Sample records for unique continuation theorems

  1. Stability Analysis of Continuous-Time and Discrete-Time Quaternion-Valued Neural Networks With Linear Threshold Neurons.

    PubMed

    Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong

    2018-07-01

    This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.

  2. Infinite time interval backward stochastic differential equations with continuous coefficients.

    PubMed

    Zong, Zhaojun; Hu, Feng

    2016-01-01

    In this paper, we study the existence theorem for [Formula: see text] [Formula: see text] solutions to a class of 1-dimensional infinite time interval backward stochastic differential equations (BSDEs) under the conditions that the coefficients are continuous and have linear growths. We also obtain the existence of a minimal solution. Furthermore, we study the existence and uniqueness theorem for [Formula: see text] [Formula: see text] solutions of infinite time interval BSDEs with non-uniformly Lipschitz coefficients. It should be pointed out that the assumptions of this result is weaker than that of Theorem 3.1 in Zong (Turkish J Math 37:704-718, 2013).

  3. Generalized Bloch theorem and topological characterization

    NASA Astrophysics Data System (ADS)

    Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.

    2015-03-01

    The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.

  4. Monterey Bay Geoid

    DTIC Science & Technology

    1994-03-01

    thought to be a flat disk. The first scientific hypothesis that the earth was spherical is credited to Thales of Milet in 600 B.C. or Pythagoras in 550...acceleration can be integrated over the surface, by Gauss’s theorem and gives: 35 v1 Wv2 <v3 Figure 12. Equipotential Surfaces and Gravity: V,, V2, V3 are...continuous derivatives where they satisfy Laplace’s equation. Stokes’ theorem states that a harmonic function outside a surface is uniquely determined by

  5. Revisiting Ramakrishnan's approach to relatively. [Velocity addition theorem uniqueness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, K.K.; Shankara, T.S.

    The conditions under which the velocity addition theorem (VAT) is formulated by Ramakrishnan gave rise to doubts about the uniqueness of the theorem. These conditions are rediscussed with reference to their algebraic and experimental implications. 9 references.

  6. A Layer Framework to Investigate Student Understanding and Application of the Existence and Uniqueness Theorems of Differential Equations

    ERIC Educational Resources Information Center

    Raychaudhuri, D.

    2007-01-01

    The focus of this paper is on student interpretation and usage of the existence and uniqueness theorems for first-order ordinary differential equations. The inherent structure of the theorems is made explicit by the introduction of a framework of layers concepts-conditions-connectives-conclusions, and we discuss the manners in which students'…

  7. Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces

    NASA Astrophysics Data System (ADS)

    Holmes, John; Thompson, Ryan C.

    2017-10-01

    In this paper, we prove well-posedness of the Fornberg-Whitham equation in Besov spaces B2,rs in both the periodic and non-periodic cases. This will imply the existence and uniqueness of solutions in the aforementioned spaces along with the continuity of the data-to-solution map provided that the initial data belongs to B2,rs. We also establish sharpness of continuity on the data-to-solution map by showing that it is not uniformly continuous from any bounded subset of B2,rs to C ([ - T , T ] ;B2,rs). Furthermore, we prove a Cauchy-Kowalevski type theorem for this equation that establishes the existence and uniqueness of real analytic solutions and also provide blow-up criterion for solutions.

  8. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  9. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  10. Virtual continuity of measurable functions and its applications

    NASA Astrophysics Data System (ADS)

    Vershik, A. M.; Zatitskii, P. B.; Petrov, F. V.

    2014-12-01

    A classical theorem of Luzin states that a measurable function of one real variable is `almost' continuous. For measurable functions of several variables the analogous statement (continuity on a product of sets having almost full measure) does not hold in general. The search for a correct analogue of Luzin's theorem leads to a notion of virtually continuous functions of several variables. This apparently new notion implicitly appears in the statements of embedding theorems and trace theorems for Sobolev spaces. In fact it reveals the nature of such theorems as statements about virtual continuity. The authors' results imply that under the conditions of Sobolev theorems there is a well-defined integration of a function with respect to a wide class of singular measures, including measures concentrated on submanifolds. The notion of virtual continuity is also used for the classification of measurable functions of several variables and in some questions on dynamical systems, the theory of polymorphisms, and bistochastic measures. In this paper the necessary definitions and properties of admissible metrics are recalled, several definitions of virtual continuity are given, and some applications are discussed. Bibliography: 24 titles.

  11. Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems

    NASA Astrophysics Data System (ADS)

    Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei

    2016-07-01

    This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.

  12. Unique Factorization and the Fundamental Theorem of Arithmetic

    ERIC Educational Resources Information Center

    Sprows, David

    2017-01-01

    The fundamental theorem of arithmetic is one of those topics in mathematics that somehow "falls through the cracks" in a student's education. When asked to state this theorem, those few students who are willing to give it a try (most have no idea of its content) will say something like "every natural number can be broken down into a…

  13. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  14. On the origins and foundations of Laplacian determinism.

    PubMed

    van Strien, Marij

    2014-03-01

    In this paper I examine the foundations of Laplace's famous statement of determinism in 1814, and argue that rather than derived from his mechanics, this statement is based on general philosophical principles, namely the principle of sufficient reason and the law of continuity. It is usually supposed that Laplace's statement is based on the fact that each system in classical mechanics has an equation of motion which has a unique solution. But Laplace never proved this result, and in fact he could not have proven it, since it depends on a theorem about uniqueness of solutions to differential equations that was only developed later on. I show that the idea that is at the basis of Laplace's determinism was in fact widespread in enlightenment France, and is ultimately based on a re-interpretation of Leibnizian metaphysics, specifically the principle of sufficient reason and the law of continuity. Since the law of continuity also lies at the basis of the application of differential calculus in physics, one can say that Laplace's determinism and the idea that systems in physics can be described by differential equations with unique solutions have a common foundation.

  15. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    DTIC Science & Technology

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  16. Existence and uniqueness theorems for impulsive fractional differential equations with the two-point and integral boundary conditions.

    PubMed

    Mardanov, M J; Mahmudov, N I; Sharifov, Y A

    2014-01-01

    We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.

  17. Equivalent Markov-Renewal Processes.

    DTIC Science & Technology

    1979-12-01

    By the Perron - Frobenius theorem we must have y - w. Thus n is the only initial distribution that yields a renewal process. Example 2.4.2. Burke’s... Perron -Frobenitis Theorem (31 there Is a unique largest elgenvalue of Q(-) which is positive, and that eigen- value has an associated left and right

  18. Field Computation and Nonpropositional Knowledge.

    DTIC Science & Technology

    1987-09-01

    field computer It is based on xeneralization of Taylor’s theorem to continuous dimensional vector spaces. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...generalization of Taylor’s theorem to continuous dimensional vector -5paces A number of field computations are illustrated, including several Lransforma...paradigm. The "old" Al has been quite successful in performing a number of difficult tasks, such as theorem prov- ing, chess playing, medical diagnosis and

  19. In search of the Hohenberg-Kohn theorem

    NASA Astrophysics Data System (ADS)

    Lammert, Paul E.

    2018-04-01

    The Hohenberg-Kohn theorem, a cornerstone of electronic density functional theory, concerns uniqueness of external potentials yielding given ground densities of an N -body system. The problem is rigorously explored in a universe of three-dimensional Kato-class potentials, with emphasis on trade-offs between conditions on the density and conditions on the potential sufficient to ensure uniqueness. Sufficient conditions range from none on potentials coupled with everywhere strict positivity of the density to none on the density coupled with something a little weaker than local 3 N /2 -power integrability of the potential on a connected full-measure set. A second theme is localizability, that is, the possibility of uniqueness over subsets of R3 under less stringent conditions.

  20. Periodicity computation of generalized mathematical biology problems involving delay differential equations.

    PubMed

    Jasim Mohammed, M; Ibrahim, Rabha W; Ahmad, M Z

    2017-03-01

    In this paper, we consider a low initial population model. Our aim is to study the periodicity computation of this model by using neutral differential equations, which are recognized in various studies including biology. We generalize the neutral Rayleigh equation for the third-order by exploiting the model of fractional calculus, in particular the Riemann-Liouville differential operator. We establish the existence and uniqueness of a periodic computational outcome. The technique depends on the continuation theorem of the coincidence degree theory. Besides, an example is presented to demonstrate the finding.

  1. Fixed point theorems for generalized contractions in ordered metric spaces

    NASA Astrophysics Data System (ADS)

    O'Regan, Donal; Petrusel, Adrian

    2008-05-01

    The purpose of this paper is to present some fixed point results for self-generalized contractions in ordered metric spaces. Our results generalize and extend some recent results of A.C.M. Ran, M.C. Reurings [A.C.M. Ran, MEC. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443], J.J. Nieto, R. Rodríguez-López [J.J. Nieto, R. Rodríguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223-239; J.J. Nieto, R. Rodríguez-López, Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.) 23 (2007) 2205-2212], J.J. Nieto, R.L. Pouso, R. Rodríguez-López [J.J. Nieto, R.L. Pouso, R. Rodríguez-López, Fixed point theorem theorems in ordered abstract sets, Proc. Amer. Math. Soc. 135 (2007) 2505-2517], A. Petrusel, I.A. Rus [A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134 (2006) 411-418] and R.P. Agarwal, M.A. El-Gebeily, D. O'Regan [R.P. Agarwal, M.A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., in press]. As applications, existence and uniqueness results for Fredholm and Volterra type integral equations are given.

  2. Are reconstruction filters necessary?

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2006-05-01

    Shannon's sampling theorem (also called the Shannon-Whittaker-Kotel'nikov theorem) was developed for the digitization and reconstruction of sinusoids. Strict adherence is required when frequency preservation is important. Three conditions must be met to satisfy the sampling theorem: (1) The signal must be band-limited, (2) the digitizer must sample the signal at an adequate rate, and (3) a low-pass reconstruction filter must be present. In an imaging system, the signal is band-limited by the optics. For most imaging systems, the signal is not adequately sampled resulting in aliasing. While the aliasing seems excessive mathematically, it does not significantly affect the perceived image. The human visual system detects intensity differences, spatial differences (shapes), and color differences. The eye is less sensitive to frequency effects and therefore sampling artifacts have become quite acceptable. Indeed, we love our television even though it is significantly undersampled. The reconstruction filter, although absolutely essential, is rarely discussed. It converts digital data (which we cannot see) into a viewable analog signal. There are several reconstruction filters: electronic low-pass filters, the display media (monitor, laser printer), and your eye. These are often used in combination to create a perceived continuous image. Each filter modifies the MTF in a unique manner. Therefore image quality and system performance depends upon the reconstruction filter(s) used. The selection depends upon the application.

  3. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illarionov, A A

    2014-03-31

    Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.edu, E-mail: dpsaltis@email.arizona.edu

    According to the no-hair theorem, astrophysical black holes are uniquely described by their masses and spins. An observational test of the no-hair theorem can be performed by measuring at least three different multipole moments of the spacetime of a black hole and verifying whether their values are consistent with the unique combinations of the Kerr solution. In this paper, we study quasi-periodic variability observed in the emission from black holes across the electromagnetic spectrum as a test of the no-hair theorem. We derive expressions for the Keplerian and epicyclic frequencies in a quasi-Kerr spacetime, in which the quadrupole moment ismore » a free parameter in addition to mass and spin. We show that, for moderate spins, the Keplerian frequency is practically independent of small deviations of the quadrupole moment from the Kerr value, while the epicyclic frequencies exhibit significant variations. We apply this framework to quasi-periodic oscillations (QPOs) in black hole X-ray binaries in two different scenarios. In the case that a pair of QPOs can be identified as the fundamental g- and c-modes in the accretion disk, we show that the no-hair theorem can be tested in conjunction with an independent mass measurement. If pairs of oscillations are identified with non-parametric resonance of dynamical frequencies in the accretion disk, then testing the no-hair theorem also requires an independent measurement of the black hole spin. In addition, we argue that VLBI observations of Sgr A* may test the no-hair theorem through a combination of imaging observations and the detection of quasi-periodic variability.« less

  5. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    NASA Technical Reports Server (NTRS)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  6. Sufficient conditions for uniqueness of the weak value

    NASA Astrophysics Data System (ADS)

    Dressel, J.; Jordan, A. N.

    2012-01-01

    We review and clarify the sufficient conditions for uniquely defining the generalized weak value as the weak limit of a conditioned average using the contextual values formalism introduced in Dressel, Agarwal and Jordan (2010 Phys. Rev. Lett. 104 240401). We also respond to criticism of our work by Parrott (arXiv:1105.4188v1) concerning a proposed counter-example to the uniqueness of the definition of the generalized weak value. The counter-example does not satisfy our prescription in the case of an underspecified measurement context. We show that when the contextual values formalism is properly applied to this example, a natural interpretation of the measurement emerges and the unique definition in the weak limit holds. We also prove a theorem regarding the uniqueness of the definition under our sufficient conditions for the general case. Finally, a second proposed counter-example by Parrott (arXiv:1105.4188v6) is shown not to satisfy the sufficiency conditions for the provided theorem.

  7. Generalized Synchronization in AN Array of Nonlinear Dynamic Systems with Applications to Chaotic Cnn

    NASA Astrophysics Data System (ADS)

    Min, Lequan; Chen, Guanrong

    This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.

  8. On Vehicle Placement to Intercept Moving Targets (Preprint)

    DTIC Science & Technology

    2010-03-09

    which is feasible only if X1 −X2 = 0 and Y1 − Y2 = 0. We now present the main result for this section. Theorem 3.4 (Minimizing expected cost) From an...Vandenberghe (2004)) leads the vehicle to the unique global minimizer of Cexp. Let V ⊂ [0,W ], and choose φ(x) such that φ(x) = 0,∀x ∈ [0,W ] \\ V. Then, Theorem ...R>0, and following gradient descent with V as the region of integration, the vehicle remains inside [0,W ] × R>0 at all subsequent times. 3 Theorem

  9. Theoretical and Empirical Studies on Using Program Mutation to Test the Functional Correctness of Programs.

    DTIC Science & Technology

    1980-02-01

    implemented to test ANSI FORTRAN set D3. Using theorem 6 we then have programs. In building real testing tools for Theorem 18 : The recursion constructors...constants, scalar in theorems 10, 15, 16, and 18 , then Q must be variables, and array references) times the number equivalent to P. of unique data...for j,,rd1s longer thlan a fixed .1; 0. erot 2., .12.’Ie 1). Ullman2. li21122 arnd isolates and plrints each telegram along hI 2 .. 222.2.J~12.2.1 It

  10. Leaning on Socrates to Derive the Pythagorean Theorem

    ERIC Educational Resources Information Center

    Percy, Andrew; Carr, Alistair

    2010-01-01

    The one theorem just about every student remembers from school is the theorem about the side lengths of a right angled triangle which Euclid attributed to Pythagoras when writing Proposition 47 of "The Elements". Usually first met in middle school, the student will be continually exposed throughout their mathematical education to the…

  11. Overdetermined elliptic problems in topological disks

    NASA Astrophysics Data System (ADS)

    Mira, Pablo

    2018-06-01

    We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.

  12. What Differential Weighting of Subsets of Items Does and Does Not Accomplish: Geometric Explanation. Research Report. ETS RR-14-20

    ERIC Educational Resources Information Center

    Carlson, James E.

    2014-01-01

    A little-known theorem, a generalization of Pythagoras's theorem, due to Pappus, is used to present a geometric explanation of various definitions of the contribution of component tests to their composite. I show that an unambiguous definition of the unique contribution of a component to the composite score variance is present if and only if the…

  13. Gleason-Busch theorem for sequential measurements

    NASA Astrophysics Data System (ADS)

    Flatt, Kieran; Barnett, Stephen M.; Croke, Sarah

    2017-12-01

    Gleason's theorem is a statement that, given some reasonable assumptions, the Born rule used to calculate probabilities in quantum mechanics is essentially unique [A. M. Gleason, Indiana Univ. Math. J. 6, 885 (1957), 10.1512/iumj.1957.6.56050]. We show that Gleason's theorem contains within it also the structure of sequential measurements, and along with this the state update rule. We give a small set of axioms, which are physically motivated and analogous to those in Busch's proof of Gleason's theorem [P. Busch, Phys. Rev. Lett. 91, 120403 (2003), 10.1103/PhysRevLett.91.120403], from which the familiar Kraus operator form follows. An axiomatic approach has practical relevance as well as fundamental interest, in making clear those assumptions which underlie the security of quantum communication protocols. Interestingly, the two-time formalism is seen to arise naturally in this approach.

  14. The geometric Mean Value Theorem

    NASA Astrophysics Data System (ADS)

    de Camargo, André Pierro

    2018-05-01

    In a previous article published in the American Mathematical Monthly, Tucker (Amer Math Monthly. 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying Rolle's theorem to a function like Although short and effective, such reasoning is not intuitive. Perhaps for this reason, Tucker classified the Mean Value Theorem as a technical existence theorem used to prove intuitively obvious statements. Moreover, he argued that there is nothing obvious about the Mean Value Theorem without the continuity of the derivative. Under so unfair discrimination, we felt the need to come to the defense of this beautiful theorem in order to clear up these misunderstandings.

  15. Generalizing the Iterative Proportional Fitting Procedure.

    DTIC Science & Technology

    1980-04-01

    Csiszar gives conditions under which P (R) exists (it is always unique) and develops a geometry of I-divergence by using an analogue of Pythagoras ...8217 Theorem . As our goal is to study maximum likelihood estimation in contingency tables, we turn briefly to the problem of estimating a multinomial...envoke a result of Csiszir (due originally to Kullback (1959)), giving the form of the density of the I-projection. Csiszar’s Theorem 3.1, which we

  16. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  17. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    NASA Astrophysics Data System (ADS)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  18. Periodic solution of neutral Lotka-Volterra system with periodic delays

    NASA Astrophysics Data System (ADS)

    Liu, Zhijun; Chen, Lansun

    2006-12-01

    A nonautonomous n-species Lotka-Volterra system with neutral delays is investigated. A set of verifiable sufficient conditions is derived for the existence of at least one strictly positive periodic solution of this Lotka-Volterra system by applying an existence theorem and some analysis techniques, where the assumptions of the existence theorem are different from that of Gaines and Mawhin's continuation theorem [R.E. Gaines, J.L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977] and that of abstract continuation theory for k-set contraction [W. Petryshyn, Z. Yu, Existence theorem for periodic solutions of higher order nonlinear periodic boundary value problems, Nonlinear Anal. 6 (1982) 943-969]. Moreover, a problem proposed by Freedman and Wu [H.I. Freedman, J. Wu, Periodic solution of single species models with periodic delay, SIAM J. Math. Anal. 23 (1992) 689-701] is answered.

  19. The merger of small and large black holes

    NASA Astrophysics Data System (ADS)

    Mösta, P.; Andersson, L.; Metzger, J.; Szilágyi, B.; Winicour, J.

    2015-12-01

    We present simulations of binary black-hole mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion, then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.

  20. On the Chern-Gauss-Bonnet theorem for the noncommutative 4-sphere

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Wilson, Mitsuru

    2017-01-01

    We construct a differential calculus over the noncommutative 4-sphere in the framework of pseudo-Riemannian calculi, and show that for every metric in a conformal class of perturbations of the round metric, there exists a unique metric and torsion-free connection. Furthermore, we find a localization of the projective module corresponding to the space of vector fields, which allows us to formulate a Chern-Gauss-Bonnet type theorem for the noncommutative 4-sphere.

  1. The inverse resonance problem for CMV operators

    NASA Astrophysics Data System (ADS)

    Weikard, Rudi; Zinchenko, Maxim

    2010-05-01

    We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.

  2. Constraints on the symmetry noninheriting scalar black hole hair

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2017-01-01

    Any recipe to grow black hole hair has to circumvent no-hair theorems by violating some of their assumptions. Recently discovered hairy black hole solutions exist due to the fact that their scalar fields don't inherit the symmetries of the spacetime metric. We present here a general analysis of the constraints which limit the possible forms of such a hair, for both the real and the complex scalar fields. These results can be taken as a novel piece of the black hole uniqueness theorems or simply as a symmetry noninheriting Ansätze guide. In addition, we introduce new classification of the gravitational field equations which might prove useful for various generalizations of the theorems about spacetimes with symmetries.

  3. Which symmetry? Noether, Weyl, and conservation of electric charge

    NASA Astrophysics Data System (ADS)

    Brading, Katherine A.

    In 1918, Emmy Noether published a (now famous) theorem establishing a general connection between continuous 'global' symmetries and conserved quantities. In fact, Noether's paper contains two theorems, and the second of these deals with 'local' symmetries; prima facie, this second theorem has nothing to do with conserved quantities. In the same year, Hermann Weyl independently made the first attempt to derive conservation of electric charge from a postulated gauge symmetry. In the light of Noether's work, it is puzzling that Weyl's argument uses local gauge symmetry. This paper explores the relationships between Weyl's work, Noether's two theorems, and the modern connection between gauge symmetry and conservation of electric charge. This includes showing that Weyl's connection is essentially an application of Noether's second theorem, with a novel twist.

  4. Gapless topological order, gravity, and black holes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Alex; Jermyn, Adam S.

    2018-04-01

    In this work we demonstrate that linearized gravity exhibits gapless topological order with an extensive ground state degeneracy. This phenomenon is closely related both to the topological order of the pyrochlore U (1 ) spin liquid and to recent work by Hawking and co-workers, who used the soft-photon and graviton theorems to demonstrate that the vacuum in linearized gravity is not unique. We first consider lattice models whose low-energy behavior is described by electromagnetism and linearized gravity, and then argue that the topological nature of these models carries over into the continuum. We demonstrate that these models can have many ground states without making assumptions about the topology of spacetime or about the high-energy nature of the theory, and show that the infinite family of symmetries described by Hawking and co-workers is simply the different topological sectors. We argue that in this context black holes appear as topological defects in the infrared theory, and that this suggests a potential approach to understanding both the firewall paradox and information encoding in gravitational theories. Finally, we use insights from the soft-boson theorems to make connections between deconfined gauge theories with continuous gauge groups and gapless topological order.

  5. Solution of the two-dimensional spectral factorization problem

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1985-01-01

    An approximation theorem is proven which solves a classic problem in two-dimensional (2-D) filter theory. The theorem shows that any continuous two-dimensional spectrum can be uniformly approximated by the squared modulus of a recursively stable finite trigonometric polynomial supported on a nonsymmetric half-plane.

  6. On convergence of differential evolution over a class of continuous functions with unique global optimum.

    PubMed

    Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik

    2012-02-01

    Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    According to the no-hair theorem, an astrophysical black hole is uniquely described by only two quantities, the mass and the spin. In this series of papers, we investigate a framework for testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. We formulate our approach in terms of a parametric spacetime which contains a quadrupole moment that is independent of both mass and spin. If the no-hair theorem is correct, then any deviation of the black hole quadrupole moment from its Kerr value has to be zero. We analyze in detail the properties of this quasi-Kerr spacetimemore » that are critical to interpreting observations of black holes and demonstrate their dependence on the spin and quadrupole moment. In particular, we show that the location of the innermost stable circular orbit and the gravitational lensing experienced by photons are affected significantly at even modest deviations of the quadrupole moment from the value predicted by the no-hair theorem. We argue that observations of black hole images, of relativistically broadened iron lines, as well as of thermal X-ray spectra from accreting black holes will lead in the near future to an experimental test of the no-hair theorem.« less

  8. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  9. Approximation of functions and their conjugates in variable Lebesgue spaces

    NASA Astrophysics Data System (ADS)

    Volosivets, S. S.

    2017-01-01

    One-sided Steklov means are used to introduce moduli of continuity of natural order in variable Lp(\\cdot)2π-spaces. A direct theorem of Jackson- Stechkin type and an inverse theorem of Salem-Stechkin type are given. Similar results are obtained for the conjugate functions. Bibliography: 24 titles.

  10. A Path to Discovery

    ERIC Educational Resources Information Center

    Stegemoller, William; Stegemoller, Rebecca

    2004-01-01

    The path taken and the turns made as a turtle traces a polygon are examined to discover an important theorem in geometry. A unique tool, the Angle Adder, is implemented in the investigation. (Contains 9 figures.)

  11. Algorithms for the Equilibration of Matrices and Their Application to Limited-Memory Quasi-Newton Methods

    DTIC Science & Technology

    2010-05-01

    irreducible, by the Perron - Frobenius theorem (see, for example, Theorem 8.4.4 in [28]), the eigenvalue 1 is simple. Next, the rank-one matrix Q has the...We refer to (2.1) as the scaling equation. Although algorithms must use A, existence and unique- ness theory need consider only the nonnegative matrix...B. If p = 1 and A is nonnegative , then A = B. We reserve the term binormalization for the case p = 2. We say A is scalable if there exists x > 0

  12. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  13. Discontinuous gradient differential equations and trajectories in the calculus of variations

    NASA Astrophysics Data System (ADS)

    Bogaevskii, I. A.

    2006-12-01

    The concept of gradient of smooth functions is generalized for their sums with concave functions. An existence, uniqueness, and continuous dependence theorem for increasing time is formulated and proved for solutions of an ordinary differential equation the right-hand side of which is the gradient of the sum of a concave and a smooth function. With the use of this result a physically natural motion of particles, well defined even at discontinuities of the velocity field, is constructed in the variational problem of the minimal mechanical action in a space of arbitrary dimension. For such a motion of particles in the plane all typical cases of the birth and the interaction of point clusters of positive mass are described.

  14. De Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography.

    PubMed

    Renner, R; Cirac, J I

    2009-03-20

    We show that the quantum de Finetti theorem holds for states on infinite-dimensional systems, provided they satisfy certain experimentally verifiable conditions. This result can be applied to prove the security of quantum key distribution based on weak coherent states or other continuous variable states against general attacks.

  15. The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells

    NASA Astrophysics Data System (ADS)

    Rau, Uwe; Brendel, Rolf

    1998-12-01

    It is shown that a recently described general relationship between the local collection efficiency of solar cells and the dark carrier concentration (reciprocity theorem) directly follows from the principle of detailed balance. We derive the relationship for situations where transport of charge carriers occurs between discrete states as well as for the situation where electronic transport is described in terms of continuous functions. Combining both situations allows to extend the range of applicability of the reciprocity theorem to all types of solar cells, including, e.g., metal-insulator-semiconductor-type, electrochemical solar cells, as well as the inclusion of the impurity photovoltaic effect. We generalize the theorem further to situations where the occupation probability of electronic states is governed by Fermi-Dirac statistics instead of Boltzmann statistics as underlying preceding work. In such a situation the reciprocity theorem is restricted to small departures from equilibrium.

  16. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  17. The Hawking-Penrose Singularity Theorem for C 1,1-Lorentzian Metrics

    NASA Astrophysics Data System (ADS)

    Graf, Melanie; Grant, James D. E.; Kunzinger, Michael; Steinbauer, Roland

    2018-06-01

    We show that the Hawking-Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of C 1,1-regularity. We formulate appropriate weak versions of the strong energy condition and genericity condition for C 1,1-metrics, and of C 0-trapped submanifolds. By regularisation, we show that, under these weak conditions, causal geodesics necessarily become non-maximising. This requires a detailed analysis of the matrix Riccati equation for the approximating metrics, which may be of independent interest.

  18. Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao

    2018-01-01

    In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.

  19. Lindeberg theorem for Gibbs-Markov dynamics

    NASA Astrophysics Data System (ADS)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.

  20. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  1. Elementary solutions of coupled model equations in the kinetic theory of gases

    NASA Technical Reports Server (NTRS)

    Kriese, J. T.; Siewert, C. E.; Chang, T. S.

    1974-01-01

    The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

  2. Evolution families of conformal mappings with fixed points and the Löwner-Kufarev equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goryainov, V V

    2015-01-31

    The paper is concerned with evolution families of conformal mappings of the unit disc to itself that fix an interior point and a boundary point. Conditions are obtained for the evolution families to be differentiable, and an existence and uniqueness theorem for an evolution equation is proved. A convergence theorem is established which describes the topology of locally uniform convergence of evolution families in terms of infinitesimal generating functions. The main result in this paper is the embedding theorem which shows that any conformal mapping of the unit disc to itself with two fixed points can be embedded into a differentiable evolution familymore » of such mappings. This result extends the range of the parametric method in the theory of univalent functions. In this way the problem of the mutual change of the derivative at an interior point and the angular derivative at a fixed point on the boundary is solved for a class of mappings of the unit disc to itself. In particular, the rotation theorem is established for this class of mappings. Bibliography: 27 titles.« less

  3. The Hartman-Grobman theorem for semilinear hyperbolic evolution equations

    NASA Astrophysics Data System (ADS)

    Hein, Marie-Luise; Prüss, Jan

    2016-10-01

    The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.

  4. Using Automated Theorem Provers to Certify Auto-Generated Aerospace Software

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd; Schumann, Johann

    2004-01-01

    We describe a system for the automated certification of safety properties of NASA software. The system uses Hoare-style program verification technology to generate proof obligations which are then processed by an automated first-order theorem prover (ATP). For full automation, however, the obligations must be aggressively preprocessed and simplified We describe the unique requirements this places on the ATP and demonstrate how the individual simplification stages, which are implemented by rewriting, influence the ability of the ATP to solve the proof tasks. Experiments on more than 25,000 tasks were carried out using Vampire, Spass, and e-setheo.

  5. The fundamental theorem of asset pricing under default and collateral in finite discrete time

    NASA Astrophysics Data System (ADS)

    Alvarez-Samaniego, Borys; Orrillo, Jaime

    2006-08-01

    We consider a financial market where time and uncertainty are modeled by a finite event-tree. The event-tree has a length of N, a unique initial node at the initial date, and a continuum of branches at each node of the tree. Prices and returns of J assets are modeled, respectively, by a R2JxR2J-valued stochastic process . In this framework we prove a version of the Fundamental Theorem of Asset Pricing which applies to defaultable securities backed by exogenous collateral suffering a contingent linear depreciation.

  6. The Downward Continuation to the Earth’s Surface of Truncated Spherical and Ellipsoidal Harmonic Series of the Gravity and Height Anomalies,

    DTIC Science & Technology

    1981-12-01

    triangle OBQ, we obtain r c =COtI ose + sine (411) Hence with (4.10) e 2 sinecose (412)tan ip = (__o__2)_ 1 - e 2sin2 0 Pythagoras ’ theorem then easily...coordinate system. Strictly, this theorem tinds no application in our physical world since it guarantees convergence only outside the sphere enclosing...Junq, 1956, p.54 3 ; Moritz, 1980, p.52) is found, using the above theorem , to be f =E, the focal distance of the ellipsoid, shoving also that the

  7. Chaotic trajectories in the standard map. The concept of anti-integrability

    NASA Astrophysics Data System (ADS)

    Aubry, Serge; Abramovici, Gilles

    1990-07-01

    A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).

  8. Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.

    2015-07-01

    About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.

  9. On solvability of boundary value problems for hyperbolic fourth-order equations with nonlocal boundary conditions of integral type

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay S.

    2017-11-01

    Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.

  10. Existence and global attractivity of unique positive periodic solution for a model of hematopoiesis

    NASA Astrophysics Data System (ADS)

    Liu, Guirong; Yan, Jurang; Zhang, Fengqin

    2007-10-01

    In this paper, we consider the generalized model of hematopoiesis By using a fixed point theorem, some criteria are established for the existence of the unique positive [omega]-periodic solution of the above equation. In particular, we not only give the conclusion of convergence of xk to , where {xk} is a successive sequence, but also show that is a global attractor of all other positive solutions.

  11. On the Uniqueness and Consistency of Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Rodina, Laurentiu

    In this dissertation, we study constraints imposed by locality, unitarity, gauge invariance, the Adler zero, and constructability (scaling under BCFW shifts). In the first part we study scattering amplitudes as the unique mathematical objects which can satisfy various combinations of such principles. In all cases we find that locality and unitarity may be derived from gauge invariance (for Yang-Mills and General Relativity) or from the Adler zero (for the non-linear sigma model and the Dirac-Born-Infeld model), together with mild assumptions on the singularity structure and mass dimension. We also conjecture that constructability and locality together imply gauge invariance, hence also unitarity. All claims are proved through a soft expansion, and in the process we end re-deriving the well-known leading soft theorems for all four theories. Unlike other proofs of these theorems, we do not assume any form of factorization (unitarity). In the second part we show how tensions arising between gauge invariance (as encoded by spinor helicity variables in four dimensions), locality, unitarity and constructability give rise to various physical properties. These include high-spin no-go theorems, the equivalence principle, and the emergence of supersymmetry from spin 3/2 particles. We also complete the fully on-shell constructability proof of gravity amplitudes, by showing that the improved "bonus'' behavior of gravity under BCFW shifts is a simple consequence of Bose symmetry.

  12. On the solubility of certain classes of non-linear integral equations in p-adic string theory

    NASA Astrophysics Data System (ADS)

    Khachatryan, Kh. A.

    2018-04-01

    We study classes of non-linear integral equations that have immediate application to p-adic mathematical physics and to cosmology. We prove existence and uniqueness theorems for non-trivial solutions in the space of bounded functions.

  13. Sampling theory for asynoptic satellite observations. I Space-time spectra, resolution, and aliasing. II - Fast Fourier synoptic mapping

    NASA Technical Reports Server (NTRS)

    Salby, M. L.

    1982-01-01

    An evaluation of the information content of asynoptic data taken in the form of nadir sonde and limb scan observations is presented, and a one-to-one correspondence is established between the alias-free data and twice-daily synoptic maps. Attention is given to space and time limitations of sampling and the orbital geometry is discussed. The sampling pattern is demonstrated to determine unique space-time spectra at all wavenumbers and frequencies. Spectral resolution and aliasing are explored, while restrictions on sampling and information content are defined. It is noted that irregular sampling at high latitudes produces spurious contamination effects. An Asynoptic Sampling Theorem is thereby formulated, as is a Synoptic Retrieval Theorem, in the second part of the article. In the latter, a procedure is developed for retrieving the unique correspondence between the asymptotic data and the synoptic maps. Applications examples are provided using data from the Nimbus-6 satellite.

  14. On the mass of static metrics with positive cosmological constant: I

    NASA Astrophysics Data System (ADS)

    Borghini, Stefano; Mazzieri, Lorenzo

    2018-06-01

    In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.

  15. Special ergodic theorems and dynamical large deviations

    NASA Astrophysics Data System (ADS)

    Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav

    2012-11-01

    Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.

  16. Linear Stochastic Differential Equations on the Dual of a Countably Hilbert Nuclear Space with Applications to Neurophysiology.

    DTIC Science & Technology

    1985-06-01

    o - - % - , . - . 65 su JT~qo0+J I < OD e ~~ O<t<T Hence the Banach- Steinhaus theorem yields the existence of PT eg o and a constant CT>0 such that...interior(K) sup ly(s+h)[+4l < co V + e |, heK and therefore the Banach- Steinhaus theorem yields the existence of a constant CK and rK e no such that...y(h&)[TtA4Ji e e16~,V (0,t) But W- Y(4) is weakly continuous, so again the Banach- Steinhaus theorem yields the existence of a constant Ct and r e v

  17. Quantitative Voronovskaya and Grüss-Voronovskaya type theorems for Jain-Durrmeyer operators of blending type

    NASA Astrophysics Data System (ADS)

    Kajla, Arun; Deshwal, Sheetal; Agrawal, P. N.

    2018-05-01

    In the present paper we introduce a Durrmeyer variant of Jain operators based on a function ρ (x) where ρ is a continuously differentiable function on [0,∞), ρ (0)=0 and \\inf ρ '(x)≥ a, a >0, x \\in [0,∞) . For these new operators, some indispensable auxiliary results are established first. Then, the degree of approximation with the aid of Ditzian-Totik modulus of smoothness and the rate of convergence for functions whose derivatives are of bounded variation, is obtained. Further, we focus on the study of a Voronovskaja type asymptotic theorem, quantitative Voronovskaya and Grüss-Voronovskaya type theorems.

  18. Formalization of the Integral Calculus in the PVS Theorem Prover

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    2004-01-01

    The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  19. The Non-Signalling theorem in generalizations of Bell's theorem

    NASA Astrophysics Data System (ADS)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational interpretation of the non-signalling theorem. We here argue that the non-signalling theorem must instead be viewed as an epistemic, operational theorem i.e. one that refers exclusively to what epistemic agents can, or rather cannot, do. That is, we emphasize that the non-signalling theorem is a theorem about the operational inability of epistemic agents to signal information. In other words, as a proper principle, the non-signalling theorem may only be employed as an epistemic, phenomenological, or operational principle. Critically, our argument emphasizes that the non-signalling principle must not be used as an ontic principle about physical reality as such, i.e. as a theorem about the nature of physical reality independently of epistemic agents e.g. human observers. One major reason in favor of our conclusion is that any definition of signalling or of non-signalling invariably requires a reference to epistemic agents, and what these agents can actually measure and report. Otherwise, the non-signalling theorem would equal a general "no-influence" theorem. In conclusion, under the assumption that the non-signalling theorem is epistemic (i.e. "epistemic non-signalling"), the search for deterministic approaches to quantum mechanics, including NHVTs and an emergent quantum mechanics, continues to be a viable research program towards disclosing the foundations of physical reality at its smallest dimensions.

  20. Uniqueness and characterization theorems for generalized entropies

    NASA Astrophysics Data System (ADS)

    Enciso, Alberto; Tempesta, Piergiulio

    2017-12-01

    The requirement that an entropy function be composable is key: it means that the entropy of a compound system can be calculated in terms of the entropy of its independent components. We prove that, under mild regularity assumptions, the only composable generalized entropy in trace form is the Tsallis one-parameter family (which contains Boltzmann-Gibbs as a particular case). This result leads to the use of generalized entropies that are not of trace form, such as Rényi’s entropy, in the study of complex systems. In this direction, we also present a characterization theorem for a large class of composable non-trace-form entropy functions with features akin to those of Rényi’s entropy.

  1. The Crystalline Dynamics of Spiral-Shaped Curves

    NASA Astrophysics Data System (ADS)

    Dudziński, Marcin; Górka, Przemysław

    2015-07-01

    We study the motion of spiral-shaped polygonal curves by crystalline curvature. We describe this dynamics by the corresponding infinitely dimensional system of ordinary differential equations and show that the considered model is uniquely solvable. Banach's Contraction Mapping Theorem and the Bellman-Gronwall inequality are the main tools applied in our proof.

  2. Evolutionary Oseen Model for Generalized Newtonian Fluid with Multivalued Nonmonotone Friction Law

    NASA Astrophysics Data System (ADS)

    Migórski, Stanisław; Dudek, Sylwia

    2018-03-01

    The paper deals with the non-stationary Oseen system of equations for the generalized Newtonian incompressible fluid with multivalued and nonmonotone frictional slip boundary conditions. First, we provide a result on existence of a unique solution to an abstract evolutionary inclusion involving the Clarke subdifferential term for a nonconvex function. We employ a method based on a surjectivity theorem for multivalued L-pseudomonotone operators. Then, we exploit the abstract result to prove the weak unique solvability of the Oseen system.

  3. Constant mean curvature slicings of Kantowski-Sachs spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinzle, J. Mark

    2011-04-15

    We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.

  4. Quasi-measures on the group G{sup m}, Dirichlet sets, and uniqueness problems for multiple Walsh series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotnikov, Mikhail G

    2011-02-11

    Multiple Walsh series (S) on the group G{sup m} are studied. It is proved that every at most countable set is a uniqueness set for series (S) under convergence over cubes. The recovery problem is solved for the coefficients of series (S) that converge outside countable sets or outside sets of Dirichlet type. A number of analogues of the de la Vallee Poussin theorem are established for series (S). Bibliography: 28 titles.

  5. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  6. Steady States, Fluctuation-Dissipation Theorems and Homogenization for Reversible Diffusions in a Random Environment

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Piatnitski, A.

    2018-04-01

    Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.

  7. A Meinardus Theorem with Multiple Singularities

    NASA Astrophysics Data System (ADS)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  8. Discrete Jordan curve theorem

    NASA Astrophysics Data System (ADS)

    Chen, Li

    1999-09-01

    According to a general definition of discrete curves, surfaces, and manifolds (Li Chen, 'Generalized discrete object tracking algorithms and implementations, ' In Melter, Wu, and Latecki ed, Vision Geometry VI, SPIE Vol. 3168, pp 184 - 195, 1997.). This paper focuses on the Jordan curve theorem in 2D discrete spaces. The Jordan curve theorem says that a (simply) closed curve separates a simply connected surface into two components. Based on the definition of discrete surfaces, we give three reasonable definitions of simply connected spaces. Theoretically, these three definition shall be equivalent. We have proved the Jordan curve theorem under the third definition of simply connected spaces. The Jordan theorem shows the relationship among an object, its boundary, and its outside area. In continuous space, the boundary of an mD manifold is an (m - 1)D manifold. The similar result does apply to regular discrete manifolds. The concept of a new regular nD-cell is developed based on the regular surface point in 2D, and well-composed objects in 2D and 3D given by Latecki (L. Latecki, '3D well-composed pictures,' In Melter, Wu, and Latecki ed, Vision Geometry IV, SPIE Vol 2573, pp 196 - 203, 1995.).

  9. Theorem Proving In Higher Order Logics

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  10. Chaotic coordinates for the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Hudson, Stuart; Suzuki, Yasuhiro

    2014-10-01

    The study of dynamical systems is facilitated by a coordinate framework with coordinate surfaces that coincide with invariant structures of the dynamical flow. For axisymmetric systems, a continuous family of invariant surfaces is guaranteed and straight-fieldline coordinates may be constructed. For non-integrable systems, e.g. stellarators, perturbed tokamaks, this continuous family is broken. Nevertheless, coordinates can still be constructed that simplify the description of the dynamics. The Poincare-Birkhoff theorem, the Aubry-Mather theorem, and the KAM theorem show that there are important structures that are invariant under the perturbed dynamics; namely the periodic orbits, the cantori, and the irrational flux surfaces. Coordinates adapted to these invariant sets, which we call chaotic coordinates, provide substantial advantages. The regular motion becomes straight, and the irregular motion is bounded by, and dissected by, coordinate surfaces that coincide with surfaces of locally-minimal magnetic-fieldline flux. The chaotic edge of the magnetic field, as calculated by HINT2 code, in the Large Helical Device (LHD) is examined, and a coordinate system is constructed so that the flux surfaces are ``straight'' and the islands become ``square.''

  11. Quadratic equations in Banach space, perturbation techniques and applications to Chandrasekhar's and related equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argyros, I.K.

    1984-01-01

    In this dissertation perturbation techniques are developed, based on the contraction mapping principle which can be used to prove existence and uniqueness for the quadratic equation x = y + lambdaB(x,x) (1) in a Banach space X; here B: XxX..-->..X is a bounded, symmetric bilinear operator, lambda is a positive parameter and y as a subset of X is fixed. The following is the main result. Theorem. Suppose F: XxX..-->..X is a bounded, symmetric bilinear operator and that the equation z = y + lambdaF(z,z) has a solution z/sup */ of sufficiently small norm. Then equation (1) has a uniquemore » solution in a certain closed ball centered at z/sup */. Applications. The theorem is applied to the famous Chandrasekhar equation and to the Anselone-Moore system which are of the form (1) above and yields existence and uniqueness for a solution of (1) for larger values of lambda than previously known, as well as more accurate information on the location of solutions.« less

  12. The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities

    NASA Astrophysics Data System (ADS)

    Cain, George L., Jr.; González, Luis

    2008-02-01

    The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.

  13. A generalization of Bertrand's theorem to surfaces of revolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagryadskii, Oleg A; Kudryavtseva, Elena A; Fedoseev, Denis A

    We prove a generalization of Bertrand's theorem to the case of abstract surfaces of revolution that have no 'equators'. We prove a criterion for exactly two central potentials to exist on this type of surface (up to an additive and a multiplicative constant) for which all bounded orbits are closed and there is a bounded nonsingular noncircular orbit. We prove a criterion for the existence of exactly one such potential. We study the geometry and classification of the corresponding surfaces with the aforementioned pair of potentials (gravitational and oscillatory) or unique potential (oscillatory). We show that potentials of the requiredmore » form do not exist on surfaces that do not belong to any of the classes described. Bibliography: 33 titles.« less

  14. Research in advanced formal theorem-proving techniques

    NASA Technical Reports Server (NTRS)

    Rulifson, J. F.

    1971-01-01

    The present status is summarized of a continuing research program aimed at the design and implementation of a language for expressing problem-solving procedures in several areas of artificial intelligence, including program synthesis, robot planning, and theorem proving. Notations, concepts, and procedures common to the representation and solution of many of these problems were abstracted and incorporated as features into the language. The areas of research covered are described, and abstracts of six papers that contain extensive description and technical detail of the work are presented.

  15. Physical uniqueness of higher-order Korteweg-de Vries theory for continuously stratified fluids without background shear

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2017-10-01

    The 2nd-order Korteweg-de Vries (KdV) equation and the Gardner (or extended KdV) equation are often used to investigate internal solitary waves, commonly observed in oceans and lakes. However, application of these KdV-type equations for continuously stratified fluids to geophysical problems is hindered by nonuniqueness of the higher-order coefficients and the associated correction functions to the wave fields. This study proposes to reduce arbitrariness of the higher-order KdV theory by considering its uniqueness in the following three physical senses: (i) consistency of the nonlinear higher-order coefficients and correction functions with the corresponding phase speeds, (ii) wavenumber-independence of the vertically integrated available potential energy, and (iii) its positive definiteness. The spectral (or generalized Fourier) approach based on vertical modes in the isopycnal coordinate is shown to enable an alternative derivation of the 2nd-order KdV equation, without encountering nonuniqueness. Comparison with previous theories shows that Parseval's theorem naturally yields a unique set of special conditions for (ii) and (iii). Hydrostatic fully nonlinear solutions, derived by combining the spectral approach and simple-wave analysis, reveal that both proposed and previous 2nd-order theories satisfy (i), provided that consistent definitions are used for the wave amplitude and the nonlinear correction. This condition reduces the arbitrariness when higher-order KdV-type theories are compared with observations or numerical simulations. The coefficients and correction functions that satisfy (i)-(iii) are given by explicit formulae to 2nd order and by algebraic recurrence relationships to arbitrary order for hydrostatic fully nonlinear and linear fully nonhydrostatic effects.

  16. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Austin, Anthony P.; Trefethen, Lloyd N.

    The trigonometric interpolants to a periodic function f in equispaced points converge if f is Dini-continuous, and the associated quadrature formula, the trapezoidal rule, converges if f is continuous. What if the points are perturbed? With equispaced grid spacing h, let each point be perturbed by an arbitrary amount <= alpha h, where alpha is an element of[0, 1/2) is a fixed constant. The Kadec 1/4 theorem of sampling theory suggests there may be trouble for alpha >= 1/4. We show that convergence of both the interpolants and the quadrature estimates is guaranteed for all alpha < 1/2 if fmore » is twice continuously differentiable, with the convergence rate depending on the smoothness of f. More precisely, it is enough for f to have 4 alpha derivatives in a certain sense, and we conjecture that 2 alpha derivatives are enough. Connections with the Fejer-Kalmar theorem are discussed.« less

  18. Existence, uniqueness, and stability of stochastic neutral functional differential equations of Sobolev-type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xuetao; Zhu, Quanxin, E-mail: zqx22@126.com

    2015-12-15

    In this paper, we are mainly concerned with a class of stochastic neutral functional differential equations of Sobolev-type with Poisson jumps. Under two different sets of conditions, we establish the existence of the mild solution by applying the Leray-Schauder alternative theory and the Sadakovskii’s fixed point theorem, respectively. Furthermore, we use the Bihari’s inequality to prove the Osgood type uniqueness. Also, the mean square exponential stability is investigated by applying the Gronwall inequality. Finally, two examples are given to illustrate the theory results.

  19. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Heusler, Markus

    1998-01-01

    The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.

  20. Stationary Black Holes: Uniqueness and Beyond.

    PubMed

    Chruściel, Piotr T; Costa, João Lopes; Heusler, Markus

    2012-01-01

    The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.

  1. Multiple positive solutions to a coupled systems of nonlinear fractional differential equations.

    PubMed

    Shah, Kamal; Khan, Rahmat Ali

    2016-01-01

    In this article, we study existence, uniqueness and nonexistence of positive solution to a highly nonlinear coupled system of fractional order differential equations. Necessary and sufficient conditions for the existence and uniqueness of positive solution are developed by using Perov's fixed point theorem for the considered problem. Further, we also established sufficient conditions for existence of multiplicity results for positive solutions. Also, we developed some conditions under which the considered coupled system of fractional order differential equations has no positive solution. Appropriate examples are also provided which demonstrate our results.

  2. Entire solutions of nonlinear differential-difference equations.

    PubMed

    Li, Cuiping; Lü, Feng; Xu, Junfeng

    2016-01-01

    In this paper, we describe the properties of entire solutions of a nonlinear differential-difference equation and a Fermat type equation, and improve several previous theorems greatly. In addition, we also deduce a uniqueness result for an entire function f(z) that shares a set with its shift [Formula: see text], which is a generalization of a result of Liu.

  3. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.

    PubMed

    Abbas, Ash Mohammad

    2012-01-01

    In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.

  4. ON THE UNIQUENESS OF HAAR SERIES CONVERGENT IN THE METRICS OF L_p\\lbrack0,\\,1\\rbrack, 0, AND IN MEASURE

    NASA Astrophysics Data System (ADS)

    Talalyan, A. A.

    1986-02-01

    It is established that if the partial sums S_n(x) of a Haar series \\sum a_n\\chi_n(x) converge to f(x)\\in L_p\\lbrack0,\\,1\\rbrack, 0, at the rate \\int_0^1\\vert S_n-f\\vert^p dx=o(1/n^{1/p}), then f(x) is A-integrable and a_n=(A)\\int_0^1 f(x)\\chi_n(x)dx, for n=1,\\,2,\\,\\dots. Analogous theorems are proved also for the case where Haar series converge in the metric of L_p\\lbrack0,\\,1\\rbrack, 0, over some subsequences of partial sums. The sharpness of these theorems is also proved.Bibliography: 10 titles.

  5. An Empirical Evaluation of Automated Theorem Provers in Software Certification

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Fischer, Bernd; Schumann, Johann

    2004-01-01

    We describe a system for the automated certification of safety properties of NASA software. The system uses Hoare-style program verification technology to generate proof obligations which are then processed by an automated first-order theorem prover (ATP). We discuss the unique requirements this application places on the ATPs, focusing on automation, proof checking, and usability. For full automation, however, the obligations must be aggressively preprocessed and simplified, and we demonstrate how the individual simplification stages, which are implemented by rewriting, influence the ability of the ATPs to solve the proof tasks. Our results are based on 13 certification experiments that lead to more than 25,000 proof tasks which have each been attempted by Vampire, Spass, e-setheo, and Otter. The proofs found by Otter have been proof-checked by IVY.

  6. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-04-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  7. The Central Limit Theorem for Supercritical Oriented Percolation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Tzioufas, Achillefs

    2018-06-01

    We consider the cardinality of supercritical oriented bond percolation in two dimensions. We show that, whenever the the origin is conditioned to percolate, the process appropriately normalized converges asymptotically in distribution to the standard normal law. This resolves a longstanding open problem pointed out to in several instances in the literature. The result applies also to the continuous-time analog of the process, viz. the basic one-dimensional contact process. We also derive general random-indices central limit theorems for associated random variables as byproducts of our proof.

  8. Application of functional analysis to perturbation theory of differential equations. [nonlinear perturbation of the harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Bogdan, V. M.; Bond, V. B.

    1980-01-01

    The deviation of the solution of the differential equation y' = f(t, y), y(O) = y sub O from the solution of the perturbed system z' = f(t, z) + g(t, z), z(O) = z sub O was investigated for the case where f and g are continuous functions on I x R sup n into R sup n, where I = (o, a) or I = (o, infinity). These functions are assumed to satisfy the Lipschitz condition in the variable z. The space Lip(I) of all such functions with suitable norms forms a Banach space. By introducing a suitable norm in the space of continuous functions C(I), introducing the problem can be reduced to an equivalent problem in terminology of operators in such spaces. A theorem on existence and uniqueness of the solution is presented by means of Banach space technique. Norm estimates on the rate of growth of such solutions are found. As a consequence, estimates of deviation of a solution due to perturbation are obtained. Continuity of the solution on the initial data and on the perturbation is established. A nonlinear perturbation of the harmonic oscillator is considered a perturbation of equations of the restricted three body problem linearized at libration point.

  9. Formal methods for modeling and analysis of hybrid systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Ashish (Inventor); Lincoln, Patrick D. (Inventor)

    2009-01-01

    A technique based on the use of a quantifier elimination decision procedure for real closed fields and simple theorem proving to construct a series of successively finer qualitative abstractions of hybrid automata is taught. The resulting abstractions are always discrete transition systems which can then be used by any traditional analysis tool. The constructed abstractions are conservative and can be used to establish safety properties of the original system. The technique works on linear and non-linear polynomial hybrid systems: the guards on discrete transitions and the continuous flows in all modes can be specified using arbitrary polynomial expressions over the continuous variables. An exemplar tool in the SAL environment built over the theorem prover PVS is detailed. The technique scales well to large and complex hybrid systems.

  10. Continuous-time quantum walks on star graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salimi, S.

    2009-06-15

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  11. Support for the existence of invertible maps between electronic densities and non-analytic 1-body external potentials in non-relativistic time-dependent quantum mechanics

    NASA Astrophysics Data System (ADS)

    Mosquera, Martín A.

    2017-10-01

    Provided the initial state, the Runge-Gross theorem establishes that the time-dependent (TD) external potential of a system of non-relativistic electrons determines uniquely their TD electronic density, and vice versa (up to a constant in the potential). This theorem requires the TD external potential and density to be Taylor-expandable around the initial time of the propagation. This paper presents an extension without this restriction. Given the initial state of the system and evolution of the density due to some TD scalar potential, we show that a perturbative (not necessarily weak) TD potential that induces a non-zero divergence of the external force-density, inside a small spatial subset and immediately after the initial propagation time, will cause a change in the density within that subset, implying that the TD potential uniquely determines the TD density. In this proof, we assume unitary evolution of wavefunctions and first-order differentiability (which does not imply analyticity) in time of the internal and external force-densities, electronic density, current density, and their spatial derivatives over the small spatial subset and short time interval.

  12. The first boundary-value problem for a fractional diffusion-wave equation in a non-cylindrical domain

    NASA Astrophysics Data System (ADS)

    Pskhu, A. V.

    2017-12-01

    We solve the first boundary-value problem in a non-cylindrical domain for a diffusion-wave equation with the Dzhrbashyan- Nersesyan operator of fractional differentiation with respect to the time variable. We prove an existence and uniqueness theorem for this problem, and construct a representation of the solution. We show that a sufficient condition for unique solubility is the condition of Hölder smoothness for the lateral boundary of the domain. The corresponding results for equations with Riemann- Liouville and Caputo derivatives are particular cases of results obtained here.

  13. On the M-function and Borg-Marchenko theorems for vector-valued Sturm-Liouville equations

    NASA Astrophysics Data System (ADS)

    Andersson, E.

    2003-12-01

    We will consider a vector-valued Sturm-Liouville equation of the form R[U]≔-(PU')'+QU=λWU, x∈[0,b), with P-1, W, Q∈Lloc1([0,b))m×m being Hermitian and under some additional conditions on P-1 and W. We give an elementary deduction of the leading order term asymptotics for the Titchmarsh-Weyl M-function corresponding to this equation. In the special case of P=W=I, Q∈L1([0,∞))m×m and the Neumann boundary conditions at 0, we will also prove that M=(1/√-λ )(I+R)(I-R)-1, where R=limn→∞ Rn=∑n=1∞Qn, for recursively defined sequences {Rn} and {Qn}. If Q∈Lloc1([0,b))m×m, 0

  14. Parametrization of local CR automorphisms by finite jets and applications

    NASA Astrophysics Data System (ADS)

    Lamel, Bernhard; Mir, Nordine

    2007-04-01

    For any real-analytic hypersurface Msubset {C}^N , which does not contain any complex-analytic subvariety of positive dimension, we show that for every point pin M the local real-analytic CR automorphisms of M fixing p can be parametrized real-analytically by their ell_p jets at p . As a direct application, we derive a Lie group structure for the topological group operatorname{Aut}(M,p) . Furthermore, we also show that the order ell_p of the jet space in which the group operatorname{Aut}(M,p) embeds can be chosen to depend upper-semicontinuously on p . As a first consequence, it follows that given any compact real-analytic hypersurface M in {C}^N , there exists an integer k depending only on M such that for every point pin M germs at p of CR diffeomorphisms mapping M into another real-analytic hypersurface in {C}^N are uniquely determined by their k -jet at that point. Another consequence is the following boundary version of H. Cartan's uniqueness theorem: given any bounded domain Ω with smooth real-analytic boundary, there exists an integer k depending only on partial Ω such that if H\\colon Ωto Ω is a proper holomorphic mapping extending smoothly up to partial Ω near some point pin partial Ω with the same k -jet at p with that of the identity mapping, then necessarily H=Id . Our parametrization theorem also holds for the stability group of any essentially finite minimal real-analytic CR manifold of arbitrary codimension. One of the new main tools developed in the paper, which may be of independent interest, is a parametrization theorem for invertible solutions of a certain kind of singular analytic equations, which roughly speaking consists of inverting certain families of parametrized maps with singularities.

  15. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Lin, Haoze

    2017-07-01

    Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.

  16. The new electromagnetic tetrads, infinite tetrad nesting and the non-trivial emergence of complex numbers in real theories of gravitation

    NASA Astrophysics Data System (ADS)

    Garat, Alcides

    How complex numbers get into play in a non-trivial way in real theories of gravitation is relevant since in a unified structure they should be able to relate in a natural way with quantum theories. For a long time this issue has been lingering on both relativistic formulations and quantum theories. We will analyze this fundamental subject under the light of new group isomorphism theorems linking local internal groups of transformations and local groups of spacetime transformations. The bridge between these two kinds of transformations is represented by new tetrads introduced previously. It is precisely through these local tetrad structures that we will provide a non-trivial answer to this old issue. These new tetrads have two fundamental building components, the skeletons and the gauge vectors. It is these constructive elements that provide the mathematical support that allows to prove group isomorphism theorems. In addition to this, we will prove a unique new property, the infinite tetrad nesting, alternating the nesting with non-Abelian tetrads in the construction of the tetrad gauge vectors. As an application we will demonstrate an alternative proof of a new group isomorphism theorem.

  17. Weak ergodicity of population evolution processes.

    PubMed

    Inaba, H

    1989-10-01

    The weak ergodic theorems of mathematical demography state that the age distribution of a closed population is asymptotically independent of the initial distribution. In this paper, we provide a new proof of the weak ergodic theorem of the multistate population model with continuous time. The main tool to attain this purpose is a theory of multiplicative processes, which was mainly developed by Garrett Birkhoff, who showed that ergodic properties generally hold for an appropriate class of multiplicative processes. First, we construct a general theory of multiplicative processes on a Banach lattice. Next, we formulate a dynamical model of a multistate population and show that its evolution operator forms a multiplicative process on the state space of the population. Subsequently, we investigate a sufficient condition that guarantees the weak ergodicity of the multiplicative process. Finally, we prove the weak and strong ergodic theorems for the multistate population and resolve the consistency problem.

  18. Ordering relations for quantum states

    NASA Astrophysics Data System (ADS)

    Durham, Ian

    2015-03-01

    It is often desirable to model physical states in an order-theoretic manner, e.g. as a partially ordered set. Classical states are known to possess a unique ordering relation corresponding to a neo-realist interpretation of these states. No such unique relation exists for quantum states. This lack of a unique ordering relation for quantum states turns out to be a manifestation of quantum contextuality vis-à-vis the Kochen-Specker theorem. It also turns out that this provides a link to certain large-scale thermodynamic processes. The suggestion that the ordering of quantum states leads to macroscopic thermodynamic processes is at least five decades old. The suggestion that the mechanism that drives the ordering is contextuality, is unique to this work. The argument is framed in the language of the theories of domains, categories, and topoi. Financial support provided by FQXi.

  19. Surface loading of a viscoelastic earth-I. General theory

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  20. Refinements of nonuniform estimates of the rate of convergence in the CLT to a stable law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloznyalis, M.

    1994-10-25

    In this paper we construct new nonuniform estimates for the rate of convergence to the strictly stable distribution with exponent {alpha} {element_of} [0, 2] in a finite-dimensional CLT. This paper is a continuation of [1,7]. The nonuniform estimates obtained here in terms of truncated pseudomoments (see Theorems 1, 2 below) have in certain cases a better order of decrease than the corresponding estimates [1, 7], where pseudomoments have been used. In the proofs of Theorems 1, 2 we have used basically the methods of [1, 7, 8].

  1. On Graph Isomorphism and the PageRank Algorithm

    DTIC Science & Technology

    2008-09-01

    specifies the probability of visiting each node from any other node. The perturbed matrix satisfies the Perron - Frobenius theorem’s conditions. Therefore... Frobenius and Perron theorems establishes the matrix must yield the dominant eigenvalue, one. Normalizing the unique and associated dominant eigenvector...is constructed such that none of its entries equal zero. An arbitrary PageRank matrix, S, is irreducible and satisfies the Perron - Frobenius

  2. Optimal Control for Stochastic Delay Evolution Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingxin, E-mail: mqx@hutc.zj.cn; Shen, Yang, E-mail: skyshen87@gmail.com

    2016-08-15

    In this paper, we investigate a class of infinite-dimensional optimal control problems, where the state equation is given by a stochastic delay evolution equation with random coefficients, and the corresponding adjoint equation is given by an anticipated backward stochastic evolution equation. We first prove the continuous dependence theorems for stochastic delay evolution equations and anticipated backward stochastic evolution equations, and show the existence and uniqueness of solutions to anticipated backward stochastic evolution equations. Then we establish necessary and sufficient conditions for optimality of the control problem in the form of Pontryagin’s maximum principles. To illustrate the theoretical results, we applymore » stochastic maximum principles to study two examples, an infinite-dimensional linear-quadratic control problem with delay and an optimal control of a Dirichlet problem for a stochastic partial differential equation with delay. Further applications of the two examples to a Cauchy problem for a controlled linear stochastic partial differential equation and an optimal harvesting problem are also considered.« less

  3. Exploring quantum thermodynamics in continuous measurement of superconducting qubits

    NASA Astrophysics Data System (ADS)

    Murch, Kater

    The extension of thermodynamics into the realm of quantum mechanics, where quantum fluctuations dominate and systems need not occupy definite states, poses unique challenges. Superconducting quantum circuits offer exquisite control over the environment of simple quantum systems allowing the exploration of thermodynamics at the quantum level through measurement and feedback control. We use a superconducting transmon qubit that is resonantly coupled to a waveguide cavity as an effectively one-dimensional quantum emitter. By driving the emitter and detecting the fluorescence with a near-quantum-limited Josephson parametric amplifier, we track the evolution of the quantum state and characterize the work and heat along single quantum trajectories. By using quantum feedback control to compensate for heat exchanged with the emitter's environment we are able to extract the work statistics associated with the quantum evolution and examine fundamental fluctuation theorems in non-equilibrium thermodynamics. This work was supported by the Alfred P. Sloan Foundation, the National Science Foundation, and the Office of Naval Research.

  4. On the membrane approximation in isothermal film casting

    NASA Astrophysics Data System (ADS)

    Hagen, Thomas

    2014-08-01

    In this work, a one-dimensional model for isothermal film casting is studied. Film casting is an important engineering process to manufacture thin films and sheets from a highly viscous polymer melt. The model equations account for variations in film width and film thickness, and arise from thinness and kinematic assumptions for the free liquid film. The first aspect of our study is a rigorous discussion of the existence and uniqueness of stationary solutions. This objective is approached via the argument principle, exploiting the homotopy invariance of a family of analytic functions. As our second objective, we analyze the linearization of the governing equations about stationary solutions. It is shown that solutions for the associated boundary-initial value problem are given by a strongly continuous semigroup of bounded linear operators. To reach this result, we cast the relevant Cauchy problem in a more accessible form. These transformed equations allow us insight into the regularity of the semigroup, thus yielding the validity of the spectral mapping theorem for the semigroup and the spectrally determined growth property.

  5. Thermodynamical transcription of density functional theory with minimum Fisher information

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2018-03-01

    Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.

  6. On the divergence of triangular and eccentric spherical sums of double Fourier series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagulyan, G A

    We construct a continuous function on the torus with almost everywhere divergent triangular sums of double Fourier series. We also prove an analogous theorem for eccentric spherical sums. Bibliography: 14 titles.

  7. Number Theoretic Background

    NASA Astrophysics Data System (ADS)

    Rudnick, Z.

    Contents: 1. Introduction 2. Divisibility 2.1. Basics on Divisibility 2.2. The Greatest Common Divisor 2.3. The Euclidean Algorithm 2.4. The Diophantine Equation ax+by=c 3. Prime Numbers 3.1. The Fundamental Theorem of Arithmetic 3.2. There Are Infinitely Many Primes 3.3. The Density of Primes 3.4. Primes in Arithmetic Progressions 4. Continued Fractions 5. Modular Arithmetic 5.1. Congruences 5.2. Modular Inverses 5.3. The Chinese Remainder Theorem 5.4. The Structure of the Multiplicative Group (Z/NZ)^* 5.5. Primitive Roots 6. Quadratic Congruences 6.1. Euler's Criterion 6.2. The Legendre Symbol and Quadratic Reciprocity 7. Pell's Equation 7.1. The Group Law 7.2. Integer Solutions 7.3. Finding the Fundamental Solution 8. The Riemann Zeta Function 8.1 Analytic Continuation and Functinal Equation of ζ(s) 8.2 Connecting the Primes and the Zeros of ζ(s) 8.3 The Riemann Hypothesis References

  8. Finite-size analysis of continuous-variable measurement-device-independent quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Zhang, Yichen; Zhao, Yijia; Wang, Xiangyu; Yu, Song; Guo, Hong

    2017-10-01

    We study the impact of the finite-size effect on the continuous-variable measurement-device-independent quantum key distribution (CV-MDI QKD) protocol, mainly considering the finite-size effect on the parameter estimation procedure. The central-limit theorem and maximum likelihood estimation theorem are used to estimate the parameters. We also analyze the relationship between the number of exchanged signals and the optimal modulation variance in the protocol. It is proved that when Charlie's position is close to Bob, the CV-MDI QKD protocol has the farthest transmission distance in the finite-size scenario. Finally, we discuss the impact of finite-size effects related to the practical detection in the CV-MDI QKD protocol. The overall results indicate that the finite-size effect has a great influence on the secret-key rate of the CV-MDI QKD protocol and should not be ignored.

  9. The Price Equation, Gradient Dynamics, and Continuous Trait Game Theory.

    PubMed

    Lehtonen, Jussi

    2018-01-01

    A recent article convincingly nominated the Price equation as the fundamental theorem of evolution and used it as a foundation to derive several other theorems. A major section of evolutionary theory that was not addressed is that of game theory and gradient dynamics of continuous traits with frequency-dependent fitness. Deriving fundamental results in these fields under the unifying framework of the Price equation illuminates similarities and differences between approaches and allows a simple, unified view of game-theoretical and dynamic concepts. Using Taylor polynomials and the Price equation, I derive a dynamic measure of evolutionary change, a condition for singular points, the convergence stability criterion, and an alternative interpretation of evolutionary stability. Furthermore, by applying the Price equation to a multivariable Taylor polynomial, the direct fitness approach to kin selection emerges. Finally, I compare these results to the mean gradient equation of quantitative genetics and the canonical equation of adaptive dynamics.

  10. Uniqueness of large positive solutions

    NASA Astrophysics Data System (ADS)

    López-Gómez, Julián; Maire, Luis

    2017-08-01

    We establish the uniqueness of the positive solution of the singular problem (1.1) through some standard comparison techniques involving the maximum principle. Our proofs do not invoke to the blow-up rates of the solutions, as in most of the specialized literature. We give two different types of results according to the geometrical properties of Ω and the regularity of partial Ω . Even in the autonomous case, our theorems are extremely sharp extensions of all existing results. Precisely, when a(x)≡ 1, it is shown that the monotonicity and superadditivity of f( u) with constant C≥ 0 entail the uniqueness; f is said to be superadditive with constant C≥ 0 if f(a+b) ≥ f(a) + f(b) - C \\quad for all a, b ≥ 0. This condition, introduced by Marcus and Véron (J Evol Equ 3:637-652, 2004), weakens all previous sufficient conditions for uniqueness, as it will become apparent in this paper.

  11. Systems of nonlinear algebraic equations with positive solutions.

    PubMed

    Ciurte, Anca; Nedevschi, Sergiu; Rasa, Ioan

    2017-01-01

    We are concerned with the positive solutions of an algebraic system depending on a parameter [Formula: see text] and arising in economics. For [Formula: see text] we prove that the system has at least a solution. For [Formula: see text] we give three proofs of the existence and a proof of the uniqueness of the solution. Brouwer's theorem and inequalities involving convex functions are essential tools in our proofs.

  12. Dynamic contact problem with adhesion and damage between thermo-electro-elasto-viscoplastic bodies

    NASA Astrophysics Data System (ADS)

    Hadj ammar, Tedjani; Saïdi, Abdelkader; Azeb Ahmed, Abdelaziz

    2017-05-01

    We study of a dynamic contact problem between two thermo-electro-elasto-viscoplastic bodies with damage and adhesion. The contact is frictionless and is modeled with normal compliance condition. We derive variational formulation for the model and prove an existence and uniqueness result of the weak solution. The proof is based on arguments of evolutionary variational inequalities, parabolic inequalities, differential equations, and fixed point theorem.

  13. A semigroup approach to the strong ergodic theorem of the multistate stable population process.

    PubMed

    Inaba, H

    1988-01-01

    "In this paper we first formulate the dynamics of multistate stable population processes as a partial differential equation. Next, we rewrite this equation as an abstract differential equation in a Banach space, and solve it by using the theory of strongly continuous semigroups of bounded linear operators. Subsequently, we investigate the asymptotic behavior of this semigroup to show the strong ergodic theorem which states that there exists a stable distribution independent of the initial distribution. Finally, we introduce the dual problem in order to obtain a logical definition for the reproductive value and we discuss its applications." (SUMMARY IN FRE) excerpt

  14. Direct and inverse theorems on approximation by root functions of a regular boundary-value problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radzievskii, G V

    2006-08-31

    One considers the spectral problem x{sup (n)}+ Fx={lambda}x with boundary conditions U{sub j}(x)=0, j=1,...,n, for functions x on [0,1]. It is assumed that F is a linear bounded operator from the Hoelder space C{sup {gamma}}, {gamma} element of [0,n-1), into L{sub 1} and the U{sub j} are bounded linear functionals on C{sup k{sub j}} with k{sub j} element of {l_brace}0,...,n- 1{r_brace}. Let P{sub {zeta}} be the linear span of the root functions of the problem x{sup (n)}+ Fx={lambda}x, U{sub j}(x)=0, j=1,...,n, corresponding to the eigenvalues {lambda}{sub k} with |{lambda}{sub k}|<{zeta}{sup n}, and let E{sub {zeta}}(f){sub W{sub p}{sup l}}:=inf{l_brace}||f-g||{sub W{sub p}{supmore » l}}:g element of P{sub {zeta}}{r_brace}. An estimate of E{sub {zeta}}(f){sub W{sub p}{sup l}} is obtained in terms of the K-functional K({zeta}{sup -m},f;W{sub p}{sup l},W{sub p,U}{sup l+m}):= inf{l_brace}||f-x||{sub W{sub p}{sup l}}+{zeta}{sup -m}||x||{sub W{sub p}{sup l}{sup +}{sup m}}:x element of W{sub p}{sup l+m}, U{sub j}(x)=0 for k{sub j}

  15. On the Tensorial Nature of Fluxes in Continuous Media.

    ERIC Educational Resources Information Center

    Stokes, Vijay Kumar; Ramkrishna, Doraiswami

    1982-01-01

    Argues that mass and energy fluxes in a fluid are vectors. Topics include the stress tensor, theorem for tensor fields, mass flux as a vector, stress as a second order tensor, and energy flux as a tensor. (SK)

  16. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  17. The mechanical problems on additive manufacturing of viscoelastic solids with integral conditions on a surface increasing in the growth process

    NASA Astrophysics Data System (ADS)

    Parshin, D. A.; Manzhirov, A. V.

    2018-04-01

    Quasistatic mechanical problems on additive manufacturing aging viscoelastic solids are investigated. The processes of piecewise-continuous accretion of such solids are considered. The consideration is carried out in the framework of linear mechanics of growing solids. A theorem about commutativity of the integration over an arbitrary surface increasing in the solid growing process and the time-derived integral operator of viscoelasticity with a limit depending on the solid point is proved. This theorem provides an efficient way to construct on the basis of Saint-Venant principle solutions of nonclassical boundary-value problems for describing the mechanical behaviour of additively formed solids with integral satisfaction of boundary conditions on the surfaces expanding due to the additional material influx to the formed solid. The constructed solutions will retrace the evolution of the stress-strain state of the solids under consideration during and after the processes of their additive formation. An example of applying the proved theorem is given.

  18. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  19. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  20. A Fixed Point Theorem in Weak Topology for Successively Recurrent System of Set-Valued Mapping Equations and Its Applications

    NASA Astrophysics Data System (ADS)

    Horiuchi, Kazuo

    Let us introduce n (≥ 2) mappings fi(i = 1, …, n ≡ 0) defined on reflexive real Banach spaces Xi-1 and let fi : Xi-1 → Yi be completely continuous on bounded convex closed subsets X_{i-1}^{(0)} \\\\subset X_{i-1}. Moreover, let us introduce n set-valued mappings F_i : X_{i-1} \\\\times Y_i \\\\to {\\\\cal F}_c(X_i) (the family of all non-empty compact subsets of Xi), (i=1, …, n ≡ 0). Here, we have a fixed point theorem in weak topology on the successively recurrent system of set-valued mapping equations: xi ∈ Fi(xi-1, fi(xi-1)), (i=1, …, n ≡ 0). This theorem can be applied immediately to analysis of the availability of system of circular networks of channels undergone by uncertain fluctuations and to evaluation of the tolerability of behaviors of those systems.

  1. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  2. On noncommutative Levi-Civita connections

    NASA Astrophysics Data System (ADS)

    Peterka, Mira A.; Sheu, Albert Jeu-Liang

    We make some observations about Rosenberg’s Levi-Civita connections on noncommutative tori, noting the non-uniqueness of general torsion-free metric-compatible connections without prescribed connection operator for the inner *-derivations, the nontrivial curvature form of the inner *-derivations, and the validity of the Gauss-Bonnet theorem for two classes of nonconformal deformations of the flat metric on the noncommutative two-tori, including the case of noncommuting scalings along the principal directions of a two-torus.

  3. Fedosov Deformation Quantization as a BRST Theory

    NASA Astrophysics Data System (ADS)

    Grigoriev, M. A.; Lyakhovich, S. L.

    The relationship is established between the Fedosov deformation quantization of a general symplectic manifold and the BFV-BRST quantization of constrained dynamical systems. The original symplectic manifold M is presented as a second class constrained surface in the fibre bundle ?*ρM which is a certain modification of a usual cotangent bundle equipped with a natural symplectic structure. The second class system is converted into the first class one by continuation of the constraints into the extended manifold, being a direct sum of ?*ρM and the tangent bundle TM. This extended manifold is equipped with a nontrivial Poisson bracket which naturally involves two basic ingredients of Fedosov geometry: the symplectic structure and the symplectic connection. The constructed first class constrained theory, being equivalent to the original symplectic manifold, is quantized through the BFV-BRST procedure. The existence theorem is proven for the quantum BRST charge and the quantum BRST invariant observables. The adjoint action of the quantum BRST charge is identified with the Abelian Fedosov connection while any observable, being proven to be a unique BRST invariant continuation for the values defined in the original symplectic manifold, is identified with the Fedosov flat section of the Weyl bundle. The Fedosov fibrewise star multiplication is thus recognized as a conventional product of the quantum BRST invariant observables.

  4. On Schrödinger's bridge problem

    NASA Astrophysics Data System (ADS)

    Friedland, S.

    2017-11-01

    In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.

  5. The Contextuality Loophole is Fatal for the Derivation of Bell Inequalities: Reply to a Comment by I. Schmelzer

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Kupczynski, Marian

    2017-02-01

    Ilya Schmelzer wrote recently: Nieuwenhuizen argued that there exists some "contextuality loophole" in Bell's theorem. This claim in unjustified. It is made clear that this arose from attaching a meaning to the title and the content of the paper different from the one intended by Nieuwenhuizen. "Contextual loophole" means only that if the supplementary parameters describing measuring instruments are correctly introduced, Bell and Bell-type inequalities may not be proven. It is also stressed that a hidden variable model suffers from a "contextuality loophole" if it tries to describe different sets of incompatible experiments using a unique probability space and a unique joint probability distribution.

  6. On the existence, uniqueness, and asymptotic normality of a consistent solution of the likelihood equations for nonidentically distributed observations: Applications to missing data problems

    NASA Technical Reports Server (NTRS)

    Peters, C. (Principal Investigator)

    1980-01-01

    A general theorem is given which establishes the existence and uniqueness of a consistent solution of the likelihood equations given a sequence of independent random vectors whose distributions are not identical but have the same parameter set. In addition, it is shown that the consistent solution is a MLE and that it is asymptotically normal and efficient. Two applications are discussed: one in which independent observations of a normal random vector have missing components, and the other in which the parameters in a mixture from an exponential family are estimated using independent homogeneous sample blocks of different sizes.

  7. A Historical Gem from Vito Volterra.

    ERIC Educational Resources Information Center

    Dunham, William

    1990-01-01

    Presented is the theorem proposed by Volterra based on the idea that there is no function continuous at each rational point and discontinuous at each irrational point. Discussed are the two conclusions that were drawn by Volterra based on his solution to this problem. (KR)

  8. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities.

    PubMed

    Xin, Yun; Cheng, Zhibo

    2017-01-01

    In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ -Laplacian singular Liénard equation with attractive and repulsive singularities.

  9. Global attractivity of an almost periodic N-species nonlinear ecological competitive model

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Han, Maoan; Huang, Zhenkun

    2008-01-01

    By using comparison theorem and constructing suitable Lyapunov functional, we study the following almost periodic nonlinear N-species competitive Lotka-Volterra model: A set of sufficient conditions is obtained for the existence and global attractivity of a unique positive almost periodic solution of the above model. As applications, some special competition models are studied again, our new results improve and generalize former results. Examples and their simulations show the feasibility of our main results.

  10. Static solutions for fourth order gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William

    2010-11-15

    The Lichnerowicz and Israel theorems are extended to higher order theories of gravity. In particular it is shown that Schwarzschild is the unique spherically symmetric, static, asymptotically flat, black-hole solution, provided the spatial curvature is less than the quantum gravity scale outside the horizon. It is then shown that in the presence of matter (satisfying certain positivity requirements), the only static and asymptotically flat solutions of general relativity that are also solutions of higher order gravity are the vacuum solutions.

  11. Discrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking

    PubMed Central

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-01-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time rescaling theorem provides a goodness of fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model’s spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies upon assumptions of continuously defined time and instantaneous events. However spikes have finite width and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time rescaling theorem which analytically corrects for the effects of finite resolution. This allows us to define a rescaled time which is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting Generalized Linear Models (GLMs) to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false positive rate of the KS test and greatly increasing the reliability of model evaluation based upon the time rescaling theorem. PMID:20608868

  12. Discrete time rescaling theorem: determining goodness of fit for discrete time statistical models of neural spiking.

    PubMed

    Haslinger, Robert; Pipa, Gordon; Brown, Emery

    2010-10-01

    One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distributed if the model is accurate. A Kolmogorov-Smirnov (KS) test between the rescaled ISIs and the exponential distribution is then used to check goodness of fit. This rescaling relies on assumptions of continuously defined time and instantaneous events. However, spikes have finite width, and statistical models of spike trains almost always discretize time into bins. Here we demonstrate that finite temporal resolution of discrete time models prevents their rescaled ISIs from being exponentially distributed. Poor goodness of fit may be erroneously indicated even if the model is exactly correct. We present two adaptations of the time-rescaling theorem to discrete time models. In the first we propose that instead of assuming the rescaled times to be exponential, the reference distribution be estimated through direct simulation by the fitted model. In the second, we prove a discrete time version of the time-rescaling theorem that analytically corrects for the effects of finite resolution. This allows us to define a rescaled time that is exponentially distributed, even at arbitrary temporal discretizations. We demonstrate the efficacy of both techniques by fitting generalized linear models to both simulated spike trains and spike trains recorded experimentally in monkey V1 cortex. Both techniques give nearly identical results, reducing the false-positive rate of the KS test and greatly increasing the reliability of model evaluation based on the time-rescaling theorem.

  13. Quantum electrodynamical time-dependent density functional theory for many-electron systems on a lattice

    NASA Astrophysics Data System (ADS)

    Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team

    2015-03-01

    We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).

  14. An extension of the Laplace transform to Schwartz distributions

    NASA Technical Reports Server (NTRS)

    Price, D. R.

    1974-01-01

    A characterization of the Laplace transform is developed which extends the transform to the Schwartz distributions. The class of distributions includes the impulse functions and other singular functions which occur as solutions to ordinary and partial differential equations. The standard theorems on analyticity, uniqueness, and invertibility of the transform are proved by using the characterization as the definition of the Laplace transform. The definition uses sequences of linear transformations on the space of distributions which extends the Laplace transform to another class of generalized functions, the Mikusinski operators. It is shown that the sequential definition of the transform is equivalent to Schwartz' extension of the ordinary Laplace transform to distributions but, in contrast to Schwartz' definition, does not use the distributional Fourier transform. Several theorems concerning the particular linear transformations used to define the Laplace transforms are proved. All the results proved in one dimension are extended to the n-dimensional case, but proofs are presented only for those situations that require methods different from their one-dimensional analogs.

  15. On the probability of violations of Fourier's law for heat flow in small systems observed for short times

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Williams, Stephen R.

    2010-01-01

    We study the statistical mechanics of thermal conduction in a classical many-body system that is in contact with two thermal reservoirs maintained at different temperatures. The ratio of the probabilities, that when observed for a finite time, the time averaged heat flux flows in and against the direction required by Fourier's Law for heat flow, is derived from first principles. This result is obtained using the transient fluctuation theorem. We show that the argument of that theorem, namely, the dissipation function is, close to equilibrium, equal to a microscopic expression for the entropy production. We also prove that if transient time correlation functions of smooth zero mean variables decay to zero at long times, the system will relax to a unique nonequilibrium steady state, and for this state, the thermal conductivity must be positive. Our expressions are tested using nonequilibrium molecular dynamics simulations of heat flow between thermostated walls.

  16. Positive periodic solution for p-Laplacian neutral Rayleigh equation with singularity of attractive type.

    PubMed

    Xin, Yun; Liu, Hongmin; Cheng, Zhibo

    2018-01-01

    In this paper, we consider a kind of p -Laplacian neutral Rayleigh equation with singularity of attractive type, [Formula: see text] By applications of an extension of Mawhin's continuation theorem, sufficient conditions for the existence of periodic solution are established.

  17. Lp-stability (1 less than or equal to p less than or equal to infinity) of multivariable nonlinear time-varying feedback systems that are open-loop unstable. [noting unstable convolution subsystem forward control and time varying nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Callier, F. M.; Desoer, C. A.

    1973-01-01

    A class of multivariable, nonlinear time-varying feedback systems with an unstable convolution subsystem as feedforward and a time-varying nonlinear gain as feedback was considered. The impulse response of the convolution subsystem is the sum of a finite number of increasing exponentials multiplied by nonnegative powers of the time t, a term that is absolutely integrable and an infinite series of delayed impulses. The main result is a theorem. It essentially states that if the unstable convolution subsystem can be stabilized by a constant feedback gain F and if incremental gain of the difference between the nonlinear gain function and F is sufficiently small, then the nonlinear system is L(p)-stable for any p between one and infinity. Furthermore, the solutions of the nonlinear system depend continuously on the inputs in any L(p)-norm. The fixed point theorem is crucial in deriving the above theorem.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomizawa, Shinya

    We show a uniqueness theorem for Kaluza-Klein black holes in the bosonic sector of five-dimensional minimal supergravity. More precisely, under the assumptions of the existence of two commuting axial isometries and a nondegenerate connected event horizon of the cross-section topology S{sup 3}, or lens space, we prove that a stationary charged rotating Kaluza-Klein black hole in five-dimensional minimal supergravity is uniquely characterized by its mass, two independent angular momenta, electric charge, magnetic flux, and nut charge, provided that there exists neither a nut nor a bolt (a bubble) in the domain of outer communication. We also show that under themore » assumptions of the same symmetry, same asymptotics, and the horizon cross section of S{sup 1}xS{sup 2}, a black ring within the same theory--if it exists--is uniquely determined by its dipole charge and rod intervals besides the charges and magnetic flux.« less

  19. Almost periodic solutions to difference equations

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1975-01-01

    The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.

  20. Classification of Particle Numbers with Unique Heitmann-Radin Minimizer

    NASA Astrophysics Data System (ADS)

    De Luca, Lucia; Friesecke, Gero

    2017-06-01

    We show that minimizers of the Heitmann-Radin energy (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980) are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in De Luca and Friesecke (Crystallization in two dimensions and a discrete Gauss-Bonnet Theorem, 2016).

  1. Report to the Office of Naval Research for Contract N00014-89-J-1108 (Texas A&M University)

    DTIC Science & Technology

    1989-12-31

    class of undetermined coefficient problems of parabolic and elliptic type , and is easy to implement provided that the boundary conditions are in a ...considerable expertise to our efforts. Richard Fabiano, a student of John Burns, spent 3 years at Brown working with Tom Banks. His speciality is in... 3 ] J. R. Cannon and H. M. Yin, A uniqueness theorem for a class of parabolic inverse problems, J. Inverse Problems, 4, (1988), 411-416.

  2. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations

    DTIC Science & Technology

    1989-12-18

    a student of John Burns, spent 3 years at Brown working with Tom Banks. His speciality is in control theory, in particular for viscoelastic...diffusion equation, SIAM J. Appld Maih, 39, (2), (1980), 272-289. [ 3 ] J. R. Cannon and H. M. Yin, A uniqueness theorem for a class of parabolic inverse...2.6) where H is a C’ function. This equation is of second kind Volterra type and can be u!uiquely solved for the function 0. Thus k = A

  3. van der Waals-type forces in spontaneously broken supersymmetries

    NASA Astrophysics Data System (ADS)

    Radescu, E. E.

    1983-03-01

    In spontaneously broken rigid supersymmetry, Goldstone-fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low-energy theorem. The resulting van der Waals-type potential is shown to be V(r)=-Mmπ-3F-4r-7+O(r-8), where M and m are the masses of the interacting bodies while F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local symmetry is briefly discussed.

  4. On some properties of bone functional adaptation phenomenon useful in mechanical design.

    PubMed

    Nowak, Michał

    2010-01-01

    The paper discusses some unique properties of trabecular bone functional adaptation phenomenon, useful in mechanical design. On the basis of the biological process observations and the principle of constant strain energy density on the surface of the structure, the generic structural optimisation system has been developed. Such approach allows fulfilling mechanical theorem for the stiffest design, comprising the optimisations of size, shape and topology, using the concepts known from biomechanical studies. Also the biomimetic solution of multiple load problems is presented.

  5. Robust Consumption-Investment Problem on Infinite Horizon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawisza, Dariusz, E-mail: dariusz.zawisza@im.uj.edu.pl

    In our paper we consider an infinite horizon consumption-investment problem under a model misspecification in a general stochastic factor model. We formulate the problem as a stochastic game and finally characterize the saddle point and the value function of that game using an ODE of semilinear type, for which we provide a proof of an existence and uniqueness theorem for its solution. Such equation is interested on its own right, since it generalizes many other equations arising in various infinite horizon optimization problems.

  6. A Global Existence and Uniqueness Theorem for a Riccati Equation.

    DTIC Science & Technology

    1981-01-01

    made to an asymptotic stochastic analysis of a noisy duel problem. / DTICELECTE[I JUN 2 3 19820 !--i *This w paper was partially supported by AFOSR Grant...of these results is made to an asymptotic stochastic analysis of I ntssy duel problem. DD ,OR 1473 EDITION O, 1.OV 1SIS OSOLTE UNCLASTFIED SCUJRITY...motivated by the approach used in [3] and [6] to analyze the equal-accuracy noisy duel problem for two players having finite unequal units of ammunition

  7. The Great Emch Closure Theorem and a combinatorial proof of Poncelet's Theorem

    NASA Astrophysics Data System (ADS)

    Avksentyev, E. A.

    2015-11-01

    The relations between the classical closure theorems (Poncelet's, Steiner's, Emch's, and the zigzag theorems) and some of their generalizations are discussed. It is known that Emch's Theorem is the most general of these, while the others follow as special cases. A generalization of Emch's Theorem to pencils of circles is proved, which (by analogy with the Great Poncelet Theorem) can be called the Great Emch Theorem. It is shown that the Great Emch and Great Poncelet Theorems are equivalent and can be derived one from the other using elementary geometry, and also that both hold in the Lobachevsky plane as well. A new closure theorem is also obtained, in which the construction of closure is slightly more involved: closure occurs on a variable circle which is tangent to a fixed pair of circles. In conclusion, a combinatorial proof of Poncelet's Theorem is given, which deduces the closure principle for an arbitrary number of steps from the principle for three steps using combinatorics and number theory. Bibliography: 20 titles.

  8. Uniqueness Results for Weak Leray-Hopf Solutions of the Navier-Stokes System with Initial Values in Critical Spaces

    NASA Astrophysics Data System (ADS)

    Barker, T.

    2018-03-01

    The main subject of this paper concerns the establishment of certain classes of initial data, which grant short time uniqueness of the associated weak Leray-Hopf solutions of the three dimensional Navier-Stokes equations. In particular, our main theorem that this holds for any solenodial initial data, with finite L_2(R^3) norm, that also belongs to certain subsets of {it{VMO}}^{-1}(R^3). As a corollary of this, we obtain the same conclusion for any solenodial u0 belonging to L2(R^3)\\cap \\dot{B}^{-1+3/p}_{p,∞}(R^3), for any 3

  9. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  10. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  11. Stochastic functional evolution equations with monotone nonlinearity: Existence and stability of the mild solutions

    NASA Astrophysics Data System (ADS)

    Jahanipur, Ruhollah

    In this paper, we study a class of semilinear functional evolution equations in which the nonlinearity is demicontinuous and satisfies a semimonotone condition. We prove the existence, uniqueness and exponentially asymptotic stability of the mild solutions. Our approach is to apply a convenient version of Burkholder inequality for convolution integrals and an iteration method based on the existence and measurability results for the functional integral equations in Hilbert spaces. An Itô-type inequality is the main tool to study the uniqueness, p-th moment and almost sure sample path asymptotic stability of the mild solutions. We also give some examples to illustrate the applications of the theorems and meanwhile we compare the results obtained in this paper with some others appeared in the literature.

  12. Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems

    NASA Astrophysics Data System (ADS)

    Katzourakis, Nikos

    2017-07-01

    We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.

  13. From EUCLID to Ptolemy in English Crop Circles

    NASA Astrophysics Data System (ADS)

    Hawkins, G. S.

    1997-12-01

    The late Lord Soli Zuckerman, science advisor to several British governments, encouraged the author, an astronomer, to test the theory that all crop circles were made by hoaxers. Within the hundreds of formations in Southern England he saw a thread of surprising historical content at the intellectual level of College Dons. One diagram in celestial mechanics involved triple conjunctions of Mercury, Venus and Mars every 67 2/3 years. Ptolemy's fourth musical scale, tense diatonic, occurred in the circles during the period 1978-88. Starting on E, Ptolemaic ratios make our perfect diatonic scale of white notes on the keyboard of the piano or church organ. For separated circles the ratio was given by diameters, and for concentric circles it was diameters squared. A series of rotationally symmetric figures began in 1988 which combined Ptolemy's ratios with Euclid's theorems. In his last plane theorem, Euclid (Elements 13,12) proved that the square on the side of an equilateral triangle is 3 times the square on the circum-circle radius -- diatonic note G(2). From the 1988 figure one can prove the square on the side is 16/3 times the square on the semi-altitude, giving note F(3). Later rotational figures over the next 5 years led to diatonic ratios for the hexagon, square and triangle. They gave with the exactness of Euclidean theorems the notes F, C(2) and E(2), and they are the only regular polygons to do so. Although these 4 crop theorems derive from Euclid, they were previously unknown as a set in the literature, nor had the Ptolemaic connection been published. Professional magazines asked the readers to provide a fifth theorem that would generate the above 4 theorems, but none was forthcoming. Ultimately the cicle makers showed knowledge of this generating theorem using a 200-ft design at Litchfield, Hampshire. After 1993, rotationally symmetric geometries continued to appear, but with much more complicated patterns. One design showed 6 crescent moons in a hexagon with cusps set on 2 concentric circles defining the note A(2). Here the mathematical level required application of Ptolemy's famous theorem of chords to confirm the A(2) ratio of exactly 10/3. The chords were the side of a hexagon joined to the side of a pentagon. We confirm Zuckerman's suggestion that there is a strong thread of expertise in the phenomenon worthy of scientific interest, and it spans a 20-year period. He asks: Why do they use a wheat field, and "how do they maintain their hidden identities?" Their type of knowledge rests in the past, and is not frequently found in the contemporary educational system.

  14. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  15. Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem

    NASA Astrophysics Data System (ADS)

    De Luca, L.; Friesecke, G.

    2018-02-01

    We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential V(r)=+∞ if r<1, -1 if r=1, 0 if r>1. This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem (Knill in Elem Math 67:1-7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential V(r)=r^{-6}-2r^{-12}, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

  16. Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators.

    PubMed

    Cai, Qing-Bo; Xu, Xiao-Wei; Zhou, Guorong

    2017-01-01

    In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

  17. Security of continuous-variable quantum key distribution against general attacks.

    PubMed

    Leverrier, Anthony; García-Patrón, Raúl; Renner, Renato; Cerf, Nicolas J

    2013-01-18

    We prove the security of Gaussian continuous-variable quantum key distribution with coherent states against arbitrary attacks in the finite-size regime. In contrast to previously known proofs of principle (based on the de Finetti theorem), our result is applicable in the practically relevant finite-size regime. This is achieved using a novel proof approach, which exploits phase-space symmetries of the protocols as well as the postselection technique introduced by Christandl, Koenig, and Renner [Phys. Rev. Lett. 102, 020504 (2009)].

  18. Existence and global exponential stability of periodic solution to BAM neural networks with periodic coefficients and continuously distributed delays

    NASA Astrophysics Data System (ADS)

    Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.

    2005-08-01

    By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.

  19. Optimal Harvesting in a Periodic Food Chain Model with Size Structures in Predators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng-Qin, E-mail: zhafq@263.net; Liu, Rong; Chen, Yuming, E-mail: ychen@wlu.ca

    In this paper, we investigate a periodic food chain model with harvesting, where the predators have size structures and are described by first-order partial differential equations. First, we establish the existence of a unique non-negative solution by using the Banach fixed point theorem. Then, we provide optimality conditions by means of normal cone and adjoint system. Finally, we derive the existence of an optimal strategy by means of Ekeland’s variational principle. Here the objective functional represents the net economic benefit yielded from harvesting.

  20. Complexity and chaos control in a discrete-time prey-predator model

    NASA Astrophysics Data System (ADS)

    Din, Qamar

    2017-08-01

    We investigate the complex behavior and chaos control in a discrete-time prey-predator model. Taking into account the Leslie-Gower prey-predator model, we propose a discrete-time prey-predator system with predator partially dependent on prey and investigate the boundedness, existence and uniqueness of positive equilibrium and bifurcation analysis of the system by using center manifold theorem and bifurcation theory. Various feedback control strategies are implemented for controlling the bifurcation and chaos in the system. Numerical simulations are provided to illustrate theoretical discussion.

  1. Super Generalized Central Limit Theorem —Limit Distributions for Sums of Non-identical Random Variables with Power Laws—

    NASA Astrophysics Data System (ADS)

    Shintani, Masaru; Umeno, Ken

    2018-04-01

    The power law is present ubiquitously in nature and in our societies. Therefore, it is important to investigate the characteristics of power laws in the current era of big data. In this paper we prove that the superposition of non-identical stochastic processes with power laws converges in density to a unique stable distribution. This property can be used to explain the universality of stable laws that the sums of the logarithmic returns of non-identical stock price fluctuations follow stable distributions.

  2. A Measurement-Free Approach to Conditioning.

    DTIC Science & Technology

    1987-11-01

    y) Iv TO) * (.S Is2DUEO LUNG CONGESTION Z2b 2Ez2] EQI(bZ)-fl.3...U where n0 is given in (2.7) and - :1:,0 vb12 ~ NOLGLIOF ISESESTAE 1 0, =%, 5M( i...uniquely determined : which can be further evaluated using the expansion1.32). Theorem 2.1 Characterization of Conditional Objects. I’ oolanFor the formal...naturalditional forms is to determine if there i - e mapping class sense to v:’. gm, W:X . fn,VKW;; l.. +n , re-from. these higher levels down to the sin

  3. Gold nanostars as thermoplasmonic nanoparticles for optical heating.

    PubMed

    Rodríguez-Oliveros, R; Sánchez-Gil, José A

    2012-01-02

    Gold nanostars are theoretically studied as efficient thermal heaters at their corresponding localized surface-plasmon resonances (LSPRs). Numerical calculations are performed through the 3D Green's Theorem method to obtain the absorption and scattering cross sections for Au nanoparticles with star-like shape of varying symmetry and tip number. Their unique thermoplasmonic properties, with regard to their (red-shifted) LSPR wavelentgh, (∼ 30-fold increase) steady-state temperature, and scattering/absorption cross section ratios, make them specially suitable for optical heating and in turn for cancer thermal therapy.

  4. Analysis and control of hourglass instabilities in underintegrated linear and nonlinear elasticity

    NASA Technical Reports Server (NTRS)

    Jacquotte, Olivier P.; Oden, J. Tinsley

    1994-01-01

    Methods are described to identify and correct a bad finite element approximation of the governing operator obtained when under-integration is used in numerical code for several model problems: the Poisson problem, the linear elasticity problem, and for problems in the nonlinear theory of elasticity. For each of these problems, the reason for the occurrence of instabilities is given, a way to control or eliminate them is presented, and theorems of existence, uniqueness, and convergence for the given methods are established. Finally, numerical results are included which illustrate the theory.

  5. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  6. Unified halo-independent formalism from convex hulls for direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Witte, Samuel J.

    2017-12-01

    Using the Fenchel-Eggleston theorem for convex hulls (an extension of the Caratheodory theorem), we prove that any likelihood can be maximized by either a dark matter 1- speed distribution F(v) in Earth's frame or 2- Galactic velocity distribution fgal(vec u), consisting of a sum of delta functions. The former case applies only to time-averaged rate measurements and the maximum number of delta functions is (Script N‑1), where Script N is the total number of data entries. The second case applies to any harmonic expansion coefficient of the time-dependent rate and the maximum number of terms is Script N. Using time-averaged rates, the aforementioned form of F(v) results in a piecewise constant unmodulated halo function tilde eta0BF(vmin) (which is an integral of the speed distribution) with at most (Script N-1) downward steps. The authors had previously proven this result for likelihoods comprised of at least one extended likelihood, and found the best-fit halo function to be unique. This uniqueness, however, cannot be guaranteed in the more general analysis applied to arbitrary likelihoods. Thus we introduce a method for determining whether there exists a unique best-fit halo function, and provide a procedure for constructing either a pointwise confidence band, if the best-fit halo function is unique, or a degeneracy band, if it is not. Using measurements of modulation amplitudes, the aforementioned form of fgal(vec u), which is a sum of Galactic streams, yields a periodic time-dependent halo function tilde etaBF(vmin, t) which at any fixed time is a piecewise constant function of vmin with at most Script N downward steps. In this case, we explain how to construct pointwise confidence and degeneracy bands from the time-averaged halo function. Finally, we show that requiring an isotropic Galactic velocity distribution leads to a Galactic speed distribution F(u) that is once again a sum of delta functions, and produces a time-dependent tilde etaBF(vmin, t) function (and a time-averaged tilde eta0BF(vmin)) that is piecewise linear, differing significantly from best-fit halo functions obtained without the assumption of isotropy.

  7. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the second of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This volume is devoted to a rigorous development of theorems in plane geometry from 22…

  8. Relating Factor Models for Longitudinal Data to Quasi-Simplex and NARMA Models

    ERIC Educational Resources Information Center

    Rovine, Michael J.; Molenaar, Peter C. M.

    2005-01-01

    In this article we show the one-factor model can be rewritten as a quasi-simplex model. Using this result along with addition theorems from time series analysis, we describe a common general model, the nonstationary autoregressive moving average (NARMA) model, that includes as a special case, any latent variable model with continuous indicators…

  9. A No-Go Theorem for the Continuum Limit of a Periodic Quantum Spin Chain

    NASA Astrophysics Data System (ADS)

    Jones, Vaughan F. R.

    2018-01-01

    We show that the Hilbert space formed from a block spin renormalization construction of a cyclic quantum spin chain (based on the Temperley-Lieb algebra) does not support a chiral conformal field theory whose Hamiltonian generates translation on the circle as a continuous limit of the rotations on the lattice.

  10. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, S., E-mail: fishman@physics.technion.ac.il; Soffer, A., E-mail: soffer@math.rutgers.edu

    2016-07-15

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  11. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  12. Bayesian Probability Theory

    NASA Astrophysics Data System (ADS)

    von der Linden, Wolfgang; Dose, Volker; von Toussaint, Udo

    2014-06-01

    Preface; Part I. Introduction: 1. The meaning of probability; 2. Basic definitions; 3. Bayesian inference; 4. Combinatrics; 5. Random walks; 6. Limit theorems; 7. Continuous distributions; 8. The central limit theorem; 9. Poisson processes and waiting times; Part II. Assigning Probabilities: 10. Transformation invariance; 11. Maximum entropy; 12. Qualified maximum entropy; 13. Global smoothness; Part III. Parameter Estimation: 14. Bayesian parameter estimation; 15. Frequentist parameter estimation; 16. The Cramer-Rao inequality; Part IV. Testing Hypotheses: 17. The Bayesian way; 18. The frequentist way; 19. Sampling distributions; 20. Bayesian vs frequentist hypothesis tests; Part V. Real World Applications: 21. Regression; 22. Inconsistent data; 23. Unrecognized signal contributions; 24. Change point problems; 25. Function estimation; 26. Integral equations; 27. Model selection; 28. Bayesian experimental design; Part VI. Probabilistic Numerical Techniques: 29. Numerical integration; 30. Monte Carlo methods; 31. Nested sampling; Appendixes; References; Index.

  13. Statistical mechanics of the international trade network.

    PubMed

    Fronczak, Agata; Fronczak, Piotr

    2012-05-01

    Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.

  14. Statistical mechanics of the international trade network

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Fronczak, Piotr

    2012-05-01

    Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.

  15. Optimal no-go theorem on hidden-variable predictions of effect expectations

    NASA Astrophysics Data System (ADS)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  16. Continuous analogues of matrix factorizations

    PubMed Central

    Townsend, Alex; Trefethen, Lloyd N.

    2015-01-01

    Analogues of singular value decomposition (SVD), QR, LU and Cholesky factorizations are presented for problems in which the usual discrete matrix is replaced by a ‘quasimatrix’, continuous in one dimension, or a ‘cmatrix’, continuous in both dimensions. Two challenges arise: the generalization of the notions of triangular structure and row and column pivoting to continuous variables (required in all cases except the SVD, and far from obvious), and the convergence of the infinite series that define the cmatrix factorizations. Our generalizations of triangularity and pivoting are based on a new notion of a ‘triangular quasimatrix’. Concerning convergence of the series, we prove theorems asserting convergence provided the functions involved are sufficiently smooth. PMID:25568618

  17. Using Pictures to Enhance Students' Understanding of Bayes' Theorem

    ERIC Educational Resources Information Center

    Trafimow, David

    2011-01-01

    Students often have difficulty understanding algebraic proofs of statistics theorems. However, it sometimes is possible to prove statistical theorems with pictures in which case students can gain understanding more easily. I provide examples for two versions of Bayes' theorem.

  18. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    PubMed

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  19. Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks

    NASA Astrophysics Data System (ADS)

    Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui

    2018-06-01

    This paper mainly studies the finite-time stability and synchronization problems of memristor-based fractional-order fuzzy cellular neural network (MFFCNN). Firstly, we discuss the existence and uniqueness of the Filippov solution of the MFFCNN according to the Banach fixed point theorem and give a sufficient condition for the existence and uniqueness of the solution. Secondly, a sufficient condition to ensure the finite-time stability of the MFFCNN is obtained based on the definition of finite-time stability of the MFFCNN and Gronwall-Bellman inequality. Thirdly, by designing a simple linear feedback controller, the finite-time synchronization criterion for drive-response MFFCNN systems is derived according to the definition of finite-time synchronization. These sufficient conditions are easy to verify. Finally, two examples are given to show the effectiveness of the proposed results.

  20. On the symmetry foundation of double soft theorems

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Zhong; Lin, Hung-Hwa; Zhang, Shun-Qing

    2017-12-01

    Double-soft theorems, like its single-soft counterparts, arises from the underlying symmetry principles that constrain the interactions of massless particles. While single soft theorems can be derived in a non-perturbative fashion by employing current algebras, recent attempts of extending such an approach to known double soft theorems has been met with difficulties. In this work, we have traced the difficulty to two inequivalent expansion schemes, depending on whether the soft limit is taken asymmetrically or symmetrically, which we denote as type A and B respectively. The soft-behaviour for type A scheme can simply be derived from single soft theorems, and are thus non-perturbatively protected. For type B, the information of the four-point vertex is required to determine the corresponding soft theorems, and thus are in general not protected. This argument can be readily extended to general multi-soft theorems. We also ask whether unitarity can be emergent from locality together with the two kinds of soft theorems, which has not been fully investigated before.

  1. Defining fitness in an uncertain world.

    PubMed

    Crewe, Paul; Gratwick, Richard; Grafen, Alan

    2018-04-01

    The recently elucidated definition of fitness employed by Fisher in his fundamental theorem of natural selection is combined with reproductive values as appropriately defined in the context of both random environments and continuing fluctuations in the distribution over classes in a class-structured population. We obtain astonishingly simple results, generalisations of the Price Equation and the fundamental theorem, that show natural selection acting only through the arithmetic expectation of fitness over all uncertainties, in contrast to previous studies with fluctuating demography, in which natural selection looks rather complicated. Furthermore, our setting permits each class to have its characteristic ploidy, thus covering haploidy, diploidy and haplodiploidy at the same time; and allows arbitrary classes, including continuous variables such as condition. The simplicity is achieved by focussing just on the effects of natural selection on genotype frequencies: while other causes are present in the model, and the effect of natural selection is assessed in their presence, these causes will have their own further effects on genoytpe frequencies that are not assessed here. Also, Fisher's uses of reproductive value are shown to have two ambivalences, and a new axiomatic foundation for reproductive value is endorsed. The results continue the formal darwinism project, and extend support for the individual-as-maximising-agent analogy to finite populations with random environments and fluctuating class-distributions. The model may also lead to improved ways to measure fitness in real populations.

  2. Means and the Mean Value Theorem

    ERIC Educational Resources Information Center

    Merikoski, Jorma K.; Halmetoja, Markku; Tossavainen, Timo

    2009-01-01

    Let I be a real interval. We call a continuous function [mu] : I x I [right arrow] [Bold R] a proper mean if it is symmetric, reflexive, homogeneous, monotonic and internal. Let f : I [right arrow] [Bold R} be a differentiable and strictly convex or strictly concave function. If a, b [image omitted] I with a [not equal to] b, then there exists a…

  3. Existence of periodic solutions in a model of respiratory syncytial virus RSV

    NASA Astrophysics Data System (ADS)

    Arenas, Abraham J.; González, Gilberto; Jódar, Lucas

    2008-08-01

    In this paper we study the existence of a positive periodic solutions for nested models of respiratory syncytial virus RSV, by using a continuation theorem based on coincidence degree theory. Conditions for the existence of periodic solutions in the model are given. Numerical simulations related to the transmission of respiratory syncytial virus in Madrid and Rio Janeiro are included.

  4. A Zero-One Dichotomy Theorem for r-Semi-Stable Laws on Infinite Dimensional Linear Spaces.

    DTIC Science & Technology

    1978-10-01

    SEMISTABLE LAWS - LIKE STABLE ONES - ARE CONTINUOUS: i.e. THEY ASSIGN’ ZERO MASS TO SIIMGLETONS.. DD 172 1 1473 sov’ow as, IMail , 62 i 1 SOee..S $.M 0 102 LfP.Of 4 6601 1ECIuatY CLASSI’PICA1 130N 00 1 100 0449 (W%4 Dma rwer

  5. A Nonlinear Transfer Operator Theorem

    NASA Astrophysics Data System (ADS)

    Pollicott, Mark

    2017-02-01

    In recent papers, Kenyon et al. (Ergod Theory Dyn Syst 32:1567-1584 2012), and Fan et al. (C R Math Acad Sci Paris 349:961-964 2011, Adv Math 295:271-333 2016) introduced a form of non-linear thermodynamic formalism based on solutions to a non-linear equation using matrices. In this note we consider the more general setting of Hölder continuous functions.

  6. Estimation of periodic solutions number of first-order differential equations

    NASA Astrophysics Data System (ADS)

    Ivanov, Gennady; Alferov, Gennady; Gorovenko, Polina; Sharlay, Artem

    2018-05-01

    The paper deals with first-order differential equations under the assumption that the right-hand side is a periodic function of time and continuous in the set of arguments. Pliss V.A. obtained the first results for a particular class of equations and showed that a number of theorems can not be continued. In this paper, it was possible to reduce the restrictions on the degree of smoothness of the right-hand side of the equation and obtain upper and lower bounds on the number of possible periodic solutions.

  7. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams.

    PubMed

    Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang

    2016-10-01

    The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.

  8. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  9. Approaching Cauchy's Theorem

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon; Ross, William T.

    2017-01-01

    We hope to initiate a discussion about various methods for introducing Cauchy's Theorem. Although Cauchy's Theorem is the fundamental theorem upon which complex analysis is based, there is no "standard approach." The appropriate choice depends upon the prerequisites for the course and the level of rigor intended. Common methods include…

  10. Folding time dependence of the motions of a molecular motor in an amorphous medium

    NASA Astrophysics Data System (ADS)

    Ciobotarescu, Simona; Bechelli, Solene; Rajonson, Gabriel; Migirditch, Samuel; Hester, Brooke; Hurduc, Nicolae; Teboul, Victor

    2017-12-01

    We investigate the dependence of the displacements of a molecular motor embedded inside a glassy material on its folding characteristic time τf. We observe two different time regimes. For slow foldings (regime I) the diffusion evolves very slowly with τf, while for rapid foldings (regime II) the diffusion increases strongly with τf(D ≈τf-2 ), suggesting two different physical mechanisms. We find that in regime I the motor's displacement during the folding process is counteracted by a reverse displacement during the unfolding, while in regime II this counteraction is much weaker. We notice that regime I behavior is reminiscent of the scallop theorem that holds for larger motors in a continuous medium. We find that the difference in the efficiency of the motor's motion explains most of the observed difference between the two regimes. For fast foldings the motor trajectories differ significantly from the opposite trajectories induced by the following unfolding process, resulting in a more efficient global motion than for slow foldings. This result agrees with the fluctuation theorems expectation for time reversal mechanisms. In agreement with the fluctuation theorems we find that the motors are unexpectedly more efficient when they are generating more entropy, a result that can be used to increase dramatically the motor's motion.

  11. TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valtonen, M. J.; Mikkola, S.; Lehto, H. J.

    2011-11-20

    We examine the ability to test the black hole no-hair theorem at the 10% level in this decade using the binary black hole in OJ287. In the test we constrain the value of the dimensionless parameter q that relates the scaled quadrupole moment and spin of the primary black hole: q{sub 2} = -q {chi}{sup 2}. At the present we can say that q = 1 {+-} 0.3 (1{sigma}), in agreement with general relativity and the no-hair theorems. We demonstrate that this result can be improved if more observational data are found in historical plate archives for the 1959 andmore » 1971 outbursts. We also show that the predicted 2015 and 2019 outbursts will be crucial in improving the accuracy of the test. Space-based photometry is required in 2019 July due the proximity of OJ287 to the Sun at the time of the outburst. The best situation would be to carry out the photometry far from the Earth, from quite a different vantage point, in order to avoid the influence of the nearby Sun. We have considered in particular the STEREO space mission, which would be ideal if it has a continuation in 2019, or the Long Range Reconnaissance Imager on board the New Horizons mission to Pluto.« less

  12. The Chaotic Long-term X-ray Variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-04-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  13. Early Vector Calculus: A Path through Multivariable Calculus

    ERIC Educational Resources Information Center

    Robertson, Robert L.

    2013-01-01

    The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)

  14. Pick's Theorem: What a Lemon!

    ERIC Educational Resources Information Center

    Russell, Alan R.

    2004-01-01

    Pick's theorem can be used in various ways just like a lemon. This theorem generally finds its way in the syllabus approximately at the middle school level and in fact at times students have even calculated the area of a state considering its outline with the help of the above theorem.

  15. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.

  16. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE PAGES

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...

    2017-11-15

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  17. Are field quanta real objects? Some remarks on the ontology of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    2018-05-01

    One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.

  18. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  19. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  20. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  1. Generalized virial theorem for massless electrons in graphene and other Dirac materials

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2016-05-01

    The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

  2. A note on generalized Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  3. On the addition theorem of spherical functions

    NASA Astrophysics Data System (ADS)

    Shkodrov, V. G.

    The addition theorem of spherical functions is expressed in two reference systems, viz., an inertial system and a system rigidly fixed to a planet. A generalized addition theorem of spherical functions and a particular addition theorem for the rigidly fixed system are derived. The results are applied to the theory of a planetary potential.

  4. On counting the rational numbers

    NASA Astrophysics Data System (ADS)

    Almada, Carlos

    2010-12-01

    In this study, we show how to construct a function from the set ? of natural numbers that explicitly counts the set ? of all positive rational numbers using a very intuitive approach. The function has the appeal of Cantor's function and it has the advantage that any high school student can understand the main idea at a glance without any prior knowledge of the Unique Prime Factorization Theorem or other nonelementary results. Unlike Cantor's function, the one we propose makes it very easy to determine what rational number, in unreduced form, is in a given position on the list and vice versa.

  5. What Exactly is the Information Paradox?

    NASA Astrophysics Data System (ADS)

    Mathur, S. D.

    The black hole information paradox tells us something important about the way quantum mechanics and gravity fit together. In these lectures I try to give a pedagogical review of the essential physics leading to the paradox, using mostly pictures. Hawking's argument is recast as a "theorem": if quantum gravity effects are confined to within a given length scale and the vacuum is assumed to be unique, then there will be information loss. We conclude with a brief summary of how quantum effects in string theory violate the first condition and make the interior of the hole a "fuzzball".

  6. On the theory of the Frankl problem for equations of mixed type

    NASA Astrophysics Data System (ADS)

    Sabitov, K. B.

    2017-02-01

    In 1956 Frankl, while studying subsonic flows past a profile with a supersonic zone terminating with a normal compression shock, arrived at a new mathematical problem for the Chaplygin equation with a non-local boundary condition. In this article we give a survey of classical and recent papers dedicated to this problem. We present theorems on the existence and uniqueness of the solution of the Frankl problem, study the spectral problem for the Lavrent'ev-Bitsadze operator, show applications of these results to the construction of a solution with the aid of a series, and state some unsolved problems.

  7. Discovering the Theorem of Pythagoras

    NASA Technical Reports Server (NTRS)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  8. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  9. Guided Discovery of the Nine-Point Circle Theorem and Its Proof

    ERIC Educational Resources Information Center

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…

  10. Linear Water Waves

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N.; Maz'ya, V.; Vainberg, B.

    2002-08-01

    This book gives a self-contained and up-to-date account of mathematical results in the linear theory of water waves. The study of waves has many applications, including the prediction of behavior of floating bodies (ships, submarines, tension-leg platforms etc.), the calculation of wave-making resistance in naval architecture, and the description of wave patterns over bottom topography in geophysical hydrodynamics. The first section deals with time-harmonic waves. Three linear boundary value problems serve as the approximate mathematical models for these types of water waves. The next section uses a plethora of mathematical techniques in the investigation of these three problems. The techniques used in the book include integral equations based on Green's functions, various inequalities between the kinetic and potential energy and integral identities which are indispensable for proving the uniqueness theorems. The so-called inverse procedure is applied to constructing examples of non-uniqueness, usually referred to as 'trapped nodes.'

  11. A Software Technology Transition Entropy Based Engineering Model

    DTIC Science & Technology

    2002-03-01

    Systems Basics, p273). (Prigogine 1997 p81). It is not the place of this research to provide a mathematical formalism with theorems and lemmas. Rather...science). The ancient philosophers, 27 Pythagoras , Protagoras, Socrates, and Plato start the first discourse (the message) that has continued...unpacking of the technology "message" from Pythagoras . This process is characterized by accumulation learning, modeled by learning curves in

  12. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.

  13. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    NASA Astrophysics Data System (ADS)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  14. The Poincaré-Hopf Theorem for line fields revisited

    NASA Astrophysics Data System (ADS)

    Crowley, Diarmuid; Grant, Mark

    2017-07-01

    A Poincaré-Hopf Theorem for line fields with point singularities on orientable surfaces can be found in Hopf's 1956 Lecture Notes on Differential Geometry. In 1955 Markus presented such a theorem in all dimensions, but Markus' statement only holds in even dimensions 2 k ≥ 4. In 1984 Jänich presented a Poincaré-Hopf theorem for line fields with more complicated singularities and focussed on the complexities arising in the generalized setting. In this expository note we review the Poincaré-Hopf Theorem for line fields with point singularities, presenting a careful proof which is valid in all dimensions.

  15. Common fixed point theorems for maps under a contractive condition of integral type

    NASA Astrophysics Data System (ADS)

    Djoudi, A.; Merghadi, F.

    2008-05-01

    Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].

  16. A Converse of the Mean Value Theorem Made Easy

    ERIC Educational Resources Information Center

    Mortici, Cristinel

    2011-01-01

    The aim of this article is to discuss some results about the converse mean value theorem stated by Tong and Braza [J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly 104(10), (1997), pp. 939-942] and Almeida [R. Almeida, "An elementary proof of a converse mean-value theorem", Internat. J. Math. Ed. Sci. Tech. 39(8)…

  17. Recurrence theorems: A unified account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk

    I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.

  18. A variational theorem for creep with applications to plates and columns

    NASA Technical Reports Server (NTRS)

    Sanders, J Lyell, Jr; Mccomb, Harvey G , Jr; Schlechte, Floyd R

    1958-01-01

    A variational theorem is presented for a body undergoing creep. Solutions to problems of the creep behavior of plates, columns, beams, and shells can be obtained by means of the direct methods of the calculus of variations in conjunction with the stated theorem. The application of the theorem is illustrated for plates and columns by the solution of two sample problems.

  19. Zero-Bounded Limits as a Special Case of the Squeeze Theorem for Evaluating Single-Variable and Multivariable Limits

    ERIC Educational Resources Information Center

    Gkioulekas, Eleftherios

    2013-01-01

    Many limits, typically taught as examples of applying the "squeeze" theorem, can be evaluated more easily using the proposed zero-bounded limit theorem. The theorem applies to functions defined as a product of a factor going to zero and a factor that remains bounded in some neighborhood of the limit. This technique is immensely useful…

  20. Correcting Duporcq's theorem☆

    PubMed Central

    Nawratil, Georg

    2014-01-01

    In 1898, Ernest Duporcq stated a famous theorem about rigid-body motions with spherical trajectories, without giving a rigorous proof. Today, this theorem is again of interest, as it is strongly connected with the topic of self-motions of planar Stewart–Gough platforms. We discuss Duporcq's theorem from this point of view and demonstrate that it is not correct. Moreover, we also present a revised version of this theorem. PMID:25540467

  1. Voronovskaja's theorem revisited

    NASA Astrophysics Data System (ADS)

    Tachev, Gancho T.

    2008-07-01

    We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006.

  2. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  3. Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices

    NASA Astrophysics Data System (ADS)

    Vishnepolsky, Rachel

    A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.

  4. An Introduction to Kristof's Theorem for Solving Least-Square Optimization Problems Without Calculus.

    PubMed

    Waller, Niels

    2018-01-01

    Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.

  5. Arbitrary nonlinearity is sufficient to represent all functions by neural networks - A theorem

    NASA Technical Reports Server (NTRS)

    Kreinovich, Vladik YA.

    1991-01-01

    It is proved that if we have neurons implementing arbitrary linear functions and a neuron implementing one (arbitrary but smooth) nonlinear function g(x), then for every continuous function f(x sub 1,..., x sub m) of arbitrarily many variables, and for arbitrary e above 0, we can construct a network that consists of g-neurons and linear neurons, and computes f with precision e.

  6. Formulation of the linear model from the nonlinear simulation for the F18 HARV

    NASA Technical Reports Server (NTRS)

    Hall, Charles E., Jr.

    1991-01-01

    The F-18 HARV is a modified F-18 Aircraft which is capable of flying in the post-stall regime in order to achieve superagility. The onset of aerodynamic stall, and continued into the post-stall region, is characterized by nonlinearities in the aerodynamic coefficients. These aerodynamic coefficients are not expressed as analytic functions, but rather in the form of tabular data. The nonlinearities in the aerodynamic coefficients yield a nonlinear model of the aircraft's dynamics. Nonlinear system theory has made many advances, but this area is not sufficiently developed to allow its application to this problem, since many of the theorems are existance theorems and that the systems are composed of analytic functions. Thus, the feedback matrices and the state estimators are obtained from linear system theory techniques. It is important, in order to obtain the correct feedback matrices and state estimators, that the linear description of the nonlinear flight dynamics be as accurate as possible. A nonlinear simulation is run under the Advanced Continuous Simulation Language (ACSL). The ACSL simulation uses FORTRAN subroutines to interface to the look-up tables for the aerodynamic data. ACSL has commands to form the linear representation for the system. Other aspects of this investigation are discussed.

  7. Continuity equation for probability as a requirement of inference over paths

    NASA Astrophysics Data System (ADS)

    González, Diego; Díaz, Daniela; Davis, Sergio

    2016-09-01

    Local conservation of probability, expressed as the continuity equation, is a central feature of non-equilibrium Statistical Mechanics. In the existing literature, the continuity equation is always motivated by heuristic arguments with no derivation from first principles. In this work we show that the continuity equation is a logical consequence of the laws of probability and the application of the formalism of inference over paths for dynamical systems. That is, the simple postulate that a system moves continuously through time following paths implies the continuity equation. The translation between the language of dynamical paths to the usual representation in terms of probability densities of states is performed by means of an identity derived from Bayes' theorem. The formalism presented here is valid independently of the nature of the system studied: it is applicable to physical systems and also to more abstract dynamics such as financial indicators, population dynamics in ecology among others.

  8. Double soft graviton theorems and Bondi-Metzner-Sachs symmetries

    NASA Astrophysics Data System (ADS)

    Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu

    2018-05-01

    It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.

  9. A fermionic de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  10. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  11. Visual Theorems.

    ERIC Educational Resources Information Center

    Davis, Philip J.

    1993-01-01

    Argues for a mathematics education that interprets the word "theorem" in a sense that is wide enough to include the visual aspects of mathematical intuition and reasoning. Defines the term "visual theorems" and illustrates the concept using the Marigold of Theodorus. (Author/MDH)

  12. Note on the theorems of Bjerknes and Crocco

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1946-01-01

    The theorems of Bjerknes and Crocco are of great interest in the theory of flow around airfoils at Mach numbers near and above unity. A brief note shows how both theorems are developed by short vector transformations.

  13. Analysis of non locality proofs in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2012-02-01

    Two kinds of non-locality theorems in Quantum Mechanics are taken into account: the theorems based on the criterion of reality and the quite different theorem proposed by Stapp. In the present work the analyses of the theorem due to Greenberger, Horne, Shimony and Zeilinger, based on the criterion of reality, and of Stapp's argument are shown. The results of these analyses show that the alleged violations of locality cannot be considered definitive.

  14. PYGMALION: A Creative Programming Environment

    DTIC Science & Technology

    1975-06-01

    iiiiiimimmmimm wm^m^mmm’ wi-i ,»■»’■’.■- v* 26 Examples of Purely Iconic Reasoning 1-H Pythagoras ’ original proof of the Pythagorean Theorem ... Theorem Proving Machine񓟋. His program employed properties of the representation to guide the proof of theorems . His simple heruristic "Reject...one theorem the square of the hypotenuse. "Every proposition is presented as a self-contained fact relying on its own intrinsic evidence. Instead

  15. A Maximal Element Theorem in FWC-Spaces and Its Applications

    PubMed Central

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  16. On the exterior Dirichlet problem for Hessian quotient equations

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Li, Zhisu

    2018-06-01

    In this paper, we establish the existence and uniqueness theorem for solutions of the exterior Dirichlet problem for Hessian quotient equations with prescribed asymptotic behavior at infinity. This extends the previous related results on the Monge-Ampère equations and on the Hessian equations, and rearranges them in a systematic way. Based on the Perron's method, the main ingredient of this paper is to construct some appropriate subsolutions of the Hessian quotient equation, which is realized by introducing some new quantities about the elementary symmetric polynomials and using them to analyze the corresponding ordinary differential equation related to the generalized radially symmetric subsolutions of the original equation.

  17. Quantitative quasiperiodicity

    NASA Astrophysics Data System (ADS)

    Das, Suddhasattwa; Saiki, Yoshitaka; Sander, Evelyn; Yorke, James A.

    2017-11-01

    The Birkhoff ergodic theorem concludes that time averages, i.e. Birkhoff averages, B_N( f):=Σn=0N-1 f(x_n)/N of a function f along a length N ergodic trajectory (x_n) of a function T converge to the space average \\int f dμ , where μ is the unique invariant probability measure. Convergence of the time average to the space average is slow. We use a modified average of f(x_n) by giving very small weights to the ‘end’ terms when n is near 0 or N-1 . When (x_n) is a trajectory on a quasiperiodic torus and f and T are C^∞ , our weighted Birkhoff average (denoted \

  18. On Pokrovskii's anisotropic gap equations in superconductivity theory

    NASA Astrophysics Data System (ADS)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  19. The chaotic long-term X-ray variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-07-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  20. General Theorems about Homogeneous Ellipsoidal Inclusions

    ERIC Educational Resources Information Center

    Korringa, J.; And Others

    1978-01-01

    Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)

  1. A no-hair theorem for black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  2. Generalized Browder's and Weyl's theorems for Banach space operators

    NASA Astrophysics Data System (ADS)

    Curto, Raúl E.; Han, Young Min

    2007-12-01

    We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of [sigma](T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where f[set membership, variant]H((T)), the space of functions analytic on an open neighborhood of [sigma](T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each f[set membership, variant]H([sigma](T)).

  3. Lanchester-Type Models of Warfare. Volume II

    DTIC Science & Technology

    1980-10-01

    the so-called PERRON - FROBENIUS theorem50 for nonnegative matrices that one can guarantee that (without any further assumptions about A and B) there...always exists a vector of nonnegative values such that, for example, (7.18.6) holds. Before we state the PERRON - FROBENIUS theorem for nonnegative...a proof of this important theorem). THEOREM .5.-1.1 ( PERRON [121] and FROBENIUS [60]): Let C z 0 be an n x n matrix. Then, 1. C has a nonnegative real

  4. A remark on the energy conditions for Hawking's area theorem

    NASA Astrophysics Data System (ADS)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  5. Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth.

    PubMed

    Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping

    2016-02-24

    The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A Note on a Sampling Theorem for Functions over GF(q)n Domain

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi

    In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  7. Composable security proof for continuous-variable quantum key distribution with coherent States.

    PubMed

    Leverrier, Anthony

    2015-02-20

    We give the first composable security proof for continuous-variable quantum key distribution with coherent states against collective attacks. Crucially, in the limit of large blocks the secret key rate converges to the usual value computed from the Holevo bound. Combining our proof with either the de Finetti theorem or the postselection technique then shows the security of the protocol against general attacks, thereby confirming the long-standing conjecture that Gaussian attacks are optimal asymptotically in the composable security framework. We expect that our parameter estimation procedure, which does not rely on any assumption about the quantum state being measured, will find applications elsewhere, for instance, for the reliable quantification of continuous-variable entanglement in finite-size settings.

  8. On the homotopy equivalence of simple AI-algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aristov, O Yu

    1999-02-28

    Let A and B be simple unital AI-algebras (an AI-algebra is an inductive limit of C*-algebras of the form BigOplus{sub i}{sup k}C([0,1],M{sub N{sub i}}). It is proved that two arbitrary unital homomorphisms from A into B such that the corresponding maps K{sub 0}A{yields}K{sub 0}B coincide are homotopic. Necessary and sufficient conditions on the Elliott invariant for A and B to be homotopy equivalent are indicated. Moreover, two algebras in the above class having the same K-theory but not homotopy equivalent are constructed. A theorem on the homotopy of approximately unitarily equivalent homomorphisms between AI-algebras is used in the proof, whichmore » is deduced in its turn from a generalization to the case of AI-algebras of a theorem of Manuilov stating that a unitary matrix almost commuting with a self-adjoint matrix h can be joined to 1 by a continuous path consisting of unitary matrices almost commuting with h.« less

  9. The Fluctuation-Dissipation Theorem of Colloidal Particle's energy on 2D Periodic Substrates: A Monte Carlo Study of thermal noise-like fluctuation and diffusion like Brownian motion

    NASA Astrophysics Data System (ADS)

    Najafi, Amin

    2014-05-01

    Using the Monte Carlo simulations, we have calculated mean-square fluctuations in statistical mechanics, such as those for colloids energy configuration are set on square 2D periodic substrates interacting via a long range screened Coulomb potential on any specific and fixed substrate. Random fluctuations with small deviations from the state of thermodynamic equilibrium arise from the granular structure of them and appear as thermal diffusion with Gaussian distribution structure as well. The variations are showing linear form of the Fluctuation-Dissipation Theorem on the energy of particles constitutive a canonical ensemble with continuous diffusion process of colloidal particle systems. The noise-like variation of the energy per particle and the order parameter versus the Brownian displacement of sum of large number of random steps of particles at low temperatures phase are presenting a markovian process on colloidal particles configuration, too.

  10. Generalized Dandelin’s Theorem

    NASA Astrophysics Data System (ADS)

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  11. The B-field soft theorem and its unification with the graviton and dilaton

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2017-10-01

    In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton's soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.

  12. Some New Approaches to Multivariate Probability Distributions.

    DTIC Science & Technology

    1986-12-01

    Krishnaiah (1977). The following example may serve as an illustration of this point. EXAMPLE 2. (Fre^*chet’s bivariate continuous distribution...the error in the theorem of "" Prakasa Rao (1974) and to Dr. P.R. Krishnaiah for his valuable comments on the initial draft, his monumental patience and...M. and Proschan, F. (1984). Nonparametric Concepts and Methods in Reliability, Handbook of Statistics, 4, 613-655, (eds. P.R. Krishnaiah and P.K

  13. Statistical Inferences from the Topology of Complex Networks

    DTIC Science & Technology

    2016-10-04

    stable, does not lose any information, has continuous and discrete versions, and obeys a strong law of large numbers and a central limit theorem. The...paper (with J.A. Scott) “Categorification of persistent homology” [7] in the journal Discrete and Computational Geome- try and the paper “Metrics for...Generalized Persistence Modules” (with J.A. Scott and V. de Silva) in the journal Foundations of Computational Math - ematics [5]. These papers develop

  14. Abel's theorem in the noncommutative case

    NASA Astrophysics Data System (ADS)

    Leitenberger, Frank

    2004-03-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.

  15. Impossible colorings and Bell's theorem

    NASA Astrophysics Data System (ADS)

    Aravind, P. K.

    1999-11-01

    An argument due to Zimba and Penrose is generalized to show how all known non-coloring proofs of the Bell-Kochen-Specker (BKS) theorem can be converted into inequality-free proofs of Bell's nonlocality theorem. A compilation of many such inequality-free proofs is given.

  16. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  17. An Application of the Perron-Frobenius Theorem to a Damage Model Problem.

    DTIC Science & Technology

    1985-04-01

    RO-RI6I 20B AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A ill I DAMAGOE MODEL PR BLEM.. (U) PITTSBURGH UNIV PA CENTER FOR I MULTIYARIATE...any copyright notation herein. * . .r * j * :h ~ ** . . .~. ~ % *~’ :. ~ ~ v 4 .% % %~ AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A DAMAGE...University of Sheffield, U.K. S ~ Summry Using the Perron - Frobenius theorem, it is established that if’ (X,Y) is a random vector of non-negative

  18. International Conference on Fixed Point Theory and Applications (Colloque International Theorie Du Point Fixe et Applications)

    DTIC Science & Technology

    1989-06-09

    Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex

  19. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.

    PubMed

    Altürk, Ahmet

    2016-01-01

    Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaining solutions for a wide class of Fredholm integral equations of the second kind is introduced. Illustrative examples are provided to show the significant advantage of the proposed method over some existing techniques.

  20. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  1. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  2. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication

    NASA Astrophysics Data System (ADS)

    Walleczek, Jan; Grössing, Gerhard

    2016-09-01

    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time—effectively denies superluminal signalling and communication.

  3. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  4. Ergodic theorem, ergodic theory, and statistical mechanics

    PubMed Central

    Moore, Calvin C.

    2015-01-01

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  5. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  6. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  7. Lipschitz Metric for the Novikov Equation

    NASA Astrophysics Data System (ADS)

    Cai, Hong; Chen, Geng; Chen, Robin Ming; Shen, Yannan

    2018-03-01

    We consider the Lipschitz continuous dependence of solutions for the Novikov equation with respect to the initial data. In particular, we construct a Finsler type optimal transport metric which renders the solution map Lipschitz continuous on bounded sets of {H^1(R)\\cap W^{1,4}(R)} , although it is not Lipschitz continuous under the natural Sobolev metric from an energy law due to the finite time gradient blowup. By an application of Thom's transversality theorem, we also prove that when the initial data is in an open dense subset of {H^1(R)\\cap W^{1,4}(R)} , the solution is piecewise smooth. This generic regularity result helps us extend the Lipschitz continuous metric to the general weak solutions. Our method of constructing the metric can be used to treat other kinds of quasi-linear equations, provided a good knowledge about the energy concentration.

  8. On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements

    DOE PAGES

    Bouchard, Chris; Chang, Chia Cheng; Kurth, Thorsten; ...

    2017-07-12

    In this paper, the Feynman-Hellmann theorem can be derived from the long Euclidean-time limit of correlation functions determined with functional derivatives of the partition function. Using this insight, we fully develop an improved method for computing matrix elements of external currents utilizing only two-point correlation functions. Our method applies to matrix elements of any external bilinear current, including nonzero momentum transfer, flavor-changing, and two or more current insertion matrix elements. The ability to identify and control all the systematic uncertainties in the analysis of the correlation functions stems from the unique time dependence of the ground-state matrix elements and the fact that all excited states and contact terms are Euclidean-time dependent. We demonstrate the utility of our method with a calculation of the nucleon axial charge using gradient-flowed domain-wall valence quarks on themore » $$N_f=2+1+1$$ MILC highly improved staggered quark ensemble with lattice spacing and pion mass of approximately 0.15 fm and 310 MeV respectively. We show full control over excited-state systematics with the new method and obtain a value of $$g_A = 1.213(26)$$ with a quark-mass-dependent renormalization coefficient.« less

  9. Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito

    2014-05-01

    The Perron-Frobenius theorem is applied to identify the superfluid transition of the BCS-BEC crossover based on a cluster expansion method of Lee and Yang. Here, the cluster expansion is a systematic expansion of the equation of state (EOS) in terms of the fugacity z = exp (βμ) as βpλ3 = 2 z +b2z2 +b3z3 + ⋯ , with inverse temperature β =(kB T) - 1 , chemical potential μ, pressure p, and thermal de Broglie length λ =(2 πℏβ / m) 1 / 2 . According to the method of Lee and Yang, EOS is expressed by the Lee-Yang graphs. A singularity of an infinite series of ladder-type Lee-Yang graphs is analyzed. We point out that the singularity is governed by the Perron-Frobenius eigenvalue of a certain primitive matrix which is defined in terms of the two-body cluster functions and the Fermi distribution functions. As a consequence, it is found that there exists a unique fugacity at the phase transition point, which implies that there is no fragmentation of Bose-Einstein condensates of dimers and Cooper pairs at the ladder-approximation level of Lee-Yang graphs. An application to a BEC of strongly bounded dimers is also made.

  10. Phase diagram of the disordered Bose-Hubbard model

    NASA Astrophysics Data System (ADS)

    Gurarie, V.; Pollet, L.; Prokof'Ev, N. V.; Svistunov, B. V.; Troyer, M.

    2009-12-01

    We establish the phase diagram of the disordered three-dimensional Bose-Hubbard model at unity filling which has been controversial for many years. The theorem of inclusions, proven by Pollet [Phys. Rev. Lett. 103, 140402 (2009)] states that the Bose-glass phase always intervenes between the Mott insulating and superfluid phases. Here, we note that assumptions on which the theorem is based exclude phase transitions between gapped (Mott insulator) and gapless phases (Bose glass). The apparent paradox is resolved through a unique mechanism: such transitions have to be of the Griffiths type when the vanishing of the gap at the critical point is due to a zero concentration of rare regions where extreme fluctuations of disorder mimic a regular gapless system. An exactly solvable random transverse field Ising model in one dimension is used to illustrate the point. A highly nontrivial overall shape of the phase diagram is revealed with the worm algorithm. The phase diagram features a long superfluid finger at strong disorder and on-site interaction. Moreover, bosonic superfluidity is extremely robust against disorder in a broad range of interaction parameters; it persists in random potentials nearly 50 (!) times larger than the particle half-bandwidth. Finally, we comment on the feasibility of obtaining this phase diagram in cold-atom experiments, which work with trapped systems at finite temperature.

  11. A Possible Operational Motivation for the Orthocomplementation in Quantum Structures

    NASA Astrophysics Data System (ADS)

    D'Hooghe, Bart

    2010-11-01

    In the foundations of quantum mechanics Gleason’s theorem dictates the uniqueness of the state transition probability via the inner product of the corresponding state vectors in Hilbert space, independent of which measurement context induces this transition. We argue that the state transition probability should not be regarded as a secondary concept which can be derived from the structure on the set of states and properties, but instead should be regarded as a primitive concept for which measurement context is crucial. Accordingly, we adopt an operational approach to quantum mechanics in which a physical entity is defined by the structure of its set of states, set of properties and the possible (measurement) contexts which can be applied to this entity. We put forward some elementary definitions to derive an operational theory from this State-COntext-Property (SCOP) formalism. We show that if the SCOP satisfies a Gleason-like condition, namely that the state transition probability is independent of which measurement context induces the change of state, then the lattice of properties is orthocomplemented, which is one of the ‘quantum axioms’ used in the Piron-Solèr representation theorem for quantum systems. In this sense we obtain a possible physical meaning for the orthocomplementation widely used in quantum structures.

  12. On chemical distances and shape theorems in percolation models with long-range correlations

    NASA Astrophysics Data System (ADS)

    Drewitz, Alexander; Ráth, Balázs; Sapozhnikov, Artëm

    2014-08-01

    In this paper, we provide general conditions on a one parameter family of random infinite subsets of {{Z}}^d to contain a unique infinite connected component for which the chemical distances are comparable to the Euclidean distance. In addition, we show that these conditions also imply a shape theorem for the corresponding infinite connected component. By verifying these conditions for specific models, we obtain novel results about the structure of the infinite connected component of the vacant set of random interlacements and the level sets of the Gaussian free field. As a byproduct, we obtain alternative proofs to the corresponding results for random interlacements in the work of Černý and Popov ["On the internal distance in the interlacement set," Electron. J. Probab. 17(29), 1-25 (2012)], and while our main interest is in percolation models with long-range correlations, we also recover results in the spirit of the work of Antal and Pisztora ["On the chemical distance for supercritical Bernoulli percolation," Ann Probab. 24(2), 1036-1048 (1996)] for Bernoulli percolation. Finally, as a corollary, we derive new results about the (chemical) diameter of the largest connected component in the complement of the trace of the random walk on the torus.

  13. Bring the Pythagorean Theorem "Full Circle"

    ERIC Educational Resources Information Center

    Benson, Christine C.; Malm, Cheryl G.

    2011-01-01

    Middle school mathematics generally explores applications of the Pythagorean theorem and lays the foundation for working with linear equations. The Grade 8 Curriculum Focal Points recommend that students "apply the Pythagorean theorem to find distances between points in the Cartesian coordinate plane to measure lengths and analyze polygons and…

  14. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  15. Using Discovery in the Calculus Class

    ERIC Educational Resources Information Center

    Shilgalis, Thomas W.

    1975-01-01

    This article shows how two discoverable theorems from elementary calculus can be presented to students in a manner that assists them in making the generalizations themselves. The theorems are the mean value theorems for derivatives and for integrals. A conjecture is suggested by pictures and then refined. (Author/KM)

  16. Three Lectures on Theorem-proving and Program Verification

    NASA Technical Reports Server (NTRS)

    Moore, J. S.

    1983-01-01

    Topics concerning theorem proving and program verification are discussed with particlar emphasis on the Boyer/Moore theorem prover, and approaches to program verification such as the functional and interpreter methods and the inductive assertion approach. A history of the discipline and specific program examples are included.

  17. The Cosinusoidal Gravitational Potential, a Unique Alternative to Newton

    NASA Astrophysics Data System (ADS)

    Bartlett, D. F.

    1997-04-01

    Recently Bartlett & Su have shown that there are only three central potentials that allow a uniqueness theorem. (D.F. Bartlett & Y. Su, Am J. Phys. 62, 683 (1994)) Two of these, the newtonian and Yukawa, are familiar. The third, e^± ikr/r has hardly been studied at all. I consider the potential GM cos(kr)/r as an alternative to dark matter. The universal wavelength λ = 2π/k = 1800 lt-yrs comes from the only thoroughly catalogued system of galactic shells, those around the elliptical, NGC 3923. This λ is confirmed by the location of the gravitationally lensed images in the Einstein Cross. The potential can also explain several features of our Galaxy. The central bar is related dynamically to the spiral arms and, surprisingly, to the distant dwarf spheroidals. The radial oscillations of the potential provide the strong galactic tidal force that may be required to nudge distant comets into the inner solar system. The large, periodic oscillation of the sun within this radial pocket gives a unique mechanism for exposing the solar system to a periodic tidal force. The period of this oscillation and the period of cratering and mass extinctions agree, within errors.

  18. Generalized chaos synchronization theorems for bidirectional differential equations and discrete systems with applications

    NASA Astrophysics Data System (ADS)

    Ji, Ye; Liu, Ting; Min, Lequan

    2008-05-01

    Two constructive generalized chaos synchronization (GCS) theorems for bidirectional differential equations and discrete systems are introduced. Using the two theorems, one can construct new chaos systems to make the system variables be in GCS. Five examples are presented to illustrate the effectiveness of the theoretical results.

  19. The Law of Cosines for an "n"-Dimensional Simplex

    ERIC Educational Resources Information Center

    Ding, Yiren

    2008-01-01

    Using the divergence theorem technique of L. Eifler and N.H. Rhee, "The n-dimensional Pythagorean Theorem via the Divergence Theorem" (to appear: Amer. Math. Monthly), we extend the law of cosines for a triangle in a plane to an "n"-dimensional simplex in an "n"-dimensional space.

  20. When 95% Accurate Isn't: Exploring Bayes's Theorem

    ERIC Educational Resources Information Center

    CadwalladerOlsker, Todd D.

    2011-01-01

    Bayes's theorem is notorious for being a difficult topic to learn and to teach. Problems involving Bayes's theorem (either implicitly or explicitly) generally involve calculations based on two or more given probabilities and their complements. Further, a correct solution depends on students' ability to interpret the problem correctly. Most people…

  1. Optimal Keno Strategies and the Central Limit Theorem

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    For the casino game Keno we determine optimal playing strategies. To decide such optimal strategies, both exact (hypergeometric) and approximate probability calculations are used. The approximate calculations are obtained via the Central Limit Theorem and simulation, and an important lesson about the application of the Central Limit Theorem is…

  2. Computer Algebra Systems and Theorems on Real Roots of Polynomials

    ERIC Educational Resources Information Center

    Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.

    2010-01-01

    A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)

  3. The limit distribution in the q-CLT for q\\,\\geqslant \\,1 is unique and can not have a compact support

    NASA Astrophysics Data System (ADS)

    Umarov, Sabir; Tsallis, Constantino

    2016-10-01

    In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization of the Fourier transform, called the q-Fourier transform, was introduced and applied for the proof of a q-generalized central limit theorem (q-CLT). Subsequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9 2010 J. Stat. Mech. P10023) that the q-Fourier transform for q\\gt 1, is not invertible in the space of density functions. Indeed, using an invariance principle, he constructed a family of densities with the same q-Fourier transform and noted that ‘as a consequence, the q-CLT falls short of achieving its stated goal’. The distributions constructed there have compact support. We prove now that the limit distribution in the q-CLT is unique and can not have a compact support. This result excludes all the possible counterexamples which can be constructed using the invariance principle and fills the gap mentioned by Hilhorst.

  4. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  5. Nambu-Goldstone theorem and spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of "Fundamental Problems in Field Theory and their Implications". Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to nonrelativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.

  6. Counting Heron Triangles with Constraints

    DTIC Science & Technology

    2013-01-25

    Heron triangle is an integer, then b is even, say b = 2b1. By Pythagoras ’ theorem , a4 = h2 +4b21, and since in a Heron triangle, the heights are always...our first result, which follows an idea of [10, Theorem 2.3]. Theorem 4. Let a, b be two fixed integers, and let ab be factored as in (1). Then H(a, b...which we derive the result. Theorem 4 immediately offers us an interesting observation regarding a special class of fixed sides (a, b). Corollary 5. If

  7. On Pythagoras Theorem for Products of Spectral Triples

    NASA Astrophysics Data System (ADS)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  8. Large Deviations for Stationary Probabilities of a Family of Continuous Time Markov Chains via Aubry-Mather Theory

    NASA Astrophysics Data System (ADS)

    Lopes, Artur O.; Neumann, Adriana

    2015-05-01

    In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.

  9. Orbit of the OJ287 black hole binary as determined from the General Relativity centenary flare

    NASA Astrophysics Data System (ADS)

    Valtonen, Mauri; Gopakumar, Achamveedu; Mikkola, Seppo; Zola, Staszek; Ciprini, Stefano; Matsumoto, Katsura; Sadakane, Kozo; Kidger, Mark; Gazeas, Kosmas; Nilsson, Kari; Berdyugin, Andrei; Piirola, Vilppu; Jermak, Helen; Baliyan, Kiran; Hudec, Rene; Reichart, Daniel

    2016-05-01

    OJ287 goes through large optical flares twice each 12 years. The times of these flares have been predicted successfully now 5 times using a black hole binary model. In this model a secondary black hole goes around a primary black hole, impacting the accretion disk of the latter twice per orbital period, creating a thermal flare. Together with 6 flares from the historical data base, the set of flare timings determines uniquely the 7 parameters of the model: the two masses, the primary spin, the major axis, eccentricity and the phase of the orbit, plus a time delay parameter that gives the extent of time between accretion disk impacts and the related optical flares. Based on observations by the OJ287-15/16 Collaboration, OJ287 went into the phase of rapid flux rise on November 25, on the centenary of Einstein’s General Relativity, and peaked on December 5. At that time OJ287 was the brightest in over 30 years in optical wavelengths. The flare was of low polarization, and did not extend beyond the optical/UV region of the spectrum. On top of the main flare there were a number of small flares; their excess brightness correlates well with the simultaneous X-ray data. With these properties the main flare qualifies as the marker of the orbit of the secondary going around the primary black hole. Since the orbit solution is strongly over-determined, its parameters are known very accurately, at better than one percent level for the masses and the spin. The next flare is predicted to peak on July 28, 2019.Detailed monitoring of this event should allow us to test, for the first time, the celebrated black hole no-hair theorem for a massive black hole at the 10% level. The present data is consistent with the theorem only at a 30% level. The main difficulty in observing OJ287 from Earth at our predicted epoch is its closeness to the sun. Therefore, it is desirable to monitor OJ287 from a space-based telescope not in the vicinity of Earth. Unfortunately, this unique opportunity for testing the above celebrated theorem of General Relativity using OJ287 will not be available again until after several orbital cycles.The full list of participants in the OJ287-15/16 Collaboration is found in ApJL 819, L37, 2016.

  10. Muzzling the Bear: Gorbachev’s Program to Restructure the Soviet Military

    DTIC Science & Technology

    1990-04-01

    quantity to quality- in a continuing program of military accumulation.4 4 Steven Adragna argues thalt Soviet military doctrine can not evolve until it...aggressive nature and intent of capitalist society. Adragna maintains that so far there has been no serious effort to discredit the historical theorem that...any military action the Soviet Union takes is defensive in nature by definition and is therefore justified. Further, Adragna claims that the Kremlin’s

  11. Decentralized Control and Multicriterion Decision Making.

    DTIC Science & Technology

    1979-12-01

    stabilizable and detectable? ’V L 42 Theorem 3.1: Existence of stabilizing solution. We assume that the system is jointly controllable R1 (0...a leader’s control that will make the system stabilizable for the follower and that in order for J to be finite the leader must choose F such1 1 that...a stabilizing solution will be developed. We restrict our attention to a formulation dealing with a linear continuous time system and in which

  12. On analyticity of linear waves scattered by a layered medium

    NASA Astrophysics Data System (ADS)

    Nicholls, David P.

    2017-10-01

    The scattering of linear waves by periodic structures is a crucial phenomena in many branches of applied physics and engineering. In this paper we establish rigorous analytic results necessary for the proper numerical analysis of a class of High-Order Perturbation of Surfaces methods for simulating such waves. More specifically, we prove a theorem on existence and uniqueness of solutions to a system of partial differential equations which model the interaction of linear waves with a multiply layered periodic structure in three dimensions. This result provides hypotheses under which a rigorous numerical analysis could be conducted for recent generalizations to the methods of Operator Expansions, Field Expansions, and Transformed Field Expansions.

  13. Limit cycles in piecewise-affine gene network models with multiple interaction loops

    NASA Astrophysics Data System (ADS)

    Farcot, Etienne; Gouzé, Jean-Luc

    2010-01-01

    In this article, we consider piecewise affine differential equations modelling gene networks. We work with arbitrary decay rates, and under a local hypothesis expressed as an alignment condition of successive focal points. The interaction graph of the system may be rather complex (multiple intricate loops of any sign, multiple thresholds, etc.). Our main result is an alternative theorem showing that if a sequence of region is periodically visited by trajectories, then under our hypotheses, there exists either a unique stable periodic solution, or the origin attracts all trajectories in this sequence of regions. This result extends greatly our previous work on a single negative feedback loop. We give several examples and simulations illustrating different cases.

  14. Capital, population and urban patterns.

    PubMed

    Zhang, W

    1994-04-01

    The author develops an approach to urban dynamics with endogenous capital and population growth, synthesizing the Alonso location model, the two-sector neoclassical growth model, and endogenous population theory. A dynamic model for an isolated island economy with endogenous capital, population, and residential structure is developed on the basis of Alonso's residential model and the two-sector neoclassical growth model. The model describes the interdependence between residential structure, economic growth, population growth, and economic structure over time and space. It has a unique long-run equilibrium, which may be either stable or unstable, depending upon the population dynamics. Applying the Hopf theorem, the author also shows that when the system is unstable, the economic geography exhibits permanent endogenous oscillations.

  15. Use of Green's functions in the numerical solution of two-point boundary value problems

    NASA Technical Reports Server (NTRS)

    Gallaher, L. J.; Perlin, I. E.

    1974-01-01

    This study investigates the use of Green's functions in the numerical solution of the two-point boundary value problem. The first part deals with the role of the Green's function in solving both linear and nonlinear second order ordinary differential equations with boundary conditions and systems of such equations. The second part describes procedures for numerical construction of Green's functions and considers briefly the conditions for their existence. Finally, there is a description of some numerical experiments using nonlinear problems for which the known existence, uniqueness or convergence theorems do not apply. Examples here include some problems in finding rendezvous orbits of the restricted three body system.

  16. Lattice Truss Structural Response Using Energy Methods

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred Scottson

    1996-01-01

    A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.

  17. Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties.

    PubMed

    Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E

    2018-07-01

    In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Global invariants of paths and curves for the group of all linear similarities in the two-dimensional Euclidean space

    NASA Astrophysics Data System (ADS)

    Khadjiev, Djavvat; Ören, Idri˙s; Pekşen, Ömer

    Let E2 be the 2-dimensional Euclidean space, LSim(2) be the group of all linear similarities of E2 and LSim+(2) be the group of all orientation-preserving linear similarities of E2. The present paper is devoted to solutions of problems of global G-equivalence of paths and curves in E2 for the groups G = LSim(2),LSim+(2). Complete systems of global G-invariants of a path and a curve in E2 are obtained. Existence and uniqueness theorems are given. Evident forms of a path and a curve with the given global invariants are obtained.

  19. Distribution-valued initial data for the complex Ginzburg-Landau equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levermore, C.D.; Oliver, M.

    1997-11-01

    The generalized complex Ginzburg-Landau (CGL) equation with a nonlinearity of order 2{sigma} + 1 in d spatial dimensions has a unique local classical solution for distributional initial data in the Sobolev space H{sup q} provided that q > d/2 - 1/{sigma}. This result directly corresponds to a theorem for the nonlinear Schroedinger (NLS) equation which has been proved by Cazenave and Weissler in 1990. While the proof in the NLS case relies on Besov space techniques, it is shown here that for the CGL equation, the smoothing properties of the linear semigroup can be eased to obtain an almost optimalmore » result by elementary means. 1 fig.« less

  20. Time Evolution of the Dynamical Variables of a Stochastic System.

    ERIC Educational Resources Information Center

    de la Pena, L.

    1980-01-01

    By using the method of moments, it is shown that several important and apparently unrelated theorems describing average properties of stochastic systems are in fact particular cases of a general law; this method is applied to generalize the virial theorem and the fluctuation-dissipation theorem to the time-dependent case. (Author/SK)

  1. A Generalization of the Prime Number Theorem

    ERIC Educational Resources Information Center

    Bruckman, Paul S.

    2008-01-01

    In this article, the author begins with the prime number theorem (PNT), and then develops this into a more general theorem, of which many well-known number theoretic results are special cases, including PNT. He arrives at an asymptotic relation that allows the replacement of certain discrete sums involving primes into corresponding differentiable…

  2. A Fascinating Application of Steiner's Theorem for Trapezium: Geometric Constructions Using Straightedge Alone

    ERIC Educational Resources Information Center

    Stupel, Moshe; Ben-Chaim, David

    2013-01-01

    Based on Steiner's fascinating theorem for trapezium, seven geometrical constructions using straight-edge alone are described. These constructions provide an excellent base for teaching theorems and the properties of geometrical shapes, as well as challenging thought and inspiring deeper insight into the world of geometry. In particular, this…

  3. Unpacking Rouché's Theorem

    ERIC Educational Resources Information Center

    Howell, Russell W.; Schrohe, Elmar

    2017-01-01

    Rouché's Theorem is a standard topic in undergraduate complex analysis. It is usually covered near the end of the course with applications relating to pure mathematics only (e.g., using it to produce an alternate proof of the Fundamental Theorem of Algebra). The "winding number" provides a geometric interpretation relating to the…

  4. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  5. The Classical Version of Stokes' Theorem Revisited

    ERIC Educational Resources Information Center

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  6. The Parity Theorem Shuffle

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…

  7. Visualizing the Central Limit Theorem through Simulation

    ERIC Educational Resources Information Center

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Robert; Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125; Mitchison, Graeme

    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's 'exponential' approximation by 'almost-product' states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choicemore » of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.« less

  9. The Levy sections theorem revisited

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2007-06-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets.

  10. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  11. Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions: A biological membrane separates a plasmatic from a non-plasmatic phase.

    PubMed

    Moog, Daniel; Maier, Uwe G

    2017-08-01

    Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.

  12. Guided discovery of the nine-point circle theorem and its proof

    NASA Astrophysics Data System (ADS)

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through investigation in a dynamic geometry environment, and consequently prove it using a method of guided discovery. The paper concludes with a variety of suggestions for the ways in which the whole set of activities can be implemented in geometry classrooms.

  13. Kato type operators and Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Duggal, B. P.; Djordjevic, S. V.; Kubrusly, Carlos

    2005-09-01

    A Banach space operator T satisfies Weyl's theorem if and only if T or T* has SVEP at all complex numbers [lambda] in the complement of the Weyl spectrum of T and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity. If T* (respectively, T) has SVEP and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity (respectively, T is Kato type at all [lambda][set membership, variant]iso[sigma](T)), then T satisfies a-Weyl's theorem (respectively, T* satisfies a-Weyl's theorem).

  14. Cooperation Among Theorem Provers

    NASA Technical Reports Server (NTRS)

    Waldinger, Richard J.

    1998-01-01

    In many years of research, a number of powerful theorem-proving systems have arisen with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's KITP or SRI's SNARK) deal with first-order logic with equality but not the principle of mathematical induction. The Boyer-Moore theorem prover excels at proof by induction but cannot deal with full first-order logic. Both are highly automated but cannot accept user guidance easily. The purpose of this project, and the companion project at Kestrel, has been to use the category-theoretic notion of logic morphism to combine systems with different logics and languages.

  15. Fluctuation theorem: A critical review

    NASA Astrophysics Data System (ADS)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  16. The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane

    NASA Astrophysics Data System (ADS)

    Haddad, Julian; Montenegro, Marcos

    2018-03-01

    The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.

  17. Nambu-Goldstone theorem and spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2016-05-01

    On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of “Fundamental Problems in Field Theory and their Implications”. Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to non-relativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.

  18. Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in the Cartesian Plane.

    DTIC Science & Technology

    1987-06-01

    as in Figure 72. By the Theorem of Pythagoras : Z1 <a z 2 < C Yl(bl+b 2)uI, the cost of going along (a,b,c) is greater that the...preceding lemmas to an indefinite number of boundary-crossing episodes is accomplished by the following theorems . Theorem 1 extends the result of Lemma 1... Theorem 1: Any two Snell’s-law paths within a K-explored wedge defined by Snell’s-law paths RL and R. do not intersect within the K-explored portion of

  19. Discovering Theorems in Abstract Algebra Using the Software "GAP"

    ERIC Educational Resources Information Center

    Blyth, Russell D.; Rainbolt, Julianne G.

    2010-01-01

    A traditional abstract algebra course typically consists of the professor stating and then proving a sequence of theorems. As an alternative to this classical structure, the students could be expected to discover some of the theorems even before they are motivated by classroom examples. This can be done by using a software system to explore a…

  20. Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment

    ERIC Educational Resources Information Center

    Kuttner, Fred; Rosenblum, Bruce

    2010-01-01

    In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…

  1. Viète's Formula and an Error Bound without Taylor's Theorem

    ERIC Educational Resources Information Center

    Boucher, Chris

    2018-01-01

    This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.

  2. A Physical Proof of the Pythagorean Theorem

    ERIC Educational Resources Information Center

    Treeby, David

    2017-01-01

    What proof of the Pythagorean theorem might appeal to a physics teacher? A proof that involved the notion of mass would surely be of interest. While various proofs of the Pythagorean theorem employ the circumcenter and incenter of a right-angled triangle, we are not aware of any proof that uses the triangle's center of mass. This note details one…

  3. Maximum-entropy description of animal movement.

    PubMed

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M

    2015-03-01

    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  4. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.

    1997-02-01

    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.

  5. Enter the reverend: introduction to and application of Bayes' theorem in clinical ophthalmology.

    PubMed

    Thomas, Ravi; Mengersen, Kerrie; Parikh, Rajul S; Walland, Mark J; Muliyil, Jayprakash

    2011-12-01

    Ophthalmic practice utilizes numerous diagnostic tests, some of which are used to screen for disease. Interpretation of test results and many clinical management issues are actually problems in inverse probability that can be solved using Bayes' theorem. Use two-by-two tables to understand Bayes' theorem and apply it to clinical examples. Specific examples of the utility of Bayes' theorem in diagnosis and management. Two-by-two tables are used to introduce concepts and understand the theorem. The application in interpretation of diagnostic tests is explained. Clinical examples demonstrate its potential use in making management decisions. Positive predictive value and conditional probability. The theorem demonstrates the futility of testing when prior probability of disease is low. Application to untreated ocular hypertension demonstrates that the estimate of glaucomatous optic neuropathy is similar to that obtained from the Ocular Hypertension Treatment Study. Similar calculations are used to predict the risk of acute angle closure in a primary angle closure suspect, the risk of pupillary block in a diabetic undergoing cataract surgery, and the probability that an observed decrease in intraocular pressure is due to the medication that has been started. The examples demonstrate how data required for management can at times be easily obtained from available information. Knowledge of Bayes' theorem helps in interpreting test results and supports the clinical teaching that testing for conditions with a low prevalence has a poor predictive value. In some clinical situations Bayes' theorem can be used to calculate vital data required for patient management. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  6. Communication. Kinetics of scavenging of small, nucleating clusters. First nucleation theorem and sum rules

    DOE PAGES

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; ...

    2015-01-07

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give amore » general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.« less

  7. A new blackhole theorem and its applications to cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  8. Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2018-03-01

    Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.

  9. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  10. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M.

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle inmore » a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.« less

  11. An Integrated Environment for Efficient Formal Design and Verification

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.

  12. Periodic bidirectional associative memory neural networks with distributed delays

    NASA Astrophysics Data System (ADS)

    Chen, Anping; Huang, Lihong; Liu, Zhigang; Cao, Jinde

    2006-05-01

    Some sufficient conditions are obtained for the existence and global exponential stability of a periodic solution to the general bidirectional associative memory (BAM) neural networks with distributed delays by using the continuation theorem of Mawhin's coincidence degree theory and the Lyapunov functional method and the Young's inequality technique. These results are helpful for designing a globally exponentially stable and periodic oscillatory BAM neural network, and the conditions can be easily verified and be applied in practice. An example is also given to illustrate our results.

  13. Analysis of the Binary Euclidean Algorithm

    DTIC Science & Technology

    1976-06-01

    Probleme de Gauss," Atti del Congresso Internationale dei Matematici 6 (Bologna, 1928), 83-89. Levy [29] Levy, P., "Sur les Lois de Probabilite...r- Report) 11. SUPPL ENEN T A IllY NOTES lt . KEY WOI’IOS ( Continue on revere• ai de II nec:eaeary and Identify by bloc I< number) I 20...easily de - n n duced by differentiation. 3. The Distribution Functions F ’’ LI The following theorem gives the form of F (x) for finite n n

  14. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  15. Polyhedral sweeping processes with unbounded nonconvex-valued perturbation

    NASA Astrophysics Data System (ADS)

    Tolstonogov, A. A.

    2017-12-01

    A polyhedral sweeping process with a multivalued perturbation whose values are nonconvex unbounded sets is studied in a separable Hilbert space. Polyhedral sweeping processes do not satisfy the traditional assumptions used to prove existence theorems for convex sweeping processes. We consider the polyhedral sweeping process as an evolution inclusion with subdifferential operators depending on time. The widely used assumption of Lipschitz continuity for the multivalued perturbation term is replaced by a weaker notion of (ρ - H) Lipschitzness. The existence of solutions is proved for this sweeping process.

  16. Markov and semi-Markov processes as a failure rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabski, Franciszek

    2016-06-08

    In this paper the reliability function is defined by the stochastic failure rate process with a non negative and right continuous trajectories. Equations for the conditional reliability functions of an object, under assumption that the failure rate is a semi-Markov process with an at most countable state space are derived. A proper theorem is presented. The linear systems of equations for the appropriate Laplace transforms allow to find the reliability functions for the alternating, the Poisson and the Furry-Yule failure rate processes.

  17. On extremals of the entropy production by ‘Langevin-Kramers’ dynamics

    NASA Astrophysics Data System (ADS)

    Muratore-Ginanneschi, Paolo

    2014-05-01

    We refer as ‘Langevin-Kramers’ dynamics to a class of stochastic differential systems exhibiting a degenerate ‘metriplectic’ structure. This means that the drift field can be decomposed into a symplectic and a gradient-like component with respect to a pseudo-metric tensor associated with random fluctuations affecting increments of only a sub-set of the degrees of freedom. Systems in this class are often encountered in applications as elementary models of Hamiltonian dynamics in a heat bath eventually relaxing to a Boltzmann steady state. Entropy production control in Langevin-Kramers models differs from the now well-understood case of Langevin-Smoluchowski dynamics for two reasons. First, the definition of entropy production stemming from fluctuation theorems specifies a cost functional which does not act coercively on all degrees of freedom of control protocols. Second, the presence of a symplectic structure imposes a non-local constraint on the class of admissible controls. Using Pontryagin control theory and restricting the attention to additive noise, we show that smooth protocols attaining extremal values of the entropy production appear generically in continuous parametric families as a consequence of a trade-off between smoothness of the admissible protocols and non-coercivity of the cost functional. Uniqueness is, however, always recovered in the over-damped limit as extremal equations reduce at leading order to the Monge-Ampère-Kantorovich optimal mass-transport equations.

  18. Systematic Approaches to Experimentation: The Case of Pick's Theorem

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is…

  19. Topology and the Lay of the Land: A Mathematician on the Topographer's Turf.

    ERIC Educational Resources Information Center

    Shubin, Mikhail

    1992-01-01

    Presents a proof of Euler's Theorem on polyhedra by relating the theorem to the field of modern topology, specifically to the topology of relief maps. An analogous theorem involving the features of mountain summits, basins, and passes on a terrain is proved and related to the faces, vertices, and edges on a convex polyhedron. (MDH)

  20. Weak Compactness and Control Measures in the Space of Unbounded Measures

    PubMed Central

    Brooks, James K.; Dinculeanu, Nicolae

    1972-01-01

    We present a synthesis theorem for a family of locally equivalent measures defined on a ring of sets. This theorem is then used to exhibit a control measure for weakly compact sets of unbounded measures. In addition, the existence of a local control measure for locally strongly bounded vector measures is proved by means of the synthesis theorem. PMID:16591980

  1. Erratum: Correction to: Information Transmission and Criticality in the Contact Process

    NASA Astrophysics Data System (ADS)

    Cassandro, M.; Galves, A.; Löcherbach, E.

    2018-01-01

    The original publication of the article unfortunately contained a mistake in the first sentence of Theorem 1 and in the second part of the proof of Theorem 1. The corrected statement of Theorem as well as the corrected proof are given below. The full text of the corrected version is available at http://arxiv.org/abs/1705.11150.

  2. Optical theorem for acoustic non-diffracting beams and application to radiation force and torque

    PubMed Central

    Zhang, Likun; Marston, Philip L.

    2013-01-01

    Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam. PMID:24049681

  3. Republication of: A theorem on Petrov types

    NASA Astrophysics Data System (ADS)

    Goldberg, J. N.; Sachs, R. K.

    2009-02-01

    This is a republication of the paper “A Theorem on Petrov Types” by Goldberg and Sachs, Acta Phys. Pol. 22 (supplement), 13 (1962), in which they proved the Goldberg-Sachs theorem. The article has been selected for publication in the Golden Oldies series of General Relativity and Gravitation. Typographical errors of the original publication were corrected by the editor. The paper is accompanied by a Golden Oldie Editorial containing an editorial note written by Andrzej Krasiński and Maciej Przanowski and Goldberg’s brief autobiography. The editorial note explains some difficult parts of the proof of the theorem and discusses the influence of results of the paper on later research.

  4. A general Kastler-Kalau-Walze type theorem for manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Yong

    2016-11-01

    In this paper, we establish a general Kastler-Kalau-Walze type theorem for any dimensional manifolds with boundary which generalizes the results in [Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys. 54 (2010) 38-42]. This solves a problem of the referee of [J. Wang and Y. Wang, A Kastler-Kalau-Walze type theorem for five-dimensional manifolds with boundary, Int. J. Geom. Meth. Mod. Phys. 12(5) (2015), Article ID: 1550064, 34 pp.], which is a general expression of the lower dimensional volumes in terms of the geometric data on the manifold.

  5. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  6. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  7. Tree-manipulating systems and Church-Rosser theorems.

    NASA Technical Reports Server (NTRS)

    Rosen, B. K.

    1973-01-01

    Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.

  8. Quantum voting and violation of Arrow's impossibility theorem

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  9. Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

    NASA Astrophysics Data System (ADS)

    Hussain, N.

    2008-02-01

    The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.

  10. Discrete conservation properties for shallow water flows using mixed mimetic spectral elements

    NASA Astrophysics Data System (ADS)

    Lee, D.; Palha, A.; Gerritsma, M.

    2018-03-01

    A mixed mimetic spectral element method is applied to solve the rotating shallow water equations. The mixed method uses the recently developed spectral element histopolation functions, which exactly satisfy the fundamental theorem of calculus with respect to the standard Lagrange basis functions in one dimension. These are used to construct tensor product solution spaces which satisfy the generalized Stokes theorem, as well as the annihilation of the gradient operator by the curl and the curl by the divergence. This allows for the exact conservation of first order moments (mass, vorticity), as well as higher moments (energy, potential enstrophy), subject to the truncation error of the time stepping scheme. The continuity equation is solved in the strong form, such that mass conservation holds point wise, while the momentum equation is solved in the weak form such that vorticity is globally conserved. While mass, vorticity and energy conservation hold for any quadrature rule, potential enstrophy conservation is dependent on exact spatial integration. The method possesses a weak form statement of geostrophic balance due to the compatible nature of the solution spaces and arbitrarily high order spatial error convergence.

  11. Discrete Calculus as a Bridge between Scales

    NASA Astrophysics Data System (ADS)

    Degiuli, Eric; McElwaine, Jim

    2012-02-01

    Understanding how continuum descriptions of disordered media emerge from the microscopic scale is a fundamental challenge in condensed matter physics. In many systems, it is necessary to coarse-grain balance equations at the microscopic scale to obtain macroscopic equations. We report development of an exact, discrete calculus, which allows identification of discrete microscopic equations with their continuum equivalent [1]. This allows the application of powerful techniques of calculus, such as the Helmholtz decomposition, the Divergence Theorem, and Stokes' Theorem. We illustrate our results with granular materials. In particular, we show how Newton's laws for a single grain reproduce their continuum equivalent in the calculus. This allows introduction of a discrete Airy stress function, exactly as in the continuum. As an application of the formalism, we show how these results give the natural mean-field variation of discrete quantities, in agreement with numerical simulations. The discrete calculus thus acts as a bridge between discrete microscale quantities and continuous macroscale quantities. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  12. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  13. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part I: Fundamentals

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2016-12-01

    Recent advances in signal processing and structural dynamics have spurred the adoption of transmissibility functions in academia and industry alike. Due to the inherent randomness of measurement and variability of environmental conditions, uncertainty impacts its applications. This study is focused on statistical inference for raw scalar transmissibility functions modeled as complex ratio random variables. The goal is achieved through companion papers. This paper (Part I) is dedicated to dealing with a formal mathematical proof. New theorems on multivariate circularly-symmetric complex normal ratio distribution are proved on the basis of principle of probabilistic transformation of continuous random vectors. The closed-form distributional formulas for multivariate ratios of correlated circularly-symmetric complex normal random variables are analytically derived. Afterwards, several properties are deduced as corollaries and lemmas to the new theorems. Monte Carlo simulation (MCS) is utilized to verify the accuracy of some representative cases. This work lays the mathematical groundwork to find probabilistic models for raw scalar transmissibility functions, which are to be expounded in detail in Part II of this study.

  14. An introduction to generalized functions with some applications in aerodynamics and aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    In this paper, we start with the definition of generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support. The concept of generalization differentiation is introduced next. This is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some of the results of classical analysis, such as Leibniz rule of differentiation under the integral sign and the divergence theorem, are derived using the generalized function theory. It is shown that the divergence theorem remains valid for discontinuous vector fields provided that the derivatives are all viewed as generalized derivatives. This implies that all conservation laws of fluid mechanics are valid as they stand for discontinuous fields with all derivatives treated as generalized deriatives. Once these derivatives are written as ordinary derivatives and jumps in the field parameters across discontinuities, the jump conditions can be easily found. For example, the unsteady shock jump conditions can be derived from mass and momentum conservation laws. By using a generalized function theory, this derivative becomes trivial. Other applications of the generalized function theory in aerodynamics discussed in this paper are derivation of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of finite part of divergent integrals, derivation of Oswatiitsch integral equation of transonic flow, and analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics presented here include the derivation of the Kirchoff formula for moving surfaces,the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  15. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  16. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  17. Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications

    NASA Astrophysics Data System (ADS)

    Reid, M. D.; Drummond, P. D.; Bowen, W. P.; Cavalcanti, E. G.; Lam, P. K.; Bachor, H. A.; Andersen, U. L.; Leuchs, G.

    2009-10-01

    This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell’s theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

  18. Nonsmooth Finite-Time Synchronization of Switched Coupled Neural Networks.

    PubMed

    Liu, Xiaoyang; Cao, Jinde; Yu, Wenwu; Song, Qiang

    2016-10-01

    This paper is concerned with the finite-time synchronization (FTS) issue of switched coupled neural networks with discontinuous or continuous activations. Based on the framework of nonsmooth analysis, some discontinuous or continuous controllers are designed to force the coupled networks to synchronize to an isolated neural network. Some sufficient conditions are derived to ensure the FTS by utilizing the well-known finite-time stability theorem for nonlinear systems. Compared with the previous literatures, such synchronization objective will be realized when the activations and the controllers are both discontinuous. The obtained results in this paper include and extend the earlier works on the synchronization issue of coupled networks with Lipschitz continuous conditions. Moreover, an upper bound of the settling time for synchronization is estimated. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.

  19. Central limit theorem for recurrent random walks on a strip with bounded potential

    NASA Astrophysics Data System (ADS)

    Dolgopyat, D.; Goldsheid, I.

    2018-07-01

    We prove that the recurrent random walk (RW) in random environment (RE) on a strip in bounded potential satisfies the central limit theorem (CLT). The key ingredients of the proof are the analysis of the invariant measure equation and construction of a linearly growing martingale for walks in bounded potential. Our main result implies a complete classification of recurrent i.i.d. RWRE on the strip. Namely the walk either exhibits the Sinai behaviour in the sense that converges, as , to a (random) limit (the Sinai law) or, it satisfies the CLT. Another application of our main result is the CLT for the quasiperiodic environments with Diophantine frequencies in the recurrent case. We complement this result by proving that in the transient case the CLT holds for all uniquely ergodic environments. We also investigate the algebraic structure of the environments satisfying the CLT. In particular, we show that there exists a collection of proper algebraic subvarieties in the space of transition probabilities, such that: • If RE is stationary and ergodic and the transition probabilities are con-centrated on one of subvarieties from our collection then the CLT holds. • If the environment is i.i.d then the above condition is also necessary forthe CLT. All these results are valid for one-dimensional RWRE with bounded jumps as a particular case of the strip model.

  20. Novel Principles and the Charge-Symmetric Design of Dirac's Quantum Mechanics: I. Enhanced Eriksen's Theorem and the Universal Charge-Index Formalism for Dirac's Equation in (Strong) External Static Fields

    NASA Astrophysics Data System (ADS)

    Kononets, Yu. V.

    2016-12-01

    The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.

  1. A Microsoft® Excel Simulation Illustrating the Central Limit Theorem's Appropriateness for Comparing the Difference between the Means of Any Two Populations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2008-01-01

    Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…

  2. Optimal Repairman Allocation Models

    DTIC Science & Technology

    1976-03-01

    state X under policy ir. Then lim {k1’ lC0 (^)I) e.(X,k) - 0 k*0 *’-’ (3.1.1) Proof; The result is proven by induction on |CQ(X...following theorem. Theorem 3.1 D. Under the conditions of theorem 3.1 A, define g1[ 1) (X) - g^U), then lim k- lC0 W l-mle (XHkl00^ Ig*11 (X

  3. Individual and Collective Analyses of the Genesis of Student Reasoning Regarding the Invertible Matrix Theorem in Linear Algebra

    ERIC Educational Resources Information Center

    Wawro, Megan Jean

    2011-01-01

    In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…

  4. A Converse of Fermat's Little Theorem

    ERIC Educational Resources Information Center

    Bruckman, P. S.

    2007-01-01

    As the name of the paper implies, a converse of Fermat's Little Theorem (FLT) is stated and proved. FLT states the following: if p is any prime, and x any integer, then x[superscript p] [equivalent to] x (mod p). There is already a well-known converse of FLT, known as Lehmer's Theorem, which is as follows: if x is an integer coprime with m, such…

  5. Bayes' Theorem: An Old Tool Applicable to Today's Classroom Measurement Needs. ERIC/AE Digest.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    This digest introduces ways of responding to the call for criterion-referenced information using Bayes' Theorem, a method that was coupled with criterion-referenced testing in the early 1970s (see R. Hambleton and M. Novick, 1973). To illustrate Bayes' Theorem, an example is given in which the goal is to classify an examinee as being a master or…

  6. Generalization of the Bogoliubov-Zubarev Theorem for Dynamic Pressure to the Case of Compressibility

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.

    2018-01-01

    We present the motivation, formulation, and modified proof of the Bogoliubov-Zubarev theorem connecting the pressure of a dynamical object with its energy within the framework of a classical description and obtain a generalization of this theorem to the case of dynamical compressibility. In both cases, we introduce the volume of the object into consideration using a singular addition to the Hamiltonian function of the physical object, which allows using the concept of the Bogoliubov quasiaverage explicitly already on a dynamical level of description. We also discuss the relation to the same result known as the Hellmann-Feynman theorem in the framework of the quantum description of a physical object.

  7. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces

    NASA Astrophysics Data System (ADS)

    Ou, Ye-Lin

    2012-04-01

    We give several construction methods and use them to produce many examples of proper biharmonic maps including biharmonic tori of any dimension in Euclidean spheres (Theorem 2.2, Corollaries 2.3, 2.4 and 2.6), biharmonic maps between spheres (Theorem 2.9) and into spheres (Theorem 2.10) via orthogonal multiplications and eigenmaps. We also study biharmonic graphs of maps, derive the equation for a function whose graph is a biharmonic hypersurface in a Euclidean space, and give an equivalent formulation of Chen's conjecture on biharmonic hypersurfaces by using the biharmonic graph equation (Theorem 4.1) which paves a way for the analytic study of the conjecture.

  8. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  9. Fluctuation theorem for channel-facilitated membrane transport of interacting and noninteracting solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2008-05-15

    In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane separating two reservoirs. The transport is characterized by the probability, P(n)(t), that n solute particles have been transported from one reservoir to the other in time t. The fluctuation theorem establishes a relation between P(n)(t) and P-(n)(t): The ratio P(n)(t)/P-(n)(t) is independent of time and equal to exp(nbetaA), where betaA is the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

  10. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  11. Out-of-time-order fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  12. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  13. Aspects of Higher-Spin Conformal Field Theories and Their Renormalization Group Flows

    NASA Astrophysics Data System (ADS)

    Diab, Kenan S.

    In this thesis, we study conformal field theories (CFTs) with higher-spin symmetry and the renormalization group flows of some models with interactions that weakly break the higher-spin symmetry. When the higher-spin symmetry is exact, we will present CFT analogues of two classic results in quantum field theory: the Coleman-Mandula theorem, which is the subject of chapter 2, and the Weinberg-Witten theorem, which is the subject of chapter 3. Schematically, our Coleman-Mandula analogue states that a CFT that contains a symmetric conserved current of spin s > 2 in any dimension d > 3 is effectively free, and our Weinberg-Witten analogue states that the presence of certain short, higher-spin, "sufficiently asymmetric" representations of the conformal group is either inconsistent with conformal symmetry or leads to free theories in d = 4 dimensions. In both chapters, the basic strategy is to solve certain Ward identities in convenient kinematical limits and thereby show that the number of solutions is very limited. In the latter chapter, Hofman-Maldacena bounds, which constrain one-point functions of the stress tensor in general states, play a key role. Then, in chapter 4, we will focus on the particular examples of the O(N) and Gross-Neveu model in continuous dimensions. Using diagrammatic techniques, we explicitly calculate how the coefficients of the two-point function of a U(1) current and the two-point function of the stress tensor (CJ and CT, respectively) are renormalized in the 1/N and epsilon expansions. From the higher-spin perspective, these models are interesting since they are related via the AdS/CFT correspondence to Vasiliev gravity. In addition to checking and extending a number of previously-known results about CT and CJ in these theories, we find that in certain dimensions, CJ and CT are not monotonic along the renormalization group flow. Although it was already known that certain supersymmetric models do not satisfy a "CJ"- or " CT"-theorem, this shows that such a theorem is unlikely to hold even under more restrictive assumptions.

  14. A coupled mode formulation by reciprocity and a variational principle

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A coupled mode formulation for parallel dielectric waveguides is presented via two methods: a reciprocity theorem and a variational principle. In the first method, a generalized reciprocity relation for two sets of field solutions satisfying Maxwell's equations and the boundary conditions in two different media, respectively, is derived. Based on the generalized reciprocity theorem, the coupled mode equations can then be formulated. The second method using a variational principle is also presented for a general waveguide system which can be lossy. The results of the variational principle can also be shown to be identical to those from the reciprocity theorem. The exact relations governing the 'conventional' and the new coupling coefficients are derived. It is shown analytically that the present formulation satisfies the reciprocity theorem and power conservation exactly, while the conventional theory violates the power conservation and reciprocity theorem by as much as 55 percent and the Hardy-Streifer (1985, 1986) theory by 0.033 percent, for example.

  15. Does the Coase theorem hold in real markets? An application to the negotiations between waterworks and farmers in Denmark.

    PubMed

    Abildtrup, Jens; Jensen, Frank; Dubgaard, Alex

    2012-01-01

    The Coase theorem depends on a number of assumptions, among others, perfect information about each other's payoff function, maximising behaviour and zero transaction costs. An important question is whether the Coase theorem holds for real market transactions when these assumptions are violated. This is the question examined in this paper. We consider the results of Danish waterworks' attempts to establish voluntary cultivation agreements with Danish farmers. A survey of these negotiations shows that the Coase theorem is not robust in the presence of imperfect information, non-maximising behaviour and transaction costs. Thus, negotiations between Danish waterworks and farmers may not be a suitable mechanism to achieve efficiency in the protection of groundwater quality due to violations of the assumptions of the Coase theorem. The use of standard schemes or government intervention (e.g. expropriation) may, under some conditions, be a more effective and cost efficient approach for the protection of vulnerable groundwater resources in Denmark. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  17. Causal electric charge diffusion and balance functions in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kapusta, Joseph I.; Plumberg, Christopher

    2018-01-01

    We study the propagation and diffusion of electric charge fluctuations in high-energy heavy-ion collisions using the Cattaneo form for the dissipative part of the electric current. As opposed to the ordinary diffusion equation this form limits the speed at which charge can propagate. Including the noise term in the current, which arises uniquely from the fluctuation-dissipation theorem, we calculate the balance functions for charged hadrons in a simple 1+1-dimensional Bjorken hydrodynamical model. Limiting the speed of propagation of charge fluctuations increases the height and reduces the width of these balance functions when plotted versus rapidity. We also estimate the numerical value of the associated diffusion time constant from anti-de Sitter-space/conformal-field theory.

  18. Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative

    NASA Astrophysics Data System (ADS)

    Owolabi, Kolade M.

    2018-01-01

    In this paper, we model an ecological system consisting of a predator and two preys with the newly derived two-step fractional Adams-Bashforth method via the Atangana-Baleanu derivative in the Caputo sense. We analyze the dynamical system for correct choice of parameter values that are biologically meaningful. The local analysis of the main model is based on the application of qualitative theory for ordinary differential equations. By using the fixed point theorem idea, we establish the existence and uniqueness of the solutions. Convergence results of the new scheme are verified in both space and time. Dynamical wave phenomena of solutions are verified via some numerical results obtained for different values of the fractional index, which have some interesting ecological implications.

  19. Time-local equation for exact time-dependent optimized effective potential in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-04-01

    Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.

  20. Some functional limit theorems for compound Cox processes

    NASA Astrophysics Data System (ADS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-06-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  1. Quantum Mechanics, Can It Be Consistent with Locality?

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2011-07-01

    We single out an alternative, strict interpretation of the Einstein-Podolsky-Rosen criterion of reality, and identify the implied extensions of quantum correlations. Then we prove that the theorem of Bell, and the non-locality theorems without inequalities, fail if the new extensions are adopted. Therefore, these theorems can be interpreted as arguments against the wide interpretation of the criterion of reality rather than as a violation of locality.

  2. Specification Improvement Through Analysis of Proof Structure (SITAPS): High Assurance Software Development

    DTIC Science & Technology

    2016-02-01

    proof in mathematics. For example, consider the proof of the Pythagorean Theorem illustrated at: http://www.cut-the-knot.org/ pythagoras / where 112...methods and tools have made significant progress in their ability to model software designs and prove correctness theorems about the systems modeled...assumption criticality” or “ theorem root set size” SITAPS detects potentially brittle verification cases. SITAPS provides tools and techniques that

  3. Delaunay Refinement Mesh Generation

    DTIC Science & Technology

    1997-05-18

    edge is locally Delaunay; thus, by Lemma 3, every edge is Delaunay. Theorem 5 Let V be a set of three or more vertices in the plane that are not all...this document. Delaunay triangulations are valuable in part because they have the following optimality properties. Theorem 6 Among all triangulations of...no locally Delaunay edges. By Theorem 5, a triangulation with no locally Delaunay edges is the Delaunay triangulation. The property of max-min

  4. Development of a Dependency Theory Toolbox for Database Design.

    DTIC Science & Technology

    1987-12-01

    published algorithms and theorems , and hand simulating these algorithms can be a tedious and error prone chore. Additionally, since the process of...to design and study relational databases exists in the form of published algorithms and theorems . However, hand simulating these algorithms can be a...published algorithms and theorems . Hand simulating these algorithms can be a tedious and error prone chore. Therefore, a toolbox of algorithms and

  5. Ignoring the Innocent: Non-combatants in Urban Operations and in Military Models and Simulations

    DTIC Science & Technology

    2006-01-01

    such a model yields is a sufficiency theorem , a single run does not provide any information on the robustness of such theorems . That is, given that...often formally resolvable via inspection, simple differentiation, the implicit function theorem , comparative statistics, and so on. The only way to... Pythagoras , and Bactowars. For each, Grieger discusses model parameters, data collection, terrain, and other features. Grieger also discusses

  6. Some functional limit theorems for compound Cox processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  7. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  8. Reduction theorems for optimal unambiguous state discrimination of density matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Philippe; Luetkenhaus, Norbert; Enk, Steven J. van

    2003-08-01

    We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (N{>=}2)

  9. Proof of factorization using background field method of QCD

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2010-02-01

    Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.

  10. Proof of factorization using background field method of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Gouranga C.

    Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.

  11. A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Carozzi, T. D.; Woan, G.

    2009-05-01

    We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.

  12. Gaussification and entanglement distillation of continuous-variable systems: a unifying picture.

    PubMed

    Campbell, Earl T; Eisert, Jens

    2012-01-13

    Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.

  13. Neuronal models in infinite-dimensional spaces and their finite-dimensional projections: Part II.

    PubMed

    Brzychczy, S; Leszczyński, H; Poznanski, R R

    2012-09-01

    Application of comparison theorem is used to examine the validitiy of the "lumped parameter assumption" in describing the behavior of solutions of the continuous cable equation U(t) = DU(xx)+f(U) with the discrete cable equation dV(n)/dt = d*(V(n+1) - 2V(n) + V(n-1)) + f(V(n)), where f is a nonlinear functional describing the internal diffusion of electrical potential in single neurons. While the discrete cable equation looks like a finite difference approximation of the continuous cable equation, solutions of the two reveal significantly different behavior which imply that the compartmental models (spiking neurons) are poor quantifiers of neurons, contrary to what is commonly accepted in computational neuroscience.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlichenmaier, M

    Recently, Lax operator algebras appeared as a new class of higher genus current-type algebras. Introduced by Krichever and Sheinman, they were based on Krichever's theory of Lax operators on algebraic curves. These algebras are almost-graded Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points and Tyurin points). In a previous joint article with Sheinman, the author classified the local cocycles and associated almost-graded central extensions in the case of one in-point and one out-point. It was shown that the almost-graded extension is essentially unique. In this article the general case of Lax operator algebras corresponding to several in- andmore » out-points is considered. As a first step they are shown to be almost-graded. The grading is given by splitting the marked points which are non-Tyurin points into in- and out-points. Next, classification results both for local and bounded cocycles are proved. The uniqueness theorem for almost-graded central extensions follows. To obtain this generalization additional techniques are needed which are presented in this article. Bibliography: 30 titles.« less

  15. Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Shiu, Gary

    2018-05-01

    We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.

  16. Teaching the Jahn-Teller Theorem: A Simple Exercise That Illustrates How the Magnitude of Distortion Depends on the Number of Electrons and Their Occupation of the Degenerate Energy Level

    ERIC Educational Resources Information Center

    Johansson, Adam Johannes

    2013-01-01

    Teaching the Jahn-Teller theorem offers several challenges. For many students, the first encounter comes in coordination chemistry, which can be difficult due to the already complicated nature of transition-metal complexes. Moreover, a deep understanding of the Jahn-Teller theorem requires that one is well acquainted with quantum mechanics and…

  17. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  18. Deductive Synthesis of the Unification Algorithm,

    DTIC Science & Technology

    1981-06-01

    DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem

  19. Fixed-point theorems for families of weakly non-expansive maps

    NASA Astrophysics Data System (ADS)

    Mai, Jie-Hua; Liu, Xin-He

    2007-10-01

    In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.

  20. Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction

    PubMed Central

    Handa, Amrish

    2014-01-01

    We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688

  1. Transactions of the Conference of Army Mathematicians (25th).

    DTIC Science & Technology

    1980-01-01

    pothesis (see description of H in Theorem 1). It follows from (4.16) and (4.17) that CT v Hv(4.18) CFT < MCT V V and, since the greatest eigenvalue of H is...0 (3.15)’ 𔃺 2 (ar) = 0 -138- Tr1W 𔃾A WlO (0,T) = a + 2 t1 W ( , T) = - - 2 r H* f* (3.16)� 2 W12 ( CfT ) = f 2 O T at + (a212) Hi - 2 If* 12 3 W2...Theorem 8.10 and Theorem 8.11. For these tables, use of (8.36) to get bounds for I aml is not possible. It will be noted that Theorems 8.10 and 8.11 give

  2. A Theorem on the Rank of a Product of Matrices with Illustration of Its Use in Goodness of Fit Testing.

    PubMed

    Satorra, Albert; Neudecker, Heinz

    2015-12-01

    This paper develops a theorem that facilitates computing the degrees of freedom of Wald-type chi-square tests for moment restrictions when there is rank deficiency of key matrices involved in the definition of the test. An if and only if (iff) condition is developed for a simple rule of difference of ranks to be used when computing the desired degrees of freedom of the test. The theorem is developed exploiting basics tools of matrix algebra. The theorem is shown to play a key role in proving the asymptotic chi-squaredness of a goodness of fit test in moment structure analysis, and in finding the degrees of freedom of this chi-square statistic.

  3. Two diverse models of embedding class one

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2018-05-01

    Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.

  4. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  5. About the Law of Sinus in a trigonometry class

    NASA Astrophysics Data System (ADS)

    Prada, D. A.; Mantilla, J.; Díaz, A.; Páez, F.; Gómez, J.

    2018-04-01

    The law of sine is an equation of great utility in trigonometry. This type of equation has been applied in various contexts as the analysis of the relationship between angle of formation and sheet thickness of aluminum in processes of embossment, also in an instance in the duality of polar spaces of constant curvature. The applications are made obvious in the sense that it is analyzed and continually ponders the theoretical formality. In this article, we show a our own theorem and corollary which is useful in trigonometry.

  6. Generalization of the Ehrenfest theorem to quantum systems with periodical boundary conditions

    NASA Astrophysics Data System (ADS)

    Sanin, Andrey L.; Bagmanov, Andrey T.

    2005-04-01

    A generalization of Ehrenfest's theorem is discussed. For this purpose the quantum systems with periodical boundary conditions are being revised. The relations for time derivations of mean coordinate and momentum are derived once again. In comparison with Ehrenfest's theorem and its conventional quantities, the additional local terms occur which are caused boundaries. Because of this, the obtained new relations can be named as generalized. An example for using these relations is given.

  7. Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution

    DTIC Science & Technology

    1989-11-01

    to image 3 larger scenes, this problem becomes more important. A byproduct of this investigation is a duality theorem which is a generalization of the...well-known Projection-Slice Theorem . The second prob- - lem proposed is that of imaging a rapidly-spinning object, for example in inverse SAR mode...slices is absent. There is a possible connection of the word to the Projection-Slice Theorem , but, as seen in Chapter 4, even this is absent in the

  8. Existence and discrete approximation for optimization problems governed by fractional differential equations

    NASA Astrophysics Data System (ADS)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  9. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca; Wylie, William, E-mail: wwylie@syr.edu

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able tomore » extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  11. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  12. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  13. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Woolgar, Eric; Wylie, William

    2016-02-01

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  14. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  15. Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)

    NASA Astrophysics Data System (ADS)

    Badino, M.

    2011-11-01

    An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.

  16. Heuristic analogy in Ars Conjectandi: From Archimedes' De Circuli Dimensione to Bernoulli's theorem.

    PubMed

    Campos, Daniel G

    2018-02-01

    This article investigates the way in which Jacob Bernoulli proved the main mathematical theorem that undergirds his art of conjecturing-the theorem that founded, historically, the field of mathematical probability. It aims to contribute a perspective into the question of problem-solving methods in mathematics while also contributing to the comprehension of the historical development of mathematical probability. It argues that Bernoulli proved his theorem by a process of mathematical experimentation in which the central heuristic strategy was analogy. In this context, the analogy functioned as an experimental hypothesis. The article expounds, first, Bernoulli's reasoning for proving his theorem, describing it as a process of experimentation in which hypothesis-making is crucial. Next, it investigates the analogy between his reasoning and Archimedes' approximation of the value of π, by clarifying both Archimedes' own experimental approach to the said approximation and its heuristic influence on Bernoulli's problem-solving strategy. The discussion includes some general considerations about analogy as a heuristic technique to make experimental hypotheses in mathematics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. A Stochastic Version of the Noether Theorem

    NASA Astrophysics Data System (ADS)

    González Lezcano, Alfredo; Cabo Montes de Oca, Alejandro

    2018-06-01

    A stochastic version of the Noether theorem is derived for systems under the action of external random forces. The concept of moment generating functional is employed to describe the symmetry of the stochastic forces. The theorem is applied to two kinds of random covariant forces. One of them generated in an electrodynamic way and the other is defined in the rest frame of the particle as a function of the proper time. For both of them, it is shown the conservation of the mean value of a random drift momentum. The validity of the theorem makes clear that random systems can produce causal stochastic correlations between two faraway separated systems, that had interacted in the past. In addition possible connections of the discussion with the Ives Couder's experimental results are remarked.

  18. Noether’s second theorem and Ward identities for gauge symmetries

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2016-02-04

    Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We present and use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s secondmore » theorem and known results in the recent literature. Finally, our approach suggests a novel point of view with important physical consequences.« less

  19. A mathematical proof and example that Bayes's Theorem is fundamental to actuarial estimates of sexual recidivism risk.

    PubMed

    Donaldson, Theodore; Wollert, Richard

    2008-06-01

    Expert witnesses in sexually violent predator (SVP) cases often rely on actuarial instruments to make risk determinations. Many questions surround their use, however. Bayes's Theorem holds much promise for addressing these questions. Some experts nonetheless claim that Bayesian analyses are inadmissible in SVP cases because they are not accepted by the relevant scientific community. This position is illogical because Bayes's Theorem is simply a probabilistic restatement of the way that frequency data are combined to arrive at whatever recidivism rates are paired with each test score in an actuarial table. This article presents a mathematical proof and example validating this assertion. The advantages and implications of a logic model that combines Bayes's Theorem and the null hypothesis are also discussed.

  20. Sharp comparison theorems for the Klein-Gordon equation in d dimensions

    NASA Astrophysics Data System (ADS)

    Hall, Richard L.; Zorin, Petr

    2016-06-01

    We establish sharp (or ’refined’) comparison theorems for the Klein-Gordon equation. We show that the condition Va ≤ Vb, which leads to Ea ≤ Eb, can be replaced by the weaker assumption Ua ≤ Ub which still implies the spectral ordering Ea ≤ Eb. In the simplest case, for d = 1, Ui(x) =∫0xV i(t)dt, i = a or b and for d > 1, Ui(r) =∫0rV i(t)td-1dt, i = a or b. We also consider sharp comparison theorems in the presence of a scalar potential S (a ‘variable mass’) in addition to the vector term V (the time component of a four-vector). The theorems are illustrated by a variety of explicit detailed examples.

  1. Logical errors on proving theorem

    NASA Astrophysics Data System (ADS)

    Sari, C. K.; Waluyo, M.; Ainur, C. M.; Darmaningsih, E. N.

    2018-01-01

    In tertiary level, students of mathematics education department attend some abstract courses, such as Introduction to Real Analysis which needs an ability to prove mathematical statements almost all the time. In fact, many students have not mastered this ability appropriately. In their Introduction to Real Analysis tests, even though they completed their proof of theorems, they achieved an unsatisfactory score. They thought that they succeeded, but their proof was not valid. In this study, a qualitative research was conducted to describe logical errors that students made in proving the theorem of cluster point. The theorem was given to 54 students. Misconceptions on understanding the definitions seem to occur within cluster point, limit of function, and limit of sequences. The habit of using routine symbol might cause these misconceptions. Suggestions to deal with this condition are described as well.

  2. Necessary and sufficient conditions for the stability of a sleeping top described by three forms of dynamic equations

    NASA Astrophysics Data System (ADS)

    Ge, Zheng-Ming

    2008-04-01

    Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations, and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method, Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem without using the first approximation theory altogether.

  3. Twelve years before the quantum no-cloning theorem

    NASA Astrophysics Data System (ADS)

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  4. Analytic solution and pulse area theorem for three-level atoms

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.

    2015-12-01

    We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.

  5. A Pseudo-Reversing Theorem for Rotation and its Application to Orientation Theory

    DTIC Science & Technology

    2012-03-01

    approach to the task of constructing the appropriate course a ship must steer in order for the wind to appear to come from some given direction with some...axes, although the theorem doesn’t actually require such axes. The Pseudo-Reversing Theorem can often be invoked to give a different pedagogical basis to...of validity will quickly become obvious when it’s implemented on a computer. It does not seem to me that a great deal of pedagogical effort has found

  6. Naval Research Logistics Quarterly. Volume 28. Number 1,

    DTIC Science & Technology

    1981-03-01

    doing %%e forfeit the contraction property and must base our analysis on other procedures t)ualit. theor. and the Perron - Frobenius theorem are the main...and the Perron - Frobenius theorem (see Varga [16] or Seneta 1141). 2. NOTATION AND PRELIMINARY RESULTS Let v and v be two vectors. Write x > .j...x). If P is a square matrix, p(P) will denote the spectral radius of P. If P > 0 and square then the Perron - Frobenius theorem gives us that Pv = p(P)x

  7. Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information

    NASA Astrophysics Data System (ADS)

    Haken, Hermann

    2014-12-01

    After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.

  8. Advanced Wireless Integrated Navy Network

    DTIC Science & Technology

    2005-03-01

    transmitter and the receiver (do), the height of the setup above the floor can be estimated using Pythagoras ’ theorem : 4 The destination’s deck can also...single-unit resource model. Theorem I (RUA’s Blocking Time) Under RUA with the single-unit resource model, a task T, can be blocked for at most the...wait-free objects. Theorem 2 (Comparison of RUA’s Sojourn Times) Under RUA, as the critical section tac: of a task T, becomes longer, the difference

  9. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.

  10. Event Oriented Design and Adaptive Multiprocessing

    DTIC Science & Technology

    1991-08-31

    System 5 2.3 The Classification 5 2.4 Real-Time Systems 7 2.5 Non Real-Time Systems 10 2.6 Common Characterizations of all Software Systems 10 2.7... Non -Optimal Guarantee Test Theorem 37 6.3.2 Chetto’s Optimal Guarantee Test Theorem 37 6.3.3 Multistate Case: An Extended Guarantee 39 Test Theorem...which subdivides all software systems according to the way in which they operate, such as interactive, non interactive, real-time, etc. Having defined

  11. Hiproofs

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Power, John

    2003-01-01

    We introduce a hierarchical notion of formal proof, useful in the implementation of theorem provers, which we call highproofs. Two alternative definitions are given, motivated by existing notations used in theorem proving research. We define transformations between these two forms of hiproof, develop notions of underlying proof, and give a suitable definition of refinement in order to model incremental proof development. We show that our transformations preserve both underlying proofs and refinement. The relationship of our theory to existing theorem proving systems is discussed, as is its future extension.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong, E-mail: 83229994@qq.com; Ge, Hao, E-mail: haoge@pku.edu.cn; Xiong, Jie, E-mail: jiexiong@umac.mo

    Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.

  13. Quantization of Chirikov Map and Quantum KAM Theorem.

    NASA Astrophysics Data System (ADS)

    Shi, Kang-Jie

    KAM theorem is one of the most important theorems in classical nonlinear dynamics and chaos. To extend KAM theorem to the regime of quantum mechanics, we first study the quantum Chirikov map, whose classical counterpart provides a good example of KAM theorem. Under resonance condition 2pihbar = 1/N, we obtain the eigenstates of the evolution operator of this system. We find that the wave functions in the coherent state representation (CSR) are very similar to the classical trajectories. In particular, some of these wave functions have wall-like structure at the locations of classical KAM curves. We also find that a local average is necessary for a Wigner function to approach its classical limit in the phase space. We then study the general problem theoretically. Under similar conditions for establishing the classical KAM theorem, we obtain a quantum extension of KAM theorem. By constructing successive unitary transformations, we can greatly reduce the perturbation part of a near-integrable Hamiltonian system in a region associated with a Diophantine number {rm W}_{o}. This reduction is restricted only by the magnitude of hbar.. We can summarize our results as follows: In the CSR of a nearly integrable quantum system, associated with a Diophantine number {rm W}_ {o}, there is a band near the corresponding KAM torus of the classical limit of the system. In this band, a Gaussian wave packet moves quasi-periodically (and remain close to the KAM torus) for a long time, with possible diffusion in both the size and the shape of its wave packet. The upper bound of the tunnelling rate out of this band for the wave packet can be made much smaller than any given power of hbar, if the original perturbation is sufficiently small (but independent of hbar). When hbarto 0, we reproduce the classical KAM theorem. For most near-integrable systems the eigenstate wave function in the above band can either have a wall -like structure or have a vanishing amplitude. These conclusions agree with the numerical results of the quantum Chirikov map.

  14. Does Conceptual Understanding of Limit Partially Lead Students to Misconceptions?

    NASA Astrophysics Data System (ADS)

    Mulyono, B.; Hapizah

    2017-09-01

    This article talks about the result of preliminary research of my dissertation, which will investigate student’s retention of conceptual understanding. In my preliminary research, I surveyed 73 students of mathematics education program by giving some questions to test their retention of conceptual understanding of limits. Based on the results of analyzing of students’ answers I conclude that most of the students have problems with their retention of conceptual understanding and they also have misconception of limits. The first misconception I identified is that students always used the substitution method to determine a limit of a function at a point, but they did not check whether the function is continue or not at the point. It means that they only use the substitution theorem partially, because they do not consider that the substitution theorem \\mathop{{lim}}\\limits\\text{x\\to \\text{c}}f(x)=f(c) works only if f(x) is defined at χ = c. The other misconception identified is that some students always think there must be available of variables χ in a function to determine the limit of the function. I conjecture that conceptual understanding of limit partially leads students to misconceptions.

  15. Analytic tools for investigating the structure of network reliability measures with regard to observation correlations

    NASA Astrophysics Data System (ADS)

    Prószyński, W.; Kwaśniak, M.

    2018-03-01

    A global measure of observation correlations in a network is proposed, together with the auxiliary indices related to non-diagonal elements of the correlation matrix. Based on the above global measure, a specific representation of the correlation matrix is presented, being the result of rigorously proven theorem formulated within the present research. According to the theorem, each positive definite correlation matrix can be expressed by a scale factor and a so-called internal weight matrix. Such a representation made it possible to investigate the structure of the basic reliability measures with regard to observation correlations. Numerical examples carried out for two test networks illustrate the structure of those measures that proved to be dependent on global correlation index. Also, the levels of global correlation are proposed. It is shown that one can readily find an approximate value of the global correlation index, and hence the correlation level, for the expected values of auxiliary indices being the only knowledge about a correlation matrix of interest. The paper is an extended continuation of the previous study of authors that was confined to the elementary case termed uniform correlation. The extension covers arbitrary correlation matrices and a structure of correlation effect.

  16. Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids

    NASA Astrophysics Data System (ADS)

    Ackerman, Paul J.; Smalyukh, Ivan I.

    2017-04-01

    Three-dimensional (3D) topological solitons are continuous but topologically nontrivial field configurations localized in 3D space and embedded in a uniform far-field background, that behave like particles and cannot be transformed to a uniform state through smooth deformations. Many topologically nontrivial 3D solitonic fields have been proposed. Yet, according to the Hobart-Derrick theorem, physical systems cannot host them, except for nonlinear theories with higher-order derivatives such as the Skyrme-Faddeev model. Experimental discovery of such solitons is hindered by the need for spatial imaging of the 3D fields, which is difficult in high-energy physics and cosmology. Here we experimentally realize and numerically model stationary topological solitons in a fluid chiral ferromagnet formed by colloidal dispersions of magnetic nanoplates. Such solitons have closed-loop preimages--3D regions with a single orientation of the magnetization field. We discuss localized structures with different linking of preimages quantified by topological Hopf invariants. The chirality is found to help in overcoming the constraints of the Hobart-Derrick theorem, like in two-dimensional ferromagnetic solitons, dubbed `baby skyrmions'. Our experimental platform may lead to solitonic condensed matter phases and technological applications.

  17. Light-Ring Stability for Ultracompact Objects.

    PubMed

    Cunha, Pedro V P; Berti, Emanuele; Herdeiro, Carlos A R

    2017-12-22

    We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

  18. Light-Ring Stability for Ultracompact Objects

    NASA Astrophysics Data System (ADS)

    Cunha, Pedro V. P.; Berti, Emanuele; Herdeiro, Carlos A. R.

    2017-12-01

    We prove the following theorem: axisymmetric, stationary solutions of the Einstein field equations formed from classical gravitational collapse of matter obeying the null energy condition, that are everywhere smooth and ultracompact (i.e., they have a light ring) must have at least two light rings, and one of them is stable. It has been argued that stable light rings generally lead to nonlinear spacetime instabilities. Our result implies that smooth, physically and dynamically reasonable ultracompact objects are not viable as observational alternatives to black holes whenever these instabilities occur on astrophysically short time scales. The proof of the theorem has two parts: (i) We show that light rings always come in pairs, one being a saddle point and the other a local extremum of an effective potential. This result follows from a topological argument based on the Brouwer degree of a continuous map, with no assumptions on the spacetime dynamics, and, hence, it is applicable to any metric gravity theory where photons follow null geodesics. (ii) Assuming Einstein's equations, we show that the extremum is a local minimum of the potential (i.e., a stable light ring) if the energy-momentum tensor satisfies the null energy condition.

  19. The embedding problem in topological dynamics and Takens’ theorem

    NASA Astrophysics Data System (ADS)

    Gutman, Yonatan; Qiao, Yixiao; Szabó, Gábor

    2018-02-01

    We prove that every {Z}k -action (X, {Z}k, T) of mean dimension less than D/2 admitting a factor (Y, {Z}k, S) of Rokhlin dimension not greater than L embeds in (([0, 1](L+1)D){\\hspace{0pt}}{Zk}× Y, σ× S) , where D\\in{N} , L\\in{N}\\cup\\{0\\} and σ is the shift on the Hilbert cube ([0, 1](L+1)D){\\hspace{0pt}}{Zk} ; in particular, when (Y, {Z}k, S) is an irrational {Z}k -rotation on the k-torus, (X, {Z}k, T) embeds in (([0, 1]2^kD+1){\\hspace{0pt}}{Z^k}, σ) , which is compared to a previous result in Gutman, Lindenstrauss and Tsukamoto (2016 Geom. Funct. Anal. 3 778-817). Moreover, we give a complete and detailed proof of Takens’ embedding theorem with a continuous observable for {Z} -actions and deduce the analogous result for {Z}k -actions. Lastly, we show that the Lindenstrauss-Tsukamoto conjecture for {Z} -actions holds generically, discuss an analogous conjecture for {Z}k -actions in Gutman, Qiao and Tsukamoto (2017 arXiv:1709.00125) and verify it for {Z}k -actions on finite dimensional spaces.

  20. Analytic approximation for random muffin-tin alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, R.; Gray, L.J.; Kaplan, T.

    1983-03-15

    The methods introduced in a previous paper under the name of ''traveling-cluster approximation'' (TCA) are applied, in a multiple-scattering approach, to the case of a random muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calculation to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-shell components of the mean resolvent, needed for the calculation of spectral functions, are obtained by standard methods involving single-site scattering wave functions. The single-site TCA is just the usual coherent-potential approximation, expressed in a form particularly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA, ensuringmore » convergence upon iteration to a unique self-consistent solution with the physically essential Herglotz properties.« less

  1. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  2. Local Voltage Control in Distribution Networks: A Game-Theoretic Perspective: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xinyang; Tian, Jie; Chen, Lijun

    Inverter-based voltage regulation is gaining importance to alleviate emerging reliability and power-quality concerns related to distribution systems with high penetration of photovoltaic (PV) systems. This paper seeks contribution in the domain of reactive power compensation by establishing stability of local Volt/VAr controllers. In lieu of the approximate linear surrogate used in the existing work, the paper establishes existence and uniqueness of an equilibrium point using nonlinear AC power flow model. Key to this end is to consider a nonlinear dynamical system with non-incremental local Volt/VAr control, cast the Volt/VAr dynamics as a game, and leverage the fixed-point theorem as wellmore » as pertinent contraction mapping argument. Numerical examples are provided to complement the analytical results.« less

  3. Stochastic driven systems far from equilibrium

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk

    We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.

  4. Oscillation theorems for second order nonlinear forced differential equations.

    PubMed

    Salhin, Ambarka A; Din, Ummul Khair Salma; Ahmad, Rokiah Rozita; Noorani, Mohd Salmi Md

    2014-01-01

    In this paper, a class of second order forced nonlinear differential equation is considered and several new oscillation theorems are obtained. Our results generalize and improve those known ones in the literature.

  5. Generalized Bezout's Theorem and its applications in coding theory

    NASA Technical Reports Server (NTRS)

    Berg, Gene A.; Feng, Gui-Liang; Rao, T. R. N.

    1996-01-01

    This paper presents a generalized Bezout theorem which can be used to determine a tighter lower bound of the number of distinct points of intersection of two or more curves for a large class of plane curves. A new approach to determine a lower bound on the minimum distance (and also the generalized Hamming weights) for algebraic-geometric codes defined from a class of plane curves is introduced, based on the generalized Bezout theorem. Examples of more efficient linear codes are constructed using the generalized Bezout theorem and the new approach. For d = 4, the linear codes constructed by the new construction are better than or equal to the known linear codes. For d greater than 5, these new codes are better than the known codes. The Klein code over GF(2(sup 3)) is also constructed.

  6. Profiling procedure for disk cutter to generate the male rotor, screw compressors component, using the “Substitute Family Circle” - graphic method in AUTOCAD environment

    NASA Astrophysics Data System (ADS)

    Popa, CL; Popa, V.

    2016-11-01

    This paper proposes a profiling method for the tool which generates the helical groove of male rotor, screw compressor component. The method is based on a complementary theorem of surfaces enveloping - "Substitute Family Circles Method”. The specific theorem of family circles of substitution has been applied using AUTOCAD graphics design environment facility. The frontal view of the male rotor, screw compressor component, has been determinate knowing the transverse profile of female rotor, and using this theorem of "Substitute Family Circle". The three-dimensional model of the rotor makes possible to apply the same theorem, leading to the surface of revolution enveloping the helical surface. An application will be also presented to determine the axial profile of the disk cutter, numeric and graphics, following the proposed algorithm.

  7. Model Checking Failed Conjectures in Theorem Proving: A Case Study

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Miner, Paul; Torres-Pomales, Wilfredo

    2004-01-01

    Interactive mechanical theorem proving can provide high assurance of correct design, but it can also be a slow iterative process. Much time is spent determining why a proof of a conjecture is not forthcoming. In some cases, the conjecture is false and in others, the attempted proof is insufficient. In this case study, we use the SAL family of model checkers to generate a concrete counterexample to an unproven conjecture specified in the mechanical theorem prover, PVS. The focus of our case study is the ROBUS Interactive Consistency Protocol. We combine the use of a mechanical theorem prover and a model checker to expose a subtle flaw in the protocol that occurs under a particular scenario of faults and processor states. Uncovering the flaw allows us to mend the protocol and complete its general verification in PVS.

  8. Kochen-Specker theorem studied with neutron interferometer.

    PubMed

    Hasegawa, Yuji; Durstberger-Rennhofer, Katharina; Sponar, Stephan; Rauch, Helmut

    2011-04-01

    The Kochen-Specker theorem shows the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is achieved not between different particles, but between degrees of freedom of a single neutron, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality derived from the Kochen-Specker theorem. The observed violation 2.291±0.008≰1 clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

  9. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 2: Formal specification and correctness theorems

    NASA Technical Reports Server (NTRS)

    Bickford, Mark; Srivas, Mandayam

    1991-01-01

    Presented here is a formal specification and verification of a property of a quadruplicately redundant fault tolerant microprocessor system design. A complete listing of the formal specification of the system and the correctness theorems that are proved are given. The system performs the task of obtaining interactive consistency among the processors using a special instruction on the processors. The design is based on an algorithm proposed by Pease, Shostak, and Lamport. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, providing certain preconditions hold, using a computer aided design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  10. Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem (non-resonant case)

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.

  11. A proof of the Woodward-Lawson sampling method for a finite linear array

    NASA Technical Reports Server (NTRS)

    Somers, Gary A.

    1993-01-01

    An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.

  12. A BGK model for reactive mixtures of polyatomic gases with continuous internal energy

    NASA Astrophysics Data System (ADS)

    Bisi, M.; Monaco, R.; Soares, A. J.

    2018-03-01

    In this paper we derive a BGK relaxation model for a mixture of polyatomic gases with a continuous structure of internal energies. The emphasis of the paper is on the case of a quaternary mixture undergoing a reversible chemical reaction of bimolecular type. For such a mixture we prove an H -theorem and characterize the equilibrium solutions with the related mass action law of chemical kinetics. Further, a Chapman-Enskog asymptotic analysis is performed in view of computing the first-order non-equilibrium corrections to the distribution functions and investigating the transport properties of the reactive mixture. The chemical reaction rate is explicitly derived at the first order and the balance equations for the constituent number densities are derived at the Euler level.

  13. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  14. A Minimum Path Algorithm Among 3D-Polyhedral Objects

    NASA Astrophysics Data System (ADS)

    Yeltekin, Aysin

    1989-03-01

    In this work we introduce a minimum path theorem for 3D case. We also develop an algorithm based on the theorem we prove. The algorithm will be implemented on the software package we develop using C language. The theorem we introduce states that; "Given the initial point I, final point F and S be the set of finite number of static obstacles then an optimal path P from I to F, such that PA S = 0 is composed of straight line segments which are perpendicular to the edge segments of the objects." We prove the theorem as well as we develop the following algorithm depending on the theorem to find the minimum path among 3D-polyhedral objects. The algorithm generates the point Qi on edge ei such that at Qi one can find the line which is perpendicular to the edge and the IF line. The algorithm iteratively provides a new set of initial points from Qi and exploits all possible paths. Then the algorithm chooses the minimum path among the possible ones. The flowchart of the program as well as the examination of its numerical properties are included.

  15. Structure theorems and the dynamics of nitrogen catabolite repression in yeast

    PubMed Central

    Boczko, Erik M.; Cooper, Terrance G.; Gedeon, Tomas; Mischaikow, Konstantin; Murdock, Deborah G.; Pratap, Siddharth; Wells, K. Sam

    2005-01-01

    By using current biological understanding, a conceptually simple, but mathematically complex, model is proposed for the dynamics of the gene circuit responsible for regulating nitrogen catabolite repression (NCR) in yeast. A variety of mathematical “structure” theorems are described that allow one to determine the asymptotic dynamics of complicated systems under very weak hypotheses. It is shown that these theorems apply to several subcircuits of the full NCR circuit, most importantly to the URE2–GLN3 subcircuit that is independent of the other constituents but governs the switching behavior of the full NCR circuit under changes in nitrogen source. Under hypotheses that are fully consistent with biological data, it is proven that the dynamics of this subcircuit is simple periodic behavior in synchrony with the cell cycle. Although the current mathematical structure theorems do not apply to the full NCR circuit, extensive simulations suggest that the dynamics is constrained in much the same way as that of the URE2–GLN3 subcircuit. This finding leads to the proposal that mathematicians study genetic circuits to find new geometries for which structure theorems may exist. PMID:15814615

  16. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  17. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  18. On the locality of the no hair conjection and the measure of the universe

    NASA Technical Reports Server (NTRS)

    Pacher, Tibor; Stein-Schabes, Jaime A.

    1988-01-01

    The reently proposed proof by Jensen and Stein-Schabes of the No Hair Theorem for inhomogeneous spacetimes is analyzed, putting a special emphasis on the asymptotic behavior of the shear and curvature. It is concluded that the theorem only holds locally, and the minimum size a region should be is estimated in order for it to inflate. The assumptions used in the theorem are discussed in detail. The last section speculates about the possible measure of the set of spacetimes that would undergo inflation.

  19. FAST TRACK COMMUNICATION: Singularity theorems based on trapped submanifolds of arbitrary co-dimension

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Senovilla, José M. M.

    2010-08-01

    Standard singularity theorems are proven in Lorentzian manifolds of arbitrary dimension n if they contain closed trapped submanifolds of arbitrary co-dimension. By using the mean curvature vector to characterize trapped submanifolds, a unification of the several possibilities for the boundary conditions in the traditional theorems and their generalization to an arbitrary co-dimension is achieved. The classical convergence conditions must be replaced by a condition on sectional curvatures, or tidal forces, which reduces to the former in the cases of the co-dimension 1, 2 or n.

  20. A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2017-07-01

    Based on a gambling formulation of quantum mechanics, we derive a Gleason-type theorem that holds for any dimension n of a quantum system, and in particular for n=2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why dispersion-free probabilities are actually not valid, or rational, probabilities for quantum mechanics, and hence should be excluded from consideration.

  1. Violation of the zero-force theorem in the time-dependent Krieger-Li-Iafrate approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan; Leeuwen, Robert van

    2007-05-15

    We demonstrate that the time-dependent Krieger-Li-Iafrate approximation in combination with the exchange-only functional violates the zero-force theorem. By analyzing the time-dependent dipole moment of Na{sub 5} and Na{sub 9}{sup +}, we furthermore show that this can lead to an unphysical self-excitation of the system depending on the system properties and the excitation strength. Analytical aspects, especially the connection between the zero-force theorem and the generalized-translation invariance of the potential, are discussed.

  2. Formal Verification of Curved Flight Collision Avoidance Maneuvers: A Case Study

    DTIC Science & Technology

    2009-08-01

    easily by Pythagoras theorem (i.e., (2r)2 = r2 + x21 for the triangle enclosed by h, x, c in Fig. 7a): x = ( √ (2r)2 − r2, 0) = ( √ 3r, 0) . (4...region [10]. Most notably, the separation proof in Section 4.7 is by overapproximation and tolerates asymmetric distances to c (Fig. 7b). Theorem 1... Theorem 1 is already sufficiently general, but the computational complexity high. It would be interesting future work to see if the informal robustness

  3. A Review of Maximum Entropy Spectral Analysis and Applications to Fourier Spectroscopy.

    DTIC Science & Technology

    1985-04-03

    1 From Pythagoras to Fourier 3 2. 2 The Periodogram as Introduced by Sir Arthur Schuster 6 2. 3 The Slutzky Effect and the Work of Yule 7 2.4 The...Transform 27 4. 2 The Z-Transform Convolution Theorem 29 4. 3 The Wiener -Khintchmne , Theorem 31 4.4 The Z-Transform of el. 3 5. A COMPARISON BETWEEN...the Convolution I’heoreni, the Wiene i-Khintrbitte Theorem , aind the conventional ;pp roach of Il1ac km in and Tuke-,. Finally, it should he

  4. Experimental demonstration that a free-falling aerosol particle obeys a fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Wong, Chun-Shang; Goree, J.; Gopalakrishnan, Ranganathan

    2018-05-01

    We investigate the fluctuating motion of an aerosol particle falling in air. Using a Millikan-like setup, we tracked a 1-μ m sphere falling at its terminal velocity. We observe occurrences of particles undergoing upward displacements against the force of gravity, so that negative work is done briefly. These negative-work events have a probability that is shown to obey the work fluctuation theorem. This experimental confirmation of the theorem's applicability to aerosols leads us to develop and demonstrate an application: an in situ measurement of an aerosol particle's mass.

  5. Forest Carbon Uptake and the Fundamental Theorem of Calculus

    ERIC Educational Resources Information Center

    Zobitz, John

    2013-01-01

    Using the fundamental theorem of calculus and numerical integration, we investigate carbon absorption of ecosystems with measurements from a global database. The results illustrate the dynamic nature of ecosystems and their ability to absorb atmospheric carbon.

  6. RATIONAL APPROXIMATIONS TO GENERALIZED HYPERGEOMETRIC FUNCTIONS.

    DTIC Science & Technology

    Under weak restrictions on the various free parameters, general theorems for rational representations of the generalized hypergeometric functions...and certain Meijer G-functions are developed. Upon specialization, these theorems yield a sequency of rational approximations which converge to the

  7. Nonuniform sampling theorems for random signals in the linear canonical transform domain

    NASA Astrophysics Data System (ADS)

    Shuiqing, Xu; Congmei, Jiang; Yi, Chai; Youqiang, Hu; Lei, Huang

    2018-06-01

    Nonuniform sampling can be encountered in various practical processes because of random events or poor timebase. The analysis and applications of the nonuniform sampling for deterministic signals related to the linear canonical transform (LCT) have been well considered and researched, but up to now no papers have been published regarding the various nonuniform sampling theorems for random signals related to the LCT. The aim of this article is to explore the nonuniform sampling and reconstruction of random signals associated with the LCT. First, some special nonuniform sampling models are briefly introduced. Second, based on these models, some reconstruction theorems for random signals from various nonuniform samples associated with the LCT have been derived. Finally, the simulation results are made to prove the accuracy of the sampling theorems. In addition, the latent real practices of the nonuniform sampling for random signals have been also discussed.

  8. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with ``hidden'' variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently--as establishing an ``essential conflict'' between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  9. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with "hidden" variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently—as establishing an "essential conflict" between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  10. Sharp Contradiction for Local-Hidden-State Model in Quantum Steering.

    PubMed

    Chen, Jing-Ling; Su, Hong-Yi; Xu, Zhen-Peng; Pati, Arun Kumar

    2016-08-26

    In quantum theory, no-go theorems are important as they rule out the existence of a particular physical model under consideration. For instance, the Greenberger-Horne-Zeilinger (GHZ) theorem serves as a no-go theorem for the nonexistence of local hidden variable models by presenting a full contradiction for the multipartite GHZ states. However, the elegant GHZ argument for Bell's nonlocality does not go through for bipartite Einstein-Podolsky-Rosen (EPR) state. Recent study on quantum nonlocality has shown that the more precise description of EPR's original scenario is "steering", i.e., the nonexistence of local hidden state models. Here, we present a simple GHZ-like contradiction for any bipartite pure entangled state, thus proving a no-go theorem for the nonexistence of local hidden state models in the EPR paradox. This also indicates that the very simple steering paradox presented here is indeed the closest form to the original spirit of the EPR paradox.

  11. Cone and trumpet concentrators in light of the general edge-ray theorem

    NASA Astrophysics Data System (ADS)

    Ries, Harald; Spirkl, Wolfgang; Winston, Roland

    1995-08-01

    Cone and trumpet are nonimaging concentrators which do not obey the traditional edge-ray principle. The latter states that edge rays from the source should be transferred to the edge of the target. These concentrators have traditionally been described in terms of the heuristic flow line principle. The edge-ray theorem has been generalized to include nonimaging reflectors with multiple reflections. One includes all multiply reflected rays as an auxiliary domain. The general edge-ray theorem then states that the edge rays to the union of source and auxiliary domain must be reflected to edge of the union of target and auxiliary domain by the first reflection. We show the setup for which cone and trumpet constitute perfect nonimaging concentrators in the light of the generalized edge-ray theorem. We discuss the cases where cones are very good approximations for the solutions of nonimaging problems.

  12. Adiabatic Theorem for Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Bachmann, S.; De Roeck, W.; Fraas, M.

    2017-08-01

    The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ɛ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.

  13. More on Weinberg's no-go theorem in quantum gravity

    NASA Astrophysics Data System (ADS)

    Nagahama, Munehiro; Oda, Ichiro

    2018-05-01

    We complement Weinberg's no-go theorem on the cosmological constant problem in quantum gravity by generalizing it to the case of a scale-invariant theory. Our analysis makes use of the effective action and the BRST symmetry in a manifestly covariant quantum gravity instead of the classical Lagrangian density and the G L (4 ) symmetry in classical gravity. In this sense, our proof is very general since it does not depend on details of quantum gravity and holds true for general gravitational theories which are invariant under diffeomorphisms. As an application of our theorem, we comment on an idea that in the asymptotic safety scenario the functional renormalization flow drives a cosmological constant to zero, solving the cosmological constant problem without reference to fine tuning of parameters. Finally, we also comment on the possibility of extending the Weinberg theorem in quantum gravity to the case where the translational invariance is spontaneously broken.

  14. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reducedmore » to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.« less

  15. Applications of square-related theorems

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  16. [ ] or SUCCESS is Not Enough: Current Technology and Future Directions in Proof Presentation

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Robinson, Peter; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Automated theorem provers for first order logic are now around for several decades. Over the last few years, their deductive power to solve hard problems has increased tremendously. The annual CASC system competitions [Se97] give a clear picture of this situation. However, today's automated theorem provers are restricted "more by general usability than by raw deductive power." As a result of this, there are only very few serious applications of automated theorem provers. There are numerous features which a theorem prover lacks for real-world applicability. An automated theorem prover (as it is currently seen) is nothing more than a fast and elaborate search procedure. In that sense, an ATP can compared to a formulated race car, cool and fast, but virtually unusable for shopping groceries around the corner. Many important features are missing, or are optimized for speed rather than for applicability. [Schol] identifies important features which are needed for practical usability like detection of non-theorems, handling of modal/inductive proof tasks, control of the prover, and proof output. In this paper, we will focus solely on the last point, the presentation of the ATP's result to the user. In the rest of this paper, we will first discuss the general importance of providing feedback to the user, then we will describe the system ExplainIt!, a part of the deductive synthesis system AMPHION/NAV. In the conclusions we will relate proof presentation to other ways of post-processing a proof found by an ATP and stress their role in the future of automated deduction.

  17. Editorial

    NASA Astrophysics Data System (ADS)

    Liu, Shuai

    Fractal represents a special feature of nature and functional objects. However, fractal based computing can be applied to many research domains because of its fixed property resisted deformation, variable parameters and many unpredictable changes. Theoretical research and practical application of fractal based computing have been hotspots for 30 years and will be continued. There are many pending issues awaiting solutions in this domain, thus this thematic issue containing 14 papers publishes the state-of-the-art developments in theorem and application of fractal based computing, including mathematical analysis and novel engineering applications. The topics contain fractal and multifractal features in application and solution of nonlinear odes and equation.

  18. Scattering General Analysis; ANALISIS GENERAL DE LA DISPERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixaire, A.G.

    1962-01-01

    A definition of scattering states is given. It is shown that such states must belong to the absolutely continuous part of the spectrum of the total hamiltonian whenever scattering systems are considered. Such embedding may be proper unless the quantum system is physically admissible. The Moller wave operators are analyzed using Abel- and Cesaro-limit theoretical arguments. Von Neumann s ergodic theorem is partially generalized. A rigorous derivation of the Gell-Mann and Goldberger and Lippmann and Schwinger equations is obtained by making use of results on spectral theory, wave function, and eigendifferential concepts contained. (auth)

  19. Covariant information-density cutoff in curved space-time.

    PubMed

    Kempf, Achim

    2004-06-04

    In information theory, the link between continuous information and discrete information is established through well-known sampling theorems. Sampling theory explains, for example, how frequency-filtered music signals are reconstructible perfectly from discrete samples. In this Letter, sampling theory is generalized to pseudo-Riemannian manifolds. This provides a new set of mathematical tools for the study of space-time at the Planck scale: theories formulated on a differentiable space-time manifold can be equivalent to lattice theories. There is a close connection to generalized uncertainty relations which have appeared in string theory and other studies of quantum gravity.

  20. Log-Concavity and Strong Log-Concavity: a review

    PubMed Central

    Saumard, Adrien; Wellner, Jon A.

    2016-01-01

    We review and formulate results concerning log-concavity and strong-log-concavity in both discrete and continuous settings. We show how preservation of log-concavity and strongly log-concavity on ℝ under convolution follows from a fundamental monotonicity result of Efron (1969). We provide a new proof of Efron's theorem using the recent asymmetric Brascamp-Lieb inequality due to Otto and Menz (2013). Along the way we review connections between log-concavity and other areas of mathematics and statistics, including concentration of measure, log-Sobolev inequalities, convex geometry, MCMC algorithms, Laplace approximations, and machine learning. PMID:27134693

Top