Operational Suitability Guide. Volume 2. Templates
1990-05-01
Intended mission, and the required technical and operational characteristics. The mission must be adequately defined and key hardware and software ...operational availability. With the use of fault-tolerant computer hardware and software , the system R&M will significantly improve end-to-end...should Include both hardware and software elements, as appropriate. Unique characteristics or unique support concepts should be Identified if they result
A unique control system simulator for the evaluation of pulsed plasma thrusters
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1973-01-01
Because of the low thrust characteristics of solid-propellant pulsed plasma thrusters and their operational requirement to operate in a vacuum environment, unique and sensitive test techniques are required. A technique evolved for testing and evaluating pulsed plasma thrusters in an open- or closed-loop system mode employs a unique air bearing platform as a single-axis simulator on which the thruster is mounted. The simulator described was developed to evaluate pulsed plasma thrusters in the low micropound range; however, the simulator can be extended to cover the operational range of currently developed millipound thrusters.
Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ela, E.; Milligan, M.; Bloom, A.
2014-09-01
Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.
Briefing sheets on safety and operations of rural two-lane highways.
DOT National Transportation Integrated Search
2016-11-01
The safety and operations of Texas rural two-lane highways are being affected by increased traffic associated : with the energy sector, including the unique characteristics of heavy trucks. Researchers reviewed existing : conditions on select rural t...
49 CFR 192.616 - Public awareness.
Code of Federal Regulations, 2012 CFR
2012-10-01
... follows the guidance provided in the American Petroleum Institute's (API) Recommended Practice (RP) 1162... recommendations of API RP 1162 and assess the unique attributes and characteristics of the operator's pipeline and... supplemental requirements of API RP 1162, unless the operator provides justification in its program or...
49 CFR 192.616 - Public awareness.
Code of Federal Regulations, 2014 CFR
2014-10-01
... follows the guidance provided in the American Petroleum Institute's (API) Recommended Practice (RP) 1162... recommendations of API RP 1162 and assess the unique attributes and characteristics of the operator's pipeline and... supplemental requirements of API RP 1162, unless the operator provides justification in its program or...
49 CFR 192.616 - Public awareness.
Code of Federal Regulations, 2013 CFR
2013-10-01
... follows the guidance provided in the American Petroleum Institute's (API) Recommended Practice (RP) 1162... recommendations of API RP 1162 and assess the unique attributes and characteristics of the operator's pipeline and... supplemental requirements of API RP 1162, unless the operator provides justification in its program or...
Unmanned Aerial Vehicles unique cost estimating requirements
NASA Astrophysics Data System (ADS)
Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.
Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.
Medical Treatment Facility Workload Documentation Guide.
1980-04-15
to the system implementation should be presented. This document is intended as a guidebook for determining the site specific characteristics of an...wide volume analysis of a communications system. Prior to collecting any data, objectives and initial operating characteristics of the system(s...unique characteristics involved. An on-site inspection of all spaces to be impacted by NIS implementation is required initially. During this inspection
Fuel cell power plant economic and operational considerations
NASA Technical Reports Server (NTRS)
Lance, J. R.
1984-01-01
Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.
Small, efficient power supply for xenon lamps
NASA Technical Reports Server (NTRS)
Goodwin, J. E.
1970-01-01
Device, which operates from 28 V dc, has four sections, a preregulator, a dc-to-dc converter, a current regulator, and a high voltage starter. The unique characteristics of the individual sections are described.
Calibration of microsimulation models for multimodal freight networks.
DOT National Transportation Integrated Search
2012-06-01
This research presents a framework for incorporating the unique operating characteristics of multi-modal freight networks : into the calibration process for microscopic traffic simulation models. Because of the nature of heavy freight movements : in ...
Millimeter Wave Radar Applications to Weapons Systems
1976-06-01
meter wave region compared with the high attenuation in the optical region. It is this unique characteristic of millimeter waves to penetrate fog...miiliaeter wave radars in graund-to-- air , ground-to-ground, and air -to-ground weapons systems aye presented. The advantages and limitation~s¶ of operating...MILLIMETER WAVE RADAR CHARACTERISTICS ..... ............ .. 27 A, General ................ ......................... ... 27 B. Ground-to- Air Millimeter
A coded tracking telemetry system
Howey, P.W.; Seegar, W.S.; Fuller, M.R.; Titus, K.; Amlaner, Charles J.
1989-01-01
We describe the general characteristics of an automated radio telemetry system designed to operate for prolonged periods on a single frequency. Each transmitter sends a unique coded signal to a receiving system that encodes and records only the appropriater, pre-programmed codes. A record of the time of each reception is stored on diskettes in a micro-computer. This system enables continuous monitoring of infrequent signals (e.g. one per minute or one per hour), thus extending operation life or allowing size reduction of the transmitter, compared to conventional wildlife telemetry. Furthermore, when using unique codes transmitted on a single frequency, biologists can monitor many individuals without exceeding the radio frequency allocations for wildlife.
Infrasound Signal Characteristics from Small Earthquakes
2010-09-01
INFRASOUND SIGNAL CHARACTERISTICS FROM SMALL EARTHQUAKES J. Mark Hale1, Stephen J. Arrowsmith2, Chris Hayward3, Relu Burlacu1, Kristine L. Pankow1...ABSTRACT Understanding the source properties responsible for infrasound generation is critical to developing a seismo-acoustic data discriminant...mining in the Utah region create a unique setting for the study of near-field infrasound . The Utah network has been operating three permanent infrasound
Canadian Light Infantry in Adaptive Dispersed Operations
2012-05-17
participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light
Canadian Light Infantry in Adaptive Dispersed Operations
2012-05-22
participated directly or indirectly under the leadership of Combined Joint Task Force (CJTF) MOUNTAIN, which was mostly built around the 10th Mountain...unique and possesses its own characteristics. It has its own ethic which is obtained from its distinctive tactical style , special attitude toward the...it is not organization that determines their light nature but their characteristics and fighting style . He added: “The historical tendency for light
NASA Technical Reports Server (NTRS)
Engelund, Walter C.; Holland, Scott D.; Cockrell, Charles E., Jr.; Bittner, Robert D.
1999-01-01
NASA's Hyper-X Research Vehicle will provide a unique opportunity to obtain data on an operational airframe integrated scramjet propulsion system at true flight conditions. The airframe integrated nature of the scramjet engine with the Hyper-X vehicle results in a strong coupling effect between the propulsion system operation and the airframe s basic aerodynamic characteristics. Comments on general airframe integrated scramjet propulsion system effects on vehicle aerodynamic performance, stability, and control are provided, followed by examples specific to the Hyper-X research vehicle. An overview is provided of the current activities associated with the development of the Hyper-X aerodynamic database, including wind tunnel test activities and parallel CFD analysis efforts. A brief summary of the Hyper-X aerodynamic characteristics is provided, including the direct and indirect effects of the airframe integrated scramjet propulsion system operation on the basic airframe stability and control characteristics.
Gas-driven pump for ground-water samples
Signor, Donald C.
1978-01-01
Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)
7 CFR 272.7 - Procedures for program administration in Alaska.
Code of Federal Regulations, 2011 CFR
2011-01-01
... accommodate the unique demographic and climatic characteristics which exist in these rural areas. The.... (4) The State agency may, in consultation with FNS, change the designation of any Alaska subdivision contained in the Plan of Operation to reflect changes in demographics or the cost of food within the...
Aerated Lagoons. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Andersen, Lorri
This student manual contains the textual material for a unit which focuses on the structural and operationally unique features of aerated lagoons. Topic areas discussed include: (1) characteristics of completely mixed aerated lagoons; (2) facultative aerated lagoons; (3) aerated oxidation ponds; (4) effects of temperature on aerated lagoons; (5)…
Davenport, Paul B; Carter, Kimberly F; Echternach, Jeffrey M; Tuck, Christopher R
2018-02-01
High-reliability organizations (HROs) demonstrate unique and consistent characteristics, including operational sensitivity and control, situational awareness, hyperacute use of technology and data, and actionable process transformation. System complexity and reliance on information-based processes challenge healthcare organizations to replicate HRO processes. This article describes a healthcare organization's 3-year journey to achieve key HRO features to deliver high-quality, patient-centric care via an operations center powered by the principles of high-reliability data and software to impact patient throughput and flow.
Small spacecraft power and thermal subsystems
NASA Technical Reports Server (NTRS)
Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.
1994-01-01
This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.
Etched Polymer Fibre Bragg Gratings and Their Biomedical Sensing Applications
Rajan, Ginu; Bhowmik, Kishore; Xi, Jiangtao; Peng, Gang-Ding
2017-01-01
Bragg gratings in etched polymer fibres and their unique properties and characteristics are discussed in this paper. Due to the change in material and mechanical properties of the polymer fibre through etching, Bragg gratings inscribed in such fibres show high reflectivity and enhanced intrinsic sensitivity towards strain, temperature, and pressure. The short-term and long-term stability of the gratings and the effect of hysteresis on the dynamic characteristics are also discussed. The unique properties and enhanced intrinsic sensitivity of etched polymer fibre Bragg grating are ideal for the development of high-sensitivity sensors for biomedical applications. To demonstrate their biomedical sensing capabilities, a high-sensitivity pressure transducer that operates in the blood pressure range, and a breathing rate monitoring device are developed and presented. PMID:29027945
ERIC Educational Resources Information Center
Meritt, Julia; Gibson, David; Christensen, Rhonda; Knezek, Gerald
2013-01-01
Two alternative technologies forming the basis of computer-mediated teacher preparation systems are compared and contrasted regarding implementation, operation, and assessment considerations. The role-playing system in Second Life is shown to have the unique characteristic of developing a co-constructed pedagogical identity, while the flight…
High-speed noncontacting instrumentation for jet engine testing
NASA Astrophysics Data System (ADS)
Scotto, M. J.; Eismeier, M. E.
1980-03-01
This paper discusses high-speed, noncontacting instrumentation systems for measuring the operating characteristics of jet engines. The discussion includes optical pyrometers for measuring blade surface temperatures, capacitance clearanceometers for measuring blade tip clearance and vibration, and optoelectronic systems for measuring blade flex and torsion. In addition, engine characteristics that mandate the use of such unique instrumentation are pointed out as well as the shortcomings of conventional noncontacting devices. Experimental data taken during engine testing are presented and recommendations for future development discussed.
Dual nozzle aerodynamic and cooling analysis study
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1981-01-01
Analytical models to predict performance and operating characteristics of dual nozzle concepts were developed and improved. Aerodynamic models are available to define flow characteristics and bleed requirements for both the dual throat and dual expander concepts. Advanced analytical techniques were utilized to provide quantitative estimates of the bleed flow, boundary layer, and shock effects within dual nozzle engines. Thermal analyses were performed to define cooling requirements for baseline configurations, and special studies of unique dual nozzle cooling problems defined feasible means of achieving adequate cooling.
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.
1979-01-01
The fundamentals of cryogenic testing are validated both analytically and experimentally employing the 0.3-m transonic cryogenic tunnel. The tunnel with its unique Reynolds number capability has been used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects have been developed and cryogenic tunnel conditions are set and maintained accurately. It is shown that cryogenic cooling, by injecting nitrogen directly into the tunnel circuit, imposes no problems with temperature distribution or dynamic response characteristics.
Solar energy storage via liquid filled cans - Test data and analysis
NASA Technical Reports Server (NTRS)
Saha, H.
1978-01-01
This paper describes the design of a solar thermal storage test facility with water-filled metal cans as heat storage medium and also presents some preliminary tests results and analysis. This combination of solid and liquid mediums shows unique heat transfer and heat contents characteristics and will be well suited for use with solar air systems for space and hot water heating. The trends of the test results acquired thus far are representative of the test bed characteristics while operating in the various modes.
Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C
2014-02-01
The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. © 2013 Published by Elsevier Inc.
2010-03-01
11 2. History of the Chief Petty Officer Rank and Development of Rank Structure...13 3. Development of Compensation System (Pay Grade)......................21 4. Establishment...Builders Who Train and Develop the Ranks of Today for the Future of the Navy ........48 5. Mastering the Realm of Expertise Will Lead to Credibility
Face recognition in the thermal infrared domain
NASA Astrophysics Data System (ADS)
Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.
2017-10-01
Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.
EMC and power quality standards for 20-kHz power distribution
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1987-01-01
The Space Station Power Distribution System has been baselined as a sinusoidal single phase, 440 VRMS system. This system has certain unique characteristics directly affecting its application. In particular, existing systematic description and control documents were modified to reflect the high operating frequency. This paper will discuss amendments made on Mil STD 704 (Electrical Power Characteristics), and Mil STD 461-B (Electromagnetic Emission and Susceptibility Requirements for the Control of Electromagnetic Interference). In some cases these amendments reflect changes of several orders of magnitude. Implications and impacts of these changes are discussed.
A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport
NASA Technical Reports Server (NTRS)
Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.
2000-01-01
Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.
OMV man/system simulation integration: A preliminary analysis and recommendation
NASA Technical Reports Server (NTRS)
Rogers, Jon G.
1988-01-01
The Orbital Maneuvering Vehicle (OMV) presents a series of challenges to the human operator. Some are unique to the OMV system itself, and are largely due to remote control versus control from the cockpit. Other challenges are not necessarily unique to the OMV, but are characteristic of many man-machine space flight systems. All of these challenges affect the operator's ability to perform his portion of the mission, and could lead to human error which might jeopardize the vehicle, mission, or both. It is imperative to make every effort to design the control and displays to facilitate the operator's task. The experimental program should address the perceptual, mediational, and motor dimensions of operator performance. With this in mind, a literature review with relevant design considerations was initiated, and a comprehensive outline of control/display parameters were developed. Out of this, a series of questions not answered in the literature was derived which can be converted into experimental protocols for the simulation program. A major task of the aircraft pilot as well as the OMV operator is prediction. Certain display principles have proved to enhance the pilot's ability to predict. A brief examination of some of these principles in relationship to OMV may be useful.
ERIC Educational Resources Information Center
Delgado, Ander
2014-01-01
This article analyses the creation of the schools called "ikastolas" throughout the Basque Country from the 1960s onwards. The name "ikastola" refers to a unique school model whose major characteristic is to teach the majority of subjects in the Basque language, or "euskera." It outlines the reasons why some of these…
IMAGE 100: The interactive multispectral image processing system
NASA Technical Reports Server (NTRS)
Schaller, E. S.; Towles, R. W.
1975-01-01
The need for rapid, cost-effective extraction of useful information from vast quantities of multispectral imagery available from aircraft or spacecraft has resulted in the design, implementation and application of a state-of-the-art processing system known as IMAGE 100. Operating on the general principle that all objects or materials possess unique spectral characteristics or signatures, the system uses this signature uniqueness to identify similar features in an image by simultaneously analyzing signatures in multiple frequency bands. Pseudo-colors, or themes, are assigned to features having identical spectral characteristics. These themes are displayed on a color CRT, and may be recorded on tape, film, or other media. The system was designed to incorporate key features such as interactive operation, user-oriented displays and controls, and rapid-response machine processing. Owing to these features, the user can readily control and/or modify the analysis process based on his knowledge of the input imagery. Effective use can be made of conventional photographic interpretation skills and state-of-the-art machine analysis techniques in the extraction of useful information from multispectral imagery. This approach results in highly accurate multitheme classification of imagery in seconds or minutes rather than the hours often involved in processing using other means.
Critical engine system design characteristics for SSTO vehicles
NASA Astrophysics Data System (ADS)
Fanciullo, Thomas J.; Judd, D. C.; Obrien, C. J.
1992-02-01
Engine system design characteristics are summarized for typical vertical take-off and landing (VTOL) and vertical take-off and horizontal landing (VTHL) Strategic Defense Initiative Organization (SDIO) single stage to orbit (SSTO) vehicles utilizing plug nozzle configurations. Power cycle selection trades involved the unique modular platelet engine (MPE) with the use of (1) LO2 and LH2 at fixed and variable mixture ratios, (2) LO2 and propane or RP-1, and (3) dual fuels (LO2 with LH2 and C3H8). The number of thrust cells and modules were optimized. Dual chamber bell and a cluster of conventional bell nozzle configurations were examined for comparison with the plug configuration. Thrust modulation (throttling) was selected for thrust vector control. Installed thrust ratings were established to provide an additional 20 percent overthrust capability for engine out operation. Turbopumps were designed to operate at subcritical speeds to facilitate a wide range of throttling and long life. A unique dual spool arrangement with hydrostatic bearings was selected for the LH2 turbopump. Controls and health monitoring with expert systems for diagnostics are critical subsystems to ensure minimum maintenance and supportability for a less than seven day turnaround. The use of an idle mode start, in conjunction with automated health condition monitoring, allows the rocket propulsion system to operate reliably in the manner of present day aircraft propulsion.
Variable cycle engines for advanced supersonic transports
NASA Technical Reports Server (NTRS)
Howlett, R. A.; Kozlowski, H.
1975-01-01
Variable Cycle Engines being studied for advanced commercial supersonic transports show potential for significant environmental and economic improvements relative to 1st generation SST engines. The two most promising concepts are: a Variable Stream Control Engine and a Variable Cycle Engine with a rear flow-control valve. Each concept utilizes variable components and separate burners to provide independent temperature and velocity control for two coannular flow streams. Unique fuel control techniques are combined with cycle characteristics that provide low fuel consumption, similar to a turbojet engine, for supersonic operation. This is accomplished while retaining the good subsonic performance features of a turbofan engine. A two-stream coannular nozzle shows potential to reduce jet noise to below FAR Part 36 without suppressors. Advanced burner concepts have the potential for significant reductions in exhaust emissions. In total, these unique engine concepts have the potential for significant overall improvements to the environmental and economic characteristics of advanced supersonic transports.
ERIC Educational Resources Information Center
González Moreno, Rosa Isabel
2011-01-01
Discussion boards as tools in blended "English language" learning programs have unique characteristics when compared to other synchronous and asynchronous communication tools that are different. Therefore, it is important to investigate the way they operate, their role within a given program and the students', teachers' and tutors'…
Novel Integrated System Architecture for an Autonomous Jumping Micro-Robot
2010-01-01
traces Figure 45 Solder joints made directly to FET and capacitor before assembling circuit on hexapod Figure 46 Metal pads attached to...energetic chip using Loctite Figure 47 Circuit connected to oxidized nanoporous Si by soldering to pads on the substrate Figure 48 Capacitor discharge...thermal, shape memory alloy (SMA), piezoelectric , magnetic, etc. Each actuator has a unique set of characteristics, which include operating
Real time biometric surveillance with gait recognition
NASA Astrophysics Data System (ADS)
Mohapatra, Subasish; Swain, Anisha; Das, Manaswini; Mohanty, Subhadarshini
2018-04-01
Bio metric surveillance has become indispensable for every system in the recent years. The contribution of bio metric authentication, identification, and screening purposes are widely used in various domains for preventing unauthorized access. A large amount of data needs to be updated, segregated and safeguarded from malicious software and misuse. Bio metrics is the intrinsic characteristics of each individual. Recently fingerprints, iris, passwords, unique keys, and cards are commonly used for authentication purposes. These methods have various issues related to security and confidentiality. These systems are not yet automated to provide the safety and security. The gait recognition system is the alternative for overcoming the drawbacks of the recent bio metric based authentication systems. Gait recognition is newer as it hasn't been implemented in the real-world scenario so far. This is an un-intrusive system that requires no knowledge or co-operation of the subject. Gait is a unique behavioral characteristic of every human being which is hard to imitate. The walking style of an individual teamed with the orientation of joints in the skeletal structure and inclinations between them imparts the unique characteristic. A person can alter one's own external appearance but not skeletal structure. These are real-time, automatic systems that can even process low-resolution images and video frames. In this paper, we have proposed a gait recognition system and compared the performance with conventional bio metric identification systems.
2011-01-01
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877
Ramesh, Gopalan; Prabhu, Narayan Kotekar
2011-04-14
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.
Lunar Prospecting: Searching for Volatiles at the South Pole
NASA Technical Reports Server (NTRS)
Trimble, Jay; Carvalho, Robert
2016-01-01
The Resource Prospector is an in-situ resource utilization (ISRU) technology demonstration mission, planned for a 2021 launch to search for and analyze volatiles at the Lunar South Pole. The mission poses unique operational challenges. Operating at the Lunar South Pole requires navigating a surface with lighting, shadow and regolith characteristics unlike those of previous missions. The short round trip communications time enables reactive surface operations for science and engineering. Navigation of permanently shadowed regions with a solar powered rover creates risks, including power and thermal management, and requires constant real time decision making for safe entry, path selection and egress. The mission plan requires a faster rover egress from the lander than any previous NASA rover mission.
Multimode analysis of highly tunable, quantum cascade powered, circular graphene spaser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasekara, Charith, E-mail: charith.jayasekara@monash.edu; Premaratne, Malin; Stockman, Mark I.
2015-11-07
We carried out a detailed analysis of a circular graphene spaser made of a circular graphene flake and a quantum cascade well structure. Owing to unique properties of graphene and quantum cascade well structure, the proposed design shows high mechanical and thermal stability and low optical losses. Additionally, operation characteristics of the model are analysed and tunability of the device is demonstrated. Some advantages of the proposed design include compact size, lower power operation, and the ability to set the operating wavelength over a wide range from Mid-IR to Near-IR. Thus, it can have wide spread applications including designing ofmore » ultracompact and ultrafast devices, nanoscopy and biomedical applications.« less
Method for control of NOx emission from combustors using fuel dilution
Schefer, Robert W [Alamo, CA; Keller, Jay O [Oakland, CA
2007-01-16
A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.
From raw material to dish: pasta quality step by step.
Sicignano, Angelo; Di Monaco, Rossella; Masi, Paolo; Cavella, Silvana
2015-10-01
Pasta is a traditional Italian cereal-based food that is popular worldwide because of its convenience, versatility, sensory and nutritional value. The aim of this review is to present a step-by-step guide to facilitate the understanding of the most important events that can affect pasta characteristics, directing the reader to the appropriate production steps. Owing to its unique flavor, color, composition and rheological properties, durum wheat semolina is the best raw material for pasta production. Although pasta is traditionally made from only two ingredients, sensory quality and chemical/physical characteristics of the final product may vary greatly. Starting from the same ingredients, there are a lot of different events in each step of pasta production that can result in the development of varieties of pasta with different characteristics. In particular, numerous studies have demonstrated the importance of temperature and humidity conditions of the pasta drying operation as well as the significance of the choice of raw material and operating conditions on pasta quality. © 2015 Society of Chemical Industry.
Behavior of micro-particles in monolith ceramic membrane filtration with pre-coagulation.
Yonekawa, H; Tomita, Y; Watanabe, Y
2004-01-01
This paper is intended to clarify the characteristics unique to monolith ceramic membranes with pre-coagulation by referring to the behavior of micro-particles. Flow analysis and experiments have proved that monolith ceramic membranes show a unique flow pattern in the channels within the element, causing extremely rapid flocculation in the channel during dead-end filtration. It was assumed that charge-neutralized micro-particles concentrated near the membrane surface grow in size due to flocculation, and as a result, coarse micro-particles were taken up by the shearing force to flow out. As the dead end points of flow in all the channels are located near the end of the channels with higher filterability, most of the flocculated coarse particles are formed to a columnar cake intensively at the dead end point. Therefore cake layer forming on the membrane other than around the dead end point is alleviated. This behavior of particle flocculation and cake formation at the dead end point within the channels are unique characteristics of monolith ceramic membranes. This is why all monolith ceramic membrane water purification systems operating in Japan do not have pretreatment equipment for flocculation and sedimentation.
Michalsky, M.P.; Inge, T.H.; Teich, S.; Eneli, I.; Miller, R.; Brandt, M.L.; Helmrath, M.; Harmon, C.M.; Zeller, M.H.; Jenkins, T.M.; Courcoulas, A.; Buncher, C.R.
2013-01-01
Background The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Methods Data were obtained from the Teen-LABS database and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. Results All centers had extensive multidisciplinary involvement in the assessment, preoperative education and post-operative management of adolescents undergoing WLS. Eligibility criteria, pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. Conclusions The composition of clinical team and institutional resources are consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS. PMID:24491361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Pless, Jacquelyn
Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants, and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions inmore » these areas.« less
Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.
Hrezo, Richard J
2003-06-01
In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.
New facility for ion beam materials characterization and modification at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesmer, J.R.; Maggiore, C.J.; Parkin, D.M.
1988-01-01
The Ion Beam Materials Laboratory (IBML) is a new Los Alamos laboratory devoted to the characterization and modification of the near surfaces of materials. The primary instruments of the IBML are a tandem electrostatic accelerator, a National Electrostatics Corp. Model 9SDH, coupled with a Varian CF-3000 ion implanter. The unique organizational structure of the IBML as well as the operational characteristics of the 9SDH (after approximately 3000 h of operation) and the laboratories' research capabilities will be discussed. Examples of current research results will also be presented. 5 refs., 2 figs.
The future of secondary surveillance radar - Mode S and TCAS
NASA Astrophysics Data System (ADS)
Lambert, Jean
The principles of Mode S and TCAS operation are discussed and it is noted that the main characteristic of Mode S is selective addressing, in which each aircraft is given a unique address and thus can be interrogated individually. This leads to a real data-link channel combined with secondary surveillance radar; the availability of this channel paves the way for TCAS. Mode S development in France is detailed.
Using Quantum Confinement to Uniquely Identify Devices
Roberts, J.; Bagci, I. E.; Zawawi, M. A. M.; Sexton, J.; Hulbert, N.; Noori, Y. J.; Young, M. P.; Woodhead, C. S.; Missous, M.; Migliorato, M. A.; Roedig, U.; Young, R. J.
2015-01-01
Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature. PMID:26553435
Eseonu, Chikezie I; ReFaey, Karim; Pamias-Portalatin, Eva; Asensio, Javier; Garcia, Oscar; Boahene, Kofi D; Quiñones-Hinojosa, Alfredo
2018-02-01
Variations on the endoscopic transsphenoidal approach present unique surgical techniques that have unique effects on surgical outcomes, extent of resection (EOR), and anatomical complications. To analyze the learning curve and perioperative outcomes of the 3-hand endoscopic endonasal mononostril transsphenoidal technique. Prospective case series and retrospective data analysis of patients who were treated with the 3-hand transsphenoidal technique between January 2007 and May 2015 by a single neurosurgeon. Patient characteristics, preoperative presentation, tumor characteristics, operative times, learning curve, and postoperative outcomes were analyzed. Volumetric EOR was evaluated, and a logistic regression analysis was used to assess predictors of EOR. Two hundred seventy-five patients underwent an endoscopic transsphenoidal surgery using the 3-hand technique. One hundred eighteen patients in the early group had surgery between 2007 and 2010, while 157 patients in the late group had surgery between 2011 and 2015. Operative time was significantly shorter in the late group (161.6 min) compared to the early group (211.3 min, P = .001). Both cohorts had similar EOR (early group 84.6% vs late group 85.5%, P = .846) and postoperative outcomes. The learning curve showed that it took 54 cases to achieve operative proficiency with the 3-handed technique. Multivariate modeling suggested that prior resections and preoperative tumor size are important predictors for EOR. We describe a 3-hand, mononostril endoscopic transsphenoidal technique performed by a single neurosurgeon that has minimal anatomic distortion and postoperative complications. During the learning curve of this technique, operative time can significantly decrease, while EOR, postoperative outcomes, and complications are not jeopardized. Copyright © 2017 by the Congress of Neurological Surgeons
Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.
2001-01-01
The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.
A Practical Guide To Solar Array Simulation And PCDU Test
NASA Astrophysics Data System (ADS)
Schmitz, Noah; Carroll, Greg; Clegg, Russell
2011-10-01
Solar arrays consisting of multiple photovoltaic segments provide power to satellites and charge internal batteries for use during eclipse. Solar arrays have unique I-V characteristics and output power which vary with environmental and operational conditions such as temperature, irradiance, spin, and eclipse. Therefore, specialty power solutions are needed to properly test the satellite on the ground, especially the Power Control and Distribution Unit (PCDU) and the Array Power Regulator (APR.) This paper explores some practical and theoretical considerations that should be taken into account when choosing a commercial, off-the-shelf solar array simulator (SAS) for verification of the satellite PCDU. An SAS is a unique power supply with I-V output characteristics that emulate the solar arrays used to power a satellite. It is important to think about the strengths and the limitations of this emulation capability, how closely the SAS approximates a real solar panel, and how best to design a system using SAS as components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W; Phillips, Caleb T; Perr-Sauer, Jordan
Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real-world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNA database. Themore » Fleet DNA database contains millions of miles of historical drive cycle data captured from medium- and heavy-duty vehicles operating across the United States. The data encompass existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topographies ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. This paper includes the results of the statistical analysis performed by NREL and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work is also included.« less
NASA Astrophysics Data System (ADS)
Downie, John D.
1995-08-01
The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.
NASA Technical Reports Server (NTRS)
Downie, John D.
1995-01-01
The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.
Resonant power processors. I - State plane analysis
NASA Technical Reports Server (NTRS)
Oruganti, R.; Lee, F. C.
1984-01-01
State-plane techniques in conjunction with piecewise-linear analysis is employed to study the steady-state and transient characteristics of a series resonant converter. With the direct viewing of the resonant tank energy and the device switching instants, the state portrayal provides unique insights into the complex behavior of the converter. Operation of the converter under both continuous and discontinuous current modes and at frequencies both below and above resonant frequency are discussed.
2013-09-01
the natural soundscapes of parks consistent with our Management Policies. NPS Management Policies, Section 4.9, Soundscape Management, states “the...Department will restore to the natural condition wherever possible those park soundscapes that have become degraded by unnatural sounds (noise...and will protect natural soundscapes from unacceptable impacts.” This is consistent with 40 CFR. §1508-27b, “Unique characteristics of the geographic
Bilenca, A; Yun, S H; Tearney, G J; Bouma, B E
2006-03-15
Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pind, C.
The SECURE heating reactor was designed by ASEA-ATOM as a realistic alternative for district heating in urban areas and for supplying heat to process industries. SECURE has unique safety characteristics, that are based on fundamental laws of physics. The safety does not depend on active components or operator intervention for shutdown and cooling of the reactor. The inherent safety characteristics of the plant cannot be affected by operator errors. Due to its very low environment impact, it can be sited close to heat consumers. The SECURE heating reactor has been shown to be competitive in comparison with other alternatives formore » heating Helsinki and Seoul. The SECURE heating reactor forms a basis for the power-producing SECURE-P reactor known as PIUS (Process Inherent Ultimate Safety), which is based on the same inherent safety principles. The thermohydraulic function and transient response have been demonstrated in a large electrically heated loop at the ASEA-ATOM laboratories.« less
Characteristics and requirements of robotic manipulators for space operations
NASA Technical Reports Server (NTRS)
Andary, James F.; Hewitt, Dennis R.; Spidaliere, Peter D.; Lambeck, Robert W.
1992-01-01
A robotic manipulator, DTF-1, developed as part of the Flight Telerobotic Servicer (FTS) project at Goddard Space Flight Center is discussed focusing on the technical, operational, and safety requirements. The DTF-1 system design, which is based on the manipulator, gripper, cameras, computer, and an operator control station incorporates the fundamental building blocks of the original FTS, the end product of which was to have been a light-weight, dexterous telerobotic device. For the first time in the history of NASA, space technology and robotics were combined to find new and unique solutions to the demanding requirements of flying a sophisticated robotic manipulator in space. DTF-1 is considered to be the prototype for all future development in space robotics.
NASA Technical Reports Server (NTRS)
Doggett, William R.; King, Bruce D.; Jones, Thomas Carno; Dorsey, John T.; Mikulas, Martin M.
2008-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earthbased construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Lunar payloads include: a) prepackaged hardware and supplies which must be unloaded from landers and then accurately located at their operational site, b) sensor packages used for periodic inspection of landers, habitat surfaces, etc., and c) local materials such as regolith which require grading, excavation and placement. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) composite components, b) compact packaging for launch, c) simple in-field reconfiguration and repair, and d) support for tele-operated or automated operations. Also, in contrast to Earth-based construction, where special purpose devices dominate a construction site, a lunar outpost will require versatile devices which provide operational benefit from initial construction through sustained operations. This paper will detail the design of a unique, high performance, versatile lifting device designed for operations on the lunar surface. The device is called the Lunar Surface Manipulation System to highlight the versatile nature of the device which supports conventional cable suspended crane operations as well as operations usually associated with a manipulator such as precise positioning where the payload is rigidly grappled by a tool attached to the tip of the device. A first generation test-bed to verify design methods and operational procedures is under development at the NASA Langley Research Center and recently completed field tests at Moses Lake Washington. The design relied on non-linear finite element analysis which is shown to correlate favorably with laboratory experiments. A key design objective, reviewed in this paper, is the device s simplicity, resulting from a focus on the minimum set of functions necessary to perform payload offload. Further development of the device has the potential for significant mass savings, with a high performance device incorporating composite elements estimated to have a mass less than 3% of the mass of the maximum lunar payload lifted at the tip. The paper will conclude with future plans for expanding the operational versatility of the device.
Transport synthetic acceleration for long-characteristics assembly-level transport problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The authors apply the transport synthetic acceleration (TSA) scheme to the long-characteristics spatial discretization for the two-dimensional assembly-level transport problem. This synthetic method employs a simplified transport operator as its low-order approximation. Thus, in the acceleration step, the authors take advantage of features of the long-characteristics discretization that make it particularly well suited to assembly-level transport problems. The main contribution is to address difficulties unique to the long-characteristics discretization and produce a computationally efficient acceleration scheme. The combination of the long-characteristics discretization, opposing reflecting boundary conditions (which are present in assembly-level transport problems), and TSA presents several challenges. The authorsmore » devise methods for overcoming each of them in a computationally efficient way. Since the boundary angular data exist on different grids in the high- and low-order problems, they define restriction and prolongation operations specific to the method of long characteristics to map between the two grids. They implement the conjugate gradient (CG) method in the presence of opposing reflection boundary conditions to solve the TSA low-order equations. The CG iteration may be applied only to symmetric positive definite (SPD) matrices; they prove that the long-characteristics discretization yields an SPD matrix. They present results of the acceleration scheme on a simple test problem, a typical pressurized water reactor assembly, and a typical boiling water reactor assembly.« less
Space Tug avionics definition study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1975-01-01
A top down approach was used to identify, compile, and develop avionics functional requirements for all flight and ground operational phases. Such requirements as safety mission critical functions and criteria, minimum redundancy levels, software memory sizing, power for tug and payload, data transfer between payload, tug, shuttle, and ground were established. Those functional requirements that related to avionics support of a particular function were compiled together under that support function heading. This unique approach provided both organizational efficiency and traceability back to the applicable operational phase and event. Each functional requirement was then allocated to the appropriate subsystems and its particular characteristics were quantified.
Transient Abnormal Myelopoiesis and AML in Down Syndrome: an Update.
Bhatnagar, Neha; Nizery, Laure; Tunstall, Oliver; Vyas, Paresh; Roberts, Irene
2016-10-01
Children with constitutional trisomy 21 (Down syndrome (DS)) have a unique predisposition to develop myeloid leukaemia of Down syndrome (ML-DS). This disorder is preceded by a transient neonatal preleukaemic syndrome, transient abnormal myelopoiesis (TAM). TAM and ML-DS are caused by co-operation between trisomy 21, which itself perturbs fetal haematopoiesis and acquired mutations in the key haematopoietic transcription factor gene GATA1. These mutations are found in almost one third of DS neonates and are frequently clinically and haematologcially 'silent'. While the majority of cases of TAM undergo spontaneous remission, ∼10 % will progress to ML-DS by acquiring transforming mutations in additional oncogenes. Recent advances in the unique biological, cytogenetic and molecular characteristics of TAM and ML-DS are reviewed here.
On homogeneous second order linear general quantum difference equations.
Faried, Nashat; Shehata, Enas M; El Zafarani, Rasha M
2017-01-01
In this paper, we prove the existence and uniqueness of solutions of the β -Cauchy problem of second order β -difference equations [Formula: see text] [Formula: see text], in a neighborhood of the unique fixed point [Formula: see text] of the strictly increasing continuous function β , defined on an interval [Formula: see text]. These equations are based on the general quantum difference operator [Formula: see text], which is defined by [Formula: see text], [Formula: see text]. We also construct a fundamental set of solutions for the second order linear homogeneous β -difference equations when the coefficients are constants and study the different cases of the roots of their characteristic equations. Finally, we drive the Euler-Cauchy β -difference equation.
Strength and dynamic characteristics analyses of wound composite axial impeller
NASA Astrophysics Data System (ADS)
Wang, Jifeng; Olortegui-Yume, Jorge; Müller, Norbert
2012-03-01
A low cost, light weight, high performance composite material turbomachinery impeller with a uniquely designed blade patterns is analyzed. Such impellers can economically enable refrigeration plants to use water as a refrigerant (R718). A strength and dynamic characteristics analyses procedure is developed to assess the maximum stresses and natural frequencies of these wound composite axial impellers under operating loading conditions. Numerical simulation using FEM for two-dimensional and three-dimensional impellers was investigated. A commercially available software ANSYS is used for the finite element calculations. Analysis is done for different blade geometries and then suggestions are made for optimum design parameters. In order to avoid operating at resonance, which can make impellers suffer a significant reduction in the design life, the designer must calculate the natural frequency and modal shape of the impeller to analyze the dynamic characteristics. The results show that using composite Kevlar fiber/epoxy matrix enables the impeller to run at high tip speed and withstand the stresses, no critical speed will be matched during start-up and shut-down, and that mass imbalances of the impeller shall not pose a critical problem.
Accumulation and subsequent utilization of waste heat
NASA Astrophysics Data System (ADS)
Koloničný, Jan; Richter, Aleš; Pavloková, Petra
2016-06-01
This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.
Quilty, Lena C; Avila Murati, Daniela; Bagby, R Michael
2014-03-01
Many gamblers would prefer to reduce gambling on their own rather than to adopt an abstinence approach within the context of a gambling treatment program. Yet responsible gambling guidelines lack quantifiable markers to guide gamblers in wagering safely. To address these issues, the current investigation implemented receiver operating characteristic (ROC) analysis to identify behavioral indicators of harmful and problem gambling. Gambling involvement was assessed in 503 participants (275 psychiatric outpatients and 228 community gamblers) with the Canadian Problem Gambling Index. Overall gambling frequency, duration, and expenditure were able to distinguish harmful and problematic gambling at a moderate level. Indicators of harmful gambling were generated for engagement in specific gambling activities: frequency of tickets and casino; duration of bingo, casino, and investments; and expenditures on bingo, casino, sports betting, games of skill, and investments. Indicators of problem gambling were similarly produced for frequency of tickets and casino, and expenditures on bingo, casino, games of skill, and investments. Logistic regression analyses revealed that overall gambling frequency uniquely predicted the presence of harmful and problem gambling. Furthermore, frequency indicators for tickets and casino uniquely predicted the presence of both harmful and problem gambling. Together, these findings contribute to the development of an empirically based method enabling the minimization of harmful or problem gambling through self-control rather than abstinence.
Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.
Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu
2012-01-10
An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
2005-01-01
This paper addresses the regulatory processes and requirements already in place by which an applicant might obtain experimental airworthiness certification for a civil Unmanned Aircraft System (UAS). It is more extensive and subsequent to an earlier, similar deliverable, PD007, which was an interim study of the same topic. Since few regulatory airworthiness and operating standards exist for UAS like those for traditional manned aircraft and since most UAS have historically been developed and operated under military auspices, civil use of UAS in the NAS is a new and unfamiliar challenge requiring specific and unique considerations. Experimental certification is the most basic level of FAA approval toward routine UAS operation in the NAS. The paper reviews and explains existing FAA requirements for an applicant seeking experimental airworthiness approval and details the process for submission of necessary information. It summarizes the limited purposes for which experimental aircraft may be used and addresses pertinent aspects of UAS design, construction and operation in the NAS in harmony with traditional manned aircraft. Policy IPT position is that UAS, while different from manned aircraft, can use the same initial processes to gain civil operating experience under the experimental approval. Particular note is taken of those UAS-unique characteristics which require extra attention to assure equivalent safety of operation, such as the UAS control station and sense-and-avoid. The paper also provides "best practices" guidance for UAS manufacturers and FAA personnel in two appendices. The material in Appendix A is intended to provide guidance on assuring UAS safety to FAA, and provides FAA personnel with a suggested list of items to review, with a focus on UAS unique factors, prior to issuance of an experimental airworthiness certificate. Appendix B provides an outline for a program letter which a manufacturer could use in preparing the application for an UAS experimental airworthiness certificate.
Recent developments in BWR fuel design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, S.P.; Noble, L.D.; Wood, J.E.
1991-11-01
Substantial increases in the cost effectiveness and performance capability of boiling water reactor (BWR) fuel designs have been implemented in the past 5 to 7 yr. This increase has been driven by (a) utility desires to lower fuel and operating costs and (b) design innovations that have lowered enrichment requirements, improved thermal-hydraulic performance, and increased discharge exposure. Higher discharge exposures reduce disposal costs for European and Asian utilities and enable US utilities to lengthen operating cycles. A typical BWR reload fuel bundle fabricated today has 25% higher {sup 235}U enrichment and a factor of 2 higher gadolinium loading than onemore » made several years ago. Today's BWR fuel bundles also contain more unheated water reduces the axial water density variation, lowers the void coefficient, and enhances the neutron efficiency of the bundle, reducing both the gadolinium poison and the enrichment requirements. In addition to these general trends, the following unique design innovations have further enhanced the fuel cost efficiency and performance characteristics of BWR fuel: ferrule spacer, part length rods, interactive channel, and bundle enhanced spectral shift. GE's fuel designs offer the flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility for modern BWR fuel requirements and contain unique design features that enhance flexibility and fuel cycle economics.« less
High Precision Piezoelectric Linear Motors for Operations at Cryogenic Temperatures and Vacuum
NASA Technical Reports Server (NTRS)
Wong, D.; Carman, G.; Stam, M.; Bar-Cohen, Y.; Sen, A.; Henry, P.; Bearman, G.; Moacanin, J.
1995-01-01
The Jet Propulsion Laboratory evaluated the use of an electromechanical device for optically positioning a mirror system during the pre-project phase of the Pluto-Fast-Flyby (PFF) mission. The device under consideration was a piezoelectric driven linear motor functionally dependent upon a time varying electric field which induces displacements ranging from submicrons to millimeters with positioning accuracy within nanometers. Using a control package, the mirror system provides image motion compensation and mosaicking capabilities. While this device offers unique advantages, there were concerns pertaining to its operational capabilities for the PFF mission. The issues include irradiation effects and thermal concerns. A literature study indicated that irradiation effects will not significantly impact the linear motor's operational characteristics. On the other hand, thermal concerns necessitated an in depth study.
The development and test of ultra-large-format multi-anode microchannel array detector systems
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1984-01-01
The specific tasks that were accomplished with each of the key elements of the multi-anode microchannel array detector system are described. The modes of operation of position-sensitive electronic readout systems for use with high-gain microchannel plates are described and their performance characteristics compared and contrasted. Multi-anode microchannel array detector systems with formats as large as 256 x 1024 pixels are currently under evaluation. Preliminary performance data for sealed ultraviolet and visible-light detector tubes show that the detector systems have unique characteristics which make them complementary to photoconductive array detectors, such as CCDs, and superior to alternative pulse-counting detector systems employing high-gain MCPs.
Mass production of holographic transparent components for augmented and virtual reality applications
NASA Astrophysics Data System (ADS)
Russo, Juan Manuel; Dimov, Fedor; Padiyar, Joy; Coe-Sullivan, Seth
2017-06-01
Diffractive optics such as holographic optical elements (HOEs) can provide transparent and narrow band components with arbitrary incident and diffracted angles for near-to-eye commercial electronic products for augmented reality (AR), virtual reality (VR), and smart glass applications. In this paper, we will summarize the operational parameters and general optical geometries relevant for near-to-eye displays, the holographic substrates available for these applications, and their performance characteristics and ease of manufacture. We will compare the holographic substrates available in terms of fabrication, manufacturability, and end-user performance characteristics. Luminit is currently emplacing the manufacturing capacity to serve this market, and this paper will discuss the capabilities and limitations of this unique facility.
NASA Technical Reports Server (NTRS)
Mcconnell, W. J., Jr.
1979-01-01
Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.
1983-12-14
the left half of the s- plane . These are representation independent. We shall be interested in these poles only. These poles are the complex...on the Left Half Plane Asymptotic Behavior of the SEM Expansion of Surface Currents, Published in Special Issue on the Singularity Expansion Method...precisely, the polarization chart is an orthogonal projection of the Poincare Sphere on a plane , having polar coordinates p= cos (2-) and
NASA Technical Reports Server (NTRS)
Doggett, William R.; Roithmayr, Carlos M.; Dorsey, John T.; Jones, Thomas C.; Shen, Haijun; Seywald, Hans; King, Bruce D.; Mikulas, Martin M., Jr.
2009-01-01
Devices for lifting, translating and precisely placing payloads are critical for efficient Earth-based construction operations. Both recent and past studies have demonstrated that devices with similar functionality will be needed to support lunar outpost operations. Although several designs have been developed for Earth based applications, these devices lack unique design characteristics necessary for transport to and use on the harsh lunar surface. These design characteristics include: a) lightweight components, b) compact packaging for launch, c) automated deployment, d) simple in-field reconfiguration and repair, and e) support for tele-operated or automated operations. Also, because the cost to transport mass to the lunar surface is very high, the number of devices that can be dedicated to surface operations will be limited. Thus, in contrast to Earth-based construction, where many single-purpose devices dominate a construction site, a lunar outpost will require a limited number of versatile devices that provide operational benefit from initial construction through sustained operations. The first generation test-bed of a new high performance device, the Lunar Surface Manipulation System (LSMS) has been designed, built and field tested. The LSMS has many unique features resulting in a mass efficient solution to payload handling on the lunar surface. Typically, the LSMS device mass is estimated at approximately 3% of the mass of the heaviest payload lifted at the tip, or 1.8 % of the mass of the heaviest mass lifted at the elbow or mid-span of the boom for a high performance variant incorporating advanced structural components. Initial operational capabilities of the LSMS were successfully demonstrated during field tests at Moses Lake, Washington using a tele-operated approach. Joint angle sensors have been developed for the LSMS to improve operator situational awareness. These same sensors provide the necessary information to support fully automated operations, greatly expanding the operational versatility of the LSMS. This paper develops the equations describing the forward and inverse relation between LSMS joint angles and Cartesian coordinates of the LSMS tip. These equations allow a variety of schemes to be used to maneuver the LSMS to optimize the maneuver. One such scheme will be described in detail that eliminates undesirable swinging of the payload at the conclusion of a maneuver, even when the payload is suspended from a passive rigid link. The swinging is undesirable when performing precision maneuvers, such as aligning an object for mating or positioning a camera. Use of the equations described here enables automated control of the LSMS greatly improving its operational versatility.
Cluster formation in in-service thermally aged pressurizer welds
NASA Astrophysics Data System (ADS)
Lindgren, Kristina; Boåsen, Magnus; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias
2018-06-01
Thermal aging of reactor pressure vessel steel welds at elevated temperatures may affect the ductile-to-brittle transition temperature. In this study, unique weld material from a pressurizer, with a composition similar to that of the reactor pressure vessel, that has been in operation for 28 years at 345 °C is examined. Despite the relatively low temperature, the weld becomes hardened during operation. This is attributed to nanometre sized Cu-rich clusters, mainly located at Mo- and C-enriched dislocation lines and on boundaries. The welds have been characterized using atom probe tomography, and the characteristics of the precipitates/clusters is related to the hardness increase, giving the best agreement for the Russell-Brown model.
Improved Stratospheric Temperature Retrievals for Climate Reanalysis
NASA Technical Reports Server (NTRS)
Rokke, L.; Joiner, J.
1999-01-01
The Data Assimilation Office (DAO) is embarking on plans to generate a twenty year reanalysis data set of climatic atmospheric variables. One of the focus points will be in the evaluation of the dynamics of the stratosphere. The Stratospheric Sounding Unit (SSU), flown as part of the TIROS Operational Vertical Sounder (TOVS), is one of the primary stratospheric temperature sensors flown consistently throughout the reanalysis period. Seven unique sensors made the measurements over time, with individual instrument characteristics that need to be addressed. The stratospheric temperatures being assimilated across satellite platforms will profoundly impact the reanalysis dynamical fields. To attempt to quantify aspects of instrument and retrieval bias we are carefully collecting and analyzing all available information on the sensors, their instrument anomalies, forward model errors and retrieval biases. For the retrieval of stratospheric temperatures, we adapted the minimum variance approach of Jazwinski (1970) and Rodgers (1976) and applied it to the SSU soundings. In our algorithm, the state vector contains an initial guess of temperature from a model six hour forecast provided by the Goddard EOS Data Assimilation System (GEOS/DAS). This is combined with an a priori covariance matrix, a forward model parameterization, and specifications of instrument noise characteristics. A quasi-Newtonian iteration is used to obtain convergence of the retrieved state to the measurement vector. This algorithm also enables us to analyze and address the systematic errors associated with the unique characteristics of the cell pressures on the individual SSU instruments and the resolving power of the instruments to vertical gradients in the stratosphere. The preliminary results of the improved retrievals and their assimilation as well as baseline calculations of bias and rms error between the NESDIS operational product and col-located ground measurements will be presented.
NASA Astrophysics Data System (ADS)
Cepa, J.; Alfaro, E. J.; Castañeda, H. O.; Gallego, J.; González-Serrano, J. I.; González, J. J.; Jones, D. H.; Pérez-García, A. M.; Sánchez-Portal, M.
2007-06-01
OSIRIS is the Spanish Day One instrument for the GTC 10.4-m telescope. OSIRIS is a general purpose instrument for imaging, low-resolution long slit and multi-object spectroscopy (MOS). OSIRIS has a field of view of 8.6×8.6 arcminutes, which makes it ideal for deep surveys, and operates in the optical wavelength range from 365 through 1000nm. The main characteristic that makes OSIRIS unique amongst other instruments in 8-10m class telescopes is the use of Tunable Filters (Bland-Hawthorn & Jones 1998). These allow a continuous selection of both the central wavelength and the width, thus providing scanning narrow band imaging within the OSIRIS wavelength range. The combination of the large GTC aperture, large OSIRIS field of view and availability of the TFs makes OTELO a truly unique emission line survey.
ERIC Educational Resources Information Center
Gage, Nicholas A.; Josephs, Nikki L.; Lunde, Kimberly
2012-01-01
Research suggests that girls receiving special education services for Emotional Disturbance (ED) may have unique characteristics and needs. Similarly, juvenile justice research has identified unique characteristics of court-involved girls. This study examined characteristics of girls with ED and a history of arrest. Additionally, classroom-based…
Terry, Russell S; Gerke, Travis; Mason, James B; Sorensen, Matthew D; Joseph, Jason P; Dahm, Philipp; Su, Li-Ming
2015-09-01
This study aimed at reviewing a contemporary series of patients who underwent robotic renal and adrenal surgery by a single surgeon at a tertiary referral academic medical center over a 6-year period, specifically focusing on the unique and serious complication of post-operative rhabdomyolysis of the dependent lower extremity. The cases of 315 consecutive patients who underwent robotic upper tract surgery over a 6-year period from August 2008 to June 2014 using a standardized patient positioning were reviewed and analyzed for patient characteristics and surgical variables that may be associated with the development of post-operative rhabdomyolysis. The incidence of post-operative rhabdomyolysis in our series was 3/315 (0.95%). All three affected patients had undergone robotic nephroureterectomy. Those patients who developed rhabdomyolysis had significantly higher mean Body Mass Index, Charlson Comorbidity Index, and median length of stay than those who did not. The mean OR time in the rhabdomyolysis group was noted to be 52 min longer than the non-rhabdomyolysis group, though this value did not reach statistical significance. Given the trends of increasing obesity in the United States and abroad as well as the continued rise in robotic upper tract urologic surgeries, urologists need to be increasingly vigilant for recognizing the risk factors and early treatment of the unique complication of post-operative rhabdomyolysis.
Combined expert system/neural networks method for process fault diagnosis
Reifman, Jaques; Wei, Thomas Y. C.
1995-01-01
A two-level hierarchical approach for process fault diagnosis is an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach.
Sun, Xin; Xue, Min; Deng, Xinliang; Lin, Yun; Tan, Ying; Wei, Xueli
2018-01-01
Intrauterine devices (IUDs) are the most popular form of contraception used worldwide; however, IUD is not risk-free. IUD migrations, especially uterine perforations, were frequently occurred in patients. The aim of this study was to investigate the clinical characteristics and intraoperative findings in patients with migrated IUDs. 29 cases of uterine perforation associated with migrated IUDs and 69 control patients were followed between January 2008 to March 2015. Patients who used IUDs within first 6 months from the last delivery experienced a characteristically high rate of the perforation of the uterine wall. A significantly larger number of IUD insertion associated with uterine perforation were performed in rural hospitals or operated at a lower level health care system. There was no clear difference in the age and presented symptoms in patients between two groups. Majority of contraceptive intrauterine devices was the copper-releasing IUDs. Furthermore, patients who used V-shaped IUD showed significantly higher incidence of pelvic adhesions when compared with the users of O-shaped IUDs. Unique clinical characteristics of IUD migration were identified in patients with uterine perforation. Hysteroscopy and/or laparoscopy were the effective approaches to remove the migrated IUDs. Improving operating skills is required at the lower level of health care system.
Combined expert system/neural networks method for process fault diagnosis
Reifman, J.; Wei, T.Y.C.
1995-08-15
A two-level hierarchical approach for process fault diagnosis of an operating system employs a function-oriented approach at a first level and a component characteristic-oriented approach at a second level, where the decision-making procedure is structured in order of decreasing intelligence with increasing precision. At the first level, the diagnostic method is general and has knowledge of the overall process including a wide variety of plant transients and the functional behavior of the process components. An expert system classifies malfunctions by function to narrow the diagnostic focus to a particular set of possible faulty components that could be responsible for the detected functional misbehavior of the operating system. At the second level, the diagnostic method limits its scope to component malfunctions, using more detailed knowledge of component characteristics. Trained artificial neural networks are used to further narrow the diagnosis and to uniquely identify the faulty component by classifying the abnormal condition data as a failure of one of the hypothesized components through component characteristics. Once an anomaly is detected, the hierarchical structure is used to successively narrow the diagnostic focus from a function misbehavior, i.e., a function oriented approach, until the fault can be determined, i.e., a component characteristic-oriented approach. 9 figs.
Review of design and operational characteristics of the 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Ray, E. J.; Ladson, C. L.; Adcock, J. B.; Lawing, P. L.; Hall, R. M.
1979-01-01
The past 6 years of operation with the NASA Langley 0.3 m transonic cryogenic tunnel (TCT) show that there are no insurmountable problems associated with cryogenic testing with gaseous nitrogen at transonic Mach numbers. The fundamentals of the concept were validated both analytically and experimentally and the 0.3 m TCT, with its unique Reynolds number capability, was used for a wide variety of aerodynamic tests. Techniques regarding real-gas effects were developed and cryogenic tunnel conditions can be set and maintained accurately. Cryogenic cooling by injecting liquid nitrogen directly into the tunnel circuit imposes no problems with temperature distribution or dynamic response characteristics. Experience with the 0.3 m TCT, indicates that there is a significant learning process associated with cryogenic, high Reynolds number testing. Many of the questions have already been answered; however, factors such as tunnel control, run logic, economics, instrumentation, and model technology present many new and challenging problems.
Tashiro, Yukihiro; Kanda, Kosuke; Asakura, Yuya; Kii, Toshihiko; Cheng, Huijun; Poudel, Pramod; Okugawa, Yuki; Tashiro, Kosuke; Sakai, Kenji
2018-03-15
A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria ( Arcobacter trophiarum , 19 to 43%; Acinetobacter towneri , 6.3 to 30%), Bacteroidetes ( Moheibacter sediminis , 43 to 54%), and Firmicutes ( Thermaerobacter composti , 11 to 28%; Heliorestis baculata , 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration. IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation capacity, a short treatment period, and inactivation of pathogens, one of the factors limiting its broad application is the high electric power consumption for aerators with a full-scale bioreactor. We elucidated the dynamics of the bacterial community structures, as well as the physicochemical characteristics, in the ATAD process with a full-scale bioreactor from human excreta for 3 weeks. Our results indicated that this unique process can be divided into three distinguishable phases by an aerator with complete aeration and showed a possibility of shortening the digestion period to approximately 10 days. This research not only helps to identify which bacteria play significant roles and how the process can be improved and controlled but also demonstrates an efficient ATAD process with less electric power consumption for worldwide application. Copyright © 2018 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
2005-01-01
The purpose of this document is to identify the general flight/mission planning requirements for same-day file-and-fly access to the NAS for both civil and military High-Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS). Currently the scope of this document is limited to Step 1, operations above flight level 43,000 feet (FL430). This document describes the current applicable mission planning requirements and procedures for both manned and unmanned aircraft and addresses HALE UAS flight planning considerations in the future National Airspace System (NAS). It also discusses the unique performance and operational capabilities of HALE UAS associated with the Access 5 Project, presents some of the projected performance characteristics and conceptual missions for future systems, and provides detailed analysis of the recommended mission planning elements for operating HALE UAS in the NAS.
Low-grade geothermal energy conversion by organic Rankine cycle turbine generator
NASA Astrophysics Data System (ADS)
Zarling, J. P.; Aspnes, J. D.
Results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49 C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator are presented. The geothermal source which supplied the water is located in a rural Alaskan village. The reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: (1) high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable and (2) the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. Data is provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.
Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2007-01-01
The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.
Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, George
2015-11-01
The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less
Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.
2015-11-03
The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largestmore » rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.« less
A Profile of Indian Health Service Emergency Departments.
Bernard, Kenneth; Hasegawa, Kohei; Sullivan, Ashley; Camargo, Carlos
2017-06-01
The Indian Health Service provides health care to eligible American Indians and Alaskan Natives. No published data exist on emergency services offered by this unique health care system. We seek to determine the characteristics and capabilities of Indian Health Service emergency departments (EDs). All Indian Health Service EDs were surveyed about demographics and operational characteristics for 2014 with the National Emergency Department Inventory survey (available at http://www.emnet-nedi.org/). Of the forty eligible sites, there were 34 respondents (85% response rate). Respondents reported a total of 637,523 ED encounters, ranging from 521 to 63,200 visits per site. Overall, 85% (95% confidence interval 70% to 94%) had continuous physician coverage. Of all physicians staffing the ED, a median of 13% (interquartile range 0% to 50%) were board certified or board prepared in emergency medicine. Overall, 50% (95% confidence interval 34% to 66%) of respondents reported that their ED was operating over capacity. Indian Health Service EDs varied widely in visit volume, with many operating over capacity. Most were not staffed by board-certified or -prepared emergency physicians. Most lacked access to specialty consultation and telemedicine capabilities. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Factor, Roni; Mahalel, David; Yair, Gad
2007-09-01
The paper develops a sociological model to explain collisions between two drivers or more. The "Social Accident" model presented here integrates empirical findings from prior studies and extant sociological theories. Sociological theory posits that social groups have unique cultural characteristics, which include a distinctive world view and ways of operating that influence its members. These cultural characteristics may cause drivers in different groups to interpret a given situation differently; therefore, they will make conflicting decisions that may possibly lead to road accidents. The proposed model may contribute to an understanding of the social mechanism related to interactions and communication among drivers by presenting new directions for understanding accidents and collisions. The paper concludes with suggestions for future research that will employ the model to assess its predictive and practical utility.
Proceedings: Workshop on the Need for Lightning Observations from Space
NASA Technical Reports Server (NTRS)
Christensen, L. S. (Editor); Frost, W. (Editor); Vaughan, W. W. (Editor)
1979-01-01
The results of the Workshop on the Need for Lightning Observations from Space held February 13-15, 1979, at the University of Tennessee Space Institute, Tullahoma, Tennessee are presented. The interest and active involvement by the engineering, operational, and scientific participants in the workshop demonstrated that lightning observations from space is a goal well worth pursuing. The unique contributions, measurement requirements, and supportive research investigations were defined for a number of important applications. Lightning has a significant role in atmospheric processes and needs to be systematically investigated. Satellite instrumentation specifically designed for indicating the characteristics of lightning are of value in severe storms research, in engineering and operational problem areas, and in providing information on atmospheric electricity and its role in meteorological processes.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
NASA Technical Reports Server (NTRS)
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
Three examples of applied remote sensing of vegetation
NASA Technical Reports Server (NTRS)
Rouse, J. W., Jr.; Benton, A. R., Jr.; Toler, R. W.; Haas, R. H.
1975-01-01
Cause studies in which remote sensing techniques were adapted to assist in the solution of particular problem situations in Texas involving vegetation are described. In each case, the final sensing technique developed for operational use by the concerned organizations employed photographic sensors which were optimized through studies of the spectral reflectance characteristics of the vegetation species and background conditions unique to the problem being considered. The three examples described are: (1) Assisting Aquatic Plant Monitoring and Control; (2) Improving Vegetation Utilization in Urban Planning; and (3) Enforcing the Quarantine of Diseased Crops.
The role of non-operating income in community benefit provision by not-for-profit hospitals.
Song, Paula H; McCullough, Jeffrey S; Reiter, Kristin L
2013-01-01
Not-for-profit hospitals are under increased public scrutiny for providing what some view as insufficient levels of community benefit compared to their tax-exempt benefits. One potential driver of community benefit is financial surplus, which arises from both patient care (operating) activities and non-patient care (non-operating) activities. This study addresses the effect of hospitals' non-operating income on not-for-profit hospitals' provision of community benefit. The study sample includes 217 unique not-for-profit, non-governmental, general, acute care hospitals in California between 1997 and 2010 that filed annual reports with the California Office of Statewide Health Planning and Development (OSHPD). We model the effect of hospitals' operating and non-operating incomes on hospitals' community benefit, controlling for observable hospital characteristics such as scale and system membership, local competition, time trends, and hospital fixed effects. Our results indicate that non-operating income has no effect on levels of community benefit provided by not-for-profit hospitals. This finding suggests that not-for-profit hospitals budget for uncompensated care at levels that are prioritized over other potential investments if non-operating income falls, but remain fixed if non-operating income rises.
The Development of Vocational Vehicle Drive Cycles and Segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duran, Adam W.; Phillips, Caleb T.; Konan, Arnaud M.
Under a collaborative interagency agreement between the U.S. Environmental Protection Agency and the U.S Department of Energy (DOE), the National Renewable Energy Laboratory (NREL) performed a series of in-depth analyses to characterize the on-road driving behavior including distributions of vehicle speed, idle time, accelerations and decelerations, and other driving metrics of medium- and heavy-duty vocational vehicles operating within the United States. As part of this effort, NREL researchers segmented U.S. medium- and heavy-duty vocational vehicle driving characteristics into three distinct operating groups or clusters using real world drive cycle data collected at 1 Hz and stored in NREL's Fleet DNAmore » database. The Fleet DNA database contains millions of miles of historical real-world drive cycle data captured from medium- and heavy vehicles operating across the United States. The data encompass data from existing DOE activities as well as contributions from valued industry stakeholder participants. For this project, data captured from 913 unique vehicles comprising 16,250 days of operation were drawn from the Fleet DNA database and examined. The Fleet DNA data used as a source for this analysis has been collected from a total of 30 unique fleets/data providers operating across 22 unique geographic locations spread across the United States. This includes locations with topology ranging from the foothills of Denver, Colorado, to the flats of Miami, Florida. The range of fleets, geographic locations, and total number of vehicles analyzed ensures results that include the influence of these factors. While no analysis will be perfect without unlimited resources and data, it is the researchers understanding that the Fleet DNA database is the largest and most thorough publicly accessible vocational vehicle usage database currently in operation. This report includes an introduction to the Fleet DNA database and the data contained within, a presentation of the results of the statistical analysis performed by NREL, review of the logistic model developed to predict cluster membership, and a discussion and detailed summary of the development of the vocational drive cycle weights and representative transient drive cycles for testing and simulation. Additional discussion of known limitations and potential future work are also included in the report content.« less
MODAL TRACKING of A Structural Device: A Subspace Identification Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J. V.; Franco, S. N.; Ruggiero, E. L.
Mechanical devices operating in an environment contaminated by noise, uncertainties, and extraneous disturbances lead to low signal-to-noise-ratios creating an extremely challenging processing problem. To detect/classify a device subsystem from noisy data, it is necessary to identify unique signatures or particular features. An obvious feature would be resonant (modal) frequencies emitted during its normal operation. In this report, we discuss a model-based approach to incorporate these physical features into a dynamic structure that can be used for such an identification. The approach we take after pre-processing the raw vibration data and removing any extraneous disturbances is to obtain a representation ofmore » the structurally unknown device along with its subsystems that capture these salient features. One approach is to recognize that unique modal frequencies (sinusoidal lines) appear in the estimated power spectrum that are solely characteristic of the device under investigation. Therefore, the objective of this effort is based on constructing a black box model of the device that captures these physical features that can be exploited to “diagnose” whether or not the particular device subsystem (track/detect/classify) is operating normally from noisy vibrational data. Here we discuss the application of a modern system identification approach based on stochastic subspace realization techniques capable of both (1) identifying the underlying black-box structure thereby enabling the extraction of structural modes that can be used for analysis and modal tracking as well as (2) indicators of condition and possible changes from normal operation.« less
Design features and operational characteristics of the Langley 0.3-meter transonic cryogenic tunnel
NASA Technical Reports Server (NTRS)
Kilgore, R. A.
1976-01-01
Experience with the Langley 0.3 meter transonic cryogenic tunnel, which is fan driven, indicated that such a tunnel presents no unusual design difficulties and is simple to operate. Purging, cooldown, and warmup times were acceptable and were predicted with good accuracy. Cooling with liquid nitrogen was practical over a wide range of operating conditions at power levels required for transonic testing, and good temperature distributions were obtained by using a simple liquid nitrogen injection system. To take full advantage of the unique Reynolds number capabilities of the 0.3 meter transonic tunnel, it was designed to accommodate test sections other than the original, octagonal, three dimensional test section. A 20- by 60-cm two dimensional test section was recently installed and is being calibrated. A two dimensional test section with self-streamlining walls and a test section incorporating a magnetic suspension and balance system are being considered.
Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.
Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh
2017-01-11
Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.
NASA Technical Reports Server (NTRS)
Decker, Ryan; Barbre, Robert; Huddleston, Lisa; Wilfong, Tim; Brauer, Tom
2018-01-01
The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 100 miles to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population. This paper will describe the characteristics of the tropospheric wind observations from the TDRWP during Irma, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and discuss lessons learned regarding dissemination of TDRWP data during the event.
A Compact, Soft-Switching DC-DC Converter for Electric Propulsion
NASA Technical Reports Server (NTRS)
Button, Robert; Redilla, Jack; Ayyanar, Raja
2003-01-01
A hybrid, soft-switching, DC-DC converter has been developed with superior soft switching characteristics, high efficiency, and low electro-magnetic interference. This hybrid topology is comprised of an uncontrolled bridge operating at full pulse-width, and a controlled section operating as a conventional phase modulated converter. The unique topology is able to maintain zero voltage switching down to no load operating conditions. A breadboard prototype was developed and tested to demonstrate the benefits of the topology. Improvements were then made to reduce the size of passive components and increase efficiency in preparation for packaging. A packaged prototype was then designed and built, and several innovative packaging techniques are presented. Performance test data is presented that reveals deficiencies in the design of the power transformer. A simple redesign of the transformer windings eliminated the deficiency. Future plans to improve the converter and packaging design are presented along with several conclusions.
Perceived demands during modern military operations.
Boermans, Sylvie M; Kamphuis, Wim; Kamhuis, Wim; Delahaij, Roos; Korteling, J E Hans; Euwema, Martin C
2013-07-01
Using a cross-sectional design, this study explored operational demands during the International Security Assistance Force for Afghanistan (2009-2010) across distinct military units. A total of 1,413 Dutch soldiers, nested within four types of units (i.e., combat, combat support, service support, and command support units) filled out a 23-item self-survey in which they were asked to evaluate the extent to which they experienced operational characteristics as demanding. Exploratory factor analysis identified six underlying dimensions of demands. Multivariate analysis of variance revealed that distinct units are characterized by their own unique constellation of perceived demands, even after controlling for previous deployment experience. Most notable findings were found when comparing combat units to other types of units. These insights can be used to better prepare different types of military units for deployment, and support them in the specific demands they face during deployment. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Human Performance Issues of Lunar-Sited Teleoperations
NASA Technical Reports Server (NTRS)
Kaiser, Mary K.; Null, Cynthia H. (Technical Monitor)
1995-01-01
Teleoperations in terrestrial environments present a number of challenges to system operators and designers. Transmission lags, restricted visual fields, and reduced or distorted tactile/kinesthetic feedback can compromise performance, especially for innerloop control tasks (e.g., vehicle or manipulator control). These problems are likely to be exacerbated in lunar operations, since teleoperation may occur across large distances. Further, the lunar environment will introduce unique concerns. For example, the teleoperated systems will reflect the reduced gravity of the moon. In addition to the novelty of these dynamics, operators will often have to cope with them while physically located in a terrestrial or microgravity environment. Similarly, the optical characteristics of the lunar environment differ from our usual experience (e.g., lack of atmospheric attenuation) in ways that may impact normative depth, distance, and motion perception. These human factors issues are related to the question of humans adapting to a lunar environment. However, teleoperations requires the operator to maintain functionality in both the control station and end-effector environments, defeating more straightforward environmental adaptation strategies.
Magnetic suspension actuator concepts and applications
NASA Technical Reports Server (NTRS)
Kroeger, John
1993-01-01
The fundamental aspect which makes magnetic suspension systems possible is the magnetic phenomena by which significant forces can be generated. Each of these force-producing phenomena has unique characteristics and is implementable in a unique fashion, such that each performs the magnetic suspension task differently than the others. A practical overview of the force-producing concepts, their unique characteristics, and their typical methods of application is provided.
Transportation Systems Evaluation
NASA Technical Reports Server (NTRS)
Fanning, M. L.; Michelson, R. A.
1972-01-01
A methodology for the analysis of transportation systems consisting of five major interacting elements is reported. The analysis begins with the causes of travel demand: geographic, economic, and demographic characteristics as well as attitudes toward travel. Through the analysis, the interaction of these factors with the physical and economic characteristics of the transportation system is determined. The result is an evaluation of the system from the point of view of both passenger and operator. The methodology is applicable to the intraurban transit systems as well as major airlines. Applications of the technique to analysis of a PRT system and a study of intraurban air travel are given. In the discussion several unique models or techniques are mentioned: i.e., passenger preference modeling, an integrated intraurban transit model, and a series of models to perform airline analysis.
Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments
NASA Technical Reports Server (NTRS)
Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie
2004-01-01
This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.
NASA Astrophysics Data System (ADS)
Feng, Ke; Wang, KeSheng; Zhang, Mian; Ni, Qing; Zuo, Ming J.
2017-03-01
The planetary gearbox, due to its unique mechanical structures, is an important rotating machine for transmission systems. Its engineering applications are often in non-stationary operational conditions, such as helicopters, wind energy systems, etc. The unique physical structures and working conditions make the vibrations measured from planetary gearboxes exhibit a complex time-varying modulation and therefore yield complicated spectral structures. As a result, traditional signal processing methods, such as Fourier analysis, and the selection of characteristic fault frequencies for diagnosis face serious challenges. To overcome this drawback, this paper proposes a signal selection scheme for fault-emphasized diagnostics based upon two order tracking techniques. The basic procedures for the proposed scheme are as follows. (1) Computed order tracking is applied to reveal the order contents and identify the order(s) of interest. (2) Vold-Kalman filter order tracking is used to extract the order(s) of interest—these filtered order(s) constitute the so-called selected vibrations. (3) Time domain statistic indicators are applied to the selected vibrations for faulty information-emphasized diagnostics. The proposed scheme is explained and demonstrated in a signal simulation model and experimental studies and the method proves to be effective for planetary gearbox fault diagnosis.
The DAMIC Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Mello Neto, J. R.T.
The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c 2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installedmore » at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.« less
A robotic observatory in the city
NASA Astrophysics Data System (ADS)
Ruch, Gerald T.; Johnston, Martin E.
2012-05-01
The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.
A study of X-divertor in NSTX-U with SOLPS simulations
NASA Astrophysics Data System (ADS)
Chen, Zhong-Ping; Kotschenreuther, Mike; Mahajan, Swadesh; Gerhardt, Stefan
2018-03-01
The X-divertor (XD) geometry in NSTX-U is demonstrated, via SOLPS simulations, to perform better than the standard divertor (SD); in particular, it allows detachment at a lower upstream density and stabilizes the detachment front near the target, away from the main X-point. Consequently a stable detached operation becomes possible—the localization near the plate allows a vast reduction of heat fluxes without degrading the core plasma. Indeed, it is confirmed by our simulation that at similar states of detachment the XD outperforms the SD by reducing the heat fluxes to the target and maintaining higher upstream temperatures, resulting in scrape-off layers that are more favorable for advanced tokamak operation. These advantages are attributed to the unique geometric characteristics of XD—poloidal flaring near the target.
A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm
NASA Technical Reports Server (NTRS)
DellaCorte, Chris
1997-01-01
A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.
Birth wind and fire: raising awareness to operating room fires during delivery.
Wolf, Omer; Weissman, Oren; Harats, Moti; Farber, Nimrod; Stavrou, Demetris; Tessone, Ariel; Zilinsky, Isaac; Winkler, Eyal; Haik, Josef
2013-09-01
We researched whether the obstetric operating room (OR) qualified as a fire-risk environment so as to take preventive measures accordingly. We analyzed a series of iatrogenic burns inflicted during birth by collecting clinical data and comparing it with known OR fire risk factors and with other factors that repeated in all cases in search of unique characteristics of the obstetric OR. All three cases shared in common the same type of oxygen-rich open ventilation system, alcohol-based prepping solution, and the hastiness of cesarean delivery while spontaneous vaginal delivery was already in progress. The obstetric OR is, as suspected, a fire-prone zone in more ways than the regular OR. Therefore, preventive measures should be undertaken and awareness for the possibility for such occurrences should be raised.
Wong, Terry Tin-Yau
2017-12-01
The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Refractive and relativistic effects on ITER low field side reflectometer design.
Wang, G; Rhodes, T L; Peebles, W A; Harvey, R W; Budny, R V
2010-10-01
The ITER low field side reflectometer faces some unique design challenges, among which are included the effect of relativistic electron temperatures and refraction of probing waves. This paper utilizes GENRAY, a 3D ray tracing code, to investigate these effects. Using a simulated ITER operating scenario, characteristics of the reflected millimeter waves after return to the launch plane are quantified as a function of a range of design parameters, including antenna height, antenna diameter, and antenna radial position. Results for edge/SOL measurement with both O- and X-mode polarizations using proposed antennas are reported.
NASA Technical Reports Server (NTRS)
Havill, C. D.
1974-01-01
The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.
Analysis of photonic band gap in novel piezoelectric photonic crystal
NASA Astrophysics Data System (ADS)
Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.
2018-03-01
The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuri, Yosuke, E-mail: yuri.yosuke@jaea.go.jp
Three-dimensional (3D) ordering of a charged-particle beams circulating in a storage ring is systematically studied with a molecular-dynamics simulation code. An ion beam can exhibit a 3D ordered configuration at ultralow temperature as a result of powerful 3D laser cooling. Various unique characteristics of the ordered beams, different from those of crystalline beams, are revealed in detail, such as the single-particle motion in the transverse and longitudinal directions, and the dependence of the tune depression and the Coulomb coupling constant on the operating points.
Validation Of The Airspace Concept Evaluation System Using Real World Data
NASA Technical Reports Server (NTRS)
Zelinski, Shannon
2005-01-01
This paper discusses the process of performing a validation of the Airspace Concept Evaluation System (ACES) using real world historical flight operational data. ACES inputs are generated from select real world data and processed to create a realistic reproduction of a single day of operations within the National Airspace System (NAS). ACES outputs are then compared to real world operational metrics and delay statistics for the reproduced day. Preliminary results indicate that ACES produces delays and airport operational metrics similar to the real world with minor variations of delay by phase of flight. ACES is a nation-wide fast-time simulation tool developed at NASA Ames Research Center. ACES models and simulates the NAS using interacting agents representing center control, terminal flow management, airports, individual flights, and other NAS elements. These agents pass messages between one another similar to real world communications. This distributed agent based system is designed to emulate the highly unpredictable nature of the NAS, making it a suitable tool to evaluate current and envisioned airspace concepts. To ensure that ACES produces the most realistic results, the system must be validated. There is no way to validate future concepts scenarios using real world historical data, but current day scenario validations increase confidence in the validity of future scenario results. Each operational day has unique weather and traffic demand schedules. The more a simulation utilizes the unique characteristic of a specific day, the more realistic the results should be. ACES is able to simulate the full scale demand traffic necessary to perform a validation using real world data. Through direct comparison with the real world, models may continuee to be improved and unusual trends and biases may be filtered out of the system or used to normalize the results of future concept simulations.
Liu, Jianguo; Jiang, Xiumin; Zhou, Lingsheng; Wang, Hui; Han, Xiangxin
2009-08-15
Incineration has been proven to be an alternative for disposal of sludge with its unique characteristics to minimize the volume and recover energy. In this paper, a new fluidized bed (FB) incineration system for treating oil sludge is presented. Co-firing of oil sludge with coal-water slurry (CWS) was investigated in the new incineration system to study combustion characteristics, gaseous pollutant emissions and ash management. The study results show the co-firing of oil sludge with CWS in FB has good operating characteristic. CWS as an auxiliary fuel can flexibly control the dense bed temperatures by adjusting its feeding rate. All emissions met the local environmental requirements. The CO emission was less than 1 ppm or essentially zero; the emissions of SO(2) and NO(x) were 120-220 and 120-160 mg/Nm(3), respectively. The heavy metal analyses of the bottom ash and the fly ash by ICP/AES show that the combustion ashes could be recycled as soil for farming.
Relations between Housing Characteristics and the Well-Being of Low-Income Children and Adolescents
Coley, Rebekah Levine; Leventhal, Tama; Lynch, Alicia Doyle; Kull, Melissa
2013-01-01
Extant research has highlighted the importance of multiple characteristics of housing, but has not comprehensively assessed a broad range of housing characteristics and their relative contributions to children's well-being. Using a representative, longitudinal sample of low-income children and adolescents from low-income urban neighborhoods (N = 2,437, ages 2 through 21 years) from the Three-City Study, this study assessed housing quality, stability, type (i.e., ownership status and subsidy status), and cost simultaneously to delineate their unique associations with children's development. Hierarchical linear models found that poor housing quality was most consistently associated with children's and adolescents’ development, including worse emotional and behavioral functioning and lower cognitive skills. These associations operated in part through mothers’ psychological functioning. Residential instability showed mixed links with functioning, whereas housing cost and type were not consistently predictive. Results suggest that housing contexts are associated with functioning across the developmental span from early childhood through late adolescence, with some differences in patterns by child age. PMID:23244408
Bipolar resistive switching of single gold-in-Ga2O3 nanowire.
Hsu, Chia-Wei; Chou, Li-Jen
2012-08-08
We have fabricated single nanowire chips on gold-in-Ga(2)O(3) core-shell nanowires using the electron-beam lithography techniques and realized bipolar resistive switching characteristics having invariable set and reset voltages. We attribute the unique property of invariance to the built-in conduction path of gold core. This invariance allows us to fabricate many resistive switching cells with the same operating voltage by simple depositing repetitive metal electrodes along a single nanowire. Other characteristics of these core-shell resistive switching nanowires include comparable driving electric field with other thin film and nanowire devices and a remarkable on/off ratio more than 3 orders of magnitude at a low driving voltage of 2 V. A smaller but still impressive on/off ratio of 10 can be obtained at an even lower bias of 0.2 V. These characteristics of gold-in-Ga(2)O(3) core-shell nanowires make fabrication of future high-density resistive memory devices possible.
On the dispersion characteristics of metamaterial transmission lines
NASA Astrophysics Data System (ADS)
Sisó, G.; Gil, M.; Bonache, J.; Martín, F.
2007-10-01
In this paper, a detailed analysis of the dispersion characteristics of metamaterial transmission lines, based on the lumped element T-circuit model is carried out. One of the main relevant characteristics of these artificial lines is the possibility to tailor the phase response. This leads to unique properties which are of interest for microwave circuit design, such as bandwidth enhancement or multiband (dual-band) operation, among others. However, it is shown in this paper that, in spite of the larger number of circuit parameters (as compared to conventional lines), there exist intrinsic limitations that may limit the performance of such metamaterial transmission lines under certain conditions. In this paper these limitations are pointed out from an accurate analysis of the phase response and the Foster's reactance theorem [Bell Syst. Tech. 3, 259 (1924)]. From the results of this paper, important guidelines for the design of microwave components based on metamaterial transmission lines are inferred. The fabrication and characterization of different metamaterial transmission lines will corroborate the theoretical results.
Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
De Paepe, Brecht; Maertens, Jo; Vanholme, Bartel; De Mey, Marjan
2018-05-18
To monitor the intra- and extracellular environment of micro-organisms and to adapt their metabolic processes accordingly, scientists are reprogramming nature's myriad of transcriptional regulatory systems into transcriptional biosensors, which are able to detect small molecules and, in response, express specific output signals of choice. However, the naturally occurring response curve, the key characteristic of biosensor circuits, is typically not in line with the requirements for real-life biosensor applications. In this contribution, a natural LysR-type naringenin-responsive biosensor circuit is developed and characterized with Escherichia coli as host organism. Subsequently, this biosensor is dissected into a clearly defined detector and effector module without loss of functionality, and the influence of the expression levels of both modules on the biosensor response characteristics is investigated. Two collections of ten unique synthetic biosensors each are generated. Each collection demonstrates a unique diversity of response curve characteristics spanning a 128-fold change in dynamic and 2.5-fold change in operational ranges and 3-fold change in levels of Noise, fit for a wide range of applications, such as adaptive laboratory evolution, dynamic pathway control and high-throughput screening methods. The established biosensor engineering concepts, and the developed biosensor collections themselves, are of use for the future development and customization of biosensors in general, for the multitude of biosensor applications and as a compelling alternative for the commonly used LacI-, TetR- and AraC-based inducible circuits.
Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis
NASA Technical Reports Server (NTRS)
Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.
2008-01-01
All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.
1986-01-01
Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);
Numerical simulation of electrons dynamics in a microtron on 6 - 10 MeV
NASA Astrophysics Data System (ADS)
Bashmakov, Y. A.; Dyubkov, V. S.; Lozeev, Y. Y.
2017-12-01
Electron dynamics in 6.5 MeV classic microtron of the Lebedev Physics Institute (LPI) is investigated by means of numerical methods. Particular emphasis is placed on the formation mechanism of electron bunches at the first circular orbits. An effect of microtron main parameters such as accelerating RF field amplitude, DC magnetic field, as well as a geometry and a position of a thermal emitter on characteristics of electron beam extracted from the microtron are studied. In the space of mentioned parameters a region corresponding an optimal microtron operation mode is found. It is noted that the unique geometric and energy characteristics of accelerated beam makes use of microtron attractive not only as injector into a synchrotron, but also as a driver in experiments on generation of coherent terahertz electromagnetic radiation.
76 FR 23333 - Notice of Proposed Withdrawal Extension and Opportunity for Public Meeting; Wyoming
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... Land Management, Interior. ACTION: Notice. SUMMARY: The United States Department of Agriculture (USDA... mining laws to protect unique topographic characteristics and recreation values of the Snowy Range Area... withdrawal extension is to continue to protect the unique topographic characteristics of the Snowy Range Area...
Characteristics Desired in Clinical Data Warehouse for Biomedical Research
Shin, Soo-Yong; Kim, Woo Sung
2014-01-01
Objectives Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. Methods Three examples of CDWs were reviewed: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. Results A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. Conclusions The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata. PMID:24872909
TBCC Fan Stage Operability and Performance
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2007-01-01
NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA s APNASA codes. Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.
QCAPUF: QCA-based physically unclonable function as a hardware security primitive
NASA Astrophysics Data System (ADS)
Abutaleb, M. M.
2018-04-01
Physically unclonable functions (PUFs) are increasingly used as innovative security primitives to provide the hardware authentication and identification as well as the secret key generation based on unique and random variations in identically fabricated devices. Security and low power have appeared to become two crucial necessities to modern designs. As an emerging nanoelectronic technology, a quantum-dot cellular automata (QCA) can achieve ultra-low power consumption as well as an extremely small area for implementing digital designs. However, there are various classes of permanent defects that can happen during the manufacture of QCA devices. The recent extensive research has been focused on how to eliminate errors in QCA structures resulting from fabrication variances. By a completely different vision, to turn this disadvantage into an advantage, this paper presents a novel QCA-based PUF (QCAPUF) architecture to exploit the unique physical characteristics of fabricated QCA cells in order to produce different hardware fingerprint instances. This architecture is composed of proposed logic and interconnect blocks that have critical vulnerabilities and perform unexpected logical operations. The behaviour of QCAPUF is thoroughly analysed through physical relations and simulations. Results confirm that the proposed QCAPUF has state of the art PUF characteristics in the QCA technology. This paper will serve as a basis for further research into QCA-based hardware security primitives and applications.
Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters.
Cheng, Rui; Xia, Li; Zhou, Jiaao; Liu, Deming
2015-04-15
Conventional intensity-modulated measurements require to be operated in linear range of filter or interferometric response to ensure a linear detection. Here, we present a wavelength interrogation system for fiber Bragg grating sensors where the linear transition is achieved with crossed Gaussian transmissions. This unique filtering characteristic makes the responses of the two branch detections follow Gaussian functions with the same parameters except for a delay. The substraction of these two delayed Gaussian responses (in dB) ultimately leads to a linear behavior, which is exploited for the sensor wavelength determination. Beside its flexibility and inherently power insensitivity, the proposal also shows a potential of a much wider operational range. Interrogation of a strain-tuned grating was accomplished, with a wide sensitivity tuning range from 2.56 to 8.7 dB/nm achieved.
NASA Astrophysics Data System (ADS)
Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.
2015-12-01
NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.
Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo
This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants,more » and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.« less
Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Tielens, A. G. G. M.; Gehrz, R. D.; Callis, H. H. S.
2007-09-01
The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region with an average transmission of >= 80%. The SOFIA instrument complement includes broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.
Nature inspired capacitive sensor with unique and unclonable characteristic
NASA Astrophysics Data System (ADS)
Karuthedath, C. B.; Schwesinger, N.
2018-02-01
Background of this paper is the development of sensors showing a nature like characteristic. The sensor is able to detect excitations on inertia bases and operates capacitive. It consists of a miniaturized interdigitated electrode structure on a printed circuit board, a flexible and conductive membrane of PDMS located in a certain distance above and a certain number of steel balls fixed on top of the membrane. The steel ball distribution is random and the conductivity of the membrane is not homogeneous across the membrane. Due to this double random distribution, no sensor equals the other, although the external geometry is equal. The overall size of the sensor is 4.7mm x 4.7mm x 1.7mm. Tilt, acceleration or magnetic fields are capable of causing forces on the steel balls and therefore relative movements between the membrane and the electrode structures. Due to this movement, capacity changes of the arrangement are measurable. This paper describes besides the fabrication of conductive membranes the preparation of regarding sensors. Process technology makes cloning of the sensors impossible. Although all process steps are suited for mass production, no sensor equals the other. Measurements with these sensors prove that each sensor reacts differently to the same excitation. Calculations of the Intra-Concordance-Coefficient show the similarity of the sensors for equal excitations. On the other hand, the maximum Inter-Concordance-Coefficient reveals the differences of such sensors very clearly. Such a characteristic, i.e. equal reaction to equal excitation and an output of significantly different signals allows considering each sensor as a unique device. The sensors obviously behave like receptors in natural organisms. These unusual properties of uniqueness and impossibility to clone make the sensors very interesting for highly secure identification demands. In combination with a very simple measurement procedure, the sensors are an attractive hardware base for technical security solutions.
Space station operations management
NASA Technical Reports Server (NTRS)
Cannon, Kathleen V.
1989-01-01
Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.
The Yami`s opposition to the Lanyu LLW storage installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K.K.; Chang, S.Y.
1993-12-31
Since 1982, the solidified low-level radioactive wastes (LLW) in Taiwan, regardless of the origins, have been sent to Lanyu for interim storage. Lanyu is a small island located 80 kilometers southeast of Taiwan. Its unique Polynesian cultural characteristics make it an attractive tourist spot. Dissatisfaction of being the commonly neglected powerless minority, in addition to the political claims from the outside environmental activists made the majority of the Lanyu residents oppose the operation of the storage facility. Approximately 80,000 drums of these wastes have been sent to Lanyu. Although the radiological monitoring results demonstrated that the current operation causes negligiblemore » impact on the environment. Accounting for the fast changing social and political situations in Taiwan today, without a good public acceptance program for both sides, the continuous operation of the Lanyu LLW storage facility until the year 2002, at which time the LLW disposal facility will be commissioned, could be in limbo.« less
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy
2018-01-01
The National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km (approximately 6.6-62.3 kft) in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. On the evening of 10 September 2017, Hurricane Irma passed within 160 km (87 nmi) to the west of KSC through the middle of the Florida peninsula. The hurricane was responsible for power outages to approximately 2/3 of Florida's population (Stein, 2017). This paper will provide an overview of the TDRWP system, describe the characteristics of the wind observations from the TDRWP during Irma passage, provide a comparison to previous TDRWP observations from Hurricane Matthew in 2016, and provide the location where TDRWP data is available to the meteorological community.
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.; Huddleston, Lisa; Brauer, Thomas; Wilfong, Timothy
2018-01-01
The NASA Kennedy Space Center (KSC) operates a 48-MHz Tropospheric/Stratospheric Doppler Radar Wind Profiler (TDRWP) on a continual basis generating wind profiles between 2-19 km in the support of space launch vehicle operations. A benefit of the continual operability of the system is the ability to provide unique observations of severe weather events such as hurricanes. Over the past two Atlantic Hurricane seasons the TDRWP has made high temporal resolution wind profile observations of Hurricane Irma in 2017 and Hurricane Matthew in 2016. Hurricane Irma was responsible for power outages to approximately 2/3 of Florida's population during its movement over the state(Stein,2017). An overview of the TDRWP system configuration, brief summary of Hurricanes Irma and Matthew storm track in proximity to KSC, characteristics of the tropospheric wind observations from the TDRWP during both events, and discussion of the dissemination of TDRWP data during the event will be presented.
Low-Impact Mating System for Docking Spacecraft
NASA Technical Reports Server (NTRS)
Lewis, James L.; Robertson, Brandan; Carroll, Monty B.; Le, Thang; Morales, Ray
2008-01-01
A document describes a low-impact mating system suitable for both docking (mating of two free-flying spacecraft) and berthing (in which a robot arm in one spacecraft positions an object for mating with either spacecraft). The low-impact mating system is fully androgynous: it mates with a copy of itself, i.e., all spacecraft and other objects to be mated are to be equipped with identical copies of the system. This aspect of the design helps to minimize the number of unique parts and to standardize and facilitate mating operations. The system includes a closed-loop feedback control subsystem that actively accommodates misalignments between mating spacecraft, thereby attenuating spacecraft dynamics and mitigating the need for precise advance positioning of the spacecraft. The operational characteristics of the mating system can be easily configured in software, during operation, to enable mating of spacecraft having various masses, center-of-gravity offsets, and closing velocities. The system design provides multi-fault tolerance for critical operations: for example, to ensure unmating at a critical time, a redundant unlatching mechanism and two independent pyrotechnic release subsystems are included.
Operation mode switchable charge-trap memory based on few-layer MoS2
NASA Astrophysics Data System (ADS)
Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-03-01
Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.
ERIC Educational Resources Information Center
George, Carrie; Herman, Keith C.; Ostrander, Rick
2006-01-01
Prior studies have found remarkable similarity in the family characteristics across a wide range of child psychopathologies. This study investigated the unique relationships between symptoms of depression, conduct problems/aggression, and inattention/hyperactivity and characteristics of the family environment. Parents and teachers completed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
NASA Astrophysics Data System (ADS)
Mustafaev, Alexander; Rastvorova, Iuliia; Arslanova, Fatima
2017-10-01
It is generally recognized that careful implementation of ecological monitoring should be provided at hazardous production facilities continuously to protect the surrounding environment as well as health and safety of employees. However, the existing devices may not be able to control the environmental situation uninterruptedly due to their technical characteristics or measurement methods. Developed by The Mining University Plasma Research Group ultra-compact photoionization analyzer is proposed as innovative equipment which creates the basis for a new measuring approach. The general operating principle is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at the atmospheric pressure, the vacuum ultraviolet (VUV) photoionization sensor measures the energy of electrons produced by means of ionization with the resonance photons whose wavelength is situated in the VUV. A special software tool was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the characteristic electrons energy spectra. The portable analyzer with a unique set of parameters such as small size (10*10*1 mm), low cost, a wide range of recognizable molecules, great measurement accuracy at the atmospheric pressure can be effectively used both for rapid testing of air pollution load and the study of noxious factors that influence oil and gas industry employees. Dr. Sci., Ph.D, Principal Scientist, Professor.
Characteristics and Concepts of Dynamic Hub Proteins in DNA Processing Machinery from Studies of RPA
Sugitani, Norie; Chazin, Walter J.
2015-01-01
DNA replication, damage response and repair require the coordinated action of multi-domain proteins operating within dynamic multi-protein machines that act upon the DNA substrate. These modular proteins contain flexible linkers of various lengths, which enable changes in the spatial distribution of the globular domains (architecture) that harbor their essential biochemical functions. This mobile architecture is uniquely suited to follow the evolving substrate landscape present over the course of the specific process performed by the multi-protein machinery. A fundamental advance in understanding of protein machinery is the realization of the pervasive role of dynamics. Not only is the machine undergoing dynamic transformations, but the proteins themselves are flexible and constantly adapting to the progression through the steps of the overall process. Within this dynamic context the activity of the constituent proteins must be coordinated, a role typically played by hub proteins. A number of important characteristics of modular proteins and concepts about the operation of dynamic machinery have been discerned. These provide the underlying basis for the action of the machinery that reads DNA, and responds to and repairs DNA damage. Here, we introduce a number of key characteristics and concepts, including the modularity of the proteins, linkage of weak binding sites, direct competition between sites, and allostery, using the well recognized hub protein replication protein A (RPA). PMID:25542993
Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli
2016-11-15
This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.
Efficacy of a telerehabilitation intervention programme using biofeedback among computer operators.
Golebowicz, Merav; Levanon, Yafa; Palti, Ram; Ratzon, Navah Z
2015-01-01
Computer operators spend long periods of time sitting in a static posture at computer workstations and therefore have an increased exposure to work-related musculoskeletal disorders (WRMSD). The present study is aimed at investigating the feasibility and effectiveness of a tele-biofeedback ergonomic intervention programme among computer operators suffering from WRMSD. Twelve subjects with WRMSD were assigned an ergonomic intervention accompanied by remote tele-biofeedback training, which was practised at their workstations. Evaluations of pain symptoms and locations, body posture and psychosocial characteristics were carried out before and after the intervention in the workplace. The hypothesis was partially verified as it showed improved body position at the workstation and decreased pain in some body parts. Tele-biofeedback, as part of an intervention, appears to be feasible and efficient for computer operators who suffer from WRMSD. This study encourages further research on tele-health within the scope of occupational therapy practice. Practitioner summary: Research concerning tele-health using biofeedback is scarce. The present study analyses the feasibility and partial effectiveness of a tele-biofeedback ergonomic intervention programme for computer operators suffering from WRMSD. The uniqueness and singularity of this study is the usage of remote communication between participants and practitioners through the Internet.
Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.
Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali
2017-02-01
In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.
NASA Technical Reports Server (NTRS)
Clarke, John-Paul B.; Brooks, James; McClain, Evan; Paladhi, Anwesha Roy; Li, Leihong; Schleicher, David; Saraf, Aditya; Timar, Sebastian; Crisp, Don; Bertino, Jason;
2012-01-01
This work involves the development of a concept that enhances integrated metroplex arrival and departure coordination, determines the temporal (the use of time separation for aircraft sharing the same airspace resources) and spatial (the use of different routes or vertical profiles for aircraft streams at any given time) impact of metroplex traffic coordination within the National Airspace System (NAS), and quantifies the benefits of the most desirable metroplex traffic coordination concept. Researching and developing metroplex concepts is addressed in this work that broadly applies across the range of airspace and airport demand characteristics envisioned for NextGen metroplex operations. The objective of this work is to investigate, formulate, develop models, and analyze an operational concept that mitigates issues specific to the metroplex or that takes advantage of unique characteristics of metroplex airports to improve efficiencies. The concept is an innovative approach allowing the NAS to mitigate metroplex interdependencies between airports, optimize metroplex arrival and departure coordination among airports, maximize metroplex airport throughput, minimize delay due to airport runway configuration changes, increase resiliency to disruptions, and increase the tolerance of the system to degrade gracefully under adverse conditions such as weather, traffic management initiatives, and delays in general.
Robust and transferable quantification of NMR spectral quality using IROC analysis
NASA Astrophysics Data System (ADS)
Zambrello, Matthew A.; Maciejewski, Mark W.; Schuyler, Adam D.; Weatherby, Gerard; Hoch, Jeffrey C.
2017-12-01
Non-Fourier methods are increasingly utilized in NMR spectroscopy because of their ability to handle nonuniformly-sampled data. However, non-Fourier methods present unique challenges due to their nonlinearity, which can produce nonrandom noise and render conventional metrics for spectral quality such as signal-to-noise ratio unreliable. The lack of robust and transferable metrics (i.e. applicable to methods exhibiting different nonlinearities) has hampered comparison of non-Fourier methods and nonuniform sampling schemes, preventing the identification of best practices. We describe a novel method, in situ receiver operating characteristic analysis (IROC), for characterizing spectral quality based on the Receiver Operating Characteristic curve. IROC utilizes synthetic signals added to empirical data as "ground truth", and provides several robust scalar-valued metrics for spectral quality. This approach avoids problems posed by nonlinear spectral estimates, and provides a versatile quantitative means of characterizing many aspects of spectral quality. We demonstrate applications to parameter optimization in Fourier and non-Fourier spectral estimation, critical comparison of different methods for spectrum analysis, and optimization of nonuniform sampling schemes. The approach will accelerate the discovery of optimal approaches to nonuniform sampling experiment design and non-Fourier spectrum analysis for multidimensional NMR.
NASA Astrophysics Data System (ADS)
Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai
2018-01-01
The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.
Wartime critical care air transport.
Bridges, Elizabeth; Evers, Karen
2009-04-01
Describe the characteristics/enroute care of casualties transported by USAF Critical Care Air Transport Teams (CCATT) during Operation Enduring Freedom/Iraqi Freedom (OEF/OIF). Retrospective review of TRAC2ES and CCATT Mission Reports (Oct 2001-May 2006). 3492 patient moves (2439 patients). Moves by route: within Area of Responsibility (AOR) (n = 261); AOR-Landstuhl (LRMC) (n = 1995), Germany-CONUS (n = 1188). For AOR-LRMC: BI (64%), NBI (8%), Disease (25%). Among injured (n = 1491), 69% suffered polytrauma, primarily d/t explosions. Injury area: extremities (63%), head (55%), thorax (46%), abdomen (31%), neck (17%). Injury type: soft tissue (64%), orthopedic (45%), thoracic (35%), skull fracture (27%), brain injury (25%). Disease diagnoses: cardiac (15%) and pulmonary (8%). This is the first analysis of OEF/OIF CCATT patients. Phase 1 of this study demonstrates the strengths and limitations of TRAC2ES and CCATT Mission Reports to describe the characteristics/enroute care of this unique population.
Miniature spectrometer and multispectral imager as a potential diagnostic aid in dermatology
NASA Astrophysics Data System (ADS)
Zeng, Haishan; MacAulay, Calum E.; McLean, David I.; Lui, Harvey; Palcic, Branko
1995-04-01
A miniature spectrometer system has been constructed for both reflectance and autofluorescence spectral measurements of skin. The system is based on PC plug-in spectrometer, therefore, it is miniature and easy to operate. The spectrometer has been used clinically to collect spectral data from various skin lesions including skin cancer. To date, 48 patients with a total of 71 diseased skin sites have been measured. Analysis of these preliminary data suggests that unique spectral characteristics exist for certain types of skin lesions, i.e. seborrheic keratosis, psoriasis, etc.. These spectral characteristics will help the differential diagnosis in Dermatology practice. In conjunction with the spectral point measurements, we are building and testing a multispectral imaging system to measure the spatial distribution of skin reflectance and autofluorescence. Preliminary results indicate that a cutaneous squamous cell carcinoma has a weak autofluorescence signal at the edge of the lesion, but a higher autofluorescence signal in the central area.
A high-fidelity weather time series generator using the Markov Chain process on a piecewise level
NASA Astrophysics Data System (ADS)
Hersvik, K.; Endrerud, O.-E. V.
2017-12-01
A method is developed for generating a set of unique weather time-series based on an existing weather series. The method allows statistically valid weather variations to take place within repeated simulations of offshore operations. The numerous generated time series need to share the same statistical qualities as the original time series. Statistical qualities here refer mainly to the distribution of weather windows available for work, including durations and frequencies of such weather windows, and seasonal characteristics. The method is based on the Markov chain process. The core new development lies in how the Markov Process is used, specifically by joining small pieces of random length time series together rather than joining individual weather states, each from a single time step, which is a common solution found in the literature. This new Markov model shows favorable characteristics with respect to the requirements set forth and all aspects of the validation performed.
Bioprosthetics and repair of complex aerodigestive defects
Udelsman, Brooks; Mathisen, Douglas J.
2018-01-01
Aerodigestive defects involving the trachea, bronchi and esophagus are a result of prolonged intubation, operative complications, congenital defects, trauma, radiation and neoplastic disease. The vast majority of these defects may be repaired primarily. Rarely, due the size of the defect, underlying complexity, or unfavorable patient characteristics, primary repair is not possible. One alternative to primary repair is bioprosthetic repair. Materials such as acellular dermal matrix and aortic homograft have been used in a variety of applications, including closure of tracheal, bronchial and esophageal defects. Herein, we review the use of bioprosthetics in the repair of aerodigestive defects, along with the unique advantages and disadvantages of these repairs. PMID:29707507
Industrial applications of automated X-ray inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.
2015-03-01
Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.
NASA Technical Reports Server (NTRS)
Xue, Min; Rios, Joseph
2017-01-01
Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.
NASA Technical Reports Server (NTRS)
Xue, Min; Rios, Joseph
2017-01-01
Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform.
Zhang, Jiaxiang; Vo, Anh Q; Feng, Xin; Bandari, Suresh; Repka, Michael A
2018-06-25
Inter-individual variability is always an issue when treating patients of different races, genders, ages, pharmacogenetics, and pharmacokinetic characteristics. However, the development of novel dosage forms is limited by the huge investments required for production line modifications and dosages diversity. Additive manufacturing (AM) or 3D printing can be a novel alternative solution for the development of controlled release dosages because it can produce personalized or unique dosage forms and more complex drug-release profiles. The primary objective of this manuscript is to review the 3D printing processes that have been used in the pharmaceutical area, including their general aspects, materials, and the operation of each AM technique. Advantages and shortcomings of the technologies are discussed with respect to practice and practical applications. Thus, this review will provide an overview and discussion on advanced pharmaceutical AM technologies, which can be used to produce unique controlled drug delivery systems and personalized dosages for the future of personalized medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Teresa A.; Lapsa, Melissa Voss
Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory of the US Department of Energy (DOE) and one of the oldest national laboratories still operating at its original site. These characteristics provide the Sustainable Campus Initiative (SCI) both a unique opportunity and a unique challenge to integrate sustainability into facilities and activities. As outlined in this report, SCI is leveraging the outcomes of ORNL’s DOE-sponsored research and development programs to maximize the efficient use of energy and natural resources across ORNL. Wherever possible, ORNL is integrating technical innovations into new and existing facilities, systems, and processesmore » with a widespread approach to achieving Executive Order 13514. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community. Table 1 summarizes ORNL's FY 2013 performance and planned actions to attain future goals. ORNL has achieved numerous successes during FY 2013, which are described in detail throughout this document.« less
Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Havens, Glen G.; Beerer, Joseph G.
2012-01-01
NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.
1993-04-14
involvement in Operations DESERT SHIELD and STORM. The 498th was a unique unit, well-suited for the gamut of operations conducted by the 2AD (FWD) during its...Division (Forward), during that unit’s involvement in Operations DESERT SHIELD and STORM. The 498th was a unique unit, well-suited for the gamut of...well-suited fir the gamut of operations conducted by 2AD (FWD) during its stay in Southwest Asia (SWA) . I commanded the 498th Support Battalion from
Development of an air ground data exchange concept: Flight deck perspective
NASA Technical Reports Server (NTRS)
Flathers, G. W., II
1987-01-01
The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.
Unmanned Aircraft Hazards and their Implications for Regulation
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Maddalon, Jeffrey M.; Miner, Paul S.; DeWalt, Michael P.; McCormick, G. Frank
2006-01-01
Use of unmanned aircraft systems (UASs) has been characterized as the next great step forward in the evolution of civil aviation. Indeed, UASs are in limited civil use in the United States today, and many believe that the time is rapidly approaching when they will move into the commercial marketplace, too. To make this a reality, a number of challenges must be overcome to develop the necessary regulatory framework for assuring safe operation of this special class of aircraft. This paper discusses some of what must be done to establish that framework. In particular, we examine hazards specific to the design, operation, and flight crew of UASs, and discuss implications of these hazards for existing policy and guidance. Understanding unique characteristics of UASs that pose new hazards is essential to developing a cogent argument, and the corresponding regulatory framework, for safely integrating these aircraft into civil airspace.
Meteorological and Remote Sensing Applications of High Altitude Unmanned Aerial Vehicles
NASA Technical Reports Server (NTRS)
Schoenung, S. M.; Wegener, S. S.
1999-01-01
Unmanned aerial vehicles (UAVs) are maturing in performance and becoming available for routine use in environmental applications including weather reconnaissance and remote sensing. This paper presents a discussion of UAV characteristics and unique features compared with other measurement platforms. A summary of potential remote sensing applications is provided, along with details for four types of tropical cyclone missions. Capabilities of platforms developed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program are reviewed, including the Altus, Perseus, and solar- powered Pathfinder, all of which have flown to over 57,000 ft (17 km). In many scientific missions, the science objectives drive the experimental design, thus defining the sensor payload, aircraft performance, and operational requirements. Some examples of science missions and the requisite UAV / payload system are given. A discussion of technology developments needed to fully mature UAV systems for routine operational use is included, along with remarks on future science and commercial UAV business opportunities.
Thin film oxygen partial pressure sensor
NASA Technical Reports Server (NTRS)
Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.
1972-01-01
The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.
Fiber Optic Sensors for Structural Health Monitoring of Air Platforms
Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping
2011-01-01
Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816
Spectroscopic observations with the Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.
The joint US and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high-resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light spectroscopic science are discussed.
Stratospheric Observatory for Infrared Astronomy (sofia)
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Tielens, A. G. G. M.; Callis, H. H. S.
The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now in its final stages of development. Flying in the stratosphere, SOFIA allows observations through the infrared and submillimeter region, with an average transmission of ≳ 80%. SOFIA is characterized by a wide instrument complement ranging from broadband imagers, through moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, to high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. This broad range in instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2009 and the observatory is expected to operate for over 20 years. The sensitivity, characteristics, science instrument complement, and examples of first light science are discussed.
Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Gehrz, R. D.
2009-08-01
The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere, SOFIA allows observations throughout the infrared and submillimeter region, with an average transmission of greater than 80%. SOFIA's first generation instrument complement includes high-speed photometers, broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. These instruments will enable SOFIA to make unique contributions to a broad array of science topics. First science flights will begin in 2010, and the observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.
Space station needs, attributes, and architectural options: Commercial opportunities in space
NASA Technical Reports Server (NTRS)
Wolbers, H. L., Jr.
1983-01-01
The roles of government and industry in the commercialization of space are examined and an approach for stimulating the interests of potential users is described. Several illustrative examples of potential commercial developments are presented. The role of manned space systems in space commercialization is discussed as well as some of the issues and opportunities that are likely to be encountered in the commercial exploitation of the unique characteristics of space. Results suggest that interest in space facilities can be found among a number of commercially oriented users. In order to develop and maintain the involvement of these potential users, however, space demonstrations are required, and commercial growth or evolution depends on the results of the initial in situ experience. Manned facilities are required for the conceptual research and development phases and for maintenance and servicing operations during production or operational missions. Space facilities must be easily accessible by dependable and regularly scheduled means.
Characteristics of Effective Mentorship for Academic Surgeons: A Grounded Theory Model.
Cochran, Amalia; Elder, William B; Neumayer, Leigh A
2017-08-23
The authors sought to describe characteristics of effective mentoring relationships in academic surgery based upon lived experiences of mid-career and senior female academic surgeons. Prior qualitative work describes characteristics of successful mentoring relationships. However, no model exists of effective mentorship that is specific to academic surgery. The authors conducted in-depth interviews with mid-career and senior female US academic surgeons about the impact of mentoring on professional development during 2014 and 2015. Purposive selection aimed to maximize institutional, specialty, years in career, and racial diversity. Grounded theory method was used to generate a conceptual model of effective mentoring relationships. Data saturation occurred following 15 interviews. Interviewees described the need for multiple mentors over time with each mentor addressing a unique domain. Interviewees suggested that mentees should seek mentors who will serve as strategic advisors, who will be unselfish, and who engage with diverse mentees. This study identified a need for multiple mentors across time and disciplines, and identified 3 key characteristics of effective mentoring relationships in academic surgery. Future work in this area should generate an operational definition of mentorship that supports quantitative evaluation of mentor and mentoring panel performance.
ERIC Educational Resources Information Center
Leighton, Jacqueline P.
2008-01-01
In this commentary, the author asks the analogous question, "where's the psychology?" Not because the authors of the focus article "Unique Characteristics of Diagnostic Classification Models: A Comprehensive Review of the Current State-of-the-Art" have not provided a solid review of the technical aspects of Diagnostic…
Fargo, Jamison D; Munley, Ellen A; Byrne, Thomas H; Montgomery, Ann Elizabeth; Culhane, Dennis P
2013-12-01
We modeled rates of family and single-adult homelessness in the United States in metropolitan and nonmetropolitan regions and as a function of community-level demographic, behavioral, health, economic, and safety net characteristics. We entered community-level characteristics and US Department of Housing and Urban Development point-in-time counts for a single night in January 2009 into separate mixed-effects statistical analyses that modeled homelessness rates for 4 subpopulations: families and single adults in metropolitan and nonmetropolitan regions. Community-level factors accounted for 25% to 50% of the variance in homelessness rates across models. In metropolitan regions, alcohol consumption, social support, and several economic indicators were uniquely associated with family homelessness, and drug use and homicide were uniquely associated with single-adult homelessness. In nonmetropolitan regions, life expectancy, religious adherence, unemployment, and rent burden were uniquely associated with family homelessness, and health care access, crime, several economic indicators, and receipt of Supplemental Security Income were uniquely associated with single-adult homelessness. Considering homeless families and single adults separately enabled more precise modeling of associations between homelessness rates and community-level characteristics, indicating targets for interventions to reduce homelessness among these subpopulations.
Fargo, Jamison D.; Munley, Ellen A.; Byrne, Thomas H.; Montgomery, Ann Elizabeth; Culhane, Dennis P.
2013-01-01
Objectives. We modeled rates of family and single-adult homelessness in the United States in metropolitan and nonmetropolitan regions and as a function of community-level demographic, behavioral, health, economic, and safety net characteristics. Methods. We entered community-level characteristics and US Department of Housing and Urban Development point-in-time counts for a single night in January 2009 into separate mixed-effects statistical analyses that modeled homelessness rates for 4 subpopulations: families and single adults in metropolitan and nonmetropolitan regions. Results. Community-level factors accounted for 25% to 50% of the variance in homelessness rates across models. In metropolitan regions, alcohol consumption, social support, and several economic indicators were uniquely associated with family homelessness, and drug use and homicide were uniquely associated with single-adult homelessness. In nonmetropolitan regions, life expectancy, religious adherence, unemployment, and rent burden were uniquely associated with family homelessness, and health care access, crime, several economic indicators, and receipt of Supplemental Security Income were uniquely associated with single-adult homelessness. Conclusions. Considering homeless families and single adults separately enabled more precise modeling of associations between homelessness rates and community-level characteristics, indicating targets for interventions to reduce homelessness among these subpopulations. PMID:24148057
New biometric modalities using internal physical characteristics
NASA Astrophysics Data System (ADS)
Mortenson, Juliana (Brooks)
2010-04-01
Biometrics is described as the science of identifying people based on physical characteristics such as their fingerprints, facial features, hand geometry, iris patterns, palm prints, or speech recognition. Notably, all of these physical characteristics are visible or detectable from the exterior of the body. These external characteristics can be lifted, photographed, copied or recorded for unauthorized access to a biometric system. Individual humans are unique internally, however, just as they are unique externally. New biometric modalities have been developed which identify people based on their unique internal characteristics. For example, "BoneprintsTM" use acoustic fields to scan the unique bone density pattern of a thumb pressed on a small acoustic sensor. Thanks to advances in piezoelectric materials the acoustic sensor can be placed in virtually any device such as a steering wheel, door handle, or keyboard. Similarly, "Imp-PrintsTM" measure the electrical impedance patterns of a hand to identify or verify a person's identity. Small impedance sensors can be easily embedded in devices such as smart cards, handles, or wall mounts. These internal biometric modalities rely on physical characteristics which are not visible or photographable, providing an added level of security. In addition, both the acoustic and impedance methods can be combined with physiologic measurements such as acoustic Doppler or impedance plethysmography, respectively. Added verification that the biometric pattern came from a living person can be obtained. These new biometric modalities have the potential to allay user concerns over protection of privacy, while providing a higher level of security.*
Woodruff, Susan I; Galarneau, Michael R; McCabe, Cameron T; Sack, Daniel I; Clouser, Mary C
2018-05-01
Little is known about the long-term, health-related quality of life (HRQOL) of those wounded in combat during Operations Enduring Freedom, Iraqi Freedom, and New Dawn. The present study described the overall HRQOL for a large group of US service members experiencing mild-to-severe combat-related injuries, and assessed the unique contribution of demographics, service- and injury-related characteristics, and mental health factors on long-term HRQOL. The Wounded Warrior Recovery Project examines patient-reported outcomes in a cohort of US military personnel wounded in combat. Participants were identified from the Expeditionary Medical Encounter Database, a US Navy-maintained deployment health database, and invited to complete a web-based survey. At the time of this study, 3245 service members consented and completed the survey. Hierarchical linear regression analyses were conducted to assess the unique contribution of each set of antecedents on HRQOL scores. HRQOL was uniquely associated with a number of demographics, and service- and injury-related characteristics. Nevertheless, screening positive for posttraumatic stress disorder (B = - .09; P < .001), depression (B = - .10; P < .001), or both as a set (B = - .19; P < .001) were the strongest predictors of lower long-term HRQOL. Postinjury HRQOL among service members wounded in combat was associated with service and injury experience, and demographic factors, but was most strongly linked with current mental health status. These findings underscore the significance of mental health issues long after injury. Further, findings reinforce that long-term mental health screening, services, and treatment are needed for those injured in combat.
NASA Technical Reports Server (NTRS)
Mango, Edward J.
2016-01-01
NASA and its industry and international partners are embarking on a bold and inspiring development effort to design and build an exploration class space system. The space system is made up of the Orion system, the Space Launch System (SLS) and the Ground Systems Development and Operations (GSDO) system. All are highly coupled together and dependent on each other for the combined safety of the space system. A key area of system safety focus needs to be in the ground and flight application software system (GFAS). In the development, certification and operations of GFAS, there are a series of safety characteristics that define the approach to ensure mission success. This paper will explore and examine the safety characteristics of the GFAS development. The GFAS system integrates the flight software packages of the Orion and SLS with the ground systems and launch countdown sequencers through the 'agile' software development process. A unique approach is needed to develop the GFAS project capabilities within this agile process. NASA has defined the software development process through a set of standards. The standards were written during the infancy of the so-called industry 'agile development' movement and must be tailored to adapt to the highly integrated environment of human exploration systems. Safety of the space systems and the eventual crew on board is paramount during the preparation of the exploration flight systems. A series of software safety characteristics have been incorporated into the development and certification efforts to ensure readiness for use and compatibility with the space systems. Three underlining factors in the exploration architecture require the GFAS system to be unique in its approach to ensure safety for the space systems, both the flight as well as the ground systems. The first are the missions themselves, which are exploration in nature, and go far beyond the comfort of low Earth orbit operations. The second is the current exploration system will launch only one mission per year even less during its developmental phases. Finally, the third is the partnered approach through the use of many different prime contractors, including commercial and international partners, to design and build the exploration systems. These three factors make the challenges to meet the mission preparations and the safety expectations extremely difficult to implement. As NASA leads a team of partners in the exploration beyond earth's influence, it is a safety imperative that the application software used to test, checkout, prepare and launch the exploration systems put safety of the hardware and mission first. Software safety characteristics are built into the design and development process to enable the human rated systems to begin their missions safely and successfully. Exploration missions beyond Earth are inherently risky, however, with solid safety approaches in both hardware and software, the boldness of these missions can be realized for all on the home planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Cho, Kyungjin; Choi, Minkyu; Lee, Seockheon; Bae, Hyokwan
2018-05-26
This study investigated the effect of seeding source on the mature anaerobic ammonia oxidation (ANAMMOX) bacterial community niche in continuous poly(vinyl alcohol) (PVA) gel systems operated under high nitrogen loading rate (NLR) condition. Four identical column reactors packed with PVA gels were operated for 182 d using different seeding sources which had distinct community structures. The ANAMMOX reaction was achieved in all the bioreactors with comparable total and ANAMMOX bacterial 16S rRNA gene quantities. The bacterial community structure of the bioreactors became similar during operation; some major bacteria were commonly found. Interestingly, one ANAMMOX species, "Candidatus Brocadia sinica", was conclusively predominant in all the bioreactors, even though different seeding sludges were used as inoculum source, possibly due to the unique physiological characteristics of "Ca. Brocadia sinica" and the operating conditions (i.e., PVA gel-based continuous system and 1.0 kg-N/(m 3 ·d) of NLR). The results clearly suggest that high NLR condition is a more significant factor determining the final ANAMMOX community niche than is the type of seeding source. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keysa, T.P.
Characteristics of design, construction, performance, and educational opportunity are described for a small, simple passive solar community center in Christian Bend, Tennessee. This 2500-square-foot structure was designed in cooperation with this community of 75 families by TVA architects and was built entirely by volunteer labor. An educational process paralleled all phases of this building, begining with programming sessions, continuing through design, construction, occupation, and operation of the space. The direct gain building utilizes energy planning in both the interior and exterior. Earth berming and utilization of natural topography aid in the building's compatibility with both summer and winter climatic events.more » In addition to microclimatic design, interior space planning aids in naturally tempering spaces from extremes in climate. Extensive use of buffer spaces, an airlock entry, and placement of glazing areas (for direct gain and natural and induced ventilation) aid in the natural energy utilization and distribution in the interior spaces. Unique aspects include a double roof, which aids both in prevention of heat loss and in induced ventilation, and other operable garage door type roll down insulated shutters over the south facing aperture areas utilized both as night insulation and as a radiation barrier. This is the other major unique factor in this building. It has been designed both as an energy efficient community center for business as usual, and as an evacuation point and temporary shelter in th event of natural (flood) or man-induced (nuclear) disaster.« less
The inverse resonance problem for CMV operators
NASA Astrophysics Data System (ADS)
Weikard, Rudi; Zinchenko, Maxim
2010-05-01
We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.
Yao, Yibing; Fan, Yu; Wu, Jun; Wan, Haisu; Wang, Jing; Lam, Stephen; Lam, Wan L.; Girard, Luc; Gazdar, Adi F.; Wu, Zhihao; Zhou, Qinghua
2015-01-01
To identify a panel of tumor associated autoantibodies which can potentially be used as biomarkers for the early diagnosis of non-small cell lung cancer (NSCLC). Thirty-five unique and in-frame expressed phage proteins were isolated. Based on the gene expression profiling, four proteins were selected for further study. Both receiver operating characteristic curve analysis and leave-one-out method revealed that combined measurements of four antibodies produced have better predictive accuracies than any single marker alone. Leave-one-out validation also showed significant relevance with all stages of NSCLC patients. The panel of autoantibodies has a high potential for detecting early stage NSCLC. PMID:22713465
NASA Astrophysics Data System (ADS)
Bahrampour, A. R.; Vahedi, M.; Abdi, M.; Ghobadi, R.; Golshani, M.; Tofighi, S.; Parvin, B.
2011-09-01
The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained.
Jessen, P.L.; Price, H.J.
1958-03-18
This patent relates to sine-wave generators and in particular describes a generator with a novel feedback circuit resulting in improved frequency stability. The generator comprises two triodes having a common cathode circuit connected to oscillate at a frequency and amplitude at which the loop galn of the circutt ls unity, and another pair of triodes having a common cathode circuit arranged as a conventional amplifier. A signal is conducted from the osciliator through a frequency selective network to the amplifier and fed back to the osciliator. The unique feature of the feedback circuit is the amplifier operates in the nonlinear portion of its tube characteristics thereby providing a relatively constant feedback voltage to the oscillator irrespective of the amplitude of its input signal.
Black and gray Helmholtz-Kerr soliton refraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Curto, Julio; Chamorro-Posada, Pedro; McDonald, Graham S.
Refraction of black and gray solitons at boundaries separating different defocusing Kerr media is analyzed within a Helmholtz framework. A universal nonlinear Snell's law is derived that describes gray soliton refraction, in addition to capturing the behavior of bright and black Kerr solitons at interfaces. Key regimes, defined by beam and interface characteristics, are identified, and predictions are verified by full numerical simulations. The existence of a unique total nonrefraction angle for gray solitons is reported; both internal and external refraction at a single interface is shown possible (dependent only on incidence angle). This, in turn, leads to the proposalmore » of positive or negative lensing operations on soliton arrays at planar boundaries.« less
Small-Scale Surface (Tank) Irrigation in Asia
NASA Astrophysics Data System (ADS)
Palanisami, K.; Easter, K. William
1987-05-01
Tank irrigation is an ancient tradition in Asia which is now being reviewed as a potential model for future irrigation expansion. South India has thousands of tanks which are in need of rehabilitation after being in operation for over a century. This study evaluates tank irrigation in an area of south India which has the greatest concentration of tanks. Constraints and unique characteristics of tank irrigation are analyzed to provide a basis for devising strategies for improving tank irrigation. A combination of public and private investments along with institutional changes are recommended to help farmers organize to improve irrigation. Yet, only if public investment is carefully integrated with existing private efforts will farmers have incentives to maintain the irrigation systems.
Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharat L. Bhatt
1997-05-01
A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less
Impoinvil, Daniel E; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K; Mbogo, Charles M; Kibe, Lydiah; Githure, John I; Gad, Adel M; Hassan, Ali N; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M; Velit-Suarez, Rosanna; Chadee, Dave D; Novak, Robert J; Beier, John C
2007-10-01
Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus-group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site's biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying "best practices" for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission.
Impoinvil, Daniel E.; Ahmad, Sajjad; Troyo, Adriana; Keating, Joseph; Githeko, Andrew K.; Mbogo, Charles M; Kibe, Lydiah; Githure, John I.; Gad, Adel M.; Hassan, Ali N.; Orshan, Laor; Warburg, Alon; Calderón-Arguedas, Olger; Sánchez-Loría, Victoria M.; Velit-Suarez, Rosanna; Chadee, Dave D.; Novak, Robert J.; Beier, John C.
2007-01-01
Mosquito control programs at seven urban sites in Kenya, Egypt, Israel, Costa Rica, and Trinidad are described and compared. Site-specific urban and disease characteristics, organizational diagrams, and strengths, weaknesses, obstacles and threats (SWOT) analysis tools are used to provide a descriptive assessment of each mosquito control program, and provide a comparison of the factors affecting mosquito abatement. The information for SWOT analysis is collected from surveys, focus group discussions, and personal communication. SWOT analysis identified various issues affecting the efficiency and sustainability of mosquito control operations. The main outcome of our work was the description and comparison of mosquito control operations within the context of each study site’s biological, social, political, management, and economic conditions. The issues identified in this study ranged from lack of inter-sector collaboration to operational issues of mosquito control efforts. A lack of sustainable funding for mosquito control was a common problem for most sites. Many unique problems were also identified, which included lack of mosquito surveillance, lack of law enforcement, and negative consequences of human behavior. Identifying common virtues and shortcomings of mosquito control operations is useful in identifying “best practices” for mosquito control operations, thus leading to better control of mosquito biting and mosquito-borne disease transmission. PMID:17316882
Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables
Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.
2003-01-01
Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593
On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems
NASA Astrophysics Data System (ADS)
Fathizadeh, Farzad; Gabriel, Olivier
2016-02-01
The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.
2004-01-01
The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.
Engine systems and methods of operating an engine
Scotto, Mark Vincent
2015-08-25
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
Engine systems and methods of operating an engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotto, Mark Vincent
One embodiment of the present invention is a unique method for operating an engine. Another embodiment is a unique engine system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for engines and engine systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
NASA Astrophysics Data System (ADS)
Bilotta, G. S.; Grove, M. K.; Harrison, C.; Joyce, C. B.; Peacock, C.
2012-12-01
The natural characteristics of a catchment provide a template that controls the background rates of geomorphological processes operating within that catchment, which in-turn determines the background physico-chemical and hydro-morphological characteristics of the catchment's surface waters. Large differences in the natural characteristics of catchments (e.g. geology, topography, climate), lead to unique physico-chemical and hydro-morphological conditions that support unique freshwater communities. However, this uniqueness is not always recognised in international water quality guidelines, which often attempt to apply blanket water-quality guidelines to 'protect' a wide range of ecosystems. In this paper we investigate the natural characteristics that control background concentrations of suspended particulate matter (SPM - including nano-scale particles to sand-sized sediments), which is a well-known cause of ecological degradation. At present, the management of SPM is hampered by a lack of understanding of the SPM conditions that water quality managers should aim to achieve in contrasting environments in order to support good ecological status. To address this, in this paper we examine the SPM preferences of contrasting biological communities that are in reference condition (minimal anthropogenic disturbance and high ecological status). We analyse historical SPM data collected on a monthly basis from a wide range of reference-condition temperate environments (638 stream/river sites comprising 42 different biological community-types). This analysis reveals that there are statistically significant differences (One-way ANOVA p < 0.001) between the background SPM concentrations observed in contrasting communities that are in reference condition. Mean background SPM concentrations for contrasting communities ranged from 1.7 to 26.2 mg L-1 (i.e. more than a 15-fold difference). We propose a model for predicting environment-specific water quality guidelines for SPM. In order to develop this model, the 638 reference-condition sites were first classified into one of five mean background SPM ranges (0.00-5.99, 6.00-11.99, 12.00-17.99, 18.00-23.99 and >24.00 mg L-1). Stepwise Multiple Discriminant Analysis (MDA) of these ranges showed that a site's SPM range can be predicted as a function of: mean annual air temperature, mean annual precipitation, mean altitude of upstream catchment, distance from source, slope to source, channel width and depth, the percentage of catchment area comprised of clay, chalk, and hard rock solid geology, and the percentage of the catchment area comprised of blown sand/landslide material as the surface (drift) material. Although the model is still being improved and developed, this research highlights the need to link water quality guidelines to the natural characteristics of catchments and the physico-chemical preferences of the biological communities that would naturally inhabit them.
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Molthan, A.; Zavodsky, B.; Case, J.; Lafontaine, F.
2010-12-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to “Climate in a Box” systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the “Climate in a Box” system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA’s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the “Climate in a Box” system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Molthan, Andrew L.; Zavodsky, Bradley; Case, Jonathan L.; LaFontaine, Frank J.
2010-01-01
The NASA Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique observations and research capabilities to the operational weather community, with a goal of improving short-term forecasts on a regional scale. Advances in research computing have lead to "Climate in a Box" systems, with hardware configurations capable of producing high resolution, near real-time weather forecasts, but with footprints, power, and cooling requirements that are comparable to desktop systems. The SPoRT Center has developed several capabilities for incorporating unique NASA research capabilities and observations with real-time weather forecasts. Planned utilization includes the development of a fully-cycled data assimilation system used to drive 36-48 hour forecasts produced by the NASA Unified version of the Weather Research and Forecasting (WRF) model (NU-WRF). The horsepower provided by the "Climate in a Box" system is expected to facilitate the assimilation of vertical profiles of temperature and moisture provided by the Atmospheric Infrared Sounder (AIRS) aboard the NASA Aqua satellite. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Aqua and Terra satellites provide high-resolution sea surface temperatures and vegetation characteristics. The development of MODIS normalized difference vegetation index (NVDI) composites for use within the NASA Land Information System (LIS) will assist in the characterization of vegetation, and subsequently the surface albedo and processes related to soil moisture. Through application of satellite simulators, NASA satellite instruments can be used to examine forecast model errors in cloud cover and other characteristics. Through the aforementioned application of the "Climate in a Box" system and NU-WRF capabilities, an end goal is the establishment of a real-time forecast system that fully integrates modeling and analysis capabilities developed within the NASA SPoRT Center, with benefits provided to the operational forecasting community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattison, M.B.
The Idaho National Engineering Laboratory (INEL) over the three years has created 75 plant-specific Accident Sequence Precursor (ASP) models using the SAPHIRE suite of PRA codes. Along with the new models, the INEL has also developed a new module for SAPHIRE which is tailored specifically to the unique needs of ASP evaluations. These models and software will be the next generation of risk tools for the evaluation of accident precursors by both the U.S. Nuclear Regulatory Commission`s (NRC`s) Office of Nuclear Reactor Regulation (NRR) and the Office for Analysis and Evaluation of Operational Data (AEOD). This paper presents an overviewmore » of the models and software. Key characteristics include: (1) classification of the plant models according to plant response with a unique set of event trees for each plant class, (2) plant-specific fault trees using supercomponents, (3) generation and retention of all system and sequence cutsets, (4) full flexibility in modifying logic, regenerating cutsets, and requantifying results, and (5) user interface for streamlined evaluation of ASP events. Future plans for the ASP models is also presented.« less
Identifying the necessary and sufficient number of risk factors for predicting academic failure.
Lucio, Robert; Hunt, Elizabeth; Bornovalova, Marina
2012-03-01
Identifying the point at which individuals become at risk for academic failure (grade point average [GPA] < 2.0) involves an understanding of which and how many factors contribute to poor outcomes. School-related factors appear to be among the many factors that significantly impact academic success or failure. This study focused on 12 school-related factors. Using a thorough 5-step process, we identified which unique risk factors place one at risk for academic failure. Academic engagement, academic expectations, academic self-efficacy, homework completion, school relevance, school safety, teacher relationships (positive relationship), grade retention, school mobility, and school misbehaviors (negative relationship) were uniquely related to GPA even after controlling for all relevant covariates. Next, a receiver operating characteristic curve was used to determine a cutoff point for determining how many risk factors predict academic failure (GPA < 2.0). Results yielded a cutoff point of 2 risk factors for predicting academic failure, which provides a way for early identification of individuals who are at risk. Further implications of these findings are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Global Epidemiology of Plasmodium vivax
Howes, Rosalind E.; Battle, Katherine E.; Mendis, Kamini N.; Smith, David L.; Cibulskis, Richard E.; Baird, J. Kevin; Hay, Simon I.
2016-01-01
Plasmodium vivax is the most widespread human malaria, putting 2.5 billion people at risk of infection. Its unique biological and epidemiological characteristics pose challenges to control strategies that have been principally targeted against Plasmodium falciparum. Unlike P. falciparum, P. vivax infections have typically low blood-stage parasitemia with gametocytes emerging before illness manifests, and dormant liver stages causing relapses. These traits affect both its geographic distribution and transmission patterns. Asymptomatic infections, high-risk groups, and resulting case burdens are described in this review. Despite relatively low prevalence measurements and parasitemia levels, along with high proportions of asymptomatic cases, this parasite is not benign. Plasmodium vivax can be associated with severe and even fatal illness. Spreading resistance to chloroquine against the acute attack, and the operational inadequacy of primaquine against the multiple attacks of relapse, exacerbates the risk of poor outcomes among the tens of millions suffering from infection each year. Without strategies accounting for these P. vivax-specific characteristics, progress toward elimination of endemic malaria transmission will be substantially impeded. PMID:27402513
Characterizing customers at medical center farmers’ markets1
Kraschnewski, Jennifer L.; George, Daniel R.; Rovniak, Liza S.; Monroe, Diana L.; Fiordalis, Elizabeth; Bates, Erica
2014-01-01
Approximately 100 farmers’ markets operate on medical center campuses. Although these venues can uniquely serve community health needs, little is known about customer characteristics and outreach efforts. Intercept survey of markets and market customers between August 2010-October 2011 at three medical centers in different geographic regions of the US: Duke University Medical Center, Cleveland Clinic, and Penn State Hershey Medical Center were conducted. Markets reported serving 180–2000 customers per week and conducting preventive medicine education sessions and community health programs. Customers (n=585) across markets were similar in sociodemographic characteristics – most were middle-aged, white, and female, who were employees of their respective medical center. Health behaviors of customers were similar to national data. The surveyed medical center farmers’ markets currently serve mostly employees; however, markets have significant potential for community outreach efforts in preventive medicine. If farmers’ markets can broaden their reach to more diverse populations, they may play an important role in contributing to community health. PMID:24421001
Characterizing customers at medical center farmers' markets.
Kraschnewski, Jennifer L; George, Daniel R; Rovniak, Liza S; Monroe, Diana L; Fiordalis, Elizabeth; Bates, Erica
2014-08-01
Approximately 100 farmers' markets operate on medical center campuses. Although these venues can uniquely serve community health needs, little is known about customer characteristics and outreach efforts. Intercept survey of markets and market customers between August 2010 and October 2011 at three medical centers in different geographic regions of the US (Duke University Medical Center, Cleveland Clinic, and Penn State Hershey Medical Center) were conducted. Markets reported serving 180-2,000 customers per week and conducting preventive medicine education sessions and community health programs. Customers (n = 585) across markets were similar in sociodemographic characteristics--most were middle-aged, white, and female, who were employees of their respective medical center. Health behaviors of customers were similar to national data. The surveyed medical center farmers' markets currently serve mostly employees; however, markets have significant potential for community outreach efforts in preventive medicine. If farmers' markets can broaden their reach to more diverse populations, they may play an important role in contributing to community health.
2017-09-01
unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber events, such as a...Furthermore, we identify unique characteristics of reported anomalies in the collected traffic signals to build a classification framework. Other cyber...2]. The applications build flow rules using network topology information provided by the control plane [1]. Since the control plane is able to
A proven approach for more effective software development and maintenance
NASA Technical Reports Server (NTRS)
Pajerski, Rose; Hall, Dana; Sinclair, Craig
1994-01-01
Modern space flight mission operations and associated ground data systems are increasingly dependent upon reliable, quality software. Critical functions such as command load preparation, health and status monitoring, communications link scheduling and conflict resolution, and transparent gateway protocol conversion are routinely performed by software. Given budget constraints and the ever increasing capabilities of processor technology, the next generation of control centers and data systems will be even more dependent upon software across all aspects of performance. A key challenge now is to implement improved engineering, management, and assurance processes for the development and maintenance of that software; processes that cost less, yield higher quality products, and that self-correct for continual improvement evolution. The NASA Goddard Space Flight Center has a unique experience base that can be readily tapped to help solve the software challenge. Over the past eighteen years, the Software Engineering Laboratory within the code 500 Flight Dynamics Division has evolved a software development and maintenance methodology that accommodates the unique characteristics of an organization while optimizing and continually improving the organization's software capabilities. This methodology relies upon measurement, analysis, and feedback much analogous to that of control loop systems. It is an approach with a time-tested track record proven through repeated applications across a broad range of operational software development and maintenance projects. This paper describes the software improvement methodology employed by the Software Engineering Laboratory, and how it has been exploited within the Flight Dynamics Division with GSFC Code 500. Examples of specific improvement in the software itself and its processes are presented to illustrate the effectiveness of the methodology. Finally, the initial findings are given when this methodology was applied across the mission operations and ground data systems software domains throughout Code 500.
Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham
2017-06-21
A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.
Design, construction and operation features of high-rise structures
NASA Astrophysics Data System (ADS)
Mylnik, Alexey; Mylnik, Vladimir; Zubeeva, Elena; Mukhamedzhanova, Olga
2018-03-01
The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.
Duke, Michael R; Ames, Genevieve M; Moore, Roland S; Cunradi, Carol B
2013-01-01
Restaurant workers have higher rates of problem drinking than most occupational groups. However, little is known about the environmental risks and work characteristics that may lead to these behaviors. An exploration of restaurant workers' drinking networks may provide important insights into their alcohol consumption patterns, thus guiding workplace prevention efforts. Drawing from social capital theory, this paper examines the unique characteristics of drinking networks within and between various job categories. Our research suggests that these multiple, complex networks have unique risk characteristics, and that self-selection is based on factors such as job position and college attendance, among other factors.
Divergent Drinking Patterns of Restaurant Workers: The Influence of Social Networks and Job Position
Ames, Genevieve M.; Moore, Roland S.; Cunradi, Carol B.
2013-01-01
Restaurant workers have higher rates of problem drinking than most occupational groups. However, little is known about the environmental risks and work characteristics that may lead to these behaviors. An exploration of restaurant workers’ drinking networks may provide important insights into their alcohol consumption patterns, thus guiding workplace prevention efforts. Drawing from social capital theory, this paper examines the unique characteristics of drinking networks within and between various job categories. Our research suggests that these multiple, complex networks have unique risk characteristics, and that self-selection is based on factors such as job position and college attendance, among other factors. PMID:23687470
Metallurgical Analysis of Ball Bearing Seized During Operation
NASA Astrophysics Data System (ADS)
Jha, Abhay K.; Swathi Kiranmayee, M.; Ramesh Narayanan, P.; Sreekumar, K.; Sinha, P. P.
2012-06-01
440C stainless steel of martensitic grade is being extensively used for bearing application because of its high wear and corrosion resistance. This alloy steel with 1 wt.% C along with 17 wt.% Cr, 1 wt.% Mn and up to 0.75 wt.% Mo has a number of primary carbides, which provide high hardness and good wear resistance. Owing to its unique performance characteristic, this steel finds a number of applications in space program. One such application is bearing used in booster pump assembly of propulsion system. During one of the ground tests of propulsion system, booster pump bearing seized operation after performing its partial intended function. The bearing was removed from the assembly and cut open. The ball and outer caging were analyzed using metallographic techniques and compared with another bearing taken from the fresh stock. Study indicated that ball as well as outer caging experienced exposure to high temperature and resulted in phase transformation. This article highlights the details of investigations carried out.
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
NASA Astrophysics Data System (ADS)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce; Hall, David; Niaz, Iftikhar Ahmad; Zhou, Yuchun; Sham, L. J.; Lo, Yu-Hwa
2015-08-01
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanism based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.
Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.
Landin, Mariana
2017-01-01
The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R 2 > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Fluid dynamic characteristics of the VentrAssist rotary blood pump.
Tansley, G; Vidakovic, S; Reizes, J
2000-06-01
The VentrAssist pump has no shaft or seal, and the device is unique in design because the rotor is suspended passively by hydrodynamic forces, and urging is accomplished by an integrated direct current motor rotor that also acts as the pump impeller. This device has led to many challenges in its fluidic design, namely large flow-blockage from impeller blades, low stiffness of bearings with concomitant impeller displacement under pulsatile load conditions, and very small running clearances. Low specific speed and radial blade off-flow were selected in order to minimize the hemolysis. Pulsatile and steady-flow tests show the impeller is stable under normal operating conditions. Computational fluid dynamics (CFD) has been used to optimize flow paths and reduce net axial force imbalance to acceptably small values. The latest design of the pump achieved a system efficiency of 18% (in 30% hematocrit of red blood cells suspended in phosphate-buffered saline), and efficiency was optimized over the range of operating conditions. Parameters critical to improving pump efficiency were investigated.
Long wavelength propagation capacity, version 1.1 (computer diskette)
NASA Astrophysics Data System (ADS)
1994-05-01
File Characteristics: software and data file. (72 files); ASCII character set. Physical Description: 2 computer diskettes; 3 1/2 in.; high density; 1.44 MB. System Requirements: PC compatible; Digital Equipment Corp. VMS; PKZIP (included on diskette). This report describes a revision of the Naval Command, Control and Ocean Surveillance Center RDT&E Division's Long Wavelength Propagation Capability (LWPC). The first version of this capability was a collection of separate FORTRAN programs linked together in operation by a command procedure written in an operating system unique to the Digital Equipment Corporation (Ferguson & Snyder, 1989a, b). A FORTRAN computer program named Long Wavelength Propagation Model (LWPM) was developed to replace the VMS control system (Ferguson & Snyder, 1990; Ferguson, 1990). This was designated version 1 (LWPC-1). This program implemented all the features of the original VMS plus a number of auxiliary programs that provided summaries of the files and graphical displays of the output files. This report describes a revision of the LWPC, designated version 1.1 (LWPC-1.1)
NASA Astrophysics Data System (ADS)
Han, Xue; Sandels, Claes; Zhu, Kun; Nordström, Lars
2013-08-01
There has been a large body of statements claiming that the large-scale deployment of Distributed Energy Resources (DERs) could eventually reshape the future distribution grid operation in numerous ways. Thus, it is necessary to introduce a framework to measure to what extent the power system operation will be changed by various parameters of DERs. This article proposed a modelling framework for an overview analysis on the correlation between DERs. Furthermore, to validate the framework, the authors described the reference models of different categories of DERs with their unique characteristics, comprising distributed generation, active demand and electric vehicles. Subsequently, quantitative analysis was made on the basis of the current and envisioned DER deployment scenarios proposed for Sweden. Simulations are performed in two typical distribution network models for four seasons. The simulation results show that in general the DER deployment brings in the possibilities to reduce the power losses and voltage drops by compensating power from the local generation and optimizing the local load profiles.
Energy: the microfluidic frontier.
Sinton, David
2014-09-07
Global energy is largely a fluids problem. It is also large-scale, in stark contrast to microchannels. Microfluidic energy technologies must offer either massive scalability or direct relevance to energy processes already operating at scale. We have to pick our fights. Highlighted here are the exceptional opportunities I see, including some recent successes and areas where much more attention is needed. The most promising directions are those that leverage high surface-to-volume ratios, rapid diffusive transport, capacity for high temperature and high pressure experiments, and length scales characteristic of microbes and fluids (hydrocarbons, CO2) underground. The most immediate areas of application are where information is the product; either fluid sample analysis (e.g. oil analysis); or informing operations (e.g. CO2 transport in microporous media). I'll close with aspects that differentiate energy from traditional microfluidics applications, the uniquely important role of engineering in energy, and some thoughts for the research community forming at the nexus of lab-on-a-chip and energy--a microfluidic frontier.
Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan
2011-04-01
A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Regenerative switching CMOS system
Welch, James D.
1998-01-01
Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.
Regenerative switching CMOS system
Welch, J.D.
1998-06-02
Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.
Concorde noise-induced building vibrations John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Deloach, R.; Stephens, D. G.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.
1978-01-01
The outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at six home sites along with the associated vibration levels in the walls, windows, and floors of these test homes. Limited subjective tests conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise showed that both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Preliminary results indicate that the relationship between window vibration and aircraft noise is: (1) linear, with vibration levels being accurately predicted from OASPL levels measured near the window; (2) consistent from flyover to flyover for a given aircraft type under approach conditions; (3) no different for Concorde than for other conventional jet transports (in the case of window vibrations induced under approach power conditions); and (4) relatively high levels of window vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde source characteristics.
Clark, William R; Turk, Joseph E
2004-01-01
Given the results of recent randomized controlled trials as well as staffing and budget challenges that today face many institutions across North America, a novel therapeutic approach is likely necessary to enable improvements in clinical outcomes for renal failure patients. The NxStage System One was developed to address these challenges. The system is an innovative, flexible device that delivers hemodialysis, hemofiltration, and/or ultrafiltration therapies to patients with renal failure or fluid overload. The unique characteristics of this system include a highly automated system design with a drop-in cartridge to facilitate training and simple operation; portable size and independence from dedicated infrastructure to minimize practical barriers to where therapy may be administered; use of high-quality premixed treatment fluids to enable capture of the potential clinical benefits of fluid purity without the hassles of local water treatment; and wide operating ranges to allow clinician flexibility in patient therapy prescriptions. In both the chronic and acute care environments, the System One presents clinicians with a new platform for delivering patient therapy improvements within real-world constraints.
Surgical care of the pediatric Crohn's disease patient.
Stewart, Dylan
2017-12-01
Despite the significant advances in the medical management of inflammatory bowel disease over the last decade, surgery continues to play a major role in the management of pediatric Crohn's disease (CD). While adult and pediatric Crohn's disease may share many clinical characteristics, pediatric Crohn's patients often have a more aggressive phenotype, and the operative care given by the pediatric surgeon to the newly diagnosed Crohn's patient is very different in nature to the surgical needs of adult patients after decades of disease progression. Children also have the unique surgical indication of growth failure to consider in the overall clinical decision making. While surgery is never curative in CD, it has the ability to transform the disease process in children, and appropriately timed operations may have tremendous impact on a child's physical and mental maturation. This monograph aims to address the surgical care of Crohn's disease in general, with a specific emphasis on the surgical treatment of small intestinal and ileocecal involvement. Copyright © 2017 Elsevier Inc. All rights reserved.
Moving Forward: Two Paradigms and Takeaways
ERIC Educational Resources Information Center
Rocco, Tonette S.
2011-01-01
Disability is not something one experiences in isolation of other characteristics. Sociocultural characteristics, such as race, class, gender, sexual orientation, age and disability, interact with each other in various combinations forming unique adults. When interacting with other characteristics, disability can dominate the other…
Personomics: The Missing Link in the Evolution from Precision Medicine to Personalized Medicine.
Ziegelstein, Roy C
2017-10-16
Clinical practice guidelines have been developed for many common conditions based on data from randomized controlled trials. When medicine is informed solely by clinical practice guidelines, however, the patient is not treated as an individual, but rather a member of a group. Precision medicine, as defined herein, characterizes unique biological characteristics of the individual or of specimens obtained from an individual to tailor diagnostics and therapeutics to a specific patient. These unique biological characteristics are defined by the tools of precision medicine: genomics, proteomics, metabolomics, epigenomics, pharmacogenomics, and other "-omics." Personalized medicine, as defined herein, uses additional information about the individual derived from knowing the patient as a person. These unique personal characteristics are defined by tools known as personomics which takes into account an individual's personality, preferences, values, goals, health beliefs, social support network, financial resources, and unique life circumstances that affect how and when a given health condition will manifest in that person and how that condition will respond to treatment. In this paradigm, precision medicine may be considered a necessary step in the evolution of medical care to personalized medicine, with personomics as the missing link.
The National Transonic Facility: A Research Retrospective
NASA Technical Reports Server (NTRS)
Wahls, R. A.
2001-01-01
An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.
Giaimo, Susan
2013-06-01
A primary goal of the Patient Protection and Affordable Care Act (PPACA) is to reduce the number of uninsured by making health insurance more affordable for small businesses and individuals. Toward that end, the PPACA encourages the creation of nonprofit, member-owned health insurance cooperatives to operate inside each state exchange. Co-ops face significant challenges in entering mature insurance markets, but they also possess unique characteristics that may help them survive and thrive. Using Common Ground Healthcare Cooperative in Wisconsin as a case study, this article traces the origins of co-ops in health care reform at national and state levels and analyzes the political and technical challenges and opportunities facing these organizations.
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markosyan, Aram H.
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Nonlinear Optical Image Processing with Bacteriorhodopsin Films
NASA Technical Reports Server (NTRS)
Downie, John D.; Deiss, Ron (Technical Monitor)
1994-01-01
The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.
Thin SOI lateral IGBT with band-to-band tunneling mechanism
NASA Astrophysics Data System (ADS)
Fu, Qiang; Tang, Zhaohuan; Tan, Kaizhou; Wang, Zhikuan; Mei, Yong
2017-06-01
In this paper, a novel 200V lateral IGBT on thin SOI layer with a band-to-band tunneling junction near the anode is proposed. The structure and the operating mechanism of the proposed IGBT are described and discussed. Its main feature is that the novel IGBT structure has a unique abrupt doped p++/n++ tunneling junction in the side of the anode. By utilizing the reverse bias characteristics of the tunneling junction, the proposed IGBT can achieve excellent reverse conducting performance. Numerical simulations suggest that a low reverse conduction voltage drop VR=-1.6V at a current density of 100A/cm2 and a soft factor S=0.63 of the build-in diode are achieved.
Heavy-ion induced single-event upset in integrated circuits
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1991-01-01
The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.
Ionized cluster beam deposition
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1983-01-01
Ionized Cluster Beam (ICB) deposition, a new technique originated by Takagi of Kyoto University in Japan, offers a number of unique capabilities for thin film metallization as well as for deposition of active semiconductor materials. ICB allows average energy per deposited atom to be controlled and involves impact kinetics which result in high diffusion energies of atoms on the growth surface. To a greater degree than in other techniques, ICB involves quantitative process parameters which can be utilized to strongly control the characteristics of films being deposited. In the ICB deposition process, material to be deposited is vaporized into a vacuum chamber from a confinement crucible at high temperature. Crucible nozzle configuration and operating temperature are such that emerging vapor undergoes supercondensation following adiabatic expansion through the nozzle.
Uncertainties in building a strategic defense.
Zraket, C A
1987-03-27
Building a strategic defense against nuclear ballistic missiles involves complex and uncertain functional, spatial, and temporal relations. Such a defensive system would evolve and grow over decades. It is too complex, dynamic, and interactive to be fully understood initially by design, analysis, and experiments. Uncertainties exist in the formulation of requirements and in the research and design of a defense architecture that can be implemented incrementally and be fully tested to operate reliably. The analysis and measurement of system survivability, performance, and cost-effectiveness are critical to this process. Similar complexities exist for an adversary's system that would suppress or use countermeasures against a missile defense. Problems and opportunities posed by these relations are described, with emphasis on the unique characteristics and vulnerabilities of space-based systems.
The concept of the mechanically active guideway as a novel approach to maglev
NASA Technical Reports Server (NTRS)
Horwath, T. G.
1992-01-01
A maglev system that is suitable for operation in the United States will have to meet unique requirements which determine the major systems characteristics. Maglev configurations presently developed in Germany and Japan are based on conventional maglev concepts and as such do not meet all of the requirements. A novel maglev guideway concept is introduced as a solution. This concept, the mechanically active guideway, is articulated in three degrees of freedom and assumes system functions which normally reside in the maglev vehicle. The mechanically active guideway contains spatially distributed actuators which are energized under computer control at the time of vehicle passage to achieve bank angle adjustment and ride quality control. A typical realization of the concept is outlined.
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.
2002-01-01
NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.
Features and characterization needs of rubber composite structures
NASA Technical Reports Server (NTRS)
Tabaddor, Farhad
1989-01-01
Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.
NASA Technical Reports Server (NTRS)
Mog, Robert A.
1999-01-01
Unique and innovative graph theory, neural network, organizational modeling, and genetic algorithms are applied to the design and evolution of programmatic and organizational architectures. Graph theory representations of programs and organizations increase modeling capabilities and flexibility, while illuminating preferable programmatic/organizational design features. Treating programs and organizations as neural networks results in better system synthesis, and more robust data modeling. Organizational modeling using covariance structures enhances the determination of organizational risk factors. Genetic algorithms improve programmatic evolution characteristics, while shedding light on rulebase requirements for achieving specified technological readiness levels, given budget and schedule resources. This program of research improves the robustness and verifiability of systems synthesis tools, including the Complex Organizational Metric for Programmatic Risk Environments (COMPRE).
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers
Markosyan, Aram H.
2018-01-05
Here, lasing on the D 1 transition (6 2P 1/2 → 6 2S 1/2) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2S 1/2 → 6 2P 3/2) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side inmore » Ar/C 2H 6/Cs.« less
Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.
Markosyan, Aram H
2018-01-08
Lasing on the D 1 transition (6 2 P 1/2 → 6 2 S 1/2 ) of cesium can be reached in both diode and excimer pumped alkali lasers. The first uses D 2 transition (6 2 S 1/2 → 6 2 P 3/2 ) for pumping, whereas the second is pumped by photoexcitation of ground state Cs-Ar collisional pairs and subsequent dissociation of diatomic, electronically-excited CsAr molecules (excimers). Despite lasing on the same D 1 transition, differences in pumping schemes enables chemical pathways and characteristic timescales unique for each system. We investigate unavoidable plasma formation during operation of both systems side by side in Ar/C 2 H 6 /Cs.
Neutron cross-sections for next generation reactors: new data from n_TOF.
Colonna, N; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviani, M; Calviño, F; Cano-Ott, D; Capote, R; de Albornoz, A Carrillo; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K
2010-01-01
In 2002, an innovative neutron time-of-flight facility started operation at CERN: n_TOF. The main characteristics that make the new facility unique are the high instantaneous neutron flux, high resolution and wide energy range. Combined with state-of-the-art detectors and data acquisition system, these features have allowed to collect high accuracy neutron cross-section data on a variety of isotopes, many of which radioactive, of interest for Nuclear Astrophysics and for applications to advanced reactor technologies. A review of the most important results on capture and fission reactions obtained so far at n_TOF is presented, together with plans for new measurements related to nuclear industry. Copyright 2010 Elsevier Ltd. All rights reserved.
Carolina Offshore Wind Integration Case Study: Phases I and II Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, Christopher; Piper, Orvane; Hazelip, William
2015-04-30
Duke Energy performed a phase 1 study to assess the impact of offshore wind development in the waters off the coasts of North Carolina and South Carolina. The study analyzed the impacts to the Duke Energy Carolinas electric power system of multiple wind deployment scenarios. Focusing on an integrated utility system in the Carolinas provided a unique opportunity to assess the impacts of offshore wind development in a region that has received less attention regarding renewables than others in the US. North Carolina is the only state in the Southeastern United States that currently has a renewable portfolio standard (RPS)more » which requires that 12.5% of the state’s total energy requirements be met with renewable resources by 2021. 12.5% of the state’s total energy requirements in 2021 equates to approximately 17,000 GWH of energy needed from renewable resources. Wind resources represent one of the ways to potentially meet this requirement. The study builds upon and augments ongoing work, including a study by UNC to identify potential wind development sites and the analysis of impacts to the regional transmission system performed by the NCTPC, an Order 890 planning entity of which DEC is a member. Furthermore, because the region does not have an independent system operator (ISO) or regional transmission organization (RTO), the study will provide additional information unique to non-RTO/ISO systems. The Phase 2 study builds on the results of Phase 1 and investigates the dynamic stability of the electrical network in Task 4, the operating characteristics of the wind turbines as they impact operating reserve requirements of the DEC utility in Task 5, and the production cost of integrating the offshore wind resources into the DEC generation fleet making comparisons to future planned operation without the addition of the wind resources in Task 6.« less
MEZA, ROSEMARY D.; BRIKHO, BRIGITTE; NAAF, MEGHAN; ESTABILLO, JASPER A.; GOMEZ, EMILY D.; VEJNOSKA, SARAH F.; DUFEK, SARAH; STAHMER, AUBYN C.; AARONS, GREGORY A.
2016-01-01
Policy Points: Communities, funding agencies, and institutions are increasingly involving community stakeholders as partners in research, to provide firsthand knowledge and insight.Based on our systematic review of major literature databases, we recommend using a single term, community‐academic partnership (CAP), and a conceptual definition to unite multiple research disciplines and strengthen the field.Interpersonal and operational factors that facilitate or hinder the collaborative process have been consistently identified, including “trust among partners” and “respect among partners” (facilitating interpersonal factors) and “excessive time commitment” (hindering operational factor).Once CAP processes and characteristics are better understood, the effectiveness of collaborative partner involvement can be tested. Context Communities, funding agencies, and institutions are increasingly involving community stakeholders as partners in research. Community stakeholders can provide firsthand knowledge and insight, thereby increasing research relevance and feasibility. Despite the greater emphasis and use of community‐academic partnerships (CAP) across multiple disciplines, definitions of partnerships and methodologies vary greatly, and no systematic reviews consolidating this literature have been published. The purpose of this article, then, is to facilitate the continued growth of this field by examining the characteristics of CAPs and the current state of the science, identifying the facilitating and hindering influences on the collaborative process, and developing a common term and conceptual definition for use across disciplines. Methods Our systematic search of 6 major literature databases generated 1,332 unique articles, 50 of which met our criteria for inclusion and provided data on 54 unique CAPs. We then analyzed studies to describe CAP characteristics and to identify the terms and methods used, as well as the common influences on the CAP process and distal outcomes. Findings CAP research spans disciplines, involves a variety of community stakeholders, and focuses on a large range of study topics. CAP research articles, however, rarely report characteristics such as membership numbers or duration. Most studies involved case studies using qualitative methods to collect data on the collaborative process. Although various terms were used to describe collaborative partnerships, few studies provided conceptual definitions. Twenty‐three facilitating and hindering factors influencing the CAP collaboration process emerged from the literature. Outcomes from the CAPs most often included developing or refining tangible products. Conclusions Based on our systematic review, we recommend using a single term, community‐academic partnership, as well as a conceptual definition to unite multiple research disciplines. In addition, CAP characteristics and methods should be reported more systematically to advance the field (eg, to develop CAP evaluation tools). We have identified the most common influences that facilitate and hinder CAPs, which in turn should guide their development and sustainment. PMID:26994713
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; ...
2016-02-22
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken atmore » SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Furthermore, significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10 –15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/ 239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively.« less
Anthropogenic plutonium-244 in the environment: Insights into plutonium’s longest-lived isotope
Armstrong, Christopher R.; Brant, Heather A.; Nuessle, Patterson R.; Hall, Gregory; Cadieux, James R.
2016-01-01
Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., 244Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic 244Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant 244Pu was measured in all of the years sampled with the highest amount observed in 2003. The 244Pu content, in femtograms (fg = 10−15 g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the 244Pu/239Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
14 CFR 25.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be investigated in...
NASA Technical Reports Server (NTRS)
Bogdan, V. M.
1981-01-01
A proof is given of the existence and uniqueness of the solution to the automatic control problem with a nonlinear state equation of the form y' = f(t,y,u) and nonlinear operator controls u = U(y) acting onto the state function y which satisfies the initial condition y(t) = x(t) for t or = 0.
Perceptual Characteristics of Female Voices.
ERIC Educational Resources Information Center
Batstone, Susan; Tuomi, Seppo K.
1981-01-01
Male and females listeners rated 21 young female voices on seven scales representing unique vocal features. Voices were described as "passive", or traditionally female, and "active," characterized as "lively,""colorful," and "sexy." Females found active characteristics more salient; males preferred the passive characteristics. Implications for…
A modular architecture for transparent computation in recurrent neural networks.
Carmantini, Giovanni S; Beim Graben, Peter; Desroches, Mathieu; Rodrigues, Serafim
2017-01-01
Computation is classically studied in terms of automata, formal languages and algorithms; yet, the relation between neural dynamics and symbolic representations and operations is still unclear in traditional eliminative connectionism. Therefore, we suggest a unique perspective on this central issue, to which we would like to refer as transparent connectionism, by proposing accounts of how symbolic computation can be implemented in neural substrates. In this study we first introduce a new model of dynamics on a symbolic space, the versatile shift, showing that it supports the real-time simulation of a range of automata. We then show that the Gödelization of versatile shifts defines nonlinear dynamical automata, dynamical systems evolving on a vectorial space. Finally, we present a mapping between nonlinear dynamical automata and recurrent artificial neural networks. The mapping defines an architecture characterized by its granular modularity, where data, symbolic operations and their control are not only distinguishable in activation space, but also spatially localizable in the network itself, while maintaining a distributed encoding of symbolic representations. The resulting networks simulate automata in real-time and are programmed directly, in the absence of network training. To discuss the unique characteristics of the architecture and their consequences, we present two examples: (i) the design of a Central Pattern Generator from a finite-state locomotive controller, and (ii) the creation of a network simulating a system of interactive automata that supports the parsing of garden-path sentences as investigated in psycholinguistics experiments. Copyright © 2016 Elsevier Ltd. All rights reserved.
The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.
1986-08-01
The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/submore » 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell.« less
Griffith, Rachel; Davies, Kerry; Lavender, Verna
2015-11-01
This article reports a systematic review of literature undertaken to identify characteristics and experiences of anticipatory mourning in caregivers of teenagers and young adults with life-limiting or life-threatening conditions. A comprehensive literature search was conducted using the key words 'anticipatory', 'mourning', 'grief', and synonyms. This review focused on six studies that met inclusion criteria and reported characteristics of anticipatory mourning in caregivers of teenagers and young adults. Characteristics and experiences were sorted into four main themes: symptoms; a sense of loss; caregiver behaviour; and the unique experience of caring for, or losing, a teenager or young adult. The review suggests that there are characteristics and experiences of anticipatory mourning that are unique to caregivers of this age group. The review also suggests that consideration of anticipatory mourning is important in offering holistic care to young adults and their caregivers, and points to the need for further research in this area.
Odoi, Agricola; Wray, Ron; Emo, Marion; Birch, Stephen; Hutchison, Brian; Eyles, John; Abernathy, Tom
2005-01-01
Background Population health planning aims to improve the health of the entire population and to reduce health inequities among population groups. Socioeconomic factors are increasingly being recognized as major determinants of many aspects of health and causes of health inequities. Knowledge of socioeconomic characteristics of neighbourhoods is necessary to identify their unique health needs and enhance identification of socioeconomically disadvantaged populations. Careful integration of this knowledge into health planning activities is necessary to ensure that health planning and service provision are tailored to unique neighbourhood population health needs. In this study, we identify unique neighbourhood socioeconomic characteristics and classify the neighbourhoods based on these characteristics. Principal components analysis (PCA) of 18 socioeconomic variables was used to identify the principal components explaining most of the variation in socioeconomic characteristics across the neighbourhoods. Cluster analysis was used to classify neighbourhoods based on their socioeconomic characteristics. Results Results of the PCA and cluster analysis were similar but the latter were more objective and easier to interpret. Five neighbourhood types with distinguishing socioeconomic and demographic characteristics were identified. The methodology provides a more complete picture of the neighbourhood socioeconomic characteristics than when a single variable (e.g. income) is used to classify neighbourhoods. Conclusion Cluster analysis is useful for generating neighbourhood population socioeconomic and demographic characteristics that can be useful in guiding neighbourhood health planning and service provision. This study is the first of a series of studies designed to investigate health inequalities at the neighbourhood level with a view to providing evidence-base for health planners, service providers and policy makers to help address health inequity issues at the neighbourhood level. Subsequent studies will investigate inequalities in health outcomes both within and across the neighbourhood types identified in the current study. PMID:16092969
Trypanosome RNA polymerases and transcription factors: sensible trypanocidal drug targets?
Vanhamme, Luc
2008-11-01
Trypanosomes and Leishmaniae are the agents of several important parasitic diseases threatening hundreds of million human beings worldwide. As they diverged early in evolution, they display original molecular characteristics. These peculiarities are each defining putative specific targets for anti-parasitic drugs. Transcription displays its lot of unique characteristics in trypanosomes and will be taken as an example to uncover these targets. Unique features of transcription in trypanosomes include constitutive and poly-cistronic transcription by RNA polymerase II as well as transcription of protein-coding genes by RNA polymerase I. It is becoming clear that these unique mechanisms are performed by dedicated molecular players. The first of them have been recently characterized. They are reviewed and their suitability as drug targets is commented.
The Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Becklin, E. E.
2008-07-01
The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project will operate a 2.5-meter infrared airborne telescope in a Boeing 747SP. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations in the infrared and submillimeter region with an average transmission of 80%. SOFIA has a wide instrument complement including broadband imaging cameras, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas and will conclude in winter of 2008-09. SOFIA will be staged out of Dryden's aircraft operations facility at Palmdale, Site 9, CA for science operations. The SOFIA Science Center will be at NASA Ames Research Center, Moffet Field, CA. First science flights will begin in 2009, the next instrument call and first General Observer science call will be in 2010, and a full operations schedule of ~120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities, and examples of first light and early mission science are discussed.
Analysis of InP-based QCLs designed for application in optical transmitter of free-space optics
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Mikołajczyk, Janusz; Szabra, Dariusz; Pierścińska, Dorota; Gutowski, Piotr; Bielecki, Zbigniew; Bugajski, Maciej
2017-10-01
In this paper, the study of AlInAs/InGaAs/InP Quantum Cascade Lasers application in Free Space Optical data link is performed. Implementation of such FSO link operated in long-wavelength infrared (LWIR: 8-12 μm) will be unique for construction of so-called RF/FSO hybrid communication system. The range of longer wavelengths provides better data transfer performance in the case of severe weather conditions, especially, fog, low haze or air turbulence. In the frame of this work, series of QCLs for application in FSO system were examined. They are characterized by different geometries and constructions towards best performance in optical link systems operated in the wavelength range of 8-12 μm. The preliminary test of QCLs included electrical measurements of pulsed light-current-voltage characteristics and time-resolved spectra. The obtained results made it possible to determine operation point for FSO. Their modulation performances were tested using the laboratory laser drivers. Based on measurements, both power and time parameters of QCLs pulses were investigated. These results defined critical values for FSO system. The second part of the analysis concerned the spatial parameters of QCLs radiation. Knowledge of spatial characteristics of emission is vital for FSO optics construction. To characterize spatial properties of beams, far-field patterns of emission were registered. Finally, the obtained results made it possible to optimize the optical transmitter construction and further performance of FSO laboratory model. This research was supported by The Polish National Centre for Research and Development grant DOB-BIO8/01/01/2016.
Determination of the self-adjoint matrix Schrödinger operators without the bound state data
NASA Astrophysics Data System (ADS)
Xu, Xiao-Chuan; Yang, Chuan-Fu
2018-06-01
(i) For the matrix Schrödinger operator on the half line, it is shown that the scattering data, which consists of the scattering matrix and the bound state data, uniquely determines the potential and the boundary condition. It is also shown that only the scattering matrix uniquely determines the self-adjoint potential and the boundary condition if either the potential exponentially decreases fast enough or the potential is known a priori on (), where a is an any fixed positive number. (ii) For the matrix Schrödinger operator on the full line, it is shown that the left (or right) reflection coefficient uniquely determine the self-adjoint potential if either the potential exponentially decreases fast enough or the potential is known a priori on (or ()), where b is an any fixed number.
[Ecological agriculture: future of agriculture for Chinese material medica].
Guo, Lan-Ping; Wang, Tie-Lin; Yang, Wan-Zhen; Zhou, Liang-Yun; Chen, Nai-Fu; Han, Bang-Xing; Huang, Lu-Qi
2017-01-01
The ecological agriculture of traditional Chinese medicine (TCM) is generally acknowledged as the most advanced agricultural mode. However, it's still a doubt whether ecological agriculture could be widely applied in TCM agriculture. In this study, we first analyze both the differences and relationships between ecological and organic agriculture, which suggesting that ecological agriculture does not need all the inputs as traditional agriculture. After introducing the situation of ecological agriculture from all across the world, we analyze the differences and characteristics between ecological and chemical agricultures. Considered with the big challenge caused by chemical agriculture, we pointed out that ecological agriculture could definitely replace chemical agriculture. Last but not the least, combined with the situation and problems of Chinese agriculture, we analyze the distinctive advantages of TCM ecological agriculture from 3 aspects as its unique quality characteristics, its unique habitat requirements in production and its unique application and market characteristics, respectively. In conclusion, ecological agriculture is the straight way of TCM agriculture. Copyright© by the Chinese Pharmaceutical Association.
Case history of magnetic bearing supported hot gas turboexpander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destombes, Y.; Allaire, P.E.
1995-12-31
A very significant advantage for the use of magnetic bearings in hot gas and cryogenic expanders is that the bearing operating temperature can be much higher or lower than for conventional oil lubricated fluid film or rolling element bearings. This has lead to the increasing development of industrial expanders which are magnetic bearing supported and rather complex bearing oil supply sealing arrangements can be eliminated. As advances in magnetic bearing technology and understanding occur, the design and performance of the magnetic bearings continues to improve. The purpose of this paper is to describe some characteristics of industrial magnetic bearing supportedmore » turboexpanders, both hot gas and cryogenic, and present a particular hot gas expander application. This paper discusses the basic principles of operation of the magnetic bearings including the bearing radial and thrust bearings, sensors, control system, and dynamic characteristics. The governing equations are given for upper quadrant radial bearing designs. Design equations relevant to bearing design will be presented to assist potential users of magnetic bearings in understanding their operation. The paper also presents a practical application of magnetic bearings to a hot gas turbogenerator. The bearings support a turbine wheel which converts the exhaust gas energy of a blast furnace into electrical power through a synchronous 6 MW generator. The magnetic bearing allowed the rotor to be constructed as a single shaft machine. The turbine wheel is directly connected to the generator rotor. The unit has been successfully operated for a 8 year period and now has in excess of 70,000 hours in a steel plant in Europe. It has some unique features: (1) it is the heaviest magnetic bearing supported rotor in industrial operation at 8 tons, (2) it has very high unbalance acceptance, (3) it has a special rotor mounted auxiliary bearing design, and (4) only the upper quadrant of the bearing is employed in the unit.« less
Validation of the GOES-16 magnetometer using multipoint measurements and magnetic field models
NASA Astrophysics Data System (ADS)
Califf, S.; Loto'aniu, P. T. M.; Redmon, R. J.; Sarris, T. E.; Brito, T.
2017-12-01
The Geostationary Operational Environmental Satellites (GOES) have been providing continuous geomagnetic field measurements for over 40 years. While the primary purpose of GOES is operational, the magnetometer data are also widely used in the scientific community. In an effort to validate the recently launched GOES-16 magnetometer, we compare the measurements to existing magnetic field models and other GOES spacecraft currently on orbit. There are four concurrent measurements from GOES-13, 14, 15 and 16 spanning 75W to 135W longitude. Also, GOES-13 is being replaced by GOES-16 in the GOES-East location, and during the transition, GOES-13 and GOES-16 will be parked nearby in order to assist with calibration of the new operational satellite. This work explores techniques to quantify the performance of the GOES-16 magnetometer by comparison to data from nearby spacecraft. We also build on previous work to assimilate in situ measurements with existing magnetic field models to assist in comparing data from different spatial locations. Finally, we use this unique dataset from four simultaneous geosynchronous magnetometer measurements and the close separation between GOES-13 and GOES-16 to study the spatial characteristics of ULF waves and other magnetospheric processes.
NASA Astrophysics Data System (ADS)
Ayyad, Yassid; Mittig, Wolfgang; Bazin, Daniel; Cortesi, Marco
2017-07-01
The Active Target Time Projection Chamber (AT-TPC) project at the NSCL (National Superconducting Cyclotron Laboratory, Michigan State University) is a novel active target detector tailored for low-energy nuclear reactions in inverse kinematics with radioactive ion beams. The AT-TPC allows for a full three dimensional reconstruction of the reaction and provides high luminosity without degradation of resolution by the thickness of the target. Since all the particles (and also the reaction vertex) are tracked inside the detector, the AT-TPC has full 4π efficiency. The AT-TPC can operate under a magnetic field (2 T) that improves the identification of the particles and the energy resolution through the measurement of the magnetic rigidity. Another important characteristic of the AT-TPC is the high-gain operation achieved by the hybrid thick Gas Electron Multipliers (THGEM)-Micromegas pad plane, that allow operation also in pure elemental gas. These two features make the AT-TPC a unique high resolution spectrometer with full acceptance for nuclear physics reactions. This work presents an overview of the project, focused on the data analysis and the development of new micro-pattern gas detectors.
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 27.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
14 CFR 29.939 - Turbine engine operating characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine operating characteristics....939 Turbine engine operating characteristics. (a) Turbine engine operating characteristics must be... limitations of the rotorcraft and of the engine. (b) The turbine engine air inlet system may not, as a result...
Missouri StreamStats—A water-resources web application
Ellis, Jarrett T.
2018-01-31
The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged locations.
Quantum dot lasers: From promise to high-performance devices
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Mi, Z.; Yang, J.; Basu, D.; Saha, D.
2009-03-01
Ever since self-organized In(Ga)As/Ga(AI)As quantum dots were realized by molecular beam epitaxy, it became evident that these coherently strained nanostructures could be used as the active media in devices. While the expected advantages stemming from three-dimensional quantum confinement were clearly outlined, these were not borne out by the early experiments. It took a very detailed understanding of the unique carrier dynamics in the quantum dots to exploit their full potential. As a result, we now have lasers with emission wavelengths ranging from 0.7 to 1.54 μm, on GaAs, which demonstrate ultra-low threshold currents, near-zero chip and α-factor and large modulation bandwidth. State-of-the-art performance characteristics of these lasers are briefly reviewed. The growth, fabrication and characteristics of quantum dot lasers on silicon substrates are also described. With the incorporation of multiple quantum dot layers as a dislocation filter, we demonstrate lasers with Jth=900 A/cm 2. The monolithic integration of the lasers with guided wave modulators on silicon is also described. Finally, the properties of spin-polarized lasers with quantum dot active regions are described. Spin injection of electrons is done with a MnAs/GaAs tunnel barrier. Laser operation at 200 K is demonstrated, with the possibility of room temperature operation in the near future.
High-frequency strontium vapor laser for biomedical applications
NASA Astrophysics Data System (ADS)
Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.
2018-02-01
Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 4 2012-10-01 2012-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
49 CFR 234.205 - Operating characteristics of warning system apparatus.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Operating characteristics of warning system... Maintenance Standards § 234.205 Operating characteristics of warning system apparatus. Operating... system shall be maintained in accordance with the limits within which the system is designed to operate. ...
Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.
2015-01-01
Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.
Unique Features of Halophilic Proteins.
Arakawa, Tsutomu; Yamaguchi, Rui; Tokunaga, Hiroko; Tokunaga, Masao
2017-01-01
Proteins from moderate and extreme halophiles have unique characteristics. They are highly acidic and hydrophilic, similar to intrinsically disordered proteins. These characteristics make the halophilic proteins soluble in water and fold reversibly. In addition to reversible folding, the rate of refolding of halophilic proteins from denatured structure is generally slow, often taking several days, for example, for extremely halophilic proteins. This slow folding rate makes the halophilic proteins a novel model system for folding mechanism analysis. High solubility and reversible folding also make the halophilic proteins excellent fusion partners for soluble expression of recombinant proteins.
Existence of a coupled system of fractional differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Rabha W.; Siri, Zailan
2015-10-22
We manage the existence and uniqueness of a fractional coupled system containing Schrödinger equations. Such a system appears in quantum mechanics. We confirm that the fractional system under consideration admits a global solution in appropriate functional spaces. The solution is shown to be unique. The method is based on analytic technique of the fixed point theory. The fractional differential operator is considered from the virtue of the Riemann-Liouville differential operator.
The Genomic Evolution of Prostate Cancer
2014-10-01
Mutation characteristics. (a) Number of high-confidence somatic mutations across all foci. Non- silent , non- silent mutations; Unique, number of unique...genes harboring a non- silent mutation; Reported, gene reported to be mutated in references 9–12 and 14. (b) Spectrum of unique high confidence somatic...epigenetic and micr- oRNA-mediated inactivation of LRP1B, a modulator of the extracellular environment of thyroid cancer cells. Oncogene 2011; 30
On Nth roots of positive operators
NASA Technical Reports Server (NTRS)
Brown, D. R.; Omalley, M. J.
1978-01-01
A bounded operator A on a Hilbert space H was positive. These operators were symmetric, and as such constitute a natural generalization of nonnegative real diagonal matrices. The following result is thus both well known and not surprising: A positive operator has a unique positive square root (under operator composition).
Operation Protective Edge - A Unique Challenge for a Civilian EMS Agency.
Jaffe, Eli; Strugo, Refael; Wacht, Oren
2015-10-01
During July through August 2014, Operation Protective Edge, a military conflict between Israel and the Hamas regime in Gaza, dramatically affected both populations. Magen David Adom (MDA), the Israeli national Emergency Medical Service (EMS) and a member of the Red Cross, faced a unique challenge during the conflict: to continue providing crucial service to the entire civilian population of Israel, which was under constant missile threat. This challenge included not only providing immediate care for routine EMS calls under missile threat, but also preparing and delivering immediate care to civilians injured in attacks on major cities, as well as small communities, in Israel. This task is a challenge for a civilian EMS agency that normally operates in a non-military environment, yet, in an instant, must enhance its capability to respond to a considerable threat to its population. During Operation Protective Edge, MDA provided care for 842 wounded civilians and utilized a significant amount of its resources. Providing EMS services for a civilian population in a mixed civilian/military scenario is a challenging task on a national level for an EMS system, especially when the threat lasts for weeks. This report describes MDA's preparedness and operations during Operation Protective Edge, and the unique EMS challenges and dilemmas the agency faced.
Engineered nanoparticles (NPs) (particle sizes ranging from 1-100 nm) have unique physical and chemical properties that differ fundamentally from their macro-sized counterparts. In addition to their smaller particle size, nanoparticles possess unique characteristics such as larg...
Strategies for Increasing Academic Achievement in Higher Education
ERIC Educational Resources Information Center
Ensign, Julene; Woods, Amelia Mays
2014-01-01
Higher education today faces unique challenges. Decreasing student engagement, increasing diversity, and limited resources all contribute to the issues being faced by students, educators, and administrators alike. The unique characteristics and expectations that students bring to their professional programs require new methods of addressing…
Witzel, Christoph; Cinotti, François; O'Regan, J Kevin
2015-01-01
The relationship between the sensory signal of the photoreceptors on one hand and color appearance and language on the other hand is completely unclear. A recent finding established a surprisingly accurate correlation between focal colors, unique hues, and so-called singularities in the laws governing how sensory signals for different surfaces change across illuminations. This article examines how this correlation with singularities depends on reflectances, illuminants, and cone sensitivities. Results show that this correlation holds for a large range of illuminants and for a large range of sensors, including sensors that are fundamentally different from human photoreceptors. In contrast, the spectral characteristics of the reflectance spectra turned out to be the key factor that determines the correlation between focal colors, unique hues, and sensory singularities. These findings suggest that the origins of color appearance and color language may be found in particular characteristics of the reflectance spectra that correspond to focal colors and unique hues.
33 CFR 157.158 - COW operations: Changed characteristics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false COW operations: Changed... CARRYING OIL IN BULK Crude Oil Washing (COW) System on Tank Vessels Cow Operations § 157.158 COW operations: Changed characteristics. The COW system may be operated with characteristics that do not meet those...
Mahan, Charles E; Liu, Yang; Turpie, A Graham; Vu, Jennifer T; Heddle, Nancy; Cook, Richard J; Dairkee, Undaleeb; Spyropoulos, Alex C
2014-10-01
Venous thromboembolic (VTE) risk assessment remains an important issue in hospitalised, acutely-ill medical patients, and several VTE risk assessment models (RAM) have been proposed. The purpose of this large retrospective cohort study was to externally validate the IMPROVE RAM using a large database of three acute care hospitals. We studied 41,486 hospitalisations (28,744 unique patients) with 1,240 VTE hospitalisations (1,135 unique patients) in the VTE cohort and 40,246 VTE-free hospitalisations (27,609 unique patients) in the control cohort. After chart review, 139 unique VTE patients were identified and 278 randomly-selected matched patients in the control cohort. Seven independent VTE risk factors as part of the RAM in the derivation cohort were identified. In the validation cohort, the incidence of VTE was 0.20%; 95% confidence interval (CI) 0.18-0.22, 1.04%; 95%CI 0.88-1.25, and 4.15%; 95%CI 2.79-8.12 in the low, moderate, and high VTE risk groups, respectively, which compared to rates of 0.45%, 1.3%, and 4.74% in the three risk categories of the derivation cohort. For the derivation and validation cohorts, the total percentage of patients in low, moderate and high VTE risk occurred in 68.6% vs 63.3%, 24.8% vs 31.1%, and 6.5% vs 5.5%, respectively. Overall, the area under the receiver-operator characteristics curve for the validation cohort was 0.7731. In conclusion, the IMPROVE RAM can accurately identify medical patients at low, moderate, and high VTE risk. This will tailor future thromboprophylactic strategies in this population as well as identify particularly high VTE risk patients in whom multimodal or more intensive prophylaxis may be beneficial.
Li, Huiting; Cui, Fuyi; Liu, Zhiquan; Li, Dapeng
2017-06-01
The fate and long-term effect of different metal oxide (TiO 2 , CuO and ZnO) nanoparticles (NPs) on anaerobic granular sludge (AGS) was evaluated in an anaerobic methanogenic system. Operation stability and structural characteristics of the granules were compared, the metabolism changes in the microbial community were quantified, and NPs fate were investigated. CuO NPs had greatest toxic effect on AGS after extended exposure, whereas ZnO NPs benefited methanogenesis temporarily (no more than 5d). The inhibition on AGS caused by NPs varied due to the unique structure of AGS and different toxic mechanism. Structural changes of AGS provided new evidence that tested NPs have different toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mariner 9 Solar Array Design, Manufacture, and Performance
NASA Technical Reports Server (NTRS)
Sequeira, E. A.
1973-01-01
The mission of Mariner 9, the first spacecraft to orbit another planet, was to make scientific observations of the surface of Mars. Throughout this unique mission, the Mariner 9 solar array successfully supported the power requirements of the spacecraft without experiencing anomalies. Basically, the design of the solar array was similar to those of Mariners 6 and 7; however, Mariner 9 had the additional flight operational requirement to perform in a Mars orbit environment mode. The array special tests provided information on the current-voltage characteristics and array space degradation. Tests indicated that total solar array current degradation was 3.5 percent, which could probably be attributed to the gradual degradation of the cover glass and/or the RTV 602 adhesive employed to cement the cover glass to the solar cell.
Active magnetic damper in a power transmission system
NASA Astrophysics Data System (ADS)
Kozanecka, D.; Kozanecki, Z.; Łagodziński, J.
2011-05-01
In rotor dynamics, the bearing characteristics exerts a decisive influence on dynamics of the rotating shaft. The research and application experience have led to active magnetic bearings (AMBs), which allow for unique applications in rotating systems. The paper presents the investigations concerning optimization of the magnetic bearing construction. An active magnetic bearing operates as a radial, auxiliary damper, which cooperates with the long, flexible shaft line (aircraft industry applications) and modifies its dynamic properties. In the developed concept of AMBs for aviation purposes, a necessity of increasing its bearing load capacity and damping has occurred. The second important criterion is a weight reduction. This advanced problem leads to specific requirements on the design and materials for the AMB. To achieve these goals, some simulations have been performed. The experimental results are presented as well.
Exploration Criteria for Low Permeability Geothermal Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D
1977-03-01
The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less
Domain wall motion in magnetically frustrated nanorings
NASA Astrophysics Data System (ADS)
Lubarda, M. V.; Escobar, M. A.; Li, S.; Chang, R.; Fullerton, E. E.; Lomakin, V.
2012-06-01
We describe a magnetically frustrated nanoring (MFNR) configuration which is formed by introducing antiferromagnetic coupling across an interface orthogonal to the ring's circumferential direction. Such structures have the unique characteristic that only one itinerant domain wall (DW) can exist in the ring, which does not need to be nucleated or injected into the structure and can never escape making it analogous to a magnetic Möbius strip. Numerical simulations show that the DW in a MFNR can be driven consecutively around the ring with a prescribed cyclicity, and that the frequency of revolutions can be controlled by the applied field. The energy landscapes can be controlled to be flat allowing for low fields of operation or to have a barrier for thermal stability. Potential logic and memory applications of MFNRs are considered and discussed.
NASA Astrophysics Data System (ADS)
Kaczmarczyk, Tomasz Z.; Ihnatowicz, Eugeniusz; Żywica, Grzegorz; Kiciński, Jan
2015-11-01
The paper presents the results of experimental investigations of the ORC system with two scroll expanders which have been used as a source of electricity. Theworking fluidwas HFE7100 - a newly engineered fluid with a unique heat transfer and favourable environmental properties. In the ORC system three heat exchangers were used (evaporator, regenerator, condenser) and before expanders the droplet separator was installed. As a source of heat an innovative biomass boiler was used. Studies have been carried out for the expanders worked in series and in parallel. The paper presents the thermal and fluidflow properties of the ORC installation for the selected flow rates and different temperatures of the working medium. The characteristics of output electrical power, operating speed and vibrations for scroll expanders were also presented.
NASA Astrophysics Data System (ADS)
Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.
2017-10-01
This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.
Dynamic interferometer alignment and its utility in UV Fourier transform spectrometer systems
NASA Technical Reports Server (NTRS)
Dorval, Rick K.; Engel, James R.; Wyntjes, Geert J.
1993-01-01
Dynamic alignment has been demonstrated as a practical approach to alignment maintenance for systems in the infrared region of the spectrum. On the basis of work done by OPTRA, this technique was introduced in commercial Fourier transform spectrometer systems in 1982 and in various forms is now available from a number of manufacturers. This paper reports on work by OPTRA to extend the basic technique to systems operating in the ultraviolet. In addition, this paper reports the preliminary results of the development of an alignment system using a laser diode in place of a gas laser normally found in dynamic alignment systems. A unique optical system and spatial heterodyne technique allows for achievement of a metrology system with characteristics that fully satisfy the requirements of an ultraviolet spectrometer system.
Identifying a maximum tolerated contour in two-dimensional dose-finding
Wages, Nolan A.
2016-01-01
The majority of Phase I methods for multi-agent trials have focused on identifying a single maximum tolerated dose combination (MTDC) among those being investigated. Some published methods in the area have been based on the notion that there is no unique MTDC, and that the set of dose combinations with acceptable toxicity forms an equivalence contour in two dimensions. Therefore, it may be of interest to find multiple MTDC's for further testing for efficacy in a Phase II setting. In this paper, we present a new dose-finding method that extends the continual reassessment method to account for the location of multiple MTDC's. Operating characteristics are demonstrated through simulation studies, and are compared to existing methodology. Some brief discussion of implementation and available software is also provided. PMID:26910586
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li; Zhu, Zihua; Yu, Xiao-Ying
In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membranemore » using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.« less
Implant bone integration importance in forensic identification.
De Angelis, Danilo; Cattaneo, Cristina
2015-03-01
Odontological identification consists of the comparison of antemortem dental information regarding a missing person with postmortem data from an unidentified corpse or human remains. Usually, the comparison concerns morphologic features that the operator chooses among all the visible characteristics because of inter-individual uniqueness; for this reason, implants can be of enormous assistance. A case concerning the recovery of a burnt oral implant, connected to a bone fragment, among 2780 charred bone fragments, suspected to have belonged to a victim of homicide, is presented to demonstrate that dental implants and their site of bone integration represent a very precious element for personal forensic identification. Because of their morphological invariability in time and because of their morphologic uniqueness, they were used as evidence to associate unidentified human charred remains to a missing person where DNA analysis failed to do so. The case illustrates the fundamental contribution, not yet described in literature, given by the clinical aspects of tooth replacement with dental implants to a forensic discipline. Clinical practitioners should therefore be aware of the great importance of their work and of dental records in a forensic identification scenario. © 2014 American Academy of Forensic Sciences.
A Survey Of Earth-Moon Libration Orbits: Stationkeeping Strategies And Intra-Orbit Transfers
NASA Technical Reports Server (NTRS)
Folta, David; Vaughn, Frank
2004-01-01
Cislunar space is a readily accessible region that may well develop into a prime staging area in the effort to colonize space near Earth or to colonize the Moon. While there have been statements made by various NASA programs regarding placement of resources in orbit about the Earth-Moon Lagrangian locations, there is no survey of the total cost associated with attaining and maintaining these unique orbits in an operational fashion. Transfer trajectories between these orbits required for assembly, servicing, and positioning of these resources have not been extensively investigated. These orbits are dynamically similar to those used for the Sun-Earth missions, but differences in governing gravitational ratios and perturbation sources result in unique characteristics. We implement numerical computations using high fidelity models and linear and nonlinear targeting techniques to compute the various maneuver (Delta)V and temporal costs associated with orbits about each of the Earth-Moon Lagrangian locations (L1, L2, L3, L4, and L5). From a dynamical system standpoint, we speak to the nature of these orbits and their stability. We address the cost of transfers between each pair of Lagrangian locations.
NASA Puffin Electric Tailsitter VTOL Concept
NASA Technical Reports Server (NTRS)
Moore, Mark D.
2010-01-01
Electric propulsion offers dramatic new vehicle mission capabilities, not possible with turbine or reciprocating engines; including high reliability and efficiency, low engine weight and maintenance, low cooling drag and volume required, very low noise and vibration, and zero emissions. The only penalizing characteristic of electric propulsion is the current energy storage technology level, which is set to triple over the next 5-10 years through huge new investments in this field. Most importantly, electric propulsion offers incredible new degrees of freedom in aircraft system integration to achieve unprecedented levels of aerodynamic, propulsive, control, and structural synergistic coupling. A unique characteristic of electric propulsion is that the technology is nearly scale-free, permitting small motors to be parallelized for fail-safe redundancy, or distributed across the airframe for tightly coupled interdisciplinary functionality without significant impacts in motor-controller efficiency or specific weight. Maximizing the potential benefit of electric propulsion is dependent on applying this technology to synergistic mission concepts. The vehicle missions with the most benefit include those which constrain environmental impact (or limit noise, exhaust, or emission signatures) are short range, or where large differences exist in the propulsion system sizing between takeoff and cruise conditions. Electric propulsion offers the following unique capabilities that other propulsion systems can t provide for short range Vertical Takeoff and Landing (VTOL) aircraft; elimination of engine noise and emissions, drastic reduction in engine cooling and radiated heat, drastic reduction in vehicle vibration levels, drastic improvement in reliability and operating costs, variable speed output at full power, for improved cruise efficiency at low tip-speed, elimination of high/hot sizing penalty, and reduction of engine-out penalties.
Human body as a set of biometric features identified by means of optoelectronics
NASA Astrophysics Data System (ADS)
Podbielska, Halina; Bauer, Joanna
2005-09-01
Human body posses many unique, singular features that are impossible to copy or forge. Nowadays, to establish and to ensure the public security requires specially designed devices and systems. Biometrics is a field of science and technology, exploiting human body characteristics for people recognition. It identifies the most characteristic and unique ones in order to design and construct systems capable to recognize people. In this paper some overview is given, presenting the achievements in biometrics. The verification and identification process is explained, along with the way of evaluation of biometric recognition systems. The most frequently human biometrics used in practice are shortly presented, including fingerprints, facial imaging (including thermal characteristic), hand geometry and iris patterns.
Ultrathin Quantum Dot Display Integrated with Wearable Electronics.
Kim, Jaemin; Shim, Hyung Joon; Yang, Jiwoong; Choi, Moon Kee; Kim, Dong Chan; Kim, Junhee; Hyeon, Taeghwan; Kim, Dae-Hyeong
2017-10-01
An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m -2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung
2018-01-01
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene-co-2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10−11 m2 s−1. Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery. PMID:29498709
Yorulmaz, Orçun; Gençöz, Tülin; Woody, Sheila
2010-01-01
Recent findings have suggested some potential psychological vulnerability factors for development of obsessive-compulsive (OC) symptoms, including cognitive factors of appraisal and thought control, religiosity, self-esteem and personality characteristics such as neuroticism. Studies demonstrating these associations usually come from Western cultures, but there may be cultural differences relevant to these vulnerability factors and OC symptoms. The present study examined the relationship between putative vulnerability factors and OC symptoms by comparing non-clinical samples from Turkey and Canada, two countries with quite different cultural characteristics. The findings revealed some common correlates such as neuroticism and certain types of metacognition, including appraisals of responsibility/threat estimation and perfectionism/need for certainty, as well as thought-action fusion. However, culture-specific factors were also indicated in the type of thought control participants used. For OC disorder symptoms, Turkish participants were more likely to utilize worry and thought suppression, while Canadian participants tended to use self-punishment more frequently. The association with common factors supports the cross-cultural validity of some factors, whereas unique factors suggest cultural features that may be operative in cognitive processes relevant to OC symptoms.
Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung
2018-03-02
The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene- co -2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10 -11 m² s -1 . Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery.
Market protocols in ERCOT and their effect on wind generation
Sioshansi, Ramteen; Hurlbut, David
2009-08-22
Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatorymore » and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Lastly, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.« less
Downhole vacuum cleans up tough fishing, milling jobs
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaLande, P.; Flanders, B.
1996-02-01
A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less
Seismicity and source spectra analysis in Salton Sea Geothermal Field
NASA Astrophysics Data System (ADS)
Cheng, Y.; Chen, X.
2016-12-01
The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.
NASA Astrophysics Data System (ADS)
Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.
2016-06-01
North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.
Practical relevance of pattern uniqueness in forensic science.
Jayaprakash, Paul T
2013-09-10
Uniqueness being unprovable, it has recently been argued that individualization in forensic science is irrelevant and, probability, as applied for DNA profiles, should be applied for all identifications. Critiques against uniqueness have omitted physical matching, a realistic and tangible individualization that supports uniqueness. Describing case examples illustrating pattern matches including physical matching, it is indicated that individualizations are practically relevant for forensic science as they establish facts on a definitive basis providing firm leads benefitting criminal investigation. As a tenet of forensic identification, uniqueness forms a fundamental paradigm relevant for individualization. Evidence on the indeterministic and stochastic causal pathways of characteristics in patterns available in the related fields of science sufficiently supports the proposition of uniqueness. Characteristics involved in physical matching and matching achieved in patterned evidence existing in the state of nature are not events amenable for counting; instead these are ensemble of visible units occupying the entire pattern area stretching the probability of re-occurrence of a verisimilitude pattern into infinity offering epistemic support to uniqueness. Observational methods are as respectable as instrumental or statistical methods since they are capable of generating results that are tangible and obviously valid as in physical matching. Applying the probabilistic interpretation used for DNA profiles to the other patterns would be unbefitting since these two are disparate, the causal pathways of the events, the loci, in the manipulated DNA profiles being determinable. While uniqueness enables individualizations, it does not vouch for eliminating errors. Instead of dismissing uniqueness and individualization, accepting errors as human or system failures and seeking remedial measures would benefit forensic science practice and criminal investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Suchodoletz, Antje; Larsen, Ross A. A.; Gunzenhauser, Catherine; Fäsche, Anika
2015-01-01
Background: Educational processes and outcomes are influenced by a multitude of factors, including individual and contextual characteristics. Recently, studies have demonstrated that student and context characteristics may produce unique and cumulative effects on educational outcomes. Aims: The study aimed to investigate (1) the relative…
Meeting the Needs of Students with Coexisting Visual Impairments and Learning Disabilities
ERIC Educational Resources Information Center
Jones, Beth A.; Hensley-Maloney, Lauren
2015-01-01
The coexistence of visual impairments and learning disabilities presents unique challenges. It is imperative that teachers be apprised of the characteristics of this population as well as instructional strategies targeted at meeting their unique needs. The authors highlight typical patterns of performance and provide suggestions for effective…
Problems and Prospects of SWAT Model Application on an Arid/Semi-arid Watershed in Arizona
Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modelers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrolo...
Using Video in Higher Education. IET Paper on Broadcasting No. 243.
ERIC Educational Resources Information Center
Bates, A. W.
Television has unique teaching functions that are significant for university education, and new developments in technology enable television to overcome some of its previous difficulties and weaknesses. Television's presentational power gives it two unique teaching characteristics: its ability to provide learning materials otherwise unavailable to…
Problems and Prospects of Swat Model Application on an Arid/Semi-Arid Watershed in Arizona
Hydrological characteristics in the semi-arid southwest create unique challenges to watershed modellers. Streamflow in these regions is largely dependent on seasonal, short term, and high intensity rainfall events. The objectives of this study are: 1) to analyze the unique hydrol...
The cost structure of routine infant immunization services: a systematic analysis of six countries
Geng, Fangli; Suharlim, Christian; Brenzel, Logan; Resch, Stephen C; Menzies, Nicolas A
2017-01-01
Abstract Little information exists on the cost structure of routine infant immunization services in low- and middle-income settings. Using a unique dataset of routine infant immunization costs from six countries, we estimated how costs were distributed across budget categories and programmatic activities, and investigated how the cost structure of immunization sites varied by country and site characteristics. The EPIC study collected data on routine infant immunization costs from 319 sites in Benin, Ghana, Honduras, Moldova, Uganda, Zambia, using a standardized approach. For each country, we estimated the economic costs of infant immunization by administrative level, budget category, and programmatic activity from a programme perspective. We used regression models to describe how costs within each category were related to site operating characteristics and efficiency level. Site-level costs (incl. vaccines) represented 77–93% of national routine infant immunization costs. Labour and vaccine costs comprised 14–69% and 13–69% of site-level cost, respectively. The majority of site-level resources were devoted to service provision (facility-based or outreach), comprising 48–78% of site-level costs across the six countries. Based on the regression analyses, sites with the highest service volume had a greater proportion of costs devoted to vaccines, with vaccine costs per dose relatively unaffected by service volume but non-vaccine costs substantially lower with higher service volume. Across all countries, more efficient sites (compared with sites with similar characteristics) had a lower cost share devoted to labour. The cost structure of immunization services varied substantially between countries and across sites within each country, and was related to site characteristics. The substantial variation observed in this sample suggests differences in operating model for otherwise similar sites, and further understanding of these differences could reveal approaches to improve efficiency and performance of immunization sites. PMID:28575193
Keenan, Karen A; Wohleber, Meleesa F; Perlsweig, Katherine A; Baldwin, Thomas M; Caviston, Michael; Lovalekar, Mita; Connaboy, Christopher; Nindl, Bradley C; Beals, Kim
2017-11-01
Previous research has examined lower extremity (LE) musculoskeletal injury (MSI) patterns and risk factors in Special Operations Forces (SOF) trainees, conventional military personnel, and athletes; however, it is unclear if SOF have the same patterns/risk factors. This study aimed to determine the association of musculoskeletal, balance, and physiological characteristics with LE MSI in SOF. Cohort study. A total of 726 Air Force (N=140), Navy Sea, Air, and Land (N=301), and Special Warfare Combatant Crewmen (N=285) SOF (age=25.72±4.77years, height=178.34±6.63cm, weight=84.28±9.03kg) participated in laboratory testing, including: LE muscular strength and flexibility; balance; body composition; anaerobic power/capacity; and aerobic capacity. Medical charts were reviewed for LE MSI 365days following laboratory testing. Participants were assigned by injury status and laboratory data stratified by tertile. Chi-square statistics were calculated to determine the frequency of LE MSI across tertiles for each characteristic. There was a significant association between LE MSI and: ankle inversion strength (weaker side: Χ(2)=17.703; stronger side: Χ(2)=18.911; p≤0.001); ankle eversion/inversion strength ratio (lower side: Χ(2)=13.456; higher side: Χ(2)=16.885; p≤0.001); hamstring flexibility (less flexible: Χ(2)=19.930; more flexible Χ(2)=15.185; p≤0.001); gastrocnemius-soleus flexibility (less flexible: Χ(2)=7.889, p=0.019); dynamic balance asymmetry (Χ(2)=7.444, p=0.024); Vestibular and Preference ratios (Χ(2)=9.124, p=0.010 and Χ(2)=6.572, p=0.037, respectively); and aerobic capacity (Χ(2)=13.935, p=0.001). Characteristics associated with LE MSI are unique in SOF. Human performance program initiatives should include efforts to optimize ankle strength and flexibility, maintain moderate hamstring flexibility, expand dynamic balance strategies, and maximize aerobic capacity to reduce LE MSI risk. Copyright © 2017 Sports Medicine Australia. All rights reserved.
The cost structure of routine infant immunization services: a systematic analysis of six countries.
Geng, Fangli; Suharlim, Christian; Brenzel, Logan; Resch, Stephen C; Menzies, Nicolas A
2017-10-01
Little information exists on the cost structure of routine infant immunization services in low- and middle-income settings. Using a unique dataset of routine infant immunization costs from six countries, we estimated how costs were distributed across budget categories and programmatic activities, and investigated how the cost structure of immunization sites varied by country and site characteristics. The EPIC study collected data on routine infant immunization costs from 319 sites in Benin, Ghana, Honduras, Moldova, Uganda, Zambia, using a standardized approach. For each country, we estimated the economic costs of infant immunization by administrative level, budget category, and programmatic activity from a programme perspective. We used regression models to describe how costs within each category were related to site operating characteristics and efficiency level. Site-level costs (incl. vaccines) represented 77-93% of national routine infant immunization costs. Labour and vaccine costs comprised 14-69% and 13-69% of site-level cost, respectively. The majority of site-level resources were devoted to service provision (facility-based or outreach), comprising 48-78% of site-level costs across the six countries. Based on the regression analyses, sites with the highest service volume had a greater proportion of costs devoted to vaccines, with vaccine costs per dose relatively unaffected by service volume but non-vaccine costs substantially lower with higher service volume. Across all countries, more efficient sites (compared with sites with similar characteristics) had a lower cost share devoted to labour. The cost structure of immunization services varied substantially between countries and across sites within each country, and was related to site characteristics. The substantial variation observed in this sample suggests differences in operating model for otherwise similar sites, and further understanding of these differences could reveal approaches to improve efficiency and performance of immunization sites. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
Radio-toxicity of spent fuel of the advanced heavy water reactor.
Anand, S; Singh, K D S; Sharma, V K
2010-01-01
The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.
A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB
Sherman, Michael B.; Freiberg, Alexander N.; Razmus, Dennis; Yazuka, Shintaro; Koht, Craig; Hilser, Vincent J.; Lemon, Stanley M.; Brocard, Anne-Sophie; Zimmerman, Dee; Chiu, Wah; Watowich, Stanley J.; Weaver, Scott C.
2010-01-01
This article describes a unique cryo-electron microscopy (CryoEM) facility to study the three-dimensional organization of viruses at biological safety level 3 (BSL-3). This facility, the W. M. Keck Center for Virus Imaging, has successfully operated for more than a year without incident and was cleared for select agent studies by the Centers for Disease Control and Prevention (CDC). Standard operating procedures for the laboratory were developed and implemented to ensure its safe and efficient operation. This facility at the University of Texas Medical Branch (Galveston, TX) is the only such BSL-3 CryoEM facility approved for select agent research. PMID:21852942
Zaheer, Salman; Pimentel, Samuel D; Simmons, Kristina D; Kuo, Lindsay E; Datta, Jashodeep; Williams, Noel; Fraker, Douglas L; Kelz, Rachel R
2017-05-01
The aim of this study is to compare surgical outcomes of international medical graduates (IMGs) and United States medical graduates (USMGs). IMGs represent 15% of practicing surgeons in the United States (US), and their training pathways often differ substantially from USMGs. To date, differences in the clinical outcomes between the 2 cohorts have not been examined. Using a unique dataset linking AMA Physician Masterfile data with hospital discharge claims from Florida and New York (2008-2011), patients who underwent 1 of 32 general surgical operations were stratified by IMG and USMG surgeon status. Mortality, complications, and prolonged length of stay were compared between IMG and USMG surgeon status using optimal sparse network matching with balance. We identified 972,718 operations performed by 4581 surgeons (72% USMG, 28% IMG). IMG and USMG surgeons differed significantly in demographic (age, gender) and baseline training (years of training, university affiliation of training hospital) characteristics. USMG surgeons performed complex procedures (13.7% vs 11.1%, P < 0.01) and practiced in urban settings (79.4% vs 75.6%, P < 0.01) more frequently, while IMG surgeons performed a higher volume of studied operations (50.7 ± 5.1 vs 57.8 ± 8.4, P < 0.01). In the matched cohort analysis of 396,810 patients treated by IMG and USMG surgeons, rates of mortality (USMG: 2.2%, IMG: 2.1%; P < 0.001), complications (USMG: 14.5%, IMG: 14.3%; P = 0.032), and prolonged length of stay (pLOS) (USMG: 22.7%, IMG: 22.8%; P = 0.352) were clinically equivalent. Despite considerable differences in educational background, surgical training characteristics, and practice patterns, IMG and USMG-surgeons deliver equivalent surgical care to the patients whom they treat.
The influence of passenger flow on the topology characteristics of urban rail transit networks
NASA Astrophysics Data System (ADS)
Hu, Yingyue; Chen, Feng; Chen, Peiwen; Tan, Yurong
2017-05-01
Current researches on the network characteristics of metro networks are generally carried out on topology networks without passenger flows running on it, thus more complex features of the networks with ridership loaded on it cannot be captured. In this study, we incorporated the load of metro networks, passenger volume, into the exploration of network features. Thus, the network can be examined in the context of operation, which is the ultimate purpose of the existence of a metro network. To this end, section load was selected as an edge weight to demonstrate the influence of ridership on the network, and a weighted calculation method for complex network indicators and robustness were proposed to capture the unique behaviors of a metro network with passengers flowing in it. The proposed method was applied on Beijing Subway. Firstly, the passenger volume in terms of daily origin and destination matrix was extracted from exhausted transit smart card data. Using the established approach and the matrix as weighting, common indicators of complex network including clustering coefficient, betweenness and degree were calculated, and network robustness were evaluated under potential attacks. The results were further compared to that of unweighted networks, and it suggests indicators of the network with consideration of passenger volumes differ from that without ridership to some extent, and networks tend to be more vulnerable than that without load on it. The significance sequence for the stations can be changed. By introducing passenger flow weighting, actual operation status of the network can be reflected more accurately. It is beneficial to determine the crucial stations and make precautionary measures for the entire network’s operation security.
NASA Technical Reports Server (NTRS)
Kobayashi, Takahisa; Simon, Donald L.
2005-01-01
In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
The Stratospheric Observatory for Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Gehrz, Robert
The joint U.S. and German Stratospheric Observatory for Infrared Astronomy (SOFIA) Project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is in its final stages of development. Flying in the stratosphere at altitudes as high as 45,000 feet, SOFIA enables observations throughout the infrared and submillimeter region with an average transmission of greater than 80 percent. SOFIA has a wide instrument complement including broadband imagers, moderate resolution spectrographs capable of resolving broad features due to dust and large molecules, and high resolution spectrometers suitable for kinematic studies of molecular and atomic gas lines at km/s resolution. The first generation and future instruments will enable SOFIA to make unique contributions to a broad array of science topics. SOFIA began its post-modification test flight series on April 26, 2007 in Waco, Texas. The test flight series continues at NASA Dryden Flight Research Center, California. SOFIA will be staged out of Dryden's new aircraft operations facility at Palmdale, CA starting in December, 2007. First science flights will begin in 2009, the next instrument call and the first General Observer science call will be in 2010, and a full operations schedule of about 120 flights per year will be reached by 2014. The observatory is expected to operate for more than 20 years. The sensitivity, characteristics, science instrument complement, future instrument opportunities and examples of first light science will be discussed.
[Digital gigantism of the foot: a clinical study of 12 cases].
Wang, Hai-hua; Tian, Guang-lei; Zhu, Yin; Zhang, You-le; Zhao, Jun-hui; Tian, Wen
2008-03-15
To summarize the clinical characteristic and outcome of digital gigantism of the foot. Retrospectively analyze the clinical documents of cases of digital gigantism of the foot. Twelve 12 cases with 13 feet in this study included 8 male and 4 female with an average 4.6-years-old. All the deformities were found at birth. Multiple toes involved were more than single toe, and tibial toe involved more than fibular. Forefoot was enlarged. All the phalanges involved and partial metatarsal bones were enlarged. Marked increase in subcutaneous fat was found in all cases in the operation which infiltrated interossei and articular capsules. The appearance of the nerves and its branches in the foot were normal and fat infiltrating was not discovered. The operation types included debulking, epiphyseal arrest, amputation, nerve stripping and anastomosis. Seven cases were followed up with mean periods 25.6 months. Functional evaluation according to a criterion formulated by author revealed a result of 2 excellent, 2 good and 3 fair. Digital gigantism of the foot is an uncommon congenital deformity of the foot characterized by overgrowth of both the soft-tissue and the osseous elements of the enlarged toe and forefoot. Surgical treatment is the unique method, and the goal is to reduce the size of the foot to allow fitting regular shoes and walking readily. There are several types of operations which to be chosen. The indication, the timing of operative intervention and the selection of operation type should be paid more attention.
ERIC Educational Resources Information Center
Waldron, Larry W.
1990-01-01
Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yu-Hsin; Yan, Lujiang; Zhang, Alex Ce
2015-08-03
Signal amplification, performed by transistor amplifiers with its merit rated by the efficiency and noise characteristics, is ubiquitous in all electronic systems. Because of transistor thermal noise, an intrinsic signal amplification mechanism, impact ionization was sought after to complement the limits of transistor amplifiers. However, due to the high operation voltage (30-200 V typically), low power efficiency, limited scalability, and, above all, rapidly increasing excess noise with amplification factor, impact ionization has been out of favor for most electronic systems except for a few applications such as avalanche photodetectors and single-photon Geiger detectors. Here, we report an internal signal amplification mechanismmore » based on the principle of the phonon-assisted cycling excitation process (CEP). Si devices using this concept show ultrahigh gain, low operation voltage, CMOS compatibility, and, above all, quantum limit noise performance that is 30 times lower than devices using impact ionization. Established on a unique physical effect of attractive properties, CEP-based devices can potentially revolutionize the fields of semiconductor electronics.« less
Power conditioning equipment for a thermoelectric outer planet spacecraft, volume 1, book 1
NASA Technical Reports Server (NTRS)
Andrews, R. E. (Editor)
1972-01-01
Equipment was designed to receive power from a radioisotope thermoelectric generator source, condition, distribute, and control this power for the spacecraft loads. The TOPS mission, aimed at a representative tour of the outer planets, would operate for an estimated 12 year period. Unique design characteristics required for the power conditioning equipment results from the long mission time and the need for autonomous on-board operations due to large communications distances and the associated time delays of ground initiated actions. The salient features of the selected power subsystem configuration are: (1) The PCE regulates the power from the radioisotope thermoelectric generator power source at 30 vdc by means of a quad-redundant shunt regulator; (2) 30 vdc power is used by certain loads, but is more generally inverted and distributed as square-wave ac power; (3) a protected bus is used to assure that power is always available to the control computer subsystem to permit corrective action to be initiated in response to fault conditions; and (4) various levels of redundancy are employed to provide high subsystem reliability.
Concorde noise-induced building vibrations: John F. Kennedy International Airport
NASA Technical Reports Server (NTRS)
Mayes, W. H.; Stephens, D. G.; Deloach, R.; Cawthorn, J. M.; Holmes, H. K.; Lewis, R. B.; Holliday, B. G.; Ward, D. W.; Miller, W. T.
1978-01-01
Outdoor and indoor noise levels resulting from aircraft flyovers and certain nonaircraft events were recorded at eight homesites and a school along with the associated vibration levels in the walls, windows, and floors at these test sites. Limited subjective tests were conducted to examine the human detection and annoyance thresholds for building vibration and rattle caused by aircraft noise. Both vibration and rattle were detected subjectively in several houses for some operations of both the Concorde and subsonic aircraft. Seated subjects more readily detected floor vibrations than wall or window vibrations. Aircraft noise generally caused more window vibrations than common nonaircraft events such as walking and closing doors. Nonaircraft events and aircraft flyovers resulted in comparable wall vibration levels, while floor vibrations were generally greater for nonaircraft events than for aircraft flyovers. The relationship between structural vibration and aircraft noise is linear, with vibration levels being accurately predicted from overall sound pressure levels (OASPL) measured near the structure. Relatively high levels of structural vibration measured during Concorde operations are due more to higher OASPL levels than to unique Concorde-source characteristics.
The injection of microorganisms into an atmospheric pressure rf-driven microplasma
NASA Astrophysics Data System (ADS)
Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.
2013-09-01
The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique means to study certain physical mechanisms in individual microorganisms and also help understand the impact of macroscopic entities and liquid droplets on plasma characteristics. We present the characterization of an RF-APD operating at 13.56 MHz and containing microorganisms in liquid droplets emitted from a nebulizer, with the spray entrained in a gas flow by a gas shroud and passed into the plasma source. We report successful microorganism injection and transmission through the plasma with stable plasma operation of at least one hour. Diagnostics include RF electrical characterization, optical emission spectrometry and electrostatic deflection to investigate microorganism charging. A close-coupled Impedans Octiv VI probe indicates source efficiencies of 10 to 15%. The introduction of the droplets/microorganisms results in increased plasma conductivity and reduced capacitance, due to their impact on electron density and temperature. An electrical model will be presented based on diagnostic data and deflection studies with input from simulations of charged aerosol diffusion and evaporation. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.
Discovery deep space optical communications (DSOC) transceiver
NASA Astrophysics Data System (ADS)
Roberts, W. Thomas
2017-02-01
NASA's 22 cm diameter Deep Space Optical Communications (DSOC) Transceiver is designed to provide a bidirectional optical link between a spacecraft in the inner solar system and an Earth-based optical ground station. This design, optimized for operation across a wide range of illumination conditions, is focused on minimizing blinding from stray light, and providing reliable, accurate attitude information to point its narrow communication beam accurately to the future location of the ground terminal. Though our transceiver will transmit in the 1550 nm waveband and receive in the 1064 nm waveband, the system design relies heavily on reflective optical elements, extending flexibility to be modified for use at different wavebands. The design makes use of common path propagation among transmit, receive and pointing verification optical channels to maintain precise alignment among its components, and to naturally correct for element misalignment resulting from launch or thermal element perturbations. This paper presents the results of trade studies showing the evolution of the design, unique operational characteristics of the design, elements that help to maintain minimal stray light contamination, and preliminary results from development and initial testing of a functional aluminum test model.
NASA Astrophysics Data System (ADS)
Fulmek, P. L.; Haumer, P.; Wenzl, F. P.; Nemitz, W.; Nicolics, J.
2017-03-01
Estimating the junction temperature and its dynamic behavior in dependence of various operating conditions is an important issue, since these properties influence the optical characteristics as well as the aging processes of a light-emitting diode (LED). Particularly for high-power LEDs and pulsed operation, the dynamic behavior and the resulting thermal cycles are of interest. The forward voltage method relies on the existence of a time-independent unique triple of forward-voltage, forward-current, and junction temperature. These three figures should as well uniquely define the optical output power and spectrum, as well as the loss power of the LED, which is responsible for an increase of the junction temperature. From transient FEM-simulations one may expect an increase of the temperature of the active semiconductor layer of some 1/10 K within the first 10 μs. Most of the well-established techniques for junction temperature measurement via forward voltage method evaluate the measurement data several dozens of microseconds after switching on or switching off and estimate the junction temperature by extrapolation towards the time of switching. In contrast, the authors developed a measurement procedure with the focus on the first microseconds after switching. Besides a fast data acquisition system, a precise control of the switching process is required, i.e. a precisely defined current pulse amplitude with fast rise-time and negligible transient by-effects. We start with a short description of the measurement setup and the newly developed control algorithm for the generation of short current pulses. The thermal characterization of the LED chip during the measurement procedures is accomplished by an IR thermography system and transient finite element simulations. The same experimental setup is used to investigate the optical properties of the LED in an Ulbricht-sphere. Our experiments are performed on InGaN LED chips mounted on an Al based insulated metal substrate (IMS), giving a comprehensive picture of the transient behavior of the forward voltage of this type of high power LED.
Hou, Dandi; Wang, Kai; Liu, Ting; Wang, Haixin; Lin, Zhi; Qian, Jie; Lu, Lingli; Tian, Shengke
2017-05-16
Understanding the strategies that the roots of hyperaccumulating plants use to extract heavy metals from soils is important for optimizing phytoremediation. The rhizosphere characteristics of Sedum alfredii, a hyperaccumulator, were investigated 6 months after it had been planted in weathered field soils contaminated with 5.8 μg of Cd g -1 , 1985.1 μg of Zn g -1 , 667.5 μg of Pb g -1 , and 698.8 μg of Cu g -1 . In contrast with the non-hyperaccumulating ecotype (NHE), the hyperaccumulating ecotype (HE) of S. alfredii was more tolerant to the metals, and higher levels of Cd and Zn accumulated. The HE was characterized by a unique rhizosphere, including extensive root systems, a reduced soil pH, a higher metal bioavailability, and increased rhizomicrobial activity. The bioavailability of metals was significantly correlated with the HE's unique bacterial communities (P < 0.005). The HE harbored abundant Streptomyces (9.43%, family Streptomycetaceae), Kribbella (1.08%, family Nocardioidaceae), and an unclassified genus (1.09%, family Nocardioidaceae) in its rhizosphere, a composition that differed from that of the NHE. PICRUSt analysis predicted high relative abundances of imputed functional profiles in the HE rhizosphere related to membrane transport and amino acid metabolism. This study reveals the rhizosphere characteristics, particularly the unique bacterial rhizobiome of a hyperaccumulator, that might provide a new approach to facilitating heavy metal phytoextraction.
Martínez-Camblor, Pablo; Pardo-Fernández, Juan C
2017-01-01
Diagnostic procedures are based on establishing certain conditions and then checking if those conditions are satisfied by a given individual. When the diagnostic procedure is based on a continuous marker, this is equivalent to fix a region or classification subset and then check if the observed value of the marker belongs to that region. Receiver operating characteristic curve is a valuable and popular tool to study and compare the diagnostic ability of a given marker. Besides, the area under the receiver operating characteristic curve is frequently used as an index of the global discrimination ability. This paper revises and widens the scope of the receiver operating characteristic curve definition by setting the classification subsets in which the final decision is based in the spotlight of the analysis. We revise the definition of the receiver operating characteristic curve in terms of particular classes of classification subsets and then focus on a receiver operating characteristic curve generalization for situations in which both low and high values of the marker are associated with more probability of having the studied characteristic. Parametric and non-parametric estimators of the receiver operating characteristic curve generalization are investigated. Monte Carlo studies and real data examples illustrate their practical performance.
Prototype data terminal: Multiplexer/demultiplexer
NASA Technical Reports Server (NTRS)
Leck, D. E.; Goodwin, J. E.
1972-01-01
The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) design are described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology. The waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel, if not unique. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light couplers and integrated circuit amplifiers.
NASA Technical Reports Server (NTRS)
Rocco, David A.
1994-01-01
Redefining the approach and philosophy that operations management uses to define, develop, and implement space missions will be a central element in achieving high efficiency mission operations for the future. The goal of a cost effective space operations program cannot be realized if the attitudes and methodologies we currently employ to plan, develop, and manage space missions do not change. A management philosophy that is in synch with the environment in terms of budget, technology, and science objectives must be developed. Changing our basic perception of mission operations will require a shift in the way we view the mission. This requires a transition from current practices of viewing the mission as a unique end product, to a 'mission development concept' built on the visualization of the end-to-end mission. To achieve this change we must define realistic mission success criteria and develop pragmatic approaches to achieve our goals. Custom mission development for all but the largest and most unique programs is not practical in the current budget environment, and we simply do not have the resources to implement all of our planned science programs. We need to shift our management focus to allow us the opportunity make use of methodologies and approaches which are based on common building blocks that can be utilized in the space, ground, and mission unique segments of all missions.
Characteristics associated with regional health information organization viability.
Adler-Milstein, Julia; Landefeld, John; Jha, Ashish K
2010-01-01
Regional Health Information Organizations (RHIOs) will likely play a key role in our nation's effort to catalyze health information exchange. Yet we know little about why some efforts succeed while others fail. We sought to identify factors associated with RHIO viability. Using data from a national survey of RHIOs that we conducted in mid-2008, we examined factors associated with becoming operational and factors associated with financial viability. We used multivariate logistic regression models to identify unique predictors. We classified RHIOs actively facilitating data exchange as operational and measured financial viability as the percent of operating costs covered by revenue from participants in data exchange (0-24%, 25-74%, 75-100%). Predictors included breadth of participants, breadth of data exchanged, whether the RHIO focused on a specific population, whether RHIO participants had a history of collaborating, and sources of revenue during the planning phase. Exchanging a narrow set of data and involving a broad group of stakeholders were independently associated with a higher likelihood of being operational. Involving hospitals and ambulatory physicians, and securing early funding from participants were associated with a higher likelihood of financial viability, while early grant funding seemed to diminish the likelihood. Finding ways to help RHIOs become operational and self-sustaining will bolster the current approach to nationwide health information exchange. Our work suggests that convening a broad coalition of stakeholders to focus on a narrow set of data is an important step in helping RHIOs become operational. Convincing stakeholders to financially commit early in the process may help RHIOs become self-sustaining.
Electronic-nose applications for fruit identification, ripeness, and quality grading
Manuela Baietto; Dan Wilson
2015-01-01
Fruits produce a wide range of volatile organic compounds that impart their characteristically distinct aromas and contribute to unique flavor characteristics. Fruit aroma and flavor characteristics are of key importance in determining consumer acceptance in commercial fruit markets based on individual preference. Fruit producers, suppliers and retailers traditionally...
Cleopatra's Egypt. A Museum Exhibition Explores Egypt during the Age of the Ptolemies.
ERIC Educational Resources Information Center
Bianchi, Robert S.
1989-01-01
Describes the historical premises behind a traveling exhibit of Egyptian Hellenistic art from the Ptolemic Period. Focuses on the uniquely Egyptian characteristics of this art, including religious symbolism, costume elements, and characteristics of craftsmanship. (LS)
International Space Station (ISS)
2001-02-01
The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.
NASA Astrophysics Data System (ADS)
Park, M. J.
2017-12-01
The coastal environment worldwide is increasingly more populated and developed in recent years. As a result, the natural coastal environment which often provides habitats for various plants and animals and nursery grounds for fishes has become scarce. However, it is well-known that the natural coastal environment is important for the well-being of the ecosystem including human. In addition, it may contribute to the local economy by attracting many visitors who like to appreciate and enjoy the nature. Although there may be efforts to preserve the natural coastal environment by governments and environmental groups, there may be also needs to develop the coastal environment. In order to preserve the natural environment without sacrificing the local economy, it would be important to appreciate the unique characteristics of the coastal environment that may contribute to attracting many visitors. In this study, we discuss some unique characteristics of the coastal environment located in the west coast of Korea facing the eastern Yellow Sea. The Garolim Bay is a semi-enclosed bay with the narrow opening of about 2 km and the length of about 20 km, and has a spring tidal range over 6 m. It is well known for vast tidal flats and healthy ecosystems that supports high productive and diverse marine lives including spotted seals. The tidal wave propagates north along the eastern Yellow Sea and currents become strong off the Garolim Bay due to the promontory effect and mixing of the water column results in cooling of surface water. Due to its characteristic offshore environment, narrow opening and abrupt turning over 120 degrees in the midst of acceleration of strong currents, the Garolim Bay presents the unique physical and geological environment resulting in characteristic physical, biological and geological features. In fact, the name of the bay `Garolim' meaning 'Dew-induced Forest', may have resulted from these unique physical and geological characteristics of the bay.
Examining the Development of Self-Authorship among Student Veterans
ERIC Educational Resources Information Center
Stone, Sharon L. M.
2014-01-01
The literature has shown that student veterans arrive in college with unique characteristics and also face unique challenges (Black et al., 2007; Bonar & Domenici, 2011; Church, 2009; DiRamio & Jarvis, 2011). There is also some evidence that student veterans develop complex ways of making meaning at younger ages than students in the…
Design, modeling and control of a novel multi functional translational-rotary micro ultrasonic motor
NASA Astrophysics Data System (ADS)
Tuncdemir, Safakcan
The major goal of this thesis was to design and develop an actuator, which is capable of producing translational and rotary output motions in a compact structure with simple driving conditions, for the needs of small-scale actuators for micro robotic systems. Piezoelectric ultrasonic motors were selected as the target actuator schemes because of their unbeatable characteristics in the meso-scale range, which covers the structure sizes from hundred micrometers to ten millimeters and with operating ranges from few nanometers to centimeters. In order to meet the objectives and the design constraints, a number of key research tasks had to be undertaken. The design constraints and objectives were so stringent and entangled that none of the existing methods in literature could solve the research problems individually. Therefore, several unique methods were established to accomplish the research objectives. The methods produced novel solutions at every stage of design, development and modeling of the multi functional micro ultrasonic motor. Specifically, an ultrasonic motor utilizing slanted ceramics on a brass rod was designed. Because of the unique slanted ceramics design, longitudinal and torsional mode vibration modes could be obtained on the same structure. A ring shaped mobile element was loosely fitted on the metal rod stator. The mobile element moved in translational or rotational, depending on whether the vibration mode was longitudinal or torsional. A new ultrasonic motor drive method was required because none of the existing ultrasonic motor drive techniques were able to provide both output modes in a compact and cylindrical structure with the use of single drive source. By making use of rectangular wave drive signals, saw-tooth shaped displacement profile could be obtained at longitudinal and torsional resonance modes. Thus, inheriting the operating principle of smooth impact drive method, a new resonance type inertial drive was introduced. This new technique combines the advantages of inertial method with resonance drive. The motor that combines inertial drive at resonance will be a new type of ultrasonic motor, according to the classification of vibration types. A method to analyze the stator vibration by incorporating the piezoelectric loss coefficients was developed. By using the model, natural frequencies of the operating modes were predicted and exact formulations of the vibration displacements in longitudinal and torsional modes were obtained. The vibration model was in perfect agreement with the ATILA finite element analysis simulations even for different design parameters. The model was also used in design optimization and for theoretical explanation of the newly introduced motor drive technique. The theoretical analysis of the operating principle was verified with finite element analysis simulations and by vibration measurements. Several prototypes of motor were built in order to realize the dual function output as the main objective of this research. Translational output was observed for rectangular wave input signals at the resonance frequency of the fundamental longitudinal mode.The output mode changed to the rotational mode when the operating frequency switched for the fundamental torsional mode. While the mode of motor could be switched by switching the operating frequency, the direction of motion could be reversed by switching the duty cycle of rectangular input signals from D % to (100-D) %. A prototype (5 mm diameter, 25 mm total length produced 55 mm/s (translational) and 3 rad/s (rotary) speed under 40 mN blocking force, when the input signal was 40 V pp rectangular with 33% duty cycle. The motor speed at translational mode was characterized for different input voltage and output force. The meso-scale ultrasonic motor which utilizes smooth impact drive method, provided a unique ability to produce dual function with prominent output characteristics in a compact structure by using simple drive conditions.
Operant psychology makes a splash--in marine mammal training (1955-1965).
Gillaspy, James Arthur; Brinegar, Jennifer L; Bailey, Robert E
2014-01-01
Despite the wide spread use of operant conditioning within marine animal training, relatively little is known about this unique application of behavioral technology. This article explores the expansion of operant psychology to commercial marine animal training from 1955 to 1965, specifically at marine parks such as Marine Studios Florida, Marineland of the Pacific, Sea Life Park, and SeaWorld. The contributions of Keller and Marian Breland and their business Animal Behavior Enterprises (ABE) as well as other early practitioners of behavioral technology are reviewed. We also describe how operant technology was introduced and formalized into procedures that have become the cornerstone of marine animal training and entertainment. The rapid growth of the marine park industry during this time was closely linked to the spread of behavioral technology. The expansion of operant training methods within marine animal training is a unique success story of behavioral technology. © 2014 Wiley Periodicals, Inc.
A simple capacitive method to evaluate ethanol fuel samples
NASA Astrophysics Data System (ADS)
Vello, Tatiana P.; de Oliveira, Rafael F.; Silva, Gustavo O.; de Camargo, Davi H. S.; Bufon, Carlos C. B.
2017-02-01
Ethanol is a biofuel used worldwide. However, the presence of excessive water either during the distillation process or by fraudulent adulteration is a major concern in the use of ethanol fuel. High water levels may cause engine malfunction, in addition to being considered illegal. Here, we describe the development of a simple, fast and accurate platform based on nanostructured sensors to evaluate ethanol samples. The device fabrication is facile, based on standard microfabrication and thin-film deposition methods. The sensor operation relies on capacitance measurements employing a parallel plate capacitor containing a conformational aluminum oxide (Al2O3) thin layer (15 nm). The sensor operates over the full range water concentration, i.e., from approximately 0% to 100% vol. of water in ethanol, with water traces being detectable down to 0.5% vol. These characteristics make the proposed device unique with respect to other platforms. Finally, the good agreement between the sensor response and analyses performed by gas chromatography of ethanol biofuel endorses the accuracy of the proposed method. Due to the full operation range, the reported sensor has the technological potential for use as a point-of-care analytical tool at gas stations or in the chemical, pharmaceutical, and beverage industries, to mention a few.
Unmanned airships for near earth remote sensing missions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochstetler, R.D.
1996-10-01
In recent years the study of Earth processes has increased significantly. Conventional aircraft have been employed to a large extent in gathering much of this information. However, with this expansion of research has come the need to investigate and measure phenomena that occur beyond the performance capabilities of conventional aircraft. Where long dwell times or observations at very low attitudes are required there are few platforms that can operate safely, efficiently, and cost-effectively. One type of aircraft that meets all three parameters is the unmanned, autonomously operated airship. The UAV airship is smaller than manned airships but has similar performancemore » characteristics. It`s low speed stability permits high resolution observations and provides a low vibration environment for motion sensitive instruments. Maximum airspeed is usually 30mph to 35mph and endurance can be as high as 36 hours. With scientific payload capacities of 100 kilos and more, the UAV airship offers a unique opportunity for carrying significant instrument loads for protracted periods at the air/surface interface. The US Army has operated UAV airships for several years conducting border surveillance and monitoring, environmental surveys, and detection and mapping of unexploded ordinance. The technical details of UAV airships, their performance, and the potential of such platforms for more advanced research roles will be presented. 3 refs., 5 figs.« less
Classification of Unmanned Aircraft Systems. UAS Classification/Categorization for Certification
NASA Technical Reports Server (NTRS)
2004-01-01
Category, class, and type designations are primary means to identify appropriate aircraft certification basis, operating rules/limitations, and pilot qualifications to operate in the National Airspace System (NAS). The question is whether UAS fit into existing aircraft categories or classes, or are unique enough to justify the creation of a new category/class. In addition, the characteristics or capabilities, which define when an UAS becomes a regulated aircraft, must also be decided. This issue focuses on UAS classification for certification purposes. Several approaches have been considered for classifying UAS. They basically group into either using a weight/mass basis, or a safety risk basis, factoring in the performance of the UAS, including where the UAS would operate. Under existing standards, aircraft must have a Type Certificate and Certificate of Airworthiness, in order to be used for "compensation or hire", a major difference from model aircraft. Newer technologies may make it possible for very small UAS to conduct commercial services, but that is left for a future discussion to extend the regulated aircraft to a lower level. The Access 5 position is that UAS are aircraft and should be regulated above the weight threshold differentiating them from model airplanes. The recommended classification grouping is summarized in a chart.
Bucher, Brian T; Duggan, Eileen M; Grubb, Peter H; France, Daniel J; Lally, Kevin P; Blakely, Martin L
2016-09-01
The purpose of this project was to examine the American College of Surgeons National Surgical Quality Improvement Program Pediatric (ACSNSQIP-P) Participant Use File (PUF) to compare risk-adjusted outcomes of neonates versus other pediatric surgical patients. In the ACS-NSQIP-P 2012-2013 PUF, patients were classified as preterm neonate, term neonate, or nonneonate at the time of surgery. The primary outcomes were 30-day mortality and composite morbidity. Patient characteristics significantly associated with the primary outcomes were used to build a multivariate logistic regression model. The overall 30-day mortality rate for preterm neonates, term neonate, and nonneonates was 4.9%, 2.0%, 0.1%, respectively (p<0.0001). The overall 30-day morbidity rate for preterm neonates, term neonates, and nonneonates was 27.0%, 17.4%, 6.4%, respectively (p<0.0001). After adjustment for preoperative and operative risk factors, both preterm (adjusted odds ratio, 95% CI: 2.0, 1.4-3.0) and term neonates (aOR, 95% CI: 1.9, 1.2-3.1) had a significantly increased odds of 30-day mortality compared to nonneonates. Surgical neonates are a cohort who are particularity susceptible to postoperative morbidity and mortality after adjusting for preoperative and operative risk factors. Collaborative efforts focusing on surgical neonates are needed to understand the unique characteristics of this cohort and identify the areas where the morbidity and mortality can be improved. Copyright © 2016 Elsevier Inc. All rights reserved.
Truck characteristics for use in highway design and operation. Volume II, Appendices
DOT National Transportation Integrated Search
1990-08-01
Highway geometric design and traffic operations are based in part on consideration of vehicle characteristics. However, many of the current highway design and operational criteria are based on passenger car characteristics, even though truck characte...
49 CFR 236.717 - Characteristics, operating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false Characteristics, operating. 236.717 Section 236.717 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.717 Characteristics, operating. The measure of electrical values at which electrical or electronic...
49 CFR 236.717 - Characteristics, operating.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Characteristics, operating. 236.717 Section 236.717 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... § 236.717 Characteristics, operating. The measure of electrical values at which electrical or electronic...
The Classroom Environment Questionnaire (CEQ): Development and preliminary structural validity.
Lyons, Carissa; Brown, Ted; Bourke-Taylor, Helen
2018-04-16
Occupational therapists offer a unique perspective regarding the contribution of the environment to occupational performance. Therefore, a scale that measures the unique characteristics of the primary school classroom environment where children complete their daily schoolwork occupations is needed. The aim of this study was to develop and psychometrically evaluate a new teacher-report questionnaire that measures a number of environmental characteristics of primary school classrooms. Participants (N = 117) completed the Classroom Environment Questionnaire (CEQ), which utilises a 4-point Likert scale where teachers rate 51 environmental characteristics of their classroom. Teachers also rate the extent to which they believe the physical, social, temporal, institutional and cultural classroom environmental domains contribute to students' schoolwork performance using a 10-point scale. The structural validity of the CEQ was examined using principal component analysis (PCA). Inter-item correlations were examined using Pearson r correlations, while the internal consistency of the CEQ was assessed using Cronbach's alpha. PCA revealed the CEQ to be multidimensional, with 31 items loading onto nine viable factors, representing the unique nature of classroom environments. Based on the PCA results, 20 items were removed from the CEQ. Cronbach's alpha and correlation analysis indicated that most CEQ subsections had acceptable internal consistency (alpha range 0.70-0.82), with four subsections demonstrating a lower level of internal consistency (alpha range 0.55-0.69). Preliminary structural validity and internal consistency analysis findings confirm that the CEQ has potential to be a useful scale for professionals wishing to examine the unique characteristics of primary school classrooms that influence the occupational performance of students. Ongoing analyses will be undertaken to further explore the CEQ's validity and reliability. © 2018 Occupational Therapy Australia.
Jackknife variance of the partial area under the empirical receiver operating characteristic curve.
Bandos, Andriy I; Guo, Ben; Gur, David
2017-04-01
Receiver operating characteristic analysis provides an important methodology for assessing traditional (e.g., imaging technologies and clinical practices) and new (e.g., genomic studies, biomarker development) diagnostic problems. The area under the clinically/practically relevant part of the receiver operating characteristic curve (partial area or partial area under the receiver operating characteristic curve) is an important performance index summarizing diagnostic accuracy at multiple operating points (decision thresholds) that are relevant to actual clinical practice. A robust estimate of the partial area under the receiver operating characteristic curve is provided by the area under the corresponding part of the empirical receiver operating characteristic curve. We derive a closed-form expression for the jackknife variance of the partial area under the empirical receiver operating characteristic curve. Using the derived analytical expression, we investigate the differences between the jackknife variance and a conventional variance estimator. The relative properties in finite samples are demonstrated in a simulation study. The developed formula enables an easy way to estimate the variance of the empirical partial area under the receiver operating characteristic curve, thereby substantially reducing the computation burden, and provides important insight into the structure of the variability. We demonstrate that when compared with the conventional approach, the jackknife variance has substantially smaller bias, and leads to a more appropriate type I error rate of the Wald-type test. The use of the jackknife variance is illustrated in the analysis of a data set from a diagnostic imaging study.
Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties
Casale, Amanda E.; Foust, Amanda J.; Bal, Thierry
2015-01-01
The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca2+-activated K+ channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. SIGNIFICANCE STATEMENT Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main compartments: dendritic, somatic, and axonal. How the neurons receive information, process it, and pass on new information depends upon how these three compartments operate. While it has long been assumed that axons are simply for conducting information from the cell body to the synapses, here we demonstrate that the axons of different types of interneurons, the inhibitory cells, possess differing electrophysiological properties. This result implies that differing types of interneurons perform different tasks in the cortex, not only through their anatomical connections, but also through how their axons operate. PMID:26609152
Treister-Goltzman, Yulia; Peleg, Roni
2015-06-01
The Bedouins comprise one of the ethnic groups in Israeli society. They are Muslims, most of who live in the Negev desert region of southern Israel and live by their unique traditions and customs. At the present they are going through a period of "society in transition", a unique condition that has ramifications for health and morbidity. In recent years the number of publications on the health of Bedouins in the Negev has increased. Recognition of unique socio-economic features, characteristics of health and diseases can help the medical team treat various health problems in this population as well as other populations with similar characteristics. In the present paper we survey and discuss publications on the health of Bedouin children over the past 20 years.
ERIC Educational Resources Information Center
Russell, Cheryl
1983-01-01
Describes the geographic distribution, demographic characteristics, and consumer preferences of Puerto Ricans, Mexicans, and Cubans in the United States. Suggests that a projected rapid growth in numbers of Hispanics with unique characteristics will produce a consumer market that will require special attention from businesses. (Author/MJL)
Novel graphical environment for virtual and real-world operations of tracked mobile manipulators
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.
1993-08-01
A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
NASA Technical Reports Server (NTRS)
Smith, Matthew R.; Molthan, Andrew L.; Fuell, Kevin K.; Jedlovec, Gary J.
2012-01-01
SPoRT is a team of NASA/NOAA scientists focused on demonstrating the utility of NASA and future NOAA data and derived products on improving short-term weather forecasts. Work collaboratively with a suite of unique products and selected WFOs in an end-to-end transition activity. Stable funding from NASA and NOAA. Recognized by the science community as the "go to" place for transitioning experimental and research data to the operational weather community. Endorsed by NWS ESSD/SSD chiefs. Proven paradigm for transitioning satellite observations and modeling capabilities to operations (R2O). SPoRT s transition of NASA satellite instruments provides unique or higher resolution data products to complement the baseline suite of geostationary data available to forecasters. SPoRT s partnership with NWS WFOs provides them with unique imagery to support disaster response and local forecast challenges. SPoRT has years of proven experience in developing and transitioning research products to the operational weather community. SPoRT has begun work with CONUS and OCONUS WFOs to determine the best products for maximum benefit to forecasters. VIIRS has already proven to be another extremely powerful tool, enhancing forecasters ability to handle difficult forecasting situations.
A Business Analysis of a SKYLON-based European Launch Service Operator
NASA Astrophysics Data System (ADS)
Hempsell, Mark; Aprea, Julio; Gallagher, Ben; Sadlier, Greg
2016-04-01
Between 2012 and 2014 an industrial consortium led by Reaction Engines conducted a feasibility study for the European Space Agency with the objective to explore the feasibility of SKYLON as the basis for a launcher that meets the requirements established for the Next Generation European Launcher. SKYLON is a fully reusable single stage to orbit launch system that is enabled by the unique performance characteristic of the Synergetic Air-Breathing Rocket Engine and is under active development. The purpose of the study which was called ;SKYLON-based European Launch Service Operator (S-ELSO); was to support ESA decision making on launch service strategy by exploring the potential implications of this new launch system on future European launch capability and the European industry that supports it. The study explored both a SKYLON operator (S-ELSO) and SKYLON manufacturer as separate business ventures. In keeping with previous studies, the only strategy that was found that kept the purchase price of the SKYLON low enough for a viable operator business was to follow an ;airline; business model where the manufacturer sells SKYLONs to other operators in addition to S-ELSO. With the assumptions made in the study it was found that the SKYLON manufacturer with a total production run of between 30 and 100 SKYLONs could expect an Internal Rate of Return of around 10%. This was judged too low for all the funding to come from commercial funding sources, but is sufficiently high for a Public Private Partnership. The S-ELSO business model showed that the Internal Rate of Return would be high enough to consider operating without public support (i.e. commercial in operation, irrespective of any public funding of development), even when the average launch price is lowered to match the lowest currently quoted price for expendable systems.
Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors.
Filip, Jaroslav; Kasák, Peter; Tkac, Jan
2015-01-01
Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene's unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.
Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack
NASA Astrophysics Data System (ADS)
Ma, Hong-Xin; Bao, Wan-Su; Li, Hong-Wei; Chou, Chun
2016-08-01
We present a Trojan-horse attack on the practical two-way continuous-variable quantum key distribution system. Our attack mainly focuses on the imperfection of the practical system that the modulator has a redundancy of modulation pulse-width, which leaves a loophole for the eavesdropper inserting a Trojan-horse pulse. Utilizing the unique characteristics of two-way continuous-variable quantum key distribution that Alice only takes modulation operation on the received mode without any measurement, this attack allows the eavesdropper to render all of the final keys shared between the legitimate parties insecure without being detected. After analyzing the feasibility of the attack, the corresponding countermeasures are put forward. Project supported by the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant Nos. 11304397 and 61505261).
Space Shuttle stability and control flight test techniques
NASA Technical Reports Server (NTRS)
Cooke, D. R.
1980-01-01
A unique approach for obtaining vehicle aerodynamic characteristics during entry has been developed for the Space Shuttle. This is due to the high cost of Shuttle testing, the need to open constraints for operational flights, and the fact that all flight regimes are flown starting with the first flight. Because of uncertainties associated with predicted aerodynamic coefficients, nine flight conditions have been identified at which control problems could occur. A detailed test plan has been developed for testing at these conditions and is presented. Due to limited testing, precise computer initiated maneuvers are implemented. These maneuvers are designed to optimize the vehicle motion for determining aerodynamic coefficients. Special sensors and atmospheric measurements are required to provide stability and control flight data during an entire entry. The techniques employed in data reduction are proven programs developed and used at NASA/DFRC.
NASA Astrophysics Data System (ADS)
Jeong, Hyo-Soo; Keller, Kris; Culkin, Brad
2017-03-01
Non-vacuum process technology was used to produce Cs3Sb photocathodes on substrates, and in-situ panel devices were fabricated. The performance of the devices was characterized by measuring the anode current as functions of the devices' operation times. An excitation light source with a 475-nm wavelength was used for the photocathodes. The device has a simple diode structure, providing unique characteristics such as a large gap, vertical electron beam directionality, and resistance to surface contamination from ion bombardment and poisoning by outgassing species. Accordingly, Cs3Sb photocathodes function as flat emitters, and the emission properties of the photocathode emitters depend on the vacuum level of the devices. An improved current stability has been observed after conducting an electrical conditioning process to remove possible adsorbates on the Cs3Sb flat emitters.
Design and Development of the Blackbird: Challenges and Lessons Learned
NASA Technical Reports Server (NTRS)
Merlin, Peter W.
2009-01-01
The Lockheed Blackbirds hold a unique place in the development of aeronautics. In their day, the A-12, YF-12, M-21, D-21, and SR-71 variants outperformed all other jet airplanes in terms of altitude and speed. Now retired, they remain the only production aircraft capable of sustained Mach 3 cruise and operational altitudes above 80,000 feet. In this paper the author describes the design evolution of the Blackbird from Lockheed's early Archangel studies for the Central Intelligence Agency through Senior Crown, production of the Air Force's SR-71. He describes the construction and materials challenges faced by Lockheed, the Blackbird's performance characteristics and capabilities, and the National Aeronautics and Space Administration's role in using the aircraft as a flying laboratory to collect data on materials, structures, loads, heating, aerodynamics, and performance for high-speed aircraft.
Horizontal Running Mattress Suture Modified with Intermittent Simple Loops
Chacon, Anna H; Shiman, Michael I; Strozier, Narissa; Zaiac, Martin N
2013-01-01
Using the combination of a horizontal running mattress suture with intermittent loops achieves both good eversion with the horizontal running mattress plus the ease of removal of the simple loops. This combination technique also avoids the characteristic railroad track marks that result from prolonged non-absorbable suture retention. The unique feature of our technique is the incorporation of one simple running suture after every two runs of the horizontal running mattress suture. To demonstrate its utility, we used the suturing technique on several patients and analyzed the cosmetic outcome with post-operative photographs in comparison to other suturing techniques. In summary, the combination of running horizontal mattress suture with simple intermittent loops demonstrates functional and cosmetic benefits that can be readily taught, comprehended, and employed, leading to desirable aesthetic results and wound edge eversion. PMID:23723610
Methods of reconstruction of multi-particle events in the new coordinate-tracking setup
NASA Astrophysics Data System (ADS)
Vorobyev, V. S.; Shutenko, V. V.; Zadeba, E. A.
2018-01-01
At the Unique Scientific Facility NEVOD (MEPhI), a large coordinate-tracking detector based on drift chambers for investigations of muon bundles generated by ultrahigh energy primary cosmic rays is being developed. One of the main characteristics of the bundle is muon multiplicity. Three methods of reconstruction of multiple events were investigated: the sequential search method, method of finding the straight line and method of histograms. The last method determines the number of tracks with the same zenith angle in the event. It is most suitable for the determination of muon multiplicity: because of a large distance to the point of generation of muons, their trajectories are quasiparallel. The paper presents results of application of three reconstruction methods to data from the experiment, and also first results of the detector operation.
Study on the performance of the articulated mechanism of tracked all-terrain vehicle
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.
NASA Astrophysics Data System (ADS)
Bhattacharya, P.; Hazari, A.; Jahangir, S.
2018-02-01
GaN-based nanowire heterostructure arrays epitaxially grown on (001)Si substrates have unique properties and present the potential to realize useful devices. The active light-emitting region in the nanowire heterostructures are usually InGaN disks, whose composition can be varied to tune the emission wavelength. We have demonstrated light emitting diodes and edgeemitting diode lasers with power outputs 10mW with emission in the 600-1300nm wavelength range. These light sources are therefore useful for a variety of applications, including silicon photonics. Molecular beam epitaxial growth of the nanowire heterostructure arrays on (001)Si substrates and the characteristics of 1.3μm nanowire array edge emitting lasers, guided wave photodiodes and a monolithic photonic integrated circuit designed for 1.3μm operation are described.
Dustan, A C; Cohen, B; Petrie, J G
2005-05-30
An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.
NAS operational evolution plan : a foundation for capacity enhancement 2001-2010
DOT National Transportation Integrated Search
2001-06-01
This series of World Wide Web slides focuses on the Operational Evolution Plan, which is a 10-year plan for aviation operational improvements to increase capacity and safety in the United States. This plan is unique in that it integrates all actions:...
Description of the control system design for the SSF PMAD DC testbed
NASA Technical Reports Server (NTRS)
Baez, Anastacio N.; Kimnach, Greg L.
1991-01-01
The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.
Hensel, Jennifer M; Taylor, Valerie H; Fung, Kinwah; de Oliveira, Claire; Vigod, Simone N
To understand whether high-cost users of medical care with and without comorbid mental illness or addiction differ in terms of their sociodemographic and health characteristics. Unique characteristics would warrant different considerations for interventions and service design aimed at reducing unnecessary health care utilization and associated costs. From the top 10% of Ontarians ranked by total medical care costs during fiscal year 2011/2012 (N = 314,936), prior 2-year mental illness or addiction diagnoses were determined from administrative data. Sociodemographics, medical illness characteristics, medical costs, and utilization were compared between those high-cost users of medical care with and without comorbid mental illness or addiction. Odds of being a frequent user of inpatient (≥3 admissions) and emergency (≥5 visits) services were compared between groups, adjusting for age, sex, socioeconomic status and medical illness characteristics. High-cost users of medical care with comorbid mental illness or addiction were younger, had a lower socioeconomic status, had greater historical medical morbidity, and had higher total medical care costs (mean excess of $2,031/user) than those without. They were more likely to be frequent users of inpatient (12.8% vs 10.2%; adjusted OR, 1.14; 95% CI: 1.12-1.17) and emergency (8.4% vs 4.8%; adjusted OR, 1.55; 95% CI: 1.50-1.59) services. Effect sizes were larger in major mood, psychotic, and substance use disorder subgroups. High-cost medical care users with mental illness or addiction have unique characteristics with respect to sociodemographics and service utilization patterns to consider in interventions and policies for this patient group. Copyright © 2018 Academy of Consultation-Liaison Psychiatry. Published by Elsevier Inc. All rights reserved.
Maternal education and intelligence predict offspring diet and nutritional status.
Wachs, Theodore D; Creed-Kanashiro, Hilary; Cueto, Santiago; Jacoby, Enrique
2005-09-01
The traditional assumption that children's nutritional deficiencies are essentially due either to overall food scarcity or to a lack of family resources to purchase available food has been increasingly questioned. Parental characteristics represent 1 type of noneconomic factor that may be related to variability in children's diets and nutritional status. We report evidence on the relation of 2 parental characteristics, maternal education level and maternal intelligence, to infant and toddler diet and nutritional status. Our sample consisted of 241 low-income Peruvian mothers and their infants assessed from 3 to 12 mo, with a further follow-up of 104 of these infants at 18 mo of age. Using a nonexperimental design, we related measures of level of maternal education, maternal intelligence, and family socioeconomic status to infant anthropometry, duration of exclusive breast-feeding, adequacy of dietary intake, and iron status. Results indicated unique positive relations between maternal education level and the extent of exclusive breast-feeding. Significant relations between maternal education and offspring length were partially mediated by maternal height. There also were unique positive relations between maternal intelligence and quality of offspring diet and hemoglobin level. All findings remained significant even after controlling for family socioeconomic characteristics. This pattern of results illustrates the importance of parental characteristics in structuring the adequacy of offspring diet. Maternal education and intelligence appear to have unique influences upon different aspects of the diet and nutritional status of offspring.
Fixation of operating point and measurement of turn on characteristics of IGBT F4-75R06W1E3
NASA Astrophysics Data System (ADS)
Haseena, A.; Subhash Joshi T., G.; George, Saly
2018-05-01
For the proficient operation of the Power electronic circuit, signal level performance of power electronic devices are very important. For getting good signal level characteristics, fixing operating point is very critical. Device deviates from the typical characteristics given in the datasheet due to the presence of stray components in the circuit lay out. Fixation of operating point of typical silicon IGBT and its turn on characteristics is discussed in this paper.
Unique construction makes interferometer insensitive to mechanical stresses
NASA Technical Reports Server (NTRS)
Beer, R.
1965-01-01
Michelson-type interferometer with a cat-eye reflector operates effectively even in the presence of random mechanical stresses. A cubical beamsplitter with dichroic surfaces permits operation in infrared or visible light.
Well-posedness of characteristic symmetric hyperbolic systems
NASA Astrophysics Data System (ADS)
Secchi, Paolo
1996-06-01
We consider the initial-boundary-value problem for quasi-linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. We show the well-posedness in Hadamard's sense (i.e., existence, uniqueness and continuous dependence of solutions on the data) of regular solutions in suitable functions spaces which take into account the loss of regularity in the normal direction to the characteristic boundary.
On the matter of sustainable water resources management
This chapter attempts to develop the concept of sustainability and make it operational in the realm of water resources management. Water is unique in its primacy among natural resources as an essential component of life itself. Due to its equally unique chemical and physical prop...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melius, C
2007-12-05
The epidemiological and economic modeling of poultry diseases requires knowing the size, location, and operational type of each poultry type operation within the US. At the present time, the only national database of poultry operations that is available to the general public is the USDA's 2002 Agricultural Census data, published by the National Agricultural Statistics Service, herein referred to as the 'NASS data'. The NASS data provides census data at the county level on poultry operations for various operation types (i.e., layers, broilers, turkeys, ducks, geese). However, the number of farms and sizes of farms for the various types aremore » not independent since some facilities have more than one type of operation. Furthermore, some data on the number of birds represents the number sold, which does not represent the number of birds present at any given time. In addition, any data tabulated by NASS that could identify numbers of birds or other data reported by an individual respondent is suppressed by NASS and coded with a 'D'. To be useful for epidemiological and economic modeling, the NASS data must be converted into a unique set of facility types (farms having similar operational characteristics). The unique set must not double count facilities or birds. At the same time, it must account for all the birds, including those for which the data has been suppressed. Therefore, several data processing steps are required to work back from the published NASS data to obtain a consistent database for individual poultry operations. This technical report documents data processing steps that were used to convert the NASS data into a national poultry facility database with twenty-six facility types (7 egg-laying, 6 broiler, 1 backyard, 3 turkey, and 9 others, representing ducks, geese, ostriches, emus, pigeons, pheasants, quail, game fowl breeders and 'other'). The process involves two major steps. The first step defines the rules used to estimate the data that is suppressed within the NASS database. The first step is similar to the first step used to estimate suppressed data for livestock [Melius et al (2006)]. The second step converts the NASS poultry types into the operational facility types used by the epidemiological and economic model. We also define two additional facility types for high and low risk poultry backyards, and an additional two facility types for live bird markets and swap meets. The distribution of these additional facility types among counties is based on US population census data. The algorithm defining the number of premises and the corresponding distribution among counties and the resulting premises density plots for the continental US are provided.« less
Improved Design of Optical MEMS Using the SUMMiT Fabrication Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalicek, M.A.; Comtois, J.H.; Barron, C.C.
This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.
NASA Astrophysics Data System (ADS)
Melton, R.; Thomas, J.
With the rapid growth in the number of space actors, there has been a marked increase in the complexity and diversity of software systems utilized to support SSA target tracking, indication, warning, and collision avoidance. Historically, most SSA software has been constructed with "closed" proprietary code, which limits interoperability, inhibits the code transparency that some SSA customers need to develop domain expertise, and prevents the rapid injection of innovative concepts into these systems. Open-source aerospace software, a rapidly emerging, alternative trend in code development, is based on open collaboration, which has the potential to bring greater transparency, interoperability, flexibility, and reduced development costs. Open-source software is easily adaptable, geared to rapidly changing mission needs, and can generally be delivered at lower costs to meet mission requirements. This paper outlines Ball's COSMOS C2 system, a fully open-source, web-enabled, command-and-control software architecture which provides several unique capabilities to move the current legacy SSA software paradigm to an open source model that effectively enables pre- and post-launch asset command and control. Among the unique characteristics of COSMOS is the ease with which it can integrate with diverse hardware. This characteristic enables COSMOS to serve as the command-and-control platform for the full life-cycle development of SSA assets, from board test, to box test, to system integration and test, to on-orbit operations. The use of a modern scripting language, Ruby, also permits automated procedures to provide highly complex decision making for the tasking of SSA assets based on both telemetry data and data received from outside sources. Detailed logging enables quick anomaly detection and resolution. Integrated real-time and offline data graphing renders the visualization of the both ground and on-orbit assets simple and straightforward.
Distinguishing tracheal and esophageal tissues with hyperspectral imaging and fiber-optic sensing
NASA Astrophysics Data System (ADS)
Nawn, Corinne D.; Souhan, Brian E.; Carter, Robert, III; Kneapler, Caitlin; Fell, Nicholas; Ye, Jing Yong
2016-11-01
During emergency medical situations, where the patient has an obstructed airway or necessitates respiratory support, endotracheal intubation (ETI) is the medical technique of placing a tube into the trachea in order to facilitate adequate ventilation of the lungs. Complications during ETI, such as repeated attempts, failed intubation, or accidental intubation of the esophagus, can lead to severe consequences or ultimately death. Consequently, a need exists for a feedback mechanism to aid providers in performing successful ETI. Our study examined the spectral reflectance properties of the tracheal and esophageal tissue to determine whether a unique spectral profile exists for either tissue for the purpose of detection. The study began by using a hyperspectral camera to image excised pig tissue samples exposed to white and UV light in order to capture the spectral reflectance properties with high fidelity. After identifying a unique spectral characteristic of the trachea that significantly differed from esophageal tissue, a follow-up investigation used a fiber optic probe to confirm the detectability and consistency of the different reflectance characteristics in a pig model. Our results characterize the unique and consistent spectral reflectance characteristic of tracheal tissue, thereby providing foundational support for exploiting spectral properties to detect the trachea during medical procedures.
Single Subject Research: Applications to Special Education
ERIC Educational Resources Information Center
Cakiroglu, Orhan
2012-01-01
Single subject research is a scientific research methodology that is increasingly used in the field of special education. Therefore, understanding the unique characteristics of single subject research methodology is critical both for educators and practitioners. Certain characteristics make single subject research one of the most preferred…
NASA Astrophysics Data System (ADS)
Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.
2018-01-01
Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.
User interface and operational issues with thermionic space power systems
NASA Technical Reports Server (NTRS)
Dahlberg, R. C.; Fisher, C. R.
1987-01-01
Thermionic space power systems have unique features which facilitate predeployment operations, provide operational flexibility and simplify the interface with the user. These were studied in some detail during the SP-100 program from 1983 to 1985. Three examples are reviewed in this paper: (1) system readiness verification in the prelaunch phase; (2) startup, shutdown, and dormancy in the operations phase; (3) part-load operation in the operations phase.
Matthew Fields, J; Davis, Joshua; Alsup, Carl; Bates, Amanda; Au, Arthur; Adhikari, Srikar; Farrell, Isaac
2017-09-01
The use of ultrasonography (US) to diagnose appendicitis is well established. More recently, point-of-care ultrasonography (POCUS) has also been studied for the diagnosis of appendicitis, which may also prove a valuable diagnostic tool. The purpose of this study was through systematic review and meta-analysis to identify the test characteristics of POCUS, specifically US performed by a nonradiologist physician, in accurately diagnosing acute appendicitis in patients of any age. We conducted a thorough and systematic literature search of English language articles published on point-of-care, physician-performed transabdominal US used for the diagnosis of acute appendicitis from 1980 to May, 2015 using OVID MEDLINE In-Process & Other Non-indexed Citations and Scopus. Studies were selected and subsequently independently abstracted by two trained reviewers. A random-effects pooled analysis was used to construct a hierarchical summary receiver operator characteristic curve, and a meta-regression was performed. Quality of studies was assessed using the QUADAS-2 tool. Our search yielded 5,792 unique studies and we included 21 of these in our final review. Prevalence of disease in this study was 29.8%, (range = 6.4%-75.4%). The sensitivity and specificity for POCUS in diagnosing appendicitis were 91% (95% confidence interval [CI] = 83%-96%) and 97% (95% CI = 91%-99%), respectively. The positive and negative predictive values were 91 and 94%, respectively. Studies performed by emergency physicians had slightly lower test characteristics (sensitivity = 80%, specificity = 92%). There was significant heterogeneity between studies (I 2 = 99%, 95% CI = 99%-100%) and the quality of the reported studies was moderate, mostly due to unclear reporting of blinding of physicians and timing of scanning and patient enrollment. Several of the studies were performed by a single operator, and the education and training of the operators were variably reported. Point-of-care US has relatively high sensitivity and specificity for diagnosing acute appendicitis, although the data presented are limited by the quality of the original studies and large CIs. In the hands of an experienced operator, POCUS is an appropriate initial imaging modality for diagnosing appendicitis. Based on our results, it is premature to utilize POCUS as a stand-alone test or to rule out appendicitis. © 2017 by the Society for Academic Emergency Medicine.
Operational Leadership in the Information Age: A New Model
2000-02-08
of operational leadership and offers the individual a tool for development as well as for analyzing unique leadership situation% and thinking about the most appropriate balance of leadership styles and techniques.
The Uniqueness of EFL Teachers: Perceptions of Japanese Learners
ERIC Educational Resources Information Center
Lee, Joseph J.
2010-01-01
Building on the work of Borg (2006), this article reports on a study of Japanese English as a foreign language (EFL) learners' perceptions of some of the unique characteristics of EFL teachers that distinguish them from teachers of other subjects. The data were collected by means of a questionnaire to which 163 college-level EFL students in Japan…
Using Learning-Strategies Instruction with Students Who Are Gifted and Learning Disabled
ERIC Educational Resources Information Center
Bisland, Amy
2004-01-01
Regardless of prevalence, students who are gifted and learning disabled do exist in America's public schools, and they have unique needs that must be met through our education system (Bees, 1998). Special education teachers, regular education teachers, and teachers of the gifted should be aware of the unique characteristics of students who are…
ERIC Educational Resources Information Center
White, Susan W.; Bray, Bethany C.; Ollendick, Thomas H.
2012-01-01
Social Anxiety Disorder (SAD) and Autism Spectrum Disorders (ASD) are fairly common psychiatric conditions that impair the functioning of otherwise healthy young adults. Given that the two conditions frequently co-occur, measurement of the characteristics unique to each condition is critical. This study evaluated the structure and construct…
Smooth time-dependent receiver operating characteristic curve estimators.
Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos
2018-03-01
The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.
Managing NASA's International Space Station Logistics and Maintenance Program
NASA Technical Reports Server (NTRS)
Butina, Anthony
2001-01-01
The International Space Station's Logistics and Maintenance program has had to develop new technologies and a management approach for both space and ground operations. The ISS will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines - it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally completed in 2006. It has over 6,000 orbital replaceable units (ORU), and spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors. From conception to operation, the ISS requires a unique approach in all aspects of development and operations. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station for both space and ground operations. It started with the basic support concept developed for Department of Defense systems, and then it was tailored for the unique requirements of a manned space vehicle. Space logistics is a new concept that has wide reaching consequences for both space travel and life on Earth. This paper discusses what type of organization has been put into place to support both space and ground operations and discusses each element of that organization. In addition, some of the unique operations approaches this organization has had to develop is discussed.
Shared mission operations concept
NASA Technical Reports Server (NTRS)
Spradlin, Gary L.; Rudd, Richard P.; Linick, Susan H.
1994-01-01
Historically, new JPL flight projects have developed a Mission Operations System (MOS) as unique as their spacecraft, and have utilized a mission-dedicated staff to monitor and control the spacecraft through the MOS. NASA budgetary pressures to reduce mission operations costs have led to the development and reliance on multimission ground system capabilities. The use of these multimission capabilities has not eliminated an ongoing requirement for a nucleus of personnel familiar with a given spacecraft and its mission to perform mission-dedicated operations. The high cost of skilled personnel required to support projects with diverse mission objectives has the potential for significant reduction through shared mission operations among mission-compatible projects. Shared mission operations are feasible if: (1) the missions do not conflict with one another in terms of peak activity periods, (2) a unique MOS is not required, and (3) there is sufficient similarity in the mission profiles so that greatly different skills would not be required to support each mission. This paper will further develop this shared mission operations concept. We will illustrate how a Discovery-class mission would enter a 'partner' relationship with the Voyager Project, and can minimize MOS development and operations costs by early and careful consideration of mission operations requirements.
NASA Astrophysics Data System (ADS)
Calhoun, William R., III
One of the most recent advancements in laser technology is the development of ultrashort pulsed femtosecond lasers (FSLs). FSLs are improving many fields due to their unique extreme precision, low energy and ablation characteristics. In the area of laser medicine, ophthalmic surgeries have seen very promising developments. Some of the most commonly performed surgical operations in the world, including laser-assisted in-situ keratomileusis (LASIK), lens replacement (cataract surgery), and keratoplasty (cornea transplant), now employ FSLs for their unique abilities that lead to improved clinical outcome and patient satisfaction. The application of FSLs in medical therapeutics is a recent development, and although they offer many benefits, FSLs also stimulate nonlinear optical effects (NOEs), many of which were insignificant with previously developed lasers. NOEs can change the laser characteristics during propagation through a medium, which can subsequently introduce unique safety concerns for the surrounding tissues. Traditional approaches for characterizing optical effects, laser performance, safety and efficacy do not properly account for NOEs, and there remains a lack of data that describe NOEs in clinically relevant procedures and tissues. As FSL technology continues to expand towards new applications, FSL induced NOEs need to be better understood in order to ensure safety as FSL medical devices and applications continue to evolve at a rapid pace. In order to improve the understanding of FSL-tissue interactions related to NOEs stimulated during laser beam propagation though corneal tissue, research investigations were conducted to evaluate corneal optical properties and determine how corneal tissue properties including corneal layer, collagen orientation and collagen crosslinking, and laser parameters including pulse energy, repetition rate and numerical aperture affect second and third-harmonic generation (HG) intensity, duration and efficiency. The results of these studies revealed that all laser parameters and tissue properties had a substantial influence on HG. The dynamic relationship between optical breakdown and HG was responsible for many observed changes in HG metrics. The results also demonstrated that the new generation of therapeutic FSLs has the potential to generate hazardous effects if not carefully controlled. Finally, recommendations are made to optimize current and guide future FSL applications.
Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.
1995-01-01
The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a reference 240 t-class heavy lift launch vehicle (HLLV) and smaller 120 t HLLV option. Attractive performance characteristics and high-leverage technologies associated with both the engine and stage are identified, and supporting parametric sensitivity data is provided. The potential for commonality of engine and stage components to satisfy a broad range of lunar and Mars missions is also discussed.
NASA Astrophysics Data System (ADS)
Hong, F. T.; Hong, F. H.; Needleman, R. B.; Ni, B.; Chang, M.
1992-07-01
Bacteriorhodopsins (bR's) modified by substitution of the chromophore with synthetic vitamin A analogues or by spontaneous mutation have been reported as successful examples of using biomaterials to construct molecular optoelectronic devices. The operation of these devices depends on desirable optical properties derived from molecular engineering. This report examines the effect of site-directed mutagenesis on the photoelectric behavior of bR thin films with an emphasis on their application to the construction of molecular devices based on their unique photoelectric behavior. We examine the photoelectric signals induced by a microsecond light pulse in thin films which contain reconstituted oriented purple membrane sheets isolated from several mutant strains of Halobacterium halobium. A recently developed expression system is used to synthesize mutant bR's in their natural host, H. halobium. We then use a unique analytical method (tunable voltage clamp method) to investigate the effect of pH on the relaxation of two components of the photoelectric signals, B1 and B2. We found that for the four mutant bR's examined, the pH dependence of the B2 component varies significantly. Our results suggest that genetic engineering approaches can produce mutant bR's with altered photoelectric characteristics that can be exploited in the construction of devices.
Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project
NASA Technical Reports Server (NTRS)
Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.
2006-01-01
NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.
Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases
NASA Technical Reports Server (NTRS)
McFarland, Shane M.
2011-01-01
In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.
Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases
NASA Technical Reports Server (NTRS)
McFarland, Shane M.
2010-01-01
In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.
Lived Experiences of Low Socioeconomic Millennial Generation College Students
ERIC Educational Resources Information Center
Thacker, Kelly L.
2012-01-01
The characteristics and needs of college students across the United States are ever-changing. As Millennial generation students, born between 1982 and 2003 (Howe & Strauss, 2000), attend college, unique characteristics are present. Commonalities within the Millennial generation have been identified; however, socioeconomic status can impact a…
Premstaller, Georg; Cavedon, Valentina; Pisaturo, Giuseppe Roberto; Schweizer, Steffen; Adami, Vito; Righetti, Maurizio
2017-01-01
A hydropeaking mitigation project on Valsura River in the Italians Alps is described. The project is of particular interest due to several aspects. First of all, the Valsura torrent has unique morphological braiding characteristics, which are unique in the reach of Adige valley between Merano and Bolzano, and has a good reproduction potential for fish, especially in the terminal stretch along a biotope before its confluence with Adige River. Moreover, the Valsura hydropower cascade, which overall consists of six high-head hydropower plants, has an exceptional economic importance for the local hydropower industry. Lastly, the last HPP on the cascade is a multipurpose plant, so that interesting interactions between hydropeaking mitigation, irrigation supply and peak energy production are considered. The project started from a hydrological and a limnological measuring campaign and from an energetic, hydraulic and legislative framework analysis. The ecological findings are combined into a deficit analysis, founding the basis for the definition of a hydrological target state, which points to achieve a good natural reproduction for brown trout in the hydropeaked stretch, fulfilling at the same time the human safety conditions. Finally, mitigation Measures are described that at the same time comply with the following manifold aspects: a. maintenance of the requested target limits for fish reproduction; b. maintenance of the water release for the agricultural irrigation; c. enhancement of the flexibility of the hydropower plant's operation; d. reduction of the risk for local population. The paper compares operational and constructive mitigation measures and shows that constructive hydropeaking mitigation measures, for the present case study, can combine the positive effects of ecological improvement with higher safety standards and more flexible energy production. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, ChuXin; Trivedi, Mohan M.
1992-03-01
This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.
XV-15 Tiltrotor Low Noise Approach Operations
NASA Technical Reports Server (NTRS)
Conner, David A.; Marcolini, Michael A.; Decker, William A.; Cline, John H.; Edwards, Bryan D.; Nicks, Colby O.; Klein, Peter D.
1999-01-01
Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing approach operations for a variety of different approach profile configurations. This flight test program was conducted jointly by NASA, the U.S. Army, and Bell Helicopter Textron, Inc. (BHTI) in June 1997. The XV-15 was flown over a large area microphone array, which was deployed to directly measure the noise footprint produced during actual approach operations. The XV-15 flew realistic approach profiles that culminated in IGE hover over a landing pad. Aircraft tracking and pilot guidance was provided by a Differential Global Positioning System (DGPS) and a flight director system developed at BHTI. Approach profile designs emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. A discussion of the approach profile design philosophy is provided. Five different approach profiles are discussed in detail -- 3 deg., 6 deg., and 9 deg. approaches, and two very different 3 deg. to 9 deg. segmented approaches. The approach profile characteristics are discussed in detail, followed by the noise footprints and handling qualities. Sound exposure levels are also presented on an averaged basis and as a function of the sideline distance for a number of up-range distances from the landing point. A comparison of the noise contour areas is also provided. The results document the variation in tiltrotor noise due to changes in operating condition, and indicate the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt.
Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields
NASA Astrophysics Data System (ADS)
Smirnov, I. N.; Speranskiy, A. A.
2015-11-01
It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.
Survey of the present state of the art of piezoelectric linear motors
Hemsel; Wallaschek
2000-03-01
Piezoelectric ultrasonic motors have been investigated for several years and have already found their first practical applications. Their key feature is that they are able to produce a high thrust force related to their volume. Beside rotary drives like the travelling wave motor, linear drives have also been developed, but only a few are presently commercially available. In the present paper, we first describe the state of the art of linear piezoelectric motors. The motors are characterized with respect to their no-load velocity, maximum thrust force, efficiency and other technical properties. In the second part, we present a new motor, which is judged to be capable of surpassing the characteristics of other piezoelectric motors because of its unique design which allows the piezoelectric drive elements to be pre-stressed in the direction of their polarization. The piezoelectric elements convert energy using the longitudinal d33 effect which allows an improved reliability, large vibration amplitudes and excellent piezoelectric coupling. Energy loss by vibration damping is minimized, and the efficiency can be improved significantly. Experimental results show that the motor characteristics can be optimized for a particular task by choosing the appropriate operating parameters such as exciting voltage, exciting frequency and normal force.
Photoionization sensors for non-invasive medical diagnostics
NASA Astrophysics Data System (ADS)
Mustafaev, Aleksandr; Rastvorova, Iuliia; Khobnya, Kristina; Podenko, Sofia
2016-09-01
The analysis of biomarkers can help to identify the significant number of diseases: lung cancer, tuberculosis, diabetes, high levels of stress, psychosomatic disorders etc. To implement continuous monitoring of the state of human health, compact VUV photoionization detector with current-voltage measurement is designed by Saint-Petersburg Mining University Plasma Research Group. This sensor is based on the patented method of stabilization of electric parameters - CES (Collisional Electron Spectroscopy). During the operation at atmospheric pressure VUV photoionization sensor measures the energy of electrons, produced in the ionization with the resonance photons, whose wavelength situated in the vacuum ultraviolet (VUV). A special software was developed to obtain the second-order derivative of the I-U characteristics, taken by the VUV sensor, to construct the energy spectra of the characteristic electrons. VUV photoionization detector has an unique set of parameters: small size (10*10*1 mm), low cost, wide range of recognizable molecules, as well as accuracy, sufficient for using this instrument for the medical purposes. This device can be used for non-invasive medical diagnostics without compromising the quality of life, for control of environment and human life. Work supported by Foundation for Assistance to Small Innovative Enterprises in Science and Technology.
A comparison of the validity of GHQ-12 and CHQ-12 in Chinese primary care patients in Manchester.
Pan, P C; Goldberg, D P
1990-11-01
The present study compares the efficacy of the GHQ-12 and the Chinese Health Questionnaire (CHQ-12) in Cantonese speaking Chinese primary-care patients living in Greater Manchester, using relative operating characteristic (ROC) analysis. We did not find that the Chinese version offered any advantage over the conventional version of the GHQ in this population. Stepwise discriminant analysis however confirmed the value of individual items in the former pertaining to specific somatic symptoms and interpersonal relationships in differentiating cases from non-cases. Information biases, arising from the lack of a reliability study on the second-stage case identifying interview and the unique linguistic characteristics of the Chinese language may have affected the overall validity indices of the questionnaires. The study also examines the effects of using different criteria to define a case, and shows that with increasing levels of severity, there is an improvement in the diagnostic performance of the two questionnaires as reflected by areas under ROC curves and traditional validity indices. Possible explanations of these findings are discussed. The scoring method proposed by Goodchild & Duncan-Jones (1985) when used on these questionnaires had no demonstrable advantage over the conventional scoring method.
Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.
2004-02-01
The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.
Review and Analysis of Algorithmic Approaches Developed for Prognostics on CMAPSS Dataset
2014-12-23
publications for benchmarking prognostics algorithms. The turbofan degradation datasets have received over seven thousand unique downloads in the last five...approaches that researchers have taken to implement prognostics using these turbofan datasets. Some unique characteristics of these datasets are also...Description of the five turbofan degradation datasets available from NASA repository. Datasets #Fault Modes #Conditions #Train Units #Test Units
Wideband Single-Crystal Transducer for Bone Characterization
NASA Technical Reports Server (NTRS)
Liang, Yu; Snook, Kevin
2012-01-01
The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an excitation signal to the transducer and amplifying the signal received from the transducer. The excitation signal may be either a wide-bandwidth signal to excite the transducer across its entire operational spectrum, or a narrow-bandwidth signal optimized for a particular measurement technique. The transducer face is applied to the skin covering the bone to be characterized, and may be operated in through-transmission mode using two transducers, or in pulse-echo mode. The transducer is a unique combination of material, design, and fabrication technique. It is based on single-crystal lead magnesium niobate lead titanate (PMN-PT) piezoelectric material. As compared to the commonly used piezoceramics, this piezocrystal has superior piezoelectric and elastic properties, which results in devices with superior bandwidth, source level, and power requirements. This design necessitates a single resonant frequency. However, by operating in a transverse length-extensional mode, with the electric field applied orthogonally to the extensional direction, resonators of different sizes can share common electrodes, resulting in a multiply-resonant structure. With carefully sized resonators, and the superior bandwidth of piezocrystal, the resonances can be made to overlap to form a smooth, wide-bandwidth characteristic.
The unique radar scattering properties of silicic lava flows and domes
NASA Technical Reports Server (NTRS)
Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.
1995-01-01
Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.
Preparing Generation Z for the Teaching Profession
ERIC Educational Resources Information Center
Carter, Tim
2018-01-01
Generation Z, also known as the Homeland Generation, is the most recent generational cohort to enter the university setting. As with other generational cohorts, various shaping factors have impacted this group contributing to its unique and defining characteristics. When carefully considered, these characteristics may provide insight into how to…
Students with Emotional Disturbances: How Can School Counselors Serve?
ERIC Educational Resources Information Center
Miller, Lynne Guillot; Rainey, John S.
2008-01-01
Students with Emotional Disturbances (ED) possess unique characteristics that require additional care from school counselors, teachers, and other school personnel. Information pertaining to the prevalence of ED among students and the common characteristics of students with ED is reviewed. Additionally, ideas and effective approaches that will aid…
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hendricks, Charlene; Haynes, O. Maurice; Painter, Kathleen M.
2007-01-01
This study examined unique associations of multiple distal context variables (family socioeconomic status [SES], maternal employment, and paternal parenting) and proximal maternal (personality, intelligence, and knowledge; behavior, self-perceptions, and attributions) and child (age, gender, representation, language, and sociability)…
Some Current Findings on Brain Characteristics of the Mathematically Gifted Adolescent
ERIC Educational Resources Information Center
O'Boyle, Michael W.
2005-01-01
A number of studies investigating the brain characteristics of mathematically gifted youth indicate that they possess a unique functional organisation as compared to those of average math ability (O'Boyle, et al., 1995). Specifically, data from a variety of behavioural and psychophysiological experiments tend to suggest enhanced processing…
Samuel C. Lohr; Mason D. Bryant
1999-01-01
We reviewed existing data to determine the range and distribution of steelhead (Oncorhynchus mykiss) in southeast Alaska, summarized biological characteristics, and determined population status of steelhead stocks. Unique or sensitive stocks that may require consideration in planning land management activities are identified within the data...
Malaysian Gifted Students' Use of English Language Learning Strategies
ERIC Educational Resources Information Center
Yunus, Melor Md; Sulaiman, Nur Ainil; Embi, Mohammed Amin
2013-01-01
Many studies have been done on language learning strategies employed by different type of learners and in various contexts. However, very little studies have been done on gifted students regarding language learning. Gifted students have unique characteristics and have different ways of thinking and learning. These characteristics affect how they…
DOT National Transportation Integrated Search
2000-02-01
For a number of land uses, published trip rates were not appropriate for application in West Virginia. There are a number of so-called special genertators, which are either unique to West Virginia (i.e., regional jails) or have assumed increased impo...
DOT National Transportation Integrated Search
2000-02-01
For a number of land uses, published trip rates were not appropriate for application in West Virginia. There are a number of so-called special generators, which are either unique to West Virginia (i.e., regional jails) or have assumed increased impor...
De Los Reyes, Andres; Youngstrom, Eric A.; Pabón, Shairy C.; Youngstrom, Jennifer K.; Feeny, Norah C.; Findling, Robert L.
2011-01-01
In this study, we examined the internal consistency of informant discrepancies in reports of youth behavior and emotional problems and their unique relations with youth, caregiver, and family characteristics. In a heterogeneous multisite clinic sample of 420 youths (ages 11 to 17 years), high internal consistency estimates were observed across measures of informant discrepancies. Further, latent profile analyses identified systematic patterns of discrepancies, characterized by their magnitude and direction (i.e., which informant reported greater youth problems). Additionally, informant discrepancies systematically and uniquely related to informants' own perspectives of youth mood problems, and these relations remained significant after taking into account multiple informants' reports of informant characteristics widely known to relate to informant discrepancies. These findings call into the question the prevailing view of informant discrepancies as indicative of unreliability and/or bias on the part of informants' reports of youths' behavior. PMID:21229442
Forbes, Miriam K; Rapee, Ronald M; Camberis, Anna-Lisa; McMahon, Catherine A
2017-08-01
Existing research suggests that temperamental traits that emerge early in childhood may have utility for early detection and intervention for common mental disorders. The present study examined the unique relationships between the temperament characteristics of reactivity, approach-sociability, and persistence in early childhood and subsequent symptom trajectories of psychopathology (depression, anxiety, conduct disorder, and attention-deficit hyperactivity disorder; ADHD) from childhood to early adolescence. Data were from the first five waves of the older cohort from the Longitudinal Study of Australian Children (n = 4983; 51.2% male), which spanned ages 4-5 to 12-13. Multivariate ordinal and logistic regressions examined whether parent-reported child temperament characteristics at age 4-5 predicted the study child's subsequent symptom trajectories for each domain of psychopathology (derived using latent class growth analyses), after controlling for other presenting symptoms. Temperament characteristics differentially predicted the symptom trajectories for depression, anxiety, conduct disorder, and ADHD: Higher levels of reactivity uniquely predicted higher symptom trajectories for all 4 domains; higher levels of approach-sociability predicted higher trajectories of conduct disorder and ADHD, but lower trajectories of anxiety; and higher levels of persistence were related to lower trajectories of conduct disorder and ADHD. These findings suggest that temperament is an early identifiable risk factor for the development of psychopathology, and that identification and timely interventions for children with highly reactive temperaments in particular could prevent later mental health problems.
Wetland harvesting systems -- developing alternatives for sustainable operation
Robert B. Rummer; Bryce J. Stokes; Alvin Schilling
1997-01-01
Wetland forests represent some of the most productive forest lands in the Southeast. They are also an environmentally sensitive ecotype which presents unique problems for forest operations. Sustaining active management in these areas will require systems which can operate on weak soil conditions without adversely affecting soil properties or stand regeneration. The...
Process Operations Program is the First of Its Kind
ERIC Educational Resources Information Center
Elements of Technology, 1973
1973-01-01
The goal of the program is to produce a graduate with the technical background and expertise necessary for direct entry into a process operator training program in a petro-chemical plant. It is a unique program offered through Lambton College, Canada, in co-operation with the process industries in Sarnia's "Chemical Valley". (Author/DS)
78 FR 40963 - Regulated Navigation Areas; Bars Along the Coasts of Oregon and Washington
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-09
..., uninspected passenger vessels, small passenger vessels, and commercial fishing vessels when operating within... The bars along the coasts of Oregon and Washington are a maritime operating environment unique to the... safety of persons and vessels operating on or in the vicinity of the bars. The Coast Guard subsequently...
Operation of staged membrane oxidation reactor systems
Repasky, John Michael
2012-10-16
A method of operating a multi-stage ion transport membrane oxidation system. The method comprises providing a multi-stage ion transport membrane oxidation system with at least a first membrane oxidation stage and a second membrane oxidation stage, operating the ion transport membrane oxidation system at operating conditions including a characteristic temperature of the first membrane oxidation stage and a characteristic temperature of the second membrane oxidation stage; and controlling the production capacity and/or the product quality by changing the characteristic temperature of the first membrane oxidation stage and/or changing the characteristic temperature of the second membrane oxidation stage.
Applications of LANCE Data at SPoRT
NASA Technical Reports Server (NTRS)
Molthan, Andrew
2014-01-01
Short term Prediction Research and Transition (SPoRT) Center: Mission: Apply NASA and NOAA measurement systems and unique Earth science research to improve the accuracy of short term weather prediction at the regional/local scale. Goals: Evaluate and assess the utility of NASA and NOAA Earth science data and products and unique research capabilities to address operational weather forecast problems; Provide an environment which enables the development and testing of new capabilities to improve short term weather forecasts on a regional scale; Help ensure successful transition of new capabilities to operational weather entities for the benefit of society
Scientific investigations planned for the Lidar in-Space Technology Experiment (LITE)
NASA Technical Reports Server (NTRS)
Mccormick, M. P.; Winker, D. M.; Browell, E. V.; Coakley, J. A.; Gardner, C. S.; Hoff, R. M.; Kent, G. S.; Melfi, S. H.; Menzies, R. T.; Platt, C. M. R.
1993-01-01
The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wavelength Nd:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.
Friesner, Dan; Neufelder, Donna; Raisor, Janet; Bozman, Carl S
2009-01-01
The authors present a methodology that measures improvement in customer satisfaction scores when those scores are already high and the production process is slow and thus does not generate a large amount of useful data in any given time period. The authors used these techniques with data from a midsized rehabilitation institute affiliated with a regional, nonprofit medical center. Thus, this article functions as a case study, the findings of which may be applicable to a large number of other healthcare providers that share both the mission and challenges faced by this facility. The methodology focused on 2 factors: use of the unique characteristics of panel data to overcome the paucity of observations and a dynamic benchmarking approach to track process variability over time. By focusing on these factors, the authors identify some additional areas for process improvement despite the institute's past operational success.
Low-frequency 1/f noise in graphene devices
NASA Astrophysics Data System (ADS)
Balandin, Alexander A.
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Status of Understanding for Seal Materials
NASA Technical Reports Server (NTRS)
Brown, P. F.
1984-01-01
Material selection for mainshaft face and ring seals, labyrinth seals, accessory gearbox face seals, and lip seals are discussed in light of tribology requirements and a given seal application. Carbon graphite has been found to be one of the best sealing materials and it is widely used in current gas turbine mainshaft and accessory gearbox seals. Its popularity is due to its unique combination of properties which consists of dimensional stability, corrosion resistance, low friction, good self lubricating characteristics, high thermal conductivity and low thermal expansion, the latter two properties combining to provide good thermal shock resistance. A brief description of the seals and the requirements they must meet are discussed to provide insight into the limitations and advantages of the seals in containing the lubricant. A forecast is made of the operational requirements of main shaft and gearbox seals for advanced engines and candidate materials and coatings that may satisfy these advanced engine requirements.
Catenary optics for achromatic generation of perfect optical angular momentum
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-01-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283
NASA Technical Reports Server (NTRS)
Oesch, Christopher; Dick, Brandon; Rupp, Timothy
2015-01-01
The development of highly complex and advanced actuation systems to meet customer demands has accelerated as the use of real-time testing technology expands into multiple markets at Moog. Systems developed for the autonomous docking of human rated spacecraft to the International Space Station (ISS), envelope multi-operational characteristics which place unique constraints on an actuation system. Real-time testing hardware has been used as a platform for incremental testing and development for the linear actuation system which controls initial capture and docking for vehicles visiting the ISS. This presentation will outline the role of dSPACE hardware as a platform for rapid control-algorithm prototyping as well as an Electromechanical Actuator (EMA) system dynamic loading simulator, both conducted at Moog to develop the safety critical Linear Actuator System (LAS) of the NASA Docking System (NDS).
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
Simultaneous Observation of Lightning and Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Alnussirat, S.; Christian, H. J., Jr.; Fishman, G. J.; Burchfield, J. C.
2017-12-01
The relative timing between TGFs and lightning optical emissions is a critical parameter that may elucidate the production mechanism(s) of TGFs. In this work, we study the correlation between optical emissions detected by the Geostationary Lightning Mapper (GLM) and TGFs triggered by the Fermi-GBM. The GLM is the only instrument that detects total lightning activities (IC and CG) continuously (day and night) over a large area of the Earth, with very high efficiency and location accuracy. The unique optical emission data from the GLM will enable us to study, for the first time, the lightning activity before and after the TGF production. From this investigation, we hope to clarify the production mechanism of TGFs and the characteristics of thundercloud cells that produce them. A description of the GLM concept and operation will be presented and as well as the preliminary results of the TGF-optical emission correlation.
Spangler, Emily L; Beck, Adam W
2017-12-01
The Society for Vascular Surgery Vascular Quality Initiative is a patient safety organization and a collection of procedure-based registries that can be utilized for quality improvement initiatives and clinical outcomes research. The Vascular Quality Initiative consists of voluntary participation by centers to collect data prospectively on all consecutive cases within specific registries which physicians and centers elect to participate. The data capture extends from preoperative demographics and risk factors (including indications for operation), through the perioperative period, to outcomes data at up to 1-year of follow-up. Additionally, longer-term follow-up can be achieved by matching with Medicare claims data, providing long-term longitudinal follow-up for a majority of patients within the Vascular Quality Initiative registries. We present the unique characteristics of the Vascular Quality Initiative registries and highlight important insights gained specific to open and endovascular abdominal aortic aneurysm repair. Copyright © 2017 Elsevier Inc. All rights reserved.
Overview summary of clinical heavier-ion progress in Japan
NASA Astrophysics Data System (ADS)
Matsufuji, N.
2017-06-01
Swift ion beams such as carbon has unique characteristics suitable for treating deep-seated tumours. In Japan, carbon-ion radiotherapy was started in 1994 at Heavy Ion Medical Accelerator in Chiba (HIMAC) at National Institute of Radiological Sciences and more than 10,000 patients have been treated by Aug. 2016. Clinical outcomes show superior efficacy of carbon ions even against radioresistant tumour while keeping the quality of life at high level, and also the usefulness of hypofractionated irradiation down to the completion of the course of lung-cancer treatment in 1 day. During the decades, the improvement of hardware and software technology such as 3D scanning technique, superconducting rotating gantry or biology model have been carried out aiming at further optimized ion-beam radiotherapy as well as reducing the cost of the facility. The developed technology has been transferred to the following facilities. As of 2016, 5 carbon ion radiotherapy facilities are in operation in Japan.
Development of a remote vital signs sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, M.D.; Pacheco, M.S.; Rivas, R.R.
1997-06-01
This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologiesmore » to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.« less
Low-frequency 1/f noise in graphene devices.
Balandin, Alexander A
2013-08-01
Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.
Kron 3: a fourth intermediate age cluster in the SMC with evidence of multiple populations
NASA Astrophysics Data System (ADS)
Hollyhead, K.; Lardo, C.; Kacharov, N.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E. K.; Georgiev, I.
2018-05-01
We present the results of a spectroscopic study of the intermediate age (≈6.5 Gyr) massive cluster Kron 3 in the Small Magellanic Cloud. We measure CN and CH band strengths (at ≃3839 and 4300 Å, respectively) using VLT FORS2 spectra of 16 cluster members and find a sub-population of five stars enriched in nitrogen. We conclude that this is evidence for multiple populations in Kron 3, the fourth intermediate age cluster, after Lindsay 1, NGC 416 and NGC 339 (ages 6-8 Gyr), to display this phenomenon originally thought to be a unique characteristic of old globular clusters. At ≈6.5 Gyr this is one of the youngest clusters with multiple populations, indicating that the mechanism responsible for their onset must operate until a redshift of at least 0.75, much later than the peak of globular cluster formation at redshift ˜3.
Detecting the Presence of a Personality Disorder Using Interpersonal and Self-Dysfunction.
Beeney, Joseph E; Lazarus, Sophie A; Hallquist, Michael N; Stepp, Stephanie D; Wright, Aidan G C; Scott, Lori N; Giertych, Rachel A; Pilkonis, Paul A
2018-03-05
Calls have increased to place interpersonal and self-disturbance as defining features of personality disorders (PDs). Findings from a methodologically diverse set of studies suggest that a common factor undergirds all PDs. The nature of this core of PDs, however, is not clear. In the current study, interviews were completed for DSM-IV PD diagnosis and interpersonal dysfunction independently with 272 individuals (PD = 191, no-PD = 91). Specifically, we evaluated interpersonal dysfunction across social domains. In addition, we empirically assessed the structure of self-dysfunction in PDs. We found dysfunction in work and romantic domains, and unstable identity uniquely predicted variance in the presence of a PD. Using receiver operating characteristic analysis, we found that the interpersonal dysfunction and self-dysfunction scales each predicted PDs with high accuracy. In combination, the scales resulted in excellent sensitivity (.90) and specificity (.88). The results support interpersonal and self-dysfunction as general factors of PD.
Expression microdissection adapted to commercial laser dissection instruments
Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R
2016-01-01
Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274
Medium Altitude Endurance Unmanned Air Vehicle
NASA Astrophysics Data System (ADS)
Ernst, Larry L.
1994-10-01
The medium altitude endurance unmanned air vehicle (MAE UAV) program (formerly the tactical endurance TE UAV) is a new effort initiated by the Department of Defense to develop a ground launched UAV that can fly out 500 miles, remain on station for 24 hours, and return. It will transmit high resolution optical, infrared, and synthetic aperture radar (SAR) images of well-defended target areas through satellite links. It will provide near-real-time, releasable, low cost/low risk surveillance, targeting and damage assessment complementary to that of satellites and manned aircraft. The paper describes specific objectives of the MAE UAV program (deliverables and schedule) and the program's unique position as one of several programs to streamline the acquisition process under the cognizance of the newly established Airborne Reconnaissance Office. I discuss the system requirements and operational concept and describe the technical capabilities and characteristics of the major subsystems (airframe, propulsion, navigation, sensors, communication links, ground station, etc.) in some detail.
Engdahl, Bo; Tambs, Kristian; Borchgrevink, Hans M; Hoffman, Howard J
2005-01-01
This study aims to describe the association between otoacoustic emissions (OAEs) and pure-tone hearing thresholds (PTTs) in an unscreened adult population (N =6415), to determine the efficiency by which TEOAEs and DPOAEs can identify ears with elevated PTTs, and to investigate whether a combination of DPOAE and TEOAE responses improves this performance. Associations were examined by linear regression analysis and ANOVA. Test performance was assessed by receiver operator characteristic (ROC) curves. The relation between OAEs and PTTs appeared curvilinear with a moderate degree of non-linearity. Combining DPOAEs and TEOAEs improved performance. Test performance depended on the cut-off thresholds defining elevated PTTs with optimal values between 25 and 45 dB HL, depending on frequency and type of OAE measure. The unique constitution of the present large sample, which reflects the general adult population, makes these results applicable to population-based studies and screening programs.
The magnetic-nanofluid heat pipe with superior thermal properties through magnetic enhancement
2012-01-01
This study developed a magnetic-nanofluid (MNF) heat pipe (MNFHP) with magnetically enhanced thermal properties. Its main characteristic was additional porous iron nozzle in the evaporator and the condenser to form a unique flowing pattern of MNF slug and vapor, and to magnetically shield the magnet attraction on MNF flowing. The results showed that an optimal thermal conductivity exists in the applied field of 200 Oe. Furthermore, the minor thermal performance of MNF at the condenser limited the thermal conductivity of the entire MNFHP, which was 1.6 times greater than that filled with water for the input power of 60 W. The feasibilities of an MNFHP with the magnetically enhanced heat transfer and the ability of vertical operation were proved for both a promising heat-dissipation device and the energy architecture integrated with an additional energy system. PMID:22716909
"Nutcracker Fracture" in a Ballet Dancer Performing in The Nutcracker.
Carsen, Sasha; Quinn, Bridget J; Beck, Elizabeth; Southwick, Heather; Micheli, Lyle J
2015-09-01
A 26-year-old female professional dancer sustained an acute injury to her mid-foot during a performance of The Nutcracker. An intra-articular, comminuted, minimally displaced fracture of the cuboid was found. The patient was treated non-operatively with cast and boot immobilization, modified weightbearing, and progressive rehabilitation. She was able to return to professional dance at 6 months post-injury and continues to dance professionally over 1 year out from injury without issue. The unique demands of classical ballet, especially dancing en pointe, increase the risk for mid-foot fractures, and clinicians should have a high-index of suspicion in dancers suffering an acute injury to the foot and ankle with greater than expected pain or swelling. Multiple imaging modalities can be used to make the diagnosis, to include plain film radiographs, MRI, and CT scan. Fracture characteristics and patient-specific factors should be taken into account when deciding on a treatment plan.
Advanced composite rudders for DC-10 aircraft: Design, manufacturing, and ground tests
NASA Technical Reports Server (NTRS)
Lehman, G. M.; Purdy, D. M.; Cominsky, A.; Hawley, A. V.; Amason, M. P.; Kung, J. T.; Palmer, R. J.; Purves, N. B.; Marra, P. J.; Hancock, G. R.
1976-01-01
Design synthesis, tooling and process development, manufacturing, and ground testing of a graphite epoxy rudder for the DC-10 commercial transport are discussed. The composite structure was fabricated using a unique processing method in which the thermal expansion characteristics of rubber tooling mandrels were used to generate curing pressures during an oven cure cycle. The ground test program resulted in certification of the rudder for passenger-carrying flights. Results of the structural and environmental tests are interpreted and detailed development of the rubber tooling and manufacturing process is described. Processing, tooling, and manufacturing problems encountered during fabrication of four development rudders and ten flight-service rudders are discussed and the results of corrective actions are described. Non-recurring and recurring manufacturing labor man-hours are tabulated at the detailed operation level. A weight reduction of 13.58 kg (33 percent) was attained in the composite rudder.
NASA Technical Reports Server (NTRS)
Kimes, D. S.
1984-01-01
The directional-reflectance distributions of radiant flux from homogeneous vegetation canopies with greater than 90 percent ground cover are analyzed with a radiative-transfer model. The model assumes that the leaves consist of small finite planes with Lambertian properties. Four theoretical canopies with different leaf-orientation distributions were studied: erectophile, spherical, planophile, and heliotropic canopies. The directional-reflectance distributions from the model closely resemble reflectance distributions measured in the field. The physical scattering mechanisms operating in the model explain the variations observed in the reflectance distributions as a function of leaf-orientation distribution, solar zenith angle, and leaf transmittance and reflectance. The simulated reflectance distribution show unique characteristics for each canopy. The basic understanding of the physical scattering properties of the different canopy geometries gained in this study provide a basis for developing techniques to infer leaf-orientation distributions of vegetation canopies from directional remote-sensing measurements.
Active detection of shielded SNM with 60-keV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmann, C; Dietrich, D; Hall, J
2008-07-08
Fissile materials, e.g. {sup 235}U and {sup 239}Pu, can be detected non-invasively by active neutron interrogation. A unique characteristic of fissile material exposed to neutrons is the prompt emission of high-energy (fast) fission neutrons. One promising mode of operation subjects the object to a beam of medium-energy (epithermal) neutrons, generated by a proton beam impinging on a Li target. The emergence of fast secondary neutrons then clearly indicates the presence of fissile material. Our interrogation system comprises a low-dose 60-keV neutron generator (5 x 10{sup 6}/s), and a 1 m{sup 2} array of scintillators for fast neutron detection. Preliminary experimentalmore » results demonstrate the detectability of small quantities (370 g) of HEU shielded by steel (200 g/cm{sup 2}) or plywood (30 g/cm{sup 2}), with a typical measurement time of 1 min.« less
The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining
NASA Astrophysics Data System (ADS)
Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.
2007-02-01
The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.
Mills, Edmund M; Min, Bok Ki; Kim, Seong K; Kim, Seong Jun; Kang, Min-A; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Jung, Jongwan; Kim, Sangtae
2015-08-26
Graphene barristors are a novel type of electronic switching device with excellent performance, which surpass the low on-off ratios that limit the operation of conventional graphene transistors. In barristors, a gate bias is used to vary graphene's Fermi level, which in turn controls the height and resistance of a Schottky barrier at a graphene/semiconductor heterojunction. Here we demonstrate that the switching characteristic of a thin-film ZnO/graphene device with simple geometry results from tunneling current across the Schottky barriers formed at the ZnO/graphene heterojunctions. Direct characterization of the current-voltage-temperature relationship of the heterojunctions by ac-impedance spectroscopy reveals that this relationship is controlled predominantly by field emission, unlike most graphene barristors in which thermionic emission is observed. This governing mechanism makes the device unique among graphene barristors, while also having the advantages of simple fabrication and outstanding performance.
Catenary optics for achromatic generation of perfect optical angular momentum.
Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang
2015-10-01
The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.
Characteristics of aeroelastic instabilities in turbomachinery - NASA full scale engine test results
NASA Technical Reports Server (NTRS)
Lubomski, J. F.
1979-01-01
Several aeromechanical programs were conducted in the NASA/USAF Joint Engine System Research Programs. The scope of these programs, the instrumentation, data acquisition and reduction, and the test results are discussed. Data pertinent to four different instabilities were acquired; two types of stall flutter, choke flutter and a system mode instability. The data indicates that each instability has its own unique characteristics. These characteristics are described.
NASA Astrophysics Data System (ADS)
Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin
2014-01-01
The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.
Secrecy From Parents and Type 1 Diabetes Management in Late Adolescence
Wiebe, Deborah J.; Van Bogart, Karina; Turner, Sara L.; Tucker, Christy; Butner, Jonathan E.; Berg, Cynthia A.
2015-01-01
Objectives This study examined (a) associations of parent–adolescent relationship characteristics and adolescent problem behavior with late adolescents’ secrecy from parents about type 1 diabetes management, and (b) whether secrecy was associated with diabetes and psychological outcomes independently of these factors. Methods Adolescents (N = 247, Mage = 17.76 years) completed survey measures of diabetes-related secrecy from parents, disclosure, parental acceptance, parental knowledge, and conduct problems. Mothers and adolescents reported on adolescent adherence to diabetes regimens and adolescents reported their depressive symptoms. Glycemic control was obtained from HbA1c test kits. Results Adolescent-reported disclosure to parents was uniquely negatively associated with secrecy from parents. Controlling for relationship variables, conduct problems, and sociodemographic and illness-related variables, secrecy from mothers was uniquely associated with poorer glycemic control and secrecy from both parents was associated with lower adherence. Conclusions Secrecy about type 1 diabetes management is uniquely associated with diabetes outcomes independent of other relationship characteristics and problem behaviors. PMID:26136405
Penny, Daniel J; Krishnamurthy, Rajesh
2016-08-01
The objectives of this review are to discuss the pathophysiology of the circulation with a functionally univentricular heart, with a focus on the unique physiologic characteristics, which provide the underpinnings for the management of these complex patients. MEDLINE and PubMed. The circulation of the patient with a functionally univentricular heart displays unique physiologic characteristics, which are quite different from those of the normal biventricular circulation. There are profound differences within the heart itself in terms of ventricular function, interventricular interactions, and myocardial architecture, which are likely to have significant implications for the efficiency of ventricular ejection and metabolism. The coupling between the systemic ventricle and the aorta also displays unique features. The 3D orientation of the Fontan anastomosis itself can profoundly impact cardiac output, although the "portal" pulmonary arterial bed is a crucial determinant of overall cardiovascular function. As a result, disease-specific approaches to improve cardiovascular function are required at all stages during the care of these complex patients.
Spacelab Users Guide: A Short Introduction to Spacelab and Its Use
NASA Technical Reports Server (NTRS)
1976-01-01
Spacelab is an orbital facility that provides a pressurized, 'shirt-sleeve' laboratory (the module) and an unpressurized platform (the pallet), together with certain standard services. It is a reusable system, which is transported to and from orbit in the cargo bay of the space shuttle orbiter and remains there throughout the flight. Spacelab extends the shuttle capability, and the Orbiter/Spacelab combination can be regarded as a short-stay space station which can remain in orbit for up to 30 days (the nominal mission duration is 7 days). In orbit, the experiments carried by Spacelab are operated by a team of up to four payload specialists who normally work in the laboratory, but spend their off-duty time in the orbiter cabin. The purpose of Spacelab is to provide a ready access to space for a broad spectrum of experimenters in many fields and from many nations. Low-cost techniques are envisaged for experiment development, integration and operation. The aim of this document is to provide a brief summary of Spacelab design characteristics and its use potential for experimenters wishing to take advantage of the unique opportunities offered for space experimentation.
NASA Technical Reports Server (NTRS)
Mount, Frances; Foley, Tico
1999-01-01
Human Factors Engineering, often referred to as Ergonomics, is a science that applies a detailed understanding of human characteristics, capabilities, and limitations to the design, evaluation, and operation of environments, tools, and systems for work and daily living. Human Factors is the investigation, design, and evaluation of equipment, techniques, procedures, facilities, and human interfaces, and encompasses all aspects of human activity from manual labor to mental processing and leisure time enjoyments. In spaceflight applications, human factors engineering seeks to: (1) ensure that a task can be accomplished, (2) maintain productivity during spaceflight, and (3) ensure the habitability of the pressurized living areas. DSO 904 served as a vehicle for the verification and elucidation of human factors principles and tools in the microgravity environment. Over six flights, twelve topics were investigated. This study documented the strengths and limitations of human operators in a complex, multifaceted, and unique environment. By focusing on the man-machine interface in space flight activities, it was determined which designs allow astronauts to be optimally productive during valuable and costly space flights. Among the most promising areas of inquiry were procedures, tools, habitat, environmental conditions, tasking, work load, flexibility, and individual control over work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, D.P. Jr.; Vernetson, W.G.; Ratner, R.T.
The University of Florida Training Reactor (UFTR) facilities including the analytical laboratory are used for a wide range of educational, research, training, and service functions. The UFTR is a 100-kW light-water-cooled, graphite-and-water-moderated modified Argonaut-type reactor. The UFTR utilizes high enriched plate-type fuel in a two-slab arrangement and operates at a 100-kW power level. Since first licensed to operate at 10 kW in 1959, this nonpower reactor facility has had an active but evolving record of continuous service to a wide range of academic, utility, and community users. The services of the UFTR have also been used by various state authoritiesmore » in criminal investigations. Because of its relatively low power and careful laboratory analyses, the UFTR neutron flux characteristics in several ports are not only well characterized but they are also quite invariant with time. As a result, such a facility is well-suited to the application of the multielement analysis using the k{sub o}-standardization method of neutron activation analysis. The analysis of untreated evidential botanical samples presented a unique opportunity to demonstrate implementation of this method at the UFTR facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Mr. Suxin; Gluesenkamp, Kyle R; Hwang, Dr. Yunho
Adsorption chillers are capable of utilizing inexpensive or free low grade thermal energy such as waste heat and concentrated solar thermal energy. Recently developed low regeneration temperature working pairs allow adsorption chillers to be driven by even lower temperature sources such as engine coolant and flat plate solar collectors. In this work, synthetic zeolite/water was implemented into a 3kW adsorption chiller test facility driven by hot water at 70 C. The zeolite was coated onto two fin-and-tube heat exchangers, with heat recovery employed between the two. Cyclic steady state parametric studies were experimentally conducted to evaluate the chiller's performance, resultingmore » in a cooling coefficient of performance (COP) ranging from 0.1 to 0.6 at different operating conditions. Its performance was compared with published values for other low regeneration temperature working pairs. The physical limitations of the synthetic zeolite revealed by parametric study results were then discussed. A novel operating control strategy was proposed based on the unique characteristics of synthetic zeolite. In addition, a physics-based COP prediction model was derived to predict the performance of the chiller under equilibrium loading, and was validated by the experiment results. This analytical expression can be used to estimate the cyclic steady state performance for future studies.« less
Potential of membrane distillation for production of high quality fruit juice concentrate.
Onsekizoglu Bagci, Pelin
2015-01-01
Fruit juices are generally concentrated in order to improve the stability during storage and to reduce handling, packaging, and transportation costs. Thermal evaporation is the most widely used technique in industrial fruit juice concentrate production. In addition to high energy consumption, a large part of the characteristics determining the quality of the fresh juice including aroma, color, vitamins, and antioxidants undergoes remarkable alterations through the use of high operation temperatures. Increasing consumer demand for minimally or naturally processed stable products able to retain as much possible the uniqueness of the fresh fruit has engendered a growing interest for development of nonthermal approaches for fruit juice concentration. Among them, membrane distillation (MD) and its variants have attracted much attention for allowing very high concentrations to be reached under atmospheric pressure and temperatures near ambient temperature. This review will provide an overview of the current status and recent developments in the use of MD for concentration of fruit juices. In addition to the most basic concepts of MD variants, crucial suggestions for membrane selection and operating parameters will be presented. Challenges and future trends for industrial adaptation taking into account the possibility of integrating MD with other existing processes will be discussed.
Multiple Rib Nonunion: Open Reduction and Internal Fixation and Iliac Crest Bone Graft Aspirate.
Kaplan, Daniel J; Begly, John; Tejwani, Nirmal
2017-08-01
Rib fractures are a common chest injury that can typically be treated nonoperatively. However, a percentage of these will go on to nonunion, either because of unique characteristics of the fracture itself or because of a variety of poor healing factors of the host. If a patient has continued symptomology beyond 3 months, surgeons may consider operative management. Although isolated resection of fibrous scar tissue from the nonunion site may be sufficient in some cases, it may also be necessary to provide additional structural integrity to the rib depending on the extent of the fracture pattern and resection. This goal can be achieved operatively with rib plating and bone grafting to promote healing. This video demonstrates the use of plating in the treatment of rib nonunion. It begins with relevant background information on rib fractures and nonunions, then details the approach, open reduction and internal fixation of 3 ribs using plates and bone graft aspirate. Pearls and pitfalls are included during the surgical technique aspect of the video to both help guide surgeons new to the procedure and provide potentially advantageous technical details to more experienced surgeons.
Availability and End-to-end Reliability in Low Duty Cycle Multihop Wireless Sensor Networks.
Suhonen, Jukka; Hämäläinen, Timo D; Hännikäinen, Marko
2009-01-01
A wireless sensor network (WSN) is an ad-hoc technology that may even consist of thousands of nodes, which necessitates autonomic, self-organizing and multihop operations. A typical WSN node is battery powered, which makes the network lifetime the primary concern. The highest energy efficiency is achieved with low duty cycle operation, however, this alone is not enough. WSNs are deployed for different uses, each requiring acceptable Quality of Service (QoS). Due to the unique characteristics of WSNs, such as dynamic wireless multihop routing and resource constraints, the legacy QoS metrics are not feasible as such. We give a new definition to measure and implement QoS in low duty cycle WSNs, namely availability and reliability. Then, we analyze the effect of duty cycling for reaching the availability and reliability. The results are obtained by simulations with ZigBee and proprietary TUTWSN protocols. Based on the results, we also propose a data forwarding algorithm suitable for resource constrained WSNs that guarantees end-to-end reliability while adding a small overhead that is relative to the packet error rate (PER). The forwarding algorithm guarantees reliability up to 30% PER.
Butler, Emily E; Saville, Christopher W N; Ward, Robert; Ramsey, Richard
2017-01-01
The human face cues a range of important fitness information, which guides mate selection towards desirable others. Given humans' high investment in the central nervous system (CNS), cues to CNS function should be especially important in social selection. We tested if facial attractiveness preferences are sensitive to the reliability of human nervous system function. Several decades of research suggest an operational measure for CNS reliability is reaction time variability, which is measured by standard deviation of reaction times across trials. Across two experiments, we show that low reaction time variability is associated with facial attractiveness. Moreover, variability in performance made a unique contribution to attractiveness judgements above and beyond both physical health and sex-typicality judgements, which have previously been associated with perceptions of attractiveness. In a third experiment, we empirically estimated the distribution of attractiveness preferences expected by chance and show that the size and direction of our results in Experiments 1 and 2 are statistically unlikely without reference to reaction time variability. We conclude that an operating characteristic of the human nervous system, reliability of information processing, is signalled to others through facial appearance. Copyright © 2016 Elsevier B.V. All rights reserved.
Giordano, Nicholas A; Bader, Christine; Richmond, Therese S; Polomano, Rosemary C
2018-04-01
Understanding the complex interrelationships between combat injuries, physical health, and mental health symptoms is critical to addressing the healthcare needs of wounded military personnel and veterans. The relationship between injury characteristics, pain, posttraumatic stress disorder (PTSD), and depression among combat-injured military personnel is unique to modern conflicts and understudied in the nursing literature. This integrative review synthesizes clinical presentations and relationships of combat injury, PTSD, depression, and pain in Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) United States military service members and veterans. A literature search was conducted using relative key terms across databases to identify peer-reviewed publications between 2001 and 2016 that examined health outcomes of combat-injured persons in OEF and OIF. The quality of evidence was evaluated and results synthesized to examine the association of combat injury as a risk factor for PTSD, the relationship of PTSD and depression pre- and postinjury, and pain management throughout care. Twenty-two articles were included in this review. Greater injury and pain severity poses risks for developing PTSD following combat injury, while early symptom management lessens risks for PTSD. Depression appears to be both a contributing risk factor to postinjury PTSD, as well as a comorbidity. Findings demonstrate a compelling need for improvements in standardized assessment of pain and mental health symptoms across transitions in care. This integrative review informs nurse researchers and providers of the clinical characteristics of pain, PTSD, and depression following combat injury and offers implications for future research promoting optimal surveillance of symptoms. © 2018 Sigma Theta Tau International.
Ferraro, Jeffrey P; Daumé, Hal; Duvall, Scott L; Chapman, Wendy W; Harkema, Henk; Haug, Peter J
2013-01-01
Natural language processing (NLP) tasks are commonly decomposed into subtasks, chained together to form processing pipelines. The residual error produced in these subtasks propagates, adversely affecting the end objectives. Limited availability of annotated clinical data remains a barrier to reaching state-of-the-art operating characteristics using statistically based NLP tools in the clinical domain. Here we explore the unique linguistic constructions of clinical texts and demonstrate the loss in operating characteristics when out-of-the-box part-of-speech (POS) tagging tools are applied to the clinical domain. We test a domain adaptation approach integrating a novel lexical-generation probability rule used in a transformation-based learner to boost POS performance on clinical narratives. Two target corpora from independent healthcare institutions were constructed from high frequency clinical narratives. Four leading POS taggers with their out-of-the-box models trained from general English and biomedical abstracts were evaluated against these clinical corpora. A high performing domain adaptation method, Easy Adapt, was compared to our newly proposed method ClinAdapt. The evaluated POS taggers drop in accuracy by 8.5-15% when tested on clinical narratives. The highest performing tagger reports an accuracy of 88.6%. Domain adaptation with Easy Adapt reports accuracies of 88.3-91.0% on clinical texts. ClinAdapt reports 93.2-93.9%. ClinAdapt successfully boosts POS tagging performance through domain adaptation requiring a modest amount of annotated clinical data. Improving the performance of critical NLP subtasks is expected to reduce pipeline error propagation leading to better overall results on complex processing tasks.
Mickes, Laura; Flowe, Heather D; Wixted, John T
2012-12-01
A police lineup presents a real-world signal-detection problem because there are two possible states of the world (the suspect is either innocent or guilty), some degree of information about the true state of the world is available (the eyewitness has some degree of memory for the perpetrator), and a decision is made (identifying the suspect or not). A similar state of affairs applies to diagnostic tests in medicine because, in a patient, the disease is either present or absent, a diagnostic test yields some degree of information about the true state of affairs, and a decision is made about the presence or absence of the disease. In medicine, receiver operating characteristic (ROC) analysis is the standard method for assessing diagnostic accuracy. By contrast, in the eyewitness memory literature, this powerful technique has never been used. Instead, researchers have attempted to assess the diagnostic performance of different lineup procedures using methods that cannot identify the better procedure (e.g., by computing a diagnosticity ratio). Here, we describe the basics of ROC analysis, explaining why it is needed and showing how to use it to measure the performance of different lineup procedures. To illustrate the unique advantages of this technique, we also report 3 ROC experiments that were designed to investigate the diagnostic accuracy of simultaneous versus sequential lineups. According to our findings, the sequential procedure appears to be inferior to the simultaneous procedure in discriminating between the presence versus absence of a guilty suspect in a lineup.
Visualization of the significance of Receiver Operating Characteristics based on confidence ellipses
NASA Astrophysics Data System (ADS)
Sarlis, Nicholas V.; Christopoulos, Stavros-Richard G.
2014-03-01
The Receiver Operating Characteristics (ROC) is used for the evaluation of prediction methods in various disciplines like meteorology, geophysics, complex system physics, medicine etc. The estimation of the significance of a binary prediction method, however, remains a cumbersome task and is usually done by repeating the calculations by Monte Carlo. The FORTRAN code provided here simplifies this problem by evaluating the significance of binary predictions for a family of ellipses which are based on confidence ellipses and cover the whole ROC space. Catalogue identifier: AERY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 11511 No. of bytes in distributed program, including test data, etc.: 72906 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any computer supporting a GNU FORTRAN compiler. Operating system: Linux, MacOS, Windows. RAM: 1Mbyte Classification: 4.13, 9, 14. Nature of problem: The Receiver Operating Characteristics (ROC) is used for the evaluation of prediction methods in various disciplines like meteorology, geophysics, complex system physics, medicine etc. The estimation of the significance of a binary prediction method, however, remains a cumbersome task and is usually done by repeating the calculations by Monte Carlo. The FORTRAN code provided here simplifies this problem by evaluating the significance of binary predictions for a family of ellipses which are based on confidence ellipses and cover the whole ROC space. Solution method: Using the statistics of random binary predictions for a given value of the predictor threshold ɛt, one can construct the corresponding confidence ellipses. The envelope of these corresponding confidence ellipses is estimated when ɛt varies from 0 to 1. This way a new family of ellipses is obtained, named k-ellipses, which covers the whole ROC plane and leads to a well defined Area Under the Curve (AUC). For the latter quantity, Mason and Graham [1] have shown that it follows the Mann-Whitney U-statistics [2] which can be applied [3] for the estimation of the statistical significance of each k-ellipse. As the transformation is invertible, any point on the ROC plane corresponds to a unique value of k, thus to a unique p-value to obtain this point by chance. The present FORTRAN code provides this p-value field on the ROC plane as well as the k-ellipses corresponding to the (p=)10%, 5% and 1% significance levels using as input the number of the positive (P) and negative (Q) cases to be predicted. Unusual features: In some machines, the compiler directive -O2 or -O3 should be used to avoid NaN’s in some points of the p-field along the diagonal. Running time: Depending on the application, e.g., 4s for an Intel(R) Core(TM)2 CPU E7600 at 3.06 GHz with 2 GB RAM for the examples presented here References: [1] S.J. Mason, N.E. Graham, Quart. J. Roy. Meteor. Soc. 128 (2002) 2145. [2] H.B. Mann, D.R. Whitney, Ann. Math. Statist. 18 (1947) 50. [3] L.C. Dinneen, B.C. Blakesley, J. Roy. Stat. Soc. Ser. C Appl. Stat. 22 (1973) 269.
Homemade battery-operated multi-barreled muzzle-loading gun.
Ramiah, R; Thirunavukkarasu, G
2003-11-01
In a recent shootout by a terrorist group against a law enforcement agency, some unusual firearms were seized. On examination, these firearms were found to be homemade, battery-operated, multi-barreled muzzle-loading guns, analogous to a repeater. Reference to battery-operated firearms is rather scanty in the literature. Hence, the unique design features, electrical circuit, and the operation system of these unusual guns are described.
Operational Characteristics of an Accelerator Driven Fissile Solution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimpland, Robert Herbert
Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less
Preparation of Simulated LBL Defects for Round Robin Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Hunn, John D.
2016-01-01
A critical characteristic of the TRISO fuel design is its ability to retain fission products. During reactor operation, the TRISO layers act as barriers to release of fission products not stabilized in the kernel. Each component of the TRISO particle and compact construction plays a unique role in retaining select fission products, and layer performance is often interrelated. The IPyC, SiC, and OPyC layers are barriers to the release of fission product gases such as Kr and Xe. The SiC layer provides the primary barrier to release of metallic fission products not retained in the kernel, as transport across themore » SiC layer is rate limiting due to the greater permeability of the IPyC and OPyC layers to many metallic fission products. These attributes allow intact TRISO coatings to successfully retain most fission products released from the kernel, with the majority of released fission products during operation being due to defective, damaged, or failed coatings. This dominant release of fission products from compromised particles contributes to the overall source term in reactor; causing safety and maintenance concerns and limiting the lifetime of the fuel. Under these considerations, an understanding of the nature and frequency of compromised particles is an important part of predicting the expected fission product release and ensuring safe and efficient operation.« less
DOT National Transportation Integrated Search
2013-11-01
The transit industry has always shown a great interest in the adoption of transformational safety technologies to improve the safety of its passengers and drivers, as well as all road users including pedestrians. Due to its unique characteristics and...
Characteristics and availability of commercially important woods
Regis B. Miller
1999-01-01
Throughout history, the unique characteristics and comparative abundance of wood have made it a natural material for homes and other structures, furniture, tools, vehicles, and decorative objects. Today, for the same reasons, wood is prized for a multitude of uses. All wood is composed of cellulose, lignin, hemicelluloses, and minor amounts (5% to 10%) of extraneous...
ERIC Educational Resources Information Center
Heijke, Hans; Meng, Christoph
2011-01-01
Using a unique European data-set, we investigated the significance of five higher education programme characteristics for the labour market position of the graduates: the academic versus discipline-specific character of the competencies generated; the standardization of these competencies; the combination of working and learning; the…
Individual, Familial, Friends-Related and Contextual Predictors of Early Sexual Intercourse
ERIC Educational Resources Information Center
Boislard P., Marie-Aude; Poulin, Francois
2011-01-01
This study examined the unique and simultaneous contribution of adolescents' characteristics, parent-child relationship and friends' characteristics on early sexual intercourse, while accounting for family status. A longitudinal multi-sample design was used. The first sample was recruited in a suburban context (n = 265; 62% girls) and the second…
Tailoring Consultation in Organization Development for Particular Schools. An Occasional Paper.
ERIC Educational Resources Information Center
Schmuck, Richard; And Others
This paper discusses characteristics of school organizations and strategies of organization development (OD) consultation as they relate to organizational change in schools. The basic premise of the paper is that any OD intervention in a school should be a somewhat unique series of events specifically tailored to the needs and characteristics of…
NASA Technical Reports Server (NTRS)
Nakamura, T.; Noguchi, T.; Zolensky, M. E.; Takaoka, N.
2001-01-01
Noble gas isotopic signatures and X-ray and electron diffraction characteristics of Tagish Lake indicate that it is a unique carbonaceous chondrite rich in saponite, Fe-Mg-Ca carbonate, primordial noble gases, and presolar grains. Additional information is contained in the original extended abstract.
Redlining or Risk? A Spatial Analysis of Auto Insurance Rates in Los Angeles
ERIC Educational Resources Information Center
Ong, Paul M.; Stoll, Michael A.
2007-01-01
Auto insurance rates can vary dramatically, with much higher premiums in poor and minority areas than elsewhere, even after accounting for individual characteristics, driving history, and coverage. This paper uses a unique data set to examine the relative influence of place-based socioeconomic characteristics (or redlining) and place-based risk…
ERIC Educational Resources Information Center
Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris
2014-01-01
Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…
ERIC Educational Resources Information Center
Dimitropoulos, Anastasia; Ho, Alan Y.; Klaiman, Cheryl; Koenig, Kathy; Schultz, Robert T.
2009-01-01
In order to investigate unique and shared characteristics and to determine factors predictive of group classification, quantitative comparisons of behavioral and emotional problems were assessed using the Developmental Behavior Checklist (DBC-P) and the Vineland Adaptive Behavior Scales in autistic disorder, Williams syndrome (WS), and…
Lavi, T; Green, O; Dekel, R
2013-02-01
The study examined the unique contribution of both personal characteristics and several types of exposure variables to the adjustment of Israeli adolescents following the Second Lebanon War. Two thousand three hundred and fourteen adolescents, who lived in areas that were the target of multiple missile attacks, completed self-report questionnaires assessing personal characteristics of gender and early traumatic events, subjective exposure (i.e., measures of fear and shortage of basic necessities during the war), objective exposure (i.e., exposure to missile attacks, knowing someone who was wounded or killed) and media exposure. Fifteen percent of the adolescents reported moderate or severe post-traumatic symptoms. Girls and adolescents who experienced earlier traumatic events were at higher risk for distress. While the level of direct exposure contributed to greater distress, the contribution of subjective exposure was significantly stronger. The discussion deals with the unique contribution of both subjective and objective characteristics to post-war adjustment. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...
Gao, Beile; Gupta, Radhey S
2007-01-01
Background The Archaea are highly diverse in terms of their physiology, metabolism and ecology. Presently, very few molecular characteristics are known that are uniquely shared by either all archaea or the different main groups within archaea. The evolutionary relationships among different groups within the Euryarchaeota branch are also not clearly understood. Results We have carried out comprehensive analyses on each open reading frame (ORFs) in the genomes of 11 archaea (3 Crenarchaeota – Aeropyrum pernix, Pyrobaculum aerophilum and Sulfolobus acidocaldarius; 8 Euryarchaeota – Pyrococcus abyssi, Methanococcus maripaludis, Methanopyrus kandleri, Methanococcoides burtonii, Halobacterium sp. NCR-1, Haloquadratum walsbyi, Thermoplasma acidophilum and Picrophilus torridus) to search for proteins that are unique to either all Archaea or for its main subgroups. These studies have identified 1448 proteins or ORFs that are distinctive characteristics of Archaea and its various subgroups and whose homologues are not found in other organisms. Six of these proteins are unique to all Archaea, 10 others are only missing in Nanoarchaeum equitans and a large number of other proteins are specific for various main groups within the Archaea (e.g. Crenarchaeota, Euryarchaeota, Sulfolobales and Desulfurococcales, Halobacteriales, Thermococci, Thermoplasmata, all methanogenic archaea or particular groups of methanogens). Of particular importance is the observation that 31 proteins are uniquely present in virtually all methanogens (including M. kandleri) and 10 additional proteins are only found in different methanogens as well as A. fulgidus. In contrast, no protein was exclusively shared by various methanogen and any of the Halobacteriales or Thermoplasmatales. These results strongly indicate that all methanogenic archaea form a monophyletic group exclusive of other archaea and that this lineage likely evolved from Archaeoglobus. In addition, 15 proteins that are uniquely shared by M. kandleri and Methanobacteriales suggest a close evolutionary relationship between them. In contrast to the phylogenomics studies, a monophyletic grouping of archaea is not supported by phylogenetic analyses based on protein sequences. Conclusion The identified archaea-specific proteins provide novel molecular markers or signature proteins that are distinctive characteristics of Archaea and all of its major subgroups. The species distributions of these proteins provide novel insights into the evolutionary relationships among different groups within Archaea, particularly regarding the origin of methanogenesis. Most of these proteins are of unknown function and further studies should lead to discovery of novel biochemical and physiological characteristics that are unique to either all archaea or its different subgroups. PMID:17394648
49 CFR 381.205 - How do I determine when I may request a waiver?
Code of Federal Regulations, 2014 CFR
2014-10-01
... from using or operating CMVs, or make it unreasonably difficult to do so, during a unique, non... alternatives already available that would allow your use or operation of CMVs during the event. You should also...
49 CFR 381.205 - How do I determine when I may request a waiver?
Code of Federal Regulations, 2011 CFR
2011-10-01
... from using or operating CMVs, or make it unreasonably difficult to do so, during a unique, non... alternatives already available that would allow your use or operation of CMVs during the event. You should also...
49 CFR 381.205 - How do I determine when I may request a waiver?
Code of Federal Regulations, 2012 CFR
2012-10-01
... from using or operating CMVs, or make it unreasonably difficult to do so, during a unique, non... alternatives already available that would allow your use or operation of CMVs during the event. You should also...
49 CFR 381.205 - How do I determine when I may request a waiver?
Code of Federal Regulations, 2010 CFR
2010-10-01
... from using or operating CMVs, or make it unreasonably difficult to do so, during a unique, non... alternatives already available that would allow your use or operation of CMVs during the event. You should also...