aforementioned fMRI, focusing on the activity locked to and immediately preceding word articulation. Transient increases in gamma power were identified in a parietal electrode immediately before episodic and semantic word generation, however, within a different time frame relative to articulation. Gamma increases were followed by an alpha-theta decrease in the episodic condition, a gamma decrease in the semantic condition. This pattern indicates a task-specific modulation of the gamma signal corresponding to the specific demands of each word generation task. The gamma power and fMRI signal from the precuneus were correlated during the episodic condition, implying the existence of a common cognitive construct uniquely required for this task, possibly the reactivation or processing of spatiotemporal information.

  13. Increased Alpha-Band Power during the Retention of Shapes and Shape-Location Associations in Visual Short-Term Memory

    PubMed Central

    Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.

    2011-01-01

    Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012

  14. Sonographic Bands of Hypoechogenicity in the Spleen in Children: Zebra Spleen.

    PubMed

    Kuint, Ruth Cytter; Daneman, Alan; Navarro, Oscar M; Oates, Adam

    2016-09-01

    Zebra spleen is the normal pattern of splenic enhancement during the arterial phase of CT and MRI and is attributed to different flow rates. The purpose of this study was to describe the appearance and occurrence of bands of hypoechogenicity in the spleen on unenhanced sonograms of children with no splenic abnormalities. We reviewed 100 abdominal ultrasound studies to evaluate the ultrasound characteristics of the spleen. Demographic data were collected for all patients. Homogeneous echogenicity of the spleen was found in 92 children. Heterogeneous echogenicity was present in eight. Three of the eight had discrete macronodules due to known splenic disease. The other five had bands of hypoechogenicity. These five had no known splenic disease, but one had mild splenomegaly of unknown cause. The pattern of hypoechoic bands occurred in 5% of our series. This pattern cannot be explained simply by different flow rates and probably reflects different structural components of the parenchyma. At ultrasound this pattern should be considered a normal finding that may simulate a splenic mass.

  15. The zenithal 4-m International Liquid Mirror Telescope: a unique facility for supernova studies

    NASA Astrophysics Data System (ADS)

    Kumar, Brajesh; Pandey, Kanhaiya L.; Pandey, S. B.; Hickson, P.; Borra, E. F.; Anupama, G. C.; Surdej, J.

    2018-05-01

    The 4-m International Liquid Mirror Telescope (ILMT) will soon become operational at the newly developed Devasthal observatory near Nainital (Uttarakhand, India). Coupled with a 4k × 4k pixels CCD detector and TDI optical corrector, it will reach approximately 22.8, 22.3, and 21.4 mag in the g΄, r΄, and i΄ spectral bands, respectively, in a single scan. The limiting magnitudes can be further improved by co-adding the consecutive night images in particular filters. The uniqueness to observe the same sky region by looking towards the zenith direction every night makes the ILMT a unique instrument to detect new supernovae (SNe) by applying the image subtraction technique. High cadence (˜24 h) observations will help to construct dense sampling multi-band SNe light curves. We discuss the importance of the ILMT facility in the context of SNe studies. Considering the various plausible cosmological parameters and observational constraints, we perform detailed calculations of the expected SNe rate that can be detected with the ILMT in different spectral bands.

  16. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  17. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study

    NASA Astrophysics Data System (ADS)

    Marecek, R.; Lamos, M.; Mikl, M.; Barton, M.; Fajkus, J.; I, Rektor; Brazdil, M.

    2016-08-01

    Objective. The scalp EEG spectrum is a frequently used marker of neural activity. Commonly, the preprocessing of EEG utilizes constraints, e.g. dealing with a predefined subset of electrodes or a predefined frequency band of interest. Such treatment of the EEG spectrum neglects the fact that particular neural processes may be reflected in several frequency bands and/or several electrodes concurrently, and can overlook the complexity of the structure of the EEG spectrum. Approach. We showed that the EEG spectrum structure can be described by parallel factor analysis (PARAFAC), a method which blindly uncovers the spatial-temporal-spectral patterns of EEG. We used an algorithm based on variational Bayesian statistics to reveal nine patterns from the EEG of 38 healthy subjects, acquired during a semantic decision task. The patterns reflected neural activity synchronized across theta, alpha, beta and gamma bands and spread over many electrodes, as well as various EEG artifacts. Main results. Specifically, one of the patterns showed significant correlation with the stimuli timing. The correlation was higher when compared to commonly used models of neural activity (power fluctuations in distinct frequency band averaged across a subset of electrodes) and we found significantly correlated hemodynamic fluctuations in simultaneously acquired fMRI data in regions known to be involved in speech processing. Further, we show that the pattern also occurs in EEG data which were acquired outside the MR machine. Two other patterns reflected brain rhythms linked to the attentional and basal ganglia large scale networks. The other patterns were related to various EEG artifacts. Significance. These results show that PARAFAC blindly identifies neural activity in the EEG spectrum and that it naturally handles the correlations among frequency bands and electrodes. We conclude that PARAFAC seems to be a powerful tool for analysis of the EEG spectrum and might bring novel insight to the relationships between EEG activity and brain hemodynamics.

  18. From AFF to CCNT : JPL's evolving family of multifunction constellation transceivers

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Srinivasan, Jeff; Farrington, Allen

    2001-01-01

    This paper describes the profiles and requirements of the ST-3 and ST-5 missions, and discusses the unique technological challenges each of them presents. Bothe the AFF and CCNT trace their heritage to GPS receivers, using measurements of both RF carrier phase and a ranging code. They will operate, however, at very different frequency bands; the ADD at Ka-band, and the CCNT at S-band.

  19. Digitally Controlled Slot Coupled Patch Array

    NASA Technical Reports Server (NTRS)

    D'Arista, Thomas; Pauly, Jerry

    2010-01-01

    A four-element array conformed to a singly curved conducting surface has been demonstrated to provide 2 dB axial ratio of 14 percent, while maintaining VSWR (voltage standing wave ratio) of 2:1 and gain of 13 dBiC. The array is digitally controlled and can be scanned with the LMS Adaptive Algorithm using the power spectrum as the objective, as well as the Direction of Arrival (DoA) of the beam to set the amplitude of the power spectrum. The total height of the array above the conducting surface is 1.5 inches (3.8 cm). A uniquely configured microstrip-coupled aperture over a conducting surface produced supergain characteristics, achieving 12.5 dBiC across the 2-to-2.13- GHz and 2.2-to-2.3-GHz frequency bands. This design is optimized to retain VSWR and axial ratio across the band as well. The four elements are uniquely configured with respect to one another for performance enhancement, and the appropriate phase excitation to each element for scan can be found either by analytical beam synthesis using the genetic algorithm with the measured or simulated far field radiation pattern, or an adaptive algorithm implemented with the digitized signal. The commercially available tuners and field-programmable gate array (FPGA) boards utilized required precise phase coherent configuration control, and with custom code developed by Nokomis, Inc., were shown to be fully functional in a two-channel configuration controlled by FPGA boards. A four-channel tuner configuration and oscilloscope configuration were also demonstrated although algorithm post-processing was required.

  20. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  1. Characteristics of C-band meteorological radar echoes at Petrolina, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    da Silva Aragão, Maria Regina; Correia, Magaly De Fatima; Alves de Araújo, Heráclio

    2000-03-01

    A unique set of C-band meteorological radar echoes is analyzed. The data were obtained in Petrolina (9°24S, 40°30W), located in the semi-arid region of Northeast Brazil, from January to June 1985. The characteristics analyzed are echo areas, types and patterns.As in other tropical areas of the world, echoes with an area100 km2 dominated, making up 53% of the total number of echoes while echoes with 100 km2

  2. Narrow band imaging combined with water immersion technique in the diagnosis of celiac disease.

    PubMed

    Valitutti, Francesco; Oliva, Salvatore; Iorfida, Donatella; Aloi, Marina; Gatti, Silvia; Trovato, Chiara Maria; Montuori, Monica; Tiberti, Antonio; Cucchiara, Salvatore; Di Nardo, Giovanni

    2014-12-01

    The "multiple-biopsy" approach both in duodenum and bulb is the best strategy to confirm the diagnosis of celiac disease; however, this increases the invasiveness of the procedure itself and is time-consuming. To evaluate the diagnostic yield of a single biopsy guided by narrow-band imaging combined with water immersion technique in paediatric patients. Prospective assessment of the diagnostic accuracy of narrow-band imaging/water immersion technique-driven biopsy approach versus standard protocol in suspected celiac disease. The experimental approach correctly diagnosed 35/40 children with celiac disease, with an overall diagnostic sensitivity of 87.5% (95% CI: 77.3-97.7). An altered pattern of narrow-band imaging/water immersion technique endoscopic visualization was significantly associated with villous atrophy at guided biopsy (Spearman Rho 0.637, p<0.001). Concordance of narrow-band imaging/water immersion technique endoscopic assessments was high between two operators (K: 0.884). The experimental protocol was highly timesaving compared to the standard protocol. An altered narrow-band imaging/water immersion technique pattern coupled with high anti-transglutaminase antibodies could allow a single guided biopsy to diagnose celiac disease. When no altered mucosal pattern is visible even by narrow-band imaging/water immersion technique, multiple bulbar and duodenal biopsies should be obtained. Copyright © 2014. Published by Elsevier Ltd.

  3. Antenna pattern measurements to characterize the out-of-band behavior of reflector antennas

    NASA Astrophysics Data System (ADS)

    Cown, B. J.; Weaver, E. E.; Ryan, C. E., Jr.

    1983-12-01

    Research was conducted to collect and describe out-of-band antenna pattern data. The research efforts were devoted: (1) to deriving valid measured data for a reflector antenna for out-of-band frequencies spanning intervals around the second and third harmonics of the in-band design frequency, and (2) to statistically characterize the measured data. The second harmonic data were collected for both polarization senses for the out-of-band frequencies of 5.5 GHz to 7.5 GHz in steps of 0.1 GHz. The third harmonic data were collected for both polarization senses for the out-of-band frequencies of 8.0 GHz to 10.0 GHz in steps of 0.1 GHz. Additionally, in-band data were collected at 2.9, 3.0, and 3.1 GHz for both polarization senses. The measured data were collected on the Georgia Tech compact antenna range test facility with the aid of an automated data logger system designed expressly for efficient collection of broadband antenna data. The pattern data, recorded directly on magnetic disks, were analyzed: (1) to compute average gain and standard deviation over selected angular sectors, (2) to construct cumulative probability curves, and (3) to specify the peak gain and the angular coordinates of the peak at each frequency.

  4. Discrimination of speech stimuli based on neuronal response phase patterns depends on acoustics but not comprehension.

    PubMed

    Howard, Mary F; Poeppel, David

    2010-11-01

    Speech stimuli give rise to neural activity in the listener that can be observed as waveforms using magnetoencephalography. Although waveforms vary greatly from trial to trial due to activity unrelated to the stimulus, it has been demonstrated that spoken sentences can be discriminated based on theta-band (3-7 Hz) phase patterns in single-trial response waveforms. Furthermore, manipulations of the speech signal envelope and fine structure that reduced intelligibility were found to produce correlated reductions in discrimination performance, suggesting a relationship between theta-band phase patterns and speech comprehension. This study investigates the nature of this relationship, hypothesizing that theta-band phase patterns primarily reflect cortical processing of low-frequency (<40 Hz) modulations present in the acoustic signal and required for intelligibility, rather than processing exclusively related to comprehension (e.g., lexical, syntactic, semantic). Using stimuli that are quite similar to normal spoken sentences in terms of low-frequency modulation characteristics but are unintelligible (i.e., their time-inverted counterparts), we find that discrimination performance based on theta-band phase patterns is equal for both types of stimuli. Consistent with earlier findings, we also observe that whereas theta-band phase patterns differ across stimuli, power patterns do not. We use a simulation model of the single-trial response to spoken sentence stimuli to demonstrate that phase-locked responses to low-frequency modulations of the acoustic signal can account not only for the phase but also for the power results. The simulation offers insight into the interpretation of the empirical results with respect to phase-resetting and power-enhancement models of the evoked response.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael E. McIlwain; Nick Thompson; Da Gao

    Considerable interest is given to the excellent scintillation properties of cerium doped lanthanum chloride (LaCl3) and lanthanum bromide (LaBr3). The scintillation efficiencies are much greater than other materials, even those containing cerium. This high efficiency is attributed to the high mobility of electrons and holes, unique placement of the cerium 5d states within the band gap, and energy of the band gap. To better understand the scintillation process and better define the nature of the Self Trapped Exciton (STE) within these unique scintillation materials, density functional theory (DFT), and Ab-inito (HF-MP2) calculations are reported. DFT calculations have yielded a qualitativemore » description of the orbital composition and energy distribution of the band structure in the crystalline material. MP2 and single configuration interaction calculations have provided quantitative values for the band gap and provided energies for the possible range of excited states created following hole and electron creation. Based on this theoretical treatment, one possible description of the STE is the combination of Vk center (Br2-1) and LaBr+1 species that recombine to form a distorted geometry LaBr3* (triplet state). Depending on the distance between the LaBr and Br2, the STE emission band can be reproduced.« less

  6. Practical relevance of pattern uniqueness in forensic science.

    PubMed

    Jayaprakash, Paul T

    2013-09-10

    Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. GTG banding pattern on human metaphase chromosomes revealed by high resolution atomic-force microscopy.

    PubMed

    Thalhammer, S; Koehler, U; Stark, R W; Heckl, W M

    2001-06-01

    Surface topography of human metaphase chromosomes following GTG banding was examined using high resolution atomic force microscopy (AFM). Although using a completely different imaging mechanism, which is based on the mechanical interaction of a probe tip with the chromosome, the observed banding pattern is comparable to results from light microscopy and a karyotype of the AFM imaged metaphase spread can be generated. The AFM imaging process was performed on a normal 2n = 46, XX karyotype and on a 2n = 46, XY, t(2;15)(q23;q15) karyotype as an example of a translocation of chromosomal bands.

  8. Within-band spray distribution of nozzles used for herbaceous plant control

    Treesearch

    James H. Miller

    1994-01-01

    Abstract. Described are the spray patterns of nozzles setup for banded herbaceous plant control treatments. Spraying Systems Company nozzles. were tested, but similar nozzles are available from other manufacturers. Desirable traits were considered to be as follows: an even distribution pattern, low volume, low height, large droplets, and a single...

  9. Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Al Ba'ba'a, H.; DePauw, D.; Singh, T.; Nouh, M.

    2018-03-01

    This work presents a comprehensive analysis of wave dispersion patterns and band gap formation associated with Inertially Amplified Acoustic Metamaterials (IAAM). The findings explain the different mechanisms by which inertial amplification affect wave dispersion in the individual IAAM cell as well as the evolution of such effects in finite configurations of these cells. Derived expressions for acoustic wave dispersion in IAAMs reveal unique features including flat dispersion branches with zero group velocity and a transition from a metamaterial (local resonance) to a phononic behavior that is directly related to the location and magnitude of the inerter elements. Using a closed-form transfer function approach, the translation of such effects to IAAM realizations with a known number of cells is interpreted from the pole-zero distributions of the resultant finite structures. It is also shown that band gaps are not always necessarily enlarged in the presence of inertial amplification. Comparing with benchmark conventional acoustic metamaterials, the conditions leading up to favorable as well as inferior IAAM designs are fully derived. Finally, an alternative resonator-free acoustic metamaterial is presented and shown to exhibit local resonance effects under appropriately tuned conditions.

  10. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through transmission mode using two transducers, or in pulse-echo mode.

  11. Novel band structures in silicene on monolayer zinc sulfide substrate.

    PubMed

    Li, Sheng-shi; Zhang, Chang-wen; Yan, Shi-shen; Hu, Shu-jun; Ji, Wei-xiao; Wang, Pei-ji; Li, Ping

    2014-10-01

    Opening a sizable band gap in the zero-gap silicene without lowering the carrier mobility is a key issue for its application in nanoelectronics. Based on first-principles calculations, we find that the interaction energies are in the range of -0.09‒0.3 eV per Si atom, indicating a weak interaction between silicene and ZnS monolayer and the ABZn stacking is the most stable pattern. The band gap of silicene can be effectively tuned ranging from 0.025 to 1.05 eV in silicene and ZnS heterobilayer (Si/ZnS HBL). An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern, interlayer spacing and external strain effects on silicene. Interestingly, the characteristics of Dirac cone with a nearly linear band dispersion relation of silicene can be preserved in the ABS pattern which is a metastable state, accompanied by a small electron effective mass and thus the carrier mobility is expected not to degrade much. These provide a possible way to design effective FETs out of silicene on a ZnS monolayer.

  12. Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task.

    PubMed

    Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A

    2015-02-01

    In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈<5 cpf) or high-band (≈>20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.

  13. Ultra-wideband optical leaky-wave slot antennas.

    PubMed

    Wang, Yan; Helmy, Amr S; Eleftheriades, George V

    2011-06-20

    We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550 nm with a 50% bandwidth ranging from 2000 nm to 1200 nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3 dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ(0) and 1.5λ(0) respectively at 1550 nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

  14. Contemporary review on the pathogenesis of takotsubo syndrome: The heart shedding tears: Norepinephrine churn and foam at the cardiac sympathetic nerve terminals.

    PubMed

    Y-Hassan, Shams; De Palma, Rodney

    2017-02-01

    Takotsubo syndrome (TS), an increasingly recognized acute cardiac disease entity, is characterized by a unique pattern of circumferential and typically regional left ventricular wall motion abnormality resulting in a conspicuous transient ballooning of the left ventricle during systole. The mechanism of the disease remains elusive. However, the sudden onset of acute myocardial stunning in a systematic pattern extending beyond a coronary artery territory; the history of a preceding emotional or physical stress factor in two thirds of cases; the signs of sympathetic denervation at the regions of left ventricular dysfunction on sympathetic scintigraphy; the finding of myocardial edema and other signs consistent with (catecholamine-induced) myocarditis shown by cardiac magnetic resonance imaging; and the contraction band necrosis on histopathological examination all argue strongly for the involvement of the cardiac sympathetic nervous system in the pathogenesis of TS. In this narrative review, extensive evidence in support of local cardiac sympathetic nerve hyperactivation, disruption and norepinephrine spillover causing TS in predisposed patients is provided. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Pathology of the Emerging Mycobacterium tuberculosis Complex Pathogen, Mycobacterium mungi, in the Banded Mongoose ( Mungos mungo).

    PubMed

    Alexander, Kathleen A; Laver, Peter N; Williams, Mark C; Sanderson, Claire E; Kanipe, Carly; Palmer, Mitchell V

    2018-03-01

    Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1 mon ) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.

  16. Biomechanical differences of the anterior and posterior bands of the ulnar collateral ligament of the elbow.

    PubMed

    Jackson, Timothy J; Jarrell, Shelby E; Adamson, Gregory J; Chung, Kyung Chil; Lee, Thay Q

    2016-07-01

    The main purpose of this study was to examine the functional characteristics of the anterior and posterior bands of the anterior bundle of the ulnar collateral ligament (UCL). Six cadaveric elbows were tested using a digital tracking system to measure the strain in the anterior band and posterior band of the anterior bundle of the UCL throughout a flexion/extension arc. The specimens were then placed in an Instron materials testing machine and loaded to failure to determine yield load and ultimate load of the UCL. The posterior band showed a linear increase in strain with increasing degrees of elbow flexion while the anterior band showed minimal change in strain throughout. The bands showed similar strain at yield load and ultimate load, demonstrating similar intrinsic properties. The anterior band of the anterior bundle of the UCL shows an isometric strain pattern through elbow range of motion, while the posterior band shows an increasing strain pattern in higher degrees of elbow flexion. Both bands show similar strain in a load to failure model, indicating insertion point, not intrinsic differences, of the bands determine the function of the anterior bundle of the UCL. This demonstrates a biomechanical rationale for UCL reconstructions using single point anatomical insertion points.

  17. Discovery of remarkable subpulse drifting pattern in PSR B0818-41

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.

    The study of pulsars showing systematic subpulse drift patterns provides important clues for understanding of pulsar emission mechanism. Pulsars with wide profiles provide extra insights because of the presence of multiple drift bands (e.g PSR B0826-34). We report the discovery of a remarkable subpulse drift pattern in a relatively less studied wide profile pulsar, PSR B0818-41, using the GMRT. We find simultaneous occurrence of three drift regions with two drift rates, an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, the two closely spaced drift regions always maintain a constant phase relationship. These unique drift properties seen for this pulsar is very rare. We interpret that the observed drift pattern is created by intersection of our line of sight (LOS) with two conal rings in a inner LOS (negative beta) geometry. We argue that the carousel rotation periodicity (P_4) and the number of sparks (N_sp) are the same for the rings and claim that P_4 is close to the measured P_3. Based on our analysis results and interpretations, we simulate the radiation from B0818-41. The simulations support our interpretations and reproduce the average profile and the observed drift pattern. The results of our study show that PSR B0818-41 is a powerful system to explore the pulsar radio emission mechanism, the implications of which are also discussed in our work.

  18. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall.

    PubMed

    Ji, Hyo Jin; Park, Se-Hee; Cho, Kyung-Mo; Lee, Suk Keun; Kim, Jin Woo

    2017-05-01

    Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. The collagen birefringence patterns of 319 cases of PC ( n = 122), PG ( n = 158), and PA ( n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. In this study all PCs ( n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium ( n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA.

  19. On the Time Course of Synchronization Patterns of Neuronal Discharges in the Human Brain during Cognitive Tasks

    PubMed Central

    Brázdil, Milan; Janeček, Jiří; Klimeš, Petr; Mareček, Radek; Roman, Robert; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Rektor, Ivan; Halámek, Josef; Plešinger, Filip; Jirsa, Viktor

    2013-01-01

    Using intracerebral EEG recordings in a large cohort of human subjects, we investigate the time course of neural cross-talk during a simple cognitive task. Our results show that human brain dynamics undergo a characteristic sequence of synchronization patterns across different frequency bands following a visual oddball stimulus. In particular, an initial global reorganization in the delta and theta bands (2–8 Hz) is followed by gamma (20–95 Hz) and then beta band (12–20 Hz) synchrony. PMID:23696809

  20. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  1. Temperature-induced band shift in bulk γ-InSe by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Huanfeng; Wang, Wei; Zhao, Yafei; Zhang, Xiaoqian; Feng, Yue; Tu, Jian; Gu, Chenyi; Sun, Yizhe; Liu, Chang; Nie, Yuefeng; Edmond Turcu, Ion C.; Xu, Yongbing; He, Liang

    2018-05-01

    Indium selenide (InSe) has recently become popular research topics because of its unique layered crystal structure, direct band gap and high electron mobilities. In this work, we have acquired the electronic structure of bulk γ-InSe at various temperatures using angle-resolved photoemission spectroscopy (ARPES). We have also found that as the temperature decreases, the valence bands of γ-InSe exhibit a monotonic shift to lower binding energies. This band shift is attributed to the change of lattice parameters and has been validated by variable temperature X-ray diffraction measurements and theoretical calculations.

  2. Glucose 6-phosphate dehydrogenase: isoenzymatic pattern in Oesophagostomum venulosum, Trichuris ovis and T. suis.

    PubMed

    Rodriguez, B; Cutillas, C; German, P; Guevara, D

    1991-12-01

    In the present communication we have studied the isoenzymatic pattern activity of the glucose 6-phosphate dehydrogenase (G6PD) in Oesophagostomum venulosum, Trichuris ovis and T. suis, parasites of Capra hircus (goat), Ovis aries (sheep) and Sus scrofa domestica (pig) respectively, by polyacrylamide gel electrophoresis. Different phenotypes have been observed in the G6PD isoenzymatic pattern activity in males and females of Oesophagostomum venulosum. Furthermore, G6PD activity has been assayed in Trichuris ovis collected from Ovis aries and Capra hircus. No differences have been observed in the isoenzymatic patterns attending to the different hosts. All the individuals exhibited one single band or two bands; this suggests a monomeric condition for G6PD in T. ovis. In T. suis the enzyme G6PD appeared as a single electrophoretic band in about 85.7% of the individuals.

  3. Archean deep-water depositional system: interbedded and banded iron formation and clastic turbidites in the Barberton Greenstone Belt, South Africa

    NASA Astrophysics Data System (ADS)

    Zentner, Danielle; Lowe, Donald

    2013-04-01

    The 3.23 billion year old sediments in the Barberton greenstone belt, South Africa include some of the world's oldest known deep-water deposits. Unique to this locality are turbidites interbedded with banded iron formation (BIF) and banded ferruginous chert (BFC). This unusual association may provide clues for reconstructing Archean deep-water depositional settings. For our study we examined freshly drilled core in addition to measuring ~500 m of outcrop exposures along road cuts. The stacking pattern follows an overall BIF to BFC to amalgamated turbidite succession, although isolated turbidites do occur throughout the sequence. The turbidites are predominately massive, and capped with thin, normally graded tops that include mud rip-ups, chert plates, and ripples. The lack of internal stratification and the amalgamated character suggests emplacement by surging high-density turbidity currents. Large scours and channels are absent and bedding is tabular: the flows were collapsing with little turbulence reaching the bed. In contrast, field evidence indicates the BIF and BFC most likely precipitated directly out of the water column. Preliminary interpretations indicate the deposits may be related to a pro-deltaic setting. (1) Deltaic systems can generate long-lived, high volume turbidity currents. (2) The contacts between the BIF, BFC, and turbidite successions are gradual and inter-fingered, possibly representing lateral facies relationships similar to modern pro-delta environments. (3) Putative fan delta facies, including amalgamated sandstone and conglomerate, exist stratigraphically updip of the basinal sediments.

  4. Gas-phase infrared spectroscopy for determination of double bond configuration of monounsaturated compounds.

    PubMed

    Attygalle, A B; Svatos, A; Wilcox, C; Voerman, S

    1994-05-15

    Gas-phase Fourier-transform infrared spectra allow unambiguous determination of the configuration of the double bonds of long-chain unsaturated compounds bearing RCH=CHR' type bonds. Although the infrared absorption at 970-967 cm-1 has been used previously for the identification of trans bonds, the absorption at 3028-3011 cm-1 is conventionally considered to be incapable of distinguishing cis and trans isomers. In this paper, we present a large number of gas-phase spectra of monounsaturated long-chain acetates which demonstrate that an absorption, highly characteristic for the cis configuration, occurs at 3013-3011 cm-1, while trans compounds fail to show any bands in this region. However, if a double bond is present at the C-2 or C-3 carbon atoms, this cis=CH stretch absorption shows a hypsochromic shift to 3029-3028 and 3018-3017 cm-1, respectively. Similarly, if a cis double bond is present at the penultimate carbon atom, this band appears at 3022-3021 cm-1. All the spectra of trans alkenyl acetates showed the expected C-H wag absorption at 968-964 cm-1. In addition, the spectra of (E)-2-alkenyl acetates show a unique three-peak "finger-print" pattern which allows the identification of the position and configuration of this bond. Furthermore, by synthesizing and obtaining spectra of appropriate deuteriated compounds, we have proved that the 3013-3011 cm-1 band is representative of the C-H stretching vibration of cis compounds of RCH=CHR' type.

  5. Experimental observations of shear band nucleation and propagation in a bulk metallic glass using wedge-like cylindrical indentation

    NASA Astrophysics Data System (ADS)

    Antoniou, Antonia Maki

    2006-12-01

    Bulk metallic glasses (BMGs), or amorphous metal alloys, have a unique combination of properties such as high strength, large elastic strain limit (up to 2%), corrosion resistance and formability. These unique properties make them candidates for precision mechanical elements, hinge supports, contact surfaces as well as miniaturized systems (MEMS). However, their limited ductility hinders further realizations of their industrial potential. Under uniaxial tension tests, metallic glass fails in a brittle manner with unstable propagation of a single shear band. There is a need to understand the conditions for shear band nucleation and propagation in order to achieve a superior material system with adequate toughness to ensure in-service reliability. This dissertation focuses on understanding the nucleation and propagation mechanisms of shear bands in BMGs under constrained deformation. The nature of the work is primarily experimental with integrated finite element simulations to elucidate the observed trends. Wedge indentation with a circular profile of different radii is used to provide a stable loading path for in situ monitoring of shear band nucleation, propagation in Vitreloy-1. Detailed analyses of the in-plane finite deformation fields are carried out using digital image correlation. The incremental surface analysis showed that multiple shear bands are developed beneath the indenter. The observed pattern closely follow the traces of slip line field for a pressure sensitive material. The first shear bands initiate in the bulk beneath the indenter when a critical level of mean pressure is achieved. Two distinct shear band patterns are developed, that conform to either the alpha or beta lines for each sector. The deformation zones developed under indenters with different radii were found to be self-similar. The evolution of shear bands beneath the indenter is also characterized into two different categories. A set of primary bands is identified to evolve with the process zone front and presents an included angle of 78°-80°. The other set of bands evolves at a later stage of loading within the originally formed ones but with consistently higher included angle of around 87°. The band spacing is found to scale with the local average of maximum in-plane shear strain such that the local strain energy is minimized. The measurements shed light on the critical shear strain needed to initiate these bands. The richness of the shear band network establishes a basis for calibration of constitutive models. Experimental in-plane deformation maps show the amount of total strain that builds prior to the initiation of localized deformation. Furthermore, the maps help examine the change imposed on the surrounding strain field by the appearance of shear bands. It was verified that shear bands relax the asymptotic field by changing the order of singularity. Finally, it was seen that the shear bands are not the only accumulation of permanent deformation but that the surrounding material can accrue relatively high level of inelastic deformation (up to 5%). To rationalize these findings, the Johnson cavity expansion model is adapted and modified to account for pressure-dependent yielding conditions. The elasto-plastic boundary from such analysis is used to scale the experimental measurements for all indenter radii, loading level and spatial position beneath the indenter. The continuum finite element simulations have shown that the macroscopic measurements of force-depth indentation curves would predict a lower value of the pressure sensitivity than those observed from the detailed microscopic measurements. Moreover, a transition from pressure insensitive response to progressive pressure sensitivity is observed by decreasing the indenter radius, or in effect by increasing the level of hydrostatic pressure under the indenter. This leads to the belief that the BMG's pressure sensitivity parameter is in itself dependent on the level of the applied pressure. These observations give detailed insight on the post-yield behavior of BMGs, which cannot be obtained from macroscopic uniaxial tension or compression tests. Despite the richness of the shear band details, the current framework has provided several notable results. First, the macroscopic trends, force-indentation depth response and the extent of deformation zones are well captured for this constrained deformation mode by continuum models that address only the onset of yielding. Second, the apparent pressure dependence of the shear band angle on the macroscopic measurements is minimal. Third, the initiation point, and not the shear band development is of critical importance. These findings would formulate the basis for simulation of shear band nucleation, propagation and interactions. They would also elucidate the role of secondary particle inclusion for toughening. Another form of inhomogeneous deformation in the form of shear bands is also studied in constrained layer of ductile metal subjected to shearing deformation. The material system utilized was comprised of a ductile layer of tin based solder, encapsulated within relatively hard copper shoulders. The experimental configuration provides pure shear state within the constrained solder layer. Different Pb/Sn compositions are tested with grain size approaching the film thickness. The in-plane strain distribution within the joint thickness is measured by a microscopic digital image correlation system. The toughness evolution within such highly gradient deformation field is monitored qualitatively through a 2D surface scan with a nanoindenter. The measurements showed a highly inhomogeneous deformation field within the film with discreet shear bands of concentrated strain. The localized shear bands showed long-range correlations of the order of 2-3 grain diameter. A size-dependent macroscopic response on the layer thickness is observed. However, the corresponding film thickness is approximately 100-1000 times larger than those predicted by non-local continuum theories and discreet dislocation.

  6. Foliar spray banding characteristics

    Treesearch

    A.R. Womac; C.W. Smith; Joseph E. Mulrooney

    2004-01-01

    Foliar spray banding was explored as a means of reducing peticide use compared to broadcast applications. Barious geometric spray patterns and delivery angles of foliar spray bands were investigated to increase spray deposits in a crop row at a constant spray rate of 94 L/ha. Wind-free laboratory results indicated that a banded application using three 65° hollow-cone...

  7. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.

    PubMed

    D' Archangel, Jeffrey; Tucker, Eric; Kinzel, Ed; Muller, Eric A; Bechtel, Hans A; Martin, Michael C; Raschke, Markus B; Boreman, Glenn

    2013-07-15

    Optical metamaterials have unique properties which result from geometric confinement of the optical conductivity. We developed a series of infrared metasurfaces based on an array of metallic square loop antennas. The far-field absorption spectrum can be designed with resonances across the infrared by scaling the geometric dimensions. We measure the amplitude and phase of the resonant mode as standing wave patterns within the square loops using scattering-scanning near-field optical microscopy (s-SNOM). Further, using a broad-band synchrotron-based FTIR microscope and s-SNOM at the Advanced Light Source, we are able to correlate far-field spectra to near-field modes of the metasurface as the resonance is tuned between samples. The results highlight the importance of multi-modal imaging for the design and characterization of optical metamaterials.

  8. Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

    NASA Technical Reports Server (NTRS)

    Statman, Joseph; Jamnejad, Vahraz; Nguyen, Lee

    2012-01-01

    NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.The DSN is in the process of revamping its documentation to provide analysis of the High Intensity Radiation Fields (HIRF) environment resulting from radio frequency radiation from DSN antennas for comparison to FAA regulations regarding certification of HIRF protection as outlined in the FAA regulations on HIRF protection for aircraft electrical and electronic systems (Title 14, Code of Federal Regulations (14 CFR) [section sign][section sign] 23.1308, 25.1317, 27.1317, and 29.1317).This paper presents work done at JPL, in consultation with the FAA. The work includes analysis of the radiated field structure created by the unique DSN emitters (combination of transmitters and antennas) and comparing it to the fields defined in the environments in the FAA regulations. The paper identifies areas that required special attention, including the implications of the very narrow beam of the DSN emitters and the sidereal rate motion. The paper derives the maximum emitter power allowed without mitigation and the mitigation zones, where required.Finally, the paper presents summary of the results of the analyses of the DSN emitters and the resulting DSN process documentation.

  9. Thermally Strained Band Gap Engineering of Transition-Metal Dichalcogenide Bilayers with Enhanced Light-Matter Interaction toward Excellent Photodetectors.

    PubMed

    Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun

    2017-09-26

    Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.

  10. Direct graphene growth on MgO: origin of the band gap.

    PubMed

    Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A

    2011-02-23

    A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd

  11. Fluctuation diamagnetism in two-band superconductors

    NASA Astrophysics Data System (ADS)

    Adachi, Kyosuke; Ikeda, Ryusuke

    2016-04-01

    Anomalously large fluctuation diamagnetism around the superconducting critical temperature has been recently observed in iron selenide (FeSe) [Kasahara et al. (unpublished)]. This indicates that superconducting fluctuations (SCFs) play a more significant role in FeSe, which supposedly has a two-band structure, than in the familiar single-band superconductors. Motivated by the data on FeSe, SCF-induced diamagnetism is examined in a two-band system, on the basis of a phenomenological approach with a Ginzburg-Landau functional. The obtained results indicate that the SCF-induced diamagnetism may be more enhanced than that in a single-band system due to the existence of two distinct fluctuation modes. Such enhancement of diamagnetism unique to a two-band system seems consistent with the large diamagnetism observed in FeSe, though still far from a quantitative agreement.

  12. Forensic DNA Banding Patterns: How to Simulate & Explain DNA Fingerprinting in a Classroom with No Budget

    ERIC Educational Resources Information Center

    Christensen, Doug

    2013-01-01

    Understanding how DNA banding patterns in a gel can aid in the conviction or exoneration of suspects and be utilized for positive identification of biological fathers in paternity cases can be intimidating. In reality, the logistics and technology used in such cases are rather straightforward. This exercise is designed for use in high school…

  13. Comparison of techniques for stabilizing hemoglobins of rainbow trout (Salmo gairdneri) during frozen storage

    USGS Publications Warehouse

    Reinitz, G.L.

    1976-01-01

    1. The stability of hemoglobin of rainbow trout under frozen conditions in oxyform, carboxyform, and cyanometform was examined.2. Carboxyhemoglobin retained its original electrophoretic banding pattern after 14 days of frozen storage, whereas oxyform and cyanometform hemoglobins did not.3. Banding patterns changed in some samples in all treatment groups after 21 days of storage.

  14. Presence of skeletal banding in a reef-building tropical crustose coralline alga

    PubMed Central

    Lewis, Bonnie; Lough, Janice M.; Nash, Merinda C.; Diaz-Pulido, Guillermo

    2017-01-01

    The presence of banding in the skeleton of coralline algae has been reported in many species, primarily from temperate and polar regions. Similar to tree rings, skeletal banding can provide information on growth rate, age, and longevity; as well as records of past environmental conditions and the coralline alga’s growth responses to such changes. The aim of this study was to explore the presence and characterise the nature of banding in the tropical coralline alga Porolithon onkodes, an abundant and key reef-building species on the Great Barrier Reef (GBR) Australia, and the Indo-Pacific in general. To achieve this we employed various methods including X-ray diffraction (XRD) to determine seasonal mol% magnesium (Mg), mineralogy mapping to investigate changes in dominant mineral phases, scanning electron microscopy–electron dispersive spectroscopy (SEM-EDS), and micro-computed tomography (micro-CT) scanning to examine changes in cell size and density banding, and UV light to examine reproductive (conceptacle) banding. Seasonal variation in the Mg content of the skeleton did occur and followed previously recorded variations with the highest mol% MgCO3 in summer and lowest in winter, confirming the positive relationship between seawater temperature and mol% MgCO3. Rows of conceptacles viewed under UV light provided easily distinguishable bands that could be used to measure vertical growth rate (1.4 mm year-1) and age of the organism. Micro-CT scanning showed obvious banding patterns in relation to skeletal density, and mineralogical mapping revealed patterns of banding created by changes in Mg content. Thus, we present new evidence for seasonal banding patterns in the tropical coralline alga P. onkodes. This banding in the P. onkodes skeleton can provide valuable information into the present and past life history of this important reef-building species, and is essential to assess and predict the response of these organisms to future climate and environmental changes. PMID:28976988

  15. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    PubMed Central

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  16. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride.

    PubMed

    Moriguchi, K; Mitamura, Y; Iwami, J; Hasegawa, Y; Higuchi, N; Murakami, Y; Maeda, H; Yoshimura, F; Nakamura, H; Ohno, N

    2012-11-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3'-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface.

  17. Observations of banding in first-year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Cole, David M.; Eicken, Hajo; Frey, Karoline; Shapiro, Lewis H.

    2004-08-01

    Horizontal banding features, alternating dark and bright horizontal bands apparent in ice cores and stratigraphic cross sections have long been observed in first-year sea ice and are frequently associated with bands of high and low brine or gas porosity. Observations on the land-fast ice near Barrow, Alaska, in recent years have revealed particularly striking banding patterns and prompted a study of their macroscopic and microscopic characteristics. The banding patterns are quantified from photographs of full-depth sections of the ice, and examples are presented from the Chukchi Sea and Elson Lagoon. Statistics on band spacing are presented, and the growth records for three seasons are employed to estimate their time of formation. These data provide insight into the periodicity of the underlying phenomena. Micrographs are used to examine the microstructural variations associated with various banding features and to quantify the geometry of the constituent brine inclusions associated with high- and low-porosity bands. The micrography revealed that the area fraction of brine inclusions varied by a factor of nearly 3 through the more pronounced high- and low-porosity bands. Vertical micrographs obtained shortly after the materials' removal from the ice sheet showed that significantly larger inclusions form abruptly at the start of the high-porosity bands and frequently terminate abruptly at the end of the band. Crystallographic observations indicated that the high-porosity bands supported the nucleation and growth of crystals having substantially different orientations from the very well aligned columnar structure that characterized the bulk of the sheet.

  18. Evaluation of atmospheric particulate concentrations derived from analysis of ratio Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Carnahan, W. H.; Mausel, P. W.; Zhou, G. P.

    1984-01-01

    An approach for atmospheric particulate concentration evaluation above urban areas using ratio Thematic Mapper (TM) data is discussed. October 25, 1982 TM data over Chicago, IL are analyzed using TM band ratios of 1/2, 1/3, 1/4, 1/5, and 1/6 and particulate concentration estimates derived from TM ratios are tested over low reflective turbid water sites and highly reflective concrete highways. From analysis of the data it is evident that for water, the pattern of increasing particulate concentration is associated with decreasing ratio values in all band combinations used. Over concrete features, the TM band 1/4 ratio values follow the predicted pattern, while the TM band 1/6 has ratios which are reversed from anticipated values.

  19. Epidemiology of health concerns among collegiate student musicians participating in marching band.

    PubMed

    Hatheway, Melissa; Chesky, Kris

    2013-12-01

    Participation in marching band requires intense physical and mental requirements, altered and potentially elevated biomechanical demands related to performing musical instruments while marching, routine exposures to elevated noise levels and at times hazardous weather conditions, and time commitments for practice and travel. Unfortunately, there are no known epidemiologic studies that systematically examine the perception of health-related consequences among college students participating in a collegiate marching band. There are no known studies that attempt to understand if the perceived consequences of marching band are different for students majoring in music compared to non-music major students. In response to this deficiency, this study collected and characterized occupational health patterns and concerns associated with participation in a collegiate marching band. Members of a large collegiate marching band (n=246/310, 76%) responded to a 70-item epidemiologic survey. Results reveal patterns of health concerns and how they differ when compared across music majors vs non-music majors and instrument groups.

  20. Dual band monopole antenna for WLAN 2.4/5.2/5.8 with truncated ground

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A dual-band mono-pole antenna is proposed for Wireless LAN applications. The WLAN band is obtained by cutting a rectangular ring and a circular slot in the radiating patch. The overall dimension of antenna is 17×16.5×0.8 mmł. The frequency bands obtained are 2.38-2.9 GHz and 4.7-6.1 GHz with ≤ - 10 dB return loss which covers WLAN 2.4/5.2/5.8 GHz bands. The behavior of the antenna is analyzed in terms of radiation pattern, peak realized gain, radiation efficiency and surface current density. It has dipole like radiation pattern with gain of 2.33 - 4.31 dBi for lower frequency band and 4.29 - 5.16 dBi for upper frequency band with radiation efficiency of 95-98% and 93-96% respectively. The parametric analysis is carried out to understand the consequence of the various shape parameters and to get an optimum design. The simulation and measurement gave the results having close agreement.

  1. Lineage II (Serovar 1/2a and 1/2c) Human Listeria monocytogenes Pulsed-Field Gel Electrophoresis Types Divided into PFGE Groups Using the Band Patterns Below 145.5 kb.

    PubMed

    Lopez-Valladares, Gloria; Danielsson-Tham, Marie-Louise; Goering, Richard V; Tham, Wilhelm

    2017-01-01

    Among 504 clinical lineage II isolates of Listeria monocytogenes isolated during 1958-2010 in Sweden, 119 pulsed-field gel electrophoresis (PFGE) types (AscI) have been identified based on the number and distribution of all banding patterns in each DNA profile. In this study, these types were further divided into PFGE groups based on the configuration of small bands with sizes <145.5 kb. The 504 isolates included 483 serovar 1/2a isolates distributed into 114 PFGE types and 21 serovar 1/2c isolates distributed into 9 PFGE types; these were further divided into 21 PFGE groups. PFGE group, that is, configuration of small bands below 145.5 kb, and serovars were correlated. L. monocytogenes isolates belonging to PFGE groups A, B, C, E, F, H, K, L, M, S, V, W, Y, and Ö-6 to Ö-12 shared serovar 1/2a, with one exception. PFGE group E also included two PFGE types sharing serovar 1/2c and four PFGE types belonging to either serovar 1/2a or 1/2c. Isolates belonging to PFGE group N shared serovar 1/2c. In contrast to lineage I isolates, small fragments <33.3 kb were visible in all L. monocytogenes isolates belonging to lineage II. In the results from both the present and previous studies, the genomic region of small bands was genetically more conservative than in large bands. The distribution of these small bands established the relatedness of strains and defined a genetic marker for both lineages I and II, while also establishing their serogroup. The division of L. monocytogenes PFGE types into PFGE groups is advantageous as the profile of every new isolate can be identified easily and quickly through first studying the PFGE group affiliation of the isolate based on the smaller band patterns <145.5 kb, and then identifying the PFGE type based on the band patterns >145.5 kb.

  2. Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.

    PubMed

    Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc

    2013-12-01

    The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.

  3. Demosaicking for full motion video 9-band SWIR sensor

    NASA Astrophysics Data System (ADS)

    Kanaev, Andrey V.; Rawhouser, Marjorie; Kutteruf, Mary R.; Yetzbacher, Michael K.; DePrenger, Michael J.; Novak, Kyle M.; Miller, Corey A.; Miller, Christopher W.

    2014-05-01

    Short wave infrared (SWIR) spectral imaging systems are vital for Intelligence, Surveillance, and Reconnaissance (ISR) applications because of their abilities to autonomously detect targets and classify materials. Typically the spectral imagers are incapable of providing Full Motion Video (FMV) because of their reliance on line scanning. We enable FMV capability for a SWIR multi-spectral camera by creating a repeating pattern of 3x3 spectral filters on a staring focal plane array (FPA). In this paper we present the imagery from an FMV SWIR camera with nine discrete bands and discuss image processing algorithms necessary for its operation. The main task of image processing in this case is demosaicking of the spectral bands i.e. reconstructing full spectral images with original FPA resolution from spatially subsampled and incomplete spectral data acquired with the choice of filter array pattern. To the best of author's knowledge, the demosaicking algorithms for nine or more equally sampled bands have not been reported before. Moreover all existing algorithms developed for demosaicking visible color filter arrays with less than nine colors assume either certain relationship between the visible colors, which are not valid for SWIR imaging, or presence of one color band with higher sampling rate compared to the rest of the bands, which does not conform to our spectral filter pattern. We will discuss and present results for two novel approaches to demosaicking: interpolation using multi-band edge information and application of multi-frame super-resolution to a single frame resolution enhancement of multi-spectral spatially multiplexed images.

  4. Shuttle Ku-band and S-band communications implementation study

    NASA Technical Reports Server (NTRS)

    Dodds, J. G.; Huth, G. K.; Nilsen, P. W.; Polydoros, A.; Simon, M. K.; Weber, C. L.

    1980-01-01

    Various aspects of the shuttle orbiter S-band network communication system, the S-band payload communication system, and the Ku-band communication system are considered. A method is proposed for obtaining more accurate S-band antenna patterns of the actual shuttle orbiter vehicle during flight because the preliminary antenna patterns using mock-ups are not realistic that they do not include the effects of additional appendages such as wings and tail structures. The Ku-band communication system is discussed especially the TDRS antenna pointing accuracy with respect to the orbiter and the modifications required and resulting performance characteristics of the convolutionally encoded high data rate return link to maintain bit synchronizer lock on the ground. The TDRS user constraints on data bit clock jitter and data asymmetry on unbalanced QPSK with noisy phase references are included. The S-band payload communication system study is outlined including the advantages and experimental results of a peak regulator design built and evaluated by Axiomatrix for the bent-pipe link versus the existing RMS-type regulator. The nominal sweep rate for the deep-space transponder of 250 Hz/s, and effects of phase noise on the performance of a communication system are analyzed.

  5. Two-Dimensional Raman Correlation Analysis of Diseased Esophagus in a Rat

    NASA Astrophysics Data System (ADS)

    Takanezawa, Sota; Morita, Shin-ichi; Maruyama, Atsushi; Murakami, Takurou N.; Kawashima, Norimichi; Endo, Hiroyuki; Iijima, Katsunori; Asakura, Tohru; Shimosegawa, Tooru; Sato, Hidetoshi

    2010-07-01

    Generalized two-dimensional (2D) Raman correlation analysis effectively distinguished a benign tumor from normal tissue. Line profiling Raman spectra of a rat esophagus, including a benign tumor, were measured and the generalized 2D synchronous and asynchronous spectra were calculated. In the autocorrelation area of the amide I band of proteins in the asynchronous map, a cross-like pattern was observed. A simulation study indicated that the pattern was caused by a sharp band component in the amide I band region. We considered that the benign tumor corresponded to the sharp component.

  6. Light-propagation management in coupled waveguide arrays: Quantitative experimental and theoretical assessment from band structures to functional patterns

    NASA Astrophysics Data System (ADS)

    Moison, Jean-Marie; Belabas, Nadia; Levenson, Juan Ariel; Minot, Christophe

    2012-09-01

    We assess the band structure of arrays of coupled optical waveguides both by ab initio calculations and by experiments, with an excellent quantitative agreement without any adjustable physical parameter. The band structures we obtain can deviate strongly from the expectations of the standard coupled mode theory approximation, but we describe them efficiently by a few parameters within an extended coupled mode theory. We also demonstrate that this description is in turn a firm and simple basis for accurate beam management in functional patterns of coupled waveguides, in full accordance with their design.

  7. Tuning the band structure of graphene nanoribbons through defect-interaction-driven edge patterning

    NASA Astrophysics Data System (ADS)

    Du, Lin; Nguyen, Tam N.; Gilman, Ari; Muniz, André R.; Maroudas, Dimitrios

    2017-12-01

    We report a systematic analysis of pore-edge interactions in graphene nanoribbons (GNRs) and their outcomes based on first-principles calculations and classical molecular-dynamics simulations. We find a strong attractive interaction between nanopores and GNR edges that drives the pores to migrate toward and coalesce with the GNR edges, which can be exploited to form GNR edge patterns that impact the GNR electronic band structure and tune the GNR band gap. Our analysis introduces a viable physical processing strategy for modifying GNR properties by combining defect engineering and thermal annealing.

  8. Apparatus, Method, and Computer Program for a Resolution-Enhanced Pseudo-Noise Code Technique

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2015-01-01

    An apparatus, method, and computer program for a resolution enhanced pseudo-noise coding technique for 3D imaging is provided. In one embodiment, a pattern generator may generate a plurality of unique patterns for a return to zero signal. A plurality of laser diodes may be configured such that each laser diode transmits the return to zero signal to an object. Each of the return to zero signal includes one unique pattern from the plurality of unique patterns to distinguish each of the transmitted return to zero signals from one another.

  9. X/X/Ka-band prime focus feed antenna for the Mars Observer beacon spacecraft

    NASA Technical Reports Server (NTRS)

    Stanton, P.; Reilly, H.; Esquivel, M.

    1988-01-01

    The results of an X/X/Ka-band feed design concept demonstration are presented. The purpose is to show the feasibility of adding a Ka-band beacon to the Mars Observer spacecraft. Scale model radiation patterns were made and analyzed.

  10. Differential diagnosis of periapical cyst using collagen birefringence pattern of the cyst wall

    PubMed Central

    2017-01-01

    Objectives Periapical lesions, including periapical cyst (PC), periapical granuloma (PG), and periapical abscess (PA), are frequently affected by chemical/physical damage during root canal treatment or severe bacterial infection, and thus, the differential diagnosis of periapical lesions may be difficult due to the presence of severe inflammatory reaction. The aim of this study was to make differential diagnosis among PC, PG, and PA under polarizing microscope. Materials and Methods The collagen birefringence patterns of 319 cases of PC (n = 122), PG (n = 158), and PA (n = 39) obtained using a polarizing microscope were compared. In addition, 6 cases of periodontal fibroma (PF) were used as positive controls. Results Collagen birefringence was condensed with a thick, linear band-like pattern in PC, but was short and irregularly scattered in PG, and scarce or absent in PA. PF showed intense collagen birefringence with a short, palisading pattern but no continuous band-like pattern. The linear band-like birefringence in PC was ascribed to pre-existing expansile tensile stress of the cyst wall. Conclusions In this study all PCs (n = 122) were distinguishable from PGs and PAs by their characteristic birefringence, despite the absence of lining epithelium (n = 20). Therefore, the authors suggest that the presence of linear band-like collagen birefringence of the cyst wall aids the diagnostic differentiation of PC from PG and PA. PMID:28503476

  11. Detection of recurrent activation patterns across focal seizures: Application to seizure onset zone identification.

    PubMed

    Vila-Vidal, Manel; Principe, Alessandro; Ley, Miguel; Deco, Gustavo; Tauste Campo, Adrià; Rocamora, Rodrigo

    2017-06-01

    We introduce a method that quantifies the consistent involvement of intracranially monitored regions in recurrent focal seizures. We evaluated the consistency of two ictal spectral activation patterns (mean power change and power change onset time) in intracranial recordings across focal seizures from seven patients with clinically marked seizure onset zone (SOZ). We examined SOZ discrimination using both patterns in different frequency bands and periods of interest. Activation patterns were proved to be consistent across more than 80% of recurrent ictal epochs. In all patients, whole-seizure mean activations were significantly higher for SOZ than non-SOZ regions (P<0.05) while activation onset times were significantly lower for SOZ than for non-SOZ regions (P<0.001) in six patients. Alpha-beta bands (8-20Hz) achieved the highest patient-average effect size on the whole-seizure period while gamma band (20-70Hz) achieved the highest discrimination values between SOZ and non-SOZ sites near seizure onset (0-5s). Consistent spectral activation patterns in focal epilepsies discriminate the SOZ with high effect sizes upon appropriate selection of frequency bands and activation periods. The present method may be used to improve epileptogenic identification as well as pinpoint additional regions that are functionally altered during ictal events. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  12. [RAPD analysis of Aspergilli and its application in brewing industry].

    PubMed

    Pan, Li; Wang, Bin; Guo, Yong

    2007-06-01

    Phylogenetic analysis of sixteen Aspergilli was done by RAPD technology, using Aspergillus oryzae AS3.951, Aspergillus flavus GIM3.18 and Aspergillus sojae AS3.495 as controls. First, genome DNA of the sixteen test strains were prepared by improved extraction method, and their quality was verified by electrophoresis and spectrophotometry. They displayed an identical band (approximately 20 kb) in agarose gel electrophoresis, which conformed to the fact that these strains all belong to Aspergillus. OD260/OD280 of the prepared DNA ranged from 1.80 to 1.90, illustrating that they were good enough to be used as templates in the following RAPD-PCR experiment. Then, three appropriate primers (Primerl, Primer2, Primer5) for RAPD-PCR were screened from nine random primers, and repetitive experiments demonstrated that the RAPD-PCR polymorphic patterns of the sixteen test strains based on these three primers were stable. There were usually 8-14 bands in their RADP-PCR patterns, where the number of the main bands was 4-9 and the secondary bands were abundant. There were totally 181 bands in their RAPD-PCR patterns, where the percentage of polymorphic bands reached to 40.9% (74 bands). The similarity coefficient between the strains was calculated based on their RAPD-PCR patterns, ranging from 8.0% to 96.6%. All these data suggests that the genetic polymorphism of the strains is abundant and they have evident genetic differentiation. The phylogenetic tree of the sixteen test strains was reconstructed according to their RAPD-PCR patterns with Primer1, Primer2 and Primer5. It basically corresponded to traditional morphological taxonomy, demonstrating that the application of RAPD molecular marker in the phylogenetic analysis of these Aspergilli is feasible. Besides, the aflatoxin-producing strains (GIM3.17, CICC2219, CICC2357, CICC2390, CICC2402, CICC2404) could be easily discriminated by RAPD molecular marker, whereas it is difficult to distinguish them by conventional morphological taxonomy. Consequently, RAPD molecular marker provides a novel clue to discriminating aflatoxin-producing strains in brewing industry.

  13. Retention of riveted aluminum leg bands by wild turkeys

    USGS Publications Warehouse

    Diefenbach, Duane R.; Vreeland, Wendy C.; Casalena, Mary Jo; Schiavone, Michael V.

    2016-01-01

    In order for mark–recapture models to provide unbiased estimates of population parameters, it is critical that uniquely identifying tags or marks are not lost. We double-banded male and female wild turkeys with aluminum rivet bands and estimated the probability that a bird would be recovered with both bands <1–225 wk since banding (mean = 51.2 wk, SD = 44.0). We found that 100% of females (n = 37) were recovered with both bands. For males, we recovered 6 of 188 turkeys missing a rivet band for a retention probability of 0.984 (95% CI = 0.96–0.99). If male turkeys are double-banded with rivet bands the probability of recovering a turkey without any marks is <0.001. We failed to detect a change in band retention over time or differences between adults and juveniles. Given the low cost and high retention rates of rivet aluminum bands, we believe they are an effective marking technique for wild turkeys and, for most studies, will minimize any concern about the assumption that marks are not lost.

  14. Two regimes in the magnetic field response of superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Kohen, A.; Giubileo, F.; Proslier, Th.; Bobba, F.; Cucolo, A. M.; Sacks, W.; Noat, Y.; Troianovski, A.; Roditchev, D.

    2007-05-01

    Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.

  15. Ferromagnetism in the Hubbard Model with a Gapless Nearly-Flat Band

    NASA Astrophysics Data System (ADS)

    Tanaka, Akinori

    2018-01-01

    We present a version of the Hubbard model with a gapless nearly-flat lowest band which exhibits ferromagnetism in two or more dimensions. The model is defined on a lattice obtained by placing a site on each edge of the hypercubic lattice, and electron hopping is assumed to be only between nearest and next nearest neighbor sites. The lattice, where all the sites are identical, is simple, and the corresponding single-electron band structure, where two cosine-type bands touch without an energy gap, is also simple. We prove that the ground state of the model is unique and ferromagnetic at half-filling of the lower band, if the lower band is nearly flat and the strength of on-site repulsion is larger than a certain value which is independent of the lattice size. This is the first example of ferromagnetism in three dimensional non-singular models with a gapless band structure.

  16. Poly-Pattern Compressive Segmentation of ASTER Data for GIS

    NASA Technical Reports Server (NTRS)

    Myers, Wayne; Warner, Eric; Tutwiler, Richard

    2007-01-01

    Pattern-based segmentation of multi-band image data, such as ASTER, produces one-byte and two-byte approximate compressions. This is a dual segmentation consisting of nested coarser and finer level pattern mappings called poly-patterns. The coarser A-level version is structured for direct incorporation into geographic information systems in the manner of a raster map. GIs renderings of this A-level approximation are called pattern pictures which have the appearance of color enhanced images. The two-byte version consisting of thousands of B-level segments provides a capability for approximate restoration of the multi-band data in selected areas or entire scenes. Poly-patterns are especially useful for purposes of change detection and landscape analysis at multiple scales. The primary author has implemented the segmentation methodology in a public domain software suite.

  17. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    PubMed

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species. Overall results suggest that there were many new types of glutelin subunits and precursor in the three wild rice species. Hence, wild rice species are important genetic resources for improving nutritional quality to rice.

  18. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.

    PubMed

    Burkert, Klaus; Neumann, Thomas; Wang, Jianjun; Jonas, Ulrich; Knoll, Wolfgang; Ottleben, Holger

    2007-03-13

    Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.

  19. Spectroscopic vector analysis for fast pattern quality monitoring

    NASA Astrophysics Data System (ADS)

    Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin

    2018-03-01

    In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.

  20. Goldstone STDN 9-meter radiation test

    NASA Astrophysics Data System (ADS)

    Blain, J. R.

    1981-12-01

    The Goldstone spaceflight tracking and data network (STDN) 9-meter tests were conducted from February through July 1981 to characterize the near-field radiation patterns of the S-band and fourth harmonic frequency emissions. The test configurations and results are presented with graphs of the antenna patterns. The tests indicated that X-band leakage may be suppressed to levels of approximately -190 dBm/sq cm at 200 meters.

  1. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2.

    PubMed

    Singh, Madhu; Singh, Dileep Kumar

    2014-01-30

    Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Investigation of Portevin-Le Chatelier band with temporal phase analysis of speckle interferometry

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenyu; Zhang, Qingchuan; Wu, Xiaoping

    2003-04-01

    A new method combining temporal phase analysis with dynamic digital speckle pattern interferometry is proposed to study Portevin-Le Chatelier effect quantitatively. The principle bases on that the phase difference of interference speckle patterns is a time-dependent function related to the object deformation. The interference speckle patterns of specimen are recorded with high sampling rate while PLC effect occurs, and the 2D displacement map of PLC band and its width are obtained by analyzing the displacement of specimen with proposed method.

  3. 78 FR 8229 - Service Rules for Advanced Wireless Services in the 2000-2020 MHz and 2180-2200 MHz Bands, etc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... issues unique to the particular spectrum bands. The proposed rules were designed to provide for flexible... included aggressive build-out requirements and concomitant penalties for failure to build out designed to... been ex parte presentations. III. Report and Order: AWS-4 7. In this AWS-4 Report and Order, we build...

  4. The unique, optically-dominated quasar jet of PKS 1421-490

    NASA Astrophysics Data System (ADS)

    Gelbord, J. M.; Marshall, H. L.; Worrall, D. M.; Birkinshaw, M.; Lovell, J. E. J.; Ojha, R.; Godfrey, L.; Schwartz, D. A.; Perlman, E. S.; Georganopoulos, M.; Murphy, D. W.; Jauncey, D. L.

    2004-12-01

    The unique, optically-dominated quasar jet of PKS 1421-490 We report the discovery of extremely strong optical and X-ray emission associated with a knot in the radio jet of PKS 1421-490. The SDSS g' = 17.8 magnitude makes this the second-brightest optical jet known. The jet-to-core flux ratio in the X-ray band is unusually large (3.7), and the optical flux ratio ( ˜300) is unprecedented. The broad-band spectrum of the knot is flat from the radio through the optical bands, and has a similar slope with a lower normalization in the X-ray band. This emission is difficult to interpret without resorting to extreme model parameters or physically unlikely scenarios (flat electron distributions, non-equipartition magnetic fields, huge Doppler factors, etc.). We discuss several alternative models for the radio-to-X-ray continuum, including pure synchrotron, synchrotron plus inverse Compton scattering of cosmic microwave background photons, and a decelerating jet. JMG was supported under Chandra grant GO4-5124X to MIT from the CXC. HLM was supported under NASA contract SAO SV1-61010 for the Chandra X-Ray Center (CXC).

  5. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: a review.

    PubMed

    Hada, Megumi; Wu, Honglu; Cucinotta, Francis A

    2011-06-03

    During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations. 2011 Elsevier B.V. All rights reserved.

  6. Testing Timescales for Rhythms Recorded in the 2.5 Ga Banded Iron Formation of the Dales Gorge Member (Brockman Iron Formation, Hamersley Group, Australia)

    NASA Astrophysics Data System (ADS)

    Hinnov, L. A.; de Oliveira Carvalho Rodrigues, P.; Franco, D.

    2017-12-01

    The classic, Superior-type banded iron formation (BIF) of the Precambrian Dales Gorge Member (DGM) of the Brockman Iron Formation, Hamersley Basin, Western Australia consists of a succession of micro- (millimeter-scale) and meso- (centimeter to decimeter-scale) bands of primarily iron-silica chemical sediment alternations, separated into macro- (meter to decameter-scale) bands by shales (1). Here, we present a time-frequency analysis of a gray-scale scan of the DGM "type section core" Hole 47A with small contributions from Hole EC10 (1) to provide a comprehensive characterization of banding patterns and periodicity throughout the 140 m section. SHRIMP zircon ages (2) indicate that the DGM was deposited over approximately 30 myr during the Archean-Proterozoic transition just prior to the Great Oxidation Event. This suggests that the banding patterns recorded Milankovitch cycles, although with orbital-rotational parameters significantly different from present-day due to Earth's tidal dissipation and chaotic episodes in the Solar System since 2.5 Ga. Banding patterns change systematically within the formation in response to slowly varying environmental conditions, which have been interpreted previously to be related to sea level change and basin evolution (3). Researchers, including (2), have questioned the 30 myr duration, suggesting instead that the micro-bands may be annual in scale. This would indicate a much shorter duration of less than 150 kyr for the DGM. In an attempt to determine whether Milankovitch cycles could have generated the meso-band patterns, we present detailed studies of BIF0 and BIF12, which typify the marked changes in meso-banding along the section. Objective procedures are also applied, including ASM (4) and TIMEOPT (5) to test for a range of potential alternative timescales assuming orbital-rotational parameter values modeled for 2.5 Ga. References: (1) Trendall, A.K., Blockley, J.G., GSWA Ann. Rep. 1967, 48, 1968; (2) Trendall, A.K., et al., Austr. J. Earth Sci., 51, 621, 2004; (3) Pickard, A., Barley, M., Krapez, B., Sed. Geol., 170, 37, 2004; (4) Meyers, S.R., Sageman, B.B., Amer. J. Sci., 307, 773, 2007; (5) Meyers, S.R., Paleocean., 30, 2015.

  7. Recoveries of banded Laysan albatrosses (Diomedea immutabilis) and black-footed albatrosses (D. nigripes)

    USGS Publications Warehouse

    Robbins, C.S.; Rice, D.W.; King, Warren B.

    1974-01-01

    Summarizes the seasonal distribution of pelagic recoveries of 324 banded Laysan Albatrosses and 399 banded Black-footed Albatrosses. Different age groups of each species concentrate in somewhat different areas, and, although range overlap between species is almost complete, each has its own distinctive seasonal distribution pattern.

  8. Unique wing scale photonics of male Rajah Brooke's birdwing butterflies.

    PubMed

    Wilts, Bodo D; Giraldo, Marco A; Stavenga, Doekele G

    2016-01-01

    Ultrastructures in butterfly wing scales can take many shapes, resulting in the often striking coloration of many butterflies due to interference of light. The plethora of coloration mechanisms is dazzling, but often only single mechanisms are described for specific animals. We have here investigated the male Rajah Brooke's birdwing, Trogonoptera brookiana, a large butterfly from Malaysia, which is marked by striking, colorful wing patterns. The dorsal side is decorated with large, iridescent green patterning, while the ventral side of the wings is primarily brown-black with small white, blue and green patches on the hindwings. Dense arrays of red hairs, creating a distinct collar as well as contrasting areas ventrally around the thorax, enhance the butterfly's beauty. The remarkable coloration is realized by a diverse number of intricate and complicated nanostructures in the hairs as well as the wing scales. The red collar hairs contain a broad-band absorbing pigment as well as UV-reflecting multilayers resembling the photonic structures of Morpho butterflies; the white wing patches consist of scales with prominent thin film reflectors; the blue patches have scales with ridge multilayers and these scales also have centrally concentrated melanin. The green wing areas consist of strongly curved scales, which possess a uniquely arranged photonic structure consisting of multilayers and melanin baffles that produces highly directional reflections. Rajah Brooke's birdwing employs a variety of structural and pigmentary coloration mechanisms to achieve its stunning optical appearance. The intriguing usage of order and disorder in related photonic structures in the butterfly wing scales may inspire novel optical materials as well as investigations into the development of these nanostructures in vivo.

  9. Variability of esterase patterns in adult flies of the saltans species group of Drosophila (subgenus Sophophora).

    PubMed

    Bernardo, Alessandra Augusta; Bicudo, Hermione Elly Melara de Campos

    2009-09-01

    Esterases are known for their involvement in several physiological processes and high degree of polymorphism, in many organisms. Such polymorphism has been used to characterize species and species groups and to study genetic changes occurred in their evolutionary history. In the present study, the esterase patterns of 19 strains from 10 species representative of the five subgroups of the saltans species group were analyzed using polyacrylamide gel electrophoresis and alpha- and beta- naphthyl acetates as substrates. Fifty-one esterase bands were detected and classified as 31 alpha-esterases, 18 beta-esterases and two alpha/beta-esterases. On the basis of the inhibition patterns using Malathion and eserine sulfate, 34 bands were classified as carboxylesterases, 14 as acethylesterases and three as cholinesterases. Ten gene loci were tentatively established on the basis of data on band position in the gel, substrate preference and inhibition pattern. Twenty bands were species-specific, the remaining being shared by species from the same or different subgroups. Bands detected exclusively in males and bands with a different frequency or degree of expression between sexes were also detected. In the gels prepared for analysis of gene expression in the body parts (head, thorax and abdomen), the degree of expression of the beta-esterases was higher in the thorax, while the alpha-esterases were expressed predominantly in the abdomen and thorax. A global view of the data available at present on the esterases of the species from the saltans group and their degree of polymorphism are presented, as well as the possibility of using some beta-esterases, because of their characteristics in the gels, as markers for species identification.

  10. Frequency band justifications for passive sensors, 1 to 10 GHz. [for monitoring earth resources and the environment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Remote sensor systems operating in the microwave region of the frequency spectrum provide information unobtainable with basic imaging techniques such as photography, television, or multispectral imaging. The frequency allocation requirements for passive microwave sensors used in the earth exploration satellite and space research services are presented for: (1) agriculture, forestry, and range resources; (2) land use survey and mapping: (3) water resources; (4) weather and climate; (5) environmental quality; and (6) marine resources, estuarine and oceans. Because measurements are required simultaneously in multiple frequency bands to adequately determine values of some phenomena, the relationships between frequency bands are discussed. The various measurement accuracies, dynamic range, resolutions and frequency needs are examined. A band-by-band summary of requirements, unique aspects, and sharing analyses of the required frequency bands is included.

  11. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES)

    NASA Astrophysics Data System (ADS)

    Cami, J.; Cox, N. L.; Farhang, A.; Smoker, J.; Elyajouri, M.; Lallement, R.; Bacalla, X.; Bhatt, N. H.; Bron, E.; Cordiner, M. A.; de Koter, A..; Ehrenfreund, P.; Evans, C.; Foing, B. H.; Javadi, A.; Joblin, C.; Kaper, L.; Khosroshahi, H. G.; Laverick, M.; Le Petit, F..; Linnartz, H.; Marshall, C. C.; Monreal-Ibero, A.; Mulas, G.; Roueff, E.; Royer, P.; Salama, F.; Sarre, P. J.; Smith, K. T.; Spaans, M.; van Loon, J. T..; Wade, G.

    2018-03-01

    The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) is a Large Programme that is collecting high-signal-to-noise (S/N) spectra with UVES of a large sample of O and B-type stars covering a large spectral range. The goal of the programme is to extract a unique sample of high-quality interstellar spectra from these data, representing different physical and chemical environments, and to characterise these environments in great detail. An important component of interstellar spectra is the diffuse interstellar bands (DIBs), a set of hundreds of unidentified interstellar absorption lines. With the detailed line-of-sight information and the high-quality spectra, EDIBLES will derive strong constraints on the potential DIB carrier molecules. EDIBLES will thus guide the laboratory experiments necessary to identify these interstellar “mystery molecules”, and turn DIBs into powerful diagnostics of their environments in our Milky Way Galaxy and beyond. We present some preliminary results showing the unique capabilities of the EDIBLES programme.

  12. Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices.

    PubMed

    Saba, Matthias; Hamm, Joachim M; Baumberg, Jeremy J; Hess, Ortwin

    2017-12-01

    Topological phases derived from point degeneracies in photonic band structures show intriguing and unique behavior. Previously identified band degeneracies are based on accidental degeneracies and subject to engineering on a case-by-case basis. Here we show that deterministic pseudo Weyl points with nontrivial topology and hyperconic dispersion exist at the Brillouin zone center of chiral cubic symmetries. This conceivably allows realization of topologically protected frequency isolated surface bands in 3D and n=0 properties as demonstrated for a nanoplasmonic system and a photonic crystal.

  13. Group Theoretical Route to Deterministic Weyl Points in Chiral Photonic Lattices

    NASA Astrophysics Data System (ADS)

    Saba, Matthias; Hamm, Joachim M.; Baumberg, Jeremy J.; Hess, Ortwin

    2017-12-01

    Topological phases derived from point degeneracies in photonic band structures show intriguing and unique behavior. Previously identified band degeneracies are based on accidental degeneracies and subject to engineering on a case-by-case basis. Here we show that deterministic pseudo Weyl points with nontrivial topology and hyperconic dispersion exist at the Brillouin zone center of chiral cubic symmetries. This conceivably allows realization of topologically protected frequency isolated surface bands in 3D and n =0 properties as demonstrated for a nanoplasmonic system and a photonic crystal.

  14. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  15. Identification of the cutaneous basement membrane zone antigen and isolation of antibody in linear immunoglobulin A bullous dermatosis.

    PubMed Central

    Zone, J J; Taylor, T B; Kadunce, D P; Meyer, L J

    1990-01-01

    Linear IgA bullous dermatosis (LABD) is a rare blistering skin disease characterized by basement membrane zone deposition of IgA. This study identifies a tissue antigen detected by patient serum and then isolates the autoantibody using epidermis and protein bands blotted on nitrocellulose as immunoabsorbents. Sera from 10 patients (9 with cutaneous disease and 1 with cicatrizing conjunctivitis) were evaluated. Indirect immunofluorescence revealed an IgA anti-basement membrane antibody in 6 of 10 sera with monkey esophagus substrate and 9 of 10 sera with human epidermal substrate. Immunoblotting was performed on epidermal and dermal extracts prepared from skin separated at the basement membrane zone with either sodium chloride or EDTA. Saline-separated skin expressed a 97-kD band in dermal extract alone that was recognized by 4 of 10 sera. EDTA-separated skin expressed the 97-kD band in both epidermal (4 of 10 sera) and dermal (6 of 10 sera) extract. Immunoabsorption of positive sera with epidermis purified an IgA antibody that reacted uniquely with the 97-kD band. In addition, IgA antibody bound to nitrocellulose was eluted from the 97-kD band and found to uniquely bind basement membrane zone. It is likely that the 97-kD protein identified by these techniques is responsible for basement membrane binding of IgA in LABD. Images PMID:2107211

  16. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species

    NASA Astrophysics Data System (ADS)

    Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-12-01

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.

  17. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species

    PubMed Central

    Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-01-01

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites. PMID:27982114

  18. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species.

    PubMed

    Jourdan, Jonas; Krause, Sarah T; Lazar, V Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-12-16

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.

  19. Lack of spatial genetic structure among nesting and wintering King Eiders

    USGS Publications Warehouse

    Pearce, J.M.; Talbot, S.L.; Pierson, Barbara J.; Petersen, M.R.; Scribner, K.T.; Dickson, D.L.; Mosbech, A.

    2004-01-01

    The King Eider (Somateria spectabilis) has been delineated into two broadly distributed breeding populations in North America (the western and eastern Arctic) on the basis of banding data and their use of widely separated Pacific and Atlantic wintering areas. Little is known about the level of gene flow between these two populations. Also unknown is whether behavioral patterns common among migratory waterfowl, such as site fidelity to wintering areas and pair formation at these sites, have existed for sufficient time to create a population structure defined by philopatry to wintering rather than to nesting locations. We used six nuclear microsatellite DNA loci and cytochrome b mitochondrial DNA sequence data to estimate the extent of spatial genetic differentiation among nesting and wintering areas of King Eiders across North America and adjacent regions. Estimates of interpopulation variance in microsatellite allele and mtDNA haplotype frequency were both low and nonsignificant based on samples from three wintering and four nesting areas. Results from nested clade analysis, mismatch distributions, and coalescent-based analyses suggest historical population growth and gene flow that collectively may have homogenized gene frequencies. The presence of several unique mtDNA haplotypes among birds wintering near Greenland suggests that gene flow may now be more limited between the western and eastern Arctic, which is consistent with banding data.

  20. Circularly-polarized, semitransparent and double-sided holograms based on helical photonic structures.

    PubMed

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-11-28

    Recent advances in nanofabrication techniques are opening new frontiers in holographic devices, with the capability to integrate various optical functions in a single device. However, while most efficient holograms are achieved in reflection-mode configurations, they are in general opaque because of the reflective substrate that must be used, and therefore, have limited applicability. Here, we present a semi-transparent, reflective computer-generated hologram that is circularly-polarization dependent, and reconstructs different wavefronts when viewed from different sides. The integrated functionality is realized using a single thin-film of liquid crystal with a self-organized helical structure that Bragg reflects circularly-polarized light over a certain band of wavelengths. Asymmetry depending on the viewing side is achieved by exploiting the limited penetration depth of light in the helical structure as well as the nature of liquid crystals to conform to different orientational patterns imprinted on the two substrates sandwiching the material. Also, because the operation wavelength is determined by the reflection band position, pseudo-color holograms can be made by simply stacking layers with different designs. The unique characteristics of this hologram may find applications in polarization-encoded security holograms and see-through holographic signage where different information need to be displayed depending on the viewing direction.

  1. Characterizing bars in low surface brightness disc galaxies

    NASA Astrophysics Data System (ADS)

    Peters, Wesley; Kuzio de Naray, Rachel

    2018-05-01

    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  2. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations.

    PubMed

    Maslanka, S E; Kerr, J G; Williams, G; Barbaree, J M; Carson, L A; Miller, J M; Swaminathan, B

    1999-07-01

    Clostridium perfringens is a common cause of food-borne illness. The illness is characterized by profuse diarrhea and acute abdominal pain. Since the illness is usually self-limiting, many cases are undiagnosed and/or not reported. Investigations are often pursued after an outbreak involving large numbers of people in institutions, at restaurants, or at catered meals. Serotyping has been used in the past to assist epidemiologic investigations of C. perfringens outbreaks. However, serotyping reagents are not widely available, and many isolates are often untypeable with existing reagents. We developed a pulsed-field gel electrophoresis (PFGE) method for molecular subtyping of C. perfringens isolates to aid in epidemiologic investigations of food-borne outbreaks. Six restriction endonucleases (SmaI, ApaI, FspI, MluI, KspI, and XbaI) were evaluated with a select panel of C. perfringens strains. SmaI was chosen for further studies because it produced 11 to 13 well-distributed bands of 40 to approximately 1,100 kb which provided good discrimination between isolates. Seventeen distinct patterns were obtained with 62 isolates from seven outbreak investigations or control strains. In general, multiple isolates from a single individual had indistinguishable PFGE patterns. Epidemiologically unrelated isolates (outbreak or control strains) had unique patterns; isolates from different individuals within an outbreak had similar, if not identical, patterns. PFGE identifies clonal relationships of isolates which will assist epidemiologic investigations of food-borne-disease outbreaks caused by C. perfringens.

  3. Organic influences on inorganic patterns of diffusion-controlled precipitation in gels

    NASA Astrophysics Data System (ADS)

    Barge, Laura M.; Nealson, Kenneth H.; Petruska, John

    2010-06-01

    The well-known AgNO 3/K 2CrO 4 reaction-diffusion system produces periodic bands of silver chromate precipitate in gelatin, but only randomly oriented crystals in agarose gel. We show that comparable bands can be produced in agarose gel by adding small amounts of simple organic acids (e.g., acetic acid, N-acetyl glycine, and N-acetyl alanine) that suppress crystal growth and promote formation of rounded particles of precipitate. These results indicate that α-carboxyl groups of amino acids or short peptides in gelatin under mildly acidic conditions can induce periodic band patterns in diffusion-controlled silver chromate precipitates.

  4. Relationship between rabbit transferrin electrophoretic patterns and plasma iron concentrations.

    PubMed

    Zaragoza, P; Arana, A; Amorena, B

    1987-01-01

    Rabbit transferrin (Tf) was studied electrophoretically using 1141 blood samples from individuals belonging to seven populations (Spanish Common, Spanish Giant, Butterfly, Lyoné de Bourgogne, New Zealand White, Californian and New Zealand White X Californian hybrids). No Tf polymorphism was found by starch gel electrophoresis, but six patterns, differing in the presence and/or intensity of three bands ('a', anodic; 'b', intermediate; and 'c', cathodic) were observed by polyacrylamide gel electrophoresis. No genetic model could explain these patterns, since they reflect differences in plasma Tf iron content. The electrophoretic test allowed a direct observation of the relative in vivo levels of the different Tf molecular species; saturated (band 'a', Fe2Tf); semi-saturated (band 'b', Fe1Tf); and without iron (band 'c' Fe0Tf, apotransferrin). The degree of iron saturation of Tf varied among individuals and throughout the individual's life. Specifically, in pregnant females, Fe2Tf and Fe1Tf are generally observed, except in late pregnancy (from day 25 to parturition), when mainly apotransferrin is observed. Significantly, within 24 h post-partum, high levels of Fe2Tf are reached in the female's serum.

  5. Self-organized iron-oxide cementation geometry as an indicator of paleo-flows

    DOE PAGES

    Wang, Yifeng; Chan, Marjorie A.; Merino, Enrique

    2015-06-30

    Widespread iron oxide precipitation from groundwater in fine-grained red beds displays various patterns, including nodulation, banding and scallops and fingers. Hematite nodules have been reported also from the Meridiani Planum site on Mars and interpreted as evidence for the ancient presence of water on the red planet. Here we show that such patterns can autonomously emerge from a previously unrecognized Ostwald ripening mechanism and they capture rich information regarding ancient chemical and hydrologic environments. A linear instability analysis of the reaction-transport equations suggests that a pattern transition from nodules to bands may result from a symmetry breaking of mineral dissolutionmore » and precipitation triggered by groundwater advection. Round nodules tend to develop under nearly stagnant hydrologic conditions, while repetitive bands form in the presence of persistent water flows. Since water circulation is a prerequisite for a sustainable subsurface life, a Martian site with iron oxide precipitation bands, if one were found, may offer a better chance for detecting extraterrestrial biosignatures on Mars than would sites with nodules.« less

  6. Human behavior. Sex equality can explain the unique social structure of hunter-gatherer bands.

    PubMed

    Dyble, M; Salali, G D; Chaudhary, N; Page, A; Smith, D; Thompson, J; Vinicius, L; Mace, R; Migliano, A B

    2015-05-15

    The social organization of mobile hunter-gatherers has several derived features, including low within-camp relatedness and fluid meta-groups. Although these features have been proposed to have provided the selective context for the evolution of human hypercooperation and cumulative culture, how such a distinctive social system may have emerged remains unclear. We present an agent-based model suggesting that, even if all individuals in a community seek to live with as many kin as possible, within-camp relatedness is reduced if men and women have equal influence in selecting camp members. Our model closely approximates observed patterns of co-residence among Agta and Mbendjele BaYaka hunter-gatherers. Our results suggest that pair-bonding and increased sex egalitarianism in human evolutionary history may have had a transformative effect on human social organization. Copyright © 2015, American Association for the Advancement of Science.

  7. True time-delay photonic beamforming with fine steerability and frequency-agility for spaceborne phased-arrays: a proof-of-concept demonstration

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.

    1996-10-01

    Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.

  8. Application of remote sensing in the study of vegetation and soils in Idaho

    NASA Technical Reports Server (NTRS)

    Tisdale, E. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Comparison of ERTS-1 imagery and USGS 1:250,000 scale maps of study areas with known ground points revealed significant map errors. These errors were sufficient to render impractical the projection of ERTS-1 imagery directly onto maps of the area. Marked differences were found in the delineation of ground features by different MSS bands. Generally, Band 4 was least useful, while Band 5 proved valuable for indicating patterns of native vegetation, cultivated areas - both dry and irrigated, lava fields, drainage basins, and deep bodies of water. Band 6 was better for landforms and drainages and for shallow bodies of water than Band 5 but inferior for indicating patterns in native vegetation and most types of cultivated land. Band 7 was best of all for indicating lava flows, water bodies, and landform features. Use of a additive color viewer-projector aided greatly in separation of images. A combination of Bands 5 and 7 with appropriate color filters proved best for separating most types of native vegetation and cultivated crops. Landform features and water bodies also showed well with this combination. The addition of Band 4 imagery to these further enhanced the identification of semi-dormant vegetation.

  9. An adaptive metamaterial beam with hybrid shunting circuits for extremely broadband control of flexural wave (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Yangyang; Huang, Guoliang

    2017-04-01

    A great deal of research has been devoted to controlling the dynamic behaviors of phononic crystals and metamaterials by directly tuning the frequency regions and/or widths of their inherent band gaps. Here, we present a novel approach to achieve extremely broadband flexural wave/vibration attenuation based on tunable local resonators made of piezoelectric stacks shunted by hybrid negative capacitance and negative inductance circuits with proof masses attached on a host beam. First, wave dispersion relations of the adaptive metamaterial beam are calculated analytically by using the transfer matrix method. The unique modulus tuning properties induced by the hybrid shunting circuits are then characterized conceptually, from which the frequency dependent modulus tuning curves of the piezoelectric stack located within wave attenuation frequency regions are quantitatively identified. As an example, a flexural wave high-pass band filter with a wave attenuation region from 0 to 23.0 kHz is demonstrated analytically and numerically by using the hybrid shunting circuit, in which the two electric components are connected in series. By changing the connection pattern to be parallel, another super wide wave attenuation region from 13.5 to 73.0 kHz is demonstrated to function as a low-pass filter at a subwavelength scale. The proposed adaptive metamaterial possesses a super wide band gap created both naturally and artificially. Therefore, it can be used for the transient wave mitigation at extremely broadband frequencies such as blast or impact loadings. We envision that the proposed design and approach can open many possibilities in broadband vibration and wave control.

  10. Genomic organization of the 260 kb surrounding the waxy locus in a Japonica rice

    PubMed

    Nagano; Wu; Kawasaki; Kishima; Sano

    1999-12-01

    The present study was carried out to characterize the molecular organization in the vicinity of the waxy locus in rice. To determine the structural organization of the region surrounding waxy, contiguous clones covering a total of 260 kb were constructed using a bacterial artificial chromosome (BAC) library from the Shimokita variety of Japonica rice. This map also contains 200 overlapping subclones, which allowed construction of a fine physical map with a total of 64 HindIII sites. During the course of constructing the map, we noticed the presence of some repeated regions which might be related to transposable elements. We divided the 260-kb region into 60 segments (average size of 5.7 kb) to use as probes to determine their genomic organization. Hybridization patterns obtained by probing with these segments were classified into four types: class 1, a single or a few bands without a smeared background; class 2, a single or a few bands with a smeared background; class 3, multiple discrete bands without a smeared background; and class 4, only a smeared background. These classes constituted 6.5%, 20.9%, 3.7%, and 68.9% of the 260-kb region, respectively. The distribution of each class revealed that repetitive sequences are a major component in this region, as expected, and that unique sequence regions were mostly no longer than 6 kb due to interruption by repetitive sequences. We discuss how the map constructed here might be a powerful tool for characterization and comparison of the genome structures and the genes around the waxy locus in the Oryza species.

  11. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  12. Structural, optical and magnetic investigation of Gd implanted CeO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Kaviyarasu, K.; Murmu, P. P.; Kennedy, J.; Thema, F. T.; Letsholathebe, Douglas; Kotsedi, L.; Maaza, M.

    2017-10-01

    Gadolinium implanted cerium oxide (Gd-CeO2) nanocomposites is an important candidate which have unique hexagonal structure and high K- dielectric constant. Gd-CeO2 nanoparticles were synthesized using hydrothermal method. X-ray diffraction (XRD) results showed that the peaks are consistent with pure phase cubic structure the XRD pattern also confirmed crystallinity and phase purity of the sample. Nanocrystals sizes were found to be up to 25 nm as revealed by XRD and SEM. It is suggested that Gd gives an affirmative effect on the ion influence behavior of Gd-CeO2. XRD patterns showed formation of new phases and SEM micrographs revealed hexagonal structure. Photoluminescence measurement (PL) reveals the systematic shift of the emission band towards lower wavelength thereby ascertaining the quantum confinement effect (QCE). The PL spectrum has wider broad peak ranging from 390 nm to 770 nm and a sharp one centered on at 451.30 nm which is in tune with Gd ions. In the Raman spectra showed intense band observed between 460 cm-1 and 470 cm-1 which is attributed to oxygen ions into CeO2. Room temperature ferromagnetism was observed in un-doped and Gd implanted and annealed CeO2 nanocrystals. In the recent studies, ceria based materials have been considered as one of the most promising electrolytes for reduced temperature SOFC (solid oxide fuel cell) system due to their high ionic conductivities allowing its use in stainless steel supported fuel cells. CeO2 having an optical bandgap 3.3 eV and n-type carrier density which make it a promising candidate for various technological application such as buffer layer on silicon on insulator devices.

  13. Modulation of Oscillatory Power and Connectivity in the Human Posterior Cingulate Cortex Supports the Encoding and Retrieval of Episodic Memories.

    PubMed

    Lega, Bradley; Germi, James; Rugg, Michael

    2017-08-01

    Existing data from noninvasive studies have led researchers to posit that the posterior cingulate cortex (PCC) supports mnemonic processes: It exhibits degeneration in memory disorders, and fMRI investigations have demonstrated memory-related activation principally during the retrieval of memory items. Despite these data, the role of the PCC in episodic memory has received only limited treatment using the spatial and temporal precision of intracranial EEG, with previous analyses focused on item retrieval. Using data gathered from 21 human participants who underwent stereo-EEG for seizure localization, we characterized oscillatory patterns in the PCC during the encoding and retrieval of episodic memories. We identified a subsequent memory effect during item encoding characterized by increased gamma band oscillatory power and a low-frequency power desynchronization. Fourteen participants had stereotactic electrodes located simultaneously in the hippocampus and PCC, and with these unique data, we describe connectivity changes between these structures that predict successful item encoding and that precede item retrieval. Oscillatory power during retrieval matched the pattern we observed during encoding, with low-frequency (below 15 Hz) desynchronization and a gamma band (especially high gamma, 70-180 Hz) power increase. Encoding is characterized by synchrony between the hippocampus and PCC, centered at 3 Hz, consistent with other observations of properties of this oscillation akin to those for rodent theta activity. We discuss our findings in light of existing theories of episodic memory processing, including the information via desynchronization hypothesis and retrieved context theory, and examine how our data fit with existing theories for the functional role of the PCC. These include a postulated role for the PCC in modulating internally directed attention and for representing or integrating contextual information for memory items.

  14. Electronic Structure and Morphology of Graphene Layers on SiC

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke

    2008-03-01

    Recent years have witnessed the discovery and the unique electronic properties of graphene, a sheet of carbon atoms arranged in a honeycomb lattice. The unique linear dispersion relation of charge carriers near the Fermi level (``Dirac Fermions'') lead to exciting transport properties, such as an unusual quantum Hall effect, and have aroused scientific and technological interests. On the way towards graphene-based electronics, a knowledge of the electronic band structure and the morphology of epitaxial graphene films on silicon carbide substrates is imperative. We have studied the evolution of the occupied band structure and the morphology of graphene layers on silicon carbide by systematically increasing the layer thickness. Using angle-resolved photoemission spectroscopy (ARPES), we examine this unique 2D system in its development from single layer to multilayers, by characteristic changes in the π band, the highest occupied state, and the dispersion relation in the out-of-plane electron wave vector in particular. The evolution of the film morphology is evaluated by the combination of low-energy electron microscopy and ARPES. By exploiting the sensitivity of graphene's electronic states to the charge carrier concentration, changes in the on-site Coulomb potential leading to a change of π and π* bands can be examined using ARPES. We demonstrate that, in a graphene bilayer, the gap between π and π* bands can be controlled by selectively adjusting relative carrier concentrations, which suggests a possible application of the graphene bilayer for switching functions in electronic devices. This work was done in collaboration with A. Bostwick, J. L. McChesney, and E. Rotenberg at Advanced Light Source, Lawrence Berkeley National Laboratory, K. Horn at Fritz-Haber-Institut, K. V. Emtsev and Th. Seyller at Lehrstuhl für Technische Physik, Universität Erlangen-Nürnberg, and F. El Gabaly and A. K. Schmid at National Center for Electron Microscopy, Lawrence Berkeley National Laboratory.

  15. Morphometric Analysis of Recognized Genes for Autism Spectrum Disorders and Obesity in Relationship to the Distribution of Protein-Coding Genes on Human Chromosomes.

    PubMed

    McGuire, Austen B; Rafi, Syed K; Manzardo, Ann M; Butler, Merlin G

    2016-05-05

    Mammalian chromosomes are comprised of complex chromatin architecture with the specific assembly and configuration of each chromosome influencing gene expression and function in yet undefined ways by varying degrees of heterochromatinization that result in Giemsa (G) negative euchromatic (light) bands and G-positive heterochromatic (dark) bands. We carried out morphometric measurements of high-resolution chromosome ideograms for the first time to characterize the total euchromatic and heterochromatic chromosome band length, distribution and localization of 20,145 known protein-coding genes, 790 recognized autism spectrum disorder (ASD) genes and 365 obesity genes. The individual lengths of G-negative euchromatin and G-positive heterochromatin chromosome bands were measured in millimeters and recorded from scaled and stacked digital images of 850-band high-resolution ideograms supplied by the International Society of Chromosome Nomenclature (ISCN) 2013. Our overall measurements followed established banding patterns based on chromosome size. G-negative euchromatic band regions contained 60% of protein-coding genes while the remaining 40% were distributed across the four heterochromatic dark band sub-types. ASD genes were disproportionately overrepresented in the darker heterochromatic sub-bands, while the obesity gene distribution pattern did not significantly differ from protein-coding genes. Our study supports recent trends implicating genes located in heterochromatin regions playing a role in biological processes including neurodevelopment and function, specifically genes associated with ASD.

  16. Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure

    NASA Astrophysics Data System (ADS)

    Chen, Yanyu; Wang, Lifeng

    2014-08-01

    Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.

  17. Size Effect of Ground Patterns on FM-Band Cross-Talks between Two Parallel Signal Traces of Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu

    Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.

  18. Structural sensitivity of Csbnd H vibrational band in methyl benzoate

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Maiti, Kiran Sankar

    2018-05-01

    The Csbnd H vibrational bands of methyl benzoate are studied to understand its coupling pattern with other vibrational bands of the biological molecule. This will facilitate to understand the biological structure and dynamics in spectroscopic as well as in microscopic study. Due to the congested spectroscopic pattern, near degeneracy, and strong anharmonicity of the Csbnd H stretch vibrations, assignment of the Csbnd H vibrational frequencies are often misleading. Anharmonic vibrational frequency calculation with multidimensional potential energy surface interprets the Csbnd H vibrational spectra more accurately. In this article we have presented the importance of multidimensional potential energy surface in anharmonic vibrational frequency calculation and discuss the unexpected red shift of asymmetric Csbnd H stretch vibration of methyl group. The Csbnd D stretch vibrational band which is splitted to double peaks due to the Fermi resonance is also discussed here.

  19. Unusual large-pitch banding in poly(L-lactic acid): Effects of composition and geometry confinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Eamor M.; Lugito, Graecia; Hsieh, Ya-Ting

    2014-02-24

    Lamellar patterns and orientations in blends of two crystalline polymers: poly(ethylene oxide) (PEO) and low-molecular-weight poly(L-lactic acid) (PLLA) were investigated using polarizing light optical microscopy (POM), and atomic and scanning electron microscopy (AFM, SEM). Specific etching off of PEO was used to reveal the complex earlier-grown PLLA lamellae patterns with various PEO content in blends. Banding of extremely long pitch (50 μm) in crystallized PLLA spherulites was induced by two kinetic factors: geometry confinement by top cover and introduction of diluent such as PEO. The mechanisms and correlation among the lamellar assembly, ring bands, and cracks are exemplified. Lamellar patternsmore » and ring-band types in blends were found to vary with respect to not only blend compositions, but also confinement of top-cover.« less

  20. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses

    DOE PAGES

    Li, Weidong; Bei, Hongbin; Gao, Yanfei

    2016-09-21

    Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less

  1. Effects of geometric factors and shear band patterns on notch sensitivity in bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Weidong; Bei, Hongbin; Gao, Yanfei

    Our recent experiments in notched bulk metallic glasses have found reduced, or insensitive, or improved strengths, while in many of these cases the ductile strain prior to final failure is enhanced. First, although the inverse notch effect is explained by a shift from shear localization to cavitation failure, it is suggested in this work that the synergistic effect between cohesive fracture at the notched area and shear bands emanating from the notch roots may extend the parametric space for the notch insensitive behavior. Second, the dependence of shear band patterns on notch geometric factors is determined by the Rudnicki-Rice theorymore » and the free-volume-based finite element simulations. Our results suggest conditions for shear band multiplication to take place and for the shear-localization-induced failure to be delayed.« less

  2. Deriving frequency-dependent spatial patterns in MEG-derived resting state sensorimotor network: A novel multiband ICA technique.

    PubMed

    Nugent, Allison C; Luber, Bruce; Carver, Frederick W; Robinson, Stephen E; Coppola, Richard; Zarate, Carlos A

    2017-02-01

    Recently, independent components analysis (ICA) of resting state magnetoencephalography (MEG) recordings has revealed resting state networks (RSNs) that exhibit fluctuations of band-limited power envelopes. Most of the work in this area has concentrated on networks derived from the power envelope of beta bandpass-filtered data. Although research has demonstrated that most networks show maximal correlation in the beta band, little is known about how spatial patterns of correlations may differ across frequencies. This study analyzed MEG data from 18 healthy subjects to determine if the spatial patterns of RSNs differed between delta, theta, alpha, beta, gamma, and high gamma frequency bands. To validate our method, we focused on the sensorimotor network, which is well-characterized and robust in both MEG and functional magnetic resonance imaging (fMRI) resting state data. Synthetic aperture magnetometry (SAM) was used to project signals into anatomical source space separately in each band before a group temporal ICA was performed over all subjects and bands. This method preserved the inherent correlation structure of the data and reflected connectivity derived from single-band ICA, but also allowed identification of spatial spectral modes that are consistent across subjects. The implications of these results on our understanding of sensorimotor function are discussed, as are the potential applications of this technique. Hum Brain Mapp 38:779-791, 2017. © 2016 Wiley Periodicals, Inc. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Quantity and distribution of plaque in orthodontic patients treated with molar bands.

    PubMed

    Erbe, Christina; Hornikel, Sandra; Schmidtmann, Irene; Wehrbein, Heiner

    2011-03-01

    The placement of orthodontic bands usually increases plaque accumulation due to numerous mechanical retention sites. The purpose of this investigation was to evaluate the amount and distribution pattern of biofilm in the oral (palatal and lingual) and interproximal regions surrounding orthodontic bands. We evaluated the formation of biofilm on 32 orthodontic bands which had been placed intraorally for 6-37 months. Two parameters were measured: the percentage of surface covered by biofilm (quantity) and the biofilm distribution pattern of accumulation. We measured these two parameters in four regions of interest: the mesial and distal interproximal regions, as well as the mesial and distal regions of the oral attachment. The quantity of biofilm formation was similar in all four regions of interest, ranging from 13.3% to 16.8%. In contrast to biofilm quantity, distribution patterns differed in the four regions. In the mesial and distal interproximal regions it appeared as extensive insular areas in 87.5% and 71.9%, respectively, whereas it appeared more often supragingival and linear in nature in regions adjacent to the oral attachment, i.e. in 65.6% and 68.8%, respectively. Our results indicate that firstly, oral hygiene in the palatal and lingual regions of orthodontic bands seems as difficult as it is in the interproximal areas, thus requiring thorough hygiene in both areas. Secondly, orthodontic patients with a history of periodontal disease require special attention regarding the use of orthodontic bands.

  4. Research and investigation of geology, mineral, and water resources of Maryland

    NASA Technical Reports Server (NTRS)

    Weaver, K. N. (Principal Investigator); Crowley, W. P.; Edwards, J., Jr.; Kerhin, R. T.; Slaughter, T. H.

    1974-01-01

    The authors have identified the following significant results. Field work in Baltimore County revealed that the signature returns of serpentinitic and nonserpentinitic rocks correlates with the vegetation cover and land use pattern. In Maryland Piedmont, bedrock lithology and structure are enhanced only to the extent that land use is geologically dictated. Two prominent sets of linear features are detected on ERTS-1 imagery at N 45 deg E and N 20 deg E. Beaches of Chesapeake Bay are classified as broad and narrow beaches based on the width of the backshore zone. It is shown by comparing historical shorelines of Ocean City, from the inlet to the Maryland-Delaware line that reversal zones of erosion and accretion occur at different locations for different periods. High reflectance levels (high marsh-high topographic areas) for the lower Eastern Shore are found to be distributed as two distinct trending linear ridge systems. Observations of MSS band 5 dated 9 April 1974 exhibited an unique sedimentation pattern for Chesapeake Bay. Following a 1.5 inch rainfall, heavy concentration of suspended sediments is observed on the imagery, particularly in the area of the turbidity maximum.

  5. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  6. Optimized oligonucleotide probes for DNA fingerprinting.

    PubMed

    Schäfer, R; Zischler, H; Birsner, U; Becker, A; Epplen, J T

    1988-08-01

    The three different simple repetitive oligonucleotide probes (CT)8, (CAC)5 and (TCC)5 were hybridized to a panel of human DNAs which had been digested with the restriction endonucleases Alu I, Hinf I and Mbo I. The resulting DNA fingerprints were analyzed and different parameters calculated, such as the maximal mean allele frequency and the average number of polymorphic bands per individual. The highest number of bands was obtained after hybridization of Hinf I digested DNA with (CAC)5. The probability of finding the same band pattern as in individual A in individual B is 2 x 10(-8). The DNAs of monozygous twins show indistinguishable banding patterns and the bands are inherited according to the Mendelian laws. Thus this procedure reveals informative fingerprints that can be used for individual identification, e.g. in paternity testing and in forensic applications. In most of these experiments 32P-labelled probes were employed, yet the biotinylated oligonucleotide (GACA)4 produced results which were equivalent to those obtained by hybridization with the 32P-labelled probe (GACA)4.

  7. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.

    PubMed

    Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F

    2018-04-01

    This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.

  8. Cytogenetic analysis of four species of the genus Alsodes (Anura: Leptodactylidae) with comments about the karyological evolution of the genus.

    PubMed

    Cuevas, César C; Formas, J Ramón

    2003-01-01

    A comparative cytogenetic analysis of Alsodes pehuenche, A. vanzolinii, A. verrucosus and A. aff. vittatus show that all four species share the same diploid number 2n = 26; the fundamental number is 50 in A. vanzolinii and 52 in A. aff. vittatus, A. pehuenche and A. verrucosus. The karyotypes of A. pehuenche and A. aff. vittatus are described for the first time; the C-band patterns, the NOR locations and Q-band patterns are also described for the first time for the four species. C-band patterns are species specific and useful to identify the taxa. The usefulness of the chromosomal data in taxonomy and systematics of Alsodes species is discussed. Transformation of euchromatin into heterochromatin and centric fissions and translocations are proposed as the main mechanisms that govern the chromosomal evolution of the frog genus Alsodes.

  9. Summer precipitation variability over South America on long and short intraseasonal timescales

    NASA Astrophysics Data System (ADS)

    Gonzalez, Paula L. M.; Vera, Carolina S.

    2014-10-01

    A dipole pattern in convection between the South Atlantic convergence zone and the subtropical plains of southeastern South America characterizes summer intraseasonal variability over the region. The dipole pattern presents two main bands of temporal variability, with periods between 10 and 30 days, and 30 and 90 days; each influenced by different large-scale dynamical forcings. The dipole activity on the 30-90-day band is related to an eastward traveling wavenumber-1 structure in both OLR and circulation anomalies in the tropics, similar to that associated with the Madden-Julian oscillation. The dipole is also related to a teleconnection pattern extended along the South Pacific between Australia and South America. Conversely, the dipole activity on the 10-30-day band does not seem to be associated with tropical convection anomalies. The corresponding circulation anomalies exhibit, in the extratropics, the structure of Rossby-like wave trains, although their sources are not completely clear.

  10. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOEpatents

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  11. Afro-American Patterns of Cognition: A Review of Research.

    ERIC Educational Resources Information Center

    Shade, Barbara J.

    Specific and unique information processing patterns have been developed by Black Americans as a result of coping with and adapting to a color-conscious society. A review of the literature shows that the major variation in the processing of information which seems to be uniquely Black American occurs in their patterns of perception. Specifically,…

  12. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  13. Unique identification code for medical fundus images using blood vessel pattern for tele-ophthalmology applications.

    PubMed

    Singh, Anushikha; Dutta, Malay Kishore; Sharma, Dilip Kumar

    2016-10-01

    Identification of fundus images during transmission and storage in database for tele-ophthalmology applications is an important issue in modern era. The proposed work presents a novel accurate method for generation of unique identification code for identification of fundus images for tele-ophthalmology applications and storage in databases. Unlike existing methods of steganography and watermarking, this method does not tamper the medical image as nothing is embedded in this approach and there is no loss of medical information. Strategic combination of unique blood vessel pattern and patient ID is considered for generation of unique identification code for the digital fundus images. Segmented blood vessel pattern near the optic disc is strategically combined with patient ID for generation of a unique identification code for the image. The proposed method of medical image identification is tested on the publically available DRIVE and MESSIDOR database of fundus image and results are encouraging. Experimental results indicate the uniqueness of identification code and lossless recovery of patient identity from unique identification code for integrity verification of fundus images. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Esterase Isoenzyme Profiles in Acute and Chronic Leukemias.

    PubMed

    Drexler, H G; Gignac, S M; Hoffbrand, A V; Minowada, J

    1991-01-01

    Using isoelectric focusing (IEF) a number of carboxylic esterase isoenzymes (EC 3.1.1.1) with isoelectric points between pH 4.5-8.0 can be separated. One particular isoenzyme with an isoelectric point at about pH 6.0, the Mono-band, can be selectively and completely inhibited by sodium fluoride; this isoenzyme comprises a number of closely related subcomponents and may appear in more than one band on the gel. We analyzed the expression of typical esterase isoenzyme patterns in cells from a large panel of leukemias which were tested under identical conditions by IEF on horizontal thin-layer polyacrylamide gels with an ampholyte of pH 2-11. The 442 cases of acute and chronic myeloid and lymphoid leukemia (AML/AMMoL, CML/CMML, ALL, CLL) were classified according to clinical, morpho-cytochemical and immunophenotyping criteria. While bands between pH 4.5-5.5 appeared not to be specific for lineage or stage of differentiation, isoenzymes between pH 6.6-7.7 provided information on the type of leukemia involved. Seven typical isoenzyme patterns termed Mono1/Mono2 (fo monocyte-associated), My1/My2 (myeloid), Lym1/Lym2 (lymphoid) and Und (undifferentiated) could be discerned. Lym and Und patterns are characterized by fewer bands with a weaker staining intensity than Mono and My patterns. Nearly all cases of lymphoid leukemias (acute and chronic) expressed only Lym or Und esterase isoenzyme patterns, but no Mono or My patterns. Cases of acute or chronic myeloid and (myelo)monocytic leukemia showed strong isoenzyme staining displaying predominantly Mono or My isoenzyme patterns. The isoenzyme patterns found in CML in lymphoid or myeloid blast crisis corresponded to those seen in the respective acute leukemias, ALL or AML. The Mono-band was found in most cases of leukemias with monocytic elements (AMMoL 80%, CML 44%, CMML 100%), in the occasional case of CML-myeloid blast crisis or AML, but in none of the cases of ALL or CLL. This isoenzyme is a distinctive, specific marker for leukemias of monocytic origin and is of discriminatory value for the differentiation of monocytic from non-monocytic leukemia variants. Esterase isoenzyme profiles can give additional evidence on the origin and stage of differentiation of leukemic cells.

  15. Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial

    NASA Astrophysics Data System (ADS)

    Avinash, B. S.; Chaturmukha, V. S.; Jayanna, H. S.; Naveen, C. S.; Rajeeva, M. P.; Harish, B. M.; Suresh, S.; Lamani, Ashok R.

    2016-05-01

    Materials reduced to the Nano scale can exhibit different properties compared to what they exhibit on a micro scale, enabling unique applications. When TiO2 is reduced to Nano scale it shows unique properties, of which the electrical aspect is highly important. This paper presents increase in the energy gap and decrease in conductivity with decrease in particle size of pure Nano TiO2 synthesized by hydrolysis and peptization of titanium isopropoxide. Aqueous solution with various pH and peptizing the resultant suspension will form Nano TiO2 at different particle sizes. As the pH of the solution is made acidic reduction in the particle size is observed. And it is confirmed from XRD using Scherer formula and SEM, as prepared samples are studied for UV absorbance, and DC conductivity from room temperature to 400°C. From the tauc plot it was observed, and calculated the energy band gap increases as the particle size decreases and shown TiO2 is direct band gap. From Arrhenius plot clearly we encountered, decrease in the conductivity for the decrease in particle size due to hopping of charge carriers and it is evident that, we can tailor the band gap by varying particle size.

  16. Some (Little) Thing(s) about VISIR

    NASA Astrophysics Data System (ADS)

    Pantin, E.; Vanzi, L.; Weilenmann, U.

    VISIR is the VLT mid-infrared Imager and Spectrometer. It offers a comprehensive set of observing modes, imaging in N and Q bands, at the limits of the telescope diffraction, as well as spectroscopy in the same bands. In particular, VISIR provides a very high-resolution spectroscopy mode with an achieved resolution up to 30000 in N band; this mode is so far unique in the southern hemisphere. VISIR calibration is quite specific when compared to standard visible/near-infrared ones. Various dedicated methods have to be developed to remove the instrumental signatures and obtain the best scientific return.

  17. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  18. Variations in Paper Electrophoretic Serum Lipoprotein Patterns in Healthy Subjects

    PubMed Central

    Buckley, G. C.; Little, J. A.; Csima, A.

    1970-01-01

    The normal variations in the paper electrophoretic lipoprotein patterns in 240 healthy Canadian males and females, aged 10 to 59 years, have been described and compared with serum cholesterol and triglyceride levels. The incidence of abnormal chylomicra, beta and pre-beta lipoproteins was similar in both sexes and increased with age in both sexes. Chylomicron bands and/or pre-beta trails from the origin occurred in 4% of subjects, pre-beta bands in 27% and “abnormally” dense beta bands in 28%. Five per cent of subjects were considered to have definite hyperlipoproteinemia, another 19% had slight and 21% had questionable hyperlipoproteinemia. Fifty-five per cent were normal. PMID:5538493

  19. Multiband supercontinuum generation in an air-core revolver fibre

    NASA Astrophysics Data System (ADS)

    Yatsenko, Yu P.; Pleteneva, E. N.; Okhrimchuk, A. G.; Gladyshev, A. V.; Kosolapov, A. F.; Kolyadin, A. N.; Bufetov, I. A.

    2017-06-01

    Multiband supercontinuum generation in an air-core revolver fibre having a large number of transmission bands in a wide spectral range has been studied experimentally and theoretically for the first time. The fibre fabricated by us possesses unique dispersion and guidance characteristics for radiation transfer from one band to another despite the high losses at the band boundaries. In our experiments, launching 205-fs laser pulses of 110 μJ energy at 1028 nm into the fibre we have obtained a supercontinuum spanning the spectral range from 415 to 1593 nm, with 11 transmission bands. Numerical simulation suggests that, in the case of singlemode propagation of pulses with such energy in the fibre, the supercontinuum may span 14 transmission bands and have a spectral width above three octaves, with a long-wavelength edge at 4200 nm.

  20. Multi-spectral Metasurface for Different Functional Control of Reflection Waves.

    PubMed

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-03-22

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band.

  1. Multi-spectral Metasurface for Different Functional Control of Reflection Waves

    PubMed Central

    Huang, Cheng; Pan, Wenbo; Ma, Xiaoliang; Luo, Xiangang

    2016-01-01

    Metasurface have recently generated much interest due to its strong manipulation of electromagnetic wave and its easy fabrication compared to bulky metamaterial. Here, we propose the design of a multi-spectral metasurface that can achieve beam deflection and broadband diffusion simultaneously at two different frequency bands. The metasurface is composed of two-layered metallic patterns backed by a metallic ground plane. The top-layer metasurface utilizes the cross-line structures with two different dimensions for producing 0 and π reflection phase response, while the bottom-layer metasurface is realized by a topological morphing of the I-shaped patterns for creating the gradient phase distribution. The whole metasurface is demonstrated to independently control the reflected waves to realize different functions at two bands when illuminated by a normal linear-polarized wave. Both simulation and experimental results show that the beam deflection is achieved at K-band with broadband diffusion at X-Ku band. PMID:27001206

  2. Topological Magnon Bands in a Kagome Lattice Ferromagnet.

    PubMed

    Chisnell, R; Helton, J S; Freedman, D E; Singh, D K; Bewley, R I; Nocera, D G; Lee, Y S

    2015-10-02

    There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator--a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes.

  3. Thin SOI lateral IGBT with band-to-band tunneling mechanism

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong

    2017-06-01

    In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.

  4. Systematic analysis of the unique band gap modulation of mixed halide perovskites.

    PubMed

    Kim, Jongseob; Lee, Sung-Hoon; Chung, Choong-Heui; Hong, Ki-Ha

    2016-02-14

    Solar cells based on organic-inorganic hybrid metal halide perovskites have been proven to be one of the most promising candidates for the next generation thin film photovoltaic cells. Mixing Br or Cl into I-based perovskites has been frequently tried to enhance the cell efficiency and stability. One of the advantages of mixed halides is the modulation of band gap by controlling the composition of the incorporated halides. However, the reported band gap transition behavior has not been resolved yet. Here a theoretical model is presented to understand the electronic structure variation of metal mixed-halide perovskites through hybrid density functional theory. Comparative calculations in this work suggest that the band gap correction including spin-orbit interaction is essential to describe the band gap changes of mixed halides. In our model, both the lattice variation and the orbital interactions between metal and halides play key roles to determine band gap changes and band alignments of mixed halides. It is also presented that the band gap of mixed halide thin films can be significantly affected by the distribution of halide composition.

  5. X-linked gene expression in the Virginia opossum: differences between the paternally derived Gpd and Pgk-A loci

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samollow, P.B.; Ford, A.L.; VandeBerg, J.L.

    1987-01-01

    Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum (Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission ofmore » G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells. The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgd-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes.« less

  6. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids

    PubMed Central

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y. C.; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M.; Steinhardt, Paul J.

    2013-01-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials. PMID:24043795

  7. A metric for quantifying El Niño pattern diversity with implications for ENSO-mean state interaction

    NASA Astrophysics Data System (ADS)

    Lemmon, Danielle E.; Karnauskas, Kristopher B.

    2018-04-01

    Recent research on the El Niño-Southern Oscillation (ENSO) phenomenon increasingly reveals the highly complex and diverse nature of ENSO variability. A method of quantifying ENSO spatial pattern uniqueness and diversity is presented, which enables (1) formally distinguishing between unique and "canonical" El Niño events, (2) testing whether historical model simulations aptly capture ENSO diversity by comparing with instrumental observations, (3) projecting future ENSO diversity using future model simulations, (4) understanding the dynamics that give rise to ENSO diversity, and (5) analyzing the associated diversity of ENSO-related atmospheric teleconnection patterns. Here we develop a framework for measuring El Niño spatial SST pattern uniqueness and diversity for a given set of El Niño events using two indices, the El Niño Pattern Uniqueness (EPU) index and El Niño Pattern Diversity (EPD) index, respectively. By applying this framework to instrumental records, we independently confirm a recent regime shift in El Niño pattern diversity with an increase in unique El Niño event sea surface temperature patterns. However, the same regime shift is not observed in historical CMIP5 model simulations; moreover, a comparison between historical and future CMIP5 model scenarios shows no robust change in future ENSO diversity. Finally, we support recent work that asserts a link between the background cooling of the eastern tropical Pacific and changes in ENSO diversity. This robust link between an eastern Pacific cooling mode and ENSO diversity is observed not only in instrumental reconstructions and reanalysis, but also in historical and future CMIP5 model simulations.

  8. From lattice Hamiltonians to tunable band structures by lithographic design

    NASA Astrophysics Data System (ADS)

    Tadjine, Athmane; Allan, Guy; Delerue, Christophe

    2016-08-01

    Recently, new materials exhibiting exotic band structures characterized by Dirac cones, nontrivial flat bands, and band crossing points have been proposed on the basis of effective two-dimensional lattice Hamiltonians. Here, we show using atomistic tight-binding calculations that these theoretical predictions could be experimentally realized in the conduction band of superlattices nanolithographed in III-V and II-VI semiconductor ultrathin films. The lithographed patterns consist of periodic lattices of etched cylindrical holes that form potential barriers for the electrons in the quantum well. In the case of honeycomb lattices, the conduction minibands of the resulting artificial graphene host several Dirac cones and nontrivial flat bands. Similar features, but organized in different ways, in energy or in k -space are found in kagome, distorted honeycomb, and Lieb superlattices. Dirac cones extending over tens of meV could be obtained in superlattices with reasonable sizes of the lithographic patterns, for instance in InAs/AlSb heterostructures. Bilayer artificial graphene could be also realized by lithography of a double quantum-well heterostructure. These new materials should be interesting for the experimental exploration of Dirac-based quantum systems, for both fundamental and applied physics.

  9. Similarity in replication timing between polytene and diploid cells is associated with the organization of the Drosophila genome

    PubMed Central

    Goncharov, Fedor P.; Zhimulev, Igor F.

    2018-01-01

    Morphologically, polytene chromosomes of Drosophila melanogaster consist of compact “black” bands alternating with less compact “grey” bands and interbands. We developed a comprehensive approach that combines cytological mapping data of FlyBase-annotated genes and novel tools for predicting cytogenetic features of chromosomes on the basis of their protein composition and determined the genomic coordinates for all black bands of polytene chromosome 2R. By a PCNA immunostaining assay, we obtained the replication timetable for all the bands mapped. The results allowed us to compare replication timing between polytene chromosomes in salivary glands and chromosomes from cultured diploid cell lines and to observe a substantial similarity in the global replication patterns at the band resolution level. In both kinds of chromosomes, the intervals between black bands correspond to early replication initiation zones. Black bands are depleted of replication initiation events and are characterized by a gradient of replication timing; therefore, the time of replication completion correlates with the band length. The bands are characterized by low gene density, contain predominantly tissue-specific genes, and are represented by silent chromatin types in various tissues. The borders of black bands correspond well to the borders of topological domains as well as to the borders of the zones showing H3K27me3, SUUR, and LAMIN enrichment. In conclusion, the characteristic pattern of polytene chromosomes reflects partitioning of the Drosophila genome into two global types of domains with contrasting properties. This partitioning is conserved in different tissues and determines replication timing in Drosophila. PMID:29659604

  10. Electrically Conductive Photopatternable Silver Paste for High-Frequency Ring Resonator and Band-Pass Filter

    NASA Astrophysics Data System (ADS)

    Umarji, Govind; Qureshi, Nilam; Gosavi, Suresh; Mulik, Uttam; Kulkarni, Atul; Kim, Taesung; Amalnerkar, Dinesh

    2017-02-01

    In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency ( f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.

  11. A Novel Design of Frequency Reconfigurable Antenna for UWB Application

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Yu, Ziliang; Wu, Zheng; Shen, Huajiao

    2016-09-01

    In this paper, we present a novel frequency reconfigurable antenna which could be easily operate in a single notched-band (WiMAX (3.3-3.6 GHz)) UWB frequency band, another single notched-band (WLAN (5-6 GHz)) UWB frequency band and the dual band-notched UWB frequency band (the stopband covers the WiMAX (3.3-3.6 GHz) and WLAN (5-6 GHz)). The reconfigurability is achieved by changing the states of PIN diodes. The simulated results are in agreement well with the measured results. And the measured patterns are slightly changed with antenna reconfiguration. The proposed antenna is a good candidate for various UWB applications.

  12. The use of isoelectric focusing to identify rhinoceros keratins.

    PubMed

    Butler, D J; De Forest, P R; Kobilinsky, L

    1990-03-01

    Keratins represent the principal structural proteins of hair. They are also found in horn, nail, claw, hoof, and feather. Hair and nail samples from human and canine sources and hair samples from mule deer, white tail deer, cat, moose, elk, antelope, caribou, raccoon, and goat were studied. Parrot and goose feathers were also analyzed. Keratins are polymorphic, and species differences are known to exist. Proteinaceous extracts of deer and antelope antlers and bovine and rhinoceros horn were prepared by solubilizing 10 mg of horn sample in 200 microL of a solution containing 12M urea, 74mM Trizma base, and 78mM dithiothreitol (DTT). Extraction took place over a 48-h period. A 25-microL aliquot of extract was removed and incubated with 5 microL of 0.1 M DTT for 10 min at 25 degrees C. Keratins were then separated by isoelectric focusing (IEF) on 5.2% polyacrylamide gels for 3 h and visualized using silver staining. At least 20 bands could be observed for each species studied. However, band patterns differed in the position of each band, in the number of bands, and in band coloration resulting from the silver staining process. Horn from two species of rhinoceros was examined. For both specimens, most bands occurred in the pH range of 4 to 5. Although similar patterns for both species were observed, they differed sufficiently to differentiate one from the other. As might be expected, the closer two species are related phylogenetically, the greater the similarity in the IEF pattern produced from their solubilized keratin.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju

    2015-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) results have indicated that network mapping can contribute to understanding behavior and disease, but it has been difficult to translate the maps created with rsfMRI to neuroelectrical states in the brain. Recently, dynamic analyses have revealed multiple patterns in the rsfMRI signal that are strongly associated with particular bands of neural activity. To further investigate these findings, simultaneously recorded invasive electrophysiology and rsfMRI from rats were used to examine two types of electrical activity (directly measured low-frequency/infraslow activity and band-limited power of higher frequencies) and two types of dynamic rsfMRI (quasi-periodic patterns or QPP, and sliding window correlation or SWC). The relationship between neural activity and dynamic rsfMRI was tested under three anesthetic states in rats: dexmedetomidine and high and low doses of isoflurane. Under dexmedetomidine, the lightest anesthetic, infraslow electrophysiology correlated with QPP but not SWC, whereas band-limited power in higher frequencies correlated with SWC but not QPP. Results were similar under isoflurane; however, the QPP was also correlated to band-limited power, possibly due to the burst-suppression state induced by the anesthetic agent. The results provide additional support for the hypothesis that the two types of dynamic rsfMRI are linked to different frequencies of neural activity, but isoflurane anesthesia may make this relationship more complicated. Understanding which neural frequency bands appear as particular dynamic patterns in rsfMRI may ultimately help isolate components of the rsfMRI signal that are of interest to disorders such as schizophrenia and attention deficit disorder. PMID:26041826

  14. AKARI North Ecliptic Pole Deep Survey. Revision of the catalogue via a new image analysis

    NASA Astrophysics Data System (ADS)

    Murata, K.; Matsuhara, H.; Wada, T.; Arimatsu, K.; Oi, N.; Takagi, T.; Oyabu, S.; Goto, T.; Ohyama, Y.; Malkan, M.; Pearson, C.; Małek, K.; Solarz, A.

    2013-11-01

    Context. We present the revised near- to mid-infrared catalogue of the AKARI North Ecliptic Pole deep survey. The survey has the unique advantage of continuous filter coverage from 2 to 24 μm over nine photometric bands, but the initial version of the survey catalogue leaves room for improvement in the image analysis stage; the original images are strongly contaminated by the behaviour of the detector and the optical system. Aims: The purpose of this study is to devise new image analysis methods and to improve the detection limit and reliability of the source extraction. Methods: We removed the scattered light and stray light from the Earth limb, and corrected for artificial patterns in the images by creating appropriate templates. We also removed any artificial sources due to bright sources by using their properties or masked them out visually. In addition, for the mid-infrared source extraction, we created detection images by stacking all six bands. This reduced the sky noise and enabled us to detect fainter sources more reliably. For the near-infrared source catalogue, we considered only objects with counterparts from ground-based catalogues to avoid fake sources. For our ground-based catalogues, we used catalogues based on the CFHT/MegaCam z' band, CFHT/WIRCam Ks band and Subaru/Scam z' band. Objects with multiple counterparts were all listed in the catalogue with a merged flag for the AKARI flux. Results: The detection limits of all mid-infrared bands were improved by ~20%, and the total number of detected objects was increased by ~2000 compared with the previous version of the catalogue; it now has 9560 objects. The 5σ detection limits in our catalogue are 11, 9, 10, 30, 34, 57, 87, 93, and 256 μJy in the N2, N3, N4, S7, S9W, S11, L15, L18W, and L24 bands, respectively. The astrometric accuracies of these band detections are 0.48, 0.52, 0.55, 0.99, 0.95, 1.1, 1.2, 1.3, and 1.6 arcsec, respectively. The false-detection rate of all nine bands was decreased to less than 0.3%. In total, 27 770 objects are listed in the catalogue, 11 349 of which have mid-infrared fluxes. The catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A132 or at the ISAS/JAXA observers page, http://www.ir.isas.jaxa.jp/ASTRO-F/Observation/

  15. Changes of multispectral soil patterns with increasing crop canopy

    NASA Technical Reports Server (NTRS)

    Kristof, S. J.; Baumgardner, M. F.

    1972-01-01

    Multispectral data and automatic data processing were used to map surface soil patterns and to follow the changes in multispectral radiation from a field of maize (Zea mays L.) during a period from seeding to maturity. Panchromatic aerial photography was obtained in early May 1970 and multispectral scanner missions were flown on May 6, June 30, August 11 and September 5, 1970 to obtain energy measurements in 13 wavelength bands. The orange portion of the visible spectrum was used in analyzing the May and June data to cluster relative radiance of the soils into eight different radiance levels. The reflective infrared spectral band was used in analyzing the August and September data to cluster maize into different spectral categories. The computer-produced soil patterns had a striking similarity to the soil pattern of the aerial photograph. These patterns became less distinct as the maize canopy increased.

  16. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  17. Long-term effects of flipper bands on penguins

    USGS Publications Warehouse

    Gauthier-Clerc, M.; Gendner, J.-P.; Ribic, C.A.; Fraser, William R.; Woehler, Eric J.; Descamps, S.; Gilly, C.; Le, Bohec C.; Le, Maho Y.

    2004-01-01

    Changes in seabird populations, and particularly of penguins, offer a unique opportunity for investigating the impact of fisheries and climatic variations on marine resources. Such investigations often require large-scale banding to identify individual birds, but the significance of the data relies on the assumption that no bias is introduced in this type of long-term monitoring. After 5 years of using an automated system of identification of king penguins implanted with electronic tags (100 adult king penguins were implanted with a transponder tag, 50 of which were also flipper banded), we can report that banding results in later arrival at the colony for courtship in some years, lower breeding probability and lower chick production. We also found that the survival rate of unbanded, electronically tagged king penguin chicks after 2-3 years is approximately twice as large as that reported in the literature for banded chicks. ?? 2004 The Royal Society.

  18. Manipulation of Dirac cones in intercalated epitaxial graphene

    DOE PAGES

    Kim, Minsung; Tringides, Michael C.; Hershberger, Matthew T.; ...

    2017-07-12

    Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. We can use the intercalation to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. We also demonstrate that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones asmore » well as the linear and quadratic band dispersion depending on the intercalation layer and density. Thus, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.« less

  19. Mariner Venus Mercury 1973 S/X-band experiment

    NASA Technical Reports Server (NTRS)

    Levy, G. S.

    1977-01-01

    The S/X-band experiment on the Mariner Venus/Mercury 1973 spacecraft constituted a unique opportunity to demonstrate the capability of an X-band downlink coherent with the normal S-band downlink. This was both a technological and scientific experiment, and the results indicated that it was successful in both cases. Analysis of the tracking data shows that the new S/X data type was capable of reducing the miss distance at the planet Mercury by 80% (post-processed data). The use of S/X electron content was demonstrated by comparison with Faraday rotation data. An X-band turnaround telemetry experiment showed the feasibility of a planetary X-band link. In the science area, the model atmospheric environment of Venus was refined. The ionosphere of the planet was measured to a higher accuracy than before, and the value of the dual-frequency link for measuring the scale size of turbulence was demonstrated. The estimate of the scale size was increased from 100 m to above 5 km.

  20. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    PubMed Central

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  1. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  2. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE PAGES

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    2017-11-06

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  3. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co 4Sb 12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing themore » Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  4. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.

  5. Radial cold trap

    DOEpatents

    Grundy, Brian R.

    1981-01-01

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume.

  6. Radial cold trap

    DOEpatents

    Grundy, B.R.

    1981-09-29

    The radial cold trap comprises a housing having a plurality of mesh bands disposed therein. The mesh bands comprise concentrically arranged bands of mesh with the mesh specific surface area of each band increasing from the outermost mesh band to the innermost mesh band. An inlet nozzle is attached to the outside section of the housing while an outlet nozzle is attached to the inner portion of the housing so as to be concentrically connected to the innermost mesh band. An inlet baffle having orifices therein may be disposed around the outermost mesh band and within the housing for directing the flow of the fluid from the inlet nozzle to the outermost mesh band in a uniform manner. The flow of fluid passes through each consecutive mesh band and into the outlet nozzle. The circular pattern of the symmetrically arranged mesh packing allows for better utilization of the entire cold trap volume. 2 figs.

  7. Wheat gliadin: digital imaging and database construction using a 4-band reference system of agarose isoelectric focusing patterns.

    PubMed

    Black, J A; Waggamon, K A

    1992-01-01

    An isoelectric focusing method using thin-layer agarose gel has been developed for wheat gliadin. Using flat-bed units with a third electrode, up to 72 samples per gel may be analyzed. Advantages over traditional acid polyacrylamide gel electrophoresis methodology include: faster run times, nontoxic media, and greater sample capacity. The method is suitable for fingerprinting or purity testing of wheat varieties. Using digital images captured by a flat-bed scanner, a 4-band reference system using isoelectric points was devised. Software enables separated bands to be assigned pI values based upon reference tracks. Precision of assigned isoelectric points is shown to be on the order of 0.02 pH units. Captured images may be stored in a computer database and compared to unknown patterns to enable an identification. Parameters for a match with a stored pattern may be adjusted for pI interval required for a match, and number of best matches.

  8. A first generation cytogenetic ideogram for the Florida manatee (Trichechus manatus latirostris) based on multiple chromosome banding techniques

    USGS Publications Warehouse

    Gray, B.A.; Zori, Roberto T.; McGuire, P.M.; Bonde, R.K.

    2002-01-01

    Detailed chromosome studies were conducted for the Florida manatee (Trichechus manatus latirostris) utilizing primary chromosome banding techniques (G- and Q-banding). Digital microscopic imaging methods were employed and a standard G-banded karyotype was constructed for both sexes. Based on chromosome banding patterns and measurements obtained in these studies, a standard karyotype and ideogram are proposed. Characterization of additional cytogenetic features of this species by supplemental chromosome banding techniques, C-banding (constitutive heterochromatin), Ag-NOR staining (nucleolar organizer regions), and DA/DAPI staining, was also performed. These studies provide detailed cytogenetic data for T. manatus latirostris, which could enhance future genetic mapping projects and interspecific and intraspecific genomic comparisons by techniques such as zoo-FISH.

  9. The frequency spectrum crisis - Issues and answers

    NASA Astrophysics Data System (ADS)

    Armes, G. L.

    The frequency spectrum represents a unique resource which can be overtaxed. In the present investigation, it is attempted to evalute the demand for satellite and microwave services. Dimensions of increased demand are discussed, taking into account developments related to the introduction of the personal computer, the activities of the computer and communications industries in preparation for the office of the future, and electronic publishing. Attention is given to common carrier spectrum congestion, common carrier microwave, satellite communications, teleports, international implications, satellite frequency bands, satellite spectrum implications, alternatives regarding the utilization of microwave frequency bands, U.S. Government spectrum utilization, and the impact at C-band.

  10. Computer-oriented synthesis of wide-band non-uniform negative resistance amplifiers

    NASA Technical Reports Server (NTRS)

    Branner, G. R.; Chan, S.-P.

    1975-01-01

    This paper presents a synthesis procedure which provides design values for broad-band amplifiers using non-uniform negative resistance devices. Employing a weighted least squares optimization scheme, the technique, based on an extension of procedures for uniform negative resistance devices, is capable of providing designs for a variety of matching network topologies. It also provides, for the first time, quantitative results for predicting the effects of parameter element variations on overall amplifier performance. The technique is also unique in that it employs exact partial derivatives for optimization and sensitivity computation. In comparison with conventional procedures, significantly improved broad-band designs are shown to result.

  11. Growth and characterization of n-AlGaN 1-D structures with varying Al composition using u-GaN seeds

    NASA Astrophysics Data System (ADS)

    Kang, San; Chatterjee, Uddipta; Um, Dae-Young; Seo, In Seok; Lee, Cheul-Ro

    2017-12-01

    Like all the ternary alloys in III-nitride materials family, aluminum gallium nitride (AlGaN) has unique band gap tuning property which enables the alloy to be suitable for many opto-electronic applications. The direct band gap of AlGaN can be tuned from 3.4 to 6.2 eV by changing the composition. In this article, the growth of ternary n-AlGaN micro and nano structures on Si (1 1 1) substrate is demonstrated via 2-step growth method employing metal organic chemical vapor deposition. During the growth flow of Trimethygallium is varied to modulate the final Al/Ga ratio. After the growth, various morphological, crystalline and optical characterizations are carried out to probe in the properties of the grown structures. Recorded X-ray diffraction patterns reveal that the realized structures are wurtzite single crystalline n-AlGaN having a near homogeneous Al distribution and validated by energy dispersive X-ray spectroscopy. Low temperature cathodoluminescence spectra show band edge emission in deep UV region which enables the grown n-AlGaN structures to efficiently find opto-electronic applications in the aforementioned region. Finally, planar photoconductive devices are fabricated using the grown 1-D structures and photocurrent evolution is measured. Structure bearing highest Al content shows a manifold enhancement in photo activity compared to other grown samples. Absolute photoresponsivities of the grown samples are calculated to be 301.47, 116 and 38.13 mA/W which is in accord with the findings of low temperature cathodoluminescence investigation. Therefore, it can be concluded that the successful realization of n-AlGaN 1-D structures varying Al content facilitates the further developments of the field concerning nano- and opto-electronic devices.

  12. Assessment of genetic diversity and relationships among Egyptian mango (Mangifera indica L.) cultivers grown in Suez Canal and Sinai region using RAPD markers.

    PubMed

    Mansour, Hassan; Mekki, Laila E; Hussein, Mohammed A

    2014-01-01

    DNA-based RAPD (Random Amplification of Polymorphic DNA) markers have been used extensively to study genetic diversity and relationships in a number of fruit crops. In this study, 10 (7 commercial mango cultivars and 3 accessions) mango genotypes traditionally grown in Suez Canal and Sinai region of Egypt, were selected to assess genetic diversity and relatedness. Total genomic DNA was extracted and subjected to RAPD analysis using 30 arbitrary 10-mer primers. Of these, eleven primers were selected which gave 92 clear and bright fragments. A total of 72 polymorphic RAPD bands were detected out of 92 bands, generating 78% polymorphisms. The mean PIC values scores for all loci were of 0.85. This reflects a high level of discriminatory power of a marker and most of these primers produced unique band pattern for each cultivar. A dendrogram based on Nei's Genetic distance co-efficient implied a moderate degree of genetic diversity among the cultivars used for experimentation, with some differences. The hybrid which had derived from cultivar as female parent was placed together. In the cluster, the cultivars and accessions formed separate groups according to bearing habit and type of embryo and the members in each group were very closely linked. Cluster analysis clearly showed two main groups, the first consisting of indigenous to the Delta of Egypt cultivars and the second consisting of indigenous to the Suez Canal and Sinai region. From the analysis of results, it appears the majority of mango cultivars originated from a local mango genepool and were domesticated later. The results indicated the potential of RAPD markers for the identification and management of mango germplasm for breeding purposes.

  13. Derivative chromosomes involving 5p large rearranged segments went unnoticed with the use of conventional cytogenetics.

    PubMed

    Yokoyama, Emiy; Del Castillo, Victoria; Sánchez, Silvia; Ramos, Sandra; Molina, Bertha; Torres, Leda; Navarro, María José; Avila, Silvia; Castrillo, José Luis; García-De Teresa, Benilde; Asch, Bárbara; Frías, Sara

    2018-01-01

    In countries where comparative genomic hybridization arrays (aCGH) and next generation sequencing are not widely available due to accessibility and economic constraints, conventional 400-500-band karyotyping is the first-line choice for the etiological diagnosis of patients with congenital malformations and intellectual disability. Conventional karyotype analysis can rule out chromosomal alterations greater than 10 Mb. However, some large structural abnormalities, such as derivative chromosomes, may go undetected when the analysis is performed at less than a 550-band resolution and the size and banding pattern of the interchanged segments are similar. Derivatives frequently originate from inter-chromosomal exchanges and sometimes are inherited from a parent who carries a reciprocal translocation. We present two cases with derivative chromosomes involving a 9.1 Mb 5p deletion/14.8 Mb 10p duplication in the first patient and a 19.9 Mb 5p deletion/ 18.5 Mb 9p duplication in the second patient. These long chromosomal imbalances were ascertained by aCGH but not by conventional cytogenetics. Both patients presented with a deletion of the Cri du chat syndrome region and a duplication of another genomic region. Each patient had a unique clinical picture, and although they presented some features of Cri du chat syndrome, the phenotype did not conclusively point towards this diagnosis, although a chromosomopathy was suspected. These cases highlight the fundamental role of the clinical suspicion in guiding the approach for the etiological diagnosis of patients. Molecular cytogenetics techniques, such as aCGH, should be considered when the clinician suspects the presence of a chromosomal imbalance in spite of a normal karyotype.

  14. Unique Zigzag-Shaped Buckling Zn2C Monolayer with Strain-Tunable Band Gap and Negative Poisson Ratio.

    PubMed

    Meng, Lingbiao; Zhang, Yingjuan; Zhou, Minjie; Zhang, Jicheng; Zhou, Xiuwen; Ni, Shuang; Wu, Weidong

    2018-02-19

    Designing new materials with reduced dimensionality and distinguished properties has continuously attracted intense interest for materials innovation. Here we report a novel two-dimensional (2D) Zn 2 C monolayer nanomaterial with exceptional structure and properties by means of first-principles calculations. This new Zn 2 C monolayer is composed of quasi-tetrahedral tetracoordinate carbon and quasi-linear bicoordinate zinc, featuring a peculiar zigzag-shaped buckling configuration. The unique coordinate topology endows this natural 2D semiconducting monolayer with strongly strain tunable band gap and unusual negative Poisson ratios. The monolayer has good dynamic and thermal stabilities and is also the lowest-energy structure of 2D space indicated by the particle-swarm optimization (PSO) method, implying its synthetic feasibility. With these intriguing properties the material may find applications in nanoelectronics and micromechanics.

  15. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    PubMed Central

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  16. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis.

    PubMed

    Venkatachalam, P; Jayaraj, M; Manikandan, R; Geetha, N; Rene, Eldon R; Sharma, N C; Sahi, S V

    2017-01-01

    The present study describes the role of zinc oxide nanoparticles (ZnONPs) in reversing oxidative stress symptoms induced by heavy metal (Cd and Pb) exposure in Leucaena leucocephala (Lam.) de Wit. Seedling growth was significantly enhanced with the augmentation of ZnONPs following Cd and Pb exposure. Heavy metal accumulations were recorded as 1253.1 mg Cd per kg DW and 1026.8 mg Pb per kg DW for the respective treatments. Results demonstrated that ZnONPs augmentation caused an increase in photosynthetic pigment and total soluble protein contents while a significant decrease in malondialdehyde (MDA-lipid peroxidation) content in leaves. Antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were, in turn, elevated in heavy metal-exposed leaves amended with ZnONPs. The ameliorating effect of ZnO nanoparticles on oxidative stress induced toxicity was also confirmed by the reduced MDA content and the elevated level of antioxidative enzyme activities in leaf tissues of L. leucocephala seedlings. Further, addition of ZnONPs in combination with Cd and Pb metals induced distinct genomic alterations such as presence of new DNA bands and/or absence of normal bands in the RAPD pattern of the exposed plants. This study uniquely suggests a potential role of zinc oxide nanoparticles in the remediation of heavy metal contaminated media. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Multispectral Resampling of Seagrass Species Spectra: WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI

    NASA Astrophysics Data System (ADS)

    Wicaksono, Pramaditya; Salivian Wisnu Kumara, Ignatius; Kamal, Muhammad; Afif Fauzan, Muhammad; Zhafarina, Zhafirah; Agus Nurswantoro, Dwi; Noviaris Yogyantoro, Rifka

    2017-12-01

    Although spectrally different, seagrass species may not be able to be mapped from multispectral remote sensing images due to the limitation of their spectral resolution. Therefore, it is important to quantitatively assess the possibility of mapping seagrass species using multispectral images by resampling seagrass species spectra to multispectral bands. Seagrass species spectra were measured on harvested seagrass leaves. Spectral resolution of multispectral images used in this research was adopted from WorldView-2, Quickbird, Sentinel-2A, ASTER VNIR, and Landsat 8 OLI. These images are widely available and can be a good representative and baseline for previous or future remote sensing images. Seagrass species considered in this research are Enhalus acoroides (Ea), Thalassodendron ciliatum (Tc), Thalassia hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea serrulata (Cs), Halodule uninervis (Hu), Halodule pinifolia (Hp), Syringodum isoetifolium (Si), Halophila ovalis (Ho), and Halophila minor (Hm). Multispectral resampling analysis indicate that the resampled spectra exhibit similar shape and pattern with the original spectra but less precise, and they lose the unique absorption feature of seagrass species. Relying on spectral bands alone, multispectral image is not effective in mapping these seagrass species individually, which is shown by the poor and inconsistent result of Spectral Angle Mapper (SAM) classification technique in classifying seagrass species using seagrass species spectra as pure endmember. Only Sentinel-2A produced acceptable classification result using SAM.

  18. AFLP-Based Analysis of Genetic Diversity, Population Structure, and Relationships with Agronomic Traits in Rice Germplasm from North Region of Iran and World Core Germplasm Set.

    PubMed

    Sorkheh, Karim; Masaeli, Mohammad; Chaleshtori, Maryam Hosseini; Adugna, Asfaw; Ercisli, Sezai

    2016-04-01

    Analysis of the genetic diversity and population structure of crops is very important for use in breeding programs and for genetic resources conservation. We analyzed the genetic diversity and population structure of 47 rice genotypes from diverse origins using amplified fragment length polymorphism (AFLP) markers and morphological characters. The 47 genotypes, which were composed of four populations: Iranian native varieties, Iranian improved varieties, International Rice Research Institute (IRRI) rice varieties, and world rice collections, were analyzed using ten primer combinations. A total of 221 scorable bands were produced with an average of 22.1 alleles per pair of primers, of which 120 (54.30%) were polymorphic. The polymorphism information content (PIC) values varied from 0.32 to 0.41 with an average of 0.35. The high percentage of polymorphic bands (%PB) was found to be 64.71 and the resolving power (R p) collections were 63.36. UPGMA clustering based on numerical data from AFLP patterns clustered all 47 genotypes into three large groups. The genetic similarity between individuals ranged from 0.54 to 0.94 with an average of 0.74. Population genetic tree showed that Iranian native cultivars formed far distant cluster from the other populations, which may indicate that these varieties had minimal genetic change over time. Analysis of molecular variance (AMOVA) revealed that the largest proportion of the variation (84%) to be within populations showing the inbreeding nature of rice. Therefore, Iranian native varieties (landraces) may have unique genes, which can be used for future breeding programs and there is a need to conserve this unique diversity. Furthermore, crossing of Iranian genotypes with the genetically distant genotypes in the other three populations may result in useful combinations, which can be used as varieties and/or lines for future rice breeding programs.

  19. Evaluation of usefulness of Skylab EREP S-190 and S-192 imagery in multistage forest surveys

    NASA Technical Reports Server (NTRS)

    Langley, P. G. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A unique digital timber volume estimation system with digital data for two ERTS-1 MSS bands was tested. The system was tested on a 64-square mile area in Northern California's Trinity Alps. The outcome of a systematic experiment in which possible combinations of the two bands (MSS 5 and 7) were tried, showed than an estimated gain in precision of 50% can be obtained in a multistage sampling design. Especially the difference between the two bands proved to be of major importance for the estimation of biomass in the form of timber volume. Identical tests as the one performed will be conducted with various S-192 bands when the digital data become available.

  20. An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information.

    PubMed

    Kumar, Shiu; Sharma, Alok; Tsunoda, Tatsuhiko

    2017-12-28

    Common spatial pattern (CSP) has been an effective technique for feature extraction in electroencephalography (EEG) based brain computer interfaces (BCIs). However, motor imagery EEG signal feature extraction using CSP generally depends on the selection of the frequency bands to a great extent. In this study, we propose a mutual information based frequency band selection approach. The idea of the proposed method is to utilize the information from all the available channels for effectively selecting the most discriminative filter banks. CSP features are extracted from multiple overlapping sub-bands. An additional sub-band has been introduced that cover the wide frequency band (7-30 Hz) and two different types of features are extracted using CSP and common spatio-spectral pattern techniques, respectively. Mutual information is then computed from the extracted features of each of these bands and the top filter banks are selected for further processing. Linear discriminant analysis is applied to the features extracted from each of the filter banks. The scores are fused together, and classification is done using support vector machine. The proposed method is evaluated using BCI Competition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset IIb, and it outperformed all other competing methods achieving the lowest misclassification rate and the highest kappa coefficient on all three datasets. Introducing a wide sub-band and using mutual information for selecting the most discriminative sub-bands, the proposed method shows improvement in motor imagery EEG signal classification.

  1. Updates on measurements and modeling techniques for expendable countermeasures

    NASA Astrophysics Data System (ADS)

    Gignilliat, Robert; Tepfer, Kathleen; Wilson, Rebekah F.; Taczak, Thomas M.

    2016-10-01

    The potential threat of recently-advertised anti-ship missiles has instigated research at the United States (US) Naval Research Laboratory (NRL) into the improvement of measurement techniques for visual band countermeasures. The goal of measurements is the collection of radiometric imagery for use in the building and validation of digital models of expendable countermeasures. This paper will present an overview of measurement requirements unique to the visual band and differences between visual band and infrared (IR) band measurements. A review of the metrics used to characterize signatures in the visible band will be presented and contrasted to those commonly used in IR band measurements. For example, the visual band measurements require higher fidelity characterization of the background, including improved high-transmittance measurements and better characterization of solar conditions to correlate results more closely with changes in the environment. The range of relevant engagement angles has also been expanded to include higher altitude measurements of targets and countermeasures. In addition to the discussion of measurement techniques, a top-level qualitative summary of modeling approaches will be presented. No quantitative results or data will be presented.

  2. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  3. Genomic Expression Patterns in Menstrually-Related Migraine in Adolescents

    PubMed Central

    Hershey, Andrew; Horn, Paul; Kabbouche, Marielle; O'Brien, Hope; Powers, Scott

    2011-01-01

    Background Exacerbation of migraine with menses is common in adolescent girls and women with migraine, occurring in up to 60% of females with migraine. These migraines are oftentimes longer and more disabling and may be related to estrogen levels and hormonal fluctuations. Objective This study identifies the unique genomic expression pattern of menstrually-related migraine (MRM) in comparison to migraine occurring outside the menstrual period and headache free controls. Methods Whole blood samples were obtained from female subjects having an acute migraine during their menstrual period (MRM) or outside of their menstrual period (nonMRM) and controls (C) – females having a menstrual period without any history of headache. The mRNA was isolated from these samples and genomic profile was assessed. Affymetrix Human Exon ST 1.0 arrays were used to examine the genomic expression pattern differences between these three groups. Results Blood genomic expression patterns were obtained on 56 subjects (MRM = 18, nonMRM = 18 and C = 20). Unique genomic expression patterns were observed for both MRM and nonMRM. For MRM, 77 genes were identified that were unique to MRM, while 61 genes were commonly expressed for MRM and nonMRM and 127 genes appeared to have a unique expression pattern for nonMRM. In addition, there were 279 genes that differentially expressed for MRM compared to nonMRM that were not differentially expressed for nonMRM. Gene ontology of these samples indicated many of these groups of genes were functionally related and included categories of immunomodulation/inflammation, mitochondrial function and DNA homeostasis. Conclusions Blood genomic patterns can accurately differentiate MRM from nonMRM. These results indicate that MRM involves a unique molecular biology pathway that can be identified with a specific biomarker and suggest that individuals with MRM have a different underlying genetic etiology. PMID:22220971

  4. Old but Still Relevant: High Resolution Electrophoresis and Immunofixation in Multiple Myeloma.

    PubMed

    Misra, Aroonima; Mishra, Jyoti; Chandramohan, Jagan; Sharma, Atul; Raina, Vinod; Kumar, Rajive; Soni, Sushant; Chopra, Anita

    2016-03-01

    High resolution electrophoresis (HRE) and immunofixation (IFX) of serum and urine are integral to the diagnostic work-up of multiple myeloma. Unusual electrophoresis patterns are common and may be misinterpreted. Though primarily the responsibility of the hematopathologist, clinicians who are responsible for managing myelomas may benefit from knowledge of these. In this review article we intend to discuss the patterns and importance of electrophoresis in present day scenario. Patterns of HRE and IFX seen in our laboratory over the past 15 years were studied. Monoclonal proteins are seen on HRE as sharply defined bands, sometimes two, lying from γ- to α-globulin regions on a background of normal, increased or decreased polyclonal γ-globulins, showing HRE to be a rapid and dependable method of detecting M-protein in serum or urine. Immunofixation complements HRE and due to its greater sensitivity, is able to pick up small or light chain bands, not apparent on electrophoresis, including biclonal disease even when electrophoresis shows only one M-band. Special features liable to misinterpretation are discussed. Familiarity with the interpretation of the varied patterns seen in health and disease is essential for providing dependable laboratory support in the management of multiple myeloma.

  5. Foundations of Broadband Multifunctional Metamaterials Inspired by the Analogy of Formation

    DTIC Science & Technology

    2013-01-30

    25] S. Lim and M.F. Iskander, “ Design of a Dual-Band, Compact Yagi Antenna Over an EBG Ground Plane,’’ IEEE Antennas Wireless Propagat. Lett., vol. 8...For VHF and UHF frequency bands total EBG plus antenna thickness could be prohibitively large. This report presents a unique concept to design and...official Department of the Army position, policy or decision, unless so designated by other documentation. 12. DISTRIBUTION AVAILIBILITY STATEMENT

  6. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers.

    PubMed

    Xue, Huiling; Xiao, Yao; Jin, Yanling; Li, Xinbo; Fang, Yang; Zhao, Hai; Zhao, Yun; Guan, Jiafa

    2012-01-01

    Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.

  7. European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century

    NASA Astrophysics Data System (ADS)

    Tourre, Y. M.

    2011-12-01

    Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.

  8. A narrow band pattern-matching model of vowel perception

    NASA Astrophysics Data System (ADS)

    Hillenbrand, James M.; Houde, Robert A.

    2003-02-01

    The purpose of this paper is to propose and evaluate a new model of vowel perception which assumes that vowel identity is recognized by a template-matching process involving the comparison of narrow band input spectra with a set of smoothed spectral-shape templates that are learned through ordinary exposure to speech. In the present simulation of this process, the input spectra are computed over a sufficiently long window to resolve individual harmonics of voiced speech. Prior to template creation and pattern matching, the narrow band spectra are amplitude equalized by a spectrum-level normalization process, and the information-bearing spectral peaks are enhanced by a ``flooring'' procedure that zeroes out spectral values below a threshold function consisting of a center-weighted running average of spectral amplitudes. Templates for each vowel category are created simply by averaging the narrow band spectra of like vowels spoken by a panel of talkers. In the present implementation, separate templates are used for men, women, and children. The pattern matching is implemented with a simple city-block distance measure given by the sum of the channel-by-channel differences between the narrow band input spectrum (level-equalized and floored) and each vowel template. Spectral movement is taken into account by computing the distance measure at several points throughout the course of the vowel. The input spectrum is assigned to the vowel template that results in the smallest difference accumulated over the sequence of spectral slices. The model was evaluated using a large database consisting of 12 vowels in /hVd/ context spoken by 45 men, 48 women, and 46 children. The narrow band model classified vowels in this database with a degree of accuracy (91.4%) approaching that of human listeners.

  9. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation

    PubMed Central

    2012-01-01

    Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods. PMID:22510249

  10. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer's disease.

    PubMed

    Nakamura, Akinori; Cuesta, Pablo; Fernández, Alberto; Arahata, Yutaka; Iwata, Kaori; Kuratsubo, Izumi; Bundo, Masahiko; Hattori, Hideyuki; Sakurai, Takashi; Fukuda, Koji; Washimi, Yukihiko; Endo, Hidetoshi; Takeda, Akinori; Diers, Kersten; Bajo, Ricardo; Maestú, Fernando; Ito, Kengo; Kato, Takashi

    2018-05-01

    Biomarkers useful for the predementia stages of Alzheimer's disease are needed. Electroencephalography and magnetoencephalography (MEG) are expected to provide potential biomarker candidates for evaluating the predementia stages of Alzheimer's disease. However, the physiological relevance of EEG/MEG signal changes and their role in pathophysiological processes such as amyloid-β deposition and neurodegeneration need to be elucidated. We evaluated 28 individuals with mild cognitive impairment and 38 cognitively normal individuals, all of whom were further classified into amyloid-β-positive mild cognitive impairment (n = 17, mean age 74.7 ± 5.4 years, nine males), amyloid-β-negative mild cognitive impairment (n = 11, mean age 73.8 ± 8.8 years, eight males), amyloid-β-positive cognitively normal (n = 13, mean age 71.8 ± 4.4 years, seven males), and amyloid-β-negative cognitively normal (n = 25, mean age 72.5 ± 3.4 years, 11 males) individuals using Pittsburgh compound B-PET. We measured resting state MEG for 5 min with the eyes closed, and investigated regional spectral patterns of MEG signals using atlas-based region of interest analysis. Then, the relevance of the regional spectral patterns and their associations with pathophysiological backgrounds were analysed by integrating information from Pittsburgh compound B-PET, fluorodeoxyglucose-PET, structural MRI, and cognitive tests. The results demonstrated that regional spectral patterns of resting state activity could be separated into several types of MEG signatures as follows: (i) the effects of amyloid-β deposition were expressed as the alpha band power augmentation in medial frontal areas; (ii) the delta band power increase in the same region was associated with disease progression within the Alzheimer's disease continuum and was correlated with entorhinal atrophy and an Alzheimer's disease-like regional decrease in glucose metabolism; and (iii) the global theta power augmentation, which was previously considered to be an Alzheimer's disease-related EEG/MEG signature, was associated with general cognitive decline and hippocampal atrophy, but was not specific to Alzheimer's disease because these changes could be observed in the absence of amyloid-β deposition. The results suggest that these MEG signatures may be useful as unique biomarkers for the predementia stages of Alzheimer's disease.

  11. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  12. Opening complete band gaps in two dimensional locally resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoling; Wang, Longqi

    2018-05-01

    Locally resonant phononic crystals (LRPCs) which have low frequency band gaps attract a growing attention in both scientific and engineering field recently. Wide complete locally resonant band gaps are the goal for researchers. In this paper, complete band gaps are achieved by carefully designing the geometrical properties of the inclusions in two dimensional LRPCs. The band structures and mechanisms of different types of models are investigated by the finite element method. The translational vibration patterns in both the in-plane and out-of-plane directions contribute to the full band gaps. The frequency response of the finite periodic structures demonstrate the attenuation effects in the complete band gaps. Moreover, it is found that the complete band gaps can be further widened and lowered by increasing the height of the inclusions. The tunable properties by changing the geometrical parameters provide a good way to open wide locally resonant band gaps.

  13. Population ecology of the mallard VIII: Winter distribution patterns and survival rates of winter-banded mallards

    USGS Publications Warehouse

    Nichols, James D.; Hines, James E.

    1987-01-01

    In the present report we address questions about winter distribution patterns and survival rates of North American mallards Anas platyrhynchos. Inferences are based on analyses of banding and recovery data from both winter and preseason banding period. The primary wintering range of the mallard was dividded into 45 minor reference areas and 15 major reference areas which were used to summarize winter banding data. Descriptive tables and figures on the recovery distributions of winter-banded mallards are presented. Using winter recoveries of preseason-banded mallards, we found apparent differences between recovery distribution of young versus adult birds from the same breeding ground reference areas. However, we found no sex-specific differences in winter recovery distribution patterns. Winter recovery distributions of preseason-banded birds also provided evidence that mallards exhibited some degree of year-to-year variation in wintering ground location. The age- and sex-specificity of such variation was tested using winter recoveries of winter-banded birds, and results indicated that subadult (first year) birds were less likely to return to the same wintering grounds the following year than adults. Winter recovery distributions of preseason-banded mallards during 1950-58 differed from distributions in 1966-76. These differences could have resulted from either true distributional shifts or geographic changes in hunting pressure. Survival and recovery rates were estimated from winter banding data. We found no evidence of differences in survival or recovery rates between subadult and adult mallards. Thus, the substantial difference between survival rates of preseason-banded young and adult mallards must result almost entirely from higher mortality of young birds during the approximate period, August-January. Male mallards showed higher survival than females, corroborating inferences based on preseason data. Tests with winter banding and band recovery data indicated some degree of year-to-year variation in both survival and recovery rates, a result again consistent with inference from preseason data. Some evidence indication geographic variation in survival rates; however, there were no consistent directional differences between survival rates of mallards from adjacent northern versus southern areas, or eastern versus western areas. In some comparisons, Central Flyway mallards exhibited slightly higher survival rates than mallards from other flyways. Weighted mean estimates of continental survival rates were computed for the period 1960-77 from both winter banding data and preseason banding of adults. Resulting estimates differed significantly for males, but not for females, and the magnitude of the difference between point estimates was relatively small, even for males. The direction of the difference between these estimates was predicted correctly from previous work on the effects of heterogeneous survival an d recovery rates on band recovery model estimates. The similarity of survival estimates from these two independent data sets supports the believe that biases in these estimates are relatively small.

  14. The development of inflatable array antennas

    NASA Technical Reports Server (NTRS)

    Huang, J.

    2001-01-01

    Inflatable array antennas are being developed to significantly reduce the mass, the launch vehicle's stowage volume, and the cost of future spacecraft systems. Three inflatable array antennas, recently developed for spacecraft applications, are a 3.3 m x 1.0 m L-band synthetic-aperture radar (SAR) array, a 1.0 m-diameter X-band telecom reflectarray, and a 3 m-diameter Ka-band telecom reflectarray. All three antennas are similar in construction, and each consists of an inflatable tubular frame that supports and tensions a multi-layer thin-membrane RF radiating surface with printed microstrip patches. The L-band SAR array achieved a bandwidth of 80 MHz, an aperture efficiency of 74%, and a total mass of 15 kg. The X-band reflectarray achieved an aperture efficiency of 37%, good radiation patterns, and a total mass of 1.2 kg (excluding the inflation system). The 3 m Ka-band reflectarray achieved a surface flatness of 0.1 mm RMS, good radiation patterns, and a total mass of 12.8 kg (excluding the inflation system). These antennas demonstrated that inflatable arrays are feasible across the microwave and millimeter-wave spectrums. Further developments of these antennas are deemed necessary, in particular, in the area of qualifying the inflatable structures for space-environment usage.

  15. Improved twin detection via tracking of individual Kikuchi band intensity of EBSD patterns.

    PubMed

    Rampton, Travis M; Wright, Stuart I; Miles, Michael P; Homer, Eric R; Wagoner, Robert H; Fullwood, David T

    2018-02-01

    Twin detection via EBSD can be particularly challenging due to the fine scale of certain twin types - for example, compression and double twins in Mg. Even when a grid of sufficient resolution is chosen to ensure scan points within the twins, the interaction volume of the electron beam often encapsulates a region that contains both the parent grain and the twin, confusing the twin identification process. The degradation of the EBSD pattern results in a lower image quality metric, which has long been used to imply potential twins. However, not all bands within the pattern are degraded equally. This paper exploits the fact that parent and twin lattices share common planes that lead to the quality of the associated bands not degrading; i.e. common planes that exist in both grains lead to bands of consistent intensity for scan points adjacent to twin boundaries. Hence, twin boundaries in a microstructure can be recognized, even when they are associated with thin twins. Proof of concept was performed on known twins in Inconel 600, Tantalum, and Magnesium AZ31. This method was then used to search for undetected twins in a Mg AZ31 structure, revealing nearly double the number of twins compared with those initially detected by standard procedures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Bi-directional evolutionary optimization for photonic band gap structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Fei; School of Civil Engineering, Central South University, Changsha 410075; Huang, Xiaodong, E-mail: huang.xiaodong@rmit.edu.au

    2015-12-01

    Toward an efficient and easy-implement optimization for photonic band gap structures, this paper extends the bi-directional evolutionary structural optimization (BESO) method for maximizing photonic band gaps. Photonic crystals are assumed to be periodically composed of two dielectric materials with the different permittivity. Based on the finite element analysis and sensitivity analysis, BESO starts from a simple initial design without any band gap and gradually re-distributes dielectric materials within the unit cell so that the resulting photonic crystal possesses a maximum band gap between two specified adjacent bands. Numerical examples demonstrated the proposed optimization algorithm can successfully obtain the band gapsmore » from the first to the tenth band for both transverse magnetic and electric polarizations. Some optimized photonic crystals exhibit novel patterns markedly different from traditional designs of photonic crystals.« less

  17. Experiments in materials science from household items

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier

    1993-01-01

    Everyday household items are used to demonstrate some unique properties of materials. A coat hanger, rubber band, balloon, and corn starch have typical properties which we often take for granted but can be truly amazing.

  18. SNACC Extras

    NASA Astrophysics Data System (ADS)

    Huber, Mark; Scolnic, D.; Riess, A. G.; Tonry, J. L.; Rodney, S. A.; Rest, A.; Stubbs, C. W.

    2010-01-01

    The extensive application of the SuperNovAe Cross-Correlation (SNACC) filters developed by Scolnic et al. (2009) for follow-up identification and redshift of type Ia supernovae in current and upcoming supernovae surveys will itself produce a unique imaging survey. We will present a collection of simulated and actual sources from the initial observing run using the new 4-band SNACC filters with Suprime-Cam on the Subaru telescope to explore the extra potential of this unique data set.

  19. Inverse modeling/transmit power levels : GPS-ABC Workshop VI RTCA, Washington, DC, March 30, 2017.

    DOT National Transportation Integrated Search

    2017-03-30

    This presentation provides models for adjacent band transmitters (base stations and handsets), and : GNSS receiver antenna patterns, as well as provides C/A results for: (1) impacted regions for adjacent band transmitters of : various types, (2) maxi...

  20. Forage quantity estimation from MERIS using band depth parameters

    NASA Astrophysics Data System (ADS)

    Ullah, Saleem; Yali, Si; Schlerf, Martin

    Saleem Ullah1 , Si Yali1 , Martin Schlerf1 Forage quantity is an important factor influencing feeding pattern and distribution of wildlife. The main objective of this study was to evaluate the predictive performance of vegetation indices and band depth analysis parameters for estimation of green biomass using MERIS data. Green biomass was best predicted by NBDI (normalized band depth index) and yielded a calibration R2 of 0.73 and an accuracy (independent validation dataset, n=30) of 136.2 g/m2 (47 % of the measured mean) compared to a much lower accuracy obtained by soil adjusted vegetation index SAVI (444.6 g/m2, 154 % of the mean) and by other vegetation indices. This study will contribute to map and monitor foliar biomass over the year at regional scale which intern can aid the understanding of bird migration pattern. Keywords: Biomass, Nitrogen density, Nitrogen concentration, Vegetation indices, Band depth analysis parameters 1 Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, The Netherlands

  1. An infrared and Raman spectroscopic study of natural zinc phosphates.

    PubMed

    Frost, Ray L

    2004-06-01

    Zinc phosphates are important in the study of the phosphatisation of metals. Raman spectroscopy in combination with infrared spectroscopy has been used to characterise the zinc phosphate minerals. The minerals may be characterised by the patterns of the hydroxyl stretching vibrations in both the Raman and infrared spectra. Spencerite is characterised by a sharp Raman band at 3516 cm(-1) and tarbuttite by a single band at 3446 cm(-1). The patterns of the Raman spectra of the hydroxyl stretching region of hopeite and parahopeite are different in line with their differing crystal structures. The Raman spectrum of the PO4 stretching region shows better band separated peaks than the infrared spectra which consist of a complex set of overlapping bands. The position of the PO4 symmetric stretching mode can be used to identify the zinc phosphate mineral. It is apparent that Raman spectroscopy lends itself to the fundamental study of the evolution of zinc phosphate films.

  2. Strain, stabilities and electronic properties of hexagonal BN bilayers

    NASA Astrophysics Data System (ADS)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  3. Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases.

    PubMed

    Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P

    1983-08-01

    Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases.

  4. Comparison of polyacrylamide and agarose gel thin-layer isoelectric focusing for the characterization of beta-lactamases.

    PubMed Central

    Vecoli, C; Prevost, F E; Ververis, J J; Medeiros, A A; O'Leary, G P

    1983-01-01

    Plasmid-mediated beta-lactamases from strains of Escherichia coli and Pseudomonas aeruginosa were separated by isoelectric focusing on a 0.8-mm thin-layer agarose gel with a pH gradient of 3.5 to 9.5. Their banding patterns and isoelectric points were compared with those obtained with a 2.0-mm polyacrylamide gel as the support medium. The agarose method produced banding patterns and isoelectric points which corresponded to the polyacrylamide gel data for most samples. Differences were observed for HMS-1 and PSE-1 beta-lactamases. The HMS-1 sample produced two highly resolvable enzyme bands in agarose gels rather than the single faint enzyme band observed on polyacrylamide gels. The PSE-1 sample showed an isoelectric point shift of 0.2 pH unit between polyacrylamide and agarose gel (pI 5.7 and 5.5, respectively). The short focusing time, lack of toxic hazard, and ease of formulation make agarose a practical medium for the characterization of beta-lactamases. Images PMID:6605714

  5. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  6. Topological Exciton Bands in Moire Heterojunctions.

    DOE PAGES

    Wu, Fengcheng; Lovorn, Timothy; MacDonald, A. H.

    2017-04-05

    Moire patterns are common in Van der Waals heterostructures and can be used to apply periodic potentials to elementary excitations. Here, we show that the optical absorption spectrum of transition metal dichalcogenide bilayers is profoundly altered by long period moire patterns that introduce twist-angle dependent satellite excitonic peaks. Topological exciton bands with non-zero Chern numbers that support chiral excitonic edge states can be engineered by combining three ingredients: i) the valley Berry phase induced by electron-hole exchange interactions, ii) the moire potential, and iii) the valley Zeeman field.

  7. Investigation of relationships between linears, total and hazy areas, and petroleum production in the Williston Basin: An ERTS approach

    NASA Technical Reports Server (NTRS)

    Erickson, J. M.; Street, J. S. (Principal Investigator); Munsell, C. J.; Obrien, D. E.

    1975-01-01

    The author has identified the following significant results. ERTS-1 imagery in a variety of formats was used to locate linear, tonal, and hazy features and to relate them to areas of hydrocarbon production in the Williston Basin of North Dakota, eastern Montana, and northern South Dakota. Derivative maps of rectilinear, curvilinear, tonal, and hazy features were made using standard laboratory techniques. Mapping of rectilinears on both bands 5 and 7 over the entire region indicated the presence of a northeast-southwest and a northwest-southeast regional trend which is indicative of the bedrock fracture pattern in the basin. Curved lines generally bound areas of unique tone, maps of tonal patterns repeat many of the boundaries seen on curvilinear maps. Tones were best analyzed on spring and fall imagery in the Williston Basin. It is postulated that hazy areas are caused by atmospheric phenomena. The ability to use ERTS imagery as an exploration tool was examined where petroleum and gas are presently produced (Bottineau Field, Nesson and Antelope anticlines, Redwing Creek, and Cedar Creek anticline). It is determined that some tonal and linear features coincide with location of present production in Redwing and Cedar Creeks. In the remaining cases, targets could not be sufficiently well defined to justify this method.

  8. Review of terahertz semiconductor sources

    NASA Astrophysics Data System (ADS)

    Wei, Feng

    2012-03-01

    Terahertz (THz) technology can be used in information science, biology, medicine, astronomy, and environmental science. THz sources are the key devices in THz applications. The author gives a brief review of THz semiconductor sources, such as GaAs1-xNx Gunn-like diodes, quantum wells (QWs) negative-effective-mass (NEM) THz oscillators, and the THz quantum cascade lasers (QCLs). THz current self-oscillation in doped GaAs1-xNx diodes driven by a DC electric field was investigated. The current self-oscillation is associated with the negative differential velocity effect in the highly nonparabolic conduction band of this unique material system. The current self-oscillations and spatiotemporal current patterns in QW NEM p+pp+ diodes was studied by considering scattering contributions from impurities, acoustic phonons, and optic phonons. It is indicated that both the applied bias and the doping concentration strongly influence the patterns and self-oscillating frequencies. The NEM p+pp+ diode may be used as an electrically tunable THz source. Meanwhile, by using the Monte Carlo method, the device parameters of resonant-phonon THz QCLs were optimized. The results show that the calculated gain is more sensitive to the injection barrier width, the doping concentration, and the phonon extraction level separation, which is consistent with the experiments.

  9. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. Isolated from free-living and captive raptors in Central Illinois.

    PubMed

    Marrow, Judilee; Whittington, Julia K; Mitchell, Mark; Hoyer, Lois L; Maddox, Carol

    2009-04-01

    Due to their predatory nature, raptor species may serve as important indicators of environmental contamination with antimicrobial-resistant bacteria. Raptors prey on small rodents and birds that have diverse habitat ranges, including urban and rural environments, and their intestinal microflora can reflect that of the animals on which they feed. Enterococcus spp. were selected as target organisms because they have been isolated from the avian gastrointestinal tract, can be conferred by prey items, and because they are capable of multiple resistance patterns. They are also a concerning source of human antimicrobial resistance. In this study fecal cultures were obtained from 15 May 2004 to 31 August 2004, from 21 free-living raptors and four captive raptors. Enterococcus was isolated from 21 (84%) of the 25 birds, and 54 isolates were chosen for further study based upon unique colony morphology. The most common isolate recovered was Enterococcus faecalis (95%, 95% confidence interval [CI]: 89-100). One bird in the study was determined to have Enterococcus gallinarum. Two distinct ribotypes of E. faecalis were identified, one with unique bands at 11 and 13 kb and the other with unique bands at 14 and 20 kb. Both ribotypes were found in free-living and captive birds. The Enterococcus isolates in this study demonstrated a variety of antimicrobial-resistance characteristics, including almost complete resistance to amikacin, first-generation cephalosporins, spectinomycin, and sulphadimethoxime. Isolates demonstrated variable resistance to chloramphenicol, gentamicin, enrofloxacin, erythromycin, and ticarcillin. No phenotypically vancomycin-resistant E. faecalis isolates were recovered from any of the raptors; three isolates had intermediate level susceptibility. A significantly higher number of isolates collected from captive birds demonstrated resistance to chloramphenicol than those obtained from free-living birds. This trend was not duplicated with any of the remaining 18 antimicrobial drugs tested. The results of this study suggest that raptors in central Illinois are coming into contact with antimicrobials, prey exposed to antimicrobials, or bacteria that are capable of transferring resistance genes. Further study is needed to determine the source of antimicrobial-resistant Enterococcus in free-living raptors but the limited data reflecting few differences between birds with and without antimicrobial exposure suggests that treatment and release of treated wild raptors is not contributing significantly to antimicrobial resistance in the environment.

  10. Formation and Evolution of Target Patterns in Cahn-Hilliard Flows: An Extension of the Flux Expulsion Studies in MHD

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration

    2017-10-01

    Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  11. GENOMIC ORGANIZATION OF THE SP22 GENE AND A UNIQUE PATTERN OF EXPRESSION IN SPERMATOGENIC CELLS

    EPA Science Inventory

    GENOMIC ORGANIZATION OF THE SP22 GENE AND A UNIQUE PATTERN OF EXPRESSION IN SPERMATOGENIC CELLS.
    JE Welch*, RR Barbee*, JD Suarez*, NL Roberts*, and GR Klinefelter. Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, NC, USA.
    Our laboratory has rep...

  12. Chromosomal evolution of the Canidae. I. Species with high diploid numbers.

    PubMed

    Wayne, R K; Nash, W G; O'Brien, S J

    1987-01-01

    The Giemsa banding patterns of seven canid species, including the grey wolf (Canis lupus), the maned wolf (Chrysocyon brachyurus), the bush dog (Speothos venaticus), the crab-eating fox (Cerdocyon thous), the grey fox (Urocyon cinereoargenteus), the bat-eared fox (Otocyon megalotis), and the fennec (Fennecus zerda), are presented and compared. Relative to other members of Canidae, these species have high diploid complements (2n greater than 64) consisting of largely acrocentric chromosomes. They show a considerable degree of chromosome homoeology, but relative to the grey wolf, each species is either missing chromosomes or has unique chromosomal additions and rearrangements. Differences in chromosome morphology among the seven species were used to reconstruct their phylogenetic history. The results suggest that the South American canids are closely related to each other and are derived from a wolf-like progenitor. The fennec and the bat-eared fox seem to be recent derivatives of a lineage that branched early from the wolf-like canids and which also includes the grey fox.

  13. Studies of proteinograms in dermatophytes by disc electrophoresis. 1. Protein bands in relation to growth phase

    NASA Technical Reports Server (NTRS)

    Danev, P.; Friedrich, E.; Balabanov, V.

    1983-01-01

    Homogenates were prepared from various growth phases of Microsporum gypseum grown on different amino acids as the nitrogen source. When analyzed on 7.5% polyacrylamide disc gels, the water-soluble proteins in these homogenates gave essentially identical banding patterns.

  14. Space shuttle engineering and operations support. Isolation between the S-band quad antenna and the S-band payload antenna. Engineering systems analysis

    NASA Technical Reports Server (NTRS)

    Lindsey, J. F.

    1976-01-01

    The isolation between the upper S-band quad antenna and the S-band payload antenna on the shuttle orbiter is calculated using a combination of plane surface and curved surface theories along with worst case values. A minimum value of 60 db isolation is predicted based on recent antenna pattern data, antenna locations on the orbiter, curvature effects, dielectric covering effects and edge effects of the payload bay. The calculated value of 60 db is significantly greater than the baseline value of 40 db. Use of the new value will result in the design of smaller, lighter weight and less expensive filters for S-band transponder and the S-band payload interrogator.

  15. Weekly Hydrometeorological Signatures - Characterization of Urban-Induced Streamflow and Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Schnier, S.; Cai, X.; Sivapalan, M.

    2014-12-01

    About half of all humans alive today live in cities, with that number projected to grow to 70% by 2050. Because most people live in cities, urban streamflow patterns and precipitation events have a large impact on the global population. Urban environments can alter natural streamflow and precipitation patterns in a localized area. This study introduces a novel way to characterize this interference: the weekly hydrometeorological signature. Daily streamflow and precipitation data is collected from USGS gages around three climatically-different major American cities: Chicago, Los Angeles, and Charlotte. The following hypothesis is tested: a persistent weekly pattern (Monday through Sunday) exists in the hydrometeorological data which is unique to each city. All three cities appear to exhibit a persistent weekly pattern which is unique to that city for various climatological, industrial, and topographic reasons. Further study is needed; however these findings have important implications for understanding urban weather and can serve as a unique identifier, or fingerprint, for human interference to local streamflow and precipitation patterns.

  16. Spectral changes in spontaneous MEG activity across the lifespan

    NASA Astrophysics Data System (ADS)

    Gómez, Carlos; Pérez-Macías, Jose M.; Poza, Jesús; Fernández, Alberto; Hornero, Roberto

    2013-12-01

    Objective. The aim of this study is to explore the spectral patterns of spontaneous magnetoencephalography (MEG) activity across the lifespan. Approach. Relative power (RP) in six frequency bands (delta, theta, alpha, beta-1, beta-2 and gamma) was calculated in a sample of 220 healthy subjects with ages ranging from 7 to 84 years. Main results. A significant RP decrease in low-frequency bands (i.e. delta and theta) and a significant increase in high bands (mainly beta-1 and beta-2) were found from childhood to adolescence. This trend was observed until the sixth decade of life, though only slight changes were found. Additionally, healthy aging was characterized by a power increase in low-frequency bands. Our results show that spectral changes across the lifespan may follow a quadratic relationship in delta, theta, alpha, beta-2 and gamma bands with peak ages being reached around the fifth or sixth decade of life. Significance. Our findings provide original insights into the definition of the ‘normal’ behavior of age-related MEG spectral patterns. Furthermore, our study can be useful for the forthcoming MEG research focused on the description of the abnormalities of different brain diseases in comparison to cognitive decline in normal aging.

  17. Individualization and estimation of relatedness in crocodilians by DNA fingerprinting with a Bkm-derived probe.

    PubMed

    Lang, J W; Aggarwal, R K; Majumdar, K C; Singh, L

    1993-04-01

    Individual-specific DNA fingerprints of crocodilians were obtained by the use of Bkm-2(8) probe. Pedigree analyses of Crocodylus palustris, C. porosus and Caiman crocodilus revealed that the multiple bands (22-23 bands with Aludigest) thus obtained were inherited stably in a Mendelian fashion. Unique fingerprints permitted us to identify individuals, assign parentage, and reconstruct the DNA profile of a missing parent. Average band sharing between unrelated crocodiles was found to be 0.37. Band sharing between animals of known pedigrees increased predictably with relatedness and provided a basis for distinguishing relatives from non-relatives. Similar results obtained in other species/genera, using the same probe, suggest that this approach may be applicable to all species of crocodilians, and could facilitate genetic studies of wild and captive populations.

  18. Proteinase pattern in Trametes versicolor in response to carbon and nitrogen starvation.

    PubMed

    Staszczak, M; Nowak, G

    1984-01-01

    In stationary cultures of Trametes versicolor seven proteinase bands were revealed by electrophoresis in mycelium and five in the medium. Under conditions of nitrogen starvation the number of bands in mycelium was unchanged whereas one extracellular proteinase was missing. In the case of carbon starvation one new intracellular proteinase activity appeared and one extracellular activity disappeared. Moreover, in all starved cultures distinct differences in the intensity of particular bands were observed.

  19. An Oxyferrous Heme/Protein-based Radical Intermediate Is Catalytically Competent in the Catalase Reaction of Mycobacterium tuberculosis Catalase-Peroxidase (KatG)*S⃞

    PubMed Central

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A.; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J.; Magliozzo, Richard S.

    2009-01-01

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed. PMID:19139099

  20. Evolution of a Reconfigurable Processing Platform for a Next Generation Space Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Kacpura, Thomas J.; Downey, Joseph A.; Anderson, Keffery R.; Baldwin, Keith

    2014-01-01

    The National Aeronautics and Space Administration (NASA)Harris Ka-Band Software Defined Radio (SDR) is the first, fully reprogrammable space-qualified SDR operating in the Ka-Band frequency range. Providing exceptionally higher data communication rates than previously possible, this SDR offers in-orbit reconfiguration, multi-waveform operation, and fast deployment due to its highly modular hardware and software architecture. Currently in operation on the International Space Station (ISS), this new paradigm of reconfigurable technology is enabling experimenters to investigate navigation and networking in the space environment.The modular SDR and the NASA developed Space Telecommunications Radio System (STRS) architecture standard are the basis for Harris reusable, digital signal processing space platform trademarked as AppSTAR. As a result, two new space radio products are a synthetic aperture radar payload and an Automatic Detection Surveillance Broadcast (ADS-B) receiver. In addition, Harris is currently developing many new products similar to the Ka-Band software defined radio for other applications. For NASAs next generation flight Ka-Band radio development, leveraging these advancements could lead to a more robust and more capable software defined radio.The space environment has special considerations different from terrestrial applications that must be considered for any system operated in space. Each space mission has unique requirements that can make these systems unique. These unique requirements can make products that are expensive and limited in reuse. Space systems put a premium on size, weight and power. A key trade is the amount of reconfigurability in a space system. The more reconfigurable the hardware platform, the easier it is to adapt to the platform to the next mission, and this reduces the amount of non-recurring engineering costs. However, the more reconfigurable platforms often use more spacecraft resources. Software has similar considerations to hardware. Having an architecture standard promotes reuse of software and firmware. Space platforms have limited processor capability, which makes the trade on the amount of amount of flexibility paramount.

  1. Real-Time Fluorescence Detection in Aqueous Systems by Combined and Enhanced Photonic and Surface Effects in Patterned Hollow Sphere Colloidal Photonic Crystals.

    PubMed

    Zhong, Kuo; Wang, Ling; Li, Jiaqi; Van Cleuvenbergen, Stijn; Bartic, Carmen; Song, Kai; Clays, Koen

    2017-05-16

    Hollow sphere colloidal photonic crystals (HSCPCs) exhibit the ability to maintain a high refractive index contrast after infiltration of water, leading to extremely high-quality photonic band gap effects, even in an aqueous (physiological) environment. Superhydrophilic pinning centers in a superhydrophobic environment can be used to strongly confine and concentrate water-soluble analytes. We report a strategy to realize real-time ultrasensitive fluorescence detection in patterned HSCPCs based on strongly enhanced fluorescence due to the photonic band-edge effect combined with wettability differentiation in the superhydrophobic/superhydrophilic pattern. The orthogonal nature of the two strategies allows for a multiplicative effect, resulting in an increase of two orders of magnitude in fluorescence.

  2. The wing pattern of Moerarchis Durrant, 1914 (Lepidoptera: Tineidae) clarifies transitions between predictive models

    PubMed Central

    2017-01-01

    The evolution of wing pattern in Lepidoptera is a popular area of inquiry but few studies have examined microlepidoptera, with fewer still focusing on intraspecific variation. The tineid genus Moerarchis Durrant, 1914 includes two species with high intraspecific variation of wing pattern. A subset of the specimens examined here provide, to my knowledge, the first examples of wing patterns that follow both the ‘alternating wing-margin’ and ‘uniform wing-margin’ models in different regions along the costa. These models can also be evaluated along the dorsum of Moerarchis, where a similar transition between the two models can be seen. Fusion of veins is shown not to effect wing pattern, in agreement with previous inferences that the plesiomorphic location of wing veins constrains the development of colour pattern. The significant correlation between wing length and number of wing pattern elements in Moerarchis australasiella shows that wing size can act as a major determinant of wing pattern complexity. Lastly, some M. australasiella specimens have wing patterns that conform entirely to the ‘uniform wing-margin’ model and contain more than six bands, providing new empirical insight into the century-old question of how wing venation constrains wing patterns with seven or more bands. PMID:28405390

  3. Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed

    PubMed Central

    Smalla, K.; Wieland, G.; Buchner, A.; Zock, A.; Parzy, J.; Kaiser, S.; Roskot, N.; Heuer, H.; Berg, G.

    2001-01-01

    The bacterial rhizosphere communities of three host plants of the pathogenic fungus Verticillium dahliae, field-grown strawberry (Fragaria ananassa Duch.), oilseed rape (Brassica napus L.), and potato (Solanum tuberosum L.), were analyzed. We aimed to determine the degree to which the rhizosphere effect is plant dependent and whether this effect would be increased by growing the same crops in two consecutive years. Rhizosphere or soil samples were taken five times over the vegetation periods. To allow a cultivation-independent analysis, total community DNA was extracted from the microbial pellet recovered from root or soil samples. 16S rDNA fragments amplified by PCR from soil or rhizosphere bacterium DNA were analyzed by denaturing gradient gel electrophoresis (DGGE). The DGGE fingerprints showed plant-dependent shifts in the relative abundance of bacterial populations in the rhizosphere which became more pronounced in the second year. DGGE patterns of oilseed rape and potato rhizosphere communities were more similar to each other than to the strawberry patterns. In both years seasonal shifts in the abundance and composition of the bacterial rhizosphere populations were observed. Independent of the plant species, the patterns of the first sampling times for both years were characterized by the absence of some of the bands which became dominant at the following sampling times. Bacillus megaterium and Arthrobacter sp. were found as predominant populations in bulk soils. Sequencing of dominant bands excised from the rhizosphere patterns revealed that 6 out of 10 bands resembled gram-positive bacteria. Nocardia populations were identified as strawberry-specific bands. PMID:11571180

  4. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through-transmission mode using two transducers, or in pulse-echo mode. The transducer is a unique combination of material, design, and fabrication technique. It is based on single-crystal lead magnesium niobate lead titanate (PMN-PT) piezoelectric material. As compared to the commonly used piezoceramics, this piezocrystal has superior piezoelectric and elastic properties, which results in devices with superior bandwidth, source level, and power requirements. This design necessitates a single resonant frequency. However, by operating in a transverse length-extensional mode, with the electric field applied orthogonally to the extensional direction, resonators of different sizes can share common electrodes, resulting in a multiply-resonant structure. With carefully sized resonators, and the superior bandwidth of piezocrystal, the resonances can be made to overlap to form a smooth, wide-bandwidth characteristic.

  5. Electron microscope mapping of the pericentric and intercalary heterochromatic regions of the polytene chromosomes of the mutant Suppressor of underreplication in Drosophila melanogaster.

    PubMed

    Semeshin, F; Belyaeva, S; Zhimulev, F

    2001-12-01

    Breaks and ectopic contacts in the heterochromatic regions of Drosophila melanogaster polytene chromosomes are the manifestations of the cytological effects of DNA underreplication. Their appearance makes these regions difficult to map. The Su(UR)ES gene, which controls the phenomenon, has been described recently. Mutation of this locus gives rise to new blocks of material in the pericentric heterochromatic regions and causes the disappearance of breaks and ectopic contacts in the intercalary heterochromatic regions, thereby making the banding pattern distinct and providing better opportunities for mapping of the heterochromatic regions in polytene chromosomes. Here, we present the results of an electron microscope study of the heterochromatic regions. In the wild-type salivary glands, the pericentric regions correspond to the beta-heterochromatin and do not show the banding pattern. The most conspicuous cytological effect of the Su(UR)ES mutation is the formation of a large banded chromosome fragment comprising at least 25 bands at the site where the 3L and 3R proximal arms connect. In the other pericentric regions, 20CF, 40BF and 41BC, 15, 12 and 9 new bands were revealed, respectively. A large block of densely packed material appears in the most proximal part of the fourth chromosome. An electron microscope analysis of 26 polytene chromosome regions showing the characteristic features of intercalary heterochromatin was also performed. Suppression of DNA underreplication in the mutant transforms the bands with weak spots into large single bands.

  6. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters.

    PubMed

    Raphael, Brian H; Luquez, Carolina; McCroskey, Loretta M; Joseph, Lavin A; Jacobson, Mark J; Johnson, Eric A; Maslanka, Susan E; Andreadis, Joanne D

    2008-07-01

    A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.

  7. Assessment of IgE binding to native and hydrolyzed soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity.

    PubMed

    Serra, Montserrat; Brazís, Pilar; Fondati, Alessandra; Puigdemont, Anna

    2006-11-01

    To assess binding of IgE to native, whole hydrolyzed, and separated hydrolyzed fractions of soy protein in serum obtained from dogs with experimentally induced soy protein hypersensitivity. 8 naïve Beagles (6 experimentally sensitized to native soy protein and 2 control dogs). 6 dogs were sensitized against soy protein by administration of allergens during a 90-day period. After the sensitization protocol was completed, serum concentrations of soy-specific IgE were measured and intradermal skin tests were performed in all 6 dogs to confirm that the dogs were sensitized against soy protein. Serum samples from each sensitized and control dog underwent western blot analysis to assess the molecular mass band pattern of the different allergenic soy fractions and evaluate reactivities to native and hydrolyzed soy protein. In sera from sensitized dogs, a characteristic band pattern with 2 major bands (approx 75 and 50 kd) and 2 minor bands (approx 31 and 20 kd) was detected, whereas only a diffuse band pattern associated with whole hydrolyzed soy protein was detected in the most reactive dog. Reactivity was evident only for the higher molecular mass peptide fraction. In control dogs, no IgE reaction to native or hydrolyzed soy protein was detected. Data suggest that the binding of soy-specific IgE to the hydrolyzed soy protein used in the study was significantly reduced, compared with binding of soy-specific IgE to the native soy protein, in dogs with experimentally induced soy hypersensitivity.

  8. Coherence among climate signals, precipitation, and groundwater.

    PubMed

    Ghanbari, Reza Namdar; Bravo, Hector R

    2011-01-01

    Climate signals may affect groundwater level at different time scales in different geographical regions, and those patterns or time scales can be estimated using coherence analysis. This study shows that the synthesis effort required to search for patterns at the physical geography scale is possible, and this approach should be applicable in other regions of the world. The relations between climate signals, Southern Oscillation Index, Pacific Decadal Oscillation, North Atlantic Oscillation, North Pacific Pattern (SOI, PDO, NAO, and NP), precipitation, and groundwater level in three geographical areas of Wisconsin are examined using a three-tiered coherence analysis. In the high frequency band (<4(-1) cycles/year), there is a significant coherence between four climate signals and groundwater level in all three areas. In the low frequency band (>8(-1) to ≤23(-1) cycles/year), we found significant coherence between the SOI and NP signals and groundwater level in the forested area, characterized by shallow wells constructed in sand and gravel aquifers. In the high frequency band, there is significant coherence between the four climate signals and precipitation in all three areas. In the low frequency band, the four climate signals have effect on precipitation in the agricultural area, and SOI and NP have effect on precipitation in the forested and driftless areas. Precipitation affects groundwater level in all three areas, and in high, low and intermediate frequency bands. In the agricultural area, deeper aquifers and a more complex hydrostratigraphy and land use dilute the effect of precipitation on groundwater level for interdecadal frequencies. Copyright © 2010 The Author(s). Journal compilation © 2010 National Ground Water Association.

  9. Band structure engineering of 2D materials using patterned dielectric superlattices.

    PubMed

    Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R

    2018-05-07

    The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.

  10. Spectral pattern of urinary water as a biomarker of estrus in the giant panda

    NASA Astrophysics Data System (ADS)

    Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana

    2012-11-01

    Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection.

  11. Spectral pattern of urinary water as a biomarker of estrus in the giant panda.

    PubMed

    Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana

    2012-01-01

    Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection.

  12. Spectral pattern of urinary water as a biomarker of estrus in the giant panda

    PubMed Central

    Kinoshita, Kodzue; Miyazaki, Mari; Morita, Hiroyuki; Vassileva, Maria; Tang, Chunxiang; Li, Desheng; Ishikawa, Osamu; Kusunoki, Hiroshi; Tsenkova, Roumiana

    2012-01-01

    Near infrared spectroscopy (NIRS) has been successfully used for non-invasive diagnosis of diseases and abnormalities where water spectral patterns are found to play an important role. The present study investigates water absorbance patterns indicative of estrus in the female giant panda. NIR spectra of urine samples were acquired from the same animal on a daily basis over three consecutive putative estrus periods. Characteristic water absorbance patterns based on 12 specific water absorbance bands were discovered, which displayed high urine spectral variation, suggesting that hydrogen-bonded water structures increase with estrus. Regression analysis of urine spectra and spectra of estrone-3-glucuronide standard concentrations at these water bands showed high correlation with estrogen levels. Cluster analysis of urine spectra grouped together estrus samples from different years. These results open a new avenue for using water structure as a molecular mirror for fast estrus detection. PMID:23181188

  13. Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging

    NASA Astrophysics Data System (ADS)

    Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ

    2015-01-01

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)

  14. Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific.

    PubMed

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5 degrees C and natural vent fluids at 7 degrees C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and gamma- and epsilon-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with "Nanoarchaeota." The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300 degrees C were affiliated with the delta-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4 degrees C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments.

  15. The Fusion of Financial Analysis and Seismology: Statistical Methods from Financial Market Analysis Applied to Earthquake Data

    NASA Astrophysics Data System (ADS)

    Ohyanagi, S.; Dileonardo, C.

    2013-12-01

    As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.

  16. Geometrical behavior of hydrogen bonding patterns in the alpha-dodecyl-omega-hydroxy-tris(oxyethylene)-water system monitored by near infrared spectroscopy.

    PubMed

    Ohno, Keiichi; Takao, Hiroshi; Katsumoto, Yukiteru

    2006-03-01

    Changes in the geometry of hydrogen bonding patterns in the alpha-dodecyl-omega-hydroxy-tris(oxyethylene) (C(12)E(3))-water system have been investigated by near infrared (NIR) spectroscopy. In the 5,300-4,600 cm(-1) region, the characteristic bands for C(12)E(3) and water can be separately investigated, since the combination bands of the OH stretching and its COH bending of alcohols are observed at 5,000-4,650 cm(-1), whereas the combination bands of the OH stretching and its HOH bending of water, at 5,300-5,000 cm(-1). The NIR result has revealed that the addition of water to C(12)E(3) promotes the formation of the OHcdots, three dots, centeredOHcdots, three dots, centeredO hydrogen bonds.

  17. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  18. Model based high NA anamorphic EUV RET

    NASA Astrophysics Data System (ADS)

    Jiang, Fan; Wiaux, Vincent; Fenger, Germain; Clifford, Chris; Liubich, Vlad; Hendrickx, Eric

    2018-03-01

    With the announcement of the extension of the Extreme Ultraviolet (EUV) roadmap to a high NA lithography tool that utilizes anamorphic optics design, an investigation of design tradeoffs unique to the imaging of anamorphic lithography tool is shown. An anamorphic optical proximity correction (OPC) solution has been developed that models fully the EUV near field electromagnetic effects and the anamorphic imaging using the Domain Decomposition Method (DDM). Clips of imec representative for the N3 logic node were used to demonstrate the OPC solutions on critical layers that will benefit from the increased contrast at high NA using anamorphic imaging. However, unlike isomorphic case, from wafer perspective, OPC needs to treat x and y differently. In the paper, we show a design trade-off seen unique to Anamorphic EUV, namely that using a mask rule of 48nm (mask scale), approaching current state of the art, limitations are observed in the available correction that can be applied to the mask. The metal pattern has a pitch of 24nm and CD of 12nm. During OPC, the correction of the metal lines oriented vertically are being limited by the mask rule of 12nm 1X. The horizontally oriented lines do not suffer from this mask rule limitation as the correction is allowed to go to 6nm 1X. For this example, the masks rules will need to be more aggressive to allow complete correction, or design rules and wafer processes (wafer rotation) would need to be created that utilize the orientation that can image more aggressive features. When considering VIA or block level correction, aggressive polygon corner to corner designs can be handled with various solutions, including applying a 45 degree chop. Multiple solutions are discussed with the metrics of edge placement error (EPE) and Process Variation Bands (PVBands), together with all the mask constrains. Noted in anamorphic OPC, the 45 degree chop is maintained at the mask level to meet mask manufacturing constraints, but results in skewed angle edge in wafer level correction. In this paper, we used both contact (Via/block) patterns and metal patterns for OPC practice. By comparing the EPE of horizontal and vertical patterns with a fixed mask rule check (MRC), and the PVBand, we focus on the challenges and the solutions of OPC with anamorphic High-NA lens.

  19. Combined observations of Arctic sea ice with near-coincident colocated X-band, C-band, and L-band SAR satellite remote sensing and helicopter-borne measurements

    NASA Astrophysics Data System (ADS)

    Johansson, A. M.; King, J. A.; Doulgeris, A. P.; Gerland, S.; Singha, S.; Spreen, G.; Busche, T.

    2017-01-01

    In this study, we compare colocated near-coincident X-, C-, and L-band fully polarimetry SAR satellite images with helicopter-borne ice thickness measurements acquired during the Norwegian Young sea ICE 2015 (N-ICE2015) expedition in the region of the Arctic Ocean north of Svalbard in April 2015. The air-borne surveys provide near-coincident snow plus ice thickness, surface roughness data, and photographs. This unique data set allows us to investigate how the different frequencies can complement one another for sea ice studies, but also to raise awareness of limitations. X-band and L-band satellite scenes were shown to be a useful complement to the standard SAR frequency for sea ice monitoring (C-band) for lead ice and newly formed sea ice identification. This may be in part be due to the frequency but also the high spatial resolution of these sensors. We found a relatively low correlation between snow plus ice thickness and surface roughness. Therefore, in our dataset ice thickness cannot directly be observed by SAR which has important implications for operational ice charting based on automatic segmentation.

  20. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  1. Operational Observation of Australian Bioregions with Bands 8-19 of Modis

    NASA Astrophysics Data System (ADS)

    McAtee, B. K.; Gray, M.; Broomhall, M.; Lynch, M.; Fearns, P.

    2012-07-01

    Data from bands 1-7 are the most common bands of the MODIS instrument used for near-real time terrestrial earth observation operations in Australia. However, many of Australia's bioregions present unique scenarios which constitute a challenge for quantitative environmental remote sensing. We believe that data from MODIS bands 8-19 may provide significant benefit to Earth observation over particular bioregions of the Australian continent. Examples here include the use of band 8 in characterising aerosol optical depth over typically bright land surfaces and accounting for anomalous retrievals of atmospheric water vapour obtained using MOD05 based on the abundance of Australia's 'red dirt', which exhibits absorption features in the near infrared bands 17-19 of MODIS. Bioregion-focused applications such as those mentioned above have driven the development of automated processing, infrastructure for the atmospheric and BRDF correction of the first 19 bands of MODIS rather than only the first 7, which is more often the case. This work has been facilitated by the AusCover project which is the remote sensing component of the Terrestrial Ecosystem Research Network (TERN), itself a program designed to create a new generation of infrastructure for ecological study of the Australian landscape.

  2. Synchrotron Radiation II.

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Synchrotron radiation is a unique form of radiation that spans the electro-magnetic spectrum from X-rays through the ultraviolet and visible into the infrared. Tunable monochromators enable scientists to select a narrow band of wavelengths at any point in the spectrum. (Author/BB)

  3. Keep Your Voice Sound: How to Prevent and Avoid Voice Problems

    MedlinePlus

    ... ways, your voice is as unique as your fingerprint. It’s produced in your throat by 2 bands ... Act No Fear Act Office of Inspector General USA.gov – Government Made Easy NIH…Turning Discovery Into ...

  4. A technique for the reduction of banding in Landsat Thematic Mapper Images

    USGS Publications Warehouse

    Helder, Dennis L.; Quirk, Bruce K.; Hood, Joy J.

    1992-01-01

    The radiometric difference between forward and reverse scans in Landsat thematic mapper (TM) images, referred to as "banding," can create problems when enhancing the image for interpretation or when performing quantitative studies. Recent research has led to the development of a method that reduces the banding in Landsat TM data sets. It involves passing a one-dimensional spatial kernel over the data set. This kernel is developed from the statistics of the banding pattern and is based on the Wiener filter. It has been implemented on both a DOS-based microcomputer and several UNIX-based computer systems. The algorithm has successfully reduced the banding in several test data sets.

  5. Simulation of an Ice Giant-style Dynamo

    NASA Astrophysics Data System (ADS)

    Soderlund, K. M.; Aurnou, J. M.

    2010-12-01

    The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.

  6. Differences in quantitative EEG between frontotemporal dementia and Alzheimer's disease as revealed by LORETA.

    PubMed

    Nishida, K; Yoshimura, M; Isotani, T; Yoshida, T; Kitaura, Y; Saito, A; Mii, H; Kato, M; Takekita, Y; Suwa, A; Morita, S; Kinoshita, T

    2011-09-01

    To determine the electrophysiological characteristics of frontotemporal dementia (FTD) and the distinction with Alzheimer's disease (AD). We performed analyses of global field power (GFP) which is a measure of whole brain electric field strength, and EEG neuroimaging analyses with sLORETA (standardized low resolution electromagnetic tomography), in the mild stages of FTD (n = 19; mean age = 68.11 ± 7.77) and AD (n = 19; mean age = 69.42 ± 9.57) patients, and normal control (NC) subjects (n = 22; mean age = 66.13 ± 6.02). In the GFP analysis, significant group effects were observed in the delta (1.5-6.0 Hz), alpha1 (8.5-10.0 Hz), and beta1 (12.5-18.0 Hz) bands. In sLORETA analysis, differences in activity were observed in the alpha1 band (NC > FTD) in the orbital frontal and temporal lobe, in the delta band (AD>NC) in widespread areas including the frontal lobe, and in the beta1 band (FTD > AD) in the parietal lobe and sensorimotor area. Differential patterns of brain regions and EEG frequency bands were observed between the FTD and AD groups in terms of pathological activity. FTD and AD patients in the early stages displayed different patterns in the cortical localization of oscillatory activity across different frequency bands. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Characteristics of strain-sensitive photonic crystal cavities in a flexible substrate.

    PubMed

    No, You-Shin; Choi, Jae-Hyuck; Kim, Kyoung-Ho; Park, Hong-Gyu

    2016-11-14

    High-index semiconductor photonic crystal (PhC) cavities in a flexible substrate support strong and tunable optical resonances that can be used for highly sensitive and spatially localized detection of mechanical deformations in physical systems. Here, we report theoretical studies and fundamental understandings of resonant behavior of an optical mode excited in strain-sensitive rod-type PhC cavities consisting of high-index dielectric nanorods embedded in a low-index flexible polymer substrate. Using the three-dimensional finite-difference time-domain simulation method, we calculated two-dimensional transverse-electric-like photonic band diagrams and the three-dimensional dispersion surfaces near the first Γ-point band edge of unidirectionally strained PhCs. A broken rotational symmetry in the PhCs modifies the photonic band structures and results in the asymmetric distributions and different levels of changes in normalized frequencies near the first Γ-point band edge in the reciprocal space, which consequently reveals strain-dependent directional optical losses and selected emission patterns. The calculated electric fields, resonant wavelengths, and quality factors of the band-edge modes in the strained PhCs show an excellent agreement with the results of qualitative analysis of modified dispersion surfaces. Furthermore, polarization-resolved time-averaged Poynting vectors exhibit characteristic dipole-like emission patterns with preferentially selected linear polarizations, originating from the asymmetric band structures in the strained PhCs.

  8. One-year persistence of individual gait patterns identified in a follow-up study - A call for individualised diagnose and therapy.

    PubMed

    Horst, F; Mildner, M; Schöllhorn, W I

    2017-10-01

    Although a hunch about the individuality of human movements generally exists, differences in gait patterns between individuals are often neglected. To date, only a few studies distinguished individual gait patterns in terms of uniqueness and emphasised the relevance of individualised diagnoses and therapy. However, small sample sizes have been a limitation on identifying subjects based on gait patterns, and little is known about the permanence of subject-specific characteristics over time. The purpose of this study was (1) to prove the uniqueness of individual gait patterns within a larger sample and (2) to prove the long-term permanence of individual gait patterns. A sample of 128 healthy participants each walked a distance of 10m barefoot 10 times. Two force plates recorded the ground reaction forces during a double step at a self-selected walking speed. A subsample of 46 participants repeated this procedure after a period of 7-16 months. The application of support vector machines resulted in classification rates of 99.8% (1278 out of 1280) and 99.4% (914 out of 920) for the initial subject-classification and the subsample follow-up-classification, respectively. The results showed that gait patterns based on time-continuous ground reaction forces were unique to an individual and could be differentiated from those of other individuals. Support vector machines classified gait patterns to the corresponding individual almost error-free. Hence, human gait is not only different between individuals but also exhibits unique individual characteristics that are persistent over years. Our findings provide evidence for the individual nature of human walking and emphasise the need to evaluate individualised clinical approaches for diagnoses and therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Genomic in situ hybridization in interspecific hybrids of scallops (Bivalvia, Pectinidae) and localization of the satellite DNA Cf303, and the vertebrate telomeric sequences (TTAGGG)n on chromosomes of scallop Chlamys farreri (Jones & Preston, 1904)

    PubMed Central

    Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin

    2018-01-01

    Abstract Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG)n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs. PMID:29675138

  10. Genomic in situ hybridization in interspecific hybrids of scallops (Bivalvia, Pectinidae) and localization of the satellite DNA Cf303, and the vertebrate telomeric sequences (TTAGGG)n on chromosomes of scallop Chlamys farreri (Jones & Preston, 1904).

    PubMed

    Hu, Liping; Jiang, Liming; Bi, Ke; Liao, Huan; Yang, Zujing; Huang, Xiaoting; Bao, Zhenmin

    2018-01-01

    Mitotic chromosome preparations of the interspecific hybrids Chlamys farreri (Jones & Preston, 1904) × Patinopecten yessoensis (Jay, 1857), C. farreri × Argopecten irradians (Lamarck, 1819) and C. farreri × Mimachlamys nobilis (Reeve, 1852) were used to compare two different scallop genomes in a single slide. Although genomic in situ hybridization (GISH) using genomic DNA from each scallop species as probe painted mitotic chromosomes of the interspecific hybrids, the painting results were not uniform; instead it showed species-specific distribution patterns of fluorescent signals among the chromosomes. The most prominent GISH-bands were mainly located at centromeric or telomeric regions of scallop chromosomes. In order to illustrate the sequence constitution of the GISH-bands, the satellite Cf303 sequences of C. farreri and the vertebrate telomeric (TTAGGG) n sequences were used to map mitotic chromosomes of C. farreri by fluorescence in situ hybridization (FISH). The results indicated that the GISH-banding pattern presented by the chromosomes of C. farreri is mainly due to the distribution of the satellite Cf303 DNA, therefore suggesting that the GISH-banding patterns found in the other three scallops could also be the result of the chromosomal distribution of other species-specific satellite DNAs.

  11. Location of the valence band maximum in the band structure of anisotropic 1 T'-ReSe2

    NASA Astrophysics Data System (ADS)

    Eickholt, P.; Noky, J.; Schwier, E. F.; Shimada, K.; Miyamoto, K.; Okuda, T.; Datzer, C.; Drüppel, M.; Krüger, P.; Rohlfing, M.; Donath, M.

    2018-04-01

    Transition-metal dichalcogenides (TMDCs) are a focus of current research due to their fascinating optical and electronic properties with possible technical applications. ReSe2 is an interesting material of the TMDC family, with unique anisotropic properties originating from its distorted 1 T structure (1 T '). To develop a fundamental understanding of the optical and electric properties, we studied the underlying electronic structure with angle-resolved photoemission (ARPES) as well as band-structure calculations within the density functional theory (DFT)-local density approximation (LDA) and GdW approximations. We identified the Γ ¯M¯1 direction, which is perpendicular to the a axis, as a distinct direction in k space with the smallest bandwidth of the highest valence band. Using photon-energy-dependent ARPES, two valence band maxima are identified within experimental limits of about 50 meV: one at the high-symmetry point Z , and a second one at a non-high-symmetry point in the Brillouin zone. Thus, the position in k space of the global valence band maximum is undecided experimentally. Theoretically, an indirect band gap is predicted on a DFT-LDA level, while quasiparticle corrections lead to a direct band gap at the Z point.

  12. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    NASA Astrophysics Data System (ADS)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral constraints are applied on the EEG data.

  13. Oxygen Isotope Variability within Nautilus Shell Growth Bands

    PubMed Central

    2016-01-01

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis of oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. To create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands. PMID:27100183

  14. Oxygen isotope variability within Nautilus shell growth bands

    DOE PAGES

    Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; ...

    2016-04-21

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ 18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ 18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ 18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less

  15. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials.

    PubMed

    Gilbert Corder, Stephanie N; Chen, Xinzhong; Zhang, Shaoqing; Hu, Fengrui; Zhang, Jiawei; Luan, Yilong; Logan, Jack A; Ciavatti, Thomas; Bechtel, Hans A; Martin, Michael C; Aronson, Meigan; Suzuki, Hiroyuki S; Kimura, Shin-Ichi; Iizuka, Takuya; Fei, Zhe; Imura, Keiichiro; Sato, Noriaki K; Tao, Tiger H; Liu, Mengkun

    2017-12-22

    Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with <50 nm spatial resolution. The optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.

  16. Spin-polarized surface resonances accompanying topological surface state formation

    PubMed Central

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; Kemper, Alexander F.; Rotundu, Costel R.; Birgeneau, Robert J.; Hussain, Zahid; Lee, Dung-Hai; Shen, Zhi-Xun; Lanzara, Alessandra

    2016-01-01

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure. PMID:27739428

  17. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials

    DOE PAGES

    Gilbert Corder, Stephanie N.; Chen, Xinzhong; Zhang, Shaoqing; ...

    2017-12-22

    Broadband tunability is a central theme in contemporary nanophotonics and metamaterials research. Combining metamaterials with phase change media offers a promising approach to achieve such tunability, which requires a comprehensive investigation of the electromagnetic responses of novel materials at subwavelength scales. In this work, we demonstrate an innovative way to tailor band-selective electromagnetic responses at the surface of a heavy fermion compound, samarium sulfide (SmS). By utilizing the intrinsic, pressure sensitive, and multi-band electron responses of SmS, we create a proof-of-principle heavy fermion metamaterial, which is fabricated and characterized using scanning near-field microscopes with < 50 nm spatial resolution. Themore » optical responses at the infrared and visible frequency ranges can be selectively and separately tuned via modifying the occupation of the 4f and 5d band electrons. The unique pressure, doping, and temperature tunability demonstrated represents a paradigm shift for nanoscale metamaterial and metasurface design.« less

  18. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  19. Investigation of environmental change pattern in Japan. Investigation of variations in the prominent oceanic current, Kuroshio

    NASA Technical Reports Server (NTRS)

    Maruyasu, T.; Shoji, D. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. Rias shorelines are interpreted from the fine depiction of their complex features in the image of band 7. Sand beaches are discriminated from their linear nature, and the similarity of sand beaches among the all band is very good.

  20. Link between light-triggered Mg-banding and chamber formation in the planktic foraminifera Neogloboquadrina dutertrei

    DOE PAGES

    Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.; ...

    2017-05-15

    Mg/Ca ratios of planktic foraminifera are commonly used to reconstruct past ocean temperatures. However, intrashell Mg/Ca ratios exhibit a pattern of alternating high and low Mg-bands in many species. Whereas mechanisms controlling Mg variability are poorly constrained, recent experiments demonstrate that it is paced by the diurnal light/dark cycle in Orbulina universa, which forms a terminal shell of simple spherical geometry. It is unknown whether Mg-heterogeneity is diurnally paced in species with complex shell morphologies, or is the result of growth processes. Here, we show that high Mg/Ca-calcite also forms at night in cultured specimens of the multi-chambered planktic foraminiferamore » Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. Furthermore, these results have implications for interpreting patterns of calcification in N. dutertrei, and possibly other foraminifera species, and suggests diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.« less

  1. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae

    NASA Astrophysics Data System (ADS)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2017-04-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  2. Dual-Band Operation of a Microstrip Patch Antenna on a Duroid 5870 Substrate for Ku- and K-Bands

    PubMed Central

    Islam, M. M.; Islam, M. T.; Faruque, M. R. I.

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz–14.86 GHz) on the lower band and 0.94 GHz (20.67–19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results. PMID:24385878

  3. Dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands.

    PubMed

    Islam, M M; Islam, M T; Faruque, M R I

    2013-01-01

    The dual-band operation of a microstrip patch antenna on a Duroid 5870 substrate for Ku- and K-bands is presented. The fabrication of the proposed antenna is performed with slots and a Duroid 5870 dielectric substrate and is excited by a 50 Ω microstrip transmission line. A high-frequency structural simulator (HFSS) is used which is based on the finite element method (FEM) in this research. The measured impedance bandwidth (2 : 1 VSWR) achieved is 1.07 GHz (15.93 GHz-14.86 GHz) on the lower band and 0.94 GHz (20.67-19.73 GHz) on the upper band. A stable omnidirectional radiation pattern is observed in the operating frequency band. The proposed prototype antenna behavior is discussed in terms of the comparisons of the measured and simulated results.

  4. Physical objects as vehicles of cultural transmission: maintaining harmony and uniqueness through colored geometric patterns.

    PubMed

    Ishii, Keiko; Miyamoto, Yuri; Rule, Nicholas O; Toriyama, Rie

    2014-02-01

    We examined how cultural values of harmony and uniqueness are represented and maintained through physical media (i.e., colorings of geometric patterns) and how individuals play an active role in selecting and maintaining such cultural values. We found that colorings produced by European American adults and children were judged as more unique, whereas colorings produced by Japanese adults and children were judged as more harmonious, reflecting cultural differences in values. Harmony undergirded Japanese participants' preferences for colorings, whereas uniqueness undergirded European American participants' preferences for colorings. These cultural differences led participants to prefer own-culture colorings over other-culture colorings. Moreover, bicultural participants' preferences acculturated according to their identification with their host culture. Furthermore, child rearers in Japan and Canada gave feedback about the children's colorings that were consistent with their culture's values. These findings suggest that simple geometric patterns can embody cultural values that are socialized and reinforced from an early age.

  5. A hybrid phononic crystal for roof application.

    PubMed

    Wan, Qingmian; Shao, Rong

    2017-11-01

    Phononic crystal is a type of acoustic material, and the study of phononic crystals has attracted great attention from national research institutions. Meanwhile, noise reduction in the low-frequency range has always encountered difficulties and troubles in the engineering field. In order to obtain a unique and effective low-frequency noise reduction method, in this paper a low frequency noise attenuation system based on phononic crystal structure is proposed and demonstrated. The finite element simulation of the band gap is consistent with the final test results. The effects of structure parameters on the band gaps were studied by changing the structure parameters and the band gaps can be controlled by suitably tuning structure parameters. The structure and results provide a good support for phononic crystal structures engineering application.

  6. Quantum oscillations in nodal line systems

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Moessner, Roderich; Lim, Lih-King

    2018-04-01

    We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.

  7. A new strategy for efficient solar energy conversion: Parallel-processing with surface plasmons

    NASA Technical Reports Server (NTRS)

    Anderson, L. M.

    1982-01-01

    This paper introduces an advanced concept for direct conversion of sunlight to electricity, which aims at high efficiency by tailoring the conversion process to separate energy bands within the broad solar spectrum. The objective is to obtain a high level of spectrum-splitting without sequential losses or unique materials for each frequency band. In this concept, sunlight excites a spectrum of surface plasma waves which are processed in parallel on the same metal film. The surface plasmons transport energy to an array of metal-barrier-semiconductor diodes, where energy is extracted by inelastic tunneling. Diodes are tuned to different frequency bands by selecting the operating voltage and geometry, but all diodes share the same materials.

  8. SAR antenna calibration techniques

    NASA Technical Reports Server (NTRS)

    Carver, K. R.; Newell, A. C.

    1978-01-01

    Calibration of SAR antennas requires a measurement of gain, elevation and azimuth pattern shape, boresight error, cross-polarization levels, and phase vs. angle and frequency. For spaceborne SAR antennas of SEASAT size operating at C-band or higher, some of these measurements can become extremely difficult using conventional far-field antenna test ranges. Near-field scanning techniques offer an alternative approach and for C-band or X-band SARs, give much improved accuracy and precision as compared to that obtainable with a far-field approach.

  9. Fabrication of novel two-dimensional nanopatterned conductive PEDOT:PSS films for organic optoelectronic applications.

    PubMed

    Petti, Lucia; Rippa, Massimo; Capasso, Rossella; Nenna, Giuseppe; De Girolamo Del Mauro, Anna; Pandolfi, Giuseppe; Maglione, Maria Grazia; Minarini, Carla

    2013-06-12

    This paper presents a novel strategy to fabricate two-dimensional poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) photonic crystals (PCs) combining electron beam lithography (EBL) and plasma etching (PE) processes. The surface morphology of PEDOT:PSS PCs after mild oxygen plasma treatment was investigated by scanning electron microscopy. The effects on light extraction are studied experimentally. Vertical extraction of light was found to be strongly dependent on the geometric parameters of the PCs. By changing the lattice type from triangular to square and the geometrical parameters of the photonic structures, the resonance peak could be tuned from a narrow blue emission at 445 nm up to a green emission at 525 nm with a full width at half-maximum of 20 nm, which is in good agreement with Bragg's diffraction theory and free photon band structure. Both finite-difference time-domain and plane wave expansion methods are used to calculate the resonant frequencies and the photonic band structures in the two-dimensional photonic crystals showing a very good agreement with the experiment results. A 2D nanopatterned transparent anode was also fabricated onto a flexible polyethylene terephthalate (PET) substrate and it was integrated into an organic light-emitting diode (OLED). The obtained results fully confirm the feasibility of the developed process of micro/nano patterning PEDOT:PSS. Engineered polymer electrodes prepared by this unique method are useful in a wide variety of high-performance flexible organic optoelectronics.

  10. Coastal and rain-induced wind variability depicted by scatterometers

    NASA Astrophysics Data System (ADS)

    Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.

    2012-04-01

    A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.

  11. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  12. Nanoscale patterning controls inorganic-membrane interface structure

    NASA Astrophysics Data System (ADS)

    Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.

    2011-02-01

    The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c

  13. Comparative study of mitotic chromosomes in two blowflies, Lucilia sericata and L. cluvia (Diptera, Calliphoridae), by C- and G-like banding patterns and rRNA loci, and implications for karyotype evolution

    PubMed Central

    Chirino, Mónica G.; Rossi, Luis F.; Bressa, María J.; Luaces, Juan P.; Merani, María S.

    2015-01-01

    Abstract The karyotypes of Lucilia cluvia (Walker, 1849) and Lucilia sericata (Meigen, 1826) from Argentina were characterized using conventional staining and the C- and G-like banding techniques. Besides, nucleolus organizer regions (NORs) were detected by fluorescent in situ hybridization (FISH) and silver staining technique. The chromosome complement of these species comprises five pairs of autosomes and a pair of sex chromosomes (XX/XY, female/male). The autosomes of both species have the same size and morphology, as well as C- and G-like banding patterns. The X and Y chromosomes of Lucilia cluvia are subtelocentric and easily identified due to their very small size. In Lucilia sericata, the X chromosome is metacentric and the largest of the complement, showing a secondary constriction in its short arm, whereas the Y is submetacentric and smaller than the X. The C-banding patterns reflect differences in chromatin structure and composition between the subtelocentric X and Y chromosomes of Lucilia cluvia and the biarmed sex chromosomes of Lucilia sericata. These differences in the sex chromosomes may be due to distinct amounts of constitutive heterochromatin. In Lucilia cluvia, the NORs are placed at one end of the long-X and of the long-Y chromosome arms, whereas one of the NORs is disposed in the secondary constriction of the short-X chromosome arm and the other on the long-Y chromosome arm in Lucilia sericata. Although the G-like banding technique does not yield G-bands like those in mammalian chromosomes, it shows a high degree chromosomal homology in both species because each pair of autosomes was correctly paired. This chromosome similarity suggests the absence of autosomal rearrangements during karyotype evolution in the two species studied. PMID:25893078

  14. Nanohole and dot patterning processes on quartz substrate by R-θ electron beam lithography and nanoimprinting

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuyoshi; Taniguchi, Kazutake; Suzuki, Kouta; Iyama, Hiromasa; Kishimoto, Shuji; Sato, Takashi; Kobayashi, Hideo

    2016-06-01

    Fine hole and dot patterns with bit pitches (bp’s) of less than 40 nm were fabricated in the circular band area of a quartz substrate by R-θ electron beam lithography (EBL), reactive ion etching (RIE), and nanoimprinting. These patterning processes were studied to obtain minimum pitch sizes of hole and dot patterns without pattern collapse. The patterning on the circular band was aimed to apply these patterning processes to future high-density bit-patterned media (BPM) for hard disk drive (HDD) and permanent memory for the long life archiving of digital data. In hole patterning, a minimum-22-nm-bp and 8.2-nm-diameter pattern (1.3 Tbit/in.2) was obtained on a quartz substrate by optimizing the R-θ EBL and RIE processes. Dot patterns were replicated on another quartz substrate by nanoimprinting using a hole-patterned quartz substrate as a master mold followed by RIE. In dot patterning, a minimum-30-nm-bp and 18.5-nm-diameter pattern (0.7 Tbit/in.2) was obtained by introducing new descum conditions. It was observed that the minimum bp of successful patterning increased as the fabrication process proceeded, i.e., from 20 nm bp in the first EBL process to 30 nm bp in the last quartz dot patterning process. From the measured diameters of the patterns, it was revealed that pattern collapse was apt to occur when the value of average diameter plus 3 sigma of diameter was close to the bp. It was suggested that multiple fabrication processes caused the degradation of pattern quality; therefore, hole patterning is more suitable than dot patterning for future applications owing to the lower quality degradation by its simple fabrication process.

  15. Compact Double-P Slotted Inset-Fed Microstrip Patch Antenna on High Dielectric Substrate

    PubMed Central

    Ahsan, M. R.; Islam, M. T.; Habib Ullah, M.; Mahadi, W. N. L.; Latef, T. A.

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show −10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications. PMID:25165750

  16. Compact double-p slotted inset-fed microstrip patch antenna on high dielectric substrate.

    PubMed

    Ahsan, M R; Islam, M T; Habib Ullah, M; Mahadi, W N L; Latef, T A

    2014-01-01

    This paper presents a compact sized inset-fed rectangular microstrip patch antenna embedded with double-P slots. The proposed antenna has been designed and fabricated on ceramic-PTFE composite material substrate of high dielectric constant value. The measurement results from the fabricated prototype of the antenna show -10 dB reflection coefficient bandwidths of 200 MHz and 300 MHz with center resonant frequency of 1.5 GHz and 4 GHz, respectively. The fabricated antenna has attained gains of 3.52 dBi with 81% radiation efficiency and 5.72 dBi with 87% radiation efficiency for lower band and upper band, respectively. The measured E- and H-plane radiation patterns are also presented for better understanding. Good agreement between the simulation and measurement results and consistent radiation patterns make the proposed antenna suitable for GPS and C-band applications.

  17. Nanoscale charge distribution and energy band modification in defect-patterned graphene.

    PubMed

    Wang, Shengnan; Wang, Rui; Wang, Xiaowei; Zhang, Dongdong; Qiu, Xiaohui

    2012-04-21

    Defects were introduced precisely to exfoliated graphene (G) sheets on a SiO(2)/n(+) Si substrate to modulate the local energy band structure and the electron pathway using solution-phase oxidation followed by thermal reduction. The resulting nanoscale charge distribution and band gap modification were investigated by electrostatic force microscopy and spectroscopy. A transition phase with coexisting submicron-sized metallic and insulating regions in the moderately oxidized monolayer graphene were visualized and measured directly. It was determined that the delocalization of electrons/holes in a graphene "island" is confined by the surrounding defective C-O matrix, which acts as an energy barrier for mobile charge carriers. In contrast to the irreversible structural variations caused by the oxidation process, the electrical properties of graphene can be restored by annealing. The defect-patterned graphene and graphene oxide heterojunctions were further characterized by electrical transport measurement.

  18. Notes on chromosome numbers and C-banding patterns in karyotypes of some weevils from central Europe (Coleoptera, Curculionoidea: Apionidae, Nanophyidae, Curculionidae).

    PubMed

    Lachowska, Dorota; Holecová, Milada; Rozek, Maria

    2004-01-01

    Chromosome numbers and C-banding patterns of sixteen weevil species are presented. The obtained results confirm the existence of two groups of species with either a small or large amount of heterochromatin in the karyotype. The first group comprises twelve species (Apionidae: Oxystoma cerdo, Eutrichapion melancholicum, Ceratapion penetrans, Ceratapion austriacum, Squamapion flavimanum, Rhopalapion longirostre; Nanophyidae: Nanophyes marmoratus; Curculionidae: Centricnemus (=Peritelus) leucogrammus, Sitona humeralis, Sitona lineatus, Sitona macularis, Sitona suturalis). In weevils with a small amount of heterochromatin, tiny grains on the nucleus during interphase are visible, afterwards appearing as dark dots during mitotic and meiotic prophase. The second group comprises four species from the curculionid subfamily Cryptorhynchinae (Acalles camelus, Acalles commutatus, Acalles echinatus, Ruteria hypocrita) which possess much larger heteropycnotic chromosome parts visible during all nuclear divisions. The species examined have pericentromeric C-bands on autosomes and on the X chromosome.

  19. Diagnosis of early gastric cancer using narrow band imaging and acetic acid

    PubMed Central

    Matsuo, Ken; Takedatsu, Hidetoshi; Mukasa, Michita; Sumie, Hiroaki; Yoshida, Hikaru; Watanabe, Yasutomo; Akiba, Jun; Nakahara, Keita; Tsuruta, Osamu; Torimura, Takuji

    2015-01-01

    AIM: To determine whether the endoscopic findings of depressed-type early gastric cancers (EGCs) could precisely predict the histological type. METHODS: Ninety depressed-type EGCs in 72 patients were macroscopically and histologically identified. We evaluated the microvascular (MV) and mucosal surface (MS) patterns of depressed-type EGCs using magnifying endoscopy (ME) with narrow-band imaging (NBI) (NBI-ME) and ME enhanced by 1.5% acetic acid, respectively. First, depressed-type EGCs were classified according to MV pattern by NBI-ME. Subsequently, EGCs unclassified by MV pattern were classified according to MS pattern by enhanced ME (EME) images obtained from the same angle. RESULTS: We classified the depressed-type EGCs into the following 2 MV patterns using NBI-ME: a fine-network pattern that indicated differentiated adenocarcinoma (25/25, 100%) and a corkscrew pattern that likely indicated undifferentiated adenocarcinoma (18/23, 78.3%). However, 42 of the 90 (46.7%) lesions could not be classified into MV patterns by NBI-ME. These unclassified lesions were then evaluated for MS patterns using EME, which classified 33 (81.0%) lesions as MS patterns, diagnosed as differentiated adenocarcinoma. As a result, 76 of the 90 (84.4%) lesions were matched with histological diagnoses using a combination of NBI-ME and EME. CONCLUSION: A combination of NBI-ME and EME was useful in predicting the histological type of depressed-type EGC. PMID:25632201

  20. Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall

    NASA Astrophysics Data System (ADS)

    Lucero, O. A.; Rodriguez, N. C.

    In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2

  1. Genetic Heterogeneity in Mycobacterium tuberculosis Isolates Reflected in IS6110 Restriction Fragment Length Polymorphism Patterns as Low-Intensity Bands

    PubMed Central

    de Boer, Annette S.; Kremer, Kristin; Borgdorff, Martien W.; de Haas, Petra E. W.; Heersma, Herre F.; van Soolingen, Dick

    2000-01-01

    Mycobacterium tuberculosis isolates with identical IS6110 restriction fragment length polymorphism (RFLP) patterns are considered to originate from the same ancestral strain and thus to reflect ongoing transmission. In this study, we investigated 1,277 IS6110 RFLP patterns for the presence of multiple low-intensity bands (LIBs), which may indicate infections with multiple M. tuberculosis strains. We did not find any multiple LIBs, suggesting that multiple infections are rare in the Netherlands. However, we did observe a few LIBs in 94 patterns (7.4%) and examined the nature of this phenomenon. With single-colony cultures it was found that LIBs mostly represent mixed bacterial populations with slightly different RFLP patterns. Mixtures were expressed in RFLP patterns as LIBs when 10 to 30% of the DNA analyzed originated from a bacterial population with another RFLP pattern. Presumably, a part of the LIBs did not represent mixed bacterial populations, as in some clusters all strains exhibited LIBs in their RFLP patterns. The occurrence of LIBs was associated with increased age in patients. This may reflect either a gradual change of the bacterial population in the human body over time or IS6110-mediated genetic adaptation of M. tuberculosis to changes in the environmental conditions during the dormant state or reactivation thereafter. PMID:11101583

  2. Morphological characterization and molecular fingerprinting of Nostoc strains by multiplex RAPD.

    PubMed

    Hillol, Chakdar; Pabbi, Sunil

    2012-01-01

    Morphological parameters studied for the twenty selected Nostoc strains were mostly found to be consistent with the earlier reports. But the shape of akinetes observed in this study was a little deviation from the existing descriptions and heterocyst frequency was also found to be different in different strains in spite of growing in the same nitrogen free media. Multiplex RAPD produced reproducible and completely polymorphic amplification profiles for all the strains including some strain specific unique bands which are intended to be useful for identification of those strains. At least one to a maximum of two unique bands was produced by different dual primer combinations. For ten strains out of twenty, strain specific bands were found to be generated. Cluster analysis revealed a vast heterogeneity among these Nostoc strains and no specific clustering based on geographical origin was found except a few strains. It was also observed that morphological data may not necessarily correspond to the genetic data in most of the cases. CCC92 (Nostoc muscorum) and CCC48 (Nostoc punctiforme) showed a high degree of similarity which was well supported by high bootstrap value. The level of similarity of the strains ranged from 0.15 to 0.94. Cluster analysis based on multiplex RAPD showed a good fit revealing the discriminatory power of this technique.

  3. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR.

    PubMed

    Rahman, MuhibUr; Park, Jung-Dong

    2018-03-19

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands.

  4. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR

    PubMed Central

    2018-01-01

    In this paper, we present the smallest form factor microstrip-fed ultra-wideband antenna with quintuple rejection bands for use in wireless sensor networks, mobile handsets, and Internet of things (IoT). Five rejection bands have been achieved at the frequencies of 3.5, 4.5, 5.25, 5.7, and 8.2 GHz, inseminating four rectangular complementary split ring resonators (RCSRRs) on the radiating patch and placing two rectangular split-ring resonators (RSRR) near the feedline-patch junction of the conventional ultra-wideband (UWB) antenna. The design guidelines of the implemented notched bands are provided at the desired frequency bands and analyzed. The measured results demonstrate that the proposed antenna delivers a wide impedance bandwidth from 3 to 11 GHz with a nearly omnidirectional radiation pattern, high rejection in the multiple notched-bands, and good radiation efficiency over the entire frequency band except at the notched frequencies. Simulated and measured response match well specifically at the stop-bands. PMID:29562714

  5. A doubly curved reflector X-band antenna with integrated IFF array

    NASA Astrophysics Data System (ADS)

    Alia, F.; Barbati, S.

    Primary radar antennas and Identification Friend or Foe (IFF) antennas must rotate with the same speed and synchronism, so that the target echo and IFF transponder mark will appear to the operator at the same time and at the same angular direction. A doubly-curved reflector antenna with a six-element microstrip array integrated in the reflector surface is presented to meet this requirement. The main antenna operates at X-band for low angle search radar, while the secondary antenna operates at L-band for IFF functions. The new configuration minimizes masking of the X-band radiated energy as a result of the IFF L-band elements. In fact, the only effect of the microstrip array on the X-band radiation pattern is the presence of several sidelobes in the + or - 90 deg angular region. The proposed new solution is compared to three other L-band/X-band integrated antenna configurations, and is found to be more advantageous with respect to masking, mechanical aspects, and production costs.

  6. Magnifying Endoscopy with Narrow Band Imaging of Early Gastric Cancer: Correlation with Histopathology and Mucin Phenotype

    PubMed Central

    Ok, Kyung-Sun; Kim, Gwang Ha; Park, Do Youn; Lee, Hyun Jeong; Jeon, Hye Kyung; Baek, Dong Hoon; Lee, Bong Eun; Song, Geun Am

    2016-01-01

    Background/Aims Magnifying endoscopy with narrow band imaging (ME-NBI) is a useful modality for the detailed visualization of microsurface (MS) and microvascular (MV) structures in the gastrointestinal tract. This study aimed to determine whether the MS and MV patterns in ME-NBI differ according to the histologic type, invasion depth, and mucin phenotype of early gastric cancers (EGCs). Methods The MS and MV patterns of 160 lesions in 160 patients with EGC who underwent ME-NBI before endoscopic or surgical resection were prospectively collected and analyzed. EGCs were categorized as either differentiated or undifferentiated and as either mucosal or submucosal, and their mucin phenotypes were determined via immunohistochemistry of the tumor specimens. Results Differentiated tumors mainly displayed an oval and/or tubular MS pattern and a fine network or loop MV pattern, whereas undifferentiated tumors mainly displayed an absent MS pattern and a corkscrew MV pattern. The destructive MS pattern was associated with submucosal invasion, and this association was more prominent in the differentiated tumors than in the undifferentiated tumors. MUC5AC expression was increased in lesions with either a papillary or absent MS pattern and a corkscrew MV pattern, whereas MUC6 expression was increased in lesions with a papillary MS pattern and a loop MV pattern. CD10 expression was more frequent in lesions with a fine network MV pattern. Conclusions ME-NBI can be useful for predicting the histopathology and mucin phenotype of EGCs. PMID:27021504

  7. Separating macroecological pattern and process: comparing ecological, economic, and geological systems.

    PubMed

    Blonder, Benjamin; Sloat, Lindsey; Enquist, Brian J; McGill, Brian

    2014-01-01

    Theories of biodiversity rest on several macroecological patterns describing the relationship between species abundance and diversity. A central problem is that all theories make similar predictions for these patterns despite disparate assumptions. A troubling implication is that these patterns may not reflect anything unique about organizational principles of biology or the functioning of ecological systems. To test this, we analyze five datasets from ecological, economic, and geological systems that describe the distribution of objects across categories in the United States. At the level of functional form ('first-order effects'), these patterns are not unique to ecological systems, indicating they may reveal little about biological process. However, we show that mechanism can be better revealed in the scale-dependency of first-order patterns ('second-order effects'). These results provide a roadmap for biodiversity theory to move beyond traditional patterns, and also suggest ways in which macroecological theory can constrain the dynamics of economic systems.

  8. Role of proton magnetic resonance spectroscopy in the diagnosis of gliomatosis cerebri: a unique pattern of normal choline but elevated Myo-inositol metabolite levels.

    PubMed

    Mohana-Borges, Aurea V R; Imbesi, Steven G; Dietrich, Rosalind; Alksne, John; Amjadi, Darius K

    2004-01-01

    A patient with histologically proven gliomatosis cerebri presented with a normal choline level but a markedly abnormal elevated myo-inositol level on magnetic resonance (MR) spectroscopy. We describe the case presentation, imaging findings (in particular, the unique MR spectroscopic pattern), and their significance regarding the diagnosis of this relatively rare neoplasm.

  9. Longwave Band-by-band Cloud Radiative Effect and its Application in GCM Evaluation

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Cole, Jason N. S.; He, Fei; Potter, Gerald L.; Oreopoulos, Lazaros; Lee, Dongmin; Suarez, Max; Loeb, Norman G.

    2012-01-01

    The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.

  10. Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle.

    PubMed

    Copeland, O'Neal; Sadayappan, Sakthivel; Messer, Andrew E; Steinen, Ger J M; van der Velden, Jolanda; Marston, Steven B

    2010-12-01

    A unique feature of MyBP-C in cardiac muscle is that it has multiple phosphorylation sites. MyBP-C phosphorylation, predominantly by PKA, plays an essential role in modulating contractility as part of the cellular response to β-adrenergic stimulation. In vitro studies indicate MyBP-C can be phosphorylated at Serine 273, 282, 302 and 307 (mouse sequence) but little is known about the level of MyBP-C phosphorylation or the sites phosphorylated in heart muscle. Since current methodologies are limited in specificity and are not quantitative we have investigated the use of phosphate affinity SDS-PAGE together with a total anti MyBP-C antibody and a range of phosphorylation site-specific antibodies for the main sites (Ser-273, -282 and -302). With these newly developed methods we have been able to make a detailed quantitative analysis of MyBP-C phosphorylation in heart tissue in situ. We have found that MyBP-C is highly phosphorylated in non-failing human (donor) heart or mouse heart; tris and tetra-phosphorylated species predominate and less than 10% of MyBP-C is unphosphorylated (0, 9.3 ± 1%: 1P, 13.4 ± 2.7%: 2P, 10.5 ± 3.3%: 3P, 28.7 ± 3.7%: 4P, 36.4 ± 2.7%, n=21). Total phosphorylation was 2.7 ± 0.07 mol Pi/mol MyBP-C. In contrast in failing heart and in myectomy samples from HCM patients the majority of MyBP-C was unphosphorylated. Total phosphorylation levels were 23% of normal in failing heart myofibrils (0, 60.1 ± 2.8%: 1P, 27.8 ± 2.8%: 2P, 4.8 ± 2.0%: 3P, 3.7 ± 1.2%: 4P, 2.8 ± 1.3%, n=19) and 39% of normal in myectomy samples. The site-specific antibodies showed a distinctive distribution pattern of phosphorylation sites in the multiple phosphorylation level species. We found that phosphorylated Ser-273, Ser-282 and Ser-302 were all present in the 4P band of MyBP-C but none of them were significant in the 1P band, indicating that there must be at least one other site of MyBP-C phosphorylation in human heart. The pattern of phosphorylation at the three sites was not random, but indicated positive and negative interactions between the three sites. Phosphorylation at Ser-282 was not proportional to the number of sites available. The 2P band contained 302 but not 273; the 3P band contained 273 but not 302. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Analysis of Dissimilatory Sulfite Reductase and 16S rRNA Gene Fragments from Deep-Sea Hydrothermal Sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific

    PubMed Central

    Nakagawa, Tatsunori; Ishibashi, Jun-Ichiro; Maruyama, Akihiko; Yamanaka, Toshiro; Morimoto, Yusuke; Kimura, Hiroyuki; Urabe, Tetsuro; Fukui, Manabu

    2004-01-01

    This study describes the occurrence of unique dissimilatory sulfite reductase (DSR) genes at a depth of 1,380 m from the deep-sea hydrothermal vent field at the Suiyo Seamount, Izu-Bonin Arc, Western Pacific, Japan. The DSR genes were obtained from microbes that grew in a catheter-type in situ growth chamber deployed for 3 days on a vent and from the effluent water of drilled holes at 5°C and natural vent fluids at 7°C. DSR clones SUIYOdsr-A and SUIYOdsr-B were not closely related to cultivated species or environmental clones. Moreover, samples of microbial communities were examined by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA gene. The sequence analysis of 16S rRNA gene fragments obtained from the vent catheter after a 3-day incubation revealed the occurrence of bacterial DGGE bands affiliated with the Aquificae and γ- and ɛ-Proteobacteria as well as the occurrence of archaeal phylotypes affiliated with the Thermococcales and of a unique archaeon sequence that clustered with “Nanoarchaeota.” The DGGE bands obtained from drilled holes and natural vent fluids from 7 to 300°C were affiliated with the δ-Proteobacteria, genus Thiomicrospira, and Pelodictyon. The dominant DGGE bands retrieved from the effluent water of casing pipes at 3 and 4°C were closely related to phylotypes obtained from the Arctic Ocean. Our results suggest the presence of microorganisms corresponding to a unique DSR lineage not detected previously from other geothermal environments. PMID:14711668

  12. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    PubMed

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  13. Restoration of movement patterns of the Hawaiian Goose

    USGS Publications Warehouse

    Hess, Steven C.; Leopold, Christina R.; Misajon, Kathleen; Hu, Darcy; Jeffrey, John J.

    2012-01-01

    We used visual observations of banded individuals and satellite telemetry from 2007 to 2011 on Hawai′i Island to document movement patterns of the Hawaiian Goose (Branta sandvicensis), commonly known as Nene. Visual observations of numbered leg bands identified >19% and ≤10% of 323 geese at one of two breeding sites and one of two distant non-breeding areas during 2007-2011. We used satellite telemetry to document movement patterns of 10 male Nene from 2009 to 2011, and log-linear models to quantify the magnitude and individual differences in altitudinal migration. Two subpopulations of Nene moved 974.4 m (95% CI ± 22.0) and 226.4 m (95% CI ± 40.7) in elevation between seasons on average, from high-elevation shrublands during the non-breeding season of May-August, to lower-elevation breeding and molting areas in September-April. Traditional movement patterns were thought to be lost until recently, but the movement pattern we documented with satellite telemetry was similar to altitudinal migration described by early naturalists in Hawai′i prior to the severe population decline of Nene in the 20th century.

  14. Fabrication of frequency selective surface for band stop IR-filter

    NASA Astrophysics Data System (ADS)

    Mishra, Akshita; Sudheer, Tiwari, P.; Mondal, P.; Bhatt, H.; Rai, V. N.; Srivastava, A. K.

    2016-05-01

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO2 on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infrared region.

  15. Measurement of hurricane winds and waves with a synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Shemdin, O. H.; King, D. B.

    1979-01-01

    An analysis of data collected in a hurricane research program is presented. The data were collected with a Synthetic Aperture Radar (SAR) during five aircraft flights in the Atlantic in August and September, 1976. Work was conducted in two areas. The first is an analysis of the L-band SAR data in a scatterometer mode to determine the surface windspeeds in hurricanes, in a similar manner to that done by an X-band scatterometer. The second area was to use the SAR to examine the wave patterns in hurricanes. The wave patterns in all of the storms are similar and show a marked radial asymmetry.

  16. Plasmonic thermal IR emitters based on nanoamorphous carbon

    NASA Astrophysics Data System (ADS)

    Tay, Savaş; Kropachev, Aleksandr; Araci, Ismail Emre; Skotheim, Terje; Norwood, Robert A.; Peyghambarian, N.

    2009-02-01

    The development of plasmonic narrow-band thermal mid-IR emitters made from a conducting amorphous carbon composite is shown. These IR emitters have greatly improved thermal and mechanical stability compared to metallic emitters as they can be operated at 600 °C in air without any degradation in performance. The emitted thermal radiation has a bandwidth of 0.5 μm and can be set to the desired wavelength from 3 to 15 μm by changing the surface periodicity. The periodically patterned devices have in-band emissivities significantly exceeding that of the non-patterned devices, constituting simple yet efficient radiation sources at this important wavelength range.

  17. [Individual identification of cadaver parts after a bomb explosion using oligonucleotide fingerprinting by (GTG)5].

    PubMed

    Kondo, T; Ohshima, T

    1998-01-01

    A blind shell suddenly and unexpectedly exploded, and 20 dismembered human remains were discovered. DNA fingerprint was performed to determine whether the 20 human remains were derived from one person or not. DNA was isolated from each of the remains and digested by the restriction enzyme Hinf I and Hae III and hybridized with the oligonucleotide probe (GTG)5. DNA fingerprint using Hinf I demonstrated the same band pattern in 17 out of the 20 remains. However, in the remaining 3 samples, two novel strange bands were observed. DNA fingerprint using Hae III showed completely identical pattern in all of the remains.

  18. Discrimination among populations of sockeye salmon fry with Fourier analysis of otolith banding patterns formed during incubation

    USGS Publications Warehouse

    Finn, James E.; Burger, Carl V.; Holland-Bartels, Leslie E.

    1997-01-01

    We used otolith banding patterns formed during incubation to discriminate among hatchery- and wild-incubated fry of sockeye salmon Oncorhynchus nerka from Tustumena Lake, Alaska. Fourier analysis of otolith luminance profiles was used to describe banding patterns: the amplitudes of individual Fourier harmonics were discriminant variables. Correct classification of otoliths to either hatchery or wild origin was 83.1% (cross-validation) and 72.7% (test data) with the use of quadratic discriminant function analysts on 10 Fourier amplitudes. Overall classification rates among the six test groups (one hatchery and five wild groups) were 46.5% (cross-validation) and 39.3% (test data) with the use of linear discriminant function analysis on 16 Fourier amplitudes. Although classification rates for wild-incubated fry from any one site never exceeded 67% (cross-validation) or 60% (test data), location-specific information was evident for all groups because the probability of classifying an individual to its true incubation location was significantly greater than chance. Results indicate phenotypic differences in otolith microstructure among incubation sites separated by less than 10 km. Analysis of otolith luminance profiles is a potentially useful technique for discriminating among and between various populations of hatchery and wild fish.

  19. Motor strategy patterns study of diabetic neuropathic individuals while walking. A wavelet approach.

    PubMed

    Sacco, I C N; Hamamoto, A N; Onodera, A N; Gomes, A A; Weiderpass, H A; Pachi, C G F; Yamamoto, J F; von Tscharner, V

    2014-07-18

    The aim of this study was to investigate muscle׳s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal׳s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7-542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors׳ muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    NASA Astrophysics Data System (ADS)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for research on aerosol mixing state and its climate impacts.

  1. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Hongliang; Du, Mao-Hua

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  2. Discrete Electronic Bands in Semiconductors and Insulators: Potential High-Light-Yield Scintillators

    DOE PAGES

    Shi, Hongliang; Du, Mao-Hua

    2015-05-12

    Bulk semiconductors and insulators typically have continuous valence and conduction bands. In this paper, we show that valence and conduction bands of a multinary semiconductor or insulator can be split to narrow discrete bands separated by large energy gaps. This unique electronic structure is demonstrated by first-principles calculations in several quaternary elpasolite compounds, i.e., Cs 2NaInBr 6, Cs 2NaBiCl 6, and Tl 2NaBiCl 6. The narrow discrete band structure in these quaternary elpasolites is due to the large electronegativity difference among cations and the large nearest-neighbor distances in cation sublattices. We further use Cs 2NaInBr 6 as an example tomore » show that the narrow bands can stabilize self-trapped and dopant-bound excitons (in which both the electron and the hole are strongly localized in static positions on adjacent sites) and promote strong exciton emission at room temperature. The discrete band structure should further suppress thermalization of hot carriers and may lead to enhanced impact ionization, which is usually considered inefficient in bulk semiconductors and insulators. Finally, these characteristics can enable efficient room-temperature light emission in low-gap scintillators and may overcome the light-yield bottleneck in current scintillator research.« less

  3. Controlling flows in microchannels with patterned surface charge and topography.

    PubMed

    Stroock, Abraham D; Whitesides, George M

    2003-08-01

    This Account reviews two procedures for controlling the flow of fluids in microchannels. The first procedure involves patterning the density of charge on the inner surfaces of a channel. These patterns generate recirculating electroosmotic flows in the presence of a steady electric field. The second procedure involves patterning topography on an inner surface of a channel. These patterns generate recirculation in the cross-section of steady, pressure-driven flows. This Account summarizes applications of these flow to mixing and to controlling dispersion (band broadening).

  4. Reentrant Information Flow in Electrophysiological Rat Default Mode Network.

    PubMed

    Jing, Wei; Guo, Daqing; Zhang, Yunxiang; Guo, Fengru; Valdés-Sosa, Pedro A; Xia, Yang; Yao, Dezhong

    2017-01-01

    Functional MRI (fMRI) studies have demonstrated that the rodent brain shows a default mode network (DMN) activity similar to that in humans, offering a potential preclinical model both for physiological and pathophysiological studies. However, the neuronal mechanism underlying rodent DMN remains poorly understood. Here, we used electrophysiological data to analyze the power spectrum and estimate the directed phase transfer entropy (dPTE) within rat DMN across three vigilance states: wakeful rest (WR), slow-wave sleep (SWS), and rapid-eye-movement sleep (REMS). We observed decreased gamma powers during SWS compared with WR in most of the DMN regions. Increased gamma powers were found in prelimbic cortex, cingulate cortex, and hippocampus during REMS compared with WR, whereas retrosplenial cortex showed a reverse trend. These changed gamma powers are in line with the local metabolic variation of homologous brain regions in humans. In the analysis of directional interactions, we observed well-organized anterior-to-posterior patterns of information flow in the delta band, while opposite patterns of posterior-to-anterior flow were found in the theta band. These frequency-specific opposite patterns were only observed in WR and REMS. Additionally, most of the information senders in the delta band were also the receivers in the theta band, and vice versa. Our results provide electrophysiological evidence that rat DMN is similar to its human counterpart, and there is a frequency-dependent reentry loop of anterior-posterior information flow within rat DMN, which may offer a mechanism for functional integration, supporting conscious awareness.

  5. Vibration reduction for smart periodic structures via periodic piezoelectric arrays with nonlinear interleaved-switched electronic networks

    NASA Astrophysics Data System (ADS)

    Bao, Bin; Guyomar, Daniel; Lallart, Mickaël

    2017-01-01

    Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.

  6. Design and Realization of a Planar Ultrawideband Antenna with Notch Band at 3.5 GHz

    PubMed Central

    2014-01-01

    A small antenna with single notch band at 3.5 GHz is designed for ultrawideband (UWB) communication applications. The fabricated antenna comprises a radiating monopole element and a perfectly conducting ground plane with a wide slot. To achieve a notch band at 3.5 GHz, a parasitic element has been inserted in the same plane of the substrate along with the radiating patch. Experimental results shows that, by properly adjusting the position of the parasitic element, the designed antenna can achieve an ultrawide operating band of 3.04 to 11 GHz with a notched band operating at 3.31–3.84 GHz. Moreover, the proposed antenna achieved a good gain except at the notched band and exhibits symmetric radiation patterns throughout the operating band. The prototype of the proposed antenna possesses a very compact size and uses simple structures to attain the stop band characteristic with an aim to lessen the interference between UWB and worldwide interoperability for microwave access (WiMAX) band. PMID:25133245

  7. Landscape pattern metrics and regional assessment

    USGS Publications Warehouse

    O'Neill, R. V.; Riitters, K.H.; Wickham, J.D.; Jones, K.B.

    1999-01-01

    The combination of remote imagery data, geographic information systems software, and landscape ecology theory provides a unique basis for monitoring and assessing large-scale ecological systems. The unique feature of the work has been the need to develop and interpret quantitative measures of spatial pattern-the landscape indices. This article reviews what is known about the statistical properties of these pattern metrics and suggests some additional metrics based on island biogeography, percolation theory, hierarchy theory, and economic geography. Assessment applications of this approach have required interpreting the pattern metrics in terms of specific environmental endpoints, such as wildlife and water quality, and research into how to represent synergystic effects of many overlapping sources of stress.

  8. PATTERNS OF MYCOBACTERIUM LEPRAE INFECTION IN WILD NINE-BANDED ARMADILLOS (DASYPUS NOVEMCINCTUS) IN MISSISSIPPI, USA.

    PubMed

    Perez-Heydrich, Carolina; Loughry, W J; Anderson, Corey Devin; Oli, Madan K

    2016-07-01

    The nine-banded armadillo ( Dasypus novemcinctus ) is the only known nonhuman reservoir of Mycobacterium leprae , the causative agent of Hansen's disease or leprosy. We conducted a 6-yr study on a wild population of armadillos in western Mississippi that was exposed to M. leprae to evaluate the importance of demographic and spatial risk factors on individual antibody status. We found that spatially derived covariates were not predictive of antibody status. Furthermore, analyses revealed no evidence of clustering by antibody-positive individuals. Lactating females and adult males had higher odds of being antibody positive than did nonlactating females. No juveniles or yearlings were antibody positive. Results of these analyses support the hypothesis that M. leprae infection patterns are spatially homogeneous within this armadillo population. Further research related to movement patterns, contact among individuals, antibody status, and environmental factors could help address hypotheses related to the role of environmental transmission on M. leprae infection and the mechanisms underlying the differential infection patterns among demographic groups.

  9. Hunter-Schreger Band patterns in human tooth enamel

    PubMed Central

    Lynch, Christopher D; O’Sullivan, Victor R; Dockery, Peter; McGillycuddy, Catherine T; Sloan, Alastair J

    2010-01-01

    Using light microscopy, we examined Hunter-Schreger Band (HSB) patterns on the axial and occlusal/incisal surfaces of 160 human teeth, sectioned in both the buccolingual and mesiodistal planes. We found regional variations in HSB packing densities (number of HSBs per mm of amelodentinal junction length) and patterns throughout the crown of each class of tooth (maxillary and mandibular: incisor, canine, premolar, and molar) examined. HSB packing densities were greatest in areas where functional and occlusal loads are greatest, such as the occlusal surfaces of posterior teeth and the incisal regions of incisors and canines. From this it is possible to infer that the behaviour of ameloblasts forming enamel prisms during amelogenesis is guided by genetic/evolutionary controls that act to increase the fracture and wear resistance of human tooth enamel. It is suggested that HSB packing densities and patterns are important in modern clinical dental treatments, such as the bonding of adhesive restorations to enamel, and in the development of conditions, such as abfraction and cracked tooth syndrome. PMID:20579171

  10. Ecosystem properties self-organize in response to a directional fog-vegetation interaction.

    PubMed

    Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O

    2014-05-01

    Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.

  11. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.

  12. Molecular characterization of Streptococcus agalactiae strains isolated from fishes in Malaysia.

    PubMed

    Amal, M N A; Zamri-Saad, M; Siti-Zahrah, A; Zulkafli, A R; Nur-Nazifah, M

    2013-07-01

    The aim of this study was to characterize Streptococcus agalactiae strains that were isolated from fishes in Malaysia using random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (REP-PCR) techniques. A total of 181 strains of Strep. agalactiae isolated from red hybrid tilapia (Oreochromis sp.) and golden pompano (Trachinotus blochii) were characterized using RAPD and REP-PCR techniques. Both the fingerprinting techniques generated reproducible band patterns, differing in the number and molecular mass amplicons. The RAPD technique displayed greater discriminatory power by its production of more complex binding pattern and divided all the strains into 13 groups, compared to 9 by REP-PCR technique. Both techniques showed the availability to differentiate the genetic profiles of the strains according to their geographical location of origin. Three strains of Strep. agalactiae that were recovered from golden pompano showed a genetic dissimilarity from the strains isolated from red hybrid tilapia, while the strain of ATCC 27956 that recovered from bovine displayed a unique profile for both methods. Both techniques possess excellent discriminative capabilities and can be used as a rapid means of comparing Strep. agalactiae strains for future epidemiological investigation. Framework as the guideline in traceability of this disease and in the search for potential local vaccine candidates for streptococcosis in this country. Journal of Applied Microbiology © 2013 The Society for Applied Microbiology.

  13. Introducing cymantrene labels into scattering scanning near-field infrared microscopy.

    PubMed

    Kopf, Ilona; N'Dongo, Harmel W Peindy; Ballout, Fouad; Schatzschneider, Ulrich; Bründermann, Erik; Havenith, Martina

    2012-11-07

    In this paper we investigate metal-organic compounds as infrared (IR) active labels by scattering scanning near-field infrared microscopy (IR s-SNOM, often also abbreviated as s-SNIM) with a lateral resolution of 90 × 90 nm(2). Tailor-made IR spectroscopic probes based on cymantrene (CpMn(CO)(3) with Cp = η(5)-C(5)H(5)) conjugated to a cysteine-modified pseudoneurotensin (pNT-Cys-OH) peptide were prepared by automated microwave-assisted solid phase peptide synthesis (SPPS) and characterized by HPLC, ESI-MS and IR. Well-defined patterned self-assembled monolayers on a gold surface were prepared by microcontact printing of 1-octadecanethiol (ODT) followed by additional incubation in ethanolic solution of the cymantrene-peptide derivative. The self-assembled monolayers have been evidenced by infrared reflection absorption spectroscopy (IRRAS) and AFM. CO laser source radiation was tuned (1944, 1900, 1798 and 1658 cm(-1)) for imaging contrast with good matching correlation between spectroscopic and topographic patterns at specific characteristic metal carbonyl and amide bands (1944 cm(-1) (λ = 5.14 μm) and 1658 cm(-1) (λ = 6.03 μm)). Cymantrene probes provide an attractive method to tag a unique spectroscopic feature on any bio(macro)molecule. Introducing such probes into super-resolution IR s-SNOM will enable molecular tracking and distribution studies even in complex biological systems.

  14. Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology

    NASA Astrophysics Data System (ADS)

    Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Doh, Yang Hoi; Choi, Kyung Hyun

    2017-09-01

    Tungsten disulfide (WS2) is a transition metal dichalcogenide that differs from other 2D materials such as graphene owing to its distinctive semiconducting nature and tunable band gap. In this study, we have reported the structural, electrical, physical, and mechanical properties of exfoliated WS2 flakes and used them as the functional layer of a rewritable bipolar memory device. We demonstrate this concept by sandwiching few-layered WS2 flakes between two silver (Ag) electrodes on a flexible and transparent PET substrate. The entire device fabrication was carried out through all-printing technology such as reverse offset printing for patterning bottom electrodes, electrohydrodynamic (EHD) atomization for depositing functional thin film and EHD patterning for depositing the top electrode respectively. The memory device was further encapsulated with an atomically thin layer of aluminum oxide (Al2O3), deposited through a spatial atmospheric atomic layer deposition system to protect it against a humid environment. Remarkable resistive switching results were obtained, such as nonvolatile bipolar behavior, a high switching ratio (∼103), a long retention time (∼105 s), high endurance (1500 voltage sweeps), a low operating voltage (∼2 V), low current compliance (50 μA), mechanical robustness (1500 cycles) and unique repeatability at ambient conditions. Ag/WS2/Ag-based memory devices offer a new possibility for integration in flexible electronic devices.

  15. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  16. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  17. Tuning the electronic properties of gated multilayer phosphorene: A self-consistent tight-binding study

    NASA Astrophysics Data System (ADS)

    Li, L. L.; Partoens, B.; Peeters, F. M.

    2018-04-01

    By taking account of the electric-field-induced charge screening, a self-consistent calculation within the framework of the tight-binding approach is employed to obtain the electronic band structure of gated multilayer phosphorene and the charge densities on the different phosphorene layers. We find charge density and screening anomalies in single-gated multilayer phosphorene and electron-hole bilayers in dual-gated multilayer phosphorene. Due to the unique puckered lattice structure, both intralayer and interlayer charge screenings are important in gated multilayer phosphorene. We find that the electric-field tuning of the band structure of multilayer phosphorene is distinctively different in the presence and absence of charge screening. For instance, it is shown that the unscreened band gap of multilayer phosphorene decreases dramatically with increasing electric-field strength. However, in the presence of charge screening, the magnitude of this band-gap decrease is significantly reduced and the reduction depends strongly on the number of phosphorene layers. Our theoretical results of the band-gap tuning are compared with recent experiments and good agreement is found.

  18. Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stokes, Adam; Al-Jassim, Mowafak; Diercks, David

    The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less

  19. Impact of Wide-Ranging Nanoscale Chemistry on Band Structure at Cu(In, Ga)Se 2 Grain Boundaries

    DOE PAGES

    Stokes, Adam; Al-Jassim, Mowafak; Diercks, David; ...

    2017-10-26

    The relative chemistry from grain interiors to grain boundaries help explain why grain boundaries may be beneficial, detrimental or benign towards device performance. 3D Nanoscale chemical analysis extracted from atom probe tomography (APT) (10’s of parts-per-million chemical sensitivity and sub-nanometer spatial resolution) of twenty grain boundaries in a high-efficiency Cu(In, Ga)Se 2 solar cell shows the matrix and alkali concentrations are wide-ranging. The concentration profiles are then related to band structure which provide a unique insight into grain boundary electrical performance. Fluctuating Cu, In and Ga concentrations result in a wide distribution of potential barriers at the valence band maximummore » (VBM) (-10 to -160 meV) and the conduction band minimum (CBM) (-20 to -70 meV). Furthermore, Na and K segregation is not correlated to hampering donors, (In, Ga) Cu and V Se, contrary to what has been previously reported. In addition, Na and K are predicted to be n-type dopants at grain boundaries. An overall band structure at grain boundaries is presented.« less

  20. Uppermost synchronized generators of spike-wave activity are localized in limbic cortical areas in late-onset absence status epilepticus.

    PubMed

    Piros, Palma; Puskas, Szilvia; Emri, Miklos; Opposits, Gabor; Spisak, Tamas; Fekete, Istvan; Clemens, Bela

    2014-03-01

    Absence status (AS) epilepticus with generalized spike-wave pattern is frequently found in severely ill patients in whom several disease states co-exist. The cortical generators of the ictal EEG pattern and EEG functional connectivity (EEGfC) of this condition are unknown. The present study investigated the localization of the uppermost synchronized generators of spike-wave activity in AS. Seven patients with late-onset AS were investigated by EEG spectral analysis, LORETA (Low Resolution Electromagnetic Tomography) source imaging, and LSC (LORETA Source Correlation) analysis, which estimates cortico-cortical EEGfC among 23 ROIs (regions of interest) in each hemisphere. All the patients showed generalized ictal EEG activity. Maximum Z-scored spectral power was found in the 1-6 Hz and 12-14 Hz frequency bands. LORETA showed that the uppermost synchronized generators of 1-6 Hz band activity were localized in frontal and temporal cortical areas that are parts of the limbic system. For the 12-14 Hz band, abnormally synchronized generators were found in the antero-medial frontal cortex. Unlike the rather stereotyped spectral and LORETA findings, the individual EEGfC patterns were very dissimilar. The findings are discussed in the context of nonconvulsive seizure types and the role of the underlying cortical areas in late-onset AS. The diversity of the EEGfC patterns remains an enigma. Localizing the cortical generators of the EEG patterns contributes to understanding the neurophysiology of the condition. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  1. Individually Unique Body Color Patterns in Octopus (Wunderpus photogenicus) Allow for Photoidentification

    PubMed Central

    Huffard, Christine L.; Caldwell, Roy L.; DeLoach, Ned; Gentry, David Wayne; Humann, Paul; MacDonald, Bill; Moore, Bruce; Ross, Richard; Uno, Takako; Wong, Stephen

    2008-01-01

    Studies on the longevity and migration patterns of wild animals rely heavily on the ability to track individual adults. Non-extractive sampling methods are particularly important when monitoring animals that are commercially important to ecotourism, and/or are rare. The use of unique body patterns to recognize and track individual vertebrates is well-established, but not common in ecological studies of invertebrates. Here we provide a method for identifying individual Wunderpus photogenicus using unique body color patterns. This charismatic tropical octopus is commercially important to the underwater photography, dive tourism, and home aquarium trades, but is yet to be monitored in the wild. Among the adults examined closely, the configurations of fixed white markings on the dorsal mantle were found to be unique. In two animals kept in aquaria, these fixed markings were found not to change over time. We believe another individual was photographed twice in the wild, two months apart. When presented with multiple images of W. photogenicus, volunteer observers reliably matched photographs of the same individuals. Given the popularity of W. photogenicus among underwater photographers, and the ease with which volunteers can correctly identify individuals, photo-identification appears to be a practical means to monitor individuals in the wild. PMID:19009019

  2. Optofluidic chlorophyll lasers.

    PubMed

    Chen, Yu-Cheng; Chen, Qiushu; Fan, Xudong

    2016-06-21

    Chlorophylls are essential for photosynthesis and also one of the most abundant pigments on earth. Using an optofluidic ring resonator of extremely high Q-factors (>10(7)), we investigated the unique characteristics and underlying mechanism of chlorophyll lasers. Chlorophyll lasers with dual lasing bands at 680 nm and 730 nm were observed for the first time in isolated chlorophyll a (Chla). Particularly, a laser at the 730 nm band was realized in 0.1 mM Chla with a lasing threshold of only 8 μJ mm(-2). Additionally, we observed lasing competition between the two lasing bands. The presence of laser emission at the 680 nm band can lead to quenching or significant reduction of laser emission at the 730 nm band, effectively increasing the lasing threshold for the 730 nm band. Further concentration-dependent studies, along with theoretical analysis, elucidated the mechanism that determines when and why the laser emission band appears at one of the two bands, or concomitantly at both bands. Finally, Chla was exploited as the donor in fluorescence resonance energy transfer to extend the laser emission to the near infrared regime with an unprecedented wavelength shift as large as 380 nm. Our work will open a door to the development of novel biocompatible and biodegradable chlorophyll-based lasers for various applications such as miniaturized tunable coherent light sources and in vitro/in vivo biosensing. It will also provide important insight into the chlorophyll fluorescence and photosynthesis processes inside plants.

  3. Funneled focusing of planar acoustic waves utilizing the metamaterial properties of an acoustic lens

    NASA Astrophysics Data System (ADS)

    Walker, E.; Reyes, D.; Rojas, M. M.; Krokhin, A.; Neogi, A.

    2014-02-01

    Metamaterial acoustic lenses are acoustic devices based on phononic crystal structures that take advantage of negative or near-zero indices of refraction. These unique properties arise due to either the antiparallel direction of the phase and group velocity or strongly anisotropic dispersion characteristics, usually above the first transmission band. In this study, we utilize an FDTD program to examine two phononic lenses that utilize anisotropic effects available in their second band to collimate and focus acoustic waves from a plane-wave source with a k00 wavevector. The phononic crystals consist of stainless steel rods arranged in a square lattice with water as the ambient material. Results show collimation and focusing in the second band for select frequencies, fc ± 0.005𝑓𝑐.

  4. Infrared spectra and crystal chemistry of scapolites: implications for Martian mineralogy

    USGS Publications Warehouse

    Swayze, G.A.; Clark, R.N.

    1990-01-01

    Near-infrared and midinfrared spectra of a wide range of scapolite compositions were studied to determine the cause of the 2.36-??m features that have been correlated with similar features in the near-IR spectrum of Mars. We attribute the 2.36-??m features to vibrations caused by HCO-3 and HSO-4 in the anion sites of scapolite. The 2.36-??m absorption complex consists of four overlapping bands. The relative intensities of all four bands vary according to the HCO-3/HSO-4 ratio and disordered anion site occupancy. The positional disorder of HCO-3 and HSO4 in the low-symmetry anion site of scapolite gives the 2.36-??m band complex a unique spectral signature not likely to be duplicated in any other mineral. -from Authors

  5. Tailoring Dirac Fermions in Molecular Graphene

    NASA Astrophysics Data System (ADS)

    Gomes, Kenjiro K.; Mar, Warren; Ko, Wonhee; Camp, Charlie D.; Rastawicki, Dominik K.; Guinea, Francisco; Manoharan, Hari C.

    2012-02-01

    The dynamics of electrons in solids is tied to the band structure created by a periodic atomic potential. The design of artificial lattices, assembled through atomic manipulation, opens the door to engineer electronic band structure and to create novel quantum states. We present scanning tunneling spectroscopic measurements of a nanoassembled honeycomb lattice displaying a Dirac fermion band structure. The artificial lattice is created by atomic manipulation of single CO molecules with the scanning tunneling microscope on the surface of Cu(111). The periodic potential generated by the assembled CO molecules reshapes the band structure of the two-dimensional electron gas, present as a surface state of Cu(111), into a ``molecular graphene'' system. We create local defects in the lattice to observe the quasiparticle interference patterns that unveil the underlying band structure. We present direct comparison between the tunneling data, first-principles calculations of the band structure, and tight-binding models.

  6. High temperature antenna development for space shuttle, volume 1

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.

    1973-01-01

    Design concepts for high temperature flush mounted Space Shuttle Orbiter antenna systems are discussed. The design concepts include antenna systems for VHF, L-band, S-band, C-band and Ku-band frequencies. The S-band antenna system design was completed and test hardware fabricated. It was then subjected to electrical and thermal testing to establish design requirements and determine reuse capabilities. The thermal tests consisted of applying ten high temperature cycles simulating the Orbiter entry heating environment in an arc tunnel plasma facility and observing the temperature distributions. Radiation pattern and impedance measurements before and after high temperature exposure were used to evaluated the antenna systems performance. Alternate window design concepts are considered. Layout drawings, supported by thermal and strength analyses, are given for each of the antenna system designs. The results of the electrical and thermal testing of the S-band antenna system are given.

  7. Compact filtering monopole patch antenna with dual-band rejection.

    PubMed

    Kim, Sun-Woong; Choi, Dong-You

    2016-01-01

    In this paper, a compact ultra-wideband patch antenna with dual-band rejection is proposed. The proposed antenna filters 3.3-3.8 GHz WiMAX and 5.15-5.85 GHz WLAN by respectively rejecting these bands through a C-shaped slit and a λg/4 resonator. The λg/4 resonator is positioned as a pair, centered around the microstrip line, and a C-type slit is inserted into an elliptical patch. The impedance bandwidth of the proposed antenna is 2.9-9.3 GHz, which satisfies the bandwidth for ultra-wideband communication systems. Further, the proposed antenna provides dual-band rejection at two bands: 3.2-3.85 and 4.7-6.03 GHz. The radiation pattern of the antenna is omnidirectional, and antenna gain is maintained constantly while showing -8.4 and -1.5 dBi at the two rejected bands, respectively.

  8. Dual-band microstrip patch antenna based on metamaterial refractive surface

    NASA Astrophysics Data System (ADS)

    Salhi, Ridha; Labidi, Mondher; Boujemaa, Mohamed Ali; Choubani, Fethi

    2017-06-01

    In this paper, we present a new design of microstrip patch antenna based on metamaterial refractive surface (MRS). By optimizing the air gap between the MRS layer and the patch antenna to be 7 mm, the band width and the gain of the proposed antenna are significantly enhanced. The proposed prototype presents a dual band antenna. The center frequency for the first band is 2.44 GHz and the generated bandwidth is 25 MHz. The second band has a center frequency of 2.8 GHz and with a bandwidth of 50 MHz. The simulation results are analyzed and discussed in terms of return loss, gain and radiation pattern using electromagnetic simulator software. Finally, the designed dual band antenna is fabricated and different measurement results are performed and compared with simulation results in order to validate its performances. The proposed antenna supports WiBro (wireless broadband), ISM, WiFi, Bluetooth, WiMAX and radars services.

  9. Forces directing germ-band extension in Drosophila embryos.

    PubMed

    Kong, Deqing; Wolf, Fred; Großhans, Jörg

    2017-04-01

    Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Spatial-frequency spectra of printed characters and human visual perception.

    PubMed

    Põder, Endel

    2003-06-01

    It is well known that certain spatial frequency (SF) bands are more important than others for character recognition. Solomon and Pelli [Nature 369 (1994) 395-397] have concluded that human pattern recognition mechanism is able to use only a narrow band from available SF spectrum of letters. However, the SF spectra of letters themselves have not been studied carefully. Here I report the results of an analysis of SF spectra of printed characters and discuss their relationship to the observed band-pass nature of letter recognition.

  11. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints.

    PubMed

    Crane, Nicole J; Bartick, Edward G; Perlman, Rebecca Schwartz; Huffman, Scott

    2007-01-01

    The capability of Fourier transform infrared (FTIR) spectroscopic imaging to provide detailed images of unprocessed latent fingerprints while also preserving important trace evidence is demonstrated. Unprocessed fingerprints were developed on various porous and nonporous substrates. Data-processing methods used to extract the latent fingerprint ridge pattern from the background material included basic infrared spectroscopic band intensities, addition and subtraction of band intensity measurements, principal components analysis (PCA) and calculation of second derivative band intensities, as well as combinations of these various techniques. Additionally, trace evidence within the fingerprints was recovered and identified.

  12. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Whittaker, C. E.; Cancellieri, E.; Walker, P. M.; Gulevich, D. R.; Schomerus, H.; Vaitiekus, D.; Royall, B.; Whittaker, D. M.; Clarke, E.; Iorsh, I. V.; Shelykh, I. A.; Skolnick, M. S.; Krizhanovskii, D. N.

    2018-03-01

    We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and Px ,y photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.

  13. Exciton Polaritons in a Two-Dimensional Lieb Lattice with Spin-Orbit Coupling.

    PubMed

    Whittaker, C E; Cancellieri, E; Walker, P M; Gulevich, D R; Schomerus, H; Vaitiekus, D; Royall, B; Whittaker, D M; Clarke, E; Iorsh, I V; Shelykh, I A; Skolnick, M S; Krizhanovskii, D N

    2018-03-02

    We study exciton polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from S and P_{x,y} photonic orbitals, into which we trigger bosonic condensation under high power excitation. The symmetry of the orbital wave functions combined with photonic spin-orbit coupling gives rise to emission patterns with pseudospin texture in the flat band condensates. Our Letter shows the potential of polariton lattices for emulating flat band Hamiltonians with spin-orbit coupling, orbital degrees of freedom, and interactions.

  14. Two-dimensional correlation spectroscopic studies on coordination between organic ligands and Ni2 + ions

    NASA Astrophysics Data System (ADS)

    Bao, Ya-nan; Zeng, Yi-wei; Guo, Ran; Ablikim, Mesude; Shi, Hai-fang; Yang, Li-min; Yang, Zhan-lan; Xu, Yi-zhuang; Noda, Isao; Wu, Jin-guang

    2018-05-01

    3A2g → 3T1g(P) transition band of Ni2 + is used to probe the coordination of Ni2 +. Two-dimensional asynchronous spectra (2DCOS) are generated using the Double Asynchronous Orthogonal Sample Design (DAOSD), Asynchronous Spectrum with Auxiliary Peaks (ASAP) and Two-Trace Two-Dimensional (2T2D) approaches. Cross peaks relevant to the 3A2g → 3T1g(P) transition band of Ni2 + are utilized to probe coordination between Ni2 + and various ligands. We studied the spectral behavior of the 3A2g → 3T1g(P) transition band when Ni2 + is coordinated with ethylenediaminetetraacetic acid disodium salt (EDTA). The pattern of cross peaks in 2D asynchronous spectrum demonstrates that coordination brings about significant blue shift of the band. In addition, the absorptivity of the band increases remarkably. The interaction between Ni2 + and galactitol is also investigated. Although no clearly observable change is found on the 3A2g → 3T1g(P) transition band when galactitol is introduced, the appearance of cross peak in 2D asynchronous spectrum demonstrates that coordination indeed occurs between Ni2 + and galactitol. Furthermore, the pattern of cross peak indicates that peak position, bandwidth and absorptivity of the 3A2g → 3T1g(P) transition band of Ni(galactitol)x2 + is considerably different from those of Ni(H2O)62 +. Thus, 2DCOS is helpful to reveal subtle spectral variation, which might be helpful in shedding light on the physical-chemical nature of coordination.

  15. On the uniqueness of color patterns in raptor feathers

    USGS Publications Warehouse

    Ellis, D.H.

    2009-01-01

    For this study, I compared sequentially molted feathers for a few captive raptors from year to year and symmetrically matched feathers (left/right pairs) for many raptors to see if color patterns of sequential feather pairs were identical or if symmetrical pairs were mirror-image identical. Feather pairs were found to be identical only when without color pattern (e.g., the all-white rectrices of Bald Eagles [Haliaeetus leucocephalus]). Complex patterns were not closely matched, but some simple patterns were sometimes closely matched, although not identical. Previous claims that complex color patterns in feather pairs are fingerprint-identical (and therefore that molted feathers from wild raptors can be used to identify breeding adults from year to year with certainty) were found to be untrue: each feather is unique. Although it is unwise to be certain of bird of origin using normal feathers, abnormal feathers can often be so used. ?? 2009 The Raptor Research Foundation, Inc.

  16. Unique inhibitory cascade pattern of molars in canids contributing to their potential to evolutionary plasticity of diet

    PubMed Central

    Asahara, Masakazu

    2013-01-01

    Developmental origins that guide the evolution of dental morphology and dental formulae are fundamental subjects in mammalian evolution. In a previous study, a developmental model termed the inhibitory cascade model was established. This model could explain variations in relative molar sizes and loss of the lower third molars, which sometimes reflect diet, in murine rodents and other mammals. Here, I investigated the pattern of relative molar sizes (inhibitory cascade pattern) in canids, a taxon exhibiting a wide range of dietary habits. I found that interspecific variation in canid molars suggests a unique inhibitory cascade pattern that differs from that in murine rodents and other previously reported mammals, and that this variation reflects dietary habits. This unique variability in molars was also observed in individual variation in canid species. According to these observations, canid species have greater variability in the relative sizes of first molars (carnassials), which are functionally important for dietary adaptation in the Carnivora. In conclusion, an inhibitory cascade that differs from that in murine rodents and other mammals may have contributed to diverse dietary patterns and to their parallel evolution in canids. PMID:23467478

  17. Tool making, hand morphology and fossil hominins.

    PubMed

    Marzke, Mary W

    2013-11-19

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.

  18. Tool making, hand morphology and fossil hominins

    PubMed Central

    Marzke, Mary W.

    2013-01-01

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features. PMID:24101624

  19. Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping.

    PubMed

    Zhang, Yunxia; Cheng, Chunyan; Li, Ji; Yang, Shuqiong; Wang, Yunzhu; Li, Ziang; Chen, Jinfeng; Lou, Qunfeng

    2015-09-25

    Differentiation and copy number of repetitive sequences affect directly chromosome structure which contributes to reproductive isolation and speciation. Comparative cytogenetic mapping has been verified an efficient tool to elucidate the differentiation and distribution of repetitive sequences in genome. In present study, the distinct chromosomal structures of five Cucumis species were revealed through genomic in situ hybridization (GISH) technique and comparative cytogenetic mapping of major satellite repeats. Chromosome structures of five Cucumis species were investigated using GISH and comparative mapping of specific satellites. Southern hybridization was employed to study the proliferation of satellites, whose structural characteristics were helpful for analyzing chromosome evolution. Preferential distribution of repetitive DNAs at the subtelomeric regions was found in C. sativus, C hystrix and C. metuliferus, while majority was positioned at the pericentromeric heterochromatin regions in C. melo and C. anguria. Further, comparative GISH (cGISH) through using genomic DNA of other species as probes revealed high homology of repeats between C. sativus and C. hystrix. Specific satellites including 45S rDNA, Type I/II, Type III, Type IV, CentM and telomeric repeat were then comparatively mapped in these species. Type I/II and Type IV produced bright signals at the subtelomeric regions of C. sativus and C. hystrix simultaneously, which might explain the significance of their amplification in the divergence of Cucumis subgenus from the ancient ancestor. Unique positioning of Type III and CentM only at the centromeric domains of C. sativus and C. melo, respectively, combining with unique southern bands, revealed rapid evolutionary patterns of centromeric DNA in Cucumis. Obvious interstitial telomeric repeats were observed in chromosomes 1 and 2 of C. sativus, which might provide evidence of the fusion hypothesis of chromosome evolution from x = 12 to x = 7 in Cucumis species. Besides, the significant correlation was found between gene density along chromosome and GISH band intensity in C. sativus and C. melo. In summary, comparative cytogenetic mapping of major satellites and GISH revealed the distinct differentiation of chromosome structure during species formation. The evolution of repetitive sequences was the main force for the divergence of Cucumis species from common ancestor.

  20. Broad-band UHF dipole array

    NASA Technical Reports Server (NTRS)

    Bailey, M. C.

    1985-01-01

    A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.

  1. [Genetic polymorphism of flax Linum usitatissimum based on use of molecular cytogenetic markers].

    PubMed

    Rachinskaia, O A; Lemesh, V A; Muravenko, O V; Iurkevich, O Iu; Guzenko, E V; Bol'sheva, N L; Bogdanova, M V; Samatadze, T E; Popov, K V; Malyshev, S V; Shostak, N G; Heller, K; Khotyleva, L V; Zelenin, A V

    2011-01-01

    Using a set of approaches based on the use of molecular cytogenetic markers (DAPI/C-banding, estimation of the total area of DAPI-positive regions in prophase nuclei, FISH with 26S and 5S rDNA probes) and the microsatellite (SSR-PCR) assay, we studied genomic polymorphism in 15 flax (Linum usitatissimum L.) varieties from different geographic regions belonging to three directions of selection (oil, fiber, and intermediate flaxes) and in the k-37 x Viking hybrid. All individual chromosomes have been identified in the karyotypes of these varieties on the basis of the patterns of differential DAPI/C-banding and the distribution of 26S and 5S rDNA, and idiograms of the chromosomes have been generated. Unlike the oil flax varieties, the chromosomes in the karyotypes of the fiber flax varieties have, as a rule, pericentromeric and telomeric DAPI-positive bands of smaller size, but contain larger intercalary regions. Two chromosomal rearrangements (chromosome 3 inversions) were discovered in the variety Luna and in the k-37 x Viking hybrid. In both these forms, no colocalization of 26S rDNA and 5S rDNA on the satellite chromosome was detected. The SSR assay with the use of 20 polymorphic pairs of primers revealed 22 polymorphic loci. Based on the SSR data, we analyzed genetic similarity of the flax forms studied and constructed a genetic similarity dendrogram. The genotypes studied here form three clusters. The oil varieties comprise an independent cluster. The genetically related fiber flax varieties Vita and Luna, as well as the landrace Lipinska XIII belonging to the intermediate type, proved to be closer to the oil varieties than the remaining fiber flax varieties. The results of the molecular chromosomal analysis in the fiber and oil flaxes confirm their very close genetic similarity. In spite of this, the combined use of the chromosomal and molecular markers has opened up unique possibilities for describing the genotypes of flax varieties and creating their genetic passports.

  2. Electromagnetic signatures of the preclinical and prodromal stages of Alzheimer’s disease

    PubMed Central

    Cuesta, Pablo; Fernández, Alberto; Arahata, Yutaka; Iwata, Kaori; Kuratsubo, Izumi; Bundo, Masahiko; Hattori, Hideyuki; Sakurai, Takashi; Fukuda, Koji; Washimi, Yukihiko; Endo, Hidetoshi; Takeda, Akinori; Diers, Kersten; Bajo, Ricardo; Maestú, Fernando; Ito, Kengo; Kato, Takashi

    2018-01-01

    Abstract Biomarkers useful for the predementia stages of Alzheimer’s disease are needed. Electroencephalography and magnetoencephalography (MEG) are expected to provide potential biomarker candidates for evaluating the predementia stages of Alzheimer’s disease. However, the physiological relevance of EEG/MEG signal changes and their role in pathophysiological processes such as amyloid-β deposition and neurodegeneration need to be elucidated. We evaluated 28 individuals with mild cognitive impairment and 38 cognitively normal individuals, all of whom were further classified into amyloid-β-positive mild cognitive impairment (n = 17, mean age 74.7 ± 5.4 years, nine males), amyloid-β-negative mild cognitive impairment (n = 11, mean age 73.8 ± 8.8 years, eight males), amyloid-β-positive cognitively normal (n = 13, mean age 71.8 ± 4.4 years, seven males), and amyloid-β-negative cognitively normal (n = 25, mean age 72.5 ± 3.4 years, 11 males) individuals using Pittsburgh compound B-PET. We measured resting state MEG for 5 min with the eyes closed, and investigated regional spectral patterns of MEG signals using atlas-based region of interest analysis. Then, the relevance of the regional spectral patterns and their associations with pathophysiological backgrounds were analysed by integrating information from Pittsburgh compound B-PET, fluorodeoxyglucose-PET, structural MRI, and cognitive tests. The results demonstrated that regional spectral patterns of resting state activity could be separated into several types of MEG signatures as follows: (i) the effects of amyloid-β deposition were expressed as the alpha band power augmentation in medial frontal areas; (ii) the delta band power increase in the same region was associated with disease progression within the Alzheimer’s disease continuum and was correlated with entorhinal atrophy and an Alzheimer’s disease-like regional decrease in glucose metabolism; and (iii) the global theta power augmentation, which was previously considered to be an Alzheimer’s disease-related EEG/MEG signature, was associated with general cognitive decline and hippocampal atrophy, but was not specific to Alzheimer’s disease because these changes could be observed in the absence of amyloid-β deposition. The results suggest that these MEG signatures may be useful as unique biomarkers for the predementia stages of Alzheimer’s disease. PMID:29522156

  3. Geographic variation in survival and migratory tendency among North American Common Mergansers

    USGS Publications Warehouse

    Pearce, J.M.; Reed, J.A.; Flint, Paul L.

    2005-01-01

    Movement ecology and demographic parameters for the Common Merganser (Mergus merganser americanus) in North America are poorly known. We used band-recovery data from five locations across North America spanning the years 1938-1998 to examine migratory patterns and estimate survival rates. We examined competing time-invariant, age-graduated models with program MARK to study sources of variation in survival and reporting probability. We considered age, sex, geographic location, and the use of nasal saddles on hatching year birds at one location as possible sources of variation. Year-of-banding was included as a covariate in a post-hoc analysis. We found that migratory tendency, defined as the average distance between banding and recovery locations, varied geographically. Similarly, all models accounting for the majority of variation in recovery and survival probabilities included location of banding. Models that included age and sex received less support, but we lacked sufficient data to adequately assess these parameters. Model-averaged estimates of annual survival ranged from 0.21 in Michigan to 0.82 in Oklahoma. Heterogeneity in migration tendency and survival suggests that demographic patterns may vary across geographic scales, with implications for the population dynamics of this species.

  4. SOLAR MERIDIONAL FLOW IN THE SHALLOW INTERIOR DURING THE RISING PHASE OF CYCLE 24

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Junwei; Bogart, R. S.; Kosovichev, A. G.

    2014-07-01

    Solar subsurface zonal- and meridional-flow profiles during the rising phase of solar cycle 24 are studied using the time-distance helioseismology technique. The faster zonal bands in the torsional-oscillation pattern show strong hemispheric asymmetries and temporal variations in both width and speed. The faster band in the northern hemisphere is located closer to the equator than the band in the southern hemisphere and migrates past the equator when the magnetic activity in the southern hemisphere is reaching maximum. The meridional-flow speed decreases substantially with the increase of magnetic activity, and the flow profile shows two zonal structures in each hemisphere. Themore » residual meridional flow, after subtracting a mean meridional-flow profile, converges toward the activity belts and shows faster and slower bands like the torsional-oscillation pattern. More interestingly, the meridional-flow speed above latitude 30° shows an anti-correlation with the poleward-transporting magnetic flux, slower when the following-polarity flux is transported and faster when the leading-polarity flux is transported. It is expected that this phenomenon slows the process of magnetic cancellation and polarity reversal in high-latitude areas.« less

  5. Quasicrystalline structures and uses thereof

    DOEpatents

    Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining

    2013-08-13

    This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.

  6. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  7. The effects of visual stimulation and selective visual attention on rhythmic neuronal synchronization in macaque area V4.

    PubMed

    Fries, Pascal; Womelsdorf, Thilo; Oostenveld, Robert; Desimone, Robert

    2008-04-30

    Selective attention lends relevant sensory input priority access to higher-level brain areas and ultimately to behavior. Recent studies have suggested that those neurons in visual areas that are activated by an attended stimulus engage in enhanced gamma-band (30-70 Hz) synchronization compared with neurons activated by a distracter. Such precise synchronization could enhance the postsynaptic impact of cells carrying behaviorally relevant information. Previous studies have used the local field potential (LFP) power spectrum or spike-LFP coherence (SFC) to indirectly estimate spike synchronization. Here, we directly demonstrate zero-phase gamma-band coherence among spike trains of V4 neurons. This synchronization was particularly evident during visual stimulation and enhanced by selective attention, thus confirming the pattern inferred from LFP power and SFC. We therefore investigated the time course of LFP gamma-band power and found rapid dynamics consistent with interactions of top-down spatial and feature attention with bottom-up saliency. In addition to the modulation of synchronization during visual stimulation, selective attention significantly changed the prestimulus pattern of synchronization. Attention inside the receptive field of the recorded neuronal population enhanced gamma-band synchronization and strongly reduced alpha-band (9-11 Hz) synchronization in the prestimulus period. These results lend further support for a functional role of rhythmic neuronal synchronization in attentional stimulus selection.

  8. Intra-operative characterisation of subthalamic oscillations in Parkinson’s disease

    PubMed Central

    Geng, Xinyi; Xu, Xin; Horn, Andreas; Li, Ningfei; Ling, Zhipei; Brown, Peter; Wang, Shouyan

    2018-01-01

    Objective This study aims to use the activities recorded directly from the deep brain stimulation (DBS) electrode to address the focality and distinct nature of the local field potential (LFP) activities of different frequency. Methods Pre-operative and intra-operative magnetic resonance imaging (MRI) were acquired from patients with Parkinson’s disease (PD) who underwent DBS in the subthalamic nucleus and intra-operative LFP recording at rest and during cued movements. Images were reconstructed and 3-D visualized using Lead-DBS® toolbox to determine the coordinates of contact. The resting spectral power and movement-related power modulation of LFP oscillations were estimated. Results Both subthalamic LFP activity recorded at rest and its modulation by movement had focal maxima in the alpha, beta and gamma bands. The spatial distribution of alpha band activity and its modulation was significantly different to that in the beta band. Moreover, there were significant differences in the scale and timing of movement related modulation across the frequency bands. Conclusion Subthalamic LFP activities within specific frequency bands can be distinguished by spatial topography and pattern of movement related modulation. Significance Assessment of the frequency, focality and pattern of movement related modulation of subthalamic LFPs reveals a heterogeneity of neural population activity in this region. This could potentially be leveraged to finesse intra-operative targeting and post-operative contact selection. PMID:29567582

  9. Divergent RNA Localisation Patterns of Maternal Genes Regulating Embryonic Patterning in the Butterfly Pararge aegeria

    PubMed Central

    Carter, Jean-Michel; Gibbs, Melanie; Breuker, Casper J.

    2015-01-01

    The maternal effect genes responsible for patterning the embryo along the antero-posterior (AP) axis are broadly conserved in insects. The precise function of these maternal effect genes is the result of the localisation of their mRNA in the oocyte. The main developmental mechanisms involved have been elucidated in Drosophila melanogaster, but recent studies have shown that other insect orders often diverge in RNA localisation patterns. A recent study has shown that in the butterfly Pararge aegeria the distinction between blastodermal embryonic (i.e. germ band) and extra-embryonic tissue (i.e. serosa) is already specified in the oocyte during oogenesis in the ovariole, long before blastoderm cellularisation. To examine the extent by which a female butterfly specifies and patterns the AP axis within the region fated to be the germ band, and whether she specifies a germ plasm, we performed in situ hybridisation experiments on oocytes in P. aegeria ovarioles and on early embryos. RNA localisation of the following key maternal effect genes were investigated: caudal (cad), orthodenticle (otd), hunchback (hb) and four nanos (nos) paralogs, as well as TDRD7 a gene containing a key functional domain (OST-HTH/LOTUS) shared with oskar. TDRD7 was mainly confined to the follicle cells, whilst hb was exclusively zygotically transcribed. RNA of some of the nos paralogs, otd and cad revealed complex localisation patterns within the cortical region prefiguring the germ band (i.e. germ cortex). Rather interestingly, otd was localised within and outside the anterior of the germ cortex. Transcripts of nos-O formed a distinct granular ring in the middle of the germ cortex possibly prefiguring the region where germline stem cells form. These butterfly RNA localisation patterns are highly divergent with respect to other insects, highlighting the diverse ways in which different insect orders maternally regulate early embryogenesis of their offspring. PMID:26633019

  10. Two apparent glucose-6-phosphate dehydrogenase variants in normal XY males: G6PD Alabama.

    PubMed

    Prchal, J T; Hall, K; Csepreghy, M; Lilly, M; Berkow, R; Scott, C W

    1988-03-01

    A six-year-old black boy who had transient hemolysis after a viral infection was found to have mildly decreased red cell glucose-6-phosphate dehydrogenase (G6PD) activity (1.25 IU/g hemoglobin). Two G6PD bands, both slightly faster than normal G6PD B, were seen on electrophoresis in both the propositus as well as in his maternal grandfather. This is an unexpected finding, since the G6PD gene is located on the long arm of the X chromosome that is subject to X-chromosome inactivation, and available evidence indicates that it is present as a single functional copy in the human genome. The obvious possibility of duplication of the X chromosome was eliminated by cytogenetic analysis with G-banding. G6PD duplication is unlikely, since peripheral blood granulocytes, platelets, and lymphocytes; cultured skin and bone marrow fibroblasts; and Epstein-Barr virus-stimulated lymphocytes yielded only a single electrophoretic band with mobility identical to the slower band seen in crude red blood cell hemolysate. Study of partially purified red blood cell hemolysate G6PD also yielded a single band with identical mobility. Kinetic studies of the enzyme in the propositus and in three generations of his family identified a unique, previously unpublished G6PD mutant that is herein designated G6PD Alabama. Red blood cells were separated by density gradient into a reticulocyte-enriched, an intermediate, and a dense, older portion. Two distinct enzyme bands were identified on electrophoresis of hemolysate from the reticulocyte-enriched portion, but not from the other two portions. It is postulated that two transcriptional products of the mutant G6PD gene exist; one with a short half-life and detectable only in young red blood cells, and another with a longer half-life present in all cells. The existence of two distinct mutant genes in the genome or a unique post-translational form of the mutant G6PD detected only in reticulocytes cannot be excluded.

  11. Liesegang banding and multiple precipitate formation in cobalt phosphate systems

    NASA Astrophysics Data System (ADS)

    Karam, Tony; El-Rassy, Houssam; Zaknoun, Farah; Moussa, Zeinab; Sultan, Rabih

    2012-02-01

    We study a cobalt phosphate Liesegang pattern from cobalt(II) and phosphate ions in a 1D tube. The system yields a complex, multi-component pattern. Characterization of the different precipitates by FTIR, SEM and XRD reveals that they are cobalt phosphate polymorphs with different degrees of hydration.

  12. Sequence-specific "gene signatures" can be obtained by PCR with single specific primers at low stringency.

    PubMed Central

    Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J

    1994-01-01

    Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912

  13. Assessment of genetic diversity in lettuce (Lactuca sativa L.) germplasm using RAPD markers.

    PubMed

    Sharma, Shubhangi; Kumar, Pankaj; Gambhir, Geetika; Kumar, Ramesh; Srivastava, D K

    2018-01-01

    The importance of germplasm characterization is an important link between the conservation and utilization of plant genetic resources in various breeding programmes. In the present study, genetic variability and relationships among 25 Lactuca sativa L. genotypes were tested using random amplified polymorphic DNA (RAPD) molecular markers. A total of 45 random decamer oligonucleotide primers were examined to generate RAPD profiles, out of these reproducible patterns were obtained with 22 primers. A total of 87 amplicon were obtained, out of which all were polymorphic and 7 were unique bands. The level of polymorphism across genotypes was 100% as revealed by RAPD. Genetic similarity matrix, based on Jaccard's coefficients ranged from 13.7 to 84.10% indicating a wide genetic base. Dendrogram was constructed by unweighted pair group method with arithmetic averages method. RAPD technology could be useful for identification of different accessions as well as assessing the genetic similarity among different genotypes of lettuce. The study reveals the limited genetic base and the needs to diversify using new sources from the germplasm.

  14. High resolution replication banding combined with in situ hybridization for the delineation of a subtle chromosome rearrangement.

    PubMed

    Qumsiyeh, M B; Wilroy, R S; Peeden, J N; Tharapel, A T

    1991-10-01

    Molecular cytogenetic techniques were used to delineate a subtle chromosome rearrangement in an infant with growth and psychomotor retardation, abnormal scalp hair pattern, narrow palpebral fissures, broad nasal bridge, bulbous nose, small nostrils, thin lips in a cupid's bow configuration, bilateral simian creases, and unilateral cryptorchidism. Analysis using GTG-banded chromosomes at about 400 band level showed no obvious abnormality. Prometaphase analysis at about 600 band level showed an extra band at 14q32 on GTG-banding. The father had the same extra band suggesting a reciprocal translocation but the second chromosome involved in the translocation could not be identified. High resolution replication banding on the father's lymphocytes showed a balanced reciprocal translocation 46,XY,rcp(8;14)(q24.1;q32.1). The translocation was confirmed by in situ hybridization with an immunoglobulin heavy chain probe which maps to 14q32.3. The infant therefore had duplication of 8q24.1----qter and deficiency of 14q32.1----qter. His phenotype resembled that of patients with partial duplications of the distal long arm of chromosome 8.

  15. S-Band propagation measurements

    NASA Technical Reports Server (NTRS)

    Briskman, Robert D.

    1994-01-01

    A geosynchronous satellite system capable of providing many channels of digital audio radio service (DARS) to mobile platforms within the contiguous United States using S-band radio frequencies is being implemented. The system is designed uniquely to mitigate both multipath fading and outages from physical blockage in the transmission path by use of satellite spatial diversity in combination with radio frequency and time diversity. The system also employs a satellite orbital geometry wherein all mobile platforms in the contiguous United States have elevation angles greater than 20 deg to both of the diversity satellites. Since implementation of the satellite system will require three years, an emulation has been performed using terrestrial facilities in order to allow evaluation of DARS capabilities in advance of satellite system operations. The major objective of the emulation was to prove the feasibility of broadcasting from satellites 30 channels of CD quality programming using S-band frequencies to an automobile equipped with a small disk antenna and to obtain quantitative performance data on S-band propagation in a satellite spatial diversity system.

  16. Spin-polarized surface resonances accompanying topological surface state formation

    DOE PAGES

    Jozwiak, Chris; Sobota, Jonathan A.; Gotlieb, Kenneth; ...

    2016-10-14

    Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi 2Se 3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states canmore » emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. As a result, this work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.« less

  17. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  18. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    NASA Astrophysics Data System (ADS)

    Cui, Ning; Liang, Renrong; Wang, Jing; Xu, Jun

    2012-06-01

    Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs). In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM) achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG) structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  19. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function (and a time-averaged tilde eta0BF(vmin)) that is piecewise linear, differing significantly from best-fit halo functions obtained without the assumption of isotropy.

  20. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods.

    PubMed

    Lindenmaier, Rodica; Williams, Stephen D; Sams, Robert L; Johnson, Timothy J

    2017-02-16

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm -1 range. Vibrational assignments of all fundamental modes are made for both molecules on the basis of far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated with the s-cis conformer, notably ν 16 c at 730.90 cm -1 , which displays a substantial intensity increase with temperature (70% upon going from 5 to 50 o C). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, approximately doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

  1. Thomson backscattering diagnostics of nanosecond electron bunches in high space charge regime

    NASA Astrophysics Data System (ADS)

    Plachinda, Pavel

    The trend over the last 50 years of down-scaling the silicon transistor to achieve faster computations has led to doubling of the number of transistors and computation speed over about every two years. However, this trend cannot be maintained due to the fundamental limitations of silicon as the main material for the semiconducting industry. Therefore, there is an active search for exploration of alternate materials. Among the possible candidates that can may be able to replace silicon is graphene which has recently gained the most attention. Unique properties of graphene include exceedingly high carrier mobility, tunable band gap, huge optical density of a monolayer, anomalous quantum Hall effect, and many others. To be suitable for microelectronic applications the material should be semiconductive, i.e. have a non-zero band gap. Pristine graphene is a semimetal, but by the virtue of doping the graphene surface with different molecules and radicals a band gap can be opened. Because the electronic properties of all materials are intimately related to their atomic structure, characterization of molecular and electronic structure of functionalizing groups is of high interest. The ab-inito (from the first principles) calculations provide a unique opportunity to study the influence of the dopants and thus allow exploration of the physical phenomena in functionalized graphene structures. This ability paves the road to probe the properties based on the intuitive structural information only. A great advantage of this approach lies in the opportunity for quick screening of various atomic structures. We conducted a series of ab-inito investigations of graphene functionalized with covalently and hapticly bound groups, and demonstrated possible practical usage of functionalized graphene for microelectronic and optical applications. This investigation showed that it is possible produce band gaps in graphene (i.e., produce semiconducting graphene) of about 1 eV, without degrading the carrier mobility. This was archived by considering the influence of those adducts on electronic band structure and conductivity properties.

  2. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenmaier, Rodica; Williams, Stephen D.; Sams, Robert L.

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-transmore » conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.« less

  3. Usefullness of palatal rugae patterns in establishing identity: Preliminary results from Bengaluru city, India.

    PubMed

    Indira, Ap; Gupta, Manish; David, Maria Priscilla

    2012-01-01

    Palatal rugoscopy is the name given to the study of palatal rugae. Rugae pattern are widely considered to remain unchanged during an individual's lifetime. The rugae pattern has the potential to remain intact by virtue of their internal position in the head when most other anatomical structures are destroyed or burned. Moreover, rugae pattern are considered to be unique similar to fingerprints and are advocated in personal identification. The purpose of the study is to establish, individual identity using palatal rugae patterns. The study group consisted of 100 study models all of whom were subjects above 14 years old. Martin dos Santos' classification was followed based on form and position to assess the individuality of rugae pattern. Each individual had different rugae patterns including dizygous twins and the rugae patterns were not symmetrical, both in number and in its distribution. The preliminary study undertaken here shows no two palates are alike in terms of their rugae pattern. Palatal rugae possess unique characteristics as they are absolutely individualistic and therefore, can be used as a personal soft-tissue 'oral' print for identification in forensic cases.

  4. Control of the ZnO nanowires nucleation site using microfluidic channels.

    PubMed

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  5. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    NASA Technical Reports Server (NTRS)

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  6. A Rare Case of Multiple Myeloma with Biclonal Gammopathy.

    PubMed

    Banerjee, Abhik; Pimpalgaonkar, Kshama; Christy, Alap Lukiyas

    2016-12-01

    Multiple myeloma is a debilitating malignancy arising from plasma cells. These malignant plasma cells called myeloma cells proliferate and infiltrate the bone marrow. The disease is characterized by the presence of a monoclonal protein in plasma and/or the urine. In this report, we present a case of biclonal multiple myeloma which showed two M bands on serum protein electrophoresis. The patient had elevated serum IgA and IgG levels. To reveal the nature of M bands or clonality, serum Immunofixation study was performed which revealed IgA with Lambda and IgG with Kappa light chains. Such pattern is very rare if we consider the various immunofixation patterns observed in different gammopathies.

  7. A Rare Case of Multiple Myeloma with Biclonal Gammopathy

    PubMed Central

    Banerjee, Abhik; Christy, Alap Lukiyas

    2016-01-01

    Multiple myeloma is a debilitating malignancy arising from plasma cells. These malignant plasma cells called myeloma cells proliferate and infiltrate the bone marrow. The disease is characterized by the presence of a monoclonal protein in plasma and/or the urine. In this report, we present a case of biclonal multiple myeloma which showed two M bands on serum protein electrophoresis. The patient had elevated serum IgA and IgG levels. To reveal the nature of M bands or clonality, serum Immunofixation study was performed which revealed IgA with Lambda and IgG with Kappa light chains. Such pattern is very rare if we consider the various immunofixation patterns observed in different gammopathies. PMID:28208846

  8. Fabrication of frequency selective surface for band stop IR-filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Akshita, E-mail: akshitamishra27@gmail.com; Sudheer,; Tiwari, P.

    2016-05-23

    Fabrication and characterization of frequency selective surfaces (FSS) on silicon dioxide/ silicon is reported. Electron beam lithography based techniques are used for the fabrication of periodic slot structure in tungsten layer on silicon dioxide/silicon. The fabrication process consists of growth of SiO{sub 2} on silicon, tungsten deposition, electron beam lithography, and wet etching of tungsten. The optical characterization of the structural pattern was carried out using fourier transform infrared spectroscopy (FTIR). The reflectance spectra clearly show a resonance peak at 9.09 µm in the mid infrared region. This indicates that the patterned surface acts as band stop filter in the mid-infraredmore » region.« less

  9. Is the Linear Mode Conversion Theory Viable for Generating Kilometric Continuum?

    NASA Technical Reports Server (NTRS)

    Boardsen, Scott A.; Green, James L.; Hashimoto, K.; Gallagher, Dennis L.; Webb, P. A.

    2006-01-01

    Kilometric Continuum (KC) usually exhibits a complicated banded radiation pattern observed in frequency time spectrograms. Can the number of bands, the frequency range over which the bands are observed, and their time variation be explained with Linear Mode Conversion Theory (LMCT) using realistic plasmapause models and Extreme Ultraviolet (EUV) plasmaspheric observations? In this paper we compare KC observations with simulated frequency emission bands based on LMCT for a number of cases. In LMCT the allowed frequency range across the equatorial plasmapause is restricted to frequencies much greater than the electron cyclotron frequency (fce) and less than the maximum plasma frequency in this region. Fce also determines the number of allowed bands in this range. Is the observed frequency range and number of bands consistent with the predications of LMCT? Can irregularities in the shape of plasmaspheric structures like notches be observed in the time variations of KC emissions? We will investigate these and other questions. Simulated radiation patterns will be generated by ray tracing calculations in the L-O mode from the radio window at the near equatorial plasmapause. The KC observations used in this study are from the Plasma Wave Instrument on the Geotail spacecraft and from the Radio Plasma Imager on the IMAGE spacecraft. The plasmasphere and plasmapause will be derived either from plasmasphere simulations, from images by the EUV imager on the IMAGE spacecraft, and by using empirical models. In situ plasma density measurements from a number of spacecraft will also be used in order to reconstruct the plasmasphere for these case studies.

  10. Development of Personalized Urination Recognition Technology Using Smart Bands.

    PubMed

    Eun, Sung-Jong; Whangbo, Taeg-Keun; Park, Dong Kyun; Kim, Khae-Hawn

    2017-04-01

    This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. This study aimed to develop an algorithm that recognizes urination based on a patient's posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement) was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.

  11. Different event-related patterns of gamma-band power in brain waves of fast- and slow-reacting subjects.

    PubMed Central

    Jokeit, H; Makeig, S

    1994-01-01

    Fast- and slow-reacting subjects exhibit different patterns of gamma-band electroencephalogram (EEG) activity when responding as quickly as possible to auditory stimuli. This result appears to confirm long-standing speculations of Wundt that fast- and slow-reacting subjects produce speeded reactions in different ways and demonstrates that analysis of event-related changes in the amplitude of EEG activity recorded from the human scalp can reveal information about event-related brain processes unavailable using event-related potential measures. Time-varying spectral power in a selected (35- to 43-Hz) gamma frequency band was averaged across trials in two experimental conditions: passive listening and speeded reacting to binaural clicks, forming 40-Hz event-related spectral responses. Factor analysis of between-subject event-related spectral response differences split subjects into two near-equal groups composed of faster- and slower-reacting subjects. In faster-reacting subjects, 40-Hz power peaked near 200 ms and 400 ms poststimulus in the react condition, whereas in slower-reacting subjects, 40-Hz power just before stimulus delivery was larger in the react condition. These group differences were preserved in separate averages of relatively long and short reaction-time epochs for each group. gamma-band (20-60 Hz)-filtered event-related potential response averages did not differ between the two groups or conditions. Because of this and because gamma-band power in the auditory event-related potential is small compared with the EEG, the observed event-related spectral response features must represent gamma-band EEG activity reliably induced by, but not phase-locked to, experimental stimuli or events. PMID:8022783

  12. Biochemical characterization of Gram-positive and Gram-negative plant-associated bacteria with micro-Raman spectroscopy.

    PubMed

    Paret, Mathews L; Sharma, Shiv K; Green, Lisa M; Alvarez, Anne M

    2010-04-01

    Raman spectra of Gram-positive and Gram-negative plant bacteria have been measured with micro-Raman spectrometers equipped with 785 and 514.5 nm lasers. The Gram-positive bacteria Microbacterium testaceum, Paenibacillus validus, and Clavibacter michiganensis subsp. michiganensis have strong carotenoid bands in the regions 1155-1157 cm(-1) and 1516-1522 cm(-1) that differentiate them from other tested Gram-negative bacteria. In the Raman spectrum of Gram-positive bacteria Bacillus megaterium excited with 785 nm laser, the Raman bands at 1157 and 1521 cm(-1) are weak in intensity compared to other Gram-positive bacteria, and these bands did not show significant resonance Raman enhancement in the spectrum recorded with 514.5 nm laser excitation. The Gram-positive bacteria could be separated from each other based on the bands associated with the in-phase C=C (v(1)) vibrations of the polyene chain of carotenoids. None of the Gram-negative bacteria tested had carotenoid bands. The bacteria in the genus Xanthomonas have a carotenoid-like pigment, xanthomonadin, identified in Xanthomonas axonopodis pv. dieffenbachiae, and it is a unique Raman marker for the bacteria. The representative bands for xanthomonadin were the C-C stretching (v(2)) vibrations of the polyene chain at 1135-1136 cm(-1) and the in-phase C=C (v(1)) vibrations of the polyene chain at 1529-1531 cm(-1), which were distinct from the carotenoid bands of other tested bacteria. The tyrosine peak in the region 1170-1175 cm(-1) was the only other marker present in Gram-negative bacteria that was absent in all tested Gram-positives. A strong-intensity exopolysaccharide-associated marker at 1551 cm(-1) is a distinguishable feature of Enterobacter cloacae. The Gram-negative Agrobacterium rhizogenes and Ralstonia solanacearum were differentiated from each other and other tested bacteria on the basis of presence or absence and relative intensities of peaks. The principal components analysis (PCA) of the spectra excited with 785 nm laser differentiated the various strains of bacteria based on the unique pigments these bacteria do or do not possess. Raman spectroscopy of diverse plant bacteria that are pathogenic and non-pathogenic to plants, and isolated from plants and soil, indicates the possibilities of using the method in understanding plant-bacterial interactions at the cellular level.

  13. Multispectral remote sensing from unmanned aircraft: image processing workflows and applications for rangeland environments

    USDA-ARS?s Scientific Manuscript database

    Using unmanned aircraft systems (UAS) as remote sensing platforms offers the unique ability for repeated deployment for acquisition of high temporal resolution data at very high spatial resolution. Most image acquisitions from UAS have been in the visible bands, while multispectral remote sensing ap...

  14. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.

    PubMed

    Kaufman, I; Luchinsky, D G; Tindjong, R; McClintock, P V E; Eisenberg, R S

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Q(f) for the sodium-calcium channels family. An increase of Q(f) leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Q(f)(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca(2+)/Na(+) valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  15. Energetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-11-01

    We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Qf at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Qf=1e), M1 (3e), M2 (5e), with a set of sodium conduction bands L0 (0.5e), L1 (1.5e), thereby obtaining a completed pattern of conduction and selectivity bands vs Qf for the sodium-calcium channels family. An increase of Qf leads to an increase of calcium selectivity: L0 (sodium-selective, nonblocking channel) → M0 (nonselective channel) → L1 (sodium-selective channel with divalent block) → M1 (calcium-selective channel exhibiting the anomalous mole fraction effect). We create a consistent identification scheme where the L0 band is putatively identified with the eukaryotic sodium channel The scheme created is able to account for the experimentally observed mutation-induced transformations between nonselective channels, sodium-selective channels, and calcium-selective channels, which we interpret as transitions between different rows of the identification table. By considering the potential energy changes during permeation, we show explicitly that the multi-ion conduction bands of calcium and sodium channels arise as the result of resonant barrierless conduction. The pattern of periodic conduction bands is explained on the basis of sequential neutralization taking account of self-energy, as Qf(z,i)=ze(1/2+i), where i is the order of the band and z is the valence of the ion. Our results confirm the crucial influence of electrostatic interactions on conduction and on the Ca2+/Na+ valence selectivity of calcium and sodium ion channels. The model and results could be also applicable to biomimetic nanopores with charged walls.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.

    Mg/Ca ratios of planktic foraminifera are commonly used to reconstruct past ocean temperatures. However, intrashell Mg/Ca ratios exhibit a pattern of alternating high and low Mg-bands in many species. Whereas mechanisms controlling Mg variability are poorly constrained, recent experiments demonstrate that it is paced by the diurnal light/dark cycle in Orbulina universa, which forms a terminal shell of simple spherical geometry. It is unknown whether Mg-heterogeneity is diurnally paced in species with complex shell morphologies, or is the result of growth processes. Here, we show that high Mg/Ca-calcite also forms at night in cultured specimens of the multi-chambered planktic foraminiferamore » Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. Furthermore, these results have implications for interpreting patterns of calcification in N. dutertrei, and possibly other foraminifera species, and suggests diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.« less

  17. Classification of Normal and Male-Sterile Cytoplasms in Maize. II. Electrophoretic Analysis of DNA Species in Mitochondria

    PubMed Central

    Kemble, R. J.; Gunn, R. E.; Flavell, R. B.

    1980-01-01

    Mitochondrial DNA preparations were made from 31 maize lines carrying different sources of cytoplasm in the same nuclear genetic background. The DNAs were analyzed by agarose gel electrophoresis. A number of discrete low molecular weight bands were present in all lines. However, only four different DNA banding patterns were observed. These were correlated with the N, T, S and C cytoplasms defined by nuclear fertility restorer genes. Of the 31 cytoplasmic sources examined, six possessed DNA species characteristic of N cytoplasms, four possessed DNA species characteristic of T cytoplasm, 19 possessed DNA species characteristic of S cytoplasm and two possessed DNA species characteristic of C cytoplasm. This classification is in complete agreement with that based on mitochondrial translation products reported in the accompanying paper. No within-group heterogeneity was observed in the DNA banding patterns, indicating a lack of cytoplasmic variation within the four cytoplasmic groups. Attributes of the various methods available for classifying maize cytoplasms are compared and discussed. PMID:17249046

  18. Electrophoresis characterisation of protein as a method to establish the entomological origin of stingless bee honeys.

    PubMed

    Ramón-Sierra, Jesús Manuel; Ruiz-Ruiz, Jorge Carlos; de la Luz Ortiz-Vázquez, Elizabeth

    2015-09-15

    Increasing production of stingless-bee honey and the prospect of broader marker for natural and organic products indicate the need to establish parameters to determinate the entomological origin and authenticity of honey. In this research, honeys of Apis mellifera, Melipona beecheii and Trigona spp. were collected in Yucatan, Mexico. Stingless-bee honeys contained more water and less total sugars and reducing sugars. SDS-PAGE patterns show distinctive bands for each kind of honey. The SDS-PAGE pattern of A. mellifera proteins honey showed three bands with molecular weights between 10.2 and 74.8kDa, there were five proteins bands in M. beecheii honey with molecular weights between 6.1 and 97.0kDa and nine for Trigona spp. proteins between 9.3 and 86.7kDa. Conventional physicochemical parameters along with electrophoresis profiles of stingless-bee honeys proteins could be an alternative for determination of entomological origin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Vortex arrays and ciliary tangles underlie the feeding-swimming tradeoff in starfish larvae

    NASA Astrophysics Data System (ADS)

    Gilpin, William; Prakash, Vivek N.; Prakash, Manu

    2016-11-01

    Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrates. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary "tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling demonstrate that these vortices create a physical tradeoff between feeding and swimming in heterogenous environments, which manifests as distinct flow patterns or "eigenstrokes" representing each behavior-potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function generalizes to other invertebrates, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.

  20. Response of Thematic Mapper bands to plant water stress

    NASA Technical Reports Server (NTRS)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  1. Spectroscopic Visualization of Inversion and Time-Reversal Symmetry Breaking Weyl Semi-metals

    NASA Astrophysics Data System (ADS)

    Beidenkopf, Haim

    A defining property of a topological material is the existence of surface bands that cannot be realized but as the termination of a topological bulk. In a Weyl semi-metal these surface states are in the form of Fermi-arcs. Their open-contour Fermi-surface curves between pairs of surface projections of bulk Weyl cones. Such Dirac-like bulk bands, as opposed to the gapped bulk of topological insulators, land a unique opportunity to examine the deep notion of bulk to surface correspondence. We study the intricate properties both of inversion symmetry broken and of time-reversal symmetry broken Weyl semimetals using scanning tunneling spectroscopy. We visualize the Fermi arc states on the surface of the non-centrosymmetric Weyl semi-metal TaAs. Using the distinct structure and spatial distribution of the wavefunctions associated with the different topological and trivial bands we detect the scattering processes that involve Fermi arcs. Each of these imaged scattering processes entails information on the unique nature of Fermi arcs and their correspondence to the topological bulk. We further visualize the magnetic response of the candidate magnetic Weyl semimetal GdPtBi in which the magnetic order parameter is coupled to the topological classification. European Research Council (ERC-StG no. 678702, TOPO-NW\\x9D), the Israel Science Foundation (ISF), and the United States-Israel Binational Science Foundation (BSF).

  2. Calculation of Energy Diagram of Asymmetric Graded-Band-Gap Semiconductor Superlattices.

    PubMed

    Monastyrskii, Liubomyr S; Sokolovskii, Bogdan S; Alekseichyk, Mariya P

    2017-12-01

    The paper theoretically investigates the peculiarities of energy diagram of asymmetric graded-band-gap superlattices with linear coordinate dependences of band gap and electron affinity. For calculating the energy diagram of asymmetric graded-band-gap superlattices, linearized Poisson's equation has been solved for the two layers forming a period of the superlattice. The obtained coordinate dependences of edges of the conduction and valence bands demonstrate substantial transformation of the shape of the energy diagram at changing the period of the lattice and the ratio of width of the adjacent layers. The most marked changes in the energy diagram take place when the period of lattice is comparable with the Debye screening length. In the case when the lattice period is much smaller that the Debye screening length, the energy diagram has the shape of a sawtooth-like pattern.

  3. Triple-band metamaterial absorption utilizing single rectangular hole

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jik; Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2017-01-01

    In the general metamaterial absorber, the single absorption band is made by the single meta-pattern. Here, we introduce the triple-band metamaterial absorber only utilizing single rectangular hole. We also demonstrate the absorption mechanism of the triple absorption. The first absorption peak was caused by the fundamental magnetic resonance in the metallic part between rectangular holes. The second absorption was generated by induced tornado magnetic field. The process of realizing the second band is also presented. The third absorption was induced by the third-harmonic magnetic resonance in the metallic region between rectangular holes. In addition, the visible-range triple-band absorber was also realized by using similar but smaller single rectangular-hole structure. These results render the simple metamaterials for high frequency in large scale, which can be useful in the fabrication of metamaterials operating in the optical range.

  4. Environmental study of ERTS-1 imagery Lake Champlain Basin and Vermont

    NASA Technical Reports Server (NTRS)

    Lind, A. O. (Principal Investigator)

    1972-01-01

    The author has idenfified the following significant results. A first approximation land-type map using three categories of classification was generated for the Burlington area. The identification and mapping of a major turbidity front separating turbid waters of the southern arm of Lake Champlain from the clearer main water mass was reported on RBV 1 and 2 imagery and on subsequent MSS bands 4 and 5. Significant industrial pollution of Lake Champlain has degraded environmental quality in certain sections of the lake. Wetlands were detected and recognized using a combination of RBV bands 2 and 3. Using first-look RBV band 2 imagery, major ice marginal features were identified by using tonal patterns associated with vegetative cover. Major rivers were detected and recognized through the use of RBV band 3 imagery and MSS bands 6 and 7.

  5. Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Choi, T.; Che, N.; Wang, Z.; Dodd, J.

    2010-01-01

    Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.

  6. Intra-articular soft-tissue masses of the ankle. Meniscoid lesions and transarticular fibrous bands.

    PubMed

    Stienstra, J J

    1994-07-01

    Meniscoid lesions and fibrous bands are unique lesions, most likely of differing origin. Although they are similar in clinical presentation, their appearance at arthroscopy is clearly different. The meniscoid lesion is attached only at its origin at the inferolateral gutter on the anterior talofibular ligament. Fibrous bands are attached at two ends and may be found anywhere in the joint but are most common extending dramatically over the anterior joint line. Unexpected encountering of a fibrous band should alert the surgeon to carefully inspect the joint for other associated (occult) pathology. Because of the frequent association of bands with antecedent fracture, the observation of this lesion should lead the clinician to consider antecedent intra-articular fracture (transchondral fracture, malleolar fracture, and tibial pilon fracture) as a likely co-pathology. Careful examination of the ankle and review of the radiographs and other available images may be helpful in assessing the joint for these injuries when fibrous bands are encountered. The association of meniscoid lesion with prior soft tissue injury (sprain) is also important to understanding this lesion. Excision of both these abnormal lesions in concert with repair of coexistent pathology is associated with improvement of symptoms. Finally, both fibrous bands and meniscoid lesions are associated with symptoms that warrant closer inspection and observation. Whether the operative intervention is open or closed, the reader can benefit from the information presented.

  7. Radiotelemetric analysis of the effects of prevailing wind direction on Mormon cricket migratory band movement.

    PubMed

    Sword, G A; Lorch, P D; Gwynne, D T

    2008-08-01

    During outbreaks, flightless Mormon crickets [Anabrus simplex Haldeman (Orthoptera: Tettigoniidae)] form large mobile groups known as migratory bands. These bands can contain millions of individuals that march en masse across the landscape. The role of environmental cues in influencing the movement direction of migratory bands is poorly understood and has been the subject of little empirical study. We examined the effect of wind direction on Mormon cricket migratory band movement direction by monitoring the local weather conditions and daily movement patterns of individual insects traveling in bands over the same time course at three close, but spatially distinct sites. Although weather conditions were relatively homogeneous across sites, wind directions tended to be more variable across sites during the morning hours, the period during which directional movement begins. Migratory bands at different sites traveled in distinctly different directions. However, we failed to find any evidence to suggest that the observed variation in migratory band movement direction was correlated with local wind direction at any time during the day. These results support the notion that the cues mediating migratory band directionality are likely to be group specific and that a role for landscape-scale environmental cues such as wind direction is unlikely.

  8. Typing of Human Mycobacterium avium Isolates in Italy by IS1245-Based Restriction Fragment Length Polymorphism Analysis

    PubMed Central

    Lari, Nicoletta; Cavallini, Michela; Rindi, Laura; Iona, Elisabetta; Fattorini, Lanfranco; Garzelli, Carlo

    1998-01-01

    All but 2 of 63 Mycobacterium avium isolates from distinct geographic areas of Italy exhibited markedly polymorphic, multibanded IS1245 restriction fragment length polymorphism (RFLP) patterns; 2 isolates showed the low-number banding pattern typical of bird isolates. By computer analysis, 41 distinct IS1245 patterns and 10 clusters of essentially identical strains were detected; 40% of the 63 isolates showed genetic relatedness, suggesting the existence of a predominant AIDS-associated IS1245 RFLP pattern. PMID:9817900

  9. Low-Loss Optical Metamaterials Based on Mie Resonances in Semiconductor Nanoparticle Composites

    DTIC Science & Technology

    2012-12-13

    Brillouin zone where two transverse bands with linear dispersion intersect a flat longitudinal band, resulting in triple degeneracy. The fields in the...transmission pattern through Fourier plane imaging. This was accomplished by focusing a laser beam within the structure using a high numerical...conditions, a high frequency magnetic response could be created in metamaterials formed from composites of quantum dots utilizing excitonic resonances

  10. Pattern-Directed Attention in Uncertain Frequency Detection.

    DTIC Science & Technology

    1983-10-14

    performance when compared to a single frequency condition even if the listeners are aware that more than one signal can occur ( Creelman , 1960; Green...be missed. On the-other hand, the multiple band approach, introduced by Green (1958) and modified by Creelman (1960), assumes that listeners base...multiple-band approaches ( Creelman , 1960; Green, 1961; Macmillan & Schwartz, 1975). In general, the two views are difficult to distinguish empirically, and

  11. Temporal patterns of apparent leg band retention in North American geese

    USGS Publications Warehouse

    Zimmerman, Guthrie S.; Kendall, William L.; Moser, Timothy J.; White, Gary C.; Doherty, Paul F.

    2009-01-01

    An important assumption of mark?recapture studies is that individuals retain their marks, which has not been assessed for goose reward bands. We estimated aluminum leg band retention probabilities and modeled how band retention varied with band type (standard vs. reward band), band age (1-40 months), and goose characteristics (species and size class) for Canada (Branta canadensis), cackling (Branta hutchinsii), snow (Chen caerulescens), and Ross?s (Chen rossii) geese that field coordinators double-leg banded during a North American goose reward band study (N = 40,999 individuals from 15 populations). We conditioned all models in this analysis on geese that were encountered with >1 leg band still attached (n = 5,747 dead recoveries and live recaptures). Retention probabilities for standard aluminum leg bands were high (estimate of 0.9995, SE = 0.001) and constant over 1-40 months. In contrast, apparent retention probabilities for reward bands demonstrated an interactive relationship between 5 size and species classes (small cackling, medium Canada, large Canada, snow, and Ross?s geese). In addition, apparent retention probabilities for each of the 5 classes varied quadratically with time, being lower immediately after banding and at older age classes. The differential retention probabilities among band type (reward vs. standard) that we observed suggests that 1) models estimating reporting probability should incorporate differential band loss if it is nontrivial, 2) goose managers should consider the costs and benefits of double-banding geese on an operational basis, and 3) the United States Geological Survey Bird Banding Lab should modify protocols for receiving recovery data.

  12. Applicability of ERTS-1 to Montana geology

    NASA Technical Reports Server (NTRS)

    Weidman, R. M. (Principal Investigator); Alt, D. D.; Berg, R. A.; Johns, W. M.; Flood, R. E.; Hawley, K. T.; Wackwitz, L. K.

    1973-01-01

    The author has identified the following significant results. A detailed band 7 ERTS-1 lineament map covering western Montana and northern Idaho has been prepared and is being evaluated by direct comparison with geologic maps, by statistical plots of lineaments and known faults, and by field checking. Lineament patterns apparent in the Idaho and Boulder batholiths do not correspond to any known geologic structures. A band 5 mosaic of Montana and adjacent areas has been laid and a lineament annotation prepared for comparison with the band 7 map. All work to date indicates that ERTS-1 imagery is very useful for revealing patterns of high-angle faults, though much less useful for mapping rock units and patterns of low-angle faults. Large-scale mosaics of U-2 photographs of three test sites have been prepared for annotation and comparison with ERTS-1 maps. Mapping of Quaternary deposits in the Glacial Lake Missoula basin using U-2 color infrared transparencies has been successful resulting in the discovery of some deposits not previously mapped. Detailed work has been done for Test Site 354 D using ERTS-1 imagery; criteria for recognition of several rock types have been found. Photogeologic mapping for southeastern Montana suggest Wasatch deposits where none shown of geologic map.

  13. Direct observation of mode-specific phonon-band gap coupling in methylammonium lead halide perovskites.

    PubMed

    Kim, Heejae; Hunger, Johannes; Cánovas, Enrique; Karakus, Melike; Mics, Zoltán; Grechko, Maksim; Turchinovich, Dmitry; Parekh, Sapun H; Bonn, Mischa

    2017-09-25

    Methylammonium lead iodide perovskite is an outstanding semiconductor for photovoltaics. One of its intriguing peculiarities is that the band gap of this perovskite increases with increasing lattice temperature. Despite the presence of various thermally accessible phonon modes in this soft material, the understanding of how precisely these phonons affect macroscopic material properties and lead to the peculiar temperature dependence of the band gap has remained elusive. Here, we report a strong coupling of a single phonon mode at the frequency of ~ 1 THz to the optical band gap by monitoring the transient band edge absorption after ultrafast resonant THz phonon excitation. Excitation of the 1 THz phonon causes a blue shift of the band gap over the temperature range of 185 ~ 300 K. Our results uncover the mode-specific coupling between one phonon and the optical properties, which contributes to the temperature dependence of the gap in the tetragonal phase.Methylammonium lead iodide perovskite, a promising material for efficient photovoltaics, shows a unique temperature dependence of its optical properties. Kim et al. quantify the coupling between the optical gap and a lattice phonon at 1 THz, which favorably contributes to the thermal variation of the gap.

  14. The Diffuse Interstellar Bands: Solving a Century Old Problem

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2017-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of apporoximately 500 absorption bands that are seen in the spectra of reddened stars (i.e., stars obscured by the presence of interstellar clouds in their line of sight). The first DIBs were detected in the visible over a century ago. Diffuse Interstellar Bands are now detected from the near ultraviolet to the near infrared in the spectra of reddened stars spanning a variety of interstellar environments in our local, and in other galaxies. Although DIB carriers are a significant part of the interstellar chemical inventory as they account for a noticeable fraction of the interstellar extinction, the nature of their carriers is still unknown over a century after the detection of the first bands. DIB carriers are stable and ubiquitous in a broad variety of interstellar environments and play a unique role in interstellar physics and chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics and astrochemistry, quantum chemistry calculations and astrophysical modeling of line-of-sights. In this review, we'll present and discuss the current state of this perplexing problem. We'll review the progress and the failures that have been encountered in the long quest for the identification of the carriers of these ubiquitous interstellar bands.

  15. Intermediate Band Gap Solar Cells: The Effect of Resonant Tunneling on Delocalization

    NASA Astrophysics Data System (ADS)

    William, Reid; Mathew, Doty; Sanwli, Shilpa; Gammon, Dan; Bracker, Allan

    2011-03-01

    Quantum dots (QD's) have many unique properties, including tunable discrete energy levels, that make them suitable for a variety of next generation photovoltaic applications. One application is an intermediate band solar cell (IBSC); in which QD's are incorporated into the bulk material. The QD's are tuned to absorb low energy photons that would otherwise be wasted because their energy is less than the solar cell's bulk band gap. Current theory concludes that identical QD's should be arranged in a superlattice to form a completely delocalized intermediate band maximizing absorption of low energy photons while minimizing the decrease in the efficiency of the bulk material. We use a T-matrix model to assess the feasibility of forming a delocalized band given that real QD ensembles have an inhomogeneous distribution of energy levels. Our results suggest that formation of a band delocalized through a large QD superlattice is challenging; suggesting that the assumptions underlying present IBSC theory require reexamination. We use time-resolved photoluminescence of coupled QD's to probe the effect of delocalized states on the dynamics of absorption, energy transport, and nonradiative relaxation. These results will allow us to reexamine the theoretical assumptions and determine the degree of delocalization necessary to create an efficient quantum dot-based IBSC.

  16. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    PubMed

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  17. 0.15 {mu}m InGaAs/AlGaAs/GaAs HEMT production process for high performance and high yield v-band power MMICs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, R.; Biedenbender, M.; Lee, J.

    1995-12-31

    The authors present a unique high yield, high performance 0.15 {mu}m HEMT production process which supports fabrication of MMW power MMICs up to 70 GHz. This process has been transferred successfully from an R&D process to TRW`s GaAs production line. This paper reports the on-wafer test results of more than 1300 V-band MMIC PA circuits measured over 24 wafers. The best 2-stage V-band power MMICs have demonstrated state-of-the-art performance with 9 dB power gain, 20% PAE and 330 mW output power. An excellent RF yield of 60% was achieved with an 8 dB power gain and 250 mW output powermore » specification.« less

  18. Contributions of oxygen vacancies and titanium interstitials to band-gap states of reduced titania

    NASA Astrophysics Data System (ADS)

    Li, Jingfeng; Lazzari, Rémi; Chenot, Stéphane; Jupille, Jacques

    2018-01-01

    The spectroscopic fingerprints of the point defects of titanium dioxide remain highly controversial. Seemingly indisputable experiments lead to conflicting conclusions in which oxygen vacancies and titanium interstitials are alternately referred to as the primary origin of the Ti 3 d band-gap states. We report on experiments performed by electron energy loss spectroscopy whose key is the direct annealing of only the very surface of rutile TiO2(110 ) crystals and the simultaneous measurement of its temperature via the Bose-Einstein loss/gain ratio. By surface preparations involving reactions with oxygen and water vapor, in particular, under electron irradiation, vacancy- and interstitial-related band-gap states are singled out. Off-specular measurements reveal that both types of defects contribute to a unique charge distribution that peaks in subsurface layers with a common dispersive behavior.

  19. Chandra survey in the AKARI North Ecliptic Pole Deep Field - I. X-ray data, point-like source catalogue, sensitivity maps, and number counts

    NASA Astrophysics Data System (ADS)

    Krumpe, M.; Miyaji, T.; Brunner, H.; Hanami, H.; Ishigaki, T.; Takagi, T.; Markowitz, A. G.; Goto, T.; Malkan, M. A.; Matsuhara, H.; Pearson, C.; Ueda, Y.; Wada, T.

    2015-01-01

    We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole Deep Field. This field has a unique set of nine-band infrared photometry covering 2-24 μm from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ˜15 μm, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z ˜ 1. We design a source detection procedure, which performs joint maximum likelihood PSF (point spread function) fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 deg2. The procedure has been highly optimized and tested by simulations. We provide a point source catalogue with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalogue contains 457 X-ray sources and the spurious fraction is estimated to be ˜1.7 per cent. Sensitivity and 90 per cent confidence upper flux limits maps in all bands are provided as well. We search for optical-MIR counterparts in the central 0.25 deg2, where deep Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected there, ˜80 per cent have optical counterparts and ˜60 per cent also have AKARI MIR counterparts. We cross-match our X-ray sources with MIR-selected AGN from Hanami et al. Around 30 per cent of all AGN that have MIR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates.

  20. Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures

    PubMed Central

    Thoß, M.; Luzynski, K.C.; Ante, M.; Miller, I.; Penn, D.J.

    2016-01-01

    House mice (Mus musculus) produce a variable number of major urinary proteins (MUPs), and studies suggest that each individual produces a unique MUP profile that provides a distinctive odor signature controlling individual and kin recognition. This ‘barcode hypothesis’ requires that MUP urinary profiles show high individual variability within populations and also high individual consistency over time, but tests of these assumptions are lacking. We analyzed urinary MUP profiles of 66 wild-caught house mice from eight populations using isoelectric focusing. We found that MUP profiles of wild male house mice are not individually unique, and though they were highly variable, closer inspection revealed that the variation strongly depended on MUP band type. The prominent (‘major) bands were surprisingly homogenous (and hence most MUPs are not polymorphic), but we also found inconspicuous (‘minor’) bands that were highly variable and therefore potential candidates for individual fingerprints. We also examined changes in urinary MUP profiles of 58 males over time (from 6 to 24 weeks of age), and found that individual MUP profiles and MUP concentration were surprisingly dynamic, and showed significant changes after puberty and during adulthood. Contrary to what we expected, however, the minor bands were the most variable over time, thus no good candidates for individual fingerprints. Although MUP profiles do not provide individual fingerprints, we found that MUP profiles were more similar among siblings than non-kin despite considerable fluctuation. Our findings show that MUP profiles are not highly stable over time, they do not show strong individual clustering, and thus challenge the barcode hypothesis. Within-individual dynamics of MUP profiles indicate a different function of MUPs in individual recognition than previously assumed and advocate an alternative hypothesis (‘dynamic changes’ hypothesis). PMID:26973837

Top