Sample records for unique primary sequence

  1. GE-17ALTERATION OF THE p53 PATHWAY AND ANCESTRAL PROGENITORS ARE ASSOCIATED WITH TUMOR RECURRENCE IN GLIOBLASTOMA

    PubMed Central

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed; Virk, Selene; Mikkelsen, Tom; Brat, Daniel; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew; Cohen, Mark; Van Meir, Erwin; Scarpace, Lisa; Lander, Eric; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill; Verhaak, Roel

    2014-01-01

    To evaluate evolutionary patterns of GBM recurrence, we analyzed whole genome sequencing (WGS) and multi-sector exome sequencing data from pairs of primary and posttreatment GBM. WGS on ten primary-recurrent pairs detected a median number of 12,214 mutations which we utilized to uncover clonal structures, by analyzing the distribution of mutation cellular frequencies (the fraction of tumor cells harboring a mutation). On average, 41 % of the mutations were shared by primary and recurrence. The majority of shared mutations were clonal in both primary and recurrence, but we also observed many clonal mutations that were uniquely detected in either the primary or the recurrence. This raises the intriguing possibility that major tumor clones in the primary tumor and disease relapse both evolved from a shared ancestral tumor cell population. At least one subclone was identified in the majority of WGS samples, and we observed groups of mutations that were at low cancer cell fractions in both primary and recurrence, suggesting that both subclones evolved from the same ancestral tumor cells separate from the major clone ancestral cells. To address the possibility that the lack of overlap between subsequent tumors was due to intratumoral heterogeneity, we analyzed exome sequencing from a second tumor sector of seven primary and six recurrent tumors. We found that the majority of "second biopsy" mutations were not conserved between time points, suggesting that intratumoral heterogeneity did not explain the large number of mutations uniquely detected in primary and recurrence. The limited overlap of mutations in primary and recurrence provides evidence for ancestral tumor cell populations that could not be eradicated by therapy, while offspring cell populations contained unique mutations, were selectively killed by treatment and could therefore no longer be detected after disease relapse. This study has provided new insights into patterns and dynamics of tumor evolution.

  2. Novel numerical and graphical representation of DNA sequences and proteins.

    PubMed

    Randić, M; Novic, M; Vikić-Topić, D; Plavsić, D

    2006-12-01

    We have introduced novel numerical and graphical representations of DNA, which offer a simple and unique characterization of DNA sequences. The numerical representation of a DNA sequence is given as a sequence of real numbers derived from a unique graphical representation of the standard genetic code. There is no loss of information on the primary structure of a DNA sequence associated with this numerical representation. The novel representations are illustrated with the coding sequences of the first exon of beta-globin gene of half a dozen species in addition to human. The method can be extended to proteins as is exemplified by humanin, a 24-aa peptide that has recently been identified as a specific inhibitor of neuronal cell death induced by familial Alzheimer's disease mutant genes.

  3. A Repeat Look at Repeating Patterns

    ERIC Educational Resources Information Center

    Markworth, Kimberly A.

    2016-01-01

    A "repeating pattern" is a cyclical repetition of an identifiable core. Children in the primary grades usually begin pattern work with fairly simple patterns, such as AB, ABC, or ABB patterns. The unique letters represent unique elements, whereas the sequence of letters represents the core that is repeated. Based on color, shape,…

  4. Fabrication of a New Lineage of Artificial Luciferases from Natural Luciferase Pools.

    PubMed

    Kim, Sung Bae; Nishihara, Ryo; Citterio, Daniel; Suzuki, Koji

    2017-09-11

    The fabrication of artificial luciferases (ALucs) with unique optical properties has a fundamental impact on bioassays and molecular imaging. In this study, we developed a new lineage of ALucs with unique substrate preferences by extracting consensus amino acids from the alignment of 25 copepod luciferase sequences available in natural luciferase pools. The primary sequence was first created with a sequence logo generator resulting in a total of 11 sibling sequences. Phylogenetic analysis shows that the newly fabricated ALucs form an independent branch, genetically isolated from the natural luciferases, and from a prior series of ALucs produced by our laboratory using a smaller basis set. The new lineage of ALucs were strongly luminescent in living mammalian cells with specific substrate selectivity to native coelenterazine. A single-residue-level comparison of the C-terminal sequences of new ALucs reveals that some amino acids in the C-terminal ends are greatly influential on the optical intensities but limited in the color variance. The success of this approach guides on how to engineer and functionalize marine luciferases for bioluminescence imaging and assays.

  5. LymPHOS 2.0: an update of a phosphosite database of primary human T cells

    PubMed Central

    Nguyen, Tien Dung; Vidal-Cortes, Oriol; Gallardo, Oscar; Abian, Joaquin; Carrascal, Montserrat

    2015-01-01

    LymPHOS is a web-oriented database containing peptide and protein sequences and spectrometric information on the phosphoproteome of primary human T-Lymphocytes. Current release 2.0 contains 15 566 phosphorylation sites from 8273 unique phosphopeptides and 4937 proteins, which correspond to a 45-fold increase over the original database description. It now includes quantitative data on phosphorylation changes after time-dependent treatment with activators of the TCR-mediated signal transduction pathway. Sequence data quality has also been improved with the use of multiple search engines for database searching. LymPHOS can be publicly accessed at http://www.lymphos.org. Database URL: http://www.lymphos.org. PMID:26708986

  6. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.)

    PubMed Central

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-01-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518

  7. Unique pathway of expression of an opal suppressor phosphoserine tRNA.

    PubMed Central

    Lee, B J; de la Peña, P; Tobian, J A; Zasloff, M; Hatfield, D

    1987-01-01

    An opal suppressor phosphoserine tRNA gene is present in single copy in the genomes of higher vertebrates. We have shown that the product of this gene functions as a suppressor in an in vitro assay, and we have proposed that it may donate a modified amino acid directly to protein in response to specific UGA codons. In this report, we show through in vitro and in vivo studies that the human and Xenopus opal suppressor phosphoserine tRNAs are synthesized by a pathway that is, to the best of our knowledge, unlike that of any known eukaryotic tRNA. The primary transcript of this gene does not contain a 5'-leader sequence; and, therefore, transcription of this suppressor is initiated at the first nucleotide within the coding sequence. The 5'-terminal triphosphate, present on the primary transcript, remains intact through 3'-terminal maturation and through subsequent transport of the tRNA to the cytoplasm. The unique biosynthetic pathway of this opal suppressor may underlie its distinctive role in eukaryotic cells. Images PMID:3114749

  8. Predicting protein crystallization propensity from protein sequence

    PubMed Central

    2011-01-01

    The high-throughput structure determination pipelines developed by structural genomics programs offer a unique opportunity for data mining. One important question is how protein properties derived from a primary sequence correlate with the protein’s propensity to yield X-ray quality crystals (crystallizability) and 3D X-ray structures. A set of protein properties were computed for over 1,300 proteins that expressed well but were insoluble, and for ~720 unique proteins that resulted in X-ray structures. The correlation of the protein’s iso-electric point and grand average hydropathy (GRAVY) with crystallizability was analyzed for full length and domain constructs of protein targets. In a second step, several additional properties that can be calculated from the protein sequence were added and evaluated. Using statistical analyses we have identified a set of the attributes correlating with a protein’s propensity to crystallize and implemented a Support Vector Machine (SVM) classifier based on these. We have created applications to analyze and provide optimal boundary information for query sequences and to visualize the data. These tools are available via the web site http://bioinformatics.anl.gov/cgi-bin/tools/pdpredictor. PMID:20177794

  9. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle.

    PubMed

    Kirkness, Ewen F; Haas, Brian J; Sun, Weilin; Braig, Henk R; Perotti, M Alejandra; Clark, John M; Lee, Si Hyeock; Robertson, Hugh M; Kennedy, Ryan C; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V; Elsik, Christine G; Graur, Dan; Hill, Catherine A; Veenstra, Jan A; Walenz, Brian; Tubío, José Manuel C; Ribeiro, José M C; Rozas, Julio; Johnston, J Spencer; Reese, Justin T; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L; Tomoyasu, Yoshinori; Kraus, Emily; Krause, Emily; Mittapalli, Omprakash; Margam, Venu M; Li, Hong-Mei; Meyer, Jason M; Johnson, Reed M; Romero-Severson, Jeanne; Vanzee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M; Yoon, Kyong S; Strycharz, Joseph P; Unger, Maria F; Christley, Scott; Lobo, Neil F; Seufferheld, Manfredo J; Wang, Naikuan; Dasch, Gregory A; Struchiner, Claudio J; Madey, Greg; Hannick, Linda I; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C; Cameron, Stephen; Bruggner, Robert V; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R; Sutton, Granger G; Lawson, Daniel; Waterhouse, Robert M; Venter, J Craig; Strausberg, Robert L; Berenbaum, May R; Collins, Frank H; Zdobnov, Evgeny M; Pittendrigh, Barry R

    2010-07-06

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens.

  10. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle

    PubMed Central

    Kirkness, Ewen F.; Haas, Brian J.; Sun, Weilin; Braig, Henk R.; Perotti, M. Alejandra; Clark, John M.; Lee, Si Hyeock; Robertson, Hugh M.; Kennedy, Ryan C.; Elhaik, Eran; Gerlach, Daniel; Kriventseva, Evgenia V.; Elsik, Christine G.; Graur, Dan; Hill, Catherine A.; Veenstra, Jan A.; Walenz, Brian; Tubío, José Manuel C.; Ribeiro, José M. C.; Rozas, Julio; Johnston, J. Spencer; Reese, Justin T.; Popadic, Aleksandar; Tojo, Marta; Raoult, Didier; Reed, David L.; Tomoyasu, Yoshinori; Kraus, Emily; Mittapalli, Omprakash; Margam, Venu M.; Li, Hong-Mei; Meyer, Jason M.; Johnson, Reed M.; Romero-Severson, Jeanne; VanZee, Janice Pagel; Alvarez-Ponce, David; Vieira, Filipe G.; Aguadé, Montserrat; Guirao-Rico, Sara; Anzola, Juan M.; Yoon, Kyong S.; Strycharz, Joseph P.; Unger, Maria F.; Christley, Scott; Lobo, Neil F.; Seufferheld, Manfredo J.; Wang, NaiKuan; Dasch, Gregory A.; Struchiner, Claudio J.; Madey, Greg; Hannick, Linda I.; Bidwell, Shelby; Joardar, Vinita; Caler, Elisabet; Shao, Renfu; Barker, Stephen C.; Cameron, Stephen; Bruggner, Robert V.; Regier, Allison; Johnson, Justin; Viswanathan, Lakshmi; Utterback, Terry R.; Sutton, Granger G.; Lawson, Daniel; Waterhouse, Robert M.; Venter, J. Craig; Strausberg, Robert L.; Collins, Frank H.; Zdobnov, Evgeny M.; Pittendrigh, Barry R.

    2010-01-01

    As an obligatory parasite of humans, the body louse (Pediculus humanus humanus) is an important vector for human diseases, including epidemic typhus, relapsing fever, and trench fever. Here, we present genome sequences of the body louse and its primary bacterial endosymbiont Candidatus Riesia pediculicola. The body louse has the smallest known insect genome, spanning 108 Mb. Despite its status as an obligate parasite, it retains a remarkably complete basal insect repertoire of 10,773 protein-coding genes and 57 microRNAs. Representing hemimetabolous insects, the genome of the body louse thus provides a reference for studies of holometabolous insects. Compared with other insect genomes, the body louse genome contains significantly fewer genes associated with environmental sensing and response, including odorant and gustatory receptors and detoxifying enzymes. The unique architecture of the 18 minicircular mitochondrial chromosomes of the body louse may be linked to the loss of the gene encoding the mitochondrial single-stranded DNA binding protein. The genome of the obligatory louse endosymbiont Candidatus Riesia pediculicola encodes less than 600 genes on a short, linear chromosome and a circular plasmid. The plasmid harbors a unique arrangement of genes required for the synthesis of pantothenate, an essential vitamin deficient in the louse diet. The human body louse, its primary endosymbiont, and the bacterial pathogens that it vectors all possess genomes reduced in size compared with their free-living close relatives. Thus, the body louse genome project offers unique information and tools to use in advancing understanding of coevolution among vectors, symbionts, and pathogens. PMID:20566863

  11. Establishment and Characterization of Novel Human Primary and Metastatic Anaplastic Thyroid Cancer Cell Lines and Their Genomic Evolution Over a Year as a Primagraft

    PubMed Central

    Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311

  12. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site

    PubMed Central

    Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I.; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B.; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-01-01

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies. PMID:27034009

  13. The degree of intratumor mutational heterogeneity varies by primary tumor sub-site.

    PubMed

    Ledgerwood, Levi G; Kumar, Dhruv; Eterovic, Agda Karina; Wick, Jo; Chen, Ken; Zhao, Hao; Tazi, Loubna; Manna, Pradip; Kerley, Spencer; Joshi, Radhika; Wang, Lin; Chiosea, Simion I; Garnett, James David; Tsue, Terance Ted; Chien, Jeremy; Mills, Gordon B; Grandis, Jennifer Rubin; Thomas, Sufi Mary

    2016-05-10

    In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies.

  14. Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.).

    PubMed

    Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Chemical property based sequence characterization of PpcA and its homolog proteins PpcB-E: A mathematical approach

    PubMed Central

    Pal Choudhury, Pabitra

    2017-01-01

    Periplasmic c7 type cytochrome A (PpcA) protein is determined in Geobacter sulfurreducens along with its other four homologs (PpcB-E). From the crystal structure viewpoint the observation emerges that PpcA protein can bind with Deoxycholate (DXCA), while its other homologs do not. But it is yet to be established with certainty the reason behind this from primary protein sequence information. This study is primarily based on primary protein sequence analysis through the chemical basis of embedded amino acids. Firstly, we look for the chemical group specific score of amino acids. Along with this, we have developed a new methodology for the phylogenetic analysis based on chemical group dissimilarities of amino acids. This new methodology is applied to the cytochrome c7 family members and pinpoint how a particular sequence is differing with others. Secondly, we build a graph theoretic model on using amino acid sequences which is also applied to the cytochrome c7 family members and some unique characteristics and their domains are highlighted. Thirdly, we search for unique patterns as subsequences which are common among the group or specific individual member. In all the cases, we are able to show some distinct features of PpcA that emerges PpcA as an outstanding protein compared to its other homologs, resulting towards its binding with deoxycholate. Similarly, some notable features for the structurally dissimilar protein PpcD compared to the other homologs are also brought out. Further, the five members of cytochrome family being homolog proteins, they must have some common significant features which are also enumerated in this study. PMID:28362850

  16. Sequence and structural implications of a bovine corneal keratan sulfate proteoglycan core protein. Protein 37B represents bovine lumican and proteins 37A and 25 are unique

    NASA Technical Reports Server (NTRS)

    Funderburgh, J. L.; Funderburgh, M. L.; Brown, S. J.; Vergnes, J. P.; Hassell, J. R.; Mann, M. M.; Conrad, G. W.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Amino acid sequence from tryptic peptides of three different bovine corneal keratan sulfate proteoglycan (KSPG) core proteins (designated 37A, 37B, and 25) showed similarities to the sequence of a chicken KSPG core protein lumican. Bovine lumican cDNA was isolated from a bovine corneal expression library by screening with chicken lumican cDNA. The bovine cDNA codes for a 342-amino acid protein, M(r) 38,712, containing amino acid sequences identified in the 37B KSPG core protein. The bovine lumican is 68% identical to chicken lumican, with an 83% identity excluding the N-terminal 40 amino acids. Location of 6 cysteine and 4 consensus N-glycosylation sites in the bovine sequence were identical to those in chicken lumican. Bovine lumican had about 50% identity to bovine fibromodulin and 20% identity to bovine decorin and biglycan. About two-thirds of the lumican protein consists of a series of 10 amino acid leucine-rich repeats that occur in regions of calculated high beta-hydrophobic moment, suggesting that the leucine-rich repeats contribute to beta-sheet formation in these proteins. Sequences obtained from 37A and 25 core proteins were absent in bovine lumican, thus predicting a unique primary structure and separate mRNA for each of the three bovine KSPG core proteins.

  17. Measles Outbreak with Unique Virus Genotyping, Ontario, Canada, 2015.

    PubMed

    Thomas, Shari; Hiebert, Joanne; Gubbay, Jonathan B; Gournis, Effie; Sharron, Jennifer; Severini, Alberto; Jiaravuthisan, Manisa; Shane, Amanda; Jaeger, Valerie; Crowcroft, Natasha S; Fediurek, Jill; Sander, Beate; Mazzulli, Tony; Schulz, Helene; Deeks, Shelley L

    2017-07-01

    The province of Ontario continues to experience measles virus transmissions despite the elimination of measles in Canada. We describe an unusual outbreak of measles in Ontario, Canada, in early 2015 that involved cases with a unique strain of virus and no known association among primary case-patients. A total of 18 cases of measles were reported from 4 public health units during the outbreak period (January 25-March 23, 2015); none of these cases occurred in persons who had recently traveled. Despite enhancements to case-patient interview methods and epidemiologic analyses, a source patient was not identified. However, the molecular epidemiologic analysis, which included extended sequencing, strongly suggested that all cases derived from a single importation of measles virus genotype D4. The use of timely genotype sequencing, rigorous epidemiologic investigation, and a better understanding of the gaps in surveillance are needed to maintain Ontario's measles elimination status.

  18. Reading the Second Code: Mapping Epigenomes to Understand Plant Growth, Development, and Adaptation to the Environment[OA

    PubMed Central

    2012-01-01

    We have entered a new era in agricultural and biomedical science made possible by remarkable advances in DNA sequencing technologies. The complete sequence of an individual’s set of chromosomes (collectively, its genome) provides a primary genetic code for what makes that individual unique, just as the contents of every personal computer reflect the unique attributes of its owner. But a second code, composed of “epigenetic” layers of information, affects the accessibility of the stored information and the execution of specific tasks. Nature’s second code is enigmatic and must be deciphered if we are to fully understand and optimize the genetic potential of crop plants. The goal of the Epigenomics of Plants International Consortium is to crack this second code, and ultimately master its control, to help catalyze a new green revolution. PMID:22751210

  19. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays.

  20. An improved divergent synthesis of comb-type branched oligodeoxyribonucleotides (bDNA) containing multiple secondary sequences.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of branched DNA (bDNA) comb structures is described. This new type of bDNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branch network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb structures were assembled on a solid support and several synthesis parameters were investigated and optimized. The bDNA comb molecules were characterized by polyacrylamide gel electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The developed chemistry allows synthesis of bDNA comb molecules containing multiple secondary sequences. In the accompanying article we describe the synthesis and characterization of large bDNA combs containing all four deoxynucleotides for use as signal amplifiers in nucleic acid quantification assays. PMID:9365265

  1. Application of Wavelet Transform for PDZ Domain Classification

    PubMed Central

    Daqrouq, Khaled; Alhmouz, Rami; Balamesh, Ahmed; Memic, Adnan

    2015-01-01

    PDZ domains have been identified as part of an array of signaling proteins that are often unrelated, except for the well-conserved structural PDZ domain they contain. These domains have been linked to many disease processes including common Avian influenza, as well as very rare conditions such as Fraser and Usher syndromes. Historically, based on the interactions and the nature of bonds they form, PDZ domains have most often been classified into one of three classes (class I, class II and others - class III), that is directly dependent on their binding partner. In this study, we report on three unique feature extraction approaches based on the bigram and trigram occurrence and existence rearrangements within the domain's primary amino acid sequences in assisting PDZ domain classification. Wavelet packet transform (WPT) and Shannon entropy denoted by wavelet entropy (WE) feature extraction methods were proposed. Using 115 unique human and mouse PDZ domains, the existence rearrangement approach yielded a high recognition rate (78.34%), which outperformed our occurrence rearrangements based method. The recognition rate was (81.41%) with validation technique. The method reported for PDZ domain classification from primary sequences proved to be an encouraging approach for obtaining consistent classification results. We anticipate that by increasing the database size, we can further improve feature extraction and correct classification. PMID:25860375

  2. Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype.

    PubMed

    Knowles, Michael R; Ostrowski, Lawrence E; Leigh, Margaret W; Sears, Patrick R; Davis, Stephanie D; Wolf, Whitney E; Hazucha, Milan J; Carson, Johnny L; Olivier, Kenneth N; Sagel, Scott D; Rosenfeld, Margaret; Ferkol, Thomas W; Dell, Sharon D; Milla, Carlos E; Randell, Scott H; Yin, Weining; Sannuti, Aruna; Metjian, Hilda M; Noone, Peadar G; Noone, Peter J; Olson, Christina A; Patrone, Michael V; Dang, Hong; Lee, Hye-Seung; Hurd, Toby W; Gee, Heon Yung; Otto, Edgar A; Halbritter, Jan; Kohl, Stefan; Kircher, Martin; Krischer, Jeffrey; Bamshad, Michael J; Nickerson, Deborah A; Hildebrandt, Friedhelm; Shendure, Jay; Zariwala, Maimoona A

    2014-03-15

    Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder of motile cilia, but the genetic cause is not defined for all patients with PCD. To identify disease-causing mutations in novel genes, we performed exome sequencing, follow-up characterization, mutation scanning, and genotype-phenotype studies in patients with PCD. Whole-exome sequencing was performed using NimbleGen capture and Illumina HiSeq sequencing. Sanger-based sequencing was used for mutation scanning, validation, and segregation analysis. We performed exome sequencing on an affected sib-pair with normal ultrastructure in more than 85% of cilia. A homozygous splice-site mutation was detected in RSPH1 in both siblings; parents were carriers. Screening RSPH1 in 413 unrelated probands, including 325 with PCD and 88 with idiopathic bronchiectasis, revealed biallelic loss-of-function mutations in nine additional probands. Five affected siblings of probands in RSPH1 families harbored the familial mutations. The 16 individuals with RSPH1 mutations had some features of PCD; however, nasal nitric oxide levels were higher than in patients with PCD with other gene mutations (98.3 vs. 20.7 nl/min; P < 0.0003). Additionally, individuals with RSPH1 mutations had a lower prevalence (8 of 16) of neonatal respiratory distress, and later onset of daily wet cough than typical for PCD, and better lung function (FEV1), compared with 75 age- and sex-matched PCD cases (73.0 vs. 61.8, FEV1 % predicted; P = 0.043). Cilia from individuals with RSPH1 mutations had normal beat frequency (6.1 ± Hz at 25°C), but an abnormal, circular beat pattern. The milder clinical disease and higher nasal nitric oxide in individuals with biallelic mutations in RSPH1 provides evidence of a unique genotype-phenotype relationship in PCD, and suggests that mutations in RSPH1 may be associated with residual ciliary function.

  3. Brief Overview of a Decade of Genome-Wide Association Studies on Primary Hypertension.

    PubMed

    Azam, Afifah Binti; Azizan, Elena Aisha Binti

    2018-01-01

    Primary hypertension is widely believed to be a complex polygenic disorder with the manifestation influenced by the interactions of genomic and environmental factors making identification of susceptibility genes a major challenge. With major advancement in high-throughput genotyping technology, genome-wide association study (GWAS) has become a powerful tool for researchers studying genetically complex diseases. GWASs work through revealing links between DNA sequence variation and a disease or trait with biomedical importance. The human genome is a very long DNA sequence which consists of billions of nucleotides arranged in a unique way. A single base-pair change in the DNA sequence is known as a single nucleotide polymorphism (SNP). With the help of modern genotyping techniques such as chip-based genotyping arrays, thousands of SNPs can be genotyped easily. Large-scale GWASs, in which more than half a million of common SNPs are genotyped and analyzed for disease association in hundreds of thousands of cases and controls, have been broadly successful in identifying SNPs associated with heart diseases, diabetes, autoimmune diseases, and psychiatric disorders. It is however still debatable whether GWAS is the best approach for hypertension. The following is a brief overview on the outcomes of a decade of GWASs on primary hypertension.

  4. A de novo whole gene deletion of XIAP detected by exome sequencing analysis in very early onset inflammatory bowel disease: a case report.

    PubMed

    Kelsen, Judith R; Dawany, Noor; Martinez, Alejandro; Martinez, Alejuandro; Grochowski, Christopher M; Maurer, Kelly; Rappaport, Eric; Piccoli, David A; Baldassano, Robert N; Mamula, Petar; Sullivan, Kathleen E; Devoto, Marcella

    2015-11-18

    Children with very early-onset inflammatory bowel disease (VEO-IBD), those diagnosed at less than 5 years of age, are a unique population. A subset of these patients present with a distinct phenotype and more severe disease than older children and adults. Host genetics is thought to play a more prominent role in this young population, and monogenic defects in genes related to primary immunodeficiencies are responsible for the disease in a small subset of patients with VEO-IBD. We report a child who presented at 3 weeks of life with very early-onset inflammatory bowel disease (VEO-IBD). He had a complicated disease course and remained unresponsive to medical and surgical therapy. The refractory nature of his disease, together with his young age of presentation, prompted utilization of whole exome sequencing (WES) to detect an underlying monogenic primary immunodeficiency and potentially target therapy to the identified defect. Copy number variation analysis (CNV) was performed using the eXome-Hidden Markov Model. Whole exome sequencing revealed 1,380 nonsense and missense variants in the patient. Plausible candidate variants were not detected following analysis of filtered variants, therefore, we performed CNV analysis of the WES data, which led us to identify a de novo whole gene deletion in XIAP. This is the first reported whole gene deletion in XIAP, the causal gene responsible for XLP2 (X-linked lymphoproliferative Disease 2). XLP2 is a syndrome resulting in VEO-IBD and can increase susceptibility to hemophagocytic lymphohistocytosis (HLH). This identification allowed the patient to be referred for bone marrow transplantation, potentially curative for his disease and critical to prevent the catastrophic sequela of HLH. This illustrates the unique etiology of VEO-IBD, and the subsequent effects on therapeutic options. This cohort requires careful and thorough evaluation for monogenic defects and primary immunodeficiencies.

  5. Similar Replicative Fitness Is Shared by the Subtype B and Unique BF Recombinant HIV-1 Isolates that Dominate the Epidemic in Argentina

    PubMed Central

    Rubio, Andrea E.; Abraha, Awet; Carpenter, Crystal A.; Troyer, Ryan M.; Reyes-Rodríguez, Ángel L.; Salomon, Horacio; Arts, Eric J.; Tebit, Denis M.

    2014-01-01

    The HIV-1 epidemic in South America is dominated by pure subtypes (mostly B and C) and more than 7 BF and BC recombinant forms. In Argentina, circulating recombinant forms (CRFs) comprised of subtypes B and F make up more than 50% of HIV infections. For this study, 28 HIV-1 primary isolates were obtained from patients in Buenos Aires, Argentina and initially classified into subtype B (n = 9, 32.1%), C (n = 1, 3.6%), and CRFs (n = 18, 64.3%) using partial pol and vpu-env sequences, which proved to be inconsistent and inaccurate for these phylogenetic analyses. Near full length genome sequences of these primary HIV-1 isolates revealed that nearly all intersubtype BF recombination sites were unique and countered previous “CRF” B/F classifications. The majority of these Argentinean HIV-1 isolates were CCR5-using but 4 had a dual/mixed tropism as predicted by both phenotypic and genotypic assays. Comparison of the replicative fitness of these BF primary HIV-1 isolates to circulating B, F, and C HIV-1 using pairwise competitions in peripheral blood mononuclear cells (PBMCs) indicated a similarity in fitness of these BF recombinants to subtypes B and F HIV-1 (of the same co-receptor usage) whereas subtype C HIV-1 was significantly less fit than all as previously reported. These results suggest that the multitude of BF HIV-1 strains present within the Argentinean population do not appear to have gained replicative fitness following recent B and F recombination events. PMID:24727861

  6. Mapping the Geometric Evolution of Protein Folding Motor.

    PubMed

    Jerath, Gaurav; Hazam, Prakash Kishore; Shekhar, Shashi; Ramakrishnan, Vibin

    2016-01-01

    Polypeptide chain has an invariant main-chain and a variant side-chain sequence. How the side-chain sequence determines fold in terms of its chemical constitution has been scrutinized extensively and verified periodically. However, a focussed investigation on the directive effect of side-chain geometry may provide important insights supplementing existing algorithms in mapping the geometrical evolution of protein chains and its structural preferences. Geometrically, folding of protein structure may be envisaged as the evolution of its geometric variables: ϕ, and ψ dihedral angles of polypeptide main-chain directed by χ1, and χ2 of side chain. In this work, protein molecule is metaphorically modelled as a machine with 4 rotors ϕ, ψ, χ1 and χ2, with its evolution to the functional fold is directed by combinations of its rotor directions. We observe that differential rotor motions lead to different secondary structure formations and the combinatorial pattern is unique and consistent for particular secondary structure type. Further, we found that combination of rotor geometries of each amino acid is unique which partly explains how different amino acid sequence combinations have unique structural evolution and functional adaptation. Quantification of these amino acid rotor preferences, resulted in the generation of 3 substitution matrices, which later on plugged in the BLAST tool, for evaluating their efficiency in aligning sequences. We have employed BLOSUM62 and PAM30 as standard for primary evaluation. Generation of substitution matrices is a logical extension of the conceptual framework we attempted to build during the development of this work. Optimization of matrices following the conventional routines and possible application with biologically relevant data sets are beyond the scope of this manuscript, though it is a part of the larger project design.

  7. Highly sensitive and unbiased approach for elucidating antibody repertoires

    PubMed Central

    Lin, Sherry G.; Ba, Zhaoqing; Du, Zhou; Zhang, Yu; Hu, Jiazhi; Alt, Frederick W.

    2016-01-01

    Developing B lymphocytes undergo V(D)J recombination to assemble germ-line V, D, and J gene segments into exons that encode the antigen-binding variable region of Ig heavy (H) and light (L) chains. IgH and IgL chains associate to form the B-cell receptor (BCR), which, upon antigen binding, activates B cells to secrete BCR as an antibody. Each of the huge number of clonally independent B cells expresses a unique set of IgH and IgL variable regions. The ability of V(D)J recombination to generate vast primary B-cell repertoires results from a combinatorial assortment of large numbers of different V, D, and J segments, coupled with diversification of the junctions between them to generate the complementary determining region 3 (CDR3) for antigen contact. Approaches to evaluate in depth the content of primary antibody repertoires and, ultimately, to study how they are further molded by secondary mutation and affinity maturation processes are of great importance to the B-cell development, vaccine, and antibody fields. We now describe an unbiased, sensitive, and readily accessible assay, referred to as high-throughput genome-wide translocation sequencing-adapted repertoire sequencing (HTGTS-Rep-seq), to quantify antibody repertoires. HTGTS-Rep-seq quantitatively identifies the vast majority of IgH and IgL V(D)J exons, including their unique CDR3 sequences, from progenitor and mature mouse B lineage cells via the use of specific J primers. HTGTS-Rep-seq also accurately quantifies DJH intermediates and V(D)J exons in either productive or nonproductive configurations. HTGTS-Rep-seq should be useful for studies of human samples, including clonal B-cell expansions, and also for following antibody affinity maturation processes. PMID:27354528

  8. Molecular inimitability amongst tumors: implications for precision cancer medicine in the age of personalized oncology.

    PubMed

    Patel, Sandip P; Schwaederle, Maria; Daniels, Gregory A; Fanta, Paul T; Schwab, Richard B; Shimabukuro, Kelly A; Kesari, Santosh; Piccioni, David E; Bazhenova, Lyudmila A; Helsten, Teresa L; Lippman, Scott M; Parker, Barbara A; Kurzrock, Razelle

    2015-10-20

    Tumor sequencing has revolutionized oncology, allowing for detailed interrogation of the molecular underpinnings of cancer at an individual level. With this additional insight, it is increasingly apparent that not only do tumors vary within a sample (tumor heterogeneity), but also that each patient's individual tumor is a constellation of unique molecular aberrations that will require an equally unique personalized therapeutic regimen. We report here the results of 439 patients who underwent Clinical Laboratory Improvement Amendment (CLIA)-certified next generation sequencing (NGS) across histologies. Among these patients, 98.4% had a unique molecular profile, and aside from three primary brain tumor patients with a single genetic lesion (IDH1 R132H), no two patients within a given histology were molecularly identical. Additionally, two sets of patients had identical profiles consisting of two mutations in common and no other anomalies. However, these profiles did not segregate by histology (lung adenocarcinoma-appendiceal cancer (KRAS G12D and GNAS R201C), and lung adenocarcinoma-liposarcoma (CDK4 and MDM2 amplification pairs)). These findings suggest that most advanced tumors are molecular singletons within and between histologies, and that tumors that differ in histology may still nonetheless exhibit identical molecular portraits, albeit rarely.

  9. MRI to delineate the gross tumor volume of nasopharyngeal cancers: which sequences and planes should be used?

    PubMed

    Popovtzer, Aron; Ibrahim, Mohannad; Tatro, Daniel; Feng, Felix Y; Ten Haken, Randall K; Eisbruch, Avraham

    2014-09-01

    Magnetic resonance imaging (MRI) has been found to be better than computed tomography for defining the extent of primary gross tumor volume (GTV) in advanced nasopharyngeal cancer. It is routinely applied for target delineation in planning radiotherapy. However, the specific MRI sequences/planes that should be used are unknown. Twelve patients with nasopharyngeal cancer underwent primary GTV evaluation with gadolinium-enhanced axial T1 weighted image (T1) and T2 weighted image (T2), coronal T1, and sagittal T1 sequences. Each sequence was registered with the planning computed tomography scans. Planning target volumes (PTVs) were derived by uniform expansions of the GTVs. The volumes encompassed by the various sequences/planes, and the volumes common to all sequences/planes, were compared quantitatively and anatomically to the volume delineated by the commonly used axial T1-based dataset. Addition of the axial T2 sequence increased the axial T1-based GTV by 12% on average (p = 0.004), and composite evaluations that included the coronal T1 and sagittal T1 planes increased the axial T1-based GTVs by 30% on average (p = 0.003). The axial T1-based PTVs were increased by 20% by the additional sequences (p = 0.04). Each sequence/plane added unique volume extensions. The GTVs common to all the T1 planes accounted for 38% of the total volumes of all the T1 planes. Anatomically, addition of the coronal and sagittal-based GTVs extended the axial T1-based GTV caudally and cranially, notably to the base of the skull. Adding MRI planes and sequences to the traditional axial T1 sequence yields significant quantitative and anatomically important extensions of the GTVs and PTVs. For accurate target delineation in nasopharyngeal cancer, we recommend that GTVs be outlined in all MRI sequences/planes and registered with the planning computed tomography scans.

  10. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  11. High-throughput T-cell receptor sequencing across chronic liver diseases reveals distinct disease-associated repertoires.

    PubMed

    Liaskou, Evaggelia; Klemsdal Henriksen, Eva Kristine; Holm, Kristian; Kaveh, Fatemeh; Hamm, David; Fear, Janine; Viken, Marte K; Hov, Johannes Roksund; Melum, Espen; Robins, Harlan; Olweus, Johanna; Karlsen, Tom H; Hirschfield, Gideon M

    2016-05-01

    Hepatic T-cell infiltrates and a strong genetic human leukocyte antigen association represent characteristic features of various immune-mediated liver diseases. Conceptually the presence of disease-associated antigens is predicted to be reflected in T-cell receptor (TCR) repertoires. Here, we aimed to determine if disease-associated TCRs could be identified in the nonviral chronic liver diseases primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC), and alcoholic liver disease (ALD). We performed high-throughput sequencing of the TCRβ chain complementarity-determining region 3 of liver-infiltrating T cells from PSC (n = 20), PBC (n = 10), and ALD (n = 10) patients, alongside genomic human leukocyte antigen typing. The frequency of TCRβ nucleotide sequences was significantly higher in PSC samples (2.53 ± 0.80, mean ± standard error of the mean) compared to PBC samples (1.13 ± 0.17, P < 0.0001) and ALD samples (0.62 ± 0.10, P < 0.0001). An average clonotype overlap of 0.85% was detected among PSC samples, significantly higher compared to the average overlap of 0.77% seen within the PBC (P = 0.024) and ALD groups (0.40%, P < 0.0001). From eight to 42 clonotypes were uniquely detected in each of the three disease groups (≥30% of the respective patient samples). Multiple, unique sequences using different variable family genes encoded the same amino acid clonotypes, providing additional support for antigen-driven selection. In PSC and PBC, disease-associated clonotypes were detected among patients with human leukocyte antigen susceptibility alleles. We demonstrate liver-infiltrating disease-associated clonotypes in all three diseases evaluated, and evidence for antigen-driven clonal expansions. Our findings indicate that differential TCR signatures, as determined by high-throughput sequencing, may represent an imprint of distinctive antigenic repertoires present in the different chronic liver diseases; this thereby opens up the prospect of studying disease-relevant T cells in order to better understand and treat liver disease. © 2015 by the American Association for the Study of Liver Diseases.

  12. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies.

    PubMed

    O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P

    2015-07-07

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.

  13. Primary structure of the Aequorea victoria green-fluorescent protein.

    PubMed

    Prasher, D C; Eckenrode, V K; Ward, W W; Prendergast, F G; Cormier, M J

    1992-02-15

    Many cnidarians utilize green-fluorescent proteins (GFPs) as energy-transfer acceptors in bioluminescence. GFPs fluoresce in vivo upon receiving energy from either a luciferase-oxyluciferin excited-state complex or a Ca(2+)-activated phosphoprotein. These highly fluorescent proteins are unique due to the chemical nature of their chromophore, which is comprised of modified amino acid (aa) residues within the polypeptide. This report describes the cloning and sequencing of both cDNA and genomic clones of GFP from the cnidarian, Aequorea victoria. The gfp10 cDNA encodes a 238-aa-residue polypeptide with a calculated Mr of 26,888. Comparison of A. victoria GFP genomic clones shows three different restriction enzyme patterns which suggests that at least three different genes are present in the A. victoria population at Friday Harbor, Washington. The gfp gene encoded by the lambda GFP2 genomic clone is comprised of at least three exons spread over 2.6 kb. The nucleotide sequences of the cDNA and the gene will aid in the elucidation of structure-function relationships in this unique class of proteins.

  14. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization.

    PubMed

    Pan, Zhangyuan; Li, Shengdi; Liu, Qiuyue; Wang, Zhen; Zhou, Zhengkui; Di, Ran; Miao, Benpeng; Hu, Wenping; Wang, Xiangyu; Hu, Xiaoxiang; Xu, Ze; Wei, Dongkai; He, Xiaoyun; Yuan, Liyun; Guo, Xiaofei; Liang, Benmeng; Wang, Ruichao; Li, Xiaoyu; Cao, Xiaohan; Dong, Xinlong; Xia, Qing; Shi, Hongcai; Hao, Geng; Yang, Jean; Luosang, Cuicheng; Zhao, Yiqiang; Jin, Mei; Zhang, Yingjie; Lv, Shenjin; Li, Fukuan; Ding, Guohui; Chu, Mingxing; Li, Yixue

    2018-04-01

    Animal domestication has been extensively studied, but the process of feralization remains poorly understood. Here, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape. Semi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant.

  15. The spectrum of genomic signatures: from dinucleotides to chaos game representation.

    PubMed

    Wang, Yingwei; Hill, Kathleen; Singh, Shiva; Kari, Lila

    2005-02-14

    In the post genomic era, access to complete genome sequence data for numerous diverse species has opened multiple avenues for examining and comparing primary DNA sequence organization of entire genomes. Previously, the concept of a genomic signature was introduced with the observation of species-type specific Dinucleotide Relative Abundance Profiles (DRAPs); dinucleotides were identified as the subsequences with the greatest bias in representation in a majority of genomes. Herein, we demonstrate that DRAP is one particular genomic signature contained within a broader spectrum of signatures. Within this spectrum, an alternative genomic signature, Chaos Game Representation (CGR), provides a unique visualization of patterns in sequence organization. A genomic signature is associated with a particular integer order or subsequence length that represents a measure of the resolution or granularity in the analysis of primary DNA sequence organization. We quantitatively explore the organizational information provided by genomic signatures of different orders through different distance measures, including a novel Image Distance. The Image Distance and other existing distance measures are evaluated by comparing the phylogenetic trees they generate for 26 complete mitochondrial genomes from a diversity of species. The phylogenetic tree generated by the Image Distance is compatible with the known relatedness of species. Quantitative evaluation of the spectrum of genomic signatures may be used to ultimately gain insight into the determinants and biological relevance of the genome signatures.

  16. In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library

    PubMed Central

    Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul

    2005-01-01

    The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642

  17. SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.

    PubMed

    Polishchuk, Maya; Paz, Inbal; Yakhini, Zohar; Mandel-Gutfreund, Yael

    2018-05-25

    Gene expression regulation is highly dependent on binding of RNA-binding proteins (RBPs) to their RNA targets. Growing evidence supports the notion that both RNA primary sequence and its local secondary structure play a role in specific Protein-RNA recognition and binding. Despite the great advance in high-throughput experimental methods for identifying sequence targets of RBPs, predicting the specific sequence and structure binding preferences of RBPs remains a major challenge. We present a novel webserver, SMARTIV, designed for discovering and visualizing combined RNA sequence and structure motifs from high-throughput RNA-binding data, generated from in-vivo experiments. The uniqueness of SMARTIV is that it predicts motifs from enriched k-mers that combine information from ranked RNA sequences and their predicted secondary structure, obtained using various folding methods. Consequently, SMARTIV generates Position Weight Matrices (PWMs) in a combined sequence and structure alphabet with assigned P-values. SMARTIV concisely represents the sequence and structure motif content as a single graphical logo, which is informative and easy for visual perception. SMARTIV was examined extensively on a variety of high-throughput binding experiments for RBPs from different families, generated from different technologies, showing consistent and accurate results. Finally, SMARTIV is a user-friendly webserver, highly efficient in run-time and freely accessible via http://smartiv.technion.ac.il/.

  18. Single-cell Transcriptome Study as Big Data

    PubMed Central

    Yu, Pingjian; Lin, Wei

    2016-01-01

    The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data storage, processing, and analysis. Big-data technology provides a framework that facilitates the comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed in this article. After extensively reviewing the available big-data applications of next-generation sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteristics of scRNA-seq data and primary objectives of single-cell studies. PMID:26876720

  19. Cadherin Expression, Vectorial Active Transport, and Metallothionein Isoform 3 Mediated EMT/MET Responses in Cultured Primary and Immortalized Human Proximal Tubule Cells

    PubMed Central

    Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.

    2015-01-01

    Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827

  20. RECOVIR Software for Identifying Viruses

    NASA Technical Reports Server (NTRS)

    Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui

    2013-01-01

    Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.

  1. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium

    PubMed Central

    2014-01-01

    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the United States Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed, for these and qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. PMID:25150838

  2. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed

    Horn, T; Chang, C A; Urdea, M S

    1997-12-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology.

  3. Chemical synthesis and characterization of branched oligodeoxyribonucleotides (bDNA) for use as signal amplifiers in nucleic acid quantification assays.

    PubMed Central

    Horn, T; Chang, C A; Urdea, M S

    1997-01-01

    The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology. PMID:9365266

  4. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin).

    PubMed

    Cutfield, J F; Cutfield, S M; Carne, A; Emdin, S O; Falkmer, S

    1986-07-01

    Insulin from the principal islets of the teleost fish, Cottus scorpius (daddy sculpin), has been isolated and sequenced. Purification involved acid/alcohol extraction, gel filtration, and reverse-phase high-performance liquid chromatography to yield nearly 1 mg pure insulin/g wet weight islet tissue. Biological potency was estimated as 40% compared to porcine insulin. The sculpin insulin crystallised in the absence of zinc ions although zinc is known to be present in the islets in significant amounts. Two other hormones, glucagon and pancreatic polypeptide, were copurified with the insulin, and an N-terminal sequence for pancreatic polypeptide was determined. The primary structure of sculpin insulin shows a number of sequence changes unique so far amongst teleost fish. These changes occur at A14 (Arg), A15 (Val), and B2 (Asp). The B chain contains 29 amino acids and there is no N-terminal extension as seen with several other fish. Presumably as a result of the amino acid substitutions, sculpin insulin does not readily form crystals containing zinc-insulin hexamers, despite the presence of the coordinating B10 His.

  5. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  6. NullSeq: A Tool for Generating Random Coding Sequences with Desired Amino Acid and GC Contents.

    PubMed

    Liu, Sophia S; Hockenberry, Adam J; Lancichinetti, Andrea; Jewett, Michael C; Amaral, Luís A N

    2016-11-01

    The existence of over- and under-represented sequence motifs in genomes provides evidence of selective evolutionary pressures on biological mechanisms such as transcription, translation, ligand-substrate binding, and host immunity. In order to accurately identify motifs and other genome-scale patterns of interest, it is essential to be able to generate accurate null models that are appropriate for the sequences under study. While many tools have been developed to create random nucleotide sequences, protein coding sequences are subject to a unique set of constraints that complicates the process of generating appropriate null models. There are currently no tools available that allow users to create random coding sequences with specified amino acid composition and GC content for the purpose of hypothesis testing. Using the principle of maximum entropy, we developed a method that generates unbiased random sequences with pre-specified amino acid and GC content, which we have developed into a python package. Our method is the simplest way to obtain maximally unbiased random sequences that are subject to GC usage and primary amino acid sequence constraints. Furthermore, this approach can easily be expanded to create unbiased random sequences that incorporate more complicated constraints such as individual nucleotide usage or even di-nucleotide frequencies. The ability to generate correctly specified null models will allow researchers to accurately identify sequence motifs which will lead to a better understanding of biological processes as well as more effective engineering of biological systems.

  7. Identification of new, emerging HIV-1 unique recombinant forms and drug resistant viruses circulating in Cameroon.

    PubMed

    Ragupathy, Viswanath; Zhao, Jiangqin; Wood, Owen; Tang, Shixing; Lee, Sherwin; Nyambi, Phillipe; Hewlett, Indira

    2011-04-23

    The HIV epidemic in Cameroon is characterized by a high degree of viral genetic diversity with circulating recombinant forms (CRFs) being predominant. The goal of our study was to determine recent trends in virus evolution and emergence of drug resistance in blood donors and HIV positive patients. Blood specimens of 73 individuals were collected from three cities and a few villages in Cameroon and viruses were isolated by co-cultivation with PBMCs. Nested PCR was performed for gag p17 (670 bp) pol (840 bp) and Env gp41 (461 bp) genes. Sequences were phylogenetically analyzed using a reference set of sequences from the Los Alamos database. Phylogenetic analysis based on partial sequences revealed that 65% (n = 48) of strains were CRF02_AG, 4% (n = 3) subtype F2, 1% each belonged to CRF06 (n = 1), CRF11 (n = 1), subtype G (n = 1), subtype D (n = 1), CRF22_01A1 (n = 1), and 26% (n = 18) were Unique Recombinant Forms (URFs). Most URFs contained CRF02_AG in one or two HIV gene fragments analyzed. Furthermore, pol sequences of 61 viruses revealed drug resistance in 55.5% of patients on therapy and 44% of drug naïve individuals in the RT and protease regions. Overall URFs that had a primary HIV subtype designation in the pol region showed higher HIV-1 p24 levels than other recombinant forms in cell culture based replication kinetics studies. Our results indicate that although CRF02_AG continues to be the predominant strain in Cameroon, phylogenetically the HIV epidemic is continuing to evolve as multiple recombinants of CRF02_AG and URFs were identified in the individuals studied. CRF02_AG recombinants that contained the pol region of a primary subtype showed higher replicative advantage than other variants. Identification of drug resistant strains in drug-naïve patients suggests that these viruses are being transmitted in the population studied. Our findings support the need for continued molecular surveillance in this region of West Central Africa and investigating impact of variants on diagnostics, viral load and drug resistance assays on an ongoing basis.

  8. Whole-genome sequences of 89 Chinese sheep suggest role of RXFP2 in the development of unique horn phenotype as response to semi-feralization

    PubMed Central

    Pan, Zhangyuan; Li, Shengdi; Liu, Qiuyue; Wang, Zhen; Zhou, Zhengkui; Di, Ran; Miao, Benpeng; Hu, Wenping; Wang, Xiangyu; Hu, Xiaoxiang; Xu, Ze; Wei, Dongkai; He, Xiaoyun; Yuan, Liyun; Guo, Xiaofei; Liang, Benmeng; Wang, Ruichao; Li, Xiaoyu; Cao, Xiaohan; Dong, Xinlong; Xia, Qing; Shi, Hongcai; Hao, Geng; Yang, Jean; Luosang, Cuicheng; Zhao, Yiqiang; Jin, Mei; Zhang, Yingjie; Lv, Shenjin; Li, Fukuan; Ding, Guohui; Chu, Mingxing; Li, Yixue

    2018-01-01

    Abstract Background Animal domestication has been extensively studied, but the process of feralization remains poorly understood. Results Here, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape. Conclusions Semi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant. PMID:29668959

  9. MacoNPV baculovirus midgut-specific gene expression during infection of the bertha armyworm, Mamestra configurata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donly, B. Cameron, E-mail: Cam.Donly@agr.gc.ca

    Baculoviruses have two forms, occlusion derived virus (ODV) which is responsible for primary infection in host midgut tissue and budded virus (BV), which infects all other host tissues during secondary infection. This study examined the primary infection by ODV of midgut cells of bertha armyworm Mamestra configurata fourth instar larvae and measured the expression of viral genes over a time course of infection. Both digital PCR and RNA sequencing methods showed the profile of transcription to be different from those produced by AcMNPV BV infection of in vitro cell cultures. This included having unique collections of genes expressed early, asmore » well as much greater late gene expression of p6.9 and much reduced expression of polh and p10. These differences likely reflect characteristics unique to the critical step of in vivo midgut cell infection, and provide insights into the processes that regulate viral gene expression in different host tissues. -- Highlights: •The transcriptome of MacoNPV ODV in larval midgut was measured by RNA-seq and digital PCR. •The earliest genes expressed included fusion protein, hoar, and me53. •p6.9 was highly expressed late but polH and p10 were less so. •These patterns are unique from BV of other baculoviruses in tissue culture cells.« less

  10. Method of artificial DNA splicing by directed ligation (SDL).

    PubMed Central

    Lebedenko, E N; Birikh, K R; Plutalov, O V; Berlin YuA

    1991-01-01

    An approach to directed genetic recombination in vitro has been devised, which allows for joining together, in a predetermined way, a series of DNA segments to give a precisely spliced polynucleotide sequence (DNA splicing by directed ligation, SDL). The approach makes use of amplification, by means of several polymerase chain reactions (PCR), of a chosen set of DNA segments. Primers for the amplifications contain recognition sites of the class IIS restriction endonucleases, which transform blunt ends of the amplification products into protruding ends of unique primary structures, the ends to be used for joining segments together being mutually complementary. Ligation of the mixture of the segments so synthesized gives the desired sequence in an unambiguous way. The suggested approach has been exemplified by the synthesis of a totally processed (intronless) gene encoding human mature interleukin-1 alpha. Images PMID:1662363

  11. Microfluidics for genome-wide studies involving next generation sequencing

    PubMed Central

    Murphy, Travis W.; Lu, Chang

    2017-01-01

    Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707

  12. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2*

    PubMed Central

    Hadjikyriacou, Andrea; Yang, Yanzhong; Espejo, Alexsandra; Bedford, Mark T.; Clarke, Steven G.

    2015-01-01

    Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides. PMID:25979344

  13. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies

    PubMed Central

    Loher, Phillipe; Londin, Eric R.; Rigoutsos, Isidore

    2014-01-01

    For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a ‘static’ and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more ‘dynamic’ and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different ‘seed’ sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway. PMID:25229428

  14. IsomiR expression profiles in human lymphoblastoid cell lines exhibit population and gender dependencies.

    PubMed

    Loher, Phillipe; Londin, Eric R; Rigoutsos, Isidore

    2014-09-30

    For many years it was believed that each mature microRNA (miRNA) existed as a single entity with fixed endpoints and a 'static' and unchangeable primary sequence. However, recent evidence suggests that mature miRNAs are more 'dynamic' and that each miRNA precursor arm gives rise to multiple isoforms, the isomiRs. Here we report on our identification of numerous and abundant isomiRs in the lymphoblastoid cell lines (LCLs) of 452 men and women from five different population groups. Unexpectedly, we find that these isomiRs exhibit an expression profile that is population-dependent and gender-dependent. This is important as it indicates that the LCLs of each gender/population combination have their own unique collection of mature miRNA transcripts. Moreover, each identified isomiR has its own characteristic abundance that remains consistent across biological replicates indicating that these are not degradation products. The primary sequences of identified isomiRs differ from the known miRBase miRNA either at their 5´-endpoint (leads to a different 'seed' sequence and suggests a different targetome), their 3´-endpoint, or both simultaneously. Our analysis of Argonaute PAR-CLIP data from LCLs supports the association of many of these newly identified isomiRs with the Argonaute silencing complex and thus their functional roles through participation in the RNA interference pathway.

  15. A SUBSTELLAR COMPANION TO THE DUSTY PLEIADES STAR HD 23514

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, David R.; Zuckerman, B.; Marois, Christian

    2012-03-20

    With adaptive optics imaging at Keck observatory, we have discovered a substellar companion to the F6 Pleiades star HD 23514, one of the dustiest main-sequence stars known to date (L{sub IR}/L{sub *} {approx} 2%). This is one of the first brown dwarfs discovered as a companion to a star in the Pleiades. The 0.06 M{sub Sun} late-M secondary has a projected separation of {approx}360 AU. The scarcity of substellar companions to stellar primaries in the Pleiades combined with the extremely dusty environment make this a unique system to study.

  16. Identification of a Unique Amyloid Sequence in AA Amyloidosis of a Pig Associated With Streptococcus Suis Infection.

    PubMed

    Kamiie, J; Sugahara, G; Yoshimoto, S; Aihara, N; Mineshige, T; Uetsuka, K; Shirota, K

    2017-01-01

    Here we report a pig with amyloid A (AA) amyloidosis associated with Streptococcus suis infection and identification of a unique amyloid sequence in the amyloid deposits in the tissue. Tissues from the 180-day-old underdeveloped pig contained foci of necrosis and suppurative inflammation associated with S. suis infection. Congo red stain, immunohistochemistry, and electron microscopy revealed intense AA deposition in the spleen and renal glomeruli. Mass spectrometric analysis of amyloid material extracted from the spleen showed serum AA 2 (SAA2) peptide as well as a unique peptide sequence previously reported in a pig with AA amyloidosis. The common detection of the unique amyloid sequence in the current and past cases of AA amyloidosis in pigs suggests that this amyloid sequence might play a key role in the development of porcine AA amyloidosis. An in vitro fibrillation assay demonstrated that the unique AA peptide formed typically rigid, long amyloid fibrils (10 nm wide) and the N-terminus peptide of SAA2 formed zigzagged, short fibers (7 nm wide). Moreover, the SAA2 peptide formed long, rigid amyloid fibrils in the presence of sonicated amyloid fibrils formed by the unique AA peptide. These findings indicate that the N-terminus of SAA2 as well as the AA peptide mediate the development of AA amyloidosis in pigs via cross-seeding polymerization.

  17. Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics.

    PubMed

    Deutsch, Eric W; Sun, Zhi; Campbell, David S; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S; Moritz, Robert L

    2016-11-04

    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances-a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ∼20,000 primary isoforms plus contaminants to a very large database that includes almost all nonredundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/ .

  18. Tiered Human Integrated Sequence Search Databases for Shotgun Proteomics

    PubMed Central

    Deutsch, Eric W.; Sun, Zhi; Campbell, David S.; Binz, Pierre-Alain; Farrah, Terry; Shteynberg, David; Mendoza, Luis; Omenn, Gilbert S.; Moritz, Robert L.

    2016-01-01

    The results of analysis of shotgun proteomics mass spectrometry data can be greatly affected by the selection of the reference protein sequence database against which the spectra are matched. For many species there are multiple sources from which somewhat different sequence sets can be obtained. This can lead to confusion about which database is best in which circumstances – a problem especially acute in human sample analysis. All sequence databases are genome-based, with sequences for the predicted gene and their protein translation products compiled. Our goal is to create a set of primary sequence databases that comprise the union of sequences from many of the different available sources and make the result easily available to the community. We have compiled a set of four sequence databases of varying sizes, from a small database consisting of only the ~20,000 primary isoforms plus contaminants to a very large database that includes almost all non-redundant protein sequences from several sources. This set of tiered, increasingly complete human protein sequence databases suitable for mass spectrometry proteomics sequence database searching is called the Tiered Human Integrated Search Proteome set. In order to evaluate the utility of these databases, we have analyzed two different data sets, one from the HeLa cell line and the other from normal human liver tissue, with each of the four tiers of database complexity. The result is that approximately 0.8%, 1.1%, and 1.5% additional peptides can be identified for Tiers 2, 3, and 4, respectively, as compared with the Tier 1 database, at substantially increasing computational cost. This increase in computational cost may be worth bearing if the identification of sequence variants or the discovery of sequences that are not present in the reviewed knowledge base entries is an important goal of the study. We find that it is useful to search a data set against a simpler database, and then check the uniqueness of the discovered peptides against a more complex database. We have set up an automated system that downloads all the source databases on the first of each month and automatically generates a new set of search databases and makes them available for download at http://www.peptideatlas.org/thisp/. PMID:27577934

  19. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell.

    PubMed

    Kagan, Herbert M; Li, Wande

    2003-03-01

    Lysyl oxidase (LO) plays a critical role in the formation and repair of the extracellular matrix (ECM) by oxidizing lysine residues in elastin and collagen, thereby initiating the formation of covalent crosslinkages which stabilize these fibrous proteins. Its catalytic activity depends upon both its copper cofactor and a unique carbonyl cofactor and has been shown to extend to a variety of basic globular proteins, including histone H1. Although the three-dimensional structure of LO has yet to be determined, the present treatise offers hypotheses based upon its primary sequence, which may underlie the prominent electrostatic component of its unusual substrate specificity as well as the catalysis-suppressing function of the propeptide domain of prolysyl oxidase. Recent studies have demonstrated that LO appears to function within the cell in a manner, which strongly modifies cellular activity. Newly discovered LO-like proteins also likely play unique roles in biology. Copyright 2002 Wiley-Liss, Inc.

  20. BE Ursae Majoris: A detached binary with a unique reprocessing spectrum

    NASA Technical Reports Server (NTRS)

    Steiner, Joao E.; Ferguson, Donald H.; Liebert, James; Tokarz, Susan; Cutri, Roc; Green, Richard F.; Willner, S. P.

    1987-01-01

    New infrared photometry, optical and UV spectrophotometry, and a photographic ephemeris are presented for the detached binary BE UMa. Results show the primary to be a DO white dwarf with an effective temperature of 80,000 + or - 15,000 K and a mass of 0.6 + or - 0.1 solar masses. No evidence is found for variability of the primary. The main sequence secondary star is shown to be of early M spectral type, with a formal range of M1 to M5 being possible. A reflection effect in reprocessed line and continuum radiation is produced by EUV radiation from the primary incident on the secondary atmosphere. It is suggested that the temperature of the reprocessed component of the secondary's atmosphere is in the 5000 to 8500 K range, and that emission lines of decreasing ionization form deeper in the irradiated envelope. Relatively narrow He II and high excitation metal lines are formed from recombination and continuum fluorescence processes.

  1. Gene: a gene-centered information resource at NCBI.

    PubMed

    Brown, Garth R; Hem, Vichet; Katz, Kenneth S; Ovetsky, Michael; Wallin, Craig; Ermolaeva, Olga; Tolstoy, Igor; Tatusova, Tatiana; Pruitt, Kim D; Maglott, Donna R; Murphy, Terence D

    2015-01-01

    The National Center for Biotechnology Information's (NCBI) Gene database (www.ncbi.nlm.nih.gov/gene) integrates gene-specific information from multiple data sources. NCBI Reference Sequence (RefSeq) genomes for viruses, prokaryotes and eukaryotes are the primary foundation for Gene records in that they form the critical association between sequence and a tracked gene upon which additional functional and descriptive content is anchored. Additional content is integrated based on the genomic location and RefSeq transcript and protein sequence data. The content of a Gene record represents the integration of curation and automated processing from RefSeq, collaborating model organism databases, consortia such as Gene Ontology, and other databases within NCBI. Records in Gene are assigned unique, tracked integers as identifiers. The content (citations, nomenclature, genomic location, gene products and their attributes, phenotypes, sequences, interactions, variation details, maps, expression, homologs, protein domains and external databases) is available via interactive browsing through NCBI's Entrez system, via NCBI's Entrez programming utilities (E-Utilities and Entrez Direct) and for bulk transfer by FTP. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae

    PubMed Central

    Mitchell, Robert F.; Hughes, David T.; Luetje, Charles W.; Millar, Jocelyn G.; Soriano-Agatón, Flor; Hanks, Lawrence M.; Robertson, Hugh M.

    2012-01-01

    Odorant receptors (Ors) are a unique family of ligand-gated ion channels and the primary mechanism by which insects detect volatile chemicals. Here, we describe 57 putative Ors sequenced from an antennal transcriptome of the cerambycid beetle Megacyllene caryae (Gahan). The male beetles produce a pheromone blend of nine components, and we functionally characterized Ors tuned to three of these chemicals: receptor McOr3 is sensitive to (S)-2-methyl-1-butanol; McOr20 is sensitive to (2S,3R)-2,3-hexanediol; and McOr5 is sensitive to 2-phenylethanol. McOr3 and McOr20 are also sensitive to structurally-related chemicals that are pheromones of other cerambycid beetles, suggesting that orthologous receptors may be present across many cerambycid species. These Ors are the first to be functionally characterized from any species of beetle and lay the groundwork for understanding the evolution of pheromones within the Cerambycidae. PMID:22504490

  3. The chronology and sequence of eruption of human permanent teeth in Northern Ireland.

    PubMed

    Kochhar, R; Richardson, A

    1998-12-01

    To ascertain the average and range of ages and sequence of eruption of human permanent teeth, taking into account the effect of premature loss of primary antecedents. Longitudinal study. Caucasian subjects in Northern Ireland. Study casts at 6-monthly intervals from age 5 to 15 years of 276 children (146 males and 130 females) enrolled in the Belfast Growth Study. The mean and range of ages of eruption of each individual tooth were computed. Comparisons were made between the mean ages of eruption with and without premature loss of primary antecedents, between upper and lower arches, between right and left sides and between males and females. The sequence of eruption was also investigated. The means and ranges of eruption ages are reported. Premature loss of primary antecedents delayed eruption of permanent successors except for the upper premolars which were accelerated. The differences relating to the upper first premolar and lower canine were not statistically significant. Each lower tooth erupted before its upper counterpart except for the premolars. There was no significant difference in age of eruption between right and left sides. Females tended to erupt teeth before males with the exception of the second molars in both arches; however, the only differences to reach statistical significance related to upper and lower canines and upper lateral incisors. The most frequent orders of eruption were unique to the subject. These occurred in 22% of upper and 33% of lower arches. The classic sequences: first molar-central incisor-lateral incisor-first premolar-canine-second premolar-second molar (M1-I1-I2-PM1-C-PM2-M2) in the upper arch and I1-M1-I2-C-PM1-PM2-M2 in the lower arch occurred in only 16% of upper arches and 13% of lower arches. Males adhered to the textbook sequence (20% upper, 17% lower) more than females (12% upper, 8% lower). In the upper arch of females, the order M1-I1-I2-PM1-PM2-C-M2 in 10% of subjects was almost as frequent as the classic sequence. The ages, ranges and orders of eruption found in this study are more reliable than many which are frequently quoted on account of its longitudinal nature and the fact that the effect of premature loss of primary antecedents is taken into account. The exclusively Caucasian sample makes the data quite precise but limits applicability to patients of this ethnic origin.

  4. Comprehensive analysis of Salmonella sequence polymorphisms and development of a LDR-UA assay for the detection and characterization of selected serotypes.

    PubMed

    Lauri, Andrea; Castiglioni, Bianca; Mariani, Paola

    2011-07-01

    Salmonella is a major cause of food-borne disease, and Salmonella enterica subspecies I includes the most clinically relevant serotypes. Salmonella serotype determination is important for the disease etiology assessment and contamination source tracking. This task will be facilitated by the disclosure of Salmonella serotype sequence polymorphisms, here annotated in seven genes (sefA, safA, safC, bigA, invA, fimA, and phsB) from 139 S. enterica strains, of which 109 belonging to 44 serotypes of subsp. I. One hundred nineteen polymorphic sites were scored and associated to single serotypes or to serotype groups belonging to S. enterica subsp. I. A diagnostic tool was constructed based on the Ligation Detection Reaction-Universal Array (LDR-UA) for the detection of polymorphic sites uniquely associated to serotypes of primary interest (Salmonella Hadar, Salmonella Infantis, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Gallinarum, Salmonella Virchow, and Salmonella Paratyphi B). The implementation of promiscuous probes allowed the diagnosis of ten further serotypes that could be associated to a unique hybridization pattern. Finally, the sensitivity and applicability of the tool was tested on target DNA dilutions and with controlled meat contamination, allowing the detection of one Salmonella CFU in 25 g of meat.

  5. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing.

    PubMed

    Hong, Jungeui; Gresham, David

    2017-11-01

    Quantitative analysis of next-generation sequencing (NGS) data requires discriminating duplicate reads generated by PCR from identical molecules that are of unique origin. Typically, PCR duplicates are identified as sequence reads that align to the same genomic coordinates using reference-based alignment. However, identical molecules can be independently generated during library preparation. Misidentification of these molecules as PCR duplicates can introduce unforeseen biases during analyses. Here, we developed a cost-effective sequencing adapter design by modifying Illumina TruSeq adapters to incorporate a unique molecular identifier (UMI) while maintaining the capacity to undertake multiplexed, single-index sequencing. Incorporation of UMIs into TruSeq adapters (TrUMIseq adapters) enables identification of bona fide PCR duplicates as identically mapped reads with identical UMIs. Using TrUMIseq adapters, we show that accurate removal of PCR duplicates results in improved accuracy of both allele frequency (AF) estimation in heterogeneous populations using DNA sequencing and gene expression quantification using RNA-Seq.

  6. Partial bisulfite conversion for unique template sequencing

    PubMed Central

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael

    2018-01-01

    Abstract We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. PMID:29161423

  7. Pancreatic cancer cell lines as patient-derived avatars: genetic characterisation and functional utility.

    PubMed

    Knudsen, Erik S; Balaji, Uthra; Mannakee, Brian; Vail, Paris; Eslinger, Cody; Moxom, Christopher; Mansour, John; Witkiewicz, Agnieszka K

    2018-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease with the worst survival rate of common solid tumours. Preclinical models that accurately reflect the genetic and biological diversity of PDAC will be important for delineating features of tumour biology and therapeutic vulnerabilities. 27 primary PDAC tumours were employed for genetic analysis and development of tumour models. Tumour tissue was used for derivation of xenografts and cell lines. Exome sequencing was performed on the originating tumour and developed models. RNA sequencing, histological and functional analyses were employed to determine the relationship of the patient-derived models to clinical presentation of PDAC. The cohort employed captured the genetic diversity of PDAC. From most cases, both cell lines and xenograft models were developed. Exome sequencing confirmed preservation of the primary tumour mutations in developed cell lines, which remained stable with extended passaging. The level of genetic conservation in the cell lines was comparable to that observed with patient-derived xenograft (PDX) models. Unlike historically established PDAC cancer cell lines, patient-derived models recapitulated the histological architecture of the primary tumour and exhibited metastatic spread similar to that observed clinically. Detailed genetic analyses of tumours and derived models revealed features of ex vivo evolution and the clonal architecture of PDAC. Functional analysis was used to elucidate therapeutic vulnerabilities of relevance to treatment of PDAC. These data illustrate that with the appropriate methods it is possible to develop cell lines that maintain genetic features of PDAC. Such models serve as important substrates for analysing the significance of genetic variants and create a unique biorepository of annotated cell lines and xenografts that were established simultaneously from same primary tumour. These models can be used to infer genetic and empirically determined therapeutic sensitivities that would be germane to the patient. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. A novel, privacy-preserving cryptographic approach for sharing sequencing data

    PubMed Central

    Cassa, Christopher A; Miller, Rachel A; Mandl, Kenneth D

    2013-01-01

    Objective DNA samples are often processed and sequenced in facilities external to the point of collection. These samples are routinely labeled with patient identifiers or pseudonyms, allowing for potential linkage to identity and private clinical information if intercepted during transmission. We present a cryptographic scheme to securely transmit externally generated sequence data which does not require any patient identifiers, public key infrastructure, or the transmission of passwords. Materials and methods This novel encryption scheme cryptographically protects participant sequence data using a shared secret key that is derived from a unique subset of an individual’s genetic sequence. This scheme requires access to a subset of an individual’s genetic sequence to acquire full access to the transmitted sequence data, which helps to prevent sample mismatch. Results We validate that the proposed encryption scheme is robust to sequencing errors, population uniqueness, and sibling disambiguation, and provides sufficient cryptographic key space. Discussion Access to a set of an individual’s genotypes and a mutually agreed cryptographic seed is needed to unlock the full sequence, which provides additional sample authentication and authorization security. We present modest fixed and marginal costs to implement this transmission architecture. Conclusions It is possible for genomics researchers who sequence participant samples externally to protect the transmission of sequence data using unique features of an individual’s genetic sequence. PMID:23125421

  9. Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida

    PubMed Central

    Pirooznia, Mehdi; Gong, Ping; Guan, Xin; Inouye, Laura S; Yang, Kuan; Perkins, Edward J; Deng, Youping

    2007-01-01

    Background Eisenia fetida, commonly known as red wiggler or compost worm, belongs to the Lumbricidae family of the Annelida phylum. Little is known about its genome sequence although it has been extensively used as a test organism in terrestrial ecotoxicology. In order to understand its gene expression response to environmental contaminants, we cloned 4032 cDNAs or expressed sequence tags (ESTs) from two E. fetida libraries enriched with genes responsive to ten ordnance related compounds using suppressive subtractive hybridization-PCR. Results A total of 3144 good quality ESTs (GenBank dbEST accession number EH669363–EH672369 and EL515444–EL515580) were obtained from the raw clone sequences after cleaning. Clustering analysis yielded 2231 unique sequences including 448 contigs (from 1361 ESTs) and 1783 singletons. Comparative genomic analysis showed that 743 or 33% of the unique sequences shared high similarity with existing genes in the GenBank nr database. Provisional function annotation assigned 830 Gene Ontology terms to 517 unique sequences based on their homology with the annotated genomes of four model organisms Drosophila melanogaster, Mus musculus, Saccharomyces cerevisiae, and Caenorhabditis elegans. Seven percent of the unique sequences were further mapped to 99 Kyoto Encyclopedia of Genes and Genomes pathways based on their matching Enzyme Commission numbers. All the information is stored and retrievable at a highly performed, web-based and user-friendly relational database called EST model database or ESTMD version 2. Conclusion The ESTMD containing the sequence and annotation information of 4032 E. fetida ESTs is publicly accessible at . PMID:18047730

  10. AutoGen Version 5.0

    NASA Technical Reports Server (NTRS)

    Gladden, Roy E.; Khanampornpan, Teerapat; Fisher, Forest W.

    2010-01-01

    Version 5.0 of the AutoGen software has been released. Previous versions, variously denoted Autogen and autogen, were reported in two articles: Automated Sequence Generation Process and Software (NPO-30746), Software Tech Briefs (Special Supplement to NASA Tech Briefs), September 2007, page 30, and Autogen Version 2.0 (NPO- 41501), NASA Tech Briefs, Vol. 31, No. 10 (October 2007), page 58. To recapitulate: AutoGen (now signifying automatic sequence generation ) automates the generation of sequences of commands in a standard format for uplink to spacecraft. AutoGen requires fewer workers than are needed for older manual sequence-generation processes, and greatly reduces sequence-generation times. The sequences are embodied in spacecraft activity sequence files (SASFs). AutoGen automates generation of SASFs by use of another previously reported program called APGEN. AutoGen encodes knowledge of different mission phases and of how the resultant commands must differ among the phases. AutoGen also provides means for customizing sequences through use of configuration files. The approach followed in developing AutoGen has involved encoding the behaviors of a system into a model and encoding algorithms for context-sensitive customizations of the modeled behaviors. This version of AutoGen addressed the MRO (Mars Reconnaissance Orbiter) primary science phase (PSP) mission phase. On previous Mars missions this phase has more commonly been referred to as mapping phase. This version addressed the unique aspects of sequencing orbital operations and specifically the mission specific adaptation of orbital operations for MRO. This version also includes capabilities for MRO s role in Mars relay support for UHF relay communications with the MER rovers and the Phoenix lander.

  11. Sequence basis of Barnacle Cement Nanostructure is Defined by Proteins with Silk Homology

    NASA Astrophysics Data System (ADS)

    So, Christopher R.; Fears, Kenan P.; Leary, Dagmar H.; Scancella, Jenifer M.; Wang, Zheng; Liu, Jinny L.; Orihuela, Beatriz; Rittschof, Dan; Spillmann, Christopher M.; Wahl, Kathryn J.

    2016-11-01

    Barnacles adhere by producing a mixture of cement proteins (CPs) that organize into a permanently bonded layer displayed as nanoscale fibers. These cement proteins share no homology with any other marine adhesives, and a common sequence-basis that defines how nanostructures function as adhesives remains undiscovered. Here we demonstrate that a significant unidentified portion of acorn barnacle cement is comprised of low complexity proteins; they are organized into repetitive sequence blocks and found to maintain homology to silk motifs. Proteomic analysis of aggregate bands from PAGE gels reveal an abundance of Gly/Ala/Ser/Thr repeats exemplified by a prominent, previously unidentified, 43 kDa protein in the solubilized adhesive. Low complexity regions found throughout the cement proteome, as well as multiple lysyl oxidases and peroxidases, establish homology with silk-associated materials such as fibroin, silk gum sericin, and pyriform spidroins from spider silk. Distinct primary structures defined by homologous domains shed light on how barnacles use low complexity in nanofibers to enable adhesion, and serves as a starting point for unraveling the molecular architecture of a robust and unique class of adhesive nanostructures.

  12. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Doyle, C Kuyler; Lykidis, A

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less

  13. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein familiesmore » associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).« less

  14. Genome Sequence of a Canadian Vibrio parahaemolyticus Isolate with Unique Mobilizing Capacity.

    PubMed

    Bioteau, Audrey; Huguet, Kévin; Burrus, Vincent; Banerjee, Swapan

    2018-06-14

    Vibrio parahaemolyticus is a clinically significant marine bacterium implicated in gastroenteritis among consumers of raw or undercooked seafood. This report presents the whole-genome sequence of a unique strain of V. parahaemolyticus isolated from oysters harvested in Canada. © Crown copyright 2018.

  15. A specific colorimetric assay for measuring transglutaminase 1 and factor XIII activities.

    PubMed

    Hitomi, Kiyotaka; Kitamura, Miyako; Alea, Mileidys Perez; Ceylan, Ismail; Thomas, Vincent; El Alaoui, Saïd

    2009-11-15

    Transglutaminase (TGase) is an enzyme that catalyzes both isopeptide cross-linking and incorporation of primary amines into proteins. Eight TGases have been identified in humans, and each of these TGases has a unique tissue distribution and physiological significance. Although several assays for TGase enzymatic activity have been reported, it has been difficult to establish an assay for discriminating each of these different TGase activities. Using a random peptide library, we recently identified the preferred substrate sequences for three major TGases: TGase 1, TGase 2, and factor XIII. In this study, we use these substrates in specific tests for measuring the activities of TGase 1 and factor XIII.

  16. The Traffic Management Advisor

    NASA Technical Reports Server (NTRS)

    Nedell, William; Erzberger, Heinz; Neuman, Frank

    1990-01-01

    The traffic management advisor (TMA) is comprised of algorithms, a graphical interface, and interactive tools for controlling the flow of air traffic into the terminal area. The primary algorithm incorporated in it is a real-time scheduler which generates efficient landing sequences and landing times for arrivals within about 200 n.m. from touchdown. A unique feature of the TMA is its graphical interface that allows the traffic manager to modify the computer-generated schedules for specific aircraft while allowing the automatic scheduler to continue generating schedules for all other aircraft. The graphical interface also provides convenient methods for monitoring the traffic flow and changing scheduling parameters during real-time operation.

  17. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    PubMed Central

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  18. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult.

    PubMed

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2018-02-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna , a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight.

  19. Transformation of primary human embryonic kidney cells to anchorage independence by a combination of BK virus DNA and the Harvey-ras oncogene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pater, A.; Pater, M.M.

    Primary human embryonic kidney (HEK) cells were transformed by a focus assay with BK virus (BKV) DNA molecularly cloned at its unique EcoRI site. Both viral DNA sequences and viral tumor antigens were present and expressed in all the foci that the authors examined. However, cells isolated from foci were incapable of growth in soft agar. They then examined the transformation of HEK cells after their transfection with a combination of BKV DNA and either the normal or the activated form of the human Ha-ras oncogene (EJ c-Ha-ras-1). Only the cells transfected with a combination of BKV DNA and themore » activated form of Ha-ras DNAs were present in the transformed colonies. BKV tumor antigens and the Ha-ras p21 protein were also expressed.« less

  20. Conserved and variable domains of RNase MRP RNA.

    PubMed

    Dávila López, Marcela; Rosenblad, Magnus Alm; Samuelsson, Tore

    2009-01-01

    Ribonuclease MRP is a eukaryotic ribonucleoprotein complex consisting of one RNA molecule and 7-10 protein subunits. One important function of MRP is to catalyze an endonucleolytic cleavage during processing of rRNA precursors. RNase MRP is evolutionary related to RNase P which is critical for tRNA processing. A large number of MRP RNA sequences that now are available have been used to identify conserved primary and secondary structure features of the molecule. MRP RNA has structural features in common with P RNA such as a conserved catalytic core, but it also has unique features and is characterized by a domain highly variable between species. Information regarding primary and secondary structure features is of interest not only in basic studies of the function of MRP RNA, but also because mutations in the RNA give rise to human genetic diseases such as cartilage-hair hypoplasia.

  1. Transcriptomic sequencing reveals a set of unique genes activated by butyrate-induced histone modification

    USDA-ARS?s Scientific Manuscript database

    Butyrate is a nutritional element with strong epigenetic regulatory activity as an inhibitor of histone deacetylases (HDACs). Based on the analysis of differentially expressed genes induced by butyrate in the bovine epithelial cell using deep RNA-sequencing technology (RNA-seq), a set of unique gen...

  2. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    NASA Astrophysics Data System (ADS)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  3. Defining the healthy "core microbiome" of oral microbial communities

    PubMed Central

    2009-01-01

    Background Most studies examining the commensal human oral microbiome are focused on disease or are limited in methodology. In order to diagnose and treat diseases at an early and reversible stage an in-depth definition of health is indispensible. The aim of this study therefore was to define the healthy oral microbiome using recent advances in sequencing technology (454 pyrosequencing). Results We sampled and sequenced microbiomes from several intraoral niches (dental surfaces, cheek, hard palate, tongue and saliva) in three healthy individuals. Within an individual oral cavity, we found over 3600 unique sequences, over 500 different OTUs or "species-level" phylotypes (sequences that clustered at 3% genetic difference) and 88 - 104 higher taxa (genus or more inclusive taxon). The predominant taxa belonged to Firmicutes (genus Streptococcus, family Veillonellaceae, genus Granulicatella), Proteobacteria (genus Neisseria, Haemophilus), Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes (genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus Fusobacterium). Each individual sample harboured on average 266 "species-level" phylotypes (SD 67; range 123 - 326) with cheek samples being the least diverse and the dental samples from approximal surfaces showing the highest diversity. Principal component analysis discriminated the profiles of the samples originating from shedding surfaces (mucosa of tongue, cheek and palate) from the samples that were obtained from solid surfaces (teeth). There was a large overlap in the higher taxa, "species-level" phylotypes and unique sequences among the three microbiomes: 84% of the higher taxa, 75% of the OTUs and 65% of the unique sequences were present in at least two of the three microbiomes. The three individuals shared 1660 of 6315 unique sequences. These 1660 sequences (the "core microbiome") contributed 66% of the reads. The overlapping OTUs contributed to 94% of the reads, while nearly all reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health. PMID:20003481

  4. Quantum-Sequencing: Fast electronic single DNA molecule sequencing

    NASA Astrophysics Data System (ADS)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.

  5. CSReport: A New Computational Tool Designed for Automatic Analysis of Class Switch Recombination Junctions Sequenced by High-Throughput Sequencing.

    PubMed

    Boyer, François; Boutouil, Hend; Dalloul, Iman; Dalloul, Zeinab; Cook-Moreau, Jeanne; Aldigier, Jean-Claude; Carrion, Claire; Herve, Bastien; Scaon, Erwan; Cogné, Michel; Péron, Sophie

    2017-05-15

    B cells ensure humoral immune responses due to the production of Ag-specific memory B cells and Ab-secreting plasma cells. In secondary lymphoid organs, Ag-driven B cell activation induces terminal maturation and Ig isotype class switch (class switch recombination [CSR]). CSR creates a virtually unique IgH locus in every B cell clone by intrachromosomal recombination between two switch (S) regions upstream of each C region gene. Amount and structural features of CSR junctions reveal valuable information about the CSR mechanism, and analysis of CSR junctions is useful in basic and clinical research studies of B cell functions. To provide an automated tool able to analyze large data sets of CSR junction sequences produced by high-throughput sequencing (HTS), we designed CSReport, a software program dedicated to support analysis of CSR recombination junctions sequenced with a HTS-based protocol (Ion Torrent technology). CSReport was assessed using simulated data sets of CSR junctions and then used for analysis of Sμ-Sα and Sμ-Sγ1 junctions from CH12F3 cells and primary murine B cells, respectively. CSReport identifies junction segment breakpoints on reference sequences and junction structure (blunt-ended junctions or junctions with insertions or microhomology). Besides the ability to analyze unprecedentedly large libraries of junction sequences, CSReport will provide a unified framework for CSR junction studies. Our results show that CSReport is an accurate tool for analysis of sequences from our HTS-based protocol for CSR junctions, thereby facilitating and accelerating their study. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Partial bisulfite conversion for unique template sequencing.

    PubMed

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael; Levy, Dan

    2018-01-25

    We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Unique Trichomonas vaginalis gene sequences identified in multinational regions of Northwest China.

    PubMed

    Liu, Jun; Feng, Meng; Wang, Xiaolan; Fu, Yongfeng; Ma, Cailing; Cheng, Xunjia

    2017-07-24

    Trichomonas vaginalis (T. vaginalis) is a flagellated protozoan parasite that infects humans worldwide. This study determined the sequence of the 18S ribosomal RNA gene of T. vaginalis infecting both females and males in Xinjiang, China. Samples from 73 females and 28 males were collected and confirmed for infection with T. vaginalis, a total of 110 sequences were identified when the T. vaginalis 18S ribosomal RNA gene was sequenced. These sequences were used to prepare a phylogenetic network. The rooted network comprised three large clades and several independent branches. Most of the Xinjiang sequences were in one group. Preliminary results suggest that Xinjiang T. vaginalis isolates might be genetically unique, as indicated by the sequence of their 18S ribosomal RNA gene. Low migration rate of local people in this province may contribute to a genetic conservativeness of T. vaginalis. The unique genetic feature of our isolates may suggest a different clinical presentation of trichomoniasis, including metronidazole susceptibility, T. vaginalis virus or Mycoplasma co-infection characteristics. The transmission and evolution of Xinjiang T. vaginalis is of interest and should be studied further. More attention should be given to T. vaginalis infection in both females and males in Xinjiang.

  8. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  9. Pleurochrysome: A Web Database of Pleurochrysis Transcripts and Orthologs Among Heterogeneous Algae

    PubMed Central

    Fujiwara, Shoko; Takatsuka, Yukiko; Hirokawa, Yasutaka; Tsuzuki, Mikio; Takano, Tomoyuki; Kobayashi, Masaaki; Suda, Kunihiro; Asamizu, Erika; Yokoyama, Koji; Shibata, Daisuke; Tabata, Satoshi; Yano, Kentaro

    2016-01-01

    Pleurochrysis is a coccolithophorid genus, which belongs to the Coccolithales in the Haptophyta. The genus has been used extensively for biological research, together with Emiliania in the Isochrysidales, to understand distinctive features between the two coccolithophorid-including orders. However, molecular biological research on Pleurochrysis such as elucidation of the molecular mechanism behind coccolith formation has not made great progress at least in part because of lack of comprehensive gene information. To provide such information to the research community, we built an open web database, the Pleurochrysome (http://bioinf.mind.meiji.ac.jp/phapt/), which currently stores 9,023 unique gene sequences (designated as UNIGENEs) assembled from expressed sequence tag sequences of P. haptonemofera as core information. The UNIGENEs were annotated with gene sequences sharing significant homology, conserved domains, Gene Ontology, KEGG Orthology, predicted subcellular localization, open reading frames and orthologous relationship with genes of 10 other algal species, a cyanobacterium and the yeast Saccharomyces cerevisiae. This sequence and annotation information can be easily accessed via several search functions. Besides fundamental functions such as BLAST and keyword searches, this database also offers search functions to explore orthologous genes in the 12 organisms and to seek novel genes. The Pleurochrysome will promote molecular biological and phylogenetic research on coccolithophorids and other haptophytes by helping scientists mine data from the primary transcriptome of P. haptonemofera. PMID:26746174

  10. Nocardia yamanashiensis in an immunocompromised patient presenting as an indurated nodule on the dorsal hand.

    PubMed

    Anzalone, C Lane; Cohen, Philip R; Tarrand, Jeffrey J; Diwan, Abdul H; Prieto, Victor G

    2013-01-01

    Nocardia are ubiquitous, aerobic, gram-positive actinomycetes. Nocardiosis typically occurs in immunocompromised patients, although immunocompetent individuals can also be affected. The purpose of this case study is to review the clinical characteristics and treatments of a unique form of cutaneous nocardiosis. We retrospectively reviewed the medical literature using PubMed, searching the terms cutaneous, host, immunocompromised, Nocardia, primary, yamanashiensis. Patient reports and previous reviews of the subject were critically assessed and the salient features are presented. Cutaneous nocardiosis typically presents as pustular nodules and the lesions may progress to become abscesses, cellulitis, granulomas or keloid-like tumors. N. brasiliensis is the predominant species involved in primary cutaneous nocardiosis; other common Nocardia species involved in human disease are N. farcinica, N. abscessus, N. cyriacigeorgica, and N. nova. Only two individuals (including the patient presented here) with primary cutaneous infection by N. yamanashiensis have been described in the literature; a third clinical isolate was recovered from a lung biopsy. Nocardia yamanashiensis is a rare clinical form of primary cutaneous nocardiosis. 16S ribosomal gene sequencing, as well as Gram stain and modified Fite acid-fast stain, play a vital role in identifying this clinical variant.

  11. Control of calcitonin/calcitonin gene-related peptide pre-mRNA processing by constitutive intron and exon elements.

    PubMed Central

    Yeakley, J M; Hedjran, F; Morfin, J P; Merillat, N; Rosenfeld, M G; Emeson, R B

    1993-01-01

    The calcitonin/calcitonin gene-related peptide (CGRP) primary transcript is alternatively spliced in thyroid C cells and neurons, resulting in the tissue-specific production of calcitonin and CGRP mRNAs. Analyses of mutated calcitonin/CGRP transcription units in permanently transfected cell lines have indicated that alternative splicing is regulated by a differential capacity to utilize the calcitonin-specific splice acceptor. The analysis of an extensive series of mutations suggests that tissue-specific regulation of calcitonin mRNA production does not depend on the presence of a single, unique cis-active element but instead appears to be a consequence of suboptimal constitutive splicing signals. While only those mutations that altered constitutive splicing signals affected splice choices, the action of multiple regulatory sequences cannot be formally excluded. Further, we have identified a 13-nucleotide purine-rich element from a constitutive exon that, when placed in exon 4, entirely switches splice site usage in CGRP-producing cells. These data suggest that specific exon recruitment sequences, in combination with other constitutive elements, serve an important function in exon recognition. These results are consistent with the hypothesis that tissue-specific alternative splicing of the calcitonin/CGRP primary transcript is mediated by cell-specific differences in components of the constitutive splicing machinery. Images PMID:8413203

  12. Crystal structure of bacillus subtilis YdaF protein : a putative ribosomal N-acetyltransferase.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunzelle, J. S.; Wu, R.; Korolev, S. V.

    2004-12-01

    Comparative sequence analysis suggests that the ydaF gene encodes a protein (YdaF) that functions as an N-acetyltransferase, more specifically, a ribosomal N-acetyltransferase. Sequence analysis using basic local alignment search tool (BLAST) suggests that YdaF belongs to a large family of proteins (199 proteins found in 88 unique species of bacteria, archaea, and eukaryotes). YdaF also belongs to the COG1670, which includes the Escherichia coli RimL protein that is known to acetylate ribosomal protein L12. N-acetylation (NAT) has been found in all kingdoms. NAT enzymes catalyze the transfer of an acetyl group from acetyl-CoA (AcCoA) to a primary amino group. Formore » example, NATs can acetylate the N-terminal {alpha}-amino group, the {epsilon}-amino group of lysine residues, aminoglycoside antibiotics, spermine/speridine, or arylalkylamines such as serotonin. The crystal structure of the alleged ribosomal NAT protein, YdaF, from Bacillus subtilis presented here was determined as a part of the Midwest Center for Structural Genomics. The structure maintains the conserved tertiary structure of other known NATs and a high sequence similarity in the presumed AcCoA binding pocket in spite of a very low overall level of sequence identity to other NATs of known structure.« less

  13. Comprehensive analysis of the T-cell receptor beta chain gene in rhesus monkey by high throughput sequencing

    PubMed Central

    Li, Zhoufang; Liu, Guangjie; Tong, Yin; Zhang, Meng; Xu, Ying; Qin, Li; Wang, Zhanhui; Chen, Xiaoping; He, Jiankui

    2015-01-01

    Profiling immune repertoires by high throughput sequencing enhances our understanding of immune system complexity and immune-related diseases in humans. Previously, cloning and Sanger sequencing identified limited numbers of T cell receptor (TCR) nucleotide sequences in rhesus monkeys, thus their full immune repertoire is unknown. We applied multiplex PCR and Illumina high throughput sequencing to study the TCRβ of rhesus monkeys. We identified 1.26 million TCRβ sequences corresponding to 643,570 unique TCRβ sequences and 270,557 unique complementarity-determining region 3 (CDR3) gene sequences. Precise measurements of CDR3 length distribution, CDR3 amino acid distribution, length distribution of N nucleotide of junctional region, and TCRV and TCRJ gene usage preferences were performed. A comprehensive profile of rhesus monkey immune repertoire might aid human infectious disease studies using rhesus monkeys. PMID:25961410

  14. Genomic analyses of Clostridium perfringens isolates from five toxinotypes.

    PubMed

    Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T

    2015-05-01

    Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. Copyright © 2014. Published by Elsevier Masson SAS.

  15. Swallow Event Sequencing: Comparing Healthy Older and Younger Adults.

    PubMed

    Herzberg, Erica G; Lazarus, Cathy L; Steele, Catriona M; Molfenter, Sonja M

    2018-04-23

    Previous research has established that a great deal of variation exists in the temporal sequence of swallowing events for healthy adults. Yet, the impact of aging on swallow event sequence is not well understood. Kendall et al. (Dysphagia 18(2):85-91, 2003) suggested there are 4 obligatory paired-event sequences in swallowing. We directly compared adherence to these sequences, as well as event latencies, and quantified the percentage of unique sequences in two samples of healthy adults: young (< 45) and old (> 65). The 8 swallowing events that contribute to the sequences were reliably identified from videofluoroscopy in a sample of 23 healthy seniors (10 male, mean age 74.7) and 20 healthy young adults (10 male, mean age 31.5) with no evidence of penetration-aspiration or post-swallow residue. Chi-square analyses compared the proportions of obligatory pairs and unique sequences by age group. Compared to the older subjects, younger subjects had significantly lower adherence to two obligatory sequences: Upper Esophageal Sphincter (UES) opening occurs before (or simultaneous with) the bolus arriving at the UES and UES maximum distention occurs before maximum pharyngeal constriction. The associated latencies were significantly different between age groups as well. Further, significantly fewer unique swallow sequences were observed in the older group (61%) compared with the young (82%) (χ 2  = 31.8; p < 0.001). Our findings suggest that paired swallow event sequences may not be robust across the age continuum and that variation in swallow sequences appears to decrease with aging. These findings provide normative references for comparisons to older individuals with dysphagia.

  16. Real-Time PCR Assay for a Unique Chromosomal Sequence of Bacillus anthracis

    DTIC Science & Technology

    2004-12-01

    13061 Neisseria lactamica .............................................................. 23970 Bacillus coagulans ...NEG Bacillus coagulane 7050 NEG NEG Bacillus cereus 13472 NEG NEG Bacillus licheniforms 12759 NEG NEG Bacillus cereus 13824 NEG NEG Bacillus ...Assay for a Unique Chromosomal Sequence of Bacillus anthracis Elizabeth Bode,1 William Hurtle,2† and David Norwood1* United States Army Medical

  17. Draft Genome Sequence of the Spore-Forming Probiotic Strain Bacillus coagulans Unique IS-2

    PubMed Central

    Upadrasta, Aditya; Pitta, Swetha

    2016-01-01

    Bacillus coagulans Unique IS-2 is a potential spore-forming probiotic that is commercially available on the market. The draft genome sequence presented here provides deep insight into the beneficial features of this strain for its safe use as a probiotic for various human and animal health applications. PMID:27103709

  18. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes

    PubMed Central

    Shiroguchi, Katsuyuki; Jia, Tony Z.; Sims, Peter A.; Xie, X. Sunney

    2012-01-01

    RNA sequencing (RNA-Seq) is a powerful tool for transcriptome profiling, but is hampered by sequence-dependent bias and inaccuracy at low copy numbers intrinsic to exponential PCR amplification. We developed a simple strategy for mitigating these complications, allowing truly digital RNA-Seq. Following reverse transcription, a large set of barcode sequences is added in excess, and nearly every cDNA molecule is uniquely labeled by random attachment of barcode sequences to both ends. After PCR, we applied paired-end deep sequencing to read the two barcodes and cDNA sequences. Rather than counting the number of reads, RNA abundance is measured based on the number of unique barcode sequences observed for a given cDNA sequence. We optimized the barcodes to be unambiguously identifiable, even in the presence of multiple sequencing errors. This method allows counting with single-copy resolution despite sequence-dependent bias and PCR-amplification noise, and is analogous to digital PCR but amendable to quantifying a whole transcriptome. We demonstrated transcriptome profiling of Escherichia coli with more accurate and reproducible quantification than conventional RNA-Seq. PMID:22232676

  19. Sequencing Needs for Viral Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, S N; Lam, M; Mulakken, N J

    2004-01-26

    We built a system to guide decisions regarding the amount of genomic sequencing required to develop diagnostic DNA signatures, which are short sequences that are sufficient to uniquely identify a viral species. We used our existing DNA diagnostic signature prediction pipeline, which selects regions of a target species genome that are conserved among strains of the target (for reliability, to prevent false negatives) and unique relative to other species (for specificity, to avoid false positives). We performed simulations, based on existing sequence data, to assess the number of genome sequences of a target species and of close phylogenetic relatives (''nearmore » neighbors'') that are required to predict diagnostic signature regions that are conserved among strains of the target species and unique relative to other bacterial and viral species. For DNA viruses such as variola (smallpox), three target genomes provide sufficient guidance for selecting species-wide signatures. Three near neighbor genomes are critical for species specificity. In contrast, most RNA viruses require four target genomes and no near neighbor genomes, since lack of conservation among strains is more limiting than uniqueness. SARS and Ebola Zaire are exceptional, as additional target genomes currently do not improve predictions, but near neighbor sequences are urgently needed. Our results also indicate that double stranded DNA viruses are more conserved among strains than are RNA viruses, since in most cases there was at least one conserved signature candidate for the DNA viruses and zero conserved signature candidates for the RNA viruses.« less

  20. An unusual osteomyelitis caused by Moraxella osloensis: A case report.

    PubMed

    Alkhatib, Nidal J; Younis, Manaf H; Alobaidi, Ahmad S; Shaath, Nebal M

    2017-01-01

    Moraxella osloensis is a gram-negative coccobacillus, that is saprophytic on skin and mucosa, and rarely causing human infections. Reported cases of human infections usually occur in immunocompromised patients. We report the second case of M. osloensis-caused-osteomyelitis in literature, occurring in a young healthy man. The organism was identified by sequencing analysis of the 16S ribosomal RNA gene. Our patient was treated successfully with surgical debridement and intravenous third-generation cephalosporins. M. osloensis has been rarely reported to cause local or invasive infections. Our case report is the second case in literature and it is different from the previously reported case in that our patient has no chronic medical problems, no history of trauma, with unique presentation and features on the MRI and intraoperative finding. Proper diagnosis is essential for appropriate treatment of osteomyelitis. RNA gene sequence analysis is the primary method of M. osloensis diagnosis. M. osloensis is usually susceptible to simple antibiotics. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Pseudomonas aeruginosa Type III Secretory Toxin ExoU and Its Predicted Homologs.

    PubMed

    Sawa, Teiji; Hamaoka, Saeko; Kinoshita, Mao; Kainuma, Atsushi; Naito, Yoshifumi; Akiyama, Koichi; Kato, Hideya

    2016-10-26

    Pseudomonas aeruginosa ExoU, a type III secretory toxin and major virulence factor with patatin-like phospholipase activity, is responsible for acute lung injury and sepsis in immunocompromised patients. Through use of a recently updated bacterial genome database, protein sequences predicted to be homologous to Ps. aeruginosa ExoU were identified in 17 other Pseudomonas species ( Ps. fluorescens , Ps. lundensis , Ps. weihenstephanensis , Ps. marginalis, Ps. rhodesiae, Ps. synxantha , Ps. libanensis , Ps. extremaustralis , Ps. veronii , Ps. simiae , Ps. trivialis , Ps. tolaasii , Ps. orientalis , Ps. taetrolens , Ps. syringae , Ps. viridiflava , and Ps. cannabina ) and 8 Gram-negative bacteria from three other genera ( Photorhabdus , Aeromonas , and Paludibacterium ). In the alignment of the predicted primary amino acid sequences used for the phylogenetic analyses, both highly conserved and nonconserved parts of the toxin were discovered among the various species. Further comparative studies of the predicted ExoU homologs should provide us with more detailed information about the unique characteristics of the Ps. aeruginosa ExoU toxin.

  2. Discrete Circuits Support Generalized versus Context-Specific Vocal Learning in the Songbird.

    PubMed

    Tian, Lucas Y; Brainard, Michael S

    2017-12-06

    Motor skills depend on the reuse of individual gestures in multiple sequential contexts (e.g., a single phoneme in different words). Yet optimal performance requires that a given gesture be modified appropriately depending on the sequence in which it occurs. To investigate the neural architecture underlying such context-dependent modifications, we studied Bengalese finch song, which, like speech, consists of variable sequences of "syllables." We found that when birds are instructed to modify a syllable in one sequential context, learning generalizes across contexts; however, if unique instruction is provided in different contexts, learning is specific for each context. Using localized inactivation of a cortical-basal ganglia circuit specialized for song, we show that this balance between generalization and specificity reflects a hierarchical organization of neural substrates. Primary motor circuitry encodes a core syllable representation that contributes to generalization, while top-down input from cortical-basal ganglia circuitry biases this representation to enable context-specific learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Sequencing Adventure Activities: A New Perspective.

    ERIC Educational Resources Information Center

    Bisson, Christian

    Sequencing in adventure education involves putting activities in an order appropriate to the needs of the group. Contrary to the common assumption that each adventure sequence is unique, a review of literature concerning five sequencing models reveals a certain universality. These models present sequences that move through four phases: group…

  4. The neXtProt peptide uniqueness checker: a tool for the proteomics community.

    PubMed

    Schaeffer, Mathieu; Gateau, Alain; Teixeira, Daniel; Michel, Pierre-André; Zahn-Zabal, Monique; Lane, Lydie

    2017-11-01

    The neXtProt peptide uniqueness checker allows scientists to define which peptides can be used to validate the existence of human proteins, i.e. map uniquely versus multiply to human protein sequences taking into account isobaric substitutions, alternative splicing and single amino acid variants. The pepx program is available at https://github.com/calipho-sib/pepx and can be launched from the command line or through a cgi web interface. Indexing requires a sequence file in FASTA format. The peptide uniqueness checker tool is freely available on the web at https://www.nextprot.org/tools/peptide-uniqueness-checker and from the neXtProt API at https://api.nextprot.org/. lydie.lane@sib.swiss. © The Author(s) 2017. Published by Oxford University Press.

  5. Bacterial Diversity in Microbial Mats and Sediments from the Atacama Desert.

    PubMed

    Rasuk, Maria Cecilia; Fernández, Ana Beatriz; Kurth, Daniel; Contreras, Manuel; Novoa, Fernando; Poiré, Daniel; Farías, María Eugenia

    2016-01-01

    The Atacama Desert has extreme environmental conditions that allow the development of unique microbial communities. The present paper reports the bacterial diversity of microbial mats and sediments and its mineralogical components. Some physicochemical conditions of the water surrounding these ecosystems have also been studied trying to determine their influence on the diversity of these communities. In that way, mats and sediments distributed among different hypersaline lakes located in salt flats of the Atacama Desert were subjected to massive parallel sequencing of the V4 region of the 16S rRNA genes of Bacteria. A higher diversity in sediment than in mat samples have been found. Lakes that harbor microbial mats have higher salinity than lakes where mats are absent. Proteobacteria and/or Bacteroidetes are the major phyla represented in all samples. An interesting item is the finding of a low proportion or absence of Cyanobacteria sequences in the ecosystems studied, suggesting the possibility that other groups may be playing an essential role as primary producers in these extreme environments. Additionally, the large proportion of 16S rRNA gene sequences that could not be classified at the level of phylum indicates potential new phyla present in these ecosystems.

  6. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced by Enterococcus faecium ICIS 8 and Characterization of Its Mode of Action.

    PubMed

    Vasilchenko, Alexey S; Rogozhin, Eugene A; Valyshev, Alexander V

    2017-06-01

    The aim of this work was to purify and characterize a bacteriocin-like antimicrobial substance produced by an antagonistic active strain of Enterococcus faecium. A novel bacteriocin-like inhibitory substance (BLIS) produced by the E. faecium ICIS 8 strain was purified and characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and N-terminal amino acid sequencing revealed the following partial sequence: NH 2 -APKEKCFPKYCV. The proteinaceous nature of purified BLIS was assessed by treatment with proteolytic enzyme. Studies of the action of BLIS using bacteriological and bioluminescence assays revealed a dose-dependent inhibition of Listeria monocytogenes 88BK and Escherichia coli K12 TG1 lac::lux viability. The interaction of the BLIS with the bacterial surface led to the compensation of a negative charge value, as shown by zeta-potential measurements. Assessments of membrane integrity using fluorescent probes and atomic force microscopy revealed the permeabilization of the cellular barrier structures in both L. monocytogenes and E. coli. The novel BLIS from E. faecium ICIS 8 was characterized by a unique primary peptide sequence and exerted bactericidal activity against L. monocytogenes and E. coli by disrupting membrane integrity.

  7. Molecular taxonomy of Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling

    PubMed Central

    2012-01-01

    We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish Dunallela salina strains to investigate their phylogenetic position and taxonomic status within the genus Dunaliella. Our analyses show a great diversity within D. salina (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within Dunaliella, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French D. salina strains were very similar except for two of them: ITC5105 "Janubio" from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within Dunaliella was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall. PMID:22520929

  8. Isolation, propagation, genome analysis and epidemiology of HKU1 betacoronaviruses

    PubMed Central

    Shrivastava, Susmita; Berglund, Andrew; Qian, Zhaohui; Góes, Luiz Gustavo Bentim; Halpin, Rebecca A.; Fedorova, Nadia; Ransier, Amy; Weston, Philip A.; Durigon, Edison Luiz; Jerez, José Antonio; Robinson, Christine C.; Town, Christopher D.; Holmes, Kathryn V.

    2014-01-01

    From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children’s Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4–15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal–bronchial epithelial cells cultured at the air–liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses. PMID:24394697

  9. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley

    PubMed Central

    Held, Michael A.; Penning, Bryan; Brandt, Amanda S.; Kessans, Sarah A.; Yong, Weidong; Scofield, Steven R.; Carpita, Nicholas C.

    2008-01-01

    Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3′-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends ≥1230 bp from the 3′ end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-14C-Glc into cellulose and into mixed-linkage (1 → 3),(1 → 4)-β-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 → 3),(1 → 4)-β-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis. PMID:19075248

  10. A Unique Sequence of Financial Accounting Courses Featuring Team Teaching, Linked Courses, Challenging Assignments, and Instruments for Evaluation and Assessment

    ERIC Educational Resources Information Center

    Lundblad, Heidemarie; Wilson, Barbara A.

    2008-01-01

    The Department of Accounting at California State University Northridge (CSUN) has developed a unique sequence of courses designed to ensure that accounting students are trained not only in technical accounting, but also acquire critical thinking, research and communication skills. The courses have proven effective and have embedded assessment…

  11. VISA--Vector Integration Site Analysis server: a web-based server to rapidly identify retroviral integration sites from next-generation sequencing.

    PubMed

    Hocum, Jonah D; Battrell, Logan R; Maynard, Ryan; Adair, Jennifer E; Beard, Brian C; Rawlings, David J; Kiem, Hans-Peter; Miller, Daniel G; Trobridge, Grant D

    2015-07-07

    Analyzing the integration profile of retroviral vectors is a vital step in determining their potential genotoxic effects and developing safer vectors for therapeutic use. Identifying retroviral vector integration sites is also important for retroviral mutagenesis screens. We developed VISA, a vector integration site analysis server, to analyze next-generation sequencing data for retroviral vector integration sites. Sequence reads that contain a provirus are mapped to the human genome, sequence reads that cannot be localized to a unique location in the genome are filtered out, and then unique retroviral vector integration sites are determined based on the alignment scores of the remaining sequence reads. VISA offers a simple web interface to upload sequence files and results are returned in a concise tabular format to allow rapid analysis of retroviral vector integration sites.

  12. Generation and Analysis of a Large-Scale Expressed Sequence Tag Database from a Full-Length Enriched cDNA Library of Developing Leaves of Gossypium hirsutum L

    PubMed Central

    Pang, Chaoyou; Fan, Shuli; Song, Meizhen; Yu, Shuxun

    2013-01-01

    Background Cotton (Gossypium hirsutum L.) is one of the world’s most economically-important crops. However, its entire genome has not been sequenced, and limited resources are available in GenBank for understanding the molecular mechanisms underlying leaf development and senescence. Methodology/Principal Findings In this study, 9,874 high-quality ESTs were generated from a normalized, full-length cDNA library derived from pooled RNA isolated from throughout leaf development during the plant blooming stage. After clustering and assembly of these ESTs, 5,191 unique sequences, representative 1,652 contigs and 3,539 singletons, were obtained. The average unique sequence length was 682 bp. Annotation of these unique sequences revealed that 84.4% showed significant homology to sequences in the NCBI non-redundant protein database, and 57.3% had significant hits to known proteins in the Swiss-Prot database. Comparative analysis indicated that our library added 2,400 ESTs and 991 unique sequences to those known for cotton. The unigenes were functionally characterized by gene ontology annotation. We identified 1,339 and 200 unigenes as potential leaf senescence-related genes and transcription factors, respectively. Moreover, nine genes related to leaf senescence and eleven MYB transcription factors were randomly selected for quantitative real-time PCR (qRT-PCR), which revealed that these genes were regulated differentially during senescence. The qRT-PCR for three GhYLSs revealed that these genes express express preferentially in senescent leaves. Conclusions/Significance These EST resources will provide valuable sequence information for gene expression profiling analyses and functional genomics studies to elucidate their roles, as well as for studying the mechanisms of leaf development and senescence in cotton and discovering candidate genes related to important agronomic traits of cotton. These data will also facilitate future whole-genome sequence assembly and annotation in G. hirsutum and comparative genomics among Gossypium species. PMID:24146870

  13. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG.

    PubMed

    Rumfelt, L L; Avila, D; Diaz, M; Bartl, S; McKinney, E C; Flajnik, M F

    2001-02-13

    In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM(1gj), from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells ("germline-joined"). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H(1gj) in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H(1gj) chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM(1gj). Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system.

  14. Points of View: A Survey of Survey Courses--Are They Effective? A Unique Approach? Four Semesters of Biology Core Curriculum

    ERIC Educational Resources Information Center

    Batzli, Janet M.

    2005-01-01

    ''Why four semesters? How does this track differ from the two-semester course sequence?'' These are the most common questions students have when they learn about the Biology Core Curriculum (Biocore), a unique four-semester honors biology sequence at University of Wisconsin-Madison (UW-Madison). Biocore was first taught at University of Wisconsin…

  15. The complete chloroplast genome sequence of Epipremnum aureum and its comparative analysis among eight Araceae species

    PubMed Central

    Han, Limin; Chen, Chen; Wang, Zhezhi

    2018-01-01

    Epipremnum aureum is an important foliage plant in the Araceae family. In this study, we have sequenced the complete chloroplast genome of E. aureum by using Illumina Hiseq sequencing platforms. This genome is a double-stranded circular DNA sequence of 164,831 bp that contains 35.8% GC. The two inverted repeats (IRa and IRb; 26,606 bp) are spaced by a small single-copy region (22,868 bp) and a large single-copy region (88,751 bp). The chloroplast genome has 131 (113 unique) functional genes, including 86 (79 unique) protein-coding genes, 37 (30 unique) tRNA genes, and eight (four unique) rRNA genes. Tandem repeats comprise the majority of the 43 long repetitive sequences. In addition, 111 simple sequence repeats are present, with mononucleotides being the most common type and di- and tetranucleotides being infrequent events. Positive selection pressure on rps12 in the E. aureum chloroplast has been demonstrated via synonymous and nonsynonymous substitution rates and selection pressure sites analyses. Ycf15 and infA are pseudogenes in this species. We constructed a Maximum Likelihood phylogenetic tree based on the complete chloroplast genomes of 38 species from 13 families. Those results strongly indicated that E. aureum is positioned as the sister of Colocasia esculenta within the Araceae family. This work may provide information for further study of the molecular phylogenetic relationships within Araceae, as well as molecular markers and breeding novel varieties by chloroplast genetic-transformation of E. aureum in particular. PMID:29529038

  16. Combining one-step Sanger sequencing with phasing probe hybridization for HLA class I typing yields rapid, G-group resolution predicting 99% of unique full length protein sequences.

    PubMed

    Tu, Bin; Masaberg, Carly; Hou, Lihua; Behm, Daniel; Brescia, Peter; Cha, Nuri; Kariyawasam, Kanthi; Lee, Jar How; Nong, Thoa; Sells, John; Tausch, Paul; Yang, Ruyan; Ng, Jennifer; Hurley, Carolyn Katovich

    2017-02-01

    Sanger-based DNA sequencing of exons 2+3 of HLA class I alleles from a heterozygote frequently results in two or more alternative genotypes. This study was undertaken to reduce the time and effort required to produce a single high resolution HLA genotype. Samples were typed in parallel by Sanger sequencing and oligonucleotide probe hybridization. This workflow, together with optimization of analysis software, was tested and refined during the typing of over 42,000 volunteers for an unrelated hematopoietic progenitor cell donor registry. Next generation DNA sequencing (NGS) was applied to over 1000 of these samples to identify the alleles present within the G group designations. Single genotypes at G level resolution were obtained for over 95% of the loci without additional assays. The vast majority of alleles identified (>99%) were the primary allele giving the G groups their name. Only 0.7% of the alleles identified encoded protein variants that were not detected by a focus on the antigen recognition domain (ARD)-encoding exons. Our combined method routinely provides biologically relevant typing resolution at the level of the ARD. It can be applied to both single samples or to large volume typing supporting either bone marrow or solid organ transplantation using technologies currently available in many HLA laboratories. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Codon-Anticodon Recognition in the Bacillus subtilis glyQS T Box Riboswitch

    PubMed Central

    Caserta, Enrico; Liu, Liang-Chun; Grundy, Frank J.; Henkin, Tina M.

    2015-01-01

    Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. PMID:26229106

  18. Aromatic claw: A new fold with high aromatic content that evades structural prediction: Aromatic Claw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph R.; Adhikari, Aashish N.; Gawlak, Grzegorz

    2016-11-10

    We determined the NMR structure of a highly aromatic (13%) protein of unknown function, Aq1974 from Aquifex aeolicus (PDB ID: 5SYQ). The unusual sequence of this protein has a tryptophan content five times the normal (six tryptophan residues of 114 or 5.2% while the average tryptophan content is 1.0%) with the tryptophans occurring in a WXW motif. It has no detectable sequence homology with known protein structures. Although its NMR spectrum suggested that the protein was rich in β-sheet, upon resonance assignment and solution structure determination, the protein was found to be primarily α-helical with a small two-stranded β-sheet withmore » a novel fold that we have termed an Aromatic Claw. As this fold was previously unknown and the sequence unique, we submitted the sequence to CASP10 as a target for blind structural prediction. At the end of the competition, the sequence was classified a hard template based model; the structural relationship between the template and the experimental structure was small and the predictions all failed to predict the structure. CSRosetta was found to predict the secondary structure and its packing; however, it was found that there was little correlation between CSRosetta score and the RMSD between the CSRosetta structure and the NMR determined one. This work demonstrates that even in relatively small proteins, we do not yet have the capacity to accurately predict the fold for all primary sequences. The experimental discovery of new folds helps guide the improvement of structural prediction methods.« less

  19. [Identification and phylogenetic application of unique nucleotide sequence of nad7 intron2 in Rhodiola (Crassulaceae) species].

    PubMed

    Deng, Ke-Jun; Yang, Zu-Jun; Liu, Cheng; Zhao, Wei; Liu, Chang; Feng, Juan; Ren, Zheng-Long

    2007-03-01

    Genetic characterization of 9 populations of Rhodiola crenulata, R. fastigiata and R. sachalinensis (Crassulaceae) species from Sichuan and Jilin Provinces of China, was investigated using the conserved primer of nad7 intron 2. All PCR products about 800 bp long were shorter than other Crassulaceae plants, which were used as molecular markers to identify the Rhodiola species. The sequence of the products indicated that total exon of 53 bp and intron of 738 bp exhibit only 9 nucleotide variations. Blasting the nad7 sequences to GenBank and the phylogenetic analysis showed that the sequence of Rhodiola species was clusted independently, and the length was smaller than all the registered sequences of higher plants. The result suggests that the Rhiodola species had a unique sequence in this gene region, which might be related to the special growth condition.

  20. Cytoreductive nephrectomy vs medical therapy as initial treatment: a rational approach to the sequence question in metastatic renal cell carcinoma.

    PubMed

    Spiess, Philippe E; Fishman, Mayer N

    2010-10-01

    Renal cell carcinoma (RCC) can be considered as two distinct entities: localized and metastatic disease. We conducted a review of the scientific literature published within the past decade pertaining to cytoreductive nephrectomy for metastatic RCC. Retrospective data and historical prospective series have demonstrated the survival benefit of debulking nephrectomy in well-selected RCC patients. New medical therapies, including vascular endothelial growth factor and mTOR pathway blocking drugs, are active biological agents, with survival improvement and potential regression of metastatic and primary tumors. Our current therapeutic challenge is the optimal integration of multimodal therapy consisting of systemic therapy and surgery including cytoreductive nephrectomy, debulking, and metastasectomy. Empiric data to guide this decision are limited. The decision concerning whether medical or surgical therapy should be the primary treatment approach selected must be made on an individual basis, taking into account patient performance status, clinical parameters, and physician expertise and recommendations, thus making each case a unique therapeutic challenge.

  1. Amerindian mitochondrial DNAs have rare Asian mutations at high frequencies, suggesting they derived from four primary maternal lineages.

    PubMed Central

    Schurr, T G; Ballinger, S W; Gan, Y Y; Hodge, J A; Merriwether, D A; Lawrence, D N; Knowler, W C; Weiss, K M; Wallace, D C

    1990-01-01

    The mitochondrial DNA (mtDNA) sequence variation of the South American Ticuna, the Central American Maya, and the North American Pima was analyzed by restriction-endonuclease digestion and oligonucleotide hybridization. The analysis revealed that Amerindian populations have high frequencies of mtDNAs containing the rare Asian RFLP HincII morph 6, a rare HaeIII site gain, and a unique AluI site gain. In addition, the Asian-specific deletion between the cytochrome c oxidase subunit II (COII) and tRNA(Lys) genes was also prevalent in both the Pima and the Maya. These data suggest that Amerindian mtDNAs derived from at least four primary maternal lineages, that new tribal-specific variants accumulated as these mtDNAs became distributed throughout the Americas, and that some genetic variation may have been lost when the progenitors of the Ticuna separated from the North and Central American populations. Images Figure 1 PMID:1968708

  2. Implications of Secondary Aftershocks for Failure Processes

    NASA Astrophysics Data System (ADS)

    Gross, S. J.

    2001-12-01

    When a seismic sequence with more than one mainshock or an unusually large aftershock occurs, there is a compound aftershock sequence. The secondary aftershocks need not have exactly the same decay as the primary sequence, with the differences having implications for the failure process. When the stress step from the secondary mainshock is positive but not large enough to cause immediate failure of all the remaining primary aftershocks, failure processes which involve accelerating slip will produce secondary aftershocks that decay more rapidly than primary aftershocks. This is because the primary aftershocks are an accelerated version of the background seismicity, and secondary aftershocks are an accelerated version of the primary aftershocks. Real stress perturbations may be negative, and heterogeneities in mainshock stress fields mean that the real world situation is quite complicated. I will first describe and verify my picture of secondary aftershock decay with reference to a simple numerical model of slipping faults which obeys rate and state dependent friction and lacks stress heterogeneity. With such a model, it is possible to generate secondary aftershock sequences with perturbed decay patterns, quantify those patterns, and develop an analysis technique capable of correcting for the effect in real data. The secondary aftershocks are defined in terms of frequency linearized time s(T), which is equal to the number of primary aftershocks expected by a time T, $ s ≡ ∫ t=0T n(t) dt, where the start time t=0 is the time of the primary aftershock, and the primary aftershock decay function n(t) is extrapolated forward to the times of the secondary aftershocks. In the absence of secondary sequences the function s(T)$ re-scales the time so that approximately one event occurs per new time unit; the aftershock sequence is gone. If this rescaling is applied in the presence of a secondary sequence, the secondary sequence is shaped like a primary aftershock sequence, and can be fit by the same modeling techniques applied to simple sequences. The later part of the presentation will concern the decay of Hector Mine aftershocks as influenced by the Landers aftershocks. Although attempts to predict the abundance of Hector aftershocks based on stress overlap analysis are not very successful, the analysis does do a good job fitting the decay of secondary sequences.

  3. PuLSE: Quality control and quantification of peptide sequences explored by phage display libraries.

    PubMed

    Shave, Steven; Mann, Stefan; Koszela, Joanna; Kerr, Alastair; Auer, Manfred

    2018-01-01

    The design of highly diverse phage display libraries is based on assumption that DNA bases are incorporated at similar rates within the randomized sequence. As library complexity increases and expected copy numbers of unique sequences decrease, the exploration of library space becomes sparser and the presence of truly random sequences becomes critical. We present the program PuLSE (Phage Library Sequence Evaluation) as a tool for assessing randomness and therefore diversity of phage display libraries. PuLSE runs on a collection of sequence reads in the fastq file format and generates tables profiling the library in terms of unique DNA sequence counts and positions, translated peptide sequences, and normalized 'expected' occurrences from base to residue codon frequencies. The output allows at-a-glance quantitative quality control of a phage library in terms of sequence coverage both at the DNA base and translated protein residue level, which has been missing from toolsets and literature. The open source program PuLSE is available in two formats, a C++ source code package for compilation and integration into existing bioinformatics pipelines and precompiled binaries for ease of use.

  4. Autotrophic Ecosystems on the Early Earth

    NASA Technical Reports Server (NTRS)

    Schulte, M.

    2003-01-01

    Ophiolite sequences, sections of lower oceanic crust and upper mantle that have been thrust onto continental craton, are located in northern and central California and provide easily accessible areas that serve as good analogs for similar, more extensive areas of the early Earth. We have begun investigating and characterizing these sites in order to understand better the processes that may be responsible for the water chemistry, mineralogy and biology of similar environments on the early Earth. The geophysical and geochemical processes in these terranes provide niches for unique communities of extremeophiles and likely provide a good analog to the location that first gave rise to life on Earth. The ophiolites found in northern and central California include the Trinity, Josephine, Coast Range and Point Sal, all of which are approximately 160 million years old. Fluids from serpentinizing springs are generally alkaline with high pH and H2 contents, indicating that the mafic rock compositions control the fluid composition through water-rock reactions during relatively low-grade hydrothermal processes. There are significant amounts of primary mineralogy remaining in the rocks, meaning that substantial alteration processes are still occurring in these terranes. The general reaction for serpentinization of olivine is given by one of the authors. olivine + H2O = serpentine + brucite + magnetite + H2. We have analyzed the mineralogical composition of several rock samples collected from the Coast Range Ophiolite near Clear Lake, CA by electron microprobe. The remnant primary mineralogy is fairly urnform in composition, with an olivine composition of Fo(sub 90), and with pyroxene compositions of En(sub 90) for orthopyroxene and En(sub 49)Wo(sub 48)Fs(sub 03) for the clinopyroxene. Other primary phases observed include chromites and other spinels. Examination of petrographic thin sections reveals that serpentinization reactions have occurred in these locations. The serpentine resulting from aqueous alteration of olivine resides in veins that are see to cross cut the primary mineral grains. There are several generations of alteration products, comprised mostly of serpentines that are magnesium rich, with magnetite, brucite and carbonates observed as accessory minerals. The formation of carbonates can be taken to indicate the presence of CO2 in the altering fluids. We collected samples from a spring in the Coast Range Ophiolite in order to determine whether the geochemical environment serves as a habitat for chemotrophic microorganisms. DNA was extracted from the sediment samples and the 16s rRNA gene was PCR amplified using universal Archaeal primers. Denaturing gradient gel electrophoresis (DGGE) was used to determine the community of Archaea thriving in these samples. Our results indicate that there were 8 different genera of Archaea from a single sample. A sequence was obtained from one of these eight. The sequence is of an organism similar to Halorubrum tibetense, and alkalophilic Archaeon. This result suggests that these environments are likely hosts for communities of organisms that are adapted for the unique chemistry provided by the alkaline spring.

  5. Equivalent Indels – Ambiguous Functional Classes and Redundancy in Databases

    PubMed Central

    Assmus, Jens; Kleffe, Jürgen; Schmitt, Armin O.; Brockmann, Gudrun A.

    2013-01-01

    There is considerable interest in studying sequenced variations. However, while the positions of substitutions are uniquely identifiable by sequence alignment, the location of insertions and deletions still poses problems. Each insertion and deletion causes a change of sequence. Yet, due to low complexity or repetitive sequence structures, the same indel can sometimes be annotated in different ways. Two indels which differ in allele sequence and position can be one and the same, i.e. the alternative sequence of the whole chromosome is identical in both cases and, therefore, the two deletions are biologically equivalent. In such a case, it is impossible to identify the exact position of an indel merely based on sequence alignment. Thus, variation entries in a mutation database are not necessarily uniquely defined. We prove the existence of a contiguous region around an indel in which all deletions of the same length are biologically identical. Databases often show only one of several possible locations for a given variation. Furthermore, different data base entries can represent equivalent variation events. We identified 1,045,590 such problematic entries of insertions and deletions out of 5,860,408 indel entries in the current human database of Ensembl. Equivalent indels are found in sequence regions of different functions like exons, introns or 5' and 3' UTRs. One and the same variation can be assigned to several different functional classifications of which only one is correct. We implemented an algorithm that determines for each indel database entry its complete set of equivalent indels which is uniquely characterized by the indel itself and a given interval of the reference sequence. PMID:23658777

  6. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    PubMed

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  7. Structural brain aging and speech production: a surface-based brain morphometry study.

    PubMed

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

  8. Whole-genome sequencing of Aspergillus tubingensis G131 and overview of its secondary metabolism potential.

    PubMed

    Choque, Elodie; Klopp, Christophe; Valiere, Sophie; Raynal, José; Mathieu, Florence

    2018-03-15

    Black Aspergilli represent one of the most important fungal resources of primary and secondary metabolites for biotechnological industry. Having several black Aspergilli sequenced genomes should allow targeting the production of certain metabolites with bioactive properties. In this study, we report the draft genome of a black Aspergilli, A. tubingensis G131, isolated from a French Mediterranean vineyard. This 35 Mb genome includes 10,994 predicted genes. A genomic-based discovery identifies 80 secondary metabolites biosynthetic gene clusters. Genomic sequences of these clusters were blasted on 3 chosen black Aspergilli genomes: A. tubingensis CBS 134.48, A. niger CBS 513.88 and A. kawachii IFO 4308. This comparison highlights different levels of clusters conservation between the four strains. It also allows identifying seven unique clusters in A. tubingensis G131. Moreover, the putative secondary metabolites clusters for asperazine and naphtho-gamma-pyrones production were proposed based on this genomic analysis. Key biosynthetic genes required for the production of 2 mycotoxins, ochratoxin A and fumonisin, are absent from this draft genome. Even if intergenic sequences of these mycotoxins biosynthetic pathways are present, this could not lead to the production of those mycotoxins by A. tubingensis G131. Functional and bioinformatics analyses of A. tubingensis G131 genome highlight its potential for metabolites production in particular for TAN-1612, asperazine and naphtho-gamma-pyrones presenting antioxidant, anticancer or antibiotic properties.

  9. Solid-state mAbs and ADCs subjected to heat-stress stability conditions can be covalently modified with buffer and excipient molecules.

    PubMed

    Valliere-Douglass, John F; Lewis, Patsy; Salas-Solano, Oscar; Jiang, Shan

    2015-02-01

    We report that a unique type of chemical modification occurs on lyophilized proteins. Freeze-dried mAbs and antibody-drug conjugates (ADCs) can be covalently modified with buffer and excipient molecules on the side chains of Glu, Asp, Thr, and Ser amino acids when subjected to temperature stress. The reaction occurs primarily via condensation of common buffers and excipients such as histidine, tris, trehalose and sucrose, with Glu and Asp carboxylates in the primary sequence of proteins. The reaction was also found to proceed through condensation of carboxylate containing buffers such as citrate, with Thr and Ser hydroxyls in the primary sequence of proteins. Based on the mass of the covalent adducts observed on mAbs and ADCs, it is apparent that the reaction produces water as a product and is thus favored in a low moisture environments such as a lyophilized protein cake. Herein, we present the evidence for the covalent modification of proteins drawn from case studies of in-depth characterization of heat-stressed mAbs and ADCs in the solid state. We also demonstrate how common charge variant assays such as imaged capillary isoelectric focusing and mass spectrometry can be used to monitor this specific class of protein modification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  10. Next generation sequencing of carcinoma of unknown primary reveals novel combinatorial strategies in a heterogeneous mutational landscape

    PubMed Central

    Subbiah, Ishwaria M.; Tsimberidou, Apostolia; Subbiah, Vivek; Janku, Filip; Roy-Chowdhuri, Sinchita; Hong, David S.

    2017-01-01

    Background Advanced carcinoma of unknown primary (CUP) has limited effective therapeutic options given the phenotypic and genotypic diversity. To identify future novel therapeutic strategies we conducted an exploratory analysis of next-generation sequencing (NGS) of relapsed, refractory CUP. Methods We identified patients in our phase I clinic where archival tissue was available for a targeted NGS CLIA-certified assay. Results Of 17 patients tested, 15 (88%) demonstrated genomic alterations (median 2 aberrations; range 0–8, total 59 alterations). Nine (53%) patients had altered cell signaling including the PI3K/AKT/MTOR (n=5, 29%) and MAPK pathways (n=3,18%); 7 (41%) patients demonstrated ≥1 alterations in tumor suppressor genes (TP53 in 5 patients), 8 (47%) had impaired epigenetic regulation and DNA methylation, 8 (47%) had aberrant cell cycle regulation, commonly in the cyclin dependent kinases. Ten (59%) patients had alterations in transcriptional regulators. Concurrent mutations affecting cell cycle regulation were noted to occur with aberrant epigenetic regulation (n=6, 35%) and MAPK/PI3K pathway (n=5, 29%). Conclusion Every patient had a unique molecular profile with no two patients demonstrating an identical panel of mutations. We identify two emerging novel combinatorial strategies targeting impaired cell cycle arrest, first with epigenetic modifiers and, second, with MAPK/PI3K pathway inhibition. PMID:28781987

  11. De novo assembly, characterization and functional annotation of pineapple fruit transcriptome through massively parallel sequencing.

    PubMed

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple.

  12. De Novo Assembly, Characterization and Functional Annotation of Pineapple Fruit Transcriptome through Massively Parallel Sequencing

    PubMed Central

    Ong, Wen Dee; Voo, Lok-Yung Christopher; Kumar, Vijay Subbiah

    2012-01-01

    Background Pineapple (Ananas comosus var. comosus), is an important tropical non-climacteric fruit with high commercial potential. Understanding the mechanism and processes underlying fruit ripening would enable scientists to enhance the improvement of quality traits such as, flavor, texture, appearance and fruit sweetness. Although, the pineapple is an important fruit, there is insufficient transcriptomic or genomic information that is available in public databases. Application of high throughput transcriptome sequencing to profile the pineapple fruit transcripts is therefore needed. Methodology/Principal Findings To facilitate this, we have performed transcriptome sequencing of ripe yellow pineapple fruit flesh using Illumina technology. About 4.7 millions Illumina paired-end reads were generated and assembled using the Velvet de novo assembler. The assembly produced 28,728 unique transcripts with a mean length of approximately 200 bp. Sequence similarity search against non-redundant NCBI database identified a total of 16,932 unique transcripts (58.93%) with significant hits. Out of these, 15,507 unique transcripts were assigned to gene ontology terms. Functional annotation against Kyoto Encyclopedia of Genes and Genomes pathway database identified 13,598 unique transcripts (47.33%) which were mapped to 126 pathways. The assembly revealed many transcripts that were previously unknown. Conclusions The unique transcripts derived from this work have rapidly increased of the number of the pineapple fruit mRNA transcripts as it is now available in public databases. This information can be further utilized in gene expression, genomics and other functional genomics studies in pineapple. PMID:23091603

  13. Mosaic Graphs and Comparative Genomics in Phage Communities

    PubMed Central

    Belcaid, Mahdi; Bergeron, Anne

    2010-01-01

    Abstract Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities. PMID:20874413

  14. Production of Supra-regular Spatial Sequences by Macaque Monkeys.

    PubMed

    Jiang, Xinjian; Long, Tenghai; Cao, Weicong; Li, Junru; Dehaene, Stanislas; Wang, Liping

    2018-06-18

    Understanding and producing embedded sequences in language, music, or mathematics, is a central characteristic of our species. These domains are hypothesized to involve a human-specific competence for supra-regular grammars, which can generate embedded sequences that go beyond the regular sequences engendered by finite-state automata. However, is this capacity truly unique to humans? Using a production task, we show that macaque monkeys can be trained to produce time-symmetrical embedded spatial sequences whose formal description requires supra-regular grammars or, equivalently, a push-down stack automaton. Monkeys spontaneously generalized the learned grammar to novel sequences, including longer ones, and could generate hierarchical sequences formed by an embedding of two levels of abstract rules. Compared to monkeys, however, preschool children learned the grammars much faster using a chunking strategy. While supra-regular grammars are accessible to nonhuman primates through extensive training, human uniqueness may lie in the speed and learning strategy with which they are acquired. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Unique core genomes of the bacterial family vibrionaceae: insights into niche adaptation and speciation.

    PubMed

    Kahlke, Tim; Goesmann, Alexander; Hjerde, Erik; Willassen, Nils Peder; Haugen, Peik

    2012-05-10

    The criteria for defining bacterial species and even the concept of bacterial species itself are under debate, and the discussion is apparently intensifying as more genome sequence data is becoming available. However, it is still unclear how the new advances in genomics should be used most efficiently to address this question. In this study we identify genes that are common to any group of genomes in our dataset, to determine whether genes specific to a particular taxon exist and to investigate their potential role in adaptation of bacteria to their specific niche. These genes were named unique core genes. Additionally, we investigate the existence and importance of unique core genes that are found in isolates of phylogenetically non-coherent groups. These groups of isolates, that share a genetic feature without sharing a closest common ancestor, are termed genophyletic groups. The bacterial family Vibrionaceae was used as the model, and we compiled and compared genome sequences of 64 different isolates. Using the software orthoMCL we determined clusters of homologous genes among the investigated genome sequences. We used multilocus sequence analysis to build a host phylogeny and mapped the numbers of unique core genes of all distinct groups of isolates onto the tree. The results show that unique core genes are more likely to be found in monophyletic groups of isolates. Genophyletic groups of isolates, in contrast, are less common especially for large groups of isolate. The subsequent annotation of unique core genes that are present in genophyletic groups indicate a high degree of horizontally transferred genes. Finally, the annotation of the unique core genes of Vibrio cholerae revealed genes involved in aerotaxis and biosynthesis of the iron-chelator vibriobactin. The presented work indicates that genes specific for any taxon inside the bacterial family Vibrionaceae exist. These unique core genes encode conserved metabolic functions that can shed light on the adaptation of a species to its ecological niche. Additionally, our study suggests that unique core genes can be used to aid classification of bacteria and contribute to a bacterial species definition on a genomic level. Furthermore, these genes may be of importance in clinical diagnostics and drug development.

  16. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions.

    PubMed

    Brannon, A Rose; Vakiani, Efsevia; Sylvester, Brooke E; Scott, Sasinya N; McDermott, Gregory; Shah, Ronak H; Kania, Krishan; Viale, Agnes; Oschwald, Dayna M; Vacic, Vladimir; Emde, Anne-Katrin; Cercek, Andrea; Yaeger, Rona; Kemeny, Nancy E; Saltz, Leonard B; Shia, Jinru; D'Angelica, Michael I; Weiser, Martin R; Solit, David B; Berger, Michael F

    2014-08-28

    Colorectal cancer is the second leading cause of cancer death in the United States, with over 50,000 deaths estimated in 2014. Molecular profiling for somatic mutations that predict absence of response to anti-EGFR therapy has become standard practice in the treatment of metastatic colorectal cancer; however, the quantity and type of tissue available for testing is frequently limited. Further, the degree to which the primary tumor is a faithful representation of metastatic disease has been questioned. As next-generation sequencing technology becomes more widely available for clinical use and additional molecularly targeted agents are considered as treatment options in colorectal cancer, it is important to characterize the extent of tumor heterogeneity between primary and metastatic tumors. We performed deep coverage, targeted next-generation sequencing of 230 key cancer-associated genes for 69 matched primary and metastatic tumors and normal tissue. Mutation profiles were 100% concordant for KRAS, NRAS, and BRAF, and were highly concordant for recurrent alterations in colorectal cancer. Additionally, whole genome sequencing of four patient trios did not reveal any additional site-specific targetable alterations. Colorectal cancer primary tumors and metastases exhibit high genomic concordance. As current clinical practices in colorectal cancer revolve around KRAS, NRAS, and BRAF mutation status, diagnostic sequencing of either primary or metastatic tissue as available is acceptable for most patients. Additionally, consistency between targeted sequencing and whole genome sequencing results suggests that targeted sequencing may be a suitable strategy for clinical diagnostic applications.

  17. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication.

    PubMed

    Liu, Q; Yong, C B; Astell, C R

    1994-06-01

    Previous characterization of the terminal sequences of the minute virus of mice (MVM) genome demonstrated that the right hand palindrome contains two sequences, each the inverted complement of the other. However, the left hand palindrome was shown to exist as a unique sequence [Astell et al., J. Virol. 54: 179-185 (1985)]. The modified rolling hairpin (MRH) model for MVM replication provided an explanation of how the right hand palindrome could undergo hairpin transfer to generate two sequences, while the left end palindrome within the dimer bridge could undergo asymmetric resolution and retain the unique left end sequence. This report describes in vitro resolution of the wild-type dimer bridge sequence of MVM using recombinant (baculovirus) expressed NS-1 and a replication extract from LA9 cells. The resolution products are consistent with those predicted by the MRH model, providing support for this replication mechanism. In addition, mutant dimer bridge clones were constructed and used in the resolution assay. The mutant structures included removal of the asymmetry in the hairpin stem, inversion of the sequence at the initiating nick site, and a 2-bp deletion within one stem of the dimer bridge. In all cases, the mutant dimer bridge structures are resolved; however, the resolution pattern observed with the mutant dimer bridge compared with the wild-type dimer bridge is shifted toward symmetrical resolution. These results suggest that sequences within the left hand hairpin (and hence dimer bridge sequence) are responsible for asymmetric resolution and conservation of the unique sequence within the left hand palindrome of the MVM genome.

  18. Unique Variants in OPN1LW Cause Both Syndromic and Nonsyndromic X-Linked High Myopia Mapped to MYP1.

    PubMed

    Li, Jiali; Gao, Bei; Guan, Liping; Xiao, Xueshan; Zhang, Jianguo; Li, Shiqiang; Jiang, Hui; Jia, Xiaoyun; Yang, Jianhua; Guo, Xiangming; Yin, Ye; Wang, Jun; Zhang, Qingjiong

    2015-06-01

    MYP1 is a locus for X-linked syndromic and nonsyndromic high myopia. Recently, unique haplotypes in OPN1LW were found to be responsible for X-linked syndromic high myopia mapped to MYP1. The current study is to test if such variants in OPN1LW are also responsible for X-linked nonsyndromic high myopia mapped to MYP1. The proband of the family previously mapped to MYP1 was initially analyzed using whole-exome sequencing and whole-genome sequencing. Additional probands with early-onset high myopia were analyzed using whole-exome sequencing. Variants in OPN1LW were selected and confirmed by Sanger sequencing. Long-range and second PCR were used to determine the haplotype and the first gene of the red-green gene array. Candidate variants were further validated in family members and controls. The unique LVAVA haplotype in OPN1LW was detected in the family with X-linked nonsyndromic high myopia mapped to MYP1. In addition, this haplotype and a novel frameshift mutation (c.617_620dup, p.Phe208Argfs*51) in OPN1LW were detected in two other families with X-linked high myopia. The unique haplotype cosegregated with high myopia in the two families, with a maximum LOD score of 3.34 and 2.31 at θ = 0. OPN1LW with the variants in these families was the first gene in the red-green gene array and was not present in 247 male controls. Reevaluation of the clinical data in both families with the unique haplotype suggested nonsyndromic high myopia. Our study confirms the findings that unique variants in OPN1LW are responsible for both syndromic and nonsyndromic X-linked high myopia mapped to MYP1.

  19. Polymorphism in the Eruption Sequence of Primary Dentition: A Cross-sectional Study

    PubMed Central

    Bhojraj, Nandlal; Narayanappa

    2017-01-01

    Introduction Primary teeth have shown wide variations in their eruption time among different population. Population specific eruption ages are provided as mean with standard deviations or median ages with its percentile range. This alone will be insufficient for prediction of tooth eruption sequence because they provide no information on the frequency of sequence variation within the pairs of teeth. Norms of polymorphic variation in the eruption sequence can be more useful. Aim This study aims at providing norms for the sequence polymorphism in primary teeth among the children of Mysore population. Materials and Methods A cross-sectional study was designed with 1392 children, recruited from December 2015 to June 2016 by simple random sampling method. Tooth was recorded as present or absent. Across the entire possible intra quadrant tooth pair, cases of present-present, absent-absent, present-absent and absent-present and were counted and computed as percentages. Results Sequence polymorphisms were more common in 82-84 pairs of teeth. Significant polymorphic reverse sequence was observed in 52-54 (9%), 82-84 (35%) in males and 82-84 (18%) in females. There was no polymorphism in maxillary arch in females. Conclusion The present study provides the baseline data values for sequence variation in primary teeth eruption. To the best of investigators knowledge, there are no previous studies describing the sequence polymorphism in primary teeth in Indian population. The results of this study helps in assessment of eruption sequence problems in paediatric dentistry and in evaluation and prediction of tooth eruption sequence in individual child. PMID:28658912

  20. Epigenetic aspects of centromere function in plants.

    PubMed

    Birchler, James A; Gao, Zhi; Sharma, Anupma; Presting, Gernot G; Han, Fangpu

    2011-04-01

    Centromeres were once thought to be boring structures on the chromosome involved with transmission through mitosis and meiosis. Recent data from a wide spectrum of organisms reveal an epigenetic component to centromere specification in that they can become inactive easily or form over unique DNA as neocentromeres. However, the constancy of centromere repeats at primary constrictions in most species, the fact that these repeats are transcribed and incorporated into the kinetochore, and the phenomenon of reactivation of formerly inactive centromeres at the same chromosomal sites suggests some type of role of DNA sequence or configuration in establishing the site of kinetochores. Here we present evidence for epigenetic and structural aspects involved with centromere activity in plants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    PubMed Central

    2011-01-01

    Background Panax notoginseng (Burk) F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST) similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS), which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158) and UDP-glycosyltransferase (Pn00082) gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH), and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR) were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next-generation sequencing (NGS) technology. The candidate genes involved in triterpene saponin biosynthesis, including the putative CYP450s and UGTs, were obtained in this study. Additionally, the identification of SSRs provided plenty of genetic makers for molecular breeding and genetics applications in this species. These data will provide information on gene discovery, transcriptional regulation and marker-assisted selection for P. notoginseng. The dataset establishes an important foundation for the study with the purpose of ensuring adequate drug resources for this species. PMID:22369100

  2. Semidetached systems of spectral type B: BF Aurigae,. mu. /sup 1/ Scorpii, and V Puppis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, D.P.; Darland, J.J.; Leung, K.

    1979-02-01

    The photoelectric observations of BF Aur by Mannino, Bartolini, and Biolchini, ..mu../sup 1/ Sco by Stibbs, and V Pup by Hogg were analyzed with the Wilson and Devinney approach. All three systems were found to have semidetached configurations, and improved absolute dimensions are presented. V Pup and ..mu../sup 1/ Sco are presently in the slow phase of case A mass exchange; the primaries are still on the main sequence. The primary of ..mu../sup 1/ Sco does not appear underluminous as has been reported, while the primary of V Pup may be underluminous by over 1 magnitude. BF Aur is onemore » of the very few systems with the semidetached component being the more massive one. Due to uncertainties in the spectroscopic orbit a unique model cannot be presented, but one with a mass ratio of 0.83 is the most consistent with the observations. Since all three systems are evolved, they have no direct relevance to the theory of stellar fission. Based on a survey of 13 close binaries it is found that classical approaches cannot determine whether such systems are detached, semidetached, or in contact.« less

  3. Animal selection for whole genome sequencing by quantifying the unique contribution of homozygous haplotypes sequenced

    USDA-ARS?s Scientific Manuscript database

    Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...

  4. Comprehensive mutation screening in 55 probands with type 1 primary hyperoxaluria shows feasibility of a gene-based diagnosis.

    PubMed

    Monico, Carla G; Rossetti, Sandro; Schwanz, Heidi A; Olson, Julie B; Lundquist, Patrick A; Dawson, D Brian; Harris, Peter C; Milliner, Dawn S

    2007-06-01

    Mutations in AGXT, a locus mapped to 2q37.3, cause deficiency of liver-specific alanine:glyoxylate aminotransferase (AGT), the metabolic error in type 1 primary hyperoxaluria (PH1). Genetic analysis of 55 unrelated probands with PH1 from the Mayo Clinic Hyperoxaluria Center, to date the largest with availability of complete sequencing across the entire AGXT coding region and documented hepatic AGT deficiency, suggests that a molecular diagnosis (identification of two disease alleles) is feasible in 96% of patients. Unique to this PH1 population was the higher frequency of G170R, the most common AGXT mutation, accounting for 37% of alleles, and detection of a new 3' end deletion (Ex 11_3'UTR del). A described frameshift mutation (c.33_34insC) occurred with the next highest frequency (11%), followed by F152I and G156R (frequencies of 6.3 and 4.5%, respectively), both surpassing the frequency (2.7%) of I244T, the previously reported third most common pathogenic change. These sequencing data indicate that AGXT is even more variable than formerly believed, with 28 new variants (21 mutations and seven polymorphisms) detected, with highest frequencies on exons 1, 4, and 7. When limited to these three exons, molecular analysis sensitivity was 77%, compared with 98% for whole-gene sequencing. These are the first data in support of comprehensive AGXT analysis for the diagnosis of PH1, obviating a liver biopsy in most well-characterized patients. Also reported here is previously unavailable evidence for the pathogenic basis of all AGXT missense variants, including evolutionary conservation data in a multisequence alignment and use of a normal control population.

  5. Using the self-select paradigm to delineate the nature of speech motor programming.

    PubMed

    Wright, David L; Robin, Don A; Rhee, Jooyhun; Vaculin, Amber; Jacks, Adam; Guenther, Frank H; Fox, Peter T

    2009-06-01

    The authors examined the involvement of 2 speech motor programming processes identified by S. T. Klapp (1995, 2003) during the articulation of utterances differing in syllable and sequence complexity. According to S. T. Klapp, 1 process, INT, resolves the demands of the programmed unit, whereas a second process, SEQ, oversees the serial order demands of longer sequences. A modified reaction time paradigm was used to assess INT and SEQ demands. Specifically, syllable complexity was dependent on syllable structure, whereas sequence complexity involved either repeated or unique syllabi within an utterance. INT execution was slowed when articulating single syllables in the form CCCV compared to simpler CV syllables. Planning unique syllables within a multisyllabic utterance rather than repetitions of the same syllable slowed INT but not SEQ. The INT speech motor programming process, important for mental syllabary access, is sensitive to changes in both syllable structure and the number of unique syllables in an utterance.

  6. Quantitative statistical analysis of cis-regulatory sequences in ABA/VP1- and CBF/DREB1-regulated genes of Arabidopsis.

    PubMed

    Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R

    2005-09-01

    We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.

  7. A novel class of small RNAs bind to MILI protein in mouse testes.

    PubMed

    Aravin, Alexei; Gaidatzis, Dimos; Pfeffer, Sébastien; Lagos-Quintana, Mariana; Landgraf, Pablo; Iovino, Nicola; Morris, Patricia; Brownstein, Michael J; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Chien, Minchen; Russo, James J; Ju, Jingyue; Sheridan, Robert; Sander, Chris; Zavolan, Mihaela; Tuschl, Thomas

    2006-07-13

    Small RNAs bound to Argonaute proteins recognize partially or fully complementary nucleic acid targets in diverse gene-silencing processes. A subgroup of the Argonaute proteins--known as the 'Piwi family'--is required for germ- and stem-cell development in invertebrates, and two Piwi members--MILI and MIWI--are essential for spermatogenesis in mouse. Here we describe a new class of small RNAs that bind to MILI in mouse male germ cells, where they accumulate at the onset of meiosis. The sequences of the over 1,000 identified unique molecules share a strong preference for a 5' uridine, but otherwise cannot be readily classified into sequence families. Genomic mapping of these small RNAs reveals a limited number of clusters, suggesting that these RNAs are processed from long primary transcripts. The small RNAs are 26-31 nucleotides (nt) in length--clearly distinct from the 21-23 nt of microRNAs (miRNAs) or short interfering RNAs (siRNAs)--and we refer to them as 'Piwi-interacting RNAs' or piRNAs. Orthologous human chromosomal regions also give rise to small RNAs with the characteristics of piRNAs, but the cloned sequences are distinct. The identification of this new class of small RNAs provides an important starting point to determine the molecular function of Piwi proteins in mammalian spermatogenesis.

  8. Genomic analysis suggests that mRNA destabilization by the microprocessor is specialized for the auto-regulation of Dgcr8.

    PubMed

    Shenoy, Archana; Blelloch, Robert

    2009-09-11

    The Microprocessor, containing the RNA binding protein Dgcr8 and RNase III enzyme Drosha, is responsible for processing primary microRNAs to precursor microRNAs. The Microprocessor regulates its own levels by cleaving hairpins in the 5'UTR and coding region of the Dgcr8 mRNA, thereby destabilizing the mature transcript. To determine whether the Microprocessor has a broader role in directly regulating other coding mRNA levels, we integrated results from expression profiling and ultra high-throughput deep sequencing of small RNAs. Expression analysis of mRNAs in wild-type, Dgcr8 knockout, and Dicer knockout mouse embryonic stem (ES) cells uncovered mRNAs that were specifically upregulated in the Dgcr8 null background. A number of these transcripts had evolutionarily conserved predicted hairpin targets for the Microprocessor. However, analysis of deep sequencing data of 18 to 200nt small RNAs in mouse ES, HeLa, and HepG2 indicates that exonic sequence reads that map in a pattern consistent with Microprocessor activity are unique to Dgcr8. We conclude that the Microprocessor's role in directly destabilizing coding mRNAs is likely specifically targeted to Dgcr8 itself, suggesting a specialized cellular mechanism for gene auto-regulation.

  9. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    PubMed Central

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  10. Novel application of the MSSCP method in biodiversity studies.

    PubMed

    Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Górecka, Magdalena; Zielenkiewicz, Urszula

    2012-02-01

    Analysis of 16S rRNA sequence diversity is widely performed for characterizing the biodiversity of microbial samples. The number of determined sequences has a considerable impact on complete results. Although the cost of mass sequencing is decreasing, it is often still too high for individual projects. We applied the multi-temperature single-strand conformational polymorphism (MSSCP) method to decrease the number of analysed sequences. This was a novel application of this method. As a control, the same sample was analysed using random sequencing. In this paper, we adapted the MSSCP technique for screening of unique sequences of the 16S rRNA gene library and bacterial strains isolated from biofilms growing on the walls of an ancient gold mine in Poland and determined whether the results obtained by both methods differed and whether random sequencing could be replaced by MSSCP. Although it was biased towards the detection of rare sequences in the samples, the qualitative results of MSSCP were not different than those of random sequencing. Unambiguous discrimination of unique clones and strains creates an opportunity to effectively estimate the biodiversity of natural communities, especially in populations which are numerous but species poor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Individualized Mutation Detection in Circulating Tumor DNA for Monitoring Colorectal Tumor Burden Using a Cancer-Associated Gene Sequencing Panel.

    PubMed

    Sato, Kei A; Hachiya, Tsuyoshi; Iwaya, Takeshi; Kume, Kohei; Matsuo, Teppei; Kawasaki, Keisuke; Abiko, Yukito; Akasaka, Risaburo; Matsumoto, Takayuki; Otsuka, Koki; Nishizuka, Satoshi S

    2016-01-01

    Circulating tumor DNA (ctDNA) carries information on tumor burden. However, the mutation spectrum is different among tumors. This study was designed to examine the utility of ctDNA for monitoring tumor burden based on an individual mutation profile. DNA was extracted from a total of 176 samples, including pre- and post-operational plasma, primary tumors, and peripheral blood mononuclear cells (PBMC), from 44 individuals with colorectal tumor who underwent curative resection of colorectal tumors, as well as nine healthy individuals. Using a panel of 50 cancer-associated genes, tumor-unique mutations were identified by comparing the single nucleotide variants (SNVs) from tumors and PBMCs with an Ion PGM sequencer. A group of the tumor-unique mutations from individual tumors were designated as individual marker mutations (MMs) to trace tumor burden by ctDNA using droplet digital PCR (ddPCR). From these experiments, three major objectives were assessed: (a) Tumor-unique mutations; (b) mutation spectrum of a tumor; and (c) changes in allele frequency of the MMs in ctDNA after curative resection of the tumor. A total of 128 gene point mutations were identified in 27 colorectal tumors. Twenty-six genes were mutated in at least 1 sample, while 14 genes were found to be mutated in only 1 sample, respectively. An average of 2.7 genes were mutated per tumor. Subsequently, 24 MMs were selected from SNVs for tumor burden monitoring. Among the MMs found by ddPCR with > 0.1% variant allele frequency in plasma DNA, 100% (8 out of 8) exhibited a decrease in post-operation ctDNA, whereas none of the 16 MMs found by ddPCR with < 0.1% variant allele frequency in plasma DNA showed a decrease. This panel of 50 cancer-associated genes appeared to be sufficient to identify individual, tumor-unique, mutated ctDNA markers in cancer patients. The MMs showed the clinical utility in monitoring curatively-treated colorectal tumor burden if the allele frequency of MMs in plasma DNA is above 0.1%.

  12. Anticipatory activity in primary motor cortex codes memorized movement sequences.

    PubMed

    Lu, Xiaofeng; Ashe, James

    2005-03-24

    Movement sequences, defined both by the component movements and by the serial order in which they are produced, are fundamental building blocks of motor behavior. The serial order of sequence production is strongly encoded in medial motor areas. It is not known to what extent sequences are further elaborated or encoded in primary motor cortex. Here, we describe cells in the primary motor cortex of the monkey that show anticipatory activity exclusively related to a specific memorized sequence of upcoming movements. In addition, the injection of muscimol, a GABA agonist, into motor cortex resulted in an increase in the error rate during sequence production, without concomitant effects on nonsequenced motor performance. Our results challenge the role of medial motor areas in the control of well-practiced movement sequences and suggest that motor cortex contains a complete apparatus for the planning and production of this complex behavior.

  13. A one-page summary report of genome sequencing for the healthy adult.

    PubMed

    Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.

  14. A One-Page Summary Report of Genome Sequencing for the Healthy Adult

    PubMed Central

    Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.

    2015-01-01

    As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602

  15. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information

    PubMed Central

    Chen, Tsute; Yu, Wen-Han; Izard, Jacques; Baranova, Oxana V.; Lakshmanan, Abirami; Dewhirst, Floyd E.

    2010-01-01

    The human oral microbiome is the most studied human microflora, but 53% of the species have not yet been validly named and 35% remain uncultivated. The uncultivated taxa are known primarily from 16S rRNA sequence information. Sequence information tied solely to obscure isolate or clone numbers, and usually lacking accurate phylogenetic placement, is a major impediment to working with human oral microbiome data. The goal of creating the Human Oral Microbiome Database (HOMD) is to provide the scientific community with a body site-specific comprehensive database for the more than 600 prokaryote species that are present in the human oral cavity based on a curated 16S rRNA gene-based provisional naming scheme. Currently, two primary types of information are provided in HOMD—taxonomic and genomic. Named oral species and taxa identified from 16S rRNA gene sequence analysis of oral isolates and cloning studies were placed into defined 16S rRNA phylotypes and each given unique Human Oral Taxon (HOT) number. The HOT interlinks phenotypic, phylogenetic, genomic, clinical and bibliographic information for each taxon. A BLAST search tool is provided to match user 16S rRNA gene sequences to a curated, full length, 16S rRNA gene reference data set. For genomic analysis, HOMD provides comprehensive set of analysis tools and maintains frequently updated annotations for all the human oral microbial genomes that have been sequenced and publicly released. Oral bacterial genome sequences, determined as part of the Human Microbiome Project, are being added to the HOMD as they become available. We provide HOMD as a conceptual model for the presentation of microbiome data for other human body sites. Database URL: http://www.homd.org PMID:20624719

  16. Targeted next generation sequencing of the entire vitamin D receptor gene reveals polymorphisms correlated with vitamin D deficiency among older Filipino women with and without fragility fracture.

    PubMed

    Zumaraga, Mark Pretzel; Medina, Paul Julius; Recto, Juan Miguel; Abrahan, Lauro; Azurin, Edelyn; Tanchoco, Celeste C; Jimeno, Cecilia A; Palmes-Saloma, Cynthia

    2017-03-01

    This study aimed to discover genetic variants in the entire 101 kB vitamin D receptor (VDR) gene for vitamin D deficiency in a group of postmenopausal Filipino women using targeted next generation sequencing (TNGS) approach in a case-control study design. A total of 50 women with and without osteoporotic fracture seen at the Philippine Orthopedic Center were included. Blood samples were collected for determination of serum vitamin D, calcium, phosphorus, glucose, blood urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and as primary source for targeted VDR gene sequencing using the Ion Torrent Personal Genome Machine. The variant calling was based on the GATK best practice workflow and annotated using Annovar tool. A total of 1496 unique variants in the whole 101-kb VDR gene were identified. Novel sequence variations not registered in the dbSNP database were found among cases and controls at a rate of 23.1% and 16.6% of total discovered variants, respectively. One disease-associated enhancer showed statistically significant association to low serum 25-hydroxy vitamin D levels (Pearson chi-square P-value=0.009). The transcription factor binding site prediction program PROMO predicted the disruption of three transcription factor binding sites in this enhancer region. These findings show the power of TNGS in identifying sequence variations in a very large gene and the surprising results obtained in this study greatly expand the catalog of known VDR sequence variants that may represent an important clue in the emergence of vitamin D deficiency. Such information will also provide the additional guidance necessary toward a personalized nutritional advice to reach sufficient vitamin D status. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.

    PubMed

    Matsuzaki, Motomichi; Misumi, Osami; Shin-I, Tadasu; Maruyama, Shinichiro; Takahara, Manabu; Miyagishima, Shin-Ya; Mori, Toshiyuki; Nishida, Keiji; Yagisawa, Fumi; Nishida, Keishin; Yoshida, Yamato; Nishimura, Yoshiki; Nakao, Shunsuke; Kobayashi, Tamaki; Momoyama, Yu; Higashiyama, Tetsuya; Minoda, Ayumi; Sano, Masako; Nomoto, Hisayo; Oishi, Kazuko; Hayashi, Hiroko; Ohta, Fumiko; Nishizaka, Satoko; Haga, Shinobu; Miura, Sachiko; Morishita, Tomomi; Kabeya, Yukihiro; Terasawa, Kimihiro; Suzuki, Yutaka; Ishii, Yasuyuki; Asakawa, Shuichi; Takano, Hiroyoshi; Ohta, Niji; Kuroiwa, Haruko; Tanaka, Kan; Shimizu, Nobuyoshi; Sugano, Sumio; Sato, Naoki; Nozaki, Hisayoshi; Ogasawara, Naotake; Kohara, Yuji; Kuroiwa, Tsuneyoshi

    2004-04-08

    Small, compact genomes of ultrasmall unicellular algae provide information on the basic and essential genes that support the lives of photosynthetic eukaryotes, including higher plants. Here we report the 16,520,305-base-pair sequence of the 20 chromosomes of the unicellular red alga Cyanidioschyzon merolae 10D as the first complete algal genome. We identified 5,331 genes in total, of which at least 86.3% were expressed. Unique characteristics of this genomic structure include: a lack of introns in all but 26 genes; only three copies of ribosomal DNA units that maintain the nucleolus; and two dynamin genes that are involved only in the division of mitochondria and plastids. The conserved mosaic origin of Calvin cycle enzymes in this red alga and in green plants supports the hypothesis of the existence of single primary plastid endosymbiosis. The lack of a myosin gene, in addition to the unexpressed actin gene, suggests a simpler system of cytokinesis. These results indicate that the C. merolae genome provides a model system with a simple gene composition for studying the origin, evolution and fundamental mechanisms of eukaryotic cells.

  18. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinzierl, Marion; Yeates, Anthony R.; Mackay, Duncan H.

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surfacemore » flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.« less

  19. Functional and evolutionary relationships between bacteriorhodopsin and halorhodopsin in the archaebacterium, halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1986-01-01

    The archaebacteria occupy a unique place in phylogenetic trees constructed from analyses of sequences from key informational macromolecules, and their study continues to yield interesting ideas on the early evolution and divergence of biological forms. It is now known that the halobacteria among these species contain various retinal-proteins, resembling eukaryotic rhodopsins, but with different functions. Two of these pigments, located in the cytoplasmic membranes of the bacteria, are bacteriorhodopsin (a light-driven proton pump) and halorhodopsin (a light-driven chloride pump). Comparison of these systems is expected to reveal structure/function relationships in these simple (primitive?) energy transducing membrane components and evolutionary relationships which had produced the structural features which allow the divergent functions. Findings indicate that very different primary structures are needed for these proteins to accomplish their different functions. Indeed, analysis of partial amino acid sequences from halo-opsin shows already that few if any long segments exist which are homologous to bacterio-opsin. Either these proteins diverged a very long time ago to allow for the observed differences, or the evolutionary clock in the halobacteria runs faster than usual.

  20. Mode of inheritance and evidence for cistron heterogeneity of chloroplast 16S ribosomal RNA genes in Nicotiana.

    PubMed

    Vacek, A T; Bourque, D P

    1980-09-01

    Oligonucleotide maps (fingerprints) of T1 RNase digests of 125I-labeled 16 S chloroplast rRNA of Nicotiana tabacum and N. gossei revealed the presence of T1 oligonucleotide fragment 100 in the 16 S rRNA of N. gossei while N. tabacum 16 S rRNA had a unique T1 oligonucleotide (fragment 101) as well as some fragment 100. From the positions in the fingerprints and from fingerprints of secondary enzymatic digestion of the fragments, we conclude that fragments 100 and 101 are similar in sequence and size, but fragment 100 probably contains an extra uracil residue. This difference is shown to be maternally inherited, thus confirming the location of 16 S chloroplast rRNA genes on chloroplast DNA and ruling out the possibility of genetically active chloroplast rRNA genes in the nucleus. The presence of both fragments 100 and 101 in N. tabacum may indicate sequence heterogeneity between the two cistrons for 16 S chloroplast rRNA. These results demonstrate the feasibility of determining the inheritance of organelle genes by genetic analysis of their primary transcripts.

  1. Chemistry of gluten proteins.

    PubMed

    Wieser, Herbert

    2007-04-01

    Gluten proteins play a key role in determining the unique baking quality of wheat by conferring water absorption capacity, cohesivity, viscosity and elasticity on dough. Gluten proteins can be divided into two main fractions according to their solubility in aqueous alcohols: the soluble gliadins and the insoluble glutenins. Both fractions consist of numerous, partially closely related protein components characterized by high glutamine and proline contents. Gliadins are mainly monomeric proteins with molecular weights (MWs) around 28,000-55,000 and can be classified according to their different primary structures into the alpha/beta-, gamma- and omega-type. Disulphide bonds are either absent or present as intrachain crosslinks. The glutenin fraction comprises aggregated proteins linked by interchain disulphide bonds; they have a varying size ranging from about 500,000 to more than 10 million. After reduction of disulphide bonds, the resulting glutenin subunits show a solubility in aqueous alcohols similar to gliadins. Based on primary structure, glutenin subunits have been divided into the high-molecular-weight (HMW) subunits (MW=67,000-88,000) and low-molecular-weight (LMW) subunits (MW=32,000-35,000). Each gluten protein type consists or two or three different structural domains; one of them contains unique repetitive sequences rich in glutamine and proline. Native glutenins are composed of a backbone formed by HMW subunit polymers and of LMW subunit polymers branched off from HMW subunits. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are important for the aggregation of gliadins and glutenins and implicate structure and physical properties of dough.

  2. A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG

    PubMed Central

    Rumfelt, Lynn L.; Avila, David; Diaz, Marilyn; Bartl, Simona; McKinney, E. Churchill; Flajnik, Martin F.

    2001-01-01

    In most vertebrate embryos and neonates studied to date unique antigen receptors (antibodies and T cell receptors) are expressed that possess a limited immune repertoire. We have isolated a subclass of IgM, IgM1gj, from the nurse shark Ginglymostoma cirratum that is preferentially expressed in neonates. The variable (V) region gene encoding the heavy (H) chain underwent V-D-J rearrangement in germ cells (“germline-joined”). Such H chain V genes were discovered over 10 years ago in sharks but until now were not shown to be expressed at appreciable levels; we find expression of H1gj in primary and secondary lymphoid tissues early in life, but in adults only in primary lymphoid tissue, which is identified in this work as the epigonal organ. H1gj chain associates covalently with light (L) chains and is most similar in sequence to IgM H chains, but like mammalian IgG has three rather than the four IgM constant domains; deletion of the ancestral IgM C2 domain thus defines both IgG and IgM1gj. Because sharks are the members of the oldest vertebrate class known to possess antibodies, unique or specialized antibodies expressed early in ontogeny in sharks and other vertebrates were likely present at the inception of the adaptive immune system. PMID:11172027

  3. A population study of the minicircles in Trypanosoma cruzi: predicting guide RNAs in the absence of empirical RNA editing.

    PubMed

    Thomas, Sean; Martinez, L L Isadora Trejo; Westenberger, Scott J; Sturm, Nancy R

    2007-05-24

    The structurally complex network of minicircles and maxicircles comprising the mitochondrial DNA of kinetoplastids mirrors the complexity of the RNA editing process that is required for faithful expression of encrypted maxicircle genes. Although a few of the guide RNAs that direct this editing process have been discovered on maxicircles, guide RNAs are mostly found on the minicircles. The nuclear and maxicircle genomes have been sequenced and assembled for Trypanosoma cruzi, the causative agent of Chagas disease, however the complement of 1.4-kb minicircles, carrying four guide RNA genes per molecule in this parasite, has been less thoroughly characterised. Fifty-four CL Brener and 53 Esmeraldo strain minicircle sequence reads were extracted from T. cruzi whole genome shotgun sequencing data. With these sequences and all published T. cruzi minicircle sequences, 108 unique guide RNAs from all known T. cruzi minicircle sequences and two guide RNAs from the CL Brener maxicircle were predicted using a local alignment algorithm and mapped onto predicted or experimentally determined sequences of edited maxicircle open reading frames. For half of the sequences no statistically significant guide RNA could be assigned. Likely positions of these unidentified gRNAs in T. cruzi minicircle sequences are estimated using a simple Hidden Markov Model. With the local alignment predictions as a standard, the HMM had an ~85% chance of correctly identifying at least 20 nucleotides of guide RNA from a given minicircle sequence. Inter-minicircle recombination was documented. Variable regions contain species-specific areas of distinct nucleotide preference. Two maxicircle guide RNA genes were found. The identification of new minicircle sequences and the further characterization of all published minicircles are presented, including the first observation of recombination between minicircles. Extrapolation suggests a level of 4% recombinants in the population, supporting a relatively high recombination rate that may serve to minimize the persistence of gRNA pseudogenes. Characteristic nucleotide preferences observed within variable regions provide potential clues regarding the transcription and maturation of T. cruzi guide RNAs. Based on these preferences, a method of predicting T. cruzi guide RNAs using only primary minicircle sequence data was created.

  4. Molecular responses to toxicological stressors: profiling microRNAs in wild Atlantic salmon (Salmo salar) exposed to acidic aluminum-rich water.

    PubMed

    Kure, Elin H; Sæbø, Mona; Stangeland, Astrid M; Hamfjord, Julian; Hytterød, Sigurd; Heggenes, Jan; Lydersen, Espen

    2013-08-15

    Atlantic salmon (Salmo salar) is among the most sensitive organisms toward acidic, aluminum exposure. Main documented responses to this type of stress are a combination of hypoxia and loss of blood plasma ions. Physiological responses to stress in fish are often grouped into primary, secondary and tertiary responses, where the above mentioned effects are secondary responses, while primary responses include endocrine changes as measurable levels of catecholamines and corticosteroids. In this study we have exposed young (14 months) Atlantic salmon to acid/Al water (pH ≈ 5.6, Al(i) ≈ 80 μg L⁻¹) for 3 days, and obtained clear and consistent decrease of Na⁺ and Cl⁻ ions, and increases of glucose in blood plasma, hematocrit and P(CO₂) in blood. We did not measure plasma cortisol (primary response compound), but analyzed effects on microRNA level (miRNA) in muscle tissue, as this may represent initial markers of primary stress responses. miRNAs regulate diverse biological processes, many are evolutionarily conserved, and hundreds have been identified in various animals, although only in a few fish species. We used a novel high-throughput sequencing (RNA-Seq) method to identify miRNAs in Atlantic salmon and specific miRNAs as potential early markers for stress. A total of 18 miRNAs were significantly differentially expressed (FDR<0.1) in exposed compared to control fish, four down-regulated and 14 up-regulated. An unsupervised hierarchical clustering of significant miRNAs revealed two clusters representing exposed and non-exposed individuals. Utilizing the genome of the zebrafish and bioinformatic tools, we identified 224 unique miRNAs in the Atlantic salmon samples sequenced. Additional laboratory studies focusing on function, stress dose-responses and temporal expression of the identified miRNAs will facilitate their use as initial markers for stress responses. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Unique LCR variations among lineages of HPV16, 18 and 45 isolates from women with normal cervical cytology in Ghana.

    PubMed

    Awua, Adolf K; Adanu, Richard M K; Wiredu, Edwin K; Afari, Edwin A; Zubuch, Vanessa A; Asmah, Richard H; Severini, Alberto

    2017-04-21

    In addition to being useful for classification, sequence variations of human Papillomavirus (HPV) genotypes have been implicated in differential oncogenic potential and a differential association with the different histological forms of invasive cervical cancer. These associations have also been indicated for HPV genotype lineages and sub-lineages. In order to better understand the potential implications of lineage variation in the occurrence of cervical cancers in Ghana, we studied the lineages of the three most prevalent HPV genotypes among women with normal cytology as baseline to further studies. Of previously collected self- and health personnel-collected cervical specimen, 54, which were positive for HPV16, 18 and 45, were selected and the long control region (LCR) of each HPV genotype was separately amplified by a nested PCR. DNA sequences of 41 isolates obtained with the forward and reverse primers by Sanger sequencing were analysed. Nucleotide sequence variations of the HPV16 genotypes were observed at 30 positions within the LCR (7460 - 7840). Of these, 19 were the known variations for the lineages B and C (African lineages), while the other 11 positions had variations unique to the HPV16 isolates of this study. For the HPV18 isolates, the variations were at 35 positions, 22 of which were known variations of Africa lineages and the other 13 were unique variations observed for the isolates obtained in this study (at positions 7799 and 7813). HPV45 isolates had variations at 35 positions and 2 (positions 7114 and 97) were unique to the isolates of this study. This study provides the first data on the lineages of HPV 16, 18 and 45 isolates from Ghana. Although the study did not obtain full genome sequence data for a comprehensive comparison with known lineages, these genotypes were predominately of the Africa lineages and had some unique sequence variations at positions that suggest potential oncogenic implications. These data will be useful for comparison with lineages of these genotypes from women with cervical lesion and all the forms of invasive cervical cancers.

  6. DSAP: deep-sequencing small RNA analysis pipeline.

    PubMed

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  7. Abamectin, pymetrozine and azadirachtin sequence as a unique solution to control the leafminer Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) infesting garden beans (Phaseolus vulgaris L.) in Egypt.

    PubMed

    Saad, A S A; Massoud, M A; Abdel-Megeed, A A M; Hamid, N A; Mourad, A K K; Barakat, A S T

    2007-01-01

    Field trails were conducted to determine the performance of three different sequences as a unique solution for the control of the leaf miner Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) infesting garden beans (Phaseolus vulgaris L.) during the two successive seasons of 2004 and 2005. Furthermore, during the evaluation period, the side effect against the ectoparasite Diglyphus isaea (Walker) (Hymenoptera: Eulophidae) was put into consideration. Meanwhile, the comparative evaluation of the pesticides alone showed that abamectin and azadirachtin were highly effective against Liriomyza trifolii, while carbosulfan, pymetrozine and thiamethoxam provided to be of a moderate effect. Moreover, carbosulfan showed harmful effect to the larvae of the ectoparasite Diglyphus isaea (Walker), while abamectin and azadirachtin gave a moderate effect. Thiamethoxam and the the detergent (Masrol 410) had slight effect in this respect. The highly effective sequence among the sequences was abamectin, pymetrozine and azadirachtin, against Liriomyza trifolii (Burgess), with slight harmful effect on Diglyphus isaea (Walker). However the sequence of azadirachtin, pymetrozine and abamectin had a moderate effect on Liriomyza trifolii (Burgess) and exhibited a slight toxic effect on Diglyphus isaea (Walker). In contrast, the sequence of carbosulfan, thiamethoxam and pymetrozine was the least effective and represented a slight effect on Diglyphus isaea (Walker). From this study, it was concluded that abamectin, pymetrozine and azadirachtin sequence has proved to be a unique solution for the control of the leaf miner Liriomyza trifolii (Burgess) infesting garden beans (Phaseolus vulgaris L.) in Egypt.

  8. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850

  9. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.

  10. Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database

    PubMed Central

    2017-01-01

    Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799

  11. Primary structure of the hemoglobin alpha-chain of rose-ringed parakeet (Psittacula krameri).

    PubMed

    Islam, A; Beg, O U; Persson, B; Zaidi, Z H; Jörnvall, H

    1988-10-01

    The structure of the hemoglobin alpha-chain of Rose-ringed Parakeet was determined by sequence degradations of the intact subunit, the CNBr fragments, and peptides obtained by digestion with staphylococcal Glu-specific protease and trypsin. Using this analysis, the complete alpha-chain structure of 21 avian species is known, permitting comparisons of the protein structure and of avian relationships. The structure exhibits differences from previously established avian alpha-chains at a total of 61 positions, five of which have residues unique to those of the parakeet (Ser-12, Gly-65, Ser-67, Ala-121, and Leu-134). The analysis defines hemoglobin variation within an additional avian order (Psittaciformes), demonstrates distant patterns for evaluation of relationships within other avian orders, and lends support to taxonomic conclusions from molecular data.

  12. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    PubMed

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  13. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions.

    PubMed

    Ferrao, Ryan; Lupardus, Patrick J

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich "Box1" and hydrophobic "Box2," which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences.

  14. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins.

    PubMed

    Uversky, Vladimir N

    2015-03-01

    Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Does the globally invasive marine angiosperm, Halophila stipulacea, have high genetic diversity or unique mutations?

    NASA Astrophysics Data System (ADS)

    Chiquillo, K.; Campese, L.; Barber, P. H.; Willette, D. A.

    2016-02-01

    Seagrasses are important primary producers in many marine ecosystems, and support a wide diversity of marine life. However, invasive seagrasses like Halophila stipulacea can have pronounced negative impacts on an ecosystem by displacing native seagrasses and changing the community composition of the reef. Endemic to the Red Sea, Persian Gulf and Indian Ocean, Halophila stipulacea has become invasive in the Mediterranean and Caribbean Seas, presumably as a result of the opening of the Suez Canal and international ship traffic. However, it is unclear why this marine angiosperm has become invasive in parts of its range and not others. It is hypothesized that invasive forms may have evolved rapidly in response to natural selection in new and novel environments. Alternatively, genetic variation of introduced populations may be uniquely suited to thrive in regions where it is invasive. In this study, we use RAD next-generation sequencing to screen thousands of SNPs to investigate the genetic basis of adaptation in both native and invasive populations. We test whether genes under selection in the native range are the same as in the invasive range, or whether new genes have arisen with the invasion of each marine basin. The comparison of SNP frequencies unique among basins and environmental variables will aid in predicting new areas of invasion, assisting in improved management strategies to combat this invasive seagrass.

  16. Using the Self-Select Paradigm to Delineate the Nature of Speech Motor Programming

    PubMed Central

    Wright, David L.; Robin, Don A.; Rhee, Jooyhun; Vaculin, Amber; Jacks, Adam; Guenther, Frank H.; Fox, Peter T.

    2015-01-01

    Purpose The authors examined the involvement of 2 speech motor programming processes identified by S. T. Klapp (1995, 2003) during the articulation of utterances differing in syllable and sequence complexity. According to S. T. Klapp, 1 process, INT, resolves the demands of the programmed unit, whereas a second process, SEQ, oversees the serial order demands of longer sequences. Method A modified reaction time paradigm was used to assess INT and SEQ demands. Specifically, syllable complexity was dependent on syllable structure, whereas sequence complexity involved either repeated or unique syllabi within an utterance. Results INT execution was slowed when articulating single syllables in the form CCCV compared to simpler CV syllables. Planning unique syllables within a multisyllabic utterance rather than repetitions of the same syllable slowed INT but not SEQ. Conclusions The INT speech motor programming process, important for mental syllabary access, is sensitive to changes in both syllable structure and the number of unique syllables in an utterance. PMID:19474396

  17. Time for considering the possibility that sleep plays no unique role in motor memory consolidation: Reply to Adi-Japha and Karni (2016).

    PubMed

    Rickard, Timothy C; Pan, Steven C

    2017-04-01

    The hypothesis that sleep makes a unique contribution to motor memory consolidation has been debated in recent years. In the target article (Pan & Rickard, 2015), we reported results of a comprehensive meta-analysis of the explicit motor sequence learning literature in which evidence was evaluated for both enhanced performance after sleep and stabilization after sleep. After accounting for confounding variables, we found no compelling evidence for either empirical phenomenon, and hence no compelling evidence for sleep-specific consolidation. In their comment, Adi-Japha and Karni (2016) critiqued the target article on three primary grounds: (a) our unrealistic (in their view) assumption that, if sleep-specific consolidation occurs, it is mechanistically unitary across all variants of the motor sequence experiments included in the meta-analysis, (b) our inclusion of child groups, which they believe may have resulted in an underestimation of sleep effects among adult groups, and (c) our inclusion of several experiments with atypical experimental designs, which may have introduced unaccounted for heterogeneity. In this reply we address each of those potentially legitimate concerns. We show that the metaregression allowed for tests of multiple candidate variables that could engender separate consolidation mechanisms, yielding no behavioral evidence for it. We also show through reanalysis that the inclusion of child groups had virtually no impact on the parameter estimates among adults, and that the inclusion of experiments with atypical designs did not materially influence parameter estimates. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Relationship between the dimerization of thyroglobulin and its ability to form triiodothyronine.

    PubMed

    Citterio, Cintia E; Morishita, Yoshiaki; Dakka, Nada; Veluswamy, Balaji; Arvan, Peter

    2018-03-30

    Thyroglobulin (TG) is the most abundant thyroid gland protein, a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine (T 4 ) and triiodothyronine (T 3 ). The primary site for T 3 synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein). The carboxyl-terminal region of TG comprises a ch olin e sterase- l ike (ChEL) domain followed by a short unique tail sequence. Despite many studies, the monoiodotyrosine donor residue needed for the coupling reaction to create T 3 at this evolutionarily conserved site remains unidentified. In this report, we have utilized a novel, convenient immunoblotting assay to detect T 3 formation after protein iodination in vitro , enabling the study of T 3 formation in recombinant TG secreted from thyrocytes or heterologous cells. With this assay, we confirm the antepenultimate residue of TG as a major T 3 -forming site, but also demonstrate that the side chain of this residue intimately interacts with the same residue in the apposed monomer of the TG dimer. T 3 formation in TG, or the isolated carboxyl-terminal region, is inhibited by mutation of this antepenultimate residue, but we describe the first substitution mutation that actually increases T 3 hormonogenesis by engineering a novel cysteine, 10 residues upstream of the antepenultimate residue, allowing for covalent association of the unique tail sequences, and that helps to bring residues Tyr 2744 from apposed monomers into closer proximity. © 2018 Citterio et al.

  19. RUCS: rapid identification of PCR primers for unique core sequences.

    PubMed

    Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik; Kaya, Hülya; Lund, Ole

    2017-12-15

    Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs for the targets in silico. Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin resistance gene. Three of the predicted pairs were chosen for experimental validation using PCR and gel electrophoresis. All three pairs successfully produced an amplicon with the target length for the samples containing mcr-1 and no amplification products were produced for the negative samples. The novel methods presented in this manuscript can reduce the time needed to identify target sequences, and provide a quick virtual PCR validation to eliminate time wasted on ambiguously binding primers. Source code is freely available on https://bitbucket.org/genomicepidemiology/rucs. Web service is freely available on https://cge.cbs.dtu.dk/services/RUCS. mcft@cbs.dtu.dk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  1. Giraffe genome sequence reveals clues to its unique morphology and physiology

    PubMed Central

    Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.

    2016-01-01

    The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213

  2. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. A Comparative Analysis of the Sugar Phosphate Cyclase Superfamily Involved in Primary and Secondary Metabolism

    PubMed Central

    Wu, Xiumei; Flatt, Patricia M.; Schlörke, Oliver; Zeeck, Axel; Dairi, Tohru

    2011-01-01

    Sugar Phosphate Cyclases (SPCs) catalyze the cyclization of sugar phosphates to produce a variety of cyclitol intermediates that serve as the building blocks of many primary metabolites, e.g., aromatic amino acids, and clinically relevant secondary metabolites, e.g., aminocyclitol/aminoglycoside and ansamycin antibiotics. Feeding experiments with isotopically-labeled cyclitols revealed that cetoniacytone A, a unique C7N-aminocyclitol antibiotic isolated from an insect endophytic Actinomyces sp., is derived from 2-epi-5-epi-valiolone, a product of SPC. Using heterologous probes from the 2-epi-5-epi-valiolone synthase class of SPCs, an SPC homolog gene, cetA, was isolated from the cetoniacytone producer. CetA is closely related to BE-orf9 found in the BE-40644 biosynthetic gene cluster from Actinoplanes sp. strain A40644. Recombinant expression of cetA and BE-orf9 and biochemical characterization of the gene products confirmed their function as 2-epi-5-epi-valiolone synthases. Further phylogenetic analysis of SPC sequences revealed a new clade of SPCs that may regulate the biosynthesis of a novel set of secondary metabolites. PMID:17195255

  4. DAMe: a toolkit for the initial processing of datasets with PCR replicates of double-tagged amplicons for DNA metabarcoding analyses.

    PubMed

    Zepeda-Mendoza, Marie Lisandra; Bohmann, Kristine; Carmona Baez, Aldo; Gilbert, M Thomas P

    2016-05-03

    DNA metabarcoding is an approach for identifying multiple taxa in an environmental sample using specific genetic loci and taxa-specific primers. When combined with high-throughput sequencing it enables the taxonomic characterization of large numbers of samples in a relatively time- and cost-efficient manner. One recent laboratory development is the addition of 5'-nucleotide tags to both primers producing double-tagged amplicons and the use of multiple PCR replicates to filter erroneous sequences. However, there is currently no available toolkit for the straightforward analysis of datasets produced in this way. We present DAMe, a toolkit for the processing of datasets generated by double-tagged amplicons from multiple PCR replicates derived from an unlimited number of samples. Specifically, DAMe can be used to (i) sort amplicons by tag combination, (ii) evaluate PCR replicates dissimilarity, and (iii) filter sequences derived from sequencing/PCR errors, chimeras, and contamination. This is attained by calculating the following parameters: (i) sequence content similarity between the PCR replicates from each sample, (ii) reproducibility of each unique sequence across the PCR replicates, and (iii) copy number of the unique sequences in each PCR replicate. We showcase the insights that can be obtained using DAMe prior to taxonomic assignment, by applying it to two real datasets that vary in their complexity regarding number of samples, sequencing libraries, PCR replicates, and used tag combinations. Finally, we use a third mock dataset to demonstrate the impact and importance of filtering the sequences with DAMe. DAMe allows the user-friendly manipulation of amplicons derived from multiple samples with PCR replicates built in a single or multiple sequencing libraries. It allows the user to: (i) collapse amplicons into unique sequences and sort them by tag combination while retaining the sample identifier and copy number information, (ii) identify sequences carrying unused tag combinations, (iii) evaluate the comparability of PCR replicates of the same sample, and (iv) filter tagged amplicons from a number of PCR replicates using parameters of minimum length, copy number, and reproducibility across the PCR replicates. This enables an efficient analysis of complex datasets, and ultimately increases the ease of handling datasets from large-scale studies.

  5. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52

    PubMed Central

    2018-01-01

    ABSTRACT We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. PMID:29748396

  6. Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.

    PubMed

    Neale, David B; Martínez-García, Pedro J; De La Torre, Amanda R; Montanari, Sara; Wei, Xiao-Xin

    2017-04-28

    Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.

  7. Generation of a total of 6483 expressed sequence tags from 60 day-old bovine whole fetus and fetal placenta.

    PubMed

    Oishi, M; Gohma, H; Lejukole, H Y; Taniguchi, Y; Yamada, T; Suzuki, K; Shinkai, H; Uenishi, H; Yasue, H; Sasaki, Y

    2004-05-01

    Expressed sequence tags (ESTs) generated based on characterization of clones isolated randomly from cDNA libraries are used to study gene expression profiles in specific tissues and to provide useful information for characterizing tissue physiology. In this study, two directionally cloned cDNA libraries were constructed from 60 day-old bovine whole fetus and fetal placenta. We have characterized 5357 and 1126 clones, and then identified 3464 and 795 unique sequences for the fetus and placenta cDNA libraries: 1851 and 504 showed homology to already identified genes, and 1613 and 291 showed no significant matches to any of the sequences in DNA databases, respectively. Further, we found 94 unique sequences overlapping in both the fetus and the placenta, leading to a catalog of 4165 genes expressed in 60 day-old fetus and placenta. The catalog is used to examine expression profile of genes in 60 day-old bovine fetus and placenta.

  8. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  9. Highly conserved intragenic HSV-2 sequences: Results from next-generation sequencing of HSV-2 UL and US regions from genital swabs collected from 3 continents.

    PubMed

    Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M

    2017-10-01

    Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Molecular identification and characterization of clustered regularly interspaced short palindromic repeats (CRISPRs) in a urease-positive thermophilic Campylobacter sp. (UPTC).

    PubMed

    Tasaki, E; Hirayama, J; Tazumi, A; Hayashi, K; Hara, Y; Ueno, H; Moore, J E; Millar, B C; Matsuda, M

    2012-02-01

    Novel clustered regularly-interspaced short palindromic repeats (CRISPRs) locus [7,500 base pairs (bp) in length] occurred in the urease-positive thermophilic Campylobacter (UPTC) Japanese isolate, CF89-12. The 7,500 bp gene loci consisted of the 5'-methylaminomethyl-2-thiouridylate methyltransferase gene, putative (P) CRISPR associated (p-Cas), putative open reading frames, Cas1 and Cas2, leader sequence region (146 bp), 12 CRISPRs consensus sequence repeats (each 36 bp) separated by a non-repetitive unique spacer region of similar length (26-31 bp) and the phosphatidyl glycerophosphatase A gene. When the CRISPRs loci in the UPTC CF89-12 and five C. jejuni isolates were compared with one another, these six isolates contained p-Cas, Cas1 and Cas2 within the loci. Four to 12 CRISPRs consensus sequence repeats separated by a non-repetitive unique spacer region occurred in six isolates and the nucleotide sequences of those repeats gave approximately 92-100% similarity with each other. However, no sequence similarity occurred in the unique spacer regions among these isolates. The putative σ(70) transcriptional promoter and the hypothetical ρ-independent terminator structures for the CRISPRs and Cas were detected. No in vivo transcription of p-Cas, Cas1 and Cas2 was confirmed in the UPTC cells.

  11. Structural analysis of a set of proteins resulting from a bacterial genomics project.

    PubMed

    Badger, J; Sauder, J M; Adams, J M; Antonysamy, S; Bain, K; Bergseid, M G; Buchanan, S G; Buchanan, M D; Batiyenko, Y; Christopher, J A; Emtage, S; Eroshkina, A; Feil, I; Furlong, E B; Gajiwala, K S; Gao, X; He, D; Hendle, J; Huber, A; Hoda, K; Kearins, P; Kissinger, C; Laubert, B; Lewis, H A; Lin, J; Loomis, K; Lorimer, D; Louie, G; Maletic, M; Marsh, C D; Miller, I; Molinari, J; Muller-Dieckmann, H J; Newman, J M; Noland, B W; Pagarigan, B; Park, F; Peat, T S; Post, K W; Radojicic, S; Ramos, A; Romero, R; Rutter, M E; Sanderson, W E; Schwinn, K D; Tresser, J; Winhoven, J; Wright, T A; Wu, L; Xu, J; Harris, T J R

    2005-09-01

    The targets of the Structural GenomiX (SGX) bacterial genomics project were proteins conserved in multiple prokaryotic organisms with no obvious sequence homolog in the Protein Data Bank of known structures. The outcome of this work was 80 structures, covering 60 unique sequences and 49 different genes. Experimental phase determination from proteins incorporating Se-Met was carried out for 45 structures with most of the remainder solved by molecular replacement using members of the experimentally phased set as search models. An automated tool was developed to deposit these structures in the Protein Data Bank, along with the associated X-ray diffraction data (including refined experimental phases) and experimentally confirmed sequences. BLAST comparisons of the SGX structures with structures that had appeared in the Protein Data Bank over the intervening 3.5 years since the SGX target list had been compiled identified homologs for 49 of the 60 unique sequences represented by the SGX structures. This result indicates that, for bacterial structures that are relatively easy to express, purify, and crystallize, the structural coverage of gene space is proceeding rapidly. More distant sequence-structure relationships between the SGX and PDB structures were investigated using PDB-BLAST and Combinatorial Extension (CE). Only one structure, SufD, has a truly unique topology compared to all folds in the PDB. Copyright 2005 Wiley-Liss, Inc.

  12. Kilo-sequencing: an ordered strategy for rapid DNA sequence data acquisition.

    PubMed Central

    Barnes, W M; Bevan, M

    1983-01-01

    A strategy for rapid DNA sequence acquisition in an ordered, nonrandom manner, while retaining all of the conveniences of the dideoxy method with M13 transducing phage DNA template, is described. Target DNA 3 to 14 kb in size can be stably carried by our M13 vectors. Suitable targets are stretches of DNA which lack an enzyme recognition site which is unique on our cloning vectors and adjacent to the sequencing primer; current sites that are so useful when lacking are Pst, Xba, HindIII, BglII, EcoRI. By an in vitro procedure, we cut RF DNA once randomly and once specifically, to create thousands of deletions which start at the unique restriction site adjacent to the dideoxy sequencing primer and extend various distances across the target DNA. Phage carrying a desired size of deletions, whose DNA as template will give rise to DNA sequence data in a desired location along the target DNA, may be purified by electrophoresis alive on agarose gels. Phage running in the same location on the agarose gel thus conveniently give rise to nucleotide sequence data from the same kilobase of target DNA. Images PMID:6298723

  13. On the origin of smallpox: correlating variola phylogenics with historical smallpox records.

    PubMed

    Li, Yu; Carroll, Darin S; Gardner, Shea N; Walsh, Matthew C; Vitalis, Elizabeth A; Damon, Inger K

    2007-10-02

    Human disease likely attributable to variola virus (VARV), the etiologic agent of smallpox, has been reported in human populations for >2,000 years. VARV is unique among orthopoxviruses in that it is an exclusively human pathogen. Because VARV has a large, slowly evolving DNA genome, we were able to construct a robust phylogeny of VARV by analyzing concatenated single nucleotide polymorphisms (SNPs) from genome sequences of 47 VARV isolates with broad geographic distributions. Our results show two primary VARV clades, which likely diverged from an ancestral African rodent-borne variola-like virus either approximately 16,000 or approximately 68,000 years before present (YBP), depending on which historical records (East Asian or African) are used to calibrate the molecular clock. One primary clade was represented by the Asian VARV major strains, the more clinically severe form of smallpox, which spread from Asia either 400 or 1,600 YBP. Another primary clade included both alastrim minor, a phenotypically mild smallpox described from the American continents, and isolates from West Africa. This clade diverged from an ancestral VARV either 1,400 or 6,300 YBP, and then further diverged into two subclades at least 800 YBP. All of these analyses indicate that the divergence of alastrim and variola major occurred earlier than previously believed.

  14. Application of combinatorial biocatalysis for a unique ring expansion of dihydroxymethylzearalenone

    USDA-ARS?s Scientific Manuscript database

    Combinatorial biocatalysis was applied to generate a diverse set of dihydroxymethylzearalenone derivatives with modified ring structure. In one chemoenzymatic reaction sequence, dihydroxymethylzearalenone was first subjected to a unique enzyme-catalyzed oxidative ring opening reaction that creates ...

  15. A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution

    PubMed Central

    Danley, Patrick D; Mullen, Sean P; Liu, Fenglong; Nene, Vishvanath; Quackenbush, John; Shaw, Kerry L

    2007-01-01

    Background As the developmental costs of genomic tools decline, genomic approaches to non-model systems are becoming more feasible. Many of these systems may lack advanced genetic tools but are extremely valuable models in other biological fields. Here we report the development of expressed sequence tags (EST's) in an orthopteroid insect, a model for the study of neurobiology, speciation, and evolution. Results We report the sequencing of 14,502 EST's from clones derived from a nerve cord cDNA library, and the subsequent construction of a Gene Index from these sequences, from the Hawaiian trigonidiine cricket Laupala kohalensis. The Gene Index contains 8607 unique sequences comprised of 2575 tentative consensus (TC) sequences and 6032 singletons. For each of the unique sequences, an attempt was made to assign a provisional annotation and to categorize its function using a Gene Ontology-based classification through a sequence-based comparison to known proteins. In addition, a set of unique 70 base pair oligomers that can be used for DNA microarrays was developed. All Gene Index information is posted at the DFCI Gene Indices web page Conclusion Orthopterans are models used to understand the neurophysiological basis of complex motor patterns such as flight and stridulation. The sequences presented in the cricket Gene Index will provide neurophysiologists with many genetic tools that have been largely absent in this field. The cricket Gene Index is one of only two gene indices to be developed in an evolutionary model system. Species within the genus Laupala have speciated recently, rapidly, and extensively. Therefore, the genes identified in the cricket Gene Index can be used to study the genomics of speciation. Furthermore, this gene index represents a significant EST resources for basal insects. As such, this resource is a valuable comparative tool for the understanding of invertebrate molecular evolution. The sequences presented here will provide much needed genomic resources for three distinct but overlapping fields of inquiry: neurobiology, speciation, and molecular evolution. PMID:17459168

  16. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  17. Formulaic Sequences Used by Native English Speaking Teachers in a Thai Primary School

    ERIC Educational Resources Information Center

    Steyn, Sunee; Jaroongkhongdach, Woravut

    2016-01-01

    The use of formulaic sequences in English as a Foreign Language (EFL) lessons plays an integral role in language teaching and learning, but it seems still widely neglected in the Thai school context. To call attention to this issue, this study aims at identifying formulaic sequences used in a Thai primary school. The data were taken from three…

  18. Generation and analysis of expressed sequence tags from a cDNA library of the fruiting body of Ganoderma lucidum

    PubMed Central

    2010-01-01

    Background Little genomic or trancriptomic information on Ganoderma lucidum (Lingzhi) is known. This study aims to discover the transcripts involved in secondary metabolite biosynthesis and developmental regulation of G. lucidum using an expressed sequence tag (EST) library. Methods A cDNA library was constructed from the G. lucidum fruiting body. Its high-quality ESTs were assembled into unique sequences with contigs and singletons. The unique sequences were annotated according to sequence similarities to genes or proteins available in public databases. The detection of simple sequence repeats (SSRs) was preformed by online analysis. Results A total of 1,023 clones were randomly selected from the G. lucidum library and sequenced, yielding 879 high-quality ESTs. These ESTs showed similarities to a diverse range of genes. The sequences encoding squalene epoxidase (SE) and farnesyl-diphosphate synthase (FPS) were identified in this EST collection. Several candidate genes, such as hydrophobin, MOB2, profilin and PHO84 were detected for the first time in G. lucidum. Thirteen (13) potential SSR-motif microsatellite loci were also identified. Conclusion The present study demonstrates a successful application of EST analysis in the discovery of transcripts involved in the secondary metabolite biosynthesis and the developmental regulation of G. lucidum. PMID:20230644

  19. Synthetic oligonucleotide probes deduced from amino acid sequence data. Theoretical and practical considerations.

    PubMed

    Lathe, R

    1985-05-05

    Synthetic probes deduced from amino acid sequence data are widely used to detect cognate coding sequences in libraries of cloned DNA segments. The redundancy of the genetic code dictates that a choice must be made between (1) a mixture of probes reflecting all codon combinations, and (2) a single longer "optimal" probe. The second strategy is examined in detail. The frequency of sequences matching a given probe by chance alone can be determined and also the frequency of sequences closely resembling the probe and contributing to the hybridization background. Gene banks cannot be treated as random associations of the four nucleotides, and probe sequences deduced from amino acid sequence data occur more often than predicted by chance alone. Probe lengths must be increased to confer the necessary specificity. Examination of hybrids formed between unique homologous probes and their cognate targets reveals that short stretches of perfect homology occurring by chance make a significant contribution to the hybridization background. Statistical methods for improving homology are examined, taking human coding sequences as an example, and considerations of codon utilization and dinucleotide frequencies yield an overall homology of greater than 82%. Recommendations for probe design and hybridization are presented, and the choice between using multiple probes reflecting all codon possibilities and a unique optimal probe is discussed.

  20. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, Gilbert L.

    1997-01-01

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position.

  1. VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma.

    PubMed

    Jiang, Yanwen; Nie, Kui; Redmond, David; Melnick, Ari M; Tam, Wayne; Elemento, Olivier

    2015-12-28

    Understanding tumor clonality is critical to understanding the mechanisms involved in tumorigenesis and disease progression. In addition, understanding the clonal composition changes that occur within a tumor in response to certain micro-environment or treatments may lead to the design of more sophisticated and effective approaches to eradicate tumor cells. However, tracking tumor clonal sub-populations has been challenging due to the lack of distinguishable markers. To address this problem, a VDJ-seq protocol was created to trace the clonal evolution patterns of diffuse large B cell lymphoma (DLBCL) relapse by exploiting VDJ recombination and somatic hypermutation (SHM), two unique features of B cell lymphomas. In this protocol, Next-Generation sequencing (NGS) libraries with indexing potential were constructed from amplified rearranged immunoglobulin heavy chain (IgH) VDJ region from pairs of primary diagnosis and relapse DLBCL samples. On average more than half million VDJ sequences per sample were obtained after sequencing, which contain both VDJ rearrangement and SHM information. In addition, customized bioinformatics pipelines were developed to fully utilize sequence information for the characterization of IgH-VDJ repertoire within these samples. Furthermore, the pipeline allows the reconstruction and comparison of the clonal architecture of individual tumors, which enables the examination of the clonal heterogeneity within the diagnosis tumors and deduction of clonal evolution patterns between diagnosis and relapse tumor pairs. When applying this analysis to several diagnosis-relapse pairs, we uncovered key evidence that multiple distinctive tumor evolutionary patterns could lead to DLBCL relapse. Additionally, this approach can be expanded into other clinical aspects, such as identification of minimal residual disease, monitoring relapse progress and treatment response, and investigation of immune repertoires in non-lymphoma contexts.

  2. Construction of a cDNA library from female adult of Toxocara canis, and analysis of EST and immune-related genes expressions.

    PubMed

    Zhou, Rongqiong; Xia, Qingyou; Huang, Hancheng; Lai, Min; Wang, Zhenxin

    2011-10-01

    Toxocara canis is a widespread intestinal nematode parasite of dogs, which can also cause disease in humans. We employed an expressed sequence tag (EST) strategy in order to study gene-expression including development, digestion and reproduction of T. canis. ESTs provided a rapid way to identify genes, particularly in organisms for which we have very little molecular information. In this study, a cDNA library was constructed from a female adult of T. canis and 215 high-quality ESTs from 5'-ends of the cDNA clones representing 79 unigenes were obtained. The titer of the primary cDNA library was 1.83×10(6)pfu/mL with a recombination rate of 99.33%. Most of the sequences ranged from 300 to 900bp with an average length of 656bp. Cluster analysis of these ESTs allowed identification of 79 unique sequences containing 28 contigs and 51 singletons. BLASTX searches revealed that 18 unigenes (22.78% of the total) or 70 ESTs (32.56% of the total) were novel genes that had no significant matches to any protein sequences in the public databases. The rest of the 61 unigenes (77.22% of the total) or 145 ESTs (67.44% of the total) were closely matched to the known genes or sequences deposited in the public databases. These genes were classified into seven groups based on their known or putative biological functions. We also confirmed the gene expression patterns of several immune-related genes using RT-PCR examination. This work will provide a valuable resource for the further investigations in the stage-, sex- and tissue-specific gene transcription or expression. Copyright © 2011. Published by Elsevier Inc.

  3. Cell and molecular biology of the spiny dogfish Squalus acanthias and little skate Leucoraja erinacea: insights from in vitro cultured cells.

    PubMed

    Barnes, D W

    2012-04-01

    Two of the most commonly used elasmobranch experimental model species are the spiny dogfish Squalus acanthias and the little skate Leucoraja erinacea. Comparative biology and genomics with these species have provided useful information in physiology, pharmacology, toxicology, immunology, evolutionary developmental biology and genetics. A wealth of information has been obtained using in vitro approaches to study isolated cells and tissues from these organisms under circumstances in which the extracellular environment can be controlled. In addition to classical work with primary cell cultures, continuously proliferating cell lines have been derived recently, representing the first cell lines from cartilaginous fishes. These lines have proved to be valuable tools with which to explore functional genomic and biological questions and to test hypotheses at the molecular level. In genomic experiments, complementary (c)DNA libraries have been constructed, and c. 8000 unique transcripts identified, with over 3000 representing previously unknown gene sequences. A sub-set of messenger (m)RNAs has been detected for which the 3' untranslated regions show elements that are remarkably well conserved evolutionarily, representing novel, potentially regulatory gene sequences. The cell culture systems provide physiologically valid tools to study functional roles of these sequences and other aspects of elasmobranch molecular cell biology and physiology. Information derived from the use of in vitro cell cultures is valuable in revealing gene diversity and information for genomic sequence assembly, as well as for identification of new genes and molecular markers, construction of gene-array probes and acquisition of full-length cDNA sequences. © 2012 The Author. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  4. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization

    PubMed Central

    Takahashi, Mami; Tanaka, Reiji; Miyake, Hideo; Shibata, Toshiyuki; Chow, Seinen; Kuroda, Kouichi; Ueda, Mitsuyoshi; Takeyama, Haruko

    2016-01-01

    Alginate-degrading bacteria play an important role in alginate degradation by harboring highly efficient and unique alginolytic genes. Although the general mechanism for alginate degradation by these bacteria is fairly understood, much is still required to fully exploit them. Here, we report the isolation of a novel strain, Falsirhodobacter sp. alg1, the first report for an alginate-degrading bacterium from the family Rhodobacteraceae. Genome sequencing reveals that strain alg1 harbors a primary alginate degradation pathway with only single homologs of an endo- and exo-type alginate lyase, AlyFRA and AlyFRB, which is uncommon among such bacteria. Subsequent functional analysis showed that both enzymes were extremely efficient to depolymerize alginate suggesting evolutionary interests in the acquirement of these enzymes. The exo-type alginate lyase, AlyFRB in particular could depolymerize alginate without producing intermediate products making it a highly efficient enzyme for the production of 4-deoxy-L-erythro-5-hexoseulose uronic acid (DEH). Based on our findings, we believe that the discovery of Falsirhodobacter sp. alg1 and its alginolytic genes hints at the potentiality of a more diverse and unique population of alginate-degrading bacteria. PMID:27176711

  5. Whole-Exome Sequencing in Two Extreme Phenotypes of Response to VEGF-Targeted Therapies in Patients With Metastatic Clear Cell Renal Cell Carcinoma.

    PubMed

    Fay, Andre P; de Velasco, Guillermo; Ho, Thai H; Van Allen, Eliezer M; Murray, Bradley; Albiges, Laurence; Signoretti, Sabina; Hakimi, A Ari; Stanton, Melissa L; Bellmunt, Joaquim; McDermott, David F; Atkins, Michael B; Garraway, Levi A; Kwiatkowski, David J; Choueiri, Toni K

    2016-07-01

    Advances in next-generation sequencing have provided a unique opportunity to understand the biology of disease and mechanisms of sensitivity or resistance to specific agents. Renal cell carcinoma (RCC) is a heterogeneous disease and highly variable clinical responses have been observed with vascular endothelial growth factor (VEGF)-targeted therapy (VEGF-TT). We hypothesized that whole-exome sequencing analysis might identify genotypes associated with extreme response or resistance to VEGF-TT in metastatic (mRCC). Patients with mRCC who had received first-line sunitinib or pazopanib and were in 2 extreme phenotypes of response were identified. Extreme responders (ERs) were defined as those with partial response or complete response for 3 or more years (n=13) and primary refractory patients (PRPs) were defined as those with progressive disease within the first 3 months of therapy (n=14). International Metastatic RCC Database Consortium prognostic scores were not significantly different between the groups (P=.67). Considering the genes known to be mutated in RCC at significant frequency, PBRM1 mutations were identified in 7 ERs (54%) versus 1 PRP (7%) (P=.01). In addition, mutations in TP53 (n=4) were found only in PRPs (P=.09). Our data suggest that mutations in some genes in RCC may impact response to VEGF-TT. Copyright © 2016 by the National Comprehensive Cancer Network.

  6. The primary and subunit structure of a novel type killer toxin produced by a halotolerant yeast, Pichia farinosa.

    PubMed

    Suzuki, C; Nikkuni, S

    1994-01-28

    A halotolerant yeast, Pichia farinosa KK1 strain, produces a unique killer toxin termed SMK toxin (salt-mediated killer toxin) which shows its maximum killer activity in the presence of 2 M NaCl. The toxin consists of two distinct subunits, alpha and beta, which are tightly linked without a disulfide bond under acidic conditions, even in the presence of 6 M urea. Under neutral conditions, however, the alpha subunit precipitates, resulting in the dissociation of the subunits and the loss of killer activity. The nucleotide sequence of the SMK1 gene predicts a 222 amino acid preprotoxin with a typical signal sequence, the hydrophobic alpha, an interstitial gamma polypeptide with a putative glycosylation site, and the hydrophilic beta. Amino acid sequence analyses of peptide fragments including the carboxyl-terminal peptides fragments including the carboxyl-terminal peptides from each subunit suggest that the alpha and beta subunits consist of amino acid residues 19-81 and 146-222 of the preprotoxin, respectively, and the molecular weight of the mature alpha beta dimer is 14,214. The KEX2-like endopeptidase and KEX1-like carboxypeptidase may be involved in the stepwise processing of the SMK preprotoxin. The maturation process and the functions of the SMK toxin are compared with the K1 toxin of Saccharomyces cerevisiae.

  7. Genetic association of sequence variation in exon 3 of the swine leukocyte antigen-DQA gene with piglet diarrhea in Large White, Landrace, and Duroc piglets.

    PubMed

    Yang, Q L; Huang, X Y; Kong, J J; Zhao, S G; Liu, L X; Gun, S B

    2016-08-19

    Piglet diarrhea is one of the primary factors that affects the benefits of the swine industry. Recent studies have shown that exon 2 of the swine leukocyte antigen-DQA gene is associated with piglet resistance to diarrhea; however, the contributions of additional exon coding regions of this gene remain unclear. Here, we detected and sequenced variants in the exon 3 region and examined their associations with diarrhea infection in 425 suckling piglets using the polymerase chain reaction-single-strand conformational polymorphism and sequencing analysis. The results revealed that exon 3 of the swine leukocyte antigen-DQA gene is highly polymorphic and pivotal to both diarrhea susceptibility and resistance in piglets. We identified 14 genotypes (AA, AB, BB, BC, CC, EE, EF, BE, BF, CF, DD, DH, GG, and GF) and eight alleles (A-H) that were generated by 14 nucleotide variants, eight of which were novel, and three nucleotide deletions. Statistical analyses revealed that the genotypes AB and EF were associated with resistance to diarrheal disease (P < 0.05), and the genotype DD may contribute to diarrhea susceptibility but was unique to Large White pigs (P > 0.05). These results elucidate the genetic and immunological background to piglet diarrhea, and provide useful information for resistance breeding programs.

  8. cDNA, deduced polypeptide structure and chromosomal assignment of human pulmonary surfactant proteolipid, SPL(pVal)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, S.W.; Korfhagen, T.R.; Weaver, T.E.

    1988-01-05

    In hyaline membrane disease of premature infants, lack of surfactant leads to pulmonary atelectasis and respiratory distress. Hydrophobic surfactant proteins of M/sub r/ = 5000-14,000 have been isolated from mammalian surfactants which enhance the rate of spreading and the surface tension lowering properties of phospholipids during dynamic compression. The authors have characterized the amino-terminal amino acid sequence of pulmonary proteolipids from ether/ethanol extracts of bovine, canine, and human surfactant. Two distinct peptides were identified and termed SPL(pVal) and SPL(Phe). An oligonucleotide probe based on the valine-rich amino-terminal amino acid sequence of SPL(pVal) was utilized to isolate cDNA and genomic DNAmore » encoding the human protein, termed surfactant proteolipid SPL(pVal) on the basis of its unique polyvaline domain. The primary structure of a precursor protein of 20,870 daltons, containing the SPL(pVal) peptide, was deduced from the nucleotide sequence of the cDNAs. Hybrid-arrested translation and immunoprecipitation of labeled translation products of human mRNA demonstrated a precursor protein, the active hydrophobic peptide being produced by proteolytic processing. Two classes of cDNAs encoding SPL(pVal) were identified. Human SPL(pVal) mRNA was more abundant in the adult than in fetal lung. The SPL(pVal) gene locus was assigned to chromosome 8.« less

  9. Genome sequence of an aflatoxigenic pathogen of Argentinian peanut, Aspergillus arachidicola

    USDA-ARS?s Scientific Manuscript database

    In this study we sequenced the genome of the A. arachidicola Type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. Of its predicted genes, 691 were identified as unique to ...

  10. Complete Genome Sequences of Bacillus Phages Janet and OTooleKemple52.

    PubMed

    Kent, Brenna; Raymond, Thomas; Mosier, Philip D; Johnson, Allison A

    2018-05-10

    We report here the genome sequences of two novel Bacillus cereus group-infecting bacteriophages, Janet and OTooleKemple52. These bacteriophages are double-stranded DNA-containing Myoviridae isolated from soil samples. While their genomes share a high degree of sequence identity with one another, their host preferences are unique. Copyright © 2018 Kent et al.

  11. Microgravity

    NASA Image and Video Library

    1998-12-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  12. Protein Crystal Eco R1 Endonulease-DNA Complex

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Type II restriction enzymes, such as Eco R1 endonulease, present a unique advantage for the study of sequence-specific recognition because they leave a record of where they have been in the form of the cleaved ends of the DNA sites where they were bound. The differential behavior of a sequence -specific protein at sites of differing base sequence is the essence of the sequence-specificity; the core question is how do these proteins discriminate between different DNA sequences especially when the two sequences are very similar. Principal Investigator: Dan Carter/New Century Pharmaceuticals

  13. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    PubMed Central

    Seaver, Samuel M. D.; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M. T.; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D.; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D.; Henry, Christopher S.

    2014-01-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today’s annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed. PMID:24927599

  14. High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource.

    PubMed

    Seaver, Samuel M D; Gerdes, Svetlana; Frelin, Océane; Lerma-Ortiz, Claudia; Bradbury, Louis M T; Zallot, Rémi; Hasnain, Ghulam; Niehaus, Thomas D; El Yacoubi, Basma; Pasternak, Shiran; Olson, Robert; Pusch, Gordon; Overbeek, Ross; Stevens, Rick; de Crécy-Lagard, Valérie; Ware, Doreen; Hanson, Andrew D; Henry, Christopher S

    2014-07-01

    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed.

  15. Interpreting the Process behind Endemism in China by Integrating the Phylogeography and Ecological Niche Models of the Stachyridopsis ruficeps

    PubMed Central

    Liu, Huatao; Wang, Wenjuan; Song, Gang; Qu, Yanhua; Li, Shou-Hsien; Fjeldså, Jon; Lei, Fumin

    2012-01-01

    An area of endemism (AOE) is a complex expression of the ecological and evolutionary history of a species. Here we aim to address the principal drivers of avian diversification in shaping patterns of endemism in China by integrating genetic, ecological, and distributional data on the Red-headed Tree Babbler (Stachyridopsis ruficeps), which is distributed across the eastern Himalayas and south China. We sequenced two mtDNA markers from 182 individuals representing all three of the primary AOEs in China. Phylogenetic inferences were used to reconstruct intraspecific phylogenetic relationships. Divergence time and population demography were estimated to gain insight into the evolutionary history of the species. We used Ecological niche modeling to predict species’ distributions during the Last Glacial Maximum (LGM) and in the present. Finally, we also used two quantitative tests, an identity test and background test to assess the similarity of ecological niche preferences between adjacent lineages. We found five primary reciprocally monophyletic clades, typically separated approximately 0.2–2.27 MYA, of which three were deeply isolated endemic lineages located in the three AOEs. All phylogroups were detected to have undergone population expansion during the past 0.3 MY. Niche models showed discontinuous habitats, and there were three barriers of less suitable habitat during the LGM and in modern times. Ecoclimatic niches may diverge significantly even over recent timescales, as each phylogroup had a unique distribution, and unique niche characteristics. Vicariant events associated with geographical and ecological barriers, glacial refuges and ecological differentiation may be the main drivers forming the pattern of endemism in China. PMID:23056441

  16. Transposon Variants and Their Effects on Gene Expression in Arabidopsis

    PubMed Central

    Wang, Xi; Weigel, Detlef; Smith, Lisa M.

    2013-01-01

    Transposable elements (TEs) make up the majority of many plant genomes. Their transcription and transposition is controlled through siRNAs and epigenetic marks including DNA methylation. To dissect the interplay of siRNA–mediated regulation and TE evolution, and to examine how TE differences affect nearby gene expression, we investigated genome-wide differences in TEs, siRNAs, and gene expression among three Arabidopsis thaliana accessions. Both TE sequence polymorphisms and presence of linked TEs are positively correlated with intraspecific variation in gene expression. The expression of genes within 2 kb of conserved TEs is more stable than that of genes next to variant TEs harboring sequence polymorphisms. Polymorphism levels of TEs and closely linked adjacent genes are positively correlated as well. We also investigated the distribution of 24-nt-long siRNAs, which mediate TE repression. TEs targeted by uniquely mapping siRNAs are on average farther from coding genes, apparently because they more strongly suppress expression of adjacent genes. Furthermore, siRNAs, and especially uniquely mapping siRNAs, are enriched in TE regions missing in other accessions. Thus, targeting by uniquely mapping siRNAs appears to promote sequence deletions in TEs. Overall, our work indicates that siRNA–targeting of TEs may influence removal of sequences from the genome and hence evolution of gene expression in plants. PMID:23408902

  17. First freshwater member ever reported for the family Bathycoccaceae (Chlorophyta; Archaeplastida) from Argentinean Patagonia revealed by environmental DNA survey.

    PubMed

    Lara, Enrique; Fernández, Leonardo D; Schiaffino, M Romina; Izaguirre, Irina

    2017-08-01

    We characterized molecularly the first freshwater member ever reported for the family Bathycoccaceae in Lake Musters (Argentinean Patagonia). Members of this family are extremely numerous and play a key ecological role in marine systems as primary producers. We cloned a fragment comprising the SSU rRNA gene+ITS region from environmental DNA using specific mamiellophyte primers. The unique SSU rRNA gene sequence obtained clustered robustly with Bathycoccus prasinos. Analysis of the two-dimensional structure of the ITS region showed the presence of a typical supplementary helix in the ITS-2 region, a synapomorphy of Bathycoccaceae, which confirmed further its phylogenetic placement. We finally discuss the possible causes for the presence of this organism in Lake Musters. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Diversity in the origins of proteostasis networks- a driver for protein function in evolution

    PubMed Central

    Powers, Evan T.; Balch, William E.

    2013-01-01

    Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216

  19. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecale Zhou, C L; Zemla, A T; Roe, D

    2005-01-29

    Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set ofmore » ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.« less

  20. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads

    PubMed Central

    Sass, Chodon; Little, Damon P.; Stevenson, Dennis Wm.; Specht, Chelsea D.

    2007-01-01

    Barcodes are short segments of DNA that can be used to uniquely identify an unknown specimen to species, particularly when diagnostic morphological features are absent. These sequences could offer a new forensic tool in plant and animal conservation—especially for endangered species such as members of the Cycadales. Ideally, barcodes could be used to positively identify illegally obtained material even in cases where diagnostic features have been purposefully removed or to release confiscated organisms into the proper breeding population. In order to be useful, a DNA barcode sequence must not only easily PCR amplify with universal or near-universal reaction conditions and primers, but also contain enough variation to generate unique identifiers at either the species or population levels. Chloroplast regions suggested by the Plant Working Group of the Consortium for the Barcode of Life (CBoL), and two alternatives, the chloroplast psbA-trnH intergenic spacer and the nuclear ribosomal internal transcribed spacer (nrITS), were tested for their utility in generating unique identifiers for members of the Cycadales. Ease of amplification and sequence generation with universal primers and reaction conditions was determined for each of the seven proposed markers. While none of the proposed markers provided unique identifiers for all species tested, nrITS showed the most promise in terms of variability, although sequencing difficulties remain a drawback. We suggest a workflow for DNA barcoding, including database generation and management, which will ultimately be necessary if we are to succeed in establishing a universal DNA barcode for plants. PMID:17987130

  1. MySSP: Non-stationary evolutionary sequence simulation, including indels

    PubMed Central

    Rosenberg, Michael S.

    2007-01-01

    MySSP is a new program for the simulation of DNA sequence evolution across a phylogenetic tree. Although many programs are available for sequence simulation, MySSP is unique in its inclusion of indels, flexibility in allowing for non-stationary patterns, and output of ancestral sequences. Some of these features can individually be found in existing programs, but have not all have been previously available in a single package. PMID:19325855

  2. Degree sequence in message transfer

    NASA Astrophysics Data System (ADS)

    Yamuna, M.

    2017-11-01

    Message encryption is always an issue in current communication scenario. Methods are being devised using various domains. Graphs satisfy numerous unique properties which can be used for message transfer. In this paper, I propose a message encryption method based on degree sequence of graphs.

  3. Full genome sequence of Rocio virus reveal substantial variations from the prototype Rocio virus SPH 34675 sequence.

    PubMed

    Setoh, Yin Xiang; Amarilla, Alberto A; Peng, Nias Y; Slonchak, Andrii; Periasamy, Parthiban; Figueiredo, Luiz T M; Aquino, Victor H; Khromykh, Alexander A

    2018-01-01

    Rocio virus (ROCV) is an arbovirus belonging to the genus Flavivirus, family Flaviviridae. We present an updated sequence of ROCV strain SPH 34675 (GenBank: AY632542.4), the only available full genome sequence prior to this study. Using next-generation sequencing of the entire genome, we reveal substantial sequence variation from the prototype sequence, with 30 nucleotide differences amounting to 14 amino acid changes, as well as significant changes to predicted 3'UTR RNA structures. Our results present an updated and corrected sequence of a potential emerging human-virulent flavivirus uniquely indigenous to Brazil (GenBank: MF461639).

  4. Rotary pin-in-maze discriminator

    DOEpatents

    Benavides, G.L.

    1997-05-06

    A discriminator apparatus and method that discriminates between a unique signal and any other (incorrect) signal are disclosed. The unique signal is a sequence of events; each event can assume one of two possible event states. Given the unique signal, a maze wheel is allowed to rotate fully in one direction. Given an incorrect signal, both the maze wheel and a pin wheel lock in position. 4 figs.

  5. nuID: a universal naming scheme of oligonucleotides for Illumina, Affymetrix, and other microarrays

    PubMed Central

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2007-01-01

    Background Oligonucleotide probes that are sequence identical may have different identifiers between manufacturers and even between different versions of the same company's microarray; and sometimes the same identifier is reused and represents a completely different oligonucleotide, resulting in ambiguity and potentially mis-identification of the genes hybridizing to that probe. Results We have devised a unique, non-degenerate encoding scheme that can be used as a universal representation to identify an oligonucleotide across manufacturers. We have named the encoded representation 'nuID', for nucleotide universal identifier. Inspired by the fact that the raw sequence of the oligonucleotide is the true definition of identity for a probe, the encoding algorithm uniquely and non-degenerately transforms the sequence itself into a compact identifier (a lossless compression). In addition, we added a redundancy check (checksum) to validate the integrity of the identifier. These two steps, encoding plus checksum, result in an nuID, which is a unique, non-degenerate, permanent, robust and efficient representation of the probe sequence. For commercial applications that require the sequence identity to be confidential, we have an encryption schema for nuID. We demonstrate the utility of nuIDs for the annotation of Illumina microarrays, and we believe it has universal applicability as a source-independent naming convention for oligomers. Reviewers This article was reviewed by Itai Yanai, Rong Chen (nominated by Mark Gerstein), and Gregory Schuler (nominated by David Lipman). PMID:17540033

  6. Cloning of the anhidrotic ectodermal dysplasia gene: Identification of cDNAs associated with CpG islands mapped near translocation breakpoint in two female patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, A.K.; Schlessinger, D.; Kere, J.

    1994-09-01

    The gene for the X chromosomal developmental disorder anhidrotic ectodermal dysplasia (EDA) has been mapped to Xq12-q13 by linkage analysis and is expressed in a few females with chromosomal translocations involving band Xq12-q13. A yeast artificial chromosome (YAC) contig (2.0 Mb) spanning two translocation breakpoints has been assembled by sequence-tagged site (STS)-based chromosomal walking. The two translocation breakpoints (X:autosome translocations from the affected female patients) have been mapped less than 60 kb apart within a YAC contig. Unique probes and intragenic STSs (mapped between the two translocations) have been developed and a somatic cell hybrid carrying the translocated X chromosomemore » from the AK patient has been analyzed by isolating unique probes that span the breakpoint. Several STSs made from intragenic sequences have been found to be conserved in mouse, hamster and monkey, but we have detected no mRNAs in a number of tissues tested. However, a probe and STS developed from the DNA spanning the AK breakpoint is conserved in mouse, hamster and monkey, and we have detected expressed sequences in skin cells and cDNA libraries. In addition, unique sequences have been obtained from two CpG islands in the region that maps proximal to the breakpoints. cDNAs containing these sequences are being studied as candidates for the gene affected in the etiology of EDA.« less

  7. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    PubMed Central

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  8. Membership and Coronal Activity in the NGC 2232 and Cr 140 Open Clusters

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Patten, Brian M.

    2004-01-01

    Making use of eight archival ROSAT HRI images in the regions of the NGC 2232 and Cr 140, this project's primary focus is to identify X-ray sources and to extract net source counts for these sources in these two open clusters. These X-ray data would be combined with ground-based photometry and spectroscopy in order to identify G, K, and early-M type cluster members. Such membership data are important because, at present, no members later than spectral type approx. F5 are currently known for either cluster. With ages estimated to be approx. 25 Myr and at distances of just approx. 350 pc, the combined late-type membership of the NGC 2232 and Cr 140 clusters would yield an almost unique sample of solar-type stars in the post-T Tauri/pre-main sequence phase of evolution. These stars could be used to assess the level and dispersion of coronal activity levels, as a part of a probe of the importance of magnetic braking and the level of magnetic dynamo activity, for solar-type stars just before they reach the zero-age main sequence.

  9. Phonological and Semantic Cues to Learning from Word-Types

    PubMed Central

    Richtsmeier, Peter

    2017-01-01

    Word-types represent the primary form of data for many models of phonological learning, and they often predict performance in psycholinguistic tasks. Word-types are often tacitly defined as phonologically unique words. Yet, an explicit test of this definition is lacking, and natural language patterning suggests that word meaning could also act as a cue to word-type status. This possibility was tested in a statistical phonotactic learning experiment in which phonological and semantic properties of word-types varied. During familiarization, the learning targets—word-medial consonant sequences—were instantiated either by four related word-types or by just one word-type (the experimental frequency factor). The expectation was that more word-types would lead participants to generalize the target sequences. Regarding semantic cues, related word-types were either associated with different referents or all with a single referent. Regarding phonological cues, related word-types differed from each other by one, two, or more phonemes. At test, participants rated novel wordforms for their similarity to the familiarization words. When participants heard four related word-types, they gave higher ratings to test words with the same consonant sequences, irrespective of the phonological and semantic manipulations. The results support the existing phonological definition of word-types. PMID:29187914

  10. Petrology and tectonic development of supracrustal sequence of Kerala Khondalite Belt, Southern India

    NASA Technical Reports Server (NTRS)

    Kumar, G. R. Ravindra; Chacko, Thomas

    1988-01-01

    The granulite terrain of southern India, of which the Kerala Khondalite belt (KKB) is a part, is unique in exposing crustal sections with arrested charnockite growth in different stages of transformation and in varied lithological association. The KKB with rocks of surficial origin and incipient charnockite development, poses several problems relating to the tectonics of burial of vast area and mechanisms involved in expelling initial H2O (causes of dryness) for granulite facies metamorphism. It is possible to infer the following sequence of events based on the field and laboratory studies: (1) derivation of protoliths of KKB from granitic uplands and deposition in fault bounded basin (cratonic rift); (2) subhorizontal deep burial of sediments; (3) intense deformation of infra and supracrustal rocks; (4) early granulite facies metamorphism predating F sub 2 - loss of primary structure in sediments and formation of charnockites from amphibole bearing gneisses and khondalites from pelites; (5) migmatisation and deformation of metasediments and gneisses; (6) second event of charnockite formation probably aided by internal CO2 build-up; and (7) isothermal uplift, entrapment of late CO2 and mixed CO2-H2O fluids, formation of second generation cordierites and cordierite symplectites.

  11. Recombinatorial biases and convergent recombination determine interindividual TCRβ sharing in murine thymocytes.

    PubMed

    Li, Hanjie; Ye, Congting; Ji, Guoli; Wu, Xiaohui; Xiang, Zhe; Li, Yuanyue; Cao, Yonghao; Liu, Xiaolong; Douek, Daniel C; Price, David A; Han, Jiahuai

    2012-09-01

    Overlap of TCR repertoires among individuals provides the molecular basis for public T cell responses. By deep-sequencing the TCRβ repertoires of CD4+CD8+ thymocytes from three individual mice, we observed that a substantial degree of TCRβ overlap, comprising ∼10-15% of all unique amino acid sequences and ∼5-10% of all unique nucleotide sequences across any two individuals, is already present at this early stage of T cell development. The majority of TCRβ sharing between individual thymocyte repertoires could be attributed to the process of convergent recombination, with additional contributions likely arising from recombinatorial biases; the role of selection during intrathymic development was negligible. These results indicate that the process of TCR gene recombination is the major determinant of clonotype sharing between individuals.

  12. The Physics and Mathematics of MRI

    NASA Astrophysics Data System (ADS)

    Ansorge, Richard; Graves, Martin

    2016-10-01

    Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, `pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.

  13. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis

    PubMed Central

    2012-01-01

    Background The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Results Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. Conclusions By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand. PMID:22276739

  14. Pair-barcode high-throughput sequencing for large-scale multiplexed sample analysis.

    PubMed

    Tu, Jing; Ge, Qinyu; Wang, Shengqin; Wang, Lei; Sun, Beili; Yang, Qi; Bai, Yunfei; Lu, Zuhong

    2012-01-25

    The multiplexing becomes the major limitation of the next-generation sequencing (NGS) in application to low complexity samples. Physical space segregation allows limited multiplexing, while the existing barcode approach only permits simultaneously analysis of up to several dozen samples. Here we introduce pair-barcode sequencing (PBS), an economic and flexible barcoding technique that permits parallel analysis of large-scale multiplexed samples. In two pilot runs using SOLiD sequencer (Applied Biosystems Inc.), 32 independent pair-barcoded miRNA libraries were simultaneously discovered by the combination of 4 unique forward barcodes and 8 unique reverse barcodes. Over 174,000,000 reads were generated and about 64% of them are assigned to both of the barcodes. After mapping all reads to pre-miRNAs in miRBase, different miRNA expression patterns are captured from the two clinical groups. The strong correlation using different barcode pairs and the high consistency of miRNA expression in two independent runs demonstrates that PBS approach is valid. By employing PBS approach in NGS, large-scale multiplexed pooled samples could be practically analyzed in parallel so that high-throughput sequencing economically meets the requirements of samples which are low sequencing throughput demand.

  15. Unique nucleotide sequence-guided assembly of repetitive DNA parts for synthetic biology applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torella, JP; Lienert, F; Boehm, CR

    2014-08-07

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts, and they hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies-for example, repeated terminator and insulator sequences-that complicate recombination-based assembly. We and others have recently developed DNA assembly methods, which we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked withmore » UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly assembled constructs, or into high-quality combinatorial libraries in only 2-3 d. If the DNA parts must be generated from scratch, an additional 2-5 d are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques.« less

  16. Unique nucleotide sequence (UNS)-guided assembly of repetitive DNA parts for synthetic biology applications

    PubMed Central

    Torella, Joseph P.; Lienert, Florian; Boehm, Christian R.; Chen, Jan-Hung; Way, Jeffrey C.; Silver, Pamela A.

    2016-01-01

    Recombination-based DNA construction methods, such as Gibson assembly, have made it possible to easily and simultaneously assemble multiple DNA parts and hold promise for the development and optimization of metabolic pathways and functional genetic circuits. Over time, however, these pathways and circuits have become more complex, and the increasing need for standardization and insulation of genetic parts has resulted in sequence redundancies — for example repeated terminator and insulator sequences — that complicate recombination-based assembly. We and others have recently developed DNA assembly methods that we refer to collectively as unique nucleotide sequence (UNS)-guided assembly, in which individual DNA parts are flanked with UNSs to facilitate the ordered, recombination-based assembly of repetitive sequences. Here we present a detailed protocol for UNS-guided assembly that enables researchers to convert multiple DNA parts into sequenced, correctly-assembled constructs, or into high-quality combinatorial libraries in only 2–3 days. If the DNA parts must be generated from scratch, an additional 2–5 days are necessary. This protocol requires no specialized equipment and can easily be implemented by a student with experience in basic cloning techniques. PMID:25101822

  17. Generation and Analysis of Expressed Sequence Tags from Olea europaea L.

    PubMed Central

    Ozdemir Ozgenturk, Nehir; Oruç, Fatma; Sezerman, Ugur; Kuçukural, Alper; Vural Korkut, Senay; Toksoz, Feriha; Un, Cemal

    2010-01-01

    Olive (Olea europaea L.) is an important source of edible oil which was originated in Near-East region. In this study, two cDNA libraries were constructed from young olive leaves and immature olive fruits for generation of ESTs to discover the novel genes and search the function of unknown genes of olive. The randomly selected 3840 colonies were sequenced for EST collection from both libraries. Readable 2228 sequences for olive leaf and 1506 sequences for olive fruit were assembled into 205 and 69 contigs, respectively, whereas 2478 were singletons. Putative functions of all 2752 differentially expressed unique sequences were designated by gene homology based on BLAST and annotated using BLAST2GO. While 1339 ESTs show no homology to the database, 2024 ESTs have homology (under 80%) with hypothetical proteins, putative proteins, expressed proteins, and unknown proteins in NCBI-GenBank. 635 EST's unique genes sequence have been identified by over 80% homology to known function in other species which were not previously described in Olea family. Only 3.1% of total EST's was shown similarity with olive database existing in NCBI. This generated EST's data and consensus sequences were submitted to NCBI as valuable source for functional genome studies of olive. PMID:21197085

  18. The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1.

    PubMed

    Vaz, Paola K; Mahony, Timothy J; Hartley, Carol A; Fowler, Elizabeth V; Ficorilli, Nino; Lee, Sang W; Gilkerson, James R; Browning, Glenn F; Devlin, Joanne M

    2016-01-22

    While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.

  19. DNABIT Compress - Genome compression algorithm.

    PubMed

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  20. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    PubMed Central

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.

    1998-01-01

    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  1. Gene Sets for Utilization of Primary and Secondary Nutrition Supplies in the Distal Gut of Endangered Iberian Lynx

    PubMed Central

    Alcaide, María; Messina, Enzo; Richter, Michael; Bargiela, Rafael; Peplies, Jörg; Huws, Sharon A.; Newbold, Charles J.; Golyshin, Peter N.; Simón, Miguel A.; López, Guillermo; Yakimov, Michail M.; Ferrer, Manuel

    2012-01-01

    Recent studies have indicated the existence of an extensive trans-genomic trans-mural co-metabolism between gut microbes and animal hosts that is diet-, host phylogeny- and provenance-influenced. Here, we analyzed the biodiversity at the level of small subunit rRNA gene sequence and the metabolic composition of 18 Mbp of consensus metagenome sequences and activity characteristics of bacterial intra-cellular extracts, in wild Iberian lynx (Lynx pardinus) fecal samples. Bacterial signatures (14.43% of all of the Firmicutes reads and 6.36% of total reads) related to the uncultured anaerobic commensals Anaeroplasma spp., which are typically found in ovine and bovine rumen, were first identified. The lynx gut was further characterized by an over-representation of ‘presumptive’ aquaporin aqpZ genes and genes encoding ‘active’ lysosomal-like digestive enzymes that are possibly needed to acquire glycerol, sugars and amino acids from glycoproteins, glyco(amino)lipids, glyco(amino)glycans and nucleoside diphosphate sugars. Lynx gut was highly enriched (28% of the total glycosidases) in genes encoding α-amylase and related enzymes, although it exhibited low rate of enzymatic activity indicative of starch degradation. The preponderance of β-xylosidase activity in protein extracts further suggests lynx gut microbes being most active for the metabolism of β-xylose containing plant N-glycans, although β-xylosidases sequences constituted only 1.5% of total glycosidases. These collective and unique bacterial, genetic and enzymatic activity signatures suggest that the wild lynx gut microbiota not only harbors gene sets underpinning sugar uptake from primary animal tissues (with the monotypic dietary profile of the wild lynx consisting of 80–100% wild rabbits) but also for the hydrolysis of prey-derived plant biomass. Although, the present investigation corresponds to a single sample and some of the statements should be considered qualitative, the data most likely suggests a tighter, more coordinated and complex evolutionary and nutritional ecology scenario of carnivore gut microbial communities than has been previously assumed. PMID:23251564

  2. cyclostratigraphy, sequence stratigraphy and organic matter accumulation mechanism

    NASA Astrophysics Data System (ADS)

    Cong, F.; Li, J.

    2016-12-01

    The first member of Maokou Formation of Sichuan basin is composed of well preserved carbonate ramp couplets of limestone and marlstone/shale. It acts as one of the potential shale gas source rock, and is suitable for time-series analysis. We conducted time-series analysis to identify high-frequency sequences, reconstruct high-resolution sedimentation rate, estimate detailed primary productivity for the first time in the study intervals and discuss organic matter accumulation mechanism of source rock under sequence stratigraphic framework.Using the theory of cyclostratigraphy and sequence stratigraphy, the high-frequency sequences of one outcrop profile and one drilling well are identified. Two third-order sequences and eight fourth-order sequences are distinguished on outcrop profile based on the cycle stacking patterns. For drilling well, sequence boundary and four system tracts is distinguished by "integrated prediction error filter analysis" (INPEFA) of Gamma-ray logging data, and eight fourth-order sequences is identified by 405ka long eccentricity curve in depth domain which is quantified and filtered by integrated analysis of MTM spectral analysis, evolutive harmonic analysis (EHA), evolutive average spectral misfit (eASM) and band-pass filtering. It suggests that high-frequency sequences correlate well with Milankovitch orbital signals recorded in sediments, and it is applicable to use cyclostratigraphy theory in dividing high-frequency(4-6 orders) sequence stratigraphy.High-resolution sedimentation rate is reconstructed through the study interval by tracking the highly statistically significant short eccentricity component (123ka) revealed by EHA. Based on sedimentation rate, measured TOC and density data, the burial flux, delivery flux and primary productivity of organic carbon was estimated. By integrating redox proxies, we can discuss the controls on organic matter accumulation by primary production and preservation under the high-resolution sequence stratigraphic framework. Results show that high average organic carbon contents in the study interval are mainly attributed to high primary production. The results also show a good correlation between high organic carbon accumulation and intervals of transgression.

  3. Deglaciation events in part of the Manchester South 7.5' quadrangle south-central New Hampshire

    USGS Publications Warehouse

    Stone, Byron D.

    1971-01-01

    The study-area lies in south-central New Hampshire, and is bordered on the west by the Merrimack River, the principal north-south drainage route of central New Hampshire. The classical two tills of New England outcrop in the area. In a unique exposure of the sandy upper till, a loose ablation unit overlies a compact basal unit. Both upper till facies overlie a sheared section of dense, olive-gray lower till. Outwash sequences mapped in the study-area are progressively younger to the north, indicating backwastage of the Wisconsinan ice sheet. Primary structures in proglacial Lake Merrimack sediments include contorted bedding, buckled laminae, and folds. A large slumped section in lake sediments exhibits three distinct deformation zones, characterized by brittle, ductile, and unconsolidated deformation. Cross-cutting relationships establish four fold generations and a deformation sequence in the slumped section. Slip in each fold generation was along nearly parallel slip-lines, as deduced from analyses of fold rotation senses. The primary and slump deformation features contrast sharply with the intense style of deformation of lake beds below till at an apparent ice readvance cut. The deduced drag fold slip-line agrees with till fabric point maxima and dip-slip on one group of thrust faults. A southerly movement of readvancing ice is inferred.The study-area was deglaciated about 13,000 years ago, according to a proposed deglaciation model for New Hampshire. The model is based on Nye's theoretical glacier surface gradient, and evidence for active retreat of the Wisconsinan ice sheet.

  4. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients.

    PubMed

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-04-06

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood ("liquid biopsy") is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection.

  5. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients

    PubMed Central

    Vollbrecht, Claudia; Lehmann, Annika; Lenze, Dido; Hummel, Michael

    2018-01-01

    Analysis of circulating cell-free DNA (cfDNA) derived from peripheral blood (“liquid biopsy”) is an attractive alternative to identify non-small cell lung cancer (NSCLC) patients with the EGFR T790M mutation eligible for 3rd generation tyrosine kinase inhibitor therapy. We evaluated two PCR-based next generation sequencing (NGS) approaches, one including unique molecular identifiers (UMI), with focus on highly sensitive EGFR T790M mutation detection. Therefore, we extracted and sequenced cfDNA from synthetic plasma samples spiked with mutated DNA at decreasing allele frequencies and from 21 diagnostic NSCLC patients. Data evaluation was performed to determine the limit of detection (LoD), accuracy, specificity and sensitivity of both assays. Considering all tested reference dilutions and mutations the UMI assay performed best in terms of LoD (1% vs. 5%), sensitivity (95.8% vs. 81.3%), specificity (100% vs. 93.8%) and accuracy (96.9% vs. 84.4%). Comparing mutation status of diagnostic samples with both assays showed 81.3% concordance with primary mutation verifiable in 52% of cases. EGFR T790M was detected concordantly in 6/7 patients with allele frequencies from 0.1% to 27%. In one patient, the T790M mutation was exclusively detectable with the UMI assay. Our data demonstrate that both assays are applicable as multi-biomarker NGS tools enabling the simultaneous detection of primary EGFR driver and resistance mutations. However, for mutations with low allelic frequencies the use of NGS panels with UMI facilitates a more sensitive and reliable detection. PMID:29719623

  6. A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: Purification, primary structure, and mode of action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eitan, M.; Fowler, E.; Herrmann, R.

    1990-06-26

    A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It didmore » not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.« less

  7. Structure of the PSD-95/MAP1A complex reveals a unique target recognition mode of the MAGUK GK domain.

    PubMed

    Xia, Yitian; Shang, Yuan; Zhang, Rongguang; Zhu, Jinwei

    2017-08-10

    The PSD-95 family of membrane-associated guanylate kinases (MAGUKs) are major synaptic scaffold proteins and play crucial roles in the dynamic regulation of dendritic remodelling, which is understood to be the foundation of synaptogenesis and synaptic plasticity. The guanylate kinase (GK) domain of MAGUK family proteins functions as a phosphor-peptide binding module. However, the GK domain of PSD-95 has been found to directly bind to a peptide sequence within the C-terminal region of neuronal-specific microtubule-associated protein 1A (MAP1A), although the detailed molecular mechanism governing this phosphorylation-independent interaction at the atomic level is missing. In the present study, we determine the crystal structure of PSD-95 GK in complex with the MAP1A peptide at 2.6-Å resolution. The complex structure reveals that, unlike a linear and elongated conformation in the phosphor-peptide/GK complexes, the MAP1A peptide adopts a unique conformation with a stretch of hydrophobic residues far from each other in the primary sequence clustering and interacting with the 'hydrophobic site' of PSD-95 GK and a highly conserved aspartic acid of MAP1A (D2117) mimicking the phosphor-serine/threonine in binding to the 'phosphor-site' of PSD-95 GK. We demonstrate that the MAP1A peptide may undergo a conformational transition upon binding to PSD-95 GK. Further structural comparison of known DLG GK-mediated complexes reveals the target recognition specificity and versatility of DLG GKs. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis

    DOE PAGES

    Christopherson, Melissa R.; Dawson, John A.; Stevenson, David M.; ...

    2014-12-04

    Bacteria in the genus Ruminococcus are ubiquitous members of the mammalian gastrointestinal tract. In particular, they are important in ruminants where they digest a wide range of plant cell wall polysaccharides. For example, Ruminococcus albus 7 is a primary cellulose degrader that produces acetate usable by its bovine host. Moreover, it is one of the few organisms that ferments cellulose to form ethanol at mesophilic temperatures in vitro. The mechanism of cellulose degradation by R. albus 7 is not well-defined and is thought to involve pilin-like proteins, unique carbohydrate-binding domains, a glycocalyx, and cellulosomes. We used a combination of comparativemore » genomics, fermentation analyses, and transcriptomics to further clarify the cellulolytic and fermentative potential of R. albus 7. A comparison of the R. albus 7 genome sequence against the genome sequences of related bacteria that either encode or do not encode cellulosomes revealed that R. albus 7 does not encode for most canonical cellulosomal components. Fermentation analysis of R. albus 7 revealed the ability to produce ethanol and acetate on a wide range of fibrous substrates in vitro. Global transcriptomic analysis of R. albus 7 grown at identical dilution rates on cellulose and cellobiose in a chemostat showed that this bacterium, when growing on cellulose, utilizes a carbohydrate-degrading strategy that involves increased transcription of the rare carbohydrate-binding module (CBM) family 37 domain and the tryptophan biosynthetic operon. Our data suggest that R. albus 7 does not use canonical cellulosomal components to degrade cellulose, but rather up-regulates the expression of CBM37-containing enzymes and tryptophan biosynthesis. This study contributes to a revised model of carbohydrate degradation by this key member of the rumen ecosystem.« less

  9. Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter

    PubMed Central

    Rizzello, Antonia; Romano, Alessandro; Kottra, Gabor; Acierno, Raffaele; Storelli, Carlo; Verri, Tiziano; Daniel, Hannelore; Maffia, Michele

    2013-01-01

    Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications. PMID:23569229

  10. Short-term memory stores organized by information domain.

    PubMed

    Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C

    2016-04-01

    Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.

  11. Development of a PCR-based marker utilizing a deletion mutation in the dihydroflavonol 4-reductase (DFR) gene responsible for the lack of anthocyanin production in yellow onions (Allium cepa).

    PubMed

    Kim, Sunggil; Yoo, Kil Sun; Pike, Leonard M

    2005-02-01

    Bulb color in onions (Allium cepa) is an important trait, but the mechanism of color inheritance is poorly understood at the molecular level. A previous study showed that inactivation of the dihydroflavonol 4-reductase (DFR) gene at the transcriptional level resulted in a lack of anthocyanin production in yellow onions. The objectives of the present study were the identification of the critical mutations in the DFR gene (DFR-A) and the development of a PCR-based marker for allelic selection. We report the isolation of two additional DFR homologs (DFR-B and DFR-C). No unique sequences were identified in either DFR homolog, even in the untranslated region (UTR). Both genes shared more than 95% nucleotide sequence identity with the DFR-A gene. To obtain a unique sequence from each gene, we isolated the promoter regions. Sequences of the DFR-A and DFR-B promoters differed completely from one another, except for an approximately 100-bp sequence adjacent to the 5'UTR. It was possible to specifically amplify only the DFR-A gene using primers designed to anneal to the unique promoter region. The sequences of yellow and red DFR-A alleles were the same except for a single base-pair change in the promoter and an approximately 800-bp deletion within the 3' region of the yellow DFR-A allele. This deletion was used to develop a co-dominant PCR-based marker that segregated perfectly with color phenotypes in the F2 population. These results indicate that a deletion mutation in the yellow DFR-A gene results in the lack of anthocyanin production in yellow onions.

  12. Prevalence and genome characteristics of canine astrovirus in southwest China.

    PubMed

    Li, Mingxiang; Yan, Nan; Ji, Conghui; Wang, Min; Zhang, Bin; Yue, Hua; Tang, Cheng

    2018-05-30

    The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3 %) were positive for CaAstV by RT-PCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV.

  13. Complete nucleotide sequence and genome structure of a Japanese isolate of hibiscus latent Fort Pierce virus, a unique tobamovirus that contains an internal poly(A) region in its 3' end.

    PubMed

    Yoshida, Tetsuya; Kitazawa, Yugo; Komatsu, Ken; Neriya, Yutaro; Ishikawa, Kazuya; Fujita, Naoko; Hashimoto, Masayoshi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou

    2014-11-01

    In this study, we detected a Japanese isolate of hibiscus latent Fort Pierce virus (HLFPV-J), a member of the genus Tobamovirus, in a hibiscus plant in Japan and determined the complete sequence and organization of its genome. HLFPV-J has four open reading frames (ORFs), each of which shares more than 98 % nucleotide sequence identity with those of other HLFPV isolates. Moreover, HLFPV-J contains a unique internal poly(A) region of variable length, ranging from 44 to 78 nucleotides, in its 3'-untranslated region (UTR), as is the case with hibiscus latent Singapore virus (HLSV), another hibiscus-infecting tobamovirus. The length of the HLFPV-J genome was 6431 nucleotides, including the shortest internal poly(A) region. The sequence identities of ORFs 1, 2, 3 and 4 of HLFPV-J to other tobamoviruses were 46.6-68.7, 49.9-70.8, 31.0-70.8 and 39.4-70.1 %, respectively, at the nucleotide level and 39.8-75.0, 43.6-77.8, 19.2-70.4 and 31.2-74.2 %, respectively, at the amino acid level. The 5'- and 3'-UTRs of HLFPV-J showed 24.3-58.6 and 13.0-79.8 % identity, respectively, to other tobamoviruses. In particular, when compared to other tobamoviruses, each ORF and UTR of HLFPV-J showed the highest sequence identity to those of HLSV. Phylogenetic analysis showed that HLFPV-J, other HLFPV isolates and HLSV constitute a malvaceous-plant-infecting tobamovirus cluster. These results indicate that the genomic structure of HLFPV-J has unique features similar to those of HLSV. To our knowledge, this is the first report of the complete genome sequence of HLFPV.

  14. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    PubMed

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  15. Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.

    PubMed

    Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L

    2005-01-01

    The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.

  16. Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing

    USDA-ARS?s Scientific Manuscript database

    Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...

  17. The Pizza Problem: A Solution with Sequences

    ERIC Educational Resources Information Center

    Shafer, Kathryn G.; Mast, Caleb J.

    2008-01-01

    This article addresses the issues of coaching and assessing. A preservice middle school teacher's unique solution to the Pizza problem was not what the professor expected. The student's solution strategy, based on sequences and a reinvention of Pascal's triangle, is explained in detail. (Contains 8 figures.)

  18. Complete genome sequence of the acetylene-fermenting Pelobacter sp. strain SFB93

    USGS Publications Warehouse

    Sutton, John M.; Baesman, Shaun; Fierst, Janna L.; Poret-Peterson, Amisha T.; Oremland, Ronald S.; Dunlap, Darren S.; Akob, Denise M.

    2017-01-01

    Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus. Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chauhan, Archana; Layton, Alice; Williams, Daniel W

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of {approx}6.1 Mb sequence indicates that 30% of the traits are unique and distributed over 5 genomic islands, a prophage and two plasmids.

  20. Re-analysis of human immunodeficiency virus type 1 isolates from Cyprus and Greece, initially designated 'subtype I', reveals a unique complex A/G/H/K/? mosaic pattern.

    PubMed

    Paraskevis, D; Magiorkinis, M; Vandamme, A M; Kostrikis, L G; Hatzakis, A

    2001-03-01

    Human immunodeficiency virus type 1 (HIV-1) has been classified into three main groups and 11 distinct subtypes. Moreover, several circulating recombinant forms (CRFs) of HIV-1 have been recently documented to have spread widely causing extensive HIV-1 epidemics. A subtype, initially designated I (CRF04_cpx), was documented in Cyprus and Greece and was found to comprise regions of sequence derived from subtypes A and G as well as regions of unclassified sequence. Re-analysis of the three full-length CRF04_cpx sequences that were available revealed a mosaic genomic organization of unique complexity comprising regions of sequence from at least five distinct subtypes, A, G, H, K and unclassified regions. These strains account for approximately 2% of the total HIV-1-infected population in Greece, thus providing evidence of the great capability of HIV-1 to recombine and produce highly divergent strains which can be spread successfully through different infection routes.

  1. Digital Biological Converter

    DTIC Science & Technology

    2013-06-28

    of cuts that each fragment should be cut into so the fragments are no greater than a specific length threshold. Additionally, vector sequences and...restriction sites are attached to each fragment while ensuring the restriction sites are unique to each sequence. The vector sequences serve as hooks...for assembly into vector for cloning purposes, and also as primer binding domains for PCR ampl ification. The restriction sites are added to

  2. Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures.

    PubMed

    Iandolino, Alberto; Nobuta, Kan; da Silva, Francisco Goes; Cook, Douglas R; Meyers, Blake C

    2008-05-12

    Vitis vinifera (V. vinifera) is the primary grape species cultivated for wine production, with an industry valued annually in the billions of dollars worldwide. In order to sustain and increase grape production, it is necessary to understand the genetic makeup of grape species. Here we performed mRNA profiling using Massively Parallel Signature Sequencing (MPSS) and combined it with available Expressed Sequence Tag (EST) data. These tag-based technologies, which do not require a priori knowledge of genomic sequence, are well-suited for transcriptional profiling. The sequence depth of MPSS allowed us to capture and quantify almost all the transcripts at a specific stage in the development of the grape berry. The number and relative abundance of transcripts from stage II grape berries was defined using Massively Parallel Signature Sequencing (MPSS). A total of 2,635,293 17-base and 2,259,286 20-base signatures were obtained, representing at least 30,737 and 26,878 distinct sequences. The average normalized abundance per signature was approximately 49 TPM (Transcripts Per Million). Comparisons of the MPSS signatures with available Vitis species' ESTs and a unigene set demonstrated that 6,430 distinct contigs and 2,190 singletons have a perfect match to at least one MPSS signature. Among the matched sequences, ESTs were identified from tissues other than berries or from berries at different developmental stages. Additional MPSS signatures not matching to known grape ESTs can extend our knowledge of the V. vinifera transcriptome, particularly when these data are used to assist in annotation of whole genome sequences from Vitis vinifera. The MPSS data presented here not only achieved a higher level of saturation than previous EST based analyses, but in doing so, expand the known set of transcripts of grape berries during the unique stage in development that immediately precedes the onset of ripening. The MPSS dataset also revealed evidence of antisense expression not previously reported in grapes but comparable to that reported in other plant species. Finally, we developed a novel web-based, public resource for utilization of the grape MPSS data [1].

  3. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins

    PubMed Central

    2011-01-01

    Abstract Background Bupleurum chinense DC. is a widely used traditional Chinese medicinal plant. Saikosaponins are the major bioactive constituents of B. chinense, but relatively little is known about saikosaponin biosynthesis. The 454 pyrosequencing technology provides a promising opportunity for finding novel genes that participate in plant metabolism. Consequently, this technology may help to identify the candidate genes involved in the saikosaponin biosynthetic pathway. Results One-quarter of the 454 pyrosequencing runs produced a total of 195, 088 high-quality reads, with an average read length of 356 bases (NCBI SRA accession SRA039388). A de novo assembly generated 24, 037 unique sequences (22, 748 contigs and 1, 289 singletons), 12, 649 (52.6%) of which were annotated against three public protein databases using a basic local alignment search tool (E-value ≤1e-10). All unique sequences were compared with NCBI expressed sequence tags (ESTs) (237) and encoding sequences (44) from the Bupleurum genus, and with a Sanger-sequenced EST dataset (3, 111). The 23, 173 (96.4%) unique sequences obtained in the present study represent novel Bupleurum genes. The ESTs of genes related to saikosaponin biosynthesis were found to encode known enzymes that catalyze the formation of the saikosaponin backbone; 246 cytochrome P450 (P450s) and 102 glycosyltransferases (GTs) unique sequences were also found in the 454 dataset. Full length cDNAs of 7 P450s and 7 uridine diphosphate GTs (UGTs) were verified by reverse transcriptase polymerase chain reaction or by cloning using 5' and/or 3' rapid amplification of cDNA ends. Two P450s and three UGTs were identified as the most likely candidates involved in saikosaponin biosynthesis. This finding was based on the coordinate up-regulation of their expression with β-AS in methyl jasmonate-treated adventitious roots and on their similar expression patterns with β-AS in various B. chinense tissues. Conclusions A collection of high-quality ESTs for B. chinense obtained by 454 pyrosequencing is provided here for the first time. These data should aid further research on the functional genomics of B. chinense and other Bupleurum species. The candidate genes for enzymes involved in saikosaponin biosynthesis, especially the P450s and UGTs, that were revealed provide a substantial foundation for follow-up research on the metabolism and regulation of the saikosaponins. PMID:22047182

  4. Identification of Entamoeba polecki with Unique 18S rRNA Gene Sequences from Celebes Crested Macaques and Pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia.

    PubMed

    Tuda, Josef; Feng, Meng; Imada, Mihoko; Kobayashi, Seiki; Cheng, Xunjia; Tachibana, Hiroshi

    2016-09-01

    Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  5. Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onda, M.; Kudo, S.; Fukuda, M.

    Human glycophorin A, B, and E (GPA, GPB, and GPE) genes belong to a gene family located at the long arm of chromosome 4. These three genes are homologous from the 5'-flanking sequence to the Alu sequence, which is 1 kb downstream from the exon encoding the transmembrane domain. Analysis of the Alu sequence and flanking direct repeat sequences suggested that the GPA gene most closely resembles the ancestral gene, whereas the GPB and GPE gene arose by homologous recombination within the Alu sequence, acquiring 3' sequences from an unrelated precursor genomic segment. Here the authors describe the identification ofmore » this putative precursor genomic segment. A human genomic library was screened by using the sequence of the 3' region of the GPB gene as a probe. The genomic clones isolated were found to contain an Alu sequence that appeared to be involved in the recombination. Downstream from the Alu sequence, the nucleotide sequence of the precursor genomic segment is almost identical to that of the GPB or GPE gene. In contrast, the upstream sequence of the genomic segment differs entirely from that of the GPA, GPB, and GPE genes. Conservation of the direct repeats flanking the Alu sequence of the genomic segment strongly suggests that the sequence of this genomic segment has been maintained during evolution. This identified genomic segment was found to reside downstream from the GPA gene by both gene mapping and in situ chromosomal localization. The precursor genomic segment was also identified in the orangutan genome, which is known to lack GPB and GPE genes. These results indicate that one of the duplicated ancestral glycophorin genes acquired a unique 3' sequence by unequal crossing-over through its Alu sequence and the further downstream Alu sequence present in the duplicated gene. Further duplication and divergence of this gene yielded the GPB and GPE genes. 37 refs., 5 figs.« less

  6. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

    PubMed Central

    Aklilu, Behailu B.; Culligan, Kevin M.

    2016-01-01

    Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species. PMID:26858742

  7. Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    PubMed Central

    Takeuchi, Yasuhiro; Myers, Richard; Danos, Olivier

    2008-01-01

    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred. PMID:18286191

  8. MRO Sequence Checking Tool

    NASA Technical Reports Server (NTRS)

    Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat

    2008-01-01

    The MRO Sequence Checking Tool program, mro_check, automates significant portions of the MRO (Mars Reconnaissance Orbiter) sequence checking procedure. Though MRO has similar checks to the ODY s (Mars Odyssey) Mega Check tool, the checks needed for MRO are unique to the MRO spacecraft. The MRO sequence checking tool automates the majority of the sequence validation procedure and check lists that are used to validate the sequences generated by MRO MPST (mission planning and sequencing team). The tool performs more than 50 different checks on the sequence. The automation varies from summarizing data about the sequence needed for visual verification of the sequence, to performing automated checks on the sequence and providing a report for each step. To allow for the addition of new checks as needed, this tool is built in a modular fashion.

  9. Restricted transfer of learning between unimanual and bimanual finger sequences

    PubMed Central

    Bai, Wenjun

    2016-01-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. PMID:27974447

  10. Molecular Dynamics Simulations of the 136 Unique Tetranucleotide Sequences of DNA Oligonucleotides. I. Research Design and Results on d(CpG) Steps

    PubMed Central

    Beveridge, David L.; Barreiro, Gabriela; Byun, K. Suzie; Case, David A.; Cheatham, Thomas E.; Dixit, Surjit B.; Giudice, Emmanuel; Lankas, Filip; Lavery, Richard; Maddocks, John H.; Osman, Roman; Seibert, Eleanore; Sklenar, Heinz; Stoll, Gautier; Thayer, Kelly M.; Varnai, Péter; Young, Matthew A.

    2004-01-01

    We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the “Ascona B-DNA Consortium” (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of ∼0.6 μs of simulation for systems containing ∼24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent ∼400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed. PMID:15326025

  11. A low molecular weight artificial RNA of unique size with multiple probe target regions

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Dsouza, L.; Fox, G. E.

    1997-01-01

    Artificial RNAs (aRNAs) containing novel sequence segments embedded in a deletion mutant of Vibrio proteolyticus 5S rRNA have previously been shown to be expressed from a plasmid borne growth rate regulated promoter in E. coli. These aRNAs accumulate to high levels and their detection is a promising tool for studies in molecular microbial ecology and in environmental monitoring. Herein a new construct is described which illustrates the versatility of detection that is possible with aRNAs. This 3xPen aRNA construct carries a 72 nucleotide insert with three copies of a unique 17 base probe target sequence. This aRNA is 160 nucleotides in length and again accumulates to high levels in the E. coli cytoplasm without incorporating into ribosomes. The 3xPen aRNA illustrates two improvements in detection. First, by appropriate selection of insert size, we obtained an aRNA which provides a unique and hence, easily quantifiable peak, on a high resolution gel profile of low molecular weight RNAs. Second, the existence of multiple probe targets results in a nearly commensurate increase in signal when detection is by hybridization. These aRNAs are naturally amplified and carry sequence segments that are not found in known rRNA sequences. It thus may be possible to detect them directly. An experimental step involving RT-PCR or PCR amplification of the gene could therefore be avoided.

  12. Exploring the Presence of microDNAs in Prostate Cancer Cell Lines, Tissue, and Sera of Prostate Cancer Patients and its Possible Application as Biomarker

    DTIC Science & Technology

    2016-04-01

    Sequence tags were mapped on the human reference genome using the Novoalign software. Only those...ends of the linear islands to create a novel junctional sequence that does not exist in the genome . Thus the PE- sequence of a fragment that breaks at... genome (Fig. 3b). Those PE-tags where one tag maps uniquely to an island and the other remains unmapped, but passes the sequence quality filter,

  13. Genomic sequence for the aflatoxigenic filamentous fungus Aspergillus nomius

    USDA-ARS?s Scientific Manuscript database

    The genome of the A. nomius type strain was sequenced using a personal genome machine. Annotation of the genes was undertaken, followed by gene ontology and an investigation into the number of secondary metabolite clusters. Comparative studies with other Aspergillus species involved shared/unique ge...

  14. Evaluation of ribosomal RNA removal protocols for Salmonella RNA-Seq projects

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing is a powerful technology and its application to sequencing entire RNA populations of food-borne pathogens will provide valuable insights. A problem unique to prokaryotic RNA-Seq is the massive abundance of ribosomal RNA. Unlike eukaryotic messenger RNA (mRNA), bacterial ...

  15. Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire

    USDA-ARS?s Scientific Manuscript database

    Background: Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surve...

  16. Successful Gene Tagging in Lettuce Using the Tnt1 Retrotransposon from Tobacco

    PubMed Central

    Mazier, Marianne; Botton, Emmanuel; Flamain, Fabrice; Bouchet, Jean-Paul; Courtial, Béatrice; Chupeau, Marie-Christine; Chupeau, Yves; Maisonneuve, Brigitte; Lucas, Hélène

    2007-01-01

    The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3β-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome. PMID:17351058

  17. Molecular characterization of colorectal cancer patients and concomitant patient-derived tumor cell establishment

    PubMed Central

    Kim, Seung Tae; Kim, Sun Young; Kim, Nayoung K.D.; Jang, Jiryeon; Kang, Mihyun; Jang, Hyojin; Ahn, Soomin; Kim, Seok Hyeong; Park, Yoona; Cho, Yong Beom; Heo, Jeong Wook; Lee, Woo Yong; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Kim, Hee Cheol

    2016-01-01

    Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event. PMID:26909603

  18. Theory, computation, and application of exponential splines

    NASA Technical Reports Server (NTRS)

    Mccartin, B. J.

    1981-01-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  19. Thrombopoietic agents.

    PubMed

    Stasi, Roberto; Bosworth, Jenny; Rhodes, Elizabeth; Shannon, Muriel S; Willis, Fenella; Gordon-Smith, Edward C

    2010-01-01

    Thrombopoietin (TPO) is the key cytokine involved in thrombopoiesis, and is the endogenous ligand for the thrombopoietin receptor that is expressed on the surface of platelets, megakaryocytes, and megakaryocytic precursors. First-generation thrombopoietic agents were recombinant forms of human TPO, and their development was discontinued after prolonged thrombocytopenia due to neutralizing auto-antibodies cross-reacting with endogenous TPO was observed. Second-generation thrombopoiesis-stimulating molecules are now available, which have unique pharmacological properties and no sequence homology to endogenous TPO. Two of these new agents, romiplostim and eltrombopag, have already completed phase III trials in primary immune thrombocytopenia and have been granted marketing authorization for use in this disease. Phase II and III trials with these novel drugs are ongoing in other conditions characterized by thrombocytopenia, such as chemotherapy, chronic liver disease, and the myelodysplastic syndromes. Most of the other second-generation thrombopoietic growth factors are in early phase clinical development. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neil, Kyle; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  1. Dry and stable excavations in limestones of the greater Kansas City area of Missouri and Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, E.D.; Parizek, E.J.; Stauffer, T.P.

    In the Greater Kansas City area of Missouri and Kansas the bedrock consists largely of a thick sequence of limestone and shale formations of Pennsylvanian age. Three formations are of interest in this report. The Swope Formation contains the Bethany Falls Limestone, the Wyandotte Formation contains the Argentine Limestone and the Farley Limestone, and the Oread Formation contains the Plattsmouth Limestone. Underground workings have been developed by industry in these three formations for a variety of uses, including factories, offices and warehouses. The Bethany Falls Limestone is the unit most widely developed for secondary underground use. The industries which design,more » excavate, and occupy this man-made underground space consider it to be essentially dry and stable. Identification and description of the geologic, topographic, hydrologic, and possible other unique features which allow this operational decision is the primary goal of this investigation.« less

  2. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    PubMed

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-09-25

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively.

  3. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    PubMed

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  4. Comprehensive Survey of Genetic Diversity in Chloroplast Genomes and 45S nrDNAs within Panax ginseng Species

    PubMed Central

    Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Lee, Hyun Oh; Joh, Ho Jun; Kim, Nam-Hoon; Park, Hyun-Seung; Yang, Tae-Jin

    2015-01-01

    We report complete sequences of chloroplast (cp) genome and 45S nuclear ribosomal DNA (45S nrDNA) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar. The cp genomes sizes ranged from 156,241 to 156,425 bp and the major size variation was derived from differences in copy number of tandem repeats in the ycf1 gene and in the intergenic regions of rps16-trnUUG and rpl32-trnUAG. The complete 45S nrDNA unit sequences were 11,091 bp, representing a consensus single transcriptional unit with an intergenic spacer region. Comparative analysis of these sequences as well as those previously reported for three Chinese accessions identified very rare but unique polymorphism in the cp genome within P. ginseng cultivars. There were 12 intra-species polymorphisms (six SNPs and six InDels) among 14 cultivars. We also identified five SNPs from 45S nrDNA of 11 Korean ginseng cultivars. From the 17 unique informative polymorphic sites, we developed six reliable markers for analysis of ginseng diversity and cultivar authentication. PMID:26061692

  5. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    PubMed

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  6. Comparison of CNVs in Buffalo with other species

    USDA-ARS?s Scientific Manuscript database

    Using a read-depth (RD) and a hybrid read-pair, split-read (RAPTR-SV) CNV detection method, we identified over 1425 unique CNVs in 14 Water Buffalo individual compared to the cattle genome sequence. Total variable sequence of the CNV regions (CNVR) from the RD method approached 59 megabases (~ 2% of...

  7. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems

    NASA Astrophysics Data System (ADS)

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  8. A matrix-based approach to solving the inverse Frobenius-Perron problem using sequences of density functions of stochastically perturbed dynamical systems.

    PubMed

    Nie, Xiaokai; Coca, Daniel

    2018-01-01

    The paper introduces a matrix-based approach to estimate the unique one-dimensional discrete-time dynamical system that generated a given sequence of probability density functions whilst subjected to an additive stochastic perturbation with known density.

  9. A Unique (3+2) Annulation Reaction between Meldrum's Acid and Nitrones: Mechanistic Insight by ESI-IMS-MS and DFT Studies.

    PubMed

    Lespes, Nicolas; Pair, Etienne; Maganga, Clisy; Bretier, Marie; Tognetti, Vincent; Joubert, Laurent; Levacher, Vincent; Hubert-Roux, Marie; Afonso, Carlos; Loutelier-Bourhis, Corinne; Brière, Jean-François

    2018-03-15

    The fragile intermediates of the domino process leading to an isoxazolidin-5-one, triggered by unique reactivity between Meldrum's acid and an N-benzyl nitrone in the presence of a Brønsted base, were determined thanks to the softness and accuracy of electrospray ionization mass spectrometry coupled to ion mobility spectrometry (ESI-IMS-MS). The combined DFT study shed light on the overall organocatalytic sequence that starts with a stepwise (3+2) annulation reaction that is followed by a decarboxylative protonation sequence encompassing a stereoselective pathway issue. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. On continuous user authentication via typing behavior.

    PubMed

    Roth, Joseph; Liu, Xiaoming; Metaxas, Dimitris

    2014-10-01

    We hypothesize that an individual computer user has a unique and consistent habitual pattern of hand movements, independent of the text, while typing on a keyboard. As a result, this paper proposes a novel biometric modality named typing behavior (TB) for continuous user authentication. Given a webcam pointing toward a keyboard, we develop real-time computer vision algorithms to automatically extract hand movement patterns from the video stream. Unlike the typical continuous biometrics, such as keystroke dynamics (KD), TB provides a reliable authentication with a short delay, while avoiding explicit key-logging. We collect a video database where 63 unique subjects type static text and free text for multiple sessions. For one typing video, the hands are segmented in each frame and a unique descriptor is extracted based on the shape and position of hands, as well as their temporal dynamics in the video sequence. We propose a novel approach, named bag of multi-dimensional phrases, to match the cross-feature and cross-temporal pattern between a gallery sequence and probe sequence. The experimental results demonstrate a superior performance of TB when compared with KD, which, together with our ultrareal-time demo system, warrant further investigation of this novel vision application and biometric modality.

  11. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.

  12. Myelin protein zero gene sequencing diagnoses Charcot-Marie-Tooth Type 1B disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Y.; Zhang, H.; Madrid, R.

    1994-09-01

    Charcot-Marie-Tooth disease (CMT), the most common genetic neuropathy, affects about 1 in 2600 people in Norway and is found worldwide. CMT Type 1 (CMT1) has slow nerve conduction with demyelinated Schwann cells. Autosomal dominant CMT Type 1B (CMT1B) results from mutations in the myelin protein zero gene which directs the synthesis of more than half of all Schwann cell protein. This gene was mapped to the chromosome 1q22-1q23.1 borderline by fluorescence in situ hybridization. The first 7 of 7 reported CMT1B mutations are unique. Thus the most effective means to identify CMT1B mutations in at-risk family members and fetuses ismore » to sequence the entire coding sequence in dominant or sporadic CMT patients without the CMT1A duplication. Of the 19 primers used in 16 pars to uniquely amplify the entire MPZ coding sequence, 6 primer pairs were used to amplify and sequence the 6 exons. The DyeDeoxy Terminator cycle sequencing method used with four different color fluorescent lables was superior to manual sequencing because it sequences more bases unambiguously from extracted genomic DNA samples within 24 hours. This protocol was used to test 28 CMT and Dejerine-Sottas patients without CMT1A gene duplication. Sequencing MPZ gene-specific amplified fragments identified 9 polymorphic sites within the 6 exons that encode the 248 amino acid MPZ protein. The large number of major CMT1B mutations identified by single strand sequencing are being verified by reverse strand sequencing and when possible, by restriction enzyme analysis. This protocol can be used to distringuish CMT1B patients from othre CMT phenotypes and to determine the CMT1B status of relatives both presymptomatically and prenatally.« less

  13. A public HTLV-1 molecular epidemiology database for sequence management and data mining.

    PubMed

    Araujo, Thessika Hialla Almeida; Souza-Brito, Leandro Inacio; Libin, Pieter; Deforche, Koen; Edwards, Dustin; de Albuquerque-Junior, Antonio Eduardo; Vandamme, Anne-Mieke; Galvao-Castro, Bernardo; Alcantara, Luiz Carlos Junior

    2012-01-01

    It is estimated that 15 to 20 million people are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). At present, there are more than 2,000 unique HTLV-1 isolate sequences published. A central database to aggregate sequence information from a range of epidemiological aspects including HTLV-1 infections, pathogenesis, origins, and evolutionary dynamics would be useful to scientists and physicians worldwide. Described here, we have developed a database that collects and annotates sequence data and can be accessed through a user-friendly search interface. The HTLV-1 Molecular Epidemiology Database website is available at http://htlv1db.bahia.fiocruz.br/. All data was obtained from publications available at GenBank or through contact with the authors. The database was developed using Apache Webserver 2.1.6 and SGBD MySQL. The webpage interfaces were developed in HTML and sever-side scripting written in PHP. The HTLV-1 Molecular Epidemiology Database is hosted on the Gonçalo Moniz/FIOCRUZ Research Center server. There are currently 2,457 registered sequences with 2,024 (82.37%) of those sequences representing unique isolates. Of these sequences, 803 (39.67%) contain information about clinical status (TSP/HAM, 17.19%; ATL, 7.41%; asymptomatic, 12.89%; other diseases, 2.17%; and no information, 60.32%). Further, 7.26% of sequences contain information on patient gender while 5.23% of sequences provide the age of the patient. The HTLV-1 Molecular Epidemiology Database retrieves and stores annotated HTLV-1 proviral sequences from clinical, epidemiological, and geographical studies. The collected sequences and related information are now accessible on a publically available and user-friendly website. This open-access database will support clinical research and vaccine development related to viral genotype.

  14. Unique autosomal recessive variant of palmoplantar keratoderma associated with hearing loss not caused by known mutations*

    PubMed Central

    Hegazi, Moustafa Abdelaal; Manou, Sommen; Sakr, Hazem; Camp, Guy Van

    2017-01-01

    Inherited Palmoplantar Keratodermas are rare disorders of genodermatosis that are conventionally regarded as autosomal dominant in inheritance with extensive clinical and genetic heterogeneity. This is the first report of a unique autosomal recessive Inherited Palmoplantar keratoderma - sensorineural hearing loss syndrome which has not been reported before in 3 siblings of a large consanguineous family. The patients presented unique clinical features that were different from other known Inherited Palmoplantar Keratodermas - hearing loss syndromes. Mutations in GJB2 or GJB6 and the mitochondrial A7445G mutation, known to be the major causes of diverse Inherited Palmoplantar Keratodermas -hearing loss syndromes were not detected by Sanger sequencing. Moreover, the pathogenic mutation could not be identified using whole exome sequencing. Other known Inherited Palmoplantar keratoderma syndromes were excluded based on both clinical criteria and genetic analysis. PMID:29267478

  15. Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers.

    PubMed

    Egorov, Evgeny S; Merzlyak, Ekaterina M; Shelenkov, Andrew A; Britanova, Olga V; Sharonov, George V; Staroverov, Dmitriy B; Bolotin, Dmitriy A; Davydov, Alexey N; Barsova, Ekaterina; Lebedev, Yuriy B; Shugay, Mikhail; Chudakov, Dmitriy M

    2015-06-15

    Emerging high-throughput sequencing methods for the analyses of complex structure of TCR and BCR repertoires give a powerful impulse to adaptive immunity studies. However, there are still essential technical obstacles for performing a truly quantitative analysis. Specifically, it remains challenging to obtain comprehensive information on the clonal composition of small lymphocyte populations, such as Ag-specific, functional, or tissue-resident cell subsets isolated by sorting, microdissection, or fine needle aspirates. In this study, we report a robust approach based on unique molecular identifiers that allows profiling Ag receptors for several hundred to thousand lymphocytes while preserving qualitative and quantitative information on clonal composition of the sample. We also describe several general features regarding the data analysis with unique molecular identifiers that are critical for accurate counting of starting molecules in high-throughput sequencing applications. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome.

    PubMed

    Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan

    2018-03-01

    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.

  17. DNABIT Compress – Genome compression algorithm

    PubMed Central

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  18. A Unique Triad: Ulcerative Colitis, Primary Sclerosing Cholangitis, and Autoimmune Hemolytic Anemia.

    PubMed

    Naqvi, Syeda; Hasan, Syed Askari; Khalid, Sameen; Abbass, Aamer; Albors-Mora, Melanie

    2018-01-15

    Ulcerative colitis is an autoimmune disorder leading to chronic intestinal inflammation. It can present with a wide range of associated extra-intestinal manifestations. We present a case of an 18-year-old man diagnosed with ulcerative colitis, autoimmune hemolytic anemia and primary sclerosing cholangitis during the same hospitalization. The unique triad of these diseases gives important clues to the immunological factors involved in the pathogenesis of these diseases.

  19. Identification of Patients with RAG Mutations Previously Diagnosed with Common Variable Immunodeficiency Disorders

    PubMed Central

    Buchbinder, David; Baker, Rebecca; Lee, Yu Nee; Ravell, Juan; Zhang, Yu; McElwee, Joshua; Nugent, Diane; Coonrod, Emily M.; Durtschi, Jacob D.; Augustine, Nancy H.; Voelkerding, Karl V.; Csomos, Krisztian; Rosen, Lindsey; Browne, Sarah; Walter, Jolan E.; Notarangelo, Luigi D.; Hill, Harry R.; Kumánovics, Attila

    2015-01-01

    Purpose Combined immunodeficiency (CID) presents a unique challenge to clinicians. Two patients presented with the prior clinical diagnosis of common variable immunodeficiency (CVID) disorder marked by an early age of presentation, opportunistic infections, and persistent lymphopenia. Due to the presence of atypical clinical features, next generation sequencing was applied documenting RAG deficiency in both patients. Methods Two different genetic analysis techniques were applied in these patients including whole exome sequencing in one patient and the use of a gene panel designed to target genes known to cause primary immunodeficiency disorders (PIDD) in a second patient. Sanger dideoxy sequencing was used to confirm RAG1 mutations in both patients. Results Two young adults with a history of recurrent bacterial sinopulmonary infections, viral infections, and autoimmune disease as well as progressive hypogammaglobulinemia, abnormal antibody responses, lymphopenia and a prior diagnosis of CVID disorder were evaluated. Compound heterozygous mutations in RAG1 (1) c256_257delAA, p86VfsX32 and (2) c1835A>G, pH612R were documented in one patient. Compound heterozygous mutations in RAG1 (1) c.1566G>T, p.W522C and (2) c.2689C>T, p. R897X) were documented in a second patient post-mortem following a fatal opportunistic infection. Conclusion Astute clinical judgment in the evaluation of patients with PIDD is necessary. Atypical clinical findings such as early onset, granulomatous disease, or opportunistic infections should support the consideration of atypical forms of late onset CID secondary to RAG deficiency. Next generation sequencing approaches provide powerful tools in the investigation of these patients and may expedite definitive treatments. PMID:25516070

  20. Salt-bridging effects on short amphiphilic helical structure and introducing sequence-based short beta-turn motifs.

    PubMed

    Guarracino, Danielle A; Gentile, Kayla; Grossman, Alec; Li, Evan; Refai, Nader; Mohnot, Joy; King, Daniel

    2018-02-01

    Determining the minimal sequence necessary to induce protein folding is beneficial in understanding the role of protein-protein interactions in biological systems, as their three-dimensional structures often dictate their activity. Proteins are generally comprised of discrete secondary structures, from α-helices to β-turns and larger β-sheets, each of which is influenced by its primary structure. Manipulating the sequence of short, moderately helical peptides can help elucidate the influences on folding. We created two new scaffolds based on a modestly helical eight-residue peptide, PT3, we previously published. Using circular dichroism (CD) spectroscopy and changing the possible salt-bridging residues to new combinations of Lys, Arg, Glu, and Asp, we found that our most helical improvements came from the Arg-Glu combination, whereas the Lys-Asp was not significantly different from the Lys-Glu of the parent scaffold, PT3. The marked 3 10 -helical contributions in PT3 were lessened in the Arg-Glu-containing peptide with the beginning of cooperative unfolding seen through a thermal denaturation. However, a unique and unexpected signature was seen for the denaturation of the Lys-Asp peptide which could help elucidate the stages of folding between the 3 10 and α-helix. In addition, we developed a short six-residue peptide with β-turn/sheet CD signature, again to help study minimal sequences needed for folding. Overall, the results indicate that improvements made to short peptide scaffolds by fine-tuning the salt-bridging residues can enhance scaffold structure. Likewise, with the results from the new, short β-turn motif, these can help impact future peptidomimetic designs in creating biologically useful, short, structured β-sheet-forming peptides.

  1. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata

    PubMed Central

    Cherukupalli, Neeraja; Divate, Mayur; Mittapelli, Suresh R.; Khareedu, Venkateswara R.; Vudem, Dashavantha R.

    2016-01-01

    Andrographis paniculata is an important medicinal plant containing various bioactive terpenoids and flavonoids. Despite its importance in herbal medicine, no ready-to-use transcript sequence information of this plant is made available in the public data base, this study mainly deals with the sequencing of RNA from A. paniculata leaf using Illumina HiSeq™ 2000 platform followed by the de novo transcriptome assembly. A total of 189.22 million high quality paired reads were generated and 1,70,724 transcripts were predicted in the primary assembly. Secondary assembly generated a transcriptome size of ~88 Mb with 83,800 clustered transcripts. Based on the similarity searches against plant non-redundant protein database, gene ontology, and eukaryotic orthologous groups, 49,363 transcripts were annotated constituting upto 58.91% of the identified unigenes. Annotation of transcripts—using kyoto encyclopedia of genes and genomes database—revealed 5606 transcripts plausibly involved in 140 pathways including biosynthesis of terpenoids and other secondary metabolites. Transcription factor analysis showed 6767 unique transcripts belonging to 97 different transcription factor families. A total number of 124 CYP450 transcripts belonging to seven divergent clans have been identified. Transcriptome revealed 146 different transcripts coding for enzymes involved in the biosynthesis of terpenoids of which 35 contained terpene synthase motifs. This study also revealed 32,341 simple sequence repeats (SSRs) in 23,168 transcripts. Assembled sequences of transcriptome of A. paniculata generated in this study are made available, for the first time, in the TSA database, which provides useful information for functional and comparative genomic analysis besides identification of key enzymes involved in the various pathways of secondary metabolism. PMID:27582746

  2. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences.

    PubMed

    Howe, Daniel K; Gaji, Rajshekhar Y; Mroz-Barrett, Meaghan; Gubbels, Marc-Jan; Striepen, Boris; Stamper, Shelby

    2005-02-01

    Sarcocystis neurona is a member of the Apicomplexa that causes myelitis and encephalitis in horses but normally cycles between the opossum and small mammals. Analysis of an S. neurona expressed sequence tag (EST) database revealed four paralogous proteins that exhibit clear homology to the family of surface antigens (SAGs) and SAG-related sequences of Toxoplasma gondii. The primary peptide sequences of the S. neurona proteins are consistent with the two-domain structure that has been described for the T. gondii SAGs, and each was predicted to have an amino-terminal signal peptide and a carboxyl-terminal glycolipid anchor addition site, suggesting surface localization. All four proteins were confirmed to be membrane associated and displayed on the surface of S. neurona merozoites. Due to their surface localization and homology to T. gondii surface antigens, these S. neurona proteins were designated SnSAG1, SnSAG2, SnSAG3, and SnSAG4. Consistent with their homology, the SnSAGs elicited a robust immune response in infected and immunized animals, and their conserved structure further suggests that the SnSAGs similarly serve as adhesins for attachment to host cells. Whether the S. neurona SAG family is as extensive as the T. gondii SAG family remains unresolved, but it is probable that additional SnSAGs will be revealed as more S. neurona ESTs are generated. The existence of an SnSAG family in S. neurona indicates that expression of multiple related surface antigens is not unique to the ubiquitous organism T. gondii. Instead, the SAG gene family is a common trait that presumably has an essential, conserved function(s).

  3. Group B Streptococcus Vaginal Carriage in Pregnant Women as Deciphered by Clustered Regularly Interspaced Short Palindromic Repeat Analysis.

    PubMed

    Beauruelle, Clemence; Pastuszka, Adeline; Mereghetti, Laurent; Lanotte, Philippe

    2018-06-01

    We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach. Copyright © 2018 American Society for Microbiology.

  4. Benchmark Evaluation of True Single Molecular Sequencing to Determine Cystic Fibrosis Airway Microbiome Diversity.

    PubMed

    Hahn, Andrea; Bendall, Matthew L; Gibson, Keylie M; Chaney, Hollis; Sami, Iman; Perez, Geovanny F; Koumbourlis, Anastassios C; McCaffrey, Timothy A; Freishtat, Robert J; Crandall, Keith A

    2018-01-01

    Cystic fibrosis (CF) is an autosomal recessive disease associated with recurrent lung infections that can lead to morbidity and mortality. The impact of antibiotics for treatment of acute pulmonary exacerbations on the CF airway microbiome remains unclear with prior studies giving conflicting results and being limited by their use of 16S ribosomal RNA sequencing. Our primary objective was to validate the use of true single molecular sequencing (tSMS) and PathoScope in the analysis of the CF airway microbiome. Three control samples were created with differing amounts of Burkholderia cepacia , Pseudomonas aeruginosa , and Prevotella melaninogenica , three common bacteria found in cystic fibrosis lungs. Paired sputa were also obtained from three study participants with CF before and >6 days after initiation of antibiotics. Antibiotic resistant B. cepacia and P. aeruginosa were identified in concurrently obtained respiratory cultures. Direct sequencing was performed using tSMS, and filtered reads were aligned to reference genomes from NCBI using PathoScope and Kraken and unique clade-specific marker genes using MetaPhlAn. A total of 180-518 K of 6-12 million filtered reads were aligned for each sample. Detection of known pathogens in control samples was most successful using PathoScope. In the CF sputa, alpha diversity measures varied based on the alignment method used, but similar trends were found between pre- and post-antibiotic samples. PathoScope outperformed Kraken and MetaPhlAn in our validation study of artificial bacterial community controls and also has advantages over Kraken and MetaPhlAn of being able to determine bacterial strains and the presence of fungal organisms. PathoScope can be confidently used when evaluating metagenomic data to determine CF airway microbiome diversity.

  5. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets.

    PubMed

    Droege, Marcus; Hill, Brendon

    2008-08-31

    The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.

  6. Unique mutation portraits and frequent COL2A1 gene alteration in chondrosarcoma

    PubMed Central

    Totoki, Yasushi; Yoshida, Akihiko; Hosoda, Fumie; Nakamura, Hiromi; Hama, Natsuko; Ogura, Koichi; Yoshida, Aki; Fujiwara, Tomohiro; Arai, Yasuhito; Toguchida, Junya; Tsuda, Hitoshi; Miyano, Satoru; Kawai, Akira

    2014-01-01

    Chondrosarcoma is the second most frequent malignant bone tumor. However, the etiological background of chondrosarcomagenesis remains largely unknown, along with details on molecular alterations and potential therapeutic targets. Massively parallel paired-end sequencing of whole genomes of 10 primary chondrosarcomas revealed that the process of accumulation of somatic mutations is homogeneous irrespective of the pathological subtype or the presence of IDH1 mutations, is unique among a range of cancer types, and shares significant commonalities with that of prostate cancer. Clusters of structural alterations localized within a single chromosome were observed in four cases. Combined with targeted resequencing of additional cartilaginous tumor cohorts, we identified somatic alterations of the COL2A1 gene, which encodes an essential extracellular matrix protein in chondroskeletal development, in 19.3% of chondrosarcoma and 31.7% of enchondroma cases. Epigenetic regulators (IDH1 and YEATS2) and an activin/BMP signal component (ACVR2A) were recurrently altered. Furthermore, a novel FN1-ACVR2A fusion transcript was observed in both chondrosarcoma and osteochondromatosis cases. With the characteristic accumulative process of somatic changes as a background, molecular defects in chondrogenesis and aberrant epigenetic control are primarily causative of both benign and malignant cartilaginous tumors. PMID:25024164

  7. Unique digital imagery interface between a silicon graphics computer and the kinetic kill vehicle hardware-in-the-loop simulator (KHILS) wideband infrared scene projector (WISP)

    NASA Astrophysics Data System (ADS)

    Erickson, Ricky A.; Moren, Stephen E.; Skalka, Marion S.

    1998-07-01

    Providing a flexible and reliable source of IR target imagery is absolutely essential for operation of an IR Scene Projector in a hardware-in-the-loop simulation environment. The Kinetic Kill Vehicle Hardware-in-the-Loop Simulator (KHILS) at Eglin AFB provides the capability, and requisite interfaces, to supply target IR imagery to its Wideband IR Scene Projector (WISP) from three separate sources at frame rates ranging from 30 - 120 Hz. Video can be input from a VCR source at the conventional 30 Hz frame rate. Pre-canned digital imagery and test patterns can be downloaded into stored memory from the host processor and played back as individual still frames or movie sequences up to a 120 Hz frame rate. Dynamic real-time imagery to the KHILS WISP projector system, at a 120 Hz frame rate, can be provided from a Silicon Graphics Onyx computer system normally used for generation of digital IR imagery through a custom CSA-built interface which is available for either the SGI/DVP or SGI/DD02 interface port. The primary focus of this paper is to describe our technical approach and experience in the development of this unique SGI computer and WISP projector interface.

  8. Isolation of 16,000-dalton parathyroid hormone-like proteins from two animal tumors causing humoral hypercalcemia of malignancy.

    PubMed

    Weir, E C; Burtis, W J; Morris, C A; Brady, T G; Insogna, K L

    1988-12-01

    A 16K PTH-like protein with a unique primary structure has recently been isolated from several human tumors associated with the syndrome of humoral hypercalcemia of malignancy. Certain spontaneous and transplantable animal tumors also cause this syndrome. The responsible mediator in these animal tumors is not known. We report the isolation of 16K proteins from the rat H500 Leydig cell tumor and the canine apocrine cell adenocarcinoma of the anal sac. Both proteins are potent activators of PTH receptor-coupled adenylate cyclase in bone cells. Both proteins demonstrate similarities in amino acid composition to one another and to the human PTH-like protein. Limited amino-terminal sequence information from the canine protein demonstrates homology with the human PTH-like protein. Antibodies raised to a synthetic human PTH-(1-36)-like peptide cross-react with both the rat and canine proteins in an immunoradiometric assay. These data demonstrate that by physical and immunological criteria PTH-like peptides are present in these animal tumors that appear to be closely related to the human PTH-like peptide. These data further suggest that this protein is not unique to humans, but has an evolutionary origin which extends back at least 65-80 million yr.

  9. Aggregates, Crystals, Gels, and Amyloids: Intracellular and Extracellular Phenotypes at the Crossroads of Immunoglobulin Physicochemical Property and Cell Physiology

    PubMed Central

    2013-01-01

    Recombinant immunoglobulins comprise an important class of human therapeutics. Although specific immunoglobulins can be purposefully raised against desired antigen targets by various methods, identifying an immunoglobulin clone that simultaneously possesses potent therapeutic activities and desirable manufacturing-related attributes often turns out to be challenging. The variable domains of individual immunoglobulins primarily define the unique antigen specificities and binding affinities inherent to each clone. The primary sequence of the variable domains also specifies the unique physicochemical properties that modulate various aspects of individual immunoglobulin life cycle, starting from the biosynthetic steps in the endoplasmic reticulum, secretory pathway trafficking, secretion, and the fate in the extracellular space and in the endosome-lysosome system. Because of the diverse repertoire of immunoglobulin physicochemical properties, some immunoglobulin clones' intrinsic properties may manifest as intriguing cellular phenotypes, unusual solution behaviors, and serious pathologic outcomes that are of scientific and clinical importance. To gain renewed insights into identifying manufacturable therapeutic antibodies, this paper catalogs important intracellular and extracellular phenotypes induced by various subsets of immunoglobulin clones occupying different niches of diverse physicochemical repertoire space. Both intrinsic and extrinsic factors that make certain immunoglobulin clones desirable or undesirable for large-scale manufacturing and therapeutic use are summarized. PMID:23533417

  10. Streptomyces associated with a marine sponge Haliclona sp.; biosynthetic genes for secondary metabolites and products.

    PubMed

    Khan, Shams Tabrez; Komaki, Hisayuki; Motohashi, Keiichiro; Kozone, Ikuko; Mukai, Akira; Takagi, Motoki; Shin-ya, Kazuo

    2011-02-01

    Terrestrial actinobacteria have served as a primary source of bioactive compounds; however, a rapid decrease in the discovery of new compounds strongly necessitates new investigational approaches. One approach is the screening of actinobacteria from marine habitats, especially the members of the genus Streptomyces. Presence of this genus in a marine sponge, Haliclona sp., was investigated using culture-dependent and -independent techniques. 16S rRNA gene clone library analysis showed the presence of diverse Streptomyces in the sponge sample. In addition to the dominant genus Streptomyces, members of six different genera were isolated using four different media. Five phylogenetically new strains, each representing a novel species in the genus Streptomyces were also isolated. Polyphasic study suggesting the classification of two of these strains as novel species is presented. Searching the strains for the production of novel compounds and the presence of biosynthetic genes for secondary metabolites revealed seven novel compounds and biosynthetic genes with unique sequences. In these compounds, JBIR-43 exhibited cytotoxic activity against cancer cell lines. JBIR-34 and -35 were particularly interesting because of their unique chemical skeleton. To our knowledge, this is the first comprehensive study detailing the isolation of actinobacteria from a marine sponge and novel secondary metabolites from these strains.

  11. Heterodimers of Retinoic Acid Receptors and Thyroid Hormone Receptors Display Unique Combinatorial Regulatory Properties

    PubMed Central

    Lee, Sangho; Privalsky, Martin L.

    2009-01-01

    Nuclear receptors are ligand-regulated transcription factors that regulate key aspects of metazoan development, differentiation, and homeostasis. Nuclear receptors recognize target genes by binding to specific DNA recognition sequences, denoted hormone response elements (HREs). Many nuclear receptors can recognize HREs as either homodimers or heterodimers. Retinoid X receptors (RXRs), in particular, serve as important heterodimer partners for many other nuclear receptors, including thyroid hormone receptors (TRs), and RXR/TR heterodimers have been proposed to be the primary mediators of target gene regulation by T3 hormone. Here, we report that the retinoic acid receptors (RARs), a distinct class of nuclear receptors, are also efficient heterodimer partners for TRs. These RAR/TR heterodimers form with similar affinities as RXR/TR heterodimers on an assortment of consensus and natural HREs, and preferentially assemble with the RAR partner 5′ of the TR moiety. The corepressor and coactivator recruitment properties of these RAR/TR heterodimers and their transcriptional activities in vivo are distinct from those observed with the corresponding RXR heterodimers. Our studies indicate that RXRs are not unique in their ability to partner with TRs, and that RARs can also serve as robust heterodimer partners and combinatorial regulators of T3-modulated gene expression. PMID:15650024

  12. [Gastrointestinal stromal tumor with primary hepatic unique location--clinical case].

    PubMed

    Alecu, L; Tulin, A; Ursut, Beatrice; Ursut, B; Oproiu, Al; Obrocea, F; Ionescu, M

    2011-01-01

    The gastrointestinal stromal tumors are mesenchymal tumors whose primary extradigestive location is very rare (less than 10% primary liver localization). We present a clinical case of primary hepatic location of GIST in a 28 year-old patient. The discovery of this tumor is a chance, the patient presenting for non-specific dyspeptic syndrome and epigastralgia. During the presentation an abdominal ultrasound is performed which identifies an whell-delineated hepatic mass - 5/4 cm. Clinical and paraclinical investigations (CT, EDS, EDI, examination of the intestinal lumen with the videocapsula), confirm the diagnosis of unique hepatic mass of segments III-IV. The diagnosis is confirmed intraoperatory and we perform an atypical liver resection of segments III-IV (with 1 cm safety-margin). The histopatologic exam: GIST.

  13. The Comprehensive Antibiotic Resistance Database

    PubMed Central

    McArthur, Andrew G.; Waglechner, Nicholas; Nizam, Fazmin; Yan, Austin; Azad, Marisa A.; Baylay, Alison J.; Bhullar, Kirandeep; Canova, Marc J.; De Pascale, Gianfranco; Ejim, Linda; Kalan, Lindsay; King, Andrew M.; Koteva, Kalinka; Morar, Mariya; Mulvey, Michael R.; O'Brien, Jonathan S.; Pawlowski, Andrew C.; Piddock, Laura J. V.; Spanogiannopoulos, Peter; Sutherland, Arlene D.; Tang, Irene; Taylor, Patricia L.; Thaker, Maulik; Wang, Wenliang; Yan, Marie; Yu, Tennison

    2013-01-01

    The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment. PMID:23650175

  14. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome.

    PubMed

    Benoit, Joshua B; Adelman, Zach N; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C; Szuter, Elise M; Hagan, Richard W; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M; Nelson, David R; Rosendale, Andrew J; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R; Ioannidis, Panagiotis; Waterhouse, Robert M; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J Spencer; Gondhalekar, Ameya D; Scharf, Michael E; Peterson, Brittany F; Raje, Kapil R; Hottel, Benjamin A; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S T; Duncan, Elizabeth J; Murali, Shwetha C; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C; Muzny, Donna M; Wheeler, David; Panfilio, Kristen A; Vargas Jentzsch, Iris M; Vargo, Edward L; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T; Anderson, Michelle A E; Jones, Jeffery W; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D; Attardo, Geoffrey M; Robertson, Hugh M; Zdobnov, Evgeny M; Ribeiro, Jose M C; Gibbs, Richard A; Werren, John H; Palli, Subba R; Schal, Coby; Richards, Stephen

    2016-02-02

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.

  15. Unique features of a global human ectoparasite identified through sequencing of the bed bug genome

    PubMed Central

    Benoit, Joshua B.; Adelman, Zach N.; Reinhardt, Klaus; Dolan, Amanda; Poelchau, Monica; Jennings, Emily C.; Szuter, Elise M.; Hagan, Richard W.; Gujar, Hemant; Shukla, Jayendra Nath; Zhu, Fang; Mohan, M.; Nelson, David R.; Rosendale, Andrew J.; Derst, Christian; Resnik, Valentina; Wernig, Sebastian; Menegazzi, Pamela; Wegener, Christian; Peschel, Nicolai; Hendershot, Jacob M.; Blenau, Wolfgang; Predel, Reinhard; Johnston, Paul R.; Ioannidis, Panagiotis; Waterhouse, Robert M.; Nauen, Ralf; Schorn, Corinna; Ott, Mark-Christoph; Maiwald, Frank; Johnston, J. Spencer; Gondhalekar, Ameya D.; Scharf, Michael E.; Peterson, Brittany F.; Raje, Kapil R.; Hottel, Benjamin A.; Armisén, David; Crumière, Antonin Jean Johan; Refki, Peter Nagui; Santos, Maria Emilia; Sghaier, Essia; Viala, Sèverine; Khila, Abderrahman; Ahn, Seung-Joon; Childers, Christopher; Lee, Chien-Yueh; Lin, Han; Hughes, Daniel S. T.; Duncan, Elizabeth J.; Murali, Shwetha C.; Qu, Jiaxin; Dugan, Shannon; Lee, Sandra L.; Chao, Hsu; Dinh, Huyen; Han, Yi; Doddapaneni, Harshavardhan; Worley, Kim C.; Muzny, Donna M.; Wheeler, David; Panfilio, Kristen A.; Vargas Jentzsch, Iris M.; Vargo, Edward L.; Booth, Warren; Friedrich, Markus; Weirauch, Matthew T.; Anderson, Michelle A. E.; Jones, Jeffery W.; Mittapalli, Omprakash; Zhao, Chaoyang; Zhou, Jing-Jiang; Evans, Jay D.; Attardo, Geoffrey M.; Robertson, Hugh M.; Zdobnov, Evgeny M.; Ribeiro, Jose M. C.; Gibbs, Richard A.; Werren, John H.; Palli, Subba R.; Schal, Coby; Richards, Stephen

    2016-01-01

    The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host–symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human–bed bug and symbiont–bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite. PMID:26836814

  16. Pretreatment Clinical and Risk Correlates of Substance Use Disorder Patients With Primary Depression*

    PubMed Central

    Cohn, Amy M.; Epstein, Elizabeth E.; McCrady†, Barbara S.; Jensen, Noelle; Hunter-Reel, Dorian; Green, Kelly E.; Drapkin, Michelle L.

    2011-01-01

    Objective: The current study examined the distinction between primary and secondary depression among substance use patients to test whether the primary depressed subgroup presents to treatment with a unique profile of clinical and vulnerability characteristics. Method: The heterogeneous sample comprised 286 individuals (76% male) with alcohol and/or drug abuse or dependence (according to criteria from the Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised) across four treatment outcome studies conducted at the alcohol research center at the Rutgers University Center of Alcohol Studies. Participants were classified as having comorbid lifetime history of primary depression (21%), secondary depression (24%), or no depression (55%). Results: Participants in the primary depression and secondary depression groups were comparable in severity of substance use, and both of these groups had more severe substance use problems than the no-depression group. The primary depression group presented with more severe depression histories, higher levels of current depressive symptoms, and higher rates of additional Axis I comorbidity at treatment entry. In terms of vulnerability indices, the primary depression subgroup had a uniquely high family history risk for major depressive disorder; underlying personality vulnerability to depression was also evident in the primary depression group, with higher neuroticism and lower ex-traversion relative to secondary depression patients. Conclusions: The findings suggest that careful assessment of lifetime depression symptoms vis-à-vis substance use history and severity yields important information identifying the primary depression subtype of substance use patients as a group with a unique and more severely affected clinical presentation of depression and other Axis I psychopathology relative to secondary depression patients. Effectiveness of substance use interventions may be augmented with depression treatment for primary depression patients, given their more severe clinical presentation and vulnerability characteristics. PMID:21138705

  17. A domain-centric solution to functional genomics via dcGO Predictor

    PubMed Central

    2013-01-01

    Background Computational/manual annotations of protein functions are one of the first routes to making sense of a newly sequenced genome. Protein domain predictions form an essential part of this annotation process. This is due to the natural modularity of proteins with domains as structural, evolutionary and functional units. Sometimes two, three, or more adjacent domains (called supra-domains) are the operational unit responsible for a function, e.g. via a binding site at the interface. These supra-domains have contributed to functional diversification in higher organisms. Traditionally functional ontologies have been applied to individual proteins, rather than families of related domains and supra-domains. We expect, however, to some extent functional signals can be carried by protein domains and supra-domains, and consequently used in function prediction and functional genomics. Results Here we present a domain-centric Gene Ontology (dcGO) perspective. We generalize a framework for automatically inferring ontological terms associated with domains and supra-domains from full-length sequence annotations. This general framework has been applied specifically to primary protein-level annotations from UniProtKB-GOA, generating GO term associations with SCOP domains and supra-domains. The resulting 'dcGO Predictor', can be used to provide functional annotation to protein sequences. The functional annotation of sequences in the Critical Assessment of Function Annotation (CAFA) has been used as a valuable opportunity to validate our method and to be assessed by the community. The functional annotation of all completely sequenced genomes has demonstrated the potential for domain-centric GO enrichment analysis to yield functional insights into newly sequenced or yet-to-be-annotated genomes. This generalized framework we have presented has also been applied to other domain classifications such as InterPro and Pfam, and other ontologies such as mammalian phenotype and disease ontology. The dcGO and its predictor are available at http://supfam.org/SUPERFAMILY/dcGO including an enrichment analysis tool. Conclusions As functional units, domains offer a unique perspective on function prediction regardless of whether proteins are multi-domain or single-domain. The 'dcGO Predictor' holds great promise for contributing to a domain-centric functional understanding of genomes in the next generation sequencing era. PMID:23514627

  18. A Molecular Framework for Understanding DCIS

    DTIC Science & Technology

    2016-10-01

    frozen patient biopsies, these have been annotated by our pathologist and prepared to be taken on for sequencing. The tissue includes DCIS, IDC...stroma adjacent to DCIS/IDC and normal tissue . We have initiated the RNA sequencing from these samples and also the DNA sequencing 15. SUBJECT TERMS DCIS...before they reach 55. Utilizing a unique bank of frozen mammary biopsies, containing samples with DCIS alone, and a combination of DCIS and IDC, we aim

  19. A new endonuclease recognizing the deoxynucleotide sequence CCNNGG from the cyanobacterium Synechocystis 6701.

    PubMed Central

    Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A

    1985-01-01

    A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively. Images PMID:2997722

  20. Ohmic resistance in a multi-anode MxCs

    EPA Pesticide Factsheets

    A-3txf_sequence summary.xksx: Abundance of contigs or unique sequences for each biofilm samples from anodes in the MEC reactorHodon Waterloo final_fasta_working.docx: Raw sequences with their identification numbersRNA S1_MEC.docx: Representative sequences with their ID number and taxonomyThis dataset is associated with the following publication:Santodomingo, J., H. Ryu, B. Dhar, and H. Lee. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell. JOURNAL OF POWER SOURCES. Elsevier Science Ltd, New York, NY, USA, 331: 315-321, (2016).

  1. Repeated sequence sets in mitochondrial DNA molecules of root knot nematodes (Meloidogyne): nucleotide sequences, genome location and potential for host-race identification.

    PubMed Central

    Okimoto, R; Chamberlin, H M; Macfarlane, J L; Wolstenholme, D R

    1991-01-01

    Within a 7 kb segment of the mtDNA molecule of the root knot nematode, Meloidogyne javanica, that lacks standard mitochondrial genes, are three sets of strictly tandemly arranged, direct repeat sequences: approximately 36 copies of a 102 ntp sequence that contains a TaqI site; 11 copies of a 63 ntp sequence, and 5 copies of an 8 ntp sequence. The 7 kb repeat-containing segment is bounded by putative tRNAasp and tRNAf-met genes and the arrangement of sequences within this segment is: the tRNAasp gene; a unique 1,528 ntp segment that contains two highly stable hairpin-forming sequences; the 102 ntp repeat set; the 8 ntp repeat set; a unique 1,068 ntp segment; the 63 ntp repeat set; and the tRNAf-met gene. The nucleotide sequences of the 102 ntp copies and the 63 ntp copies have been conserved among the species examined. Data from Southern hybridization experiments indicate that 102 ntp and 63 ntp repeats occur in the mtDNAs of three, two and two races of M.incognita, M.hapla and M.arenaria, respectively. Nucleotide sequences of the M.incognita Race-3 102 ntp repeat were found to be either identical or highly similar to those of the M.javanica 102 ntp repeat. Differences in migration distance and number of 102 ntp repeat-containing bands seen in Southern hybridization autoradiographs of restriction-digested mtDNAs of M.javanica and the different host races of M.incognita, M.hapla and M.arenaria are sufficient to distinguish the different host races of each species. Images PMID:2027769

  2. Mitochondrial Genome Sequence of the Legume Vicia faba

    PubMed Central

    Negruk, Valentine

    2013-01-01

    The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

  3. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells.

    PubMed

    Křížová, Lucie; Kuchař, Milan; Petroková, Hana; Osička, Radim; Hlavničková, Marie; Pelák, Ondřej; Černý, Jiří; Kalina, Tomáš; Malý, Petr

    2017-03-01

    Interleukin-23 (IL-23), a heterodimeric cytokine of covalently bound p19 and p40 proteins, has recently been closely associated with development of several chronic autoimmune diseases such as psoriasis, psoriatic arthritis or inflammatory bowel disease. Released by activated dendritic cells, IL-23 interacts with IL-23 receptor (IL-23R) on Th17 cells, thus promoting intracellular signaling, a pivotal step in Th17-driven pro-inflammatory axis. Here, we aimed to block the binding of IL-23 cytokine to its cell-surface receptor by novel inhibitory protein binders targeted to the p19 subunit of human IL-23. To this goal, we used a combinatorial library derived from a scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived p19-targeted variants, called ILP binders. From 214 clones analyzed by ELISA, Western blot and DNA sequencing, 53 provided 35 different sequence variants that were further characterized. Using in silico docking in combination with cell-surface competition binding assay, we identified a group of inhibitory candidates that substantially diminished binding of recombinant p19 to the IL-23R on human monocytic THP-1 cells. Of these best p19-blockers, ILP030, ILP317 and ILP323 inhibited IL-23-driven expansion of IL-17-producing primary human CD4 +  T-cells. Thus, these novel binders represent unique IL-23-targeted probes useful for IL-23/IL-23R epitope mapping studies and could be used for designing novel p19/IL-23-targeted anti-inflammatory biologics.

  4. Children's understanding of area concepts: development, curriculum and educational achievement.

    PubMed

    Bond, Trevor G; Parkinson, Kellie

    2010-01-01

    As one part of a series of studies undertaken to investigate the contribution of developmental attributes of learners to school learning, a representative sample of forty-two students (age from 5 years and 3 months to 13 years and 1 month) was randomly selected from a total student population of 142 students at a small private primary school in northern Australia. Those children's understandings of area concepts taught during the primary school years were assessed by their performance in two testing situations. The first consisted of a written classroom test of ability to solve area problems with items drawn directly from school texts, school examinations and other relevant curriculum documents. The second, which focused more directly on each child's cognitive development, was an individual interview for each child in which four "area" tasks such as the Meadows and Farmhouse Experiment taken from Chapter 11 of The Child's Conception of Geometry (Piaget, Inhelder and Szeminska, 1960, pp. 261-301) were administered. Analysis using the Rasch Partial Credit Model provided a finely detailed quantitative description of the developmental and learning progressions revealed in the data. It is evident that the school mathematics curriculum does not satisfactorily match the learner's developmental sequence at some key points. Moreover, the children's ability to conserve area on the Piagetian tasks, rather than other learner characteristics, such as age and school grade seems to be a precursor for complete success on the mathematical test of area. The discussion focuses on the assessment of developmental (and other) characteristics of school-aged learners and suggests how curriculum and school organization might better capitalize on such information in the design and sequencing of learning experiences for school children. Some features unique to the Rasch family of measurement models are held to have special significance in elucidating the development/attainment nexus.

  5. Four Novel Cellulose Synthase (CESA) Genes from Birch (Betula platyphylla Suk.) Involved in Primary and Secondary Cell Wall Biosynthesis

    PubMed Central

    Liu, Xuemei; Wang, Qiuyu; Chen, Pengfei; Song, Funan; Guan, Minxiao; Jin, Lihua; Wang, Yucheng; Yang, Chuanping

    2012-01-01

    Cellulose synthase (CESA), which is an essential catalyst for the generation of plant cell wall biomass, is mainly encoded by the CesA gene family that contains ten or more members. In this study; four full-length cDNAs encoding CESA were isolated from Betula platyphylla Suk., which is an important timber species, using RT-PCR combined with the RACE method and were named as BplCesA3, −4, −7 and −8. These deduced CESAs contained the same typical domains and regions as their Arabidopsis homologs. The cDNA lengths differed among these four genes, as did the locations of the various protein domains inferred from the deduced amino acid sequences, which shared amino acid sequence identities ranging from only 63.8% to 70.5%. Real-time RT-PCR showed that all four BplCesAs were expressed at different levels in diverse tissues. Results indicated that BplCESA8 might be involved in secondary cell wall biosynthesis and floral development. BplCESA3 appeared in a unique expression pattern and was possibly involved in primary cell wall biosynthesis and seed development; it might also be related to the homogalacturonan synthesis. BplCESA7 and BplCESA4 may be related to the formation of a cellulose synthase complex and participate mainly in secondary cell wall biosynthesis. The extremely low expression abundance of the four BplCESAs in mature pollen suggested very little involvement of them in mature pollen formation in Betula. The distinct expression pattern of the four BplCesAs suggested they might participate in developments of various tissues and that they are possibly controlled by distinct mechanisms in Betula. PMID:23202892

  6. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis.

    PubMed

    Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.

  7. Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    PubMed Central

    Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860

  8. Variations in Nuclear Localization Strategies Among Pol X Family Enzymes.

    PubMed

    Kirby, Thomas W; Pedersen, Lars C; Gabel, Scott A; Gassman, Natalie R; London, Robert E

    2018-06-22

    Despite the essential roles of pol X family enzymes in DNA repair, information about the structural basis of their nuclear import is limited. Recent studies revealed the unexpected presence of a functional NLS in DNA polymerase β, indicating the importance of active nuclear targeting, even for enzymes likely to leak into and out of the nucleus. The current studies further explore the active nuclear transport of these enzymes by identifying and structurally characterizing the functional NLS sequences in the three remaining human pol X enzymes: terminal deoxynucleotidyl transferase (TdT), DNA polymerase μ (pol μ), and DNA polymerase λ (pol λ). NLS identifications are based on Importin α (Impα) binding affinity determined by fluorescence polarization of fluorescein-labeled NLS peptides, X-ray crystallographic analysis of the Impα∆IBB•NLS complexes, and fluorescence-based subcellular localization studies. All three polymerases use NLS sequences located near their N-terminus; TdT and pol μ utilize monopartite NLS sequences, while pol λ utilizes a bipartite sequence, unique among the pol X family members. The pol μ NLS has relatively weak measured affinity for Impα, due in part to its proximity to the N-terminus that limits non-specific interactions of flanking residues preceding the NLS. However, this effect is partially mitigated by an N-terminal sequence unsupportive of Met1 removal by methionine aminopeptidase, leading to a 3-fold increase in affinity when the N-terminal methionine is present. Nuclear targeting is unique to each pol X family enzyme with variations dependent on the structure and unique functional role of each polymerase. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea)

    PubMed Central

    Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2010-01-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924

  10. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: Spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea).

    PubMed

    Parton, Angela; Bayne, Christopher J; Barnes, David W

    2010-09-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Measures of Working Memory, Sequence Learning, and Speech Recognition in the Elderly.

    ERIC Educational Resources Information Center

    Humes, Larry E.; Floyd, Shari S.

    2005-01-01

    This study describes the measurement of 2 cognitive functions, working-memory capacity and sequence learning, in 2 groups of listeners: young adults with normal hearing and elderly adults with impaired hearing. The measurement of these 2 cognitive abilities with a unique, nonverbal technique capable of auditory, visual, and auditory-visual…

  12. An Investigation of the Effects of CRA Instruction and Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Stroizer, Shaunita; Hinton, Vanessa; Flores, Margaret; Terry, LaTonya

    2015-01-01

    Students with Autism Spectrum Disorders (ASD) have unique educational needs. The concrete representational abstract (CRA) instructional sequence has been shown effective in teaching students with mathematical difficulties. The purpose of this study was to examine the effects of the CRA sequence in teaching students with ASD. A multiple baseline…

  13. Nucleotide cleaving agents and method

    DOEpatents

    Que, Jr., Lawrence; Hanson, Richard S.; Schnaith, Leah M. T.

    2000-01-01

    The present invention provides a unique series of nucleotide cleaving agents and a method for cleaving a nucleotide sequence, whether single-stranded or double-stranded DNA or RNA, using and a cationic metal complex having at least one polydentate ligand to cleave the nucleotide sequence phosphate backbone to yield a hydroxyl end and a phosphate end.

  14. Programming and Reprogramming Sequence Timing Following High and Low Contextual Interference Practice

    ERIC Educational Resources Information Center

    Wright, David L.; Magnuson, Curt E.; Black, Charles B.

    2005-01-01

    Individuals practiced two unique discrete sequence production tasks that differed in their relative time profile in either a blocked or random practice schedule. Each participant was subsequently administered a "precuing" protocol to examine the cost of initially compiling or modifying the plan for an upcoming movement's relative timing. The…

  15. Differentially expressed genes of Coptotermes formosanus (Isoptera: Rhinotermitidae) challenged by chemical insecticides.

    PubMed

    Zhang, Yi; Zhao, Yuanyuan; Qiu, Xuehong; Han, Richou

    2013-08-01

    Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae) termites are harmful social insects to wood constructions. The current control methods heavily depend on the chemical insecticides with increasing resistance. Analysis of the differentially expressed genes mediated by chemical insecticides will contribute to the understanding of the termite resistance to chemicals and to the establishment of alternative control measures. In the present article, a full-length cDNA library was constructed from the termites induced by a mixture of commonly used insecticides (0.01% sulfluramid and 0.01% triflumuron) for 24 h, by using the RNA ligase-mediated Rapid Amplification cDNA End method. Fifty-eight differentially expressed clones were obtained by polymerase chain reaction and confirmed by dot-blot hybridization. Forty-six known sequences were obtained, which clustered into 33 unique sequences grouped in 6 contigs and 27 singlets. Sixty-seven percent (22) of the sequences had counterpart genes from other organisms, whereas 33% (11) were undescribed. A Gene Ontology analysis classified 33 unique sequences into different functional categories. In general, most of the differential expression genes were involved in binding and catalytic activity.

  16. Genome Sequence of the Bacterium Streptomyces davawensis JCM 4913 and Heterologous Production of the Unique Antibiotic Roseoflavin

    PubMed Central

    Jankowitsch, Frank; Schwarz, Julia; Rückert, Christian; Gust, Bertolt; Szczepanowski, Rafael; Blom, Jochen; Pelzer, Stefan; Kalinowski, Jörn

    2012-01-01

    Streptomyces davawensis JCM 4913 synthesizes the antibiotic roseoflavin, a structural riboflavin (vitamin B2) analog. Here, we report the 9,466,619-bp linear chromosome of S. davawensis JCM 4913 and a 89,331-bp linear plasmid. The sequence has an average G+C content of 70.58% and contains six rRNA operons (16S-23S-5S) and 69 tRNA genes. The 8,616 predicted protein-coding sequences include 32 clusters coding for secondary metabolites, several of which are unique to S. davawensis. The chromosome contains long terminal inverted repeats of 33,255 bp each and atypical telomeres. Sequence analysis with regard to riboflavin biosynthesis revealed three different patterns of gene organization in Streptomyces species. Heterologous expression of a set of genes present on a subgenomic fragment of S. davawensis resulted in the production of roseoflavin by the host Streptomyces coelicolor M1152. Phylogenetic analysis revealed that S. davawensis is a close relative of Streptomyces cinnabarinus, and much to our surprise, we found that the latter bacterium is a roseoflavin producer as well. PMID:23043000

  17. Onco-Regulon: an integrated database and software suite for site specific targeting of transcription factors of cancer genes

    PubMed Central

    Tomar, Navneet; Mishra, Akhilesh; Mrinal, Nirotpal; Jayaram, B.

    2016-01-01

    Transcription factors (TFs) bind at multiple sites in the genome and regulate expression of many genes. Regulating TF binding in a gene specific manner remains a formidable challenge in drug discovery because the same binding motif may be present at multiple locations in the genome. Here, we present Onco-Regulon (http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm), an integrated database of regulatory motifs of cancer genes clubbed with Unique Sequence-Predictor (USP) a software suite that identifies unique sequences for each of these regulatory DNA motifs at the specified position in the genome. USP works by extending a given DNA motif, in 5′→3′, 3′ →5′ or both directions by adding one nucleotide at each step, and calculates the frequency of each extended motif in the genome by Frequency Counter programme. This step is iterated till the frequency of the extended motif becomes unity in the genome. Thus, for each given motif, we get three possible unique sequences. Closest Sequence Finder program predicts off-target drug binding in the genome. Inclusion of DNA-Protein structural information further makes Onco-Regulon a highly informative repository for gene specific drug development. We believe that Onco-Regulon will help researchers to design drugs which will bind to an exclusive site in the genome with no off-target effects, theoretically. Database URL: http://www.scfbio-iitd.res.in/software/onco/NavSite/index.htm PMID:27515825

  18. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences

    PubMed Central

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-01-01

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. PMID:27289096

  19. Dissecting Sequences of Regulation and Cognition: Statistical Discourse Analysis of Primary School Children's Collaborative Learning

    ERIC Educational Resources Information Center

    Molenaar, Inge; Chiu, Ming Ming

    2014-01-01

    Extending past research showing that regulative activities (metacognitive and relational) can aid learning, this study tests whether sequences of cognitive, metacognitive and relational activities affect subsequent cognition. Scaffolded by a computer avatar, 54 primary school students (working in 18 groups of 3) discussed writing a report about a…

  20. Molecular characterization of an ependymin precursor from goldfish brain.

    PubMed

    Königstorfer, A; Sterrer, S; Eckerskorn, C; Lottspeich, F; Schmidt, R; Hoffmann, W

    1989-01-01

    Ependymins are thought to be implicated in fundamental processes involved in plasticity of the goldfish CNS. Gas-phase sequencing of purified ependymins beta and gamma revealed that they share the same N-terminal sequence. Each sequence displays microheterogeneities at several positions. Based on the protein sequences obtained, we constructed synthetic oligonucleotides and used them as hybridization probes for screening cDNA libraries of goldfish brain. In this article we describe the full-length sequence of a mRNA encoding a precursor of ependymins. A cleavable signal sequence characteristic of secretory proteins is located at the N-terminal end, followed directly by the ependymin sequence. Also, two potential N-glycosylation sites were detected. A computer search revealed that ependymins form a novel family of unique proteins.

  1. Counselling in Primary Care: Past, Present, and Future.

    ERIC Educational Resources Information Center

    Eatock, John

    2000-01-01

    Presents a brief history of the growth of counseling in primary care. Discusses the challenges for primary care counselors and counseling, as well as the need for coordination, regulation and management. Also discusses the imperative for research support and the unique nature of counseling in primary care including challenges to its survival. (MKA)

  2. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis.

    PubMed

    Faya, Ngonidzashe; Penkler, David L; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets.

  3. NCBI Epigenomics: a new public resource for exploring epigenomic data sets

    PubMed Central

    Fingerman, Ian M.; McDaniel, Lee; Zhang, Xuan; Ratzat, Walter; Hassan, Tarek; Jiang, Zhifang; Cohen, Robert F.; Schuler, Gregory D.

    2011-01-01

    The Epigenomics database at the National Center for Biotechnology Information (NCBI) is a new resource that has been created to serve as a comprehensive public resource for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). Epigenetics is the study of stable and heritable changes in gene expression that occur independently of the primary DNA sequence. Epigenetic mechanisms include post-translational modifications of histones, DNA methylation, chromatin conformation and non-coding RNAs. It has been observed that misregulation of epigenetic processes has been associated with human disease. We have constructed the new resource by selecting the subset of epigenetics-specific data from general-purpose archives, such as the Gene Expression Omnibus, and Sequence Read Archives, and then subjecting them to further review, annotation and reorganization. Raw data is processed and mapped to genomic coordinates to generate ‘tracks’ that are a visual representation of the data. These data tracks can be viewed using popular genome browsers or downloaded for local analysis. The Epigenomics resource also provides the user with a unique interface that allows for intuitive browsing and searching of data sets based on biological attributes. Currently, there are 69 studies, 337 samples and over 1100 data tracks from five well-studied species that are viewable and downloadable in Epigenomics. PMID:21075792

  4. NCBI Epigenomics: a new public resource for exploring epigenomic data sets.

    PubMed

    Fingerman, Ian M; McDaniel, Lee; Zhang, Xuan; Ratzat, Walter; Hassan, Tarek; Jiang, Zhifang; Cohen, Robert F; Schuler, Gregory D

    2011-01-01

    The Epigenomics database at the National Center for Biotechnology Information (NCBI) is a new resource that has been created to serve as a comprehensive public resource for whole-genome epigenetic data sets (www.ncbi.nlm.nih.gov/epigenomics). Epigenetics is the study of stable and heritable changes in gene expression that occur independently of the primary DNA sequence. Epigenetic mechanisms include post-translational modifications of histones, DNA methylation, chromatin conformation and non-coding RNAs. It has been observed that misregulation of epigenetic processes has been associated with human disease. We have constructed the new resource by selecting the subset of epigenetics-specific data from general-purpose archives, such as the Gene Expression Omnibus, and Sequence Read Archives, and then subjecting them to further review, annotation and reorganization. Raw data is processed and mapped to genomic coordinates to generate 'tracks' that are a visual representation of the data. These data tracks can be viewed using popular genome browsers or downloaded for local analysis. The Epigenomics resource also provides the user with a unique interface that allows for intuitive browsing and searching of data sets based on biological attributes. Currently, there are 69 studies, 337 samples and over 1100 data tracks from five well-studied species that are viewable and downloadable in Epigenomics.

  5. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1994-01-01

    The unequal error protection capabilities of convolutional and trellis codes are studied. In certain environments, a discrepancy in the amount of error protection placed on different information bits is desirable. Examples of environments which have data of varying importance are a number of speech coding algorithms, packet switched networks, multi-user systems, embedded coding systems, and high definition television. Encoders which provide more than one level of error protection to information bits are called unequal error protection (UEP) codes. In this work, the effective free distance vector, d, is defined as an alternative to the free distance as a primary performance parameter for UEP convolutional and trellis encoders. For a given (n, k), convolutional encoder, G, the effective free distance vector is defined as the k-dimensional vector d = (d(sub 0), d(sub 1), ..., d(sub k-1)), where d(sub j), the j(exp th) effective free distance, is the lowest Hamming weight among all code sequences that are generated by input sequences with at least one '1' in the j(exp th) position. It is shown that, although the free distance for a code is unique to the code and independent of the encoder realization, the effective distance vector is dependent on the encoder realization.

  6. Silk from crickets: a new twist on spinning.

    PubMed

    Walker, Andrew A; Weisman, Sarah; Church, Jeffrey S; Merritt, David J; Mudie, Stephen T; Sutherland, Tara D

    2012-01-01

    Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.

  7. Targeted DNA sequencing of non-small cell lung cancer identifies mutations associated with brain metastases.

    PubMed

    Wilson, George D; Johnson, Matthew D; Ahmed, Samreen; Cardenas, Paola Yumpo; Grills, Inga S; Thibodeau, Bryan J

    2018-05-25

    This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target.

  8. Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis.

    PubMed

    Zywicki, Marek; Bakowska-Zywicka, Kamilla; Polacek, Norbert

    2012-05-01

    The exploration of the non-protein-coding RNA (ncRNA) transcriptome is currently focused on profiling of microRNA expression and detection of novel ncRNA transcription units. However, recent studies suggest that RNA processing can be a multi-layer process leading to the generation of ncRNAs of diverse functions from a single primary transcript. Up to date no methodology has been presented to distinguish stable functional RNA species from rapidly degraded side products of nucleases. Thus the correct assessment of widespread RNA processing events is one of the major obstacles in transcriptome research. Here, we present a novel automated computational pipeline, named APART, providing a complete workflow for the reliable detection of RNA processing products from next-generation-sequencing data. The major features include efficient handling of non-unique reads, detection of novel stable ncRNA transcripts and processing products and annotation of known transcripts based on multiple sources of information. To disclose the potential of APART, we have analyzed a cDNA library derived from small ribosome-associated RNAs in Saccharomyces cerevisiae. By employing the APART pipeline, we were able to detect and confirm by independent experimental methods multiple novel stable RNA molecules differentially processed from well known ncRNAs, like rRNAs, tRNAs or snoRNAs, in a stress-dependent manner.

  9. A Long-Term Study of the Microbial Community Structure in a ...

    EPA Pesticide Factsheets

    Free chlorine is used as the primary disinfectant in most drinking water distribution systems(DWDS). However, chlorine disinfection promotes the formation of disinfectant by-products (DBPs)and as a result, many US water treatment facilities use chloramination to ensure regulatory compliance of targeted DBPs. However, 30 to 63% of water utilities using secondary chloramine disinfection experience nitrification episodes that detrimentally impact water quality in theirdistribution systems. While each disinfection strategy aims at mitigating the presence of pathogens, they do not completely eradicate growth of microorganisms in distribution systems. The latter has been documented using a variety of culture-based assays and culture independent approaches, such as 16S rRNA gene sequence analysis using Sanger chemistry. Most of the previous approaches are limited in scope. High-throughput sequencing approaches offer a more comprehensive view of the genetic complexity of natural and engineered environments, allowing usto better assess the microbial taxonomic diversity and metabolic potential within any given community. These approaches enhanced our understanding of processes unique to some microbiomes and provided the genetic information to track multiple populations carrying a variety of functions. In this study, we examined the microbiome of a simulated chloraminated DWDS. These results provide evidence of variations in the DWDS microbial community structure and their

  10. Targeted DNA sequencing of non-small cell lung cancer identifies mutations associated with brain metastases

    PubMed Central

    Wilson, George D.; Johnson, Matthew D.; Ahmed, Samreen; Cardenas, Paola Yumpo; Grills, Inga S.; Thibodeau, Bryan J.

    2018-01-01

    Introduction This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. Methods NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. Results In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. Conclusion While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target. PMID:29899834

  11. An Aromatic Sensor with Aversion to Damaged Strands Confers Versatility to DNA Repair

    PubMed Central

    Maillard, Olivier; Solyom, Szilvia; Naegeli, Hanspeter

    2007-01-01

    It was not known how xeroderma pigmentosum group C (XPC) protein, the primary initiator of global nucleotide excision repair, achieves its outstanding substrate versatility. Here, we analyzed the molecular pathology of a unique Trp690Ser substitution, which is the only reported missense mutation in xeroderma patients mapping to the evolutionary conserved region of XPC protein. The function of this critical residue and neighboring conserved aromatics was tested by site-directed mutagenesis followed by screening for excision activity and DNA binding. This comparison demonstrated that Trp690 and Phe733 drive the preferential recruitment of XPC protein to repair substrates by mediating an exquisite affinity for single-stranded sites. Such a dual deployment of aromatic side chains is the distinctive feature of functional oligonucleotide/oligosaccharide-binding folds and, indeed, sequence homologies with replication protein A and breast cancer susceptibility 2 protein indicate that XPC displays a monomeric variant of this recurrent interaction motif. An aversion to associate with damaged oligonucleotides implies that XPC protein avoids direct contacts with base adducts. These results reveal for the first time, to our knowledge, an entirely inverted mechanism of substrate recognition that relies on the detection of single-stranded configurations in the undamaged complementary sequence of the double helix. PMID:17355181

  12. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy.

    PubMed

    Li, Y S; Jiang, B Y; Yang, J J; Zhang, X C; Zhang, Z; Ye, J Y; Zhong, W Z; Tu, H Y; Chen, H J; Wang, Z; Xu, C R; Wang, B C; Du, H J; Chuai, S; Han-Zhang, H; Su, J; Zhou, Q; Yang, X N; Guo, W B; Yan, H H; Liu, Y H; Yan, L X; Huang, B; Zheng, M M; Wu, Y L

    2018-04-01

    Leptomeningeal metastases (LM) are more frequent in non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. Due to limited access to leptomeningeal lesions, the purpose of this study was to explore the potential role of cerebrospinal fluid (CSF) as a source of liquid biopsy in patients with LM. Primary tumor, CSF, and plasma in NSCLC with LM were tested by next-generation sequencing. In total, 45 patients with suspected LM underwent lumbar puncture, and those with EGFR mutations diagnosed with LM were enrolled. A total of 28 patients were enrolled in this cohort; CSF and plasma were available in 26 patients, respectively. Driver genes were detected in 100% (26/26), 84.6% (22/26), and 73.1% (19/26) of samples comprising CSF cell-free DNA (cfDNA), CSF precipitates, and plasma, respectively; 92.3% (24/26) of patients had much higher allele fractions in CSF cfDNA than the other two media. Unique genetic profiles were captured in CSF cfDNA compared with those in plasma and primary tissue. Multiple copy number variations (CNVs) were mainly identified in CSF cfDNA, and MET copy number gain identified in 47.8% (11/23) of patients was the most frequent one, while other CNVs included ERBB2, KRAS, ALK, and MYC. Moreover, loss of heterozygosity (LOH) of TP53 was identified in 73.1% (19/26) CSF cfDNA, which was much higher than that in plasma (2/26, 7.7%; P < 0.001). There was a trend towards a higher frequency of concomitant resistance mutations in patients with TP53 LOH than those without (70.6% versus 33.3%; P = 0.162). EGFR T790M was identified in CSF cfDNA of 30.4% (7/23) of patients who experienced TKI progression. CSF cfDNA could reveal the unique genetic profiles of LM and should be considered as the most representative liquid biopsy medium for LM in EGFR-mutant NSCLC.

  13. Program Fair Evaluation--Summative Appraisal of Instructional Sequences with Dissimilar Objectives.

    ERIC Educational Resources Information Center

    Popham, W. James

    A comparative evaluation involving two instructional programs is given, although the approach can easily serve to compare more than two programs. The steps involved in conducting a program fair evaluation of two instructional programs are: (1) Identify objectives (a) common to both programs, (b) unique to one program, and (c) unique to the other…

  14. HIV-1 diversity, transmission dynamics and primary drug resistance in Angola.

    PubMed

    Bártolo, Inês; Zakovic, Suzana; Martin, Francisco; Palladino, Claudia; Carvalho, Patrícia; Camacho, Ricardo; Thamm, Sven; Clemente, Sofia; Taveira, Nuno

    2014-01-01

    To assess HIV-1 diversity, transmission dynamics and prevalence of transmitted drug resistance (TDR) in Angola, five years after ART scale-up. Population sequencing of the pol gene was performed on 139 plasma samples collected in 2009 from drug-naive HIV-1 infected individuals living in Luanda. HIV-1 subtypes were determined using phylogenetic analysis. Drug resistance mutations were identified using the Calibrated Population Resistance Tool (CPR). Transmission networks were determined using phylogenetic analysis of all Angolan sequences present in the databases. Evolutionary trends were determined by comparison with a similar survey performed in 2001. 47.1% of the viruses were pure subtypes (all except B), 47.1% were recombinants and 5.8% were untypable. The prevalence of subtype A decreased significantly from 2001 to 2009 (40.0% to 10.8%, P = 0.0019) while the prevalence of unique recombinant forms (URFs) increased > 2-fold (40.0% to 83.1%, P < 0.0001). The most frequent URFs comprised untypable sequences with subtypes H (U/H, n = 7, 10.8%), A (U/A, n = 6, 9.2%) and G (G/U, n = 4, 6.2%). Newly identified U/H recombinants formed a highly supported monophyletic cluster suggesting a local and common origin. TDR mutation K103N was found in one (0.7%) patient (1.6% in 2001). Out of the 364 sequences sampled for transmission network analysis, 130 (35.7%) were part of a transmission network. Forty eight transmission clusters were identified; the majority (56.3%) comprised sequences sampled in 2008-2010 in Luanda which is consistent with a locally fuelled epidemic. Very low genetic distance was found in 27 transmission pairs sampled in the same year, suggesting recent transmission events. Transmission of drug resistant strains was still negligible in Luanda in 2009, five years after the scale-up of ART. The dominance of small and recent transmission clusters and the emergence of new URFs are consistent with a rising HIV-1 epidemics mainly driven by heterosexual transmission.

  15. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades: a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders, Haloferacales ord. nov. and Natrialbales ord. nov., containing the novel families Haloferacaceae fam. nov. and Natrialbaceae fam. nov.

    PubMed

    Gupta, Radhey S; Naushad, Sohail; Baker, Sheridan

    2015-03-01

    The Halobacteria constitute one of the largest groups within the Archaea. The hierarchical relationship among members of this large class, which comprises a single order and a single family, has proven difficult to determine based upon 16S rRNA gene trees and morphological and physiological characteristics. This work reports detailed phylogenetic and comparative genomic studies on >100 halobacterial (haloarchaeal) genomes containing representatives from 30 genera to investigate their evolutionary relationships. In phylogenetic trees reconstructed on the basis of 32 conserved proteins, using both neighbour-joining and maximum-likelihood methods, two major clades (clades A and B) encompassing nearly two-thirds of the sequenced haloarchaeal species were strongly supported. Clades grouping the same species/genera were also supported by the 16S rRNA gene trees and trees for several individual highly conserved proteins (RpoC, EF-Tu, UvrD, GyrA, EF-2/EF-G). In parallel, our comparative analyses of protein sequences from haloarchaeal genomes have identified numerous discrete molecular markers in the form of conserved signature indels (CSI) in protein sequences and conserved signature proteins (CSPs) that are found uniquely in specific groups of haloarchaea. Thirteen CSIs in proteins involved in diverse functions and 68 CSPs that are uniquely present in all or most genome-sequenced haloarchaea provide novel molecular means for distinguishing members of the class Halobacteria from all other prokaryotes. The members of clade A are distinguished from all other haloarchaea by the unique shared presence of two CSIs in the ribose operon protein and small GTP-binding protein and eight CSPs that are found specifically in members of this clade. Likewise, four CSIs in different proteins and five other CSPs are present uniquely in members of clade B and distinguish them from all other haloarchaea. Based upon their specific clustering in phylogenetic trees for different gene/protein sequences and the unique shared presence of large numbers of molecular signatures, members of clades A and B are indicated to be distinct from all other haloarchaea because of their uniquely shared evolutionary histories. Based upon these results, it is proposed that clades A and B be recognized as two new orders, Natrialbales ord. nov. and Haloferacales ord. nov., within the class Halobacteria, containing the novel families Natrialbaceae fam. nov. and Haloferacaceae fam. nov. Other members of the class Halobacteria that are not members of these two orders will remain part of the emended order Halobacteriales in an emended family Halobacteriaceae. © 2015 IUMS.

  16. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma

    PubMed Central

    Bhatt, Aadra P.; Jacobs, Sarah R.; Freemerman, Alex J.; Makowski, Liza; Rathmell, Jeffrey C.; Dittmer, Dirk P.; Damania, Blossom

    2012-01-01

    The metabolic differences between B-NHL and primary human B cells are poorly understood. Among human B-cell non-Hodgkin lymphomas (B-NHL), primary effusion lymphoma (PEL) is a unique subset that is linked to infection with Kaposi's sarcoma-associated herpesvirus (KSHV). We report that the metabolic profiles of primary B cells are significantly different from that of PEL. Compared with primary B cells, both aerobic glycolysis and fatty acid synthesis (FAS) are up-regulated in PEL and other types of nonviral B-NHL. We found that aerobic glycolysis and FAS occur in a PI3K-dependent manner and appear to be interdependent. PEL overexpress the fatty acid synthesizing enzyme, FASN, and both PEL and other B-NHL were much more sensitive to the FAS inhibitor, C75, than primary B cells. Our findings suggest that FASN may be a unique candidate for molecular targeted therapy against PEL and other B-NHL. PMID:22752304

  17. A disruptive sequencer meets disruptive publishing.

    PubMed

    Loman, Nick; Goodwin, Sarah; Jansen, Hans; Loose, Matt

    2015-01-01

    Nanopore sequencing was recently made available to users in the form of the Oxford Nanopore MinION. Released to users through an early access programme, the MinION is made unique by its tiny form factor and ability to generate very long sequences from single DNA molecules. The platform is undergoing rapid evolution with three distinct nanopore types and five updates to library preparation chemistry in the last 18 months. To keep pace with the rapid evolution of this sequencing platform, and to provide a space where new analysis methods can be openly discussed, we present a new F1000Research channel devoted to updates to and analysis of nanopore sequence data.

  18. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  19. ``Sequence space soup'' of proteins and copolymers

    NASA Astrophysics Data System (ADS)

    Chan, Hue Sun; Dill, Ken A.

    1991-09-01

    To study the protein folding problem, we use exhaustive computer enumeration to explore ``sequence space soup,'' an imaginary solution containing the ``native'' conformations (i.e., of lowest free energy) under folding conditions, of every possible copolymer sequence. The model is of short self-avoiding chains of hydrophobic (H) and polar (P) monomers configured on the two-dimensional square lattice. By exhaustive enumeration, we identify all native structures for every possible sequence. We find that random sequences of H/P copolymers will bear striking resemblance to known proteins: Most sequences under folding conditions will be approximately as compact as known proteins, will have considerable amounts of secondary structure, and it is most probable that an arbitrary sequence will fold to a number of lowest free energy conformations that is of order one. In these respects, this simple model shows that proteinlike behavior should arise simply in copolymers in which one monomer type is highly solvent averse. It suggests that the structures and uniquenesses of native proteins are not consequences of having 20 different monomer types, or of unique properties of amino acid monomers with regard to special packing or interactions, and thus that simple copolymers might be designable to collapse to proteinlike structures and properties. A good strategy for designing a sequence to have a minimum possible number of native states is to strategically insert many P monomers. Thus known proteins may be marginally stable due to a balance: More H residues stabilize the desired native state, but more P residues prevent simultaneous stabilization of undesired native states.

  20. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution

    PubMed Central

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.

    2015-01-01

    Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244

  1. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen.

    PubMed

    Varela, J; Ventas, P; Carreira, J; Barbas, J A; Gimenez-Gallego, G; Polo, F

    1994-10-01

    The most relevant allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been characterized. Lep d I is a monomer protein of 13273 Da. The primary structure of Lep d I was determined by N-terminal Edman degradation and partially confirmed by cDNA sequencing. Sequence polymorphism was observed at six positions, with non-conservative substitutions in three of them. No potential N-glycosylation site was revealed by peptide sequencing. The 125-residue sequence of Lep d I shows approximately 40% identity (including the six cysteines) with the overlapping regions of group II allergens from the genus Dermatophagoides, which, however, do not share common allergenic epitopes with Lep d I.

  2. Restricted transfer of learning between unimanual and bimanual finger sequences.

    PubMed

    Yokoi, Atsushi; Bai, Wenjun; Diedrichsen, Jörn

    2017-03-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. Copyright © 2017 the American Physiological Society.

  3. Implementing and Evaluating a Sequence of Instruction on Gaseous Pressure with Pre-Service Primary School Student Teachers.

    ERIC Educational Resources Information Center

    Taylor, Neil; Lucas, Keith B.

    2000-01-01

    Describes a teaching sequence on gaseous pressure implemented in a group of pre-service primary teachers in Fiji that provides subjects with a strong visual model of particle behavior which they then applied to a series of collaborative science activities for which they attempted to construct explanations. Suggests that this teaching sequence…

  4. De Novo Transcriptome Sequencing Reveals Important Molecular Networks and Metabolic Pathways of the Plant, Chlorophytum borivilianum

    PubMed Central

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum. PMID:24376689

  5. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  6. The gene space in wheat: the complete γ-gliadin gene family from the wheat cultivar Chinese Spring.

    PubMed

    Anderson, Olin D; Huo, Naxin; Gu, Yong Q

    2013-06-01

    The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3' coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.

  7. De Novo transcriptome sequencing reveals important molecular networks and metabolic pathways of the plant, Chlorophytum borivilianum.

    PubMed

    Kalra, Shikha; Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Kumar, Sunil; Kaur, Jagdeep; Ramachandran, Srinivasan; Singh, Kashmir

    2013-01-01

    Chlorophytum borivilianum, an endangered medicinal plant species is highly recognized for its aphrodisiac properties provided by saponins present in the plant. The transcriptome information of this species is limited and only few hundred expressed sequence tags (ESTs) are available in the public databases. To gain molecular insight of this plant, high throughput transcriptome sequencing of leaf RNA was carried out using Illumina's HiSeq 2000 sequencing platform. A total of 22,161,444 single end reads were retrieved after quality filtering. Available (e.g., De-Bruijn/Eulerian graph) and in-house developed bioinformatics tools were used for assembly and annotation of transcriptome. A total of 101,141 assembled transcripts were obtained, with coverage size of 22.42 Mb and average length of 221 bp. Guanine-cytosine (GC) content was found to be 44%. Bioinformatics analysis, using non-redundant proteins, gene ontology (GO), enzyme commission (EC) and kyoto encyclopedia of genes and genomes (KEGG) databases, extracted all the known enzymes involved in saponin and flavonoid biosynthesis. Few genes of the alkaloid biosynthesis, along with anticancer and plant defense genes, were also discovered. Additionally, several cytochrome P450 (CYP450) and glycosyltransferase unique sequences were also found. We identified simple sequence repeat motifs in transcripts with an abundance of di-nucleotide simple sequence repeat (SSR; 43.1%) markers. Large scale expression profiling through Reads per Kilobase per Million mapped reads (RPKM) showed major genes involved in different metabolic pathways of the plant. Genes, expressed sequence tags (ESTs) and unique sequences from this study provide an important resource for the scientific community, interested in the molecular genetics and functional genomics of C. borivilianum.

  8. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    PubMed

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiZio, S.M.

    Various state regulatory agencies have expressed a need for networking with information gatherers/researchers to produce a concise compilation of primary information so that the basis for regulatory standards can be scientifically referenced. California has instituted several programs to retrieve primary information, generate primary information through research, and generate unique regulatory standards by integrating the primary literature and the products of research. This paper describes these programs.

  10. Adapted Behavior Therapy for Persistently Depressed Primary Care Patients: An Open Trial

    ERIC Educational Resources Information Center

    Uebelacker, Lisa A.; Weisberg, Risa B.; Haggarty, Ryan; Miller, Ivan W.

    2009-01-01

    Major depressive disorder is commonly treated in primary care settings. Psychotherapy occurring in primary care should take advantage of the unique aspects of the setting and must adapt to the problems and limitations of the setting. In this open trial, the authors used a treatment development model to adapt behavior therapy for primary care…

  11. Methods for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    1995-01-01

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  12. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  13. A novel approach for monitoring genetically engineered microorganisms by using artificial, stable RNAs

    NASA Technical Reports Server (NTRS)

    Pitulle, C.; Hedenstierna, K. O.; Fox, G. E.

    1995-01-01

    Further improvements in technology for efficient monitoring of genetically engineered microorganisms (GEMs) in the environment are needed. Technology for monitoring rRNA is well established but has not generally been applicable to GEMs because of the lack of unique rRNA target sequences. In the work described herein, it is demonstrated that a deletion mutant of a plasmid-borne Vibrio proteolyticus 5S rRNA gene continues to accumulate to high levels in Escherichia coli although it is no longer incorporated into 70S ribosomes. This deletion construct was subsequently modified by mutagenesis to create a unique recognition site for the restriction endonuclease BstEII, into which new sequences could be readily inserted. Finally, a novel 17-nucleotide identifier sequence from Pennisetum purpureum was embedded into the construct to create an RNA identification cassette. The artificial identifier RNA, expressed from this cassette in vivo, accumulated in E. coli to levels comparable to those of wild-type 5S rRNA without being seriously detrimental to cell survival in laboratory experiments and without entering the ribosomes. These results demonstrate that artificial, stable RNAs containing sequence segments remarkably different from those present in any known rRNA can be designed and that neither the deleted sequence segment nor ribosome incorporation is essential for accumulation of an RNA product.

  14. Robot Sequencing and Visualization Program (RSVP)

    NASA Technical Reports Server (NTRS)

    Cooper, Brian K.; Maxwell,Scott A.; Hartman, Frank R.; Wright, John R.; Yen, Jeng; Toole, Nicholas T.; Gorjian, Zareh; Morrison, Jack C

    2013-01-01

    The Robot Sequencing and Visualization Program (RSVP) is being used in the Mars Science Laboratory (MSL) mission for downlink data visualization and command sequence generation. RSVP reads and writes downlink data products from the operations data server (ODS) and writes uplink data products to the ODS. The primary users of RSVP are members of the Rover Planner team (part of the Integrated Planning and Execution Team (IPE)), who use it to perform traversability/articulation analyses, take activity plan input from the Science and Mission Planning teams, and create a set of rover sequences to be sent to the rover every sol. The primary inputs to RSVP are downlink data products and activity plans in the ODS database. The primary outputs are command sequences to be placed in the ODS for further processing prior to uplink to each rover. RSVP is composed of two main subsystems. The first, called the Robot Sequence Editor (RoSE), understands the MSL activity and command dictionaries and takes care of converting incoming activity level inputs into command sequences. The Rover Planners use the RoSE component of RSVP to put together command sequences and to view and manage command level resources like time, power, temperature, etc. (via a transparent realtime connection to SEQGEN). The second component of RSVP is called HyperDrive, a set of high-fidelity computer graphics displays of the Martian surface in 3D and in stereo. The Rover Planners can explore the environment around the rover, create commands related to motion of all kinds, and see the simulated result of those commands via its underlying tight coupling with flight navigation, motor, and arm software. This software is the evolutionary replacement for the Rover Sequencing and Visualization software used to create command sequences (and visualize the Martian surface) for the Mars Exploration Rover mission.

  15. Bat Biology, Genomes, and the Bat1K Project: To Generate Chromosome-Level Genomes for All Living Bat Species.

    PubMed

    Teeling, Emma C; Vernes, Sonja C; Dávalos, Liliana M; Ray, David A; Gilbert, M Thomas P; Myers, Eugene

    2018-02-15

    Bats are unique among mammals, possessing some of the rarest mammalian adaptations, including true self-powered flight, laryngeal echolocation, exceptional longevity, unique immunity, contracted genomes, and vocal learning. They provide key ecosystem services, pollinating tropical plants, dispersing seeds, and controlling insect pest populations, thus driving healthy ecosystems. They account for more than 20% of all living mammalian diversity, and their crown-group evolutionary history dates back to the Eocene. Despite their great numbers and diversity, many species are threatened and endangered. Here we announce Bat1K, an initiative to sequence the genomes of all living bat species (n∼1,300) to chromosome-level assembly. The Bat1K genome consortium unites bat biologists (>148 members as of writing), computational scientists, conservation organizations, genome technologists, and any interested individuals committed to a better understanding of the genetic and evolutionary mechanisms that underlie the unique adaptations of bats. Our aim is to catalog the unique genetic diversity present in all living bats to better understand the molecular basis of their unique adaptations; uncover their evolutionary history; link genotype with phenotype; and ultimately better understand, promote, and conserve bats. Here we review the unique adaptations of bats and highlight how chromosome-level genome assemblies can uncover the molecular basis of these traits. We present a novel sequencing and assembly strategy and review the striking societal and scientific benefits that will result from the Bat1K initiative.

  16. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  17. Subclonal diversification of primary breast cancer revealed by multiregion sequencing

    DOE PAGES

    Yates, Lucy R.; Gerstung, Moritz; Knappskog, Stian; ...

    2015-06-22

    Sequencing cancer genomes may enable tailoring of therapeutics to the underlying biological abnormalities driving a particular patient's tumor. However, sequencing-based strategies rely heavily on representative sampling of tumors. To understand the subclonal structure of primary breast cancer, we applied whole-genome and targeted sequencing to multiple samples from each of 50 patients' tumors (303 samples in total). The extent of subclonal diversification varied among cases and followed spatial patterns. No strict temporal order was evident, with point mutations and rearrangements affecting the most common breast cancer genes, including PIK3CA, TP53, PTEN, BRCA2 and MYC, occurring early in some tumors and latemore » in others. In 13 out of 50 cancers, potentially targetable mutations were subclonal. Landmarks of disease progression, such as resistance to chemotherapy and the acquisition of invasive or metastatic potential, arose within detectable subclones of antecedent lesions. These findings highlight the importance of including analyses of subclonal structure and tumor evolution in clinical trials of primary breast cancer.« less

  18. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus.

  19. Molecular identification of Armillaria gallica from the Niobrara Valley Preserve in Nebraska

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein

    2011-01-01

    Armillaria isolates were collected from a unique forest ecosystem in the Niobrara Valley Preserve in Nebraska, USA, which comprises a glacial and early postglacial refugium in the central plains of North America. The isolates were collected from diverse forest trees representing a unique mixture of forest types. Combined methods of rDNA sequencing and flow cytometric...

  20. Y and W Chromosome Assemblies: Approaches and Discoveries.

    PubMed

    Tomaszkiewicz, Marta; Medvedev, Paul; Makova, Kateryna D

    2017-04-01

    Hundreds of vertebrate genomes have been sequenced and assembled to date. However, most sequencing projects have ignored the sex chromosomes unique to the heterogametic sex - Y and W - that are known as sex-limited chromosomes (SLCs). Indeed, haploid and repetitive Y chromosomes in species with male heterogamety (XY), and W chromosomes in species with female heterogamety (ZW), are difficult to sequence and assemble. Nevertheless, obtaining their sequences is important for understanding the intricacies of vertebrate genome function and evolution. Recent progress has been made towards the adaptation of next-generation sequencing (NGS) techniques to deciphering SLC sequences. We review here currently available methodology and results with regard to SLC sequencing and assembly. We focus on vertebrates, but bring in some examples from other taxa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.

    PubMed

    Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi

    2014-01-01

    DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.

  2. Genetic architecture of the Delis-Kaplan Executive Function System Trail Making Test: evidence for distinct genetic influences on executive function.

    PubMed

    Vasilopoulos, Terrie; Franz, Carol E; Panizzon, Matthew S; Xian, Hong; Grant, Michael D; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C; Kremen, William S

    2012-03-01

    To examine how genes and environments contribute to relationships among Trail Making Test (TMT) conditions and the extent to which these conditions have unique genetic and environmental influences. Participants included 1,237 middle-aged male twins from the Vietnam Era Twin Study of Aging. The Delis-Kaplan Executive Function System TMT included visual searching, number and letter sequencing, and set-shifting components. Phenotypic correlations among TMT conditions ranged from 0.29 to 0.60, and genes accounted for the majority (58-84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. A common genetic factor, most likely representing a combination of speed and sequencing, accounted for most of the correlation among TMT 1-4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in nonpatient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes.

  3. The complete mitochondrial genome sequence of the maned wolf (Chrysocyon brachyurus).

    PubMed

    Zhao, Chao; Yang, Xiufeng; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the maned wolf (Chrysocyon brachyurus), the unique species in Chrysocyon, was sequenced and reported for the first time using blood samples obtained from a female individual in Shanghai Zoo, China. Sequence analysis showed that the genome structure was in accordance with other Canidae species and it contained 12 S rRNA gene, 16 S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region.

  4. Integrative Clinical Genomics of Metastatic Cancer

    PubMed Central

    Robinson, Dan R.; Wu, Yi-Mi; Lonigro, Robert J.; Vats, Pankaj; Cobain, Erin; Everett, Jessica; Cao, Xuhong; Rabban, Erica; Kumar-Sinha, Chandan; Raymond, Victoria; Schuetze, Scott; Alva, Ajjai; Siddiqui, Javed; Chugh, Rashmi; Worden, Francis; Zalupski, Mark M.; Innis, Jeffrey; Mody, Rajen J.; Tomlins, Scott A.; Lucas, David; Baker, Laurence H.; Ramnath, Nithya; Schott, Ann F.; Hayes, Daniel F.; Vijai, Joseph; Offit, Kenneth; Stoffel, Elena M.; Roberts, J. Scott; Smith, David C.; Kunju, Lakshmi P.; Talpaz, Moshe; Cieslik, Marcin; Chinnaiyan, Arul M.

    2017-01-01

    SUMMARY Metastasis is the primary cause of cancer-related deaths. While The Cancer Genome Atlas (TCGA) has sequenced primary tumor types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here, we perform whole exome and transcriptome sequencing of 500 adult patients with metastatic solid tumors of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing for the identification of gene fusions, pathway activation, and immune profiling. Integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers. PMID:28783718

  5. Targeting of Repeated Sequences Unique to a Gene Results in Significant Increases in Antisense Oligonucleotide Potency

    PubMed Central

    Vickers, Timothy A.; Freier, Susan M.; Bui, Huynh-Hoa; Watt, Andrew; Crooke, Stanley T.

    2014-01-01

    A new strategy for identifying potent RNase H-dependent antisense oligonucleotides (ASOs) is presented. Our analysis of the human transcriptome revealed that a significant proportion of genes contain unique repeated sequences of 16 or more nucleotides in length. Activities of ASOs targeting these repeated sites in several representative genes were compared to those of ASOs targeting unique single sites in the same transcript. Antisense activity at repeated sites was also evaluated in a highly controlled minigene system. Targeting both native and minigene repeat sites resulted in significant increases in potency as compared to targeting of non-repeated sites. The increased potency at these sites is a result of increased frequency of ASO/RNA interactions which, in turn, increases the probability of a productive interaction between the ASO/RNA heteroduplex and human RNase H1 in the cell. These results suggest a new, highly efficient strategy for rapid identification of highly potent ASOs. PMID:25334092

  6. Investigation of terpene diversification across multiple sequenced plant genomes

    PubMed Central

    Boutanaev, Alexander M.; Moses, Tessa; Zi, Jiachen; Nelson, David R.; Mugford, Sam T.; Peters, Reuben J.; Osbourn, Anne

    2015-01-01

    Plants produce an array of specialized metabolites, including chemicals that are important as medicines, flavors, fragrances, pigments and insecticides. The vast majority of this metabolic diversity is untapped. Here we take a systematic approach toward dissecting genetic components of plant specialized metabolism. Focusing on the terpenes, the largest class of plant natural products, we investigate the basis of terpene diversity through analysis of multiple sequenced plant genomes. The primary drivers of terpene diversification are terpenoid synthase (TS) “signature” enzymes (which generate scaffold diversity), and cytochromes P450 (CYPs), which modify and further diversify these scaffolds, so paving the way for further downstream modifications. Our systematic search of sequenced plant genomes for all TS and CYP genes reveals that distinct TS/CYP gene pairs are found together far more commonly than would be expected by chance, and that certain TS/CYP pairings predominate, providing signals for key events that are likely to have shaped terpene diversity. We recover TS/CYP gene pairs for previously characterized terpene metabolic gene clusters and demonstrate new functional pairing of TSs and CYPs within previously uncharacterized clusters. Unexpectedly, we find evidence for different mechanisms of pathway assembly in eudicots and monocots; in the former, microsyntenic blocks of TS/CYP gene pairs duplicate and provide templates for the evolution of new pathways, whereas in the latter, new pathways arise by mixing and matching of individual TS and CYP genes through dynamic genome rearrangements. This is, to our knowledge, the first documented observation of the unique pattern of TS and CYP assembly in eudicots and monocots. PMID:25502595

  7. Identification of an IgG CDR sequence contributing to co-purification of the host cell protease cathepsin D.

    PubMed

    Bee, Jared S; Machiesky, LeeAnn M; Peng, Li; Jusino, Kristin C; Dickson, Matthew; Gill, Jeffrey; Johnson, Douglas; Lin, Hung-Yu; Miller, Kenneth; Heidbrink Thompson, Jenny; Remmele, Richard L

    2017-01-01

    Recombinant therapeutic monoclonal antibodies (mAbs) must be purified from host cell proteins (HCPs), DNA, and other impurities present in Chinese hamster ovary (CHO) cell culture media. HCPs can potentially result in adverse clinical responses in patients and, in specific cases, have caused degradation of the final mAb product. As reported previously, residual traces of cathepsin D caused particle formation in the final product of mAb-1. The current work was focused on identification of a primary sequence in mAb-1 responsible for the binding and consequent co-purification of trace levels of CHO cathepsin D. Surface plasmon resonance (SPR) was used to detect binding between immobilized CHO cathepsin D and a panel of mAbs. Out of 13 mAbs tested, only mAb-1 and mAb-6 bound to cathepsin D. An LYY motif in the HC CDR2 was common, yet unique, to only these two mAbs. Mutation of LYY to AAA eliminated binding of mAb-1 to cathepsin D providing confirmation that this sequence motif was involved in the binding to CHO cathepsin D. Interestingly, the binding between mAb-1 and cathepsin D was weaker than that of mAb-6, which may be related to the fact that two aspartic acid residues near the LYY motif in mAb-1 are replaced with neutral serine residues in mAb-6. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:140-145, 2017. © 2016 American Institute of Chemical Engineers.

  8. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.

    PubMed

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.

  9. "They're younger… it's harder." Primary providers' perspectives on hypertension management in young adults: a multicenter qualitative study.

    PubMed

    Johnson, Heather M; Warner, Ryan C; Bartels, Christie M; LaMantia, Jamie N

    2017-01-03

    Young adults (18-39 year-olds) have the lowest hypertension control rates among adults with hypertension in the United States. Unique barriers to hypertension management in young adults with primary care access compared to older adults have not been evaluated. Understanding these differences will inform the development of hypertension interventions tailored to young adults. The goals of this multicenter study were to explore primary care providers' perspectives on barriers to diagnosing, treating, and controlling hypertension among young adults with regular primary care. Primary care providers (physicians and advanced practice providers) actively managing young adults with uncontrolled hypertension were recruited by the Wisconsin Research & Education Network (WREN), a statewide practice-based research network. Semi-structured qualitative interviews were conducted in three diverse Midwestern clinical practices (academic, rural, and urban clinics) using a semi-structured interview guide, and content analysis was performed. Primary care providers identified unique barriers across standard hypertension healthcare delivery practices for young adults. Altered self-identity, greater blood pressure variability, and unintended consequences of medication initiation were critical hypertension control barriers among young adults. Gender differences among young adults were also noted as barriers to hypertension follow-up and antihypertensive medication initiation. Tailored interventions addressing the unique barriers of young adults are needed to improve population hypertension control. Augmenting traditional clinic structure to support the "health identity" of young adults and self-management skills are promising next steps to improve hypertension healthcare delivery.

  10. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts.

    PubMed

    Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S

    2011-01-21

    DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Emergence and Evolution of Hominidae-Specific Coding and Noncoding Genomic Sequences.

    PubMed

    Saber, Morteza Mahmoudi; Adeyemi Babarinde, Isaac; Hettiarachchi, Nilmini; Saitou, Naruya

    2016-07-12

    Family Hominidae, which includes humans and great apes, is recognized for unique complex social behavior and intellectual abilities. Despite the increasing genome data, however, the genomic origin of its phenotypic uniqueness has remained elusive. Clade-specific genes and highly conserved noncoding sequences (HCNSs) are among the high-potential evolutionary candidates involved in driving clade-specific characters and phenotypes. On this premise, we analyzed whole genome sequences along with gene orthology data retrieved from major DNA databases to find Hominidae-specific (HS) genes and HCNSs. We discovered that Down syndrome critical region 4 (DSCR4) is the only experimentally verified gene uniquely present in Hominidae. DSCR4 has no structural homology to any known protein and was inferred to have emerged in several steps through LTR/ERV1, LTR/ERVL retrotransposition, and transversion. Using the genomic distance as neutral evolution threshold, we identified 1,658 HS HCNSs. Polymorphism coverage and derived allele frequency analysis of HS HCNSs showed that these HCNSs are under purifying selection, indicating that they may harbor important functions. They are overrepresented in promoters/untranslated regions, in close proximity of genes involved in sensory perception of sound and developmental process, and also showed a significantly lower nucleosome occupancy probability. Interestingly, many ancestral sequences of the HS HCNSs showed very high evolutionary rates. This suggests that new functions emerged through some kind of positive selection, and then purifying selection started to operate to keep these functions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing

    PubMed Central

    Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q.; Karchin, Rachel

    2015-01-01

    Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones—cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single tree in agreement with the authors, or a small set of trees, which include the authors’ preferred tree. Our results have implications for improved modeling of tumor evolution and the importance of multi-region tumor sequencing. PMID:26436540

  13. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics.

    PubMed

    Roer, Robert; Abehsera, Shai; Sagi, Amir

    2015-11-01

    The exoskeletons of pancrustaceans, as typified by decapod crustaceans and insects, demonstrate a high degree of similarity with respect to histology, ultrastructure, function, and composition. The cuticular envelope in insects and the outer epicuticle in crustaceans both serve as the primary barrier to permeability of the exoskeleton, preventing loss of water and ions to the external medium. Prior to and following ecdysis, there is a sequence of expression and synthesis of different proteins by the cuticular epithelium for incorporation into the pre-exuvial and post-exuvial procuticle of insects and the exocuticle and endocuticle of crustaceans. Both exhibit regional differences in cuticular composition, e.g., the articular (intersegmental) membranes of insects and the arthrodial (joint) membranes of crustaceans. The primary difference between these cuticles is the ability to mineralize. Crustaceans' cuticles express a unique suite of proteins that provide for the nucleation and deposition of calcium carbonate. Orthologs of genes discussed in the present review were mined from a recently completed cuticular transcriptome of the crayfish, Cherax quadricarinatus, providing new insights into the nature of these proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Clonal selection in xenografted TAM recapitulates the evolutionary process of myeloid leukemia in Down syndrome.

    PubMed

    Saida, Satoshi; Watanabe, Ken-ichiro; Sato-Otsubo, Aiko; Terui, Kiminori; Yoshida, Kenichi; Okuno, Yusuke; Toki, Tsutomu; Wang, RuNan; Shiraishi, Yuichi; Miyano, Satoru; Kato, Itaru; Morishima, Tatsuya; Fujino, Hisanori; Umeda, Katsutsugu; Hiramatsu, Hidefumi; Adachi, Souichi; Ito, Etsuro; Ogawa, Seishi; Ito, Mamoru; Nakahata, Tatsutoshi; Heike, Toshio

    2013-05-23

    Transient abnormal myelopoiesis (TAM) is a clonal preleukemic disorder that progresses to myeloid leukemia of Down syndrome (ML-DS) through the accumulation of genetic alterations. To investigate the mechanism of leukemogenesis in this disorder, a xenograft model of TAM was established using NOD/Shi-scid, interleukin (IL)-2Rγ(null) mice. Serial engraftment after transplantation of cells from a TAM patient who developed ML-DS a year later demonstrated their self-renewal capacity. A GATA1 mutation and no copy number alterations (CNAs) were detected in the primary patient sample by conventional genomic sequencing and CNA profiling. However, in serial transplantations, engrafted TAM-derived cells showed the emergence of divergent subclones with another GATA1 mutation and various CNAs, including a 16q deletion and 1q gain, which are clinically associated with ML-DS. Detailed genomic analysis identified minor subclones with a 16q deletion or this distinct GATA1 mutation in the primary patient sample. These results suggest that genetically heterogeneous subclones with varying leukemia-initiating potential already exist in the neonatal TAM phase, and ML-DS may develop from a pool of such minor clones through clonal selection. Our xenograft model of TAM may provide unique insight into the evolutionary process of leukemia.

  15. Performance evaluation of Sanger sequencing for the diagnosis of primary hyperoxaluria and comparison with targeted next generation sequencing

    PubMed Central

    Williams, Emma L; Bagg, Eleanor A L; Mueller, Michael; Vandrovcova, Jana; Aitman, Timothy J; Rumsby, Gill

    2015-01-01

    Definitive diagnosis of primary hyperoxaluria (PH) currently utilizes sequential Sanger sequencing of the AGXT, GRPHR, and HOGA1 genes but efficacy is unproven. This analysis is time-consuming, relatively expensive, and delays in diagnosis and inappropriate treatment can occur if not pursued early in the diagnostic work-up. We reviewed testing outcomes of Sanger sequencing in 200 consecutive patient samples referred for analysis. In addition, the Illumina Truseq custom amplicon system was evaluated for paralleled next-generation sequencing (NGS) of AGXT,GRHPR, and HOGA1 in 90 known PH patients. AGXT sequencing was requested in all patients, permitting a diagnosis of PH1 in 50%. All remaining patients underwent targeted exon sequencing of GRHPR and HOGA1 with 8% diagnosed with PH2 and 8% with PH3. Complete sequencing of both GRHPR and HOGA1 was not requested in 25% of patients referred leaving their diagnosis in doubt. NGS analysis showed 98% agreement with Sanger sequencing and both approaches had 100% diagnostic specificity. Diagnostic sensitivity of Sanger sequencing was 98% and for NGS it was 97%. NGS has comparable diagnostic performance to Sanger sequencing for the diagnosis of PH and, if implemented, would screen for all forms of PH simultaneously ensuring prompt diagnosis at decreased cost. PMID:25629080

  16. The tmRNA website

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Corey M.; Williams, Kelly P.

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  17. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  18. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE PAGES

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  19. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kelly Porter; Lau, Britney Yan

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  20. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  1. Almost periodic solutions to difference equations

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1975-01-01

    The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.

  2. Classification of Particle Numbers with Unique Heitmann-Radin Minimizer

    NASA Astrophysics Data System (ADS)

    De Luca, Lucia; Friesecke, Gero

    2017-06-01

    We show that minimizers of the Heitmann-Radin energy (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980) are unique if and only if the particle number N belongs to an infinite sequence whose first thirty-five elements are 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, 27, 30, 33, 37, 40, 44, 48, 52, 56, 61, 65, 70, 75, 80, 85, 91, 96, 102, 108, 114, 120 (see the paper for a closed-form description of this sequence). The proof relies on the discrete differential geometry techniques introduced in De Luca and Friesecke (Crystallization in two dimensions and a discrete Gauss-Bonnet Theorem, 2016).

  3. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome

    PubMed Central

    Durham, Bryndan P.; Grote, Jana; Whittaker, Kerry A.; Bender, Sara J.; Luo, Haiwei; Grim, Sharon L.; Brown, Julia M.; Casey, John R.; Dron, Antony; Florez-Leiva, Lennin; Krupke, Andreas; Luria, Catherine M.; Mine, Aric H.; Nigro, Olivia D.; Pather, Santhiska; Talarmin, Agathe; Wear, Emma K.; Weber, Thomas S.; Wilson, Jesse M.; Church, Matthew J.; DeLong, Edward F.; Karl, David M.; Steward, Grieg F.; Eppley, John M.; Kyrpides, Nikos C.; Schuster, Stephan; Rappé, Michael S.

    2014-01-01

    Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters. PMID:25197450

  4. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome.

    PubMed

    Durham, Bryndan P; Grote, Jana; Whittaker, Kerry A; Bender, Sara J; Luo, Haiwei; Grim, Sharon L; Brown, Julia M; Casey, John R; Dron, Antony; Florez-Leiva, Lennin; Krupke, Andreas; Luria, Catherine M; Mine, Aric H; Nigro, Olivia D; Pather, Santhiska; Talarmin, Agathe; Wear, Emma K; Weber, Thomas S; Wilson, Jesse M; Church, Matthew J; DeLong, Edward F; Karl, David M; Steward, Grieg F; Eppley, John M; Kyrpides, Nikos C; Schuster, Stephan; Rappé, Michael S

    2014-06-15

    Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.

  5. Ub-ISAP: a streamlined UNIX pipeline for mining unique viral vector integration sites from next generation sequencing data.

    PubMed

    Kamboj, Atul; Hallwirth, Claus V; Alexander, Ian E; McCowage, Geoffrey B; Kramer, Belinda

    2017-06-17

    The analysis of viral vector genomic integration sites is an important component in assessing the safety and efficiency of patient treatment using gene therapy. Alongside this clinical application, integration site identification is a key step in the genetic mapping of viral elements in mutagenesis screens that aim to elucidate gene function. We have developed a UNIX-based vector integration site analysis pipeline (Ub-ISAP) that utilises a UNIX-based workflow for automated integration site identification and annotation of both single and paired-end sequencing reads. Reads that contain viral sequences of interest are selected and aligned to the host genome, and unique integration sites are then classified as transcription start site-proximal, intragenic or intergenic. Ub-ISAP provides a reliable and efficient pipeline to generate large datasets for assessing the safety and efficiency of integrating vectors in clinical settings, with broader applications in cancer research. Ub-ISAP is available as an open source software package at https://sourceforge.net/projects/ub-isap/ .

  6. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block.

    PubMed Central

    Yazaki, A; Ohno, S

    1983-01-01

    Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948

  7. THAP1/DYT6 sequence variants in non-DYT1 early-onset primary dystonia in China and their effects on RNA expression.

    PubMed

    Cheng, Fu Bo; Ozelius, Laurie J; Wan, Xin Hua; Feng, Jia Chun; Ma, Ling Yan; Yang, Ying Mai; Wang, Lin

    2012-02-01

    Mutations in the THAP1 gene were recently identified as the cause of DYT6 primary dystonia. More than 40 mutations in this gene have been described in different populations. However, no previous report has identified sequence variations that affect the transcript process of the THAP1 gene. In addition, the mutation frequency in Chinese early-onset primary dystonia has not been well characterized. One hundred and two unrelated patients with non-DYT1 early-onset primary dystonia (age at onset <26 years), family members of participants with mutations, and 200 neurologically normal controls were screened for THAP1 gene mutations. The effects of the identified mutations on RNA expression were analyzed using semi-quantitative real-time PCR. Seven sequence variants (c.63_66del TTTC, c.161G>T, c.224A>T, c.267G>A, c.339T>C, c.449A>C, and c.539T>C) were identified in this group of patients (6.9%). In this cohort, 15 subjects (seven unrelated patients and eight family members) were detected to have THAP1 sequence variants. Among these 15 subjects, 11 were manifested (penetrance of DYT6 was 73.3%) and seven presented with craniocervical involvement (63.6%). However, one patient manifested paroxysmal headshake, and one presented with essential hand tremor. Semi-quantitative real-time PCR indicated that a novel silent mutation (c.267G>A) decreased the expression of THAP1 in human lymphocytes. Our findings indicated that THAP1 sequence variants are not common in non-DYT1 early-onset primary dystonia in China and that the clinical manifestation may vary. One silent mutation (c.267G>A) was shown to affect THAP1 expression.

  8. Mutation analysis of seven known glaucoma-associated genes in Chinese patients with glaucoma.

    PubMed

    Huang, Xiaobo; Li, Miaoling; Guo, Xiangming; Li, Shiqiang; Xiao, Xueshan; Jia, Xiaoyun; Liu, Xing; Zhang, Qingjiong

    2014-05-13

    To evaluate mutations in the MYOC, WDR36, OPTN, OPA1, NTF4, CYP1B1, and LTBP2 genes in a cohort of Chinese patients with primary glaucoma. Genomic DNA was prepared from 683 unrelated patients, including 50 with primary congenital glaucoma, 104 with juvenile open-angle glaucoma (JOAG), 186 with primary open-angle glaucoma (POAG), and 343 with primary angle-closure glaucoma (PACG). Mutations in the seven genes in 257 patients (36 with JOAG, 89 with POAG, and 132 with PACG) were initially analyzed by exome sequencing and then confirmed by Sanger sequencing. In addition, Sanger sequencing was used to detect MYOC mutations in the remaining 426 patients. Exome sequencing identified 19 mutations (6 in MYOC, 9 in WDR36, 3 in OPA1, and 1 in OPTN) in 20 of 257 patients, including 4 patients with JOAG, 8 patients with POAG, and 8 patients with PACG. No mutation was detected in the other three genes. In addition, Sanger sequencing detected additional MYOC mutations in 5 of the remaining 426 patients, including 3 patients with JOAG and 2 patients with POAG. Twenty-two mutations in MYOC, WDR36, OPA1, and OPTN were detected in 25 of the 683 patients with primary glaucoma, including nine MYOC mutations in 11 patients, nine WDR36 mutations in 11 patients, three OPA1 mutations in 3 patients, and one OPTN mutation in a patient who also carried a MYOC mutation. Eight mutations in MYOC, WDR36, and OPA1 in 8 of the 343 PACG patients are of uncertain significance and need to be analyzed further. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  9. Generation, annotation and analysis of ESTs from Trichoderma harzianum CECT 2413

    PubMed Central

    Vizcaíno, Juan Antonio; González, Francisco Javier; Suárez, M Belén; Redondo, José; Heinrich, Julian; Delgado-Jarana, Jesús; Hermosa, Rosa; Gutiérrez, Santiago; Monte, Enrique; Llobell, Antonio; Rey, Manuel

    2006-01-01

    Background The filamentous fungus Trichoderma harzianum is used as biological control agent of several plant-pathogenic fungi. In order to study the genome of this fungus, a functional genomics project called "TrichoEST" was developed to give insights into genes involved in biological control activities using an approach based on the generation of expressed sequence tags (ESTs). Results Eight different cDNA libraries from T. harzianum strain CECT 2413 were constructed. Different growth conditions involving mainly different nutrient conditions and/or stresses were used. We here present the analysis of the 8,710 ESTs generated. A total of 3,478 unique sequences were identified of which 81.4% had sequence similarity with GenBank entries, using the BLASTX algorithm. Using the Gene Ontology hierarchy, we performed the annotation of 51.1% of the unique sequences and compared its distribution among the gene libraries. Additionally, the InterProScan algorithm was used in order to further characterize the sequences. The identification of the putatively secreted proteins was also carried out. Later, based on the EST abundance, we examined the highly expressed genes and a hydrophobin was identified as the gene expressed at the highest level. We compared our collection of ESTs with the previous collections obtained from Trichoderma species and we also compared our sequence set with different complete eukaryotic genomes from several animals, plants and fungi. Accordingly, the presence of similar sequences in different kingdoms was also studied. Conclusion This EST collection and its annotation provide a significant resource for basic and applied research on T. harzianum, a fungus with a high biotechnological interest. PMID:16872539

  10. Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts

    PubMed Central

    Sikosek, Tobias; Bornberg-Bauer, Erich; Chan, Hue Sun

    2012-01-01

    Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. PMID:23028272

  11. A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

    PubMed

    Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav

    2013-07-18

    Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.

  12. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies

    PubMed Central

    2014-01-01

    Background The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination. Results We develop a novel strategy to sequence the genome of loblolly pine that combines unique aspects of pine reproductive biology and genome assembly methodology. We use a whole genome shotgun approach relying primarily on next generation sequence generated from a single haploid seed megagametophyte from a loblolly pine tree, 20-1010, that has been used in industrial forest tree breeding. The resulting sequence and assembly was used to generate a draft genome spanning 23.2 Gbp and containing 20.1 Gbp with an N50 scaffold size of 66.9 kbp, making it a significant improvement over available conifer genomes. The long scaffold lengths allow the annotation of 50,172 gene models with intron lengths averaging over 2.7 kbp and sometimes exceeding 100 kbp in length. Analysis of orthologous gene sets identifies gene families that may be unique to conifers. We further characterize and expand the existing repeat library based on the de novo analysis of the repetitive content, estimated to encompass 82% of the genome. Conclusions In addition to its value as a resource for researchers and breeders, the loblolly pine genome sequence and assembly reported here demonstrates a novel approach to sequencing the large and complex genomes of this important group of plants that can now be widely applied. PMID:24647006

  13. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    PubMed Central

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  14. Methods for chromosome-specific staining

    DOEpatents

    Gray, J.W.; Pinkel, D.

    1995-09-05

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogeneous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include ways for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes. 3 figs.

  15. Methods and compositions for chromosome-specific staining

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel

    2003-07-22

    Methods and compositions for chromosome-specific staining are provided. Compositions comprise heterogenous mixtures of labeled nucleic acid fragments having substantially complementary base sequences to unique sequence regions of the chromosomal DNA for which their associated staining reagent is specific. Methods include methods for making the chromosome-specific staining compositions of the invention, and methods for applying the staining compositions to chromosomes.

  16. Evaluation of DNA Binding Drugs as Inhibitors of ESX, and ETS Domain Transcription Factor Associated With Breast Cancer: Effects of ESX/DNA Complex Disruption

    DTIC Science & Technology

    2000-08-01

    4). Sequence recognition of all four DNA bases is achieved by positioning an N- methylimidazole opposite guanine or N-methylpyrrole opposite...unique sequences of DNA based upon selective binding motifs to all four DNA bases , although relatively little is known about the ability of these agents to

  17. Metagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India

    PubMed Central

    Pathak, Ashish; Green, Stefan J.; Joshi, Amit; Chauhan, Ashvini

    2015-01-01

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat. PMID:25700403

  18. Draft Genome Sequence of Corynebacterium kefirresidentii SB, Isolated from Kefir.

    PubMed

    Blasche, Sonja; Kim, Yongkyu; Patil, Kiran R

    2017-09-14

    The genus Corynebacterium includes Gram-positive species with a high G+C content. We report here a novel species, Corynebacterium kefirresidentii SB, isolated from kefir grains collected in Germany. Its draft genome sequence was remarkably dissimilar (average nucleotide identity, 76.54%) to those of other Corynebacterium spp., confirming that this is a unique novel species. Copyright © 2017 Blasche et al.

  19. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID:16772040

  20. Unique Features of the Loblolly Pine (Pinus taeda L.) Megagenome Revealed Through Sequence Annotation

    PubMed Central

    Wegrzyn, Jill L.; Liechty, John D.; Stevens, Kristian A.; Wu, Le-Shin; Loopstra, Carol A.; Vasquez-Gross, Hans A.; Dougherty, William M.; Lin, Brian Y.; Zieve, Jacob J.; Martínez-García, Pedro J.; Holt, Carson; Yandell, Mark; Zimin, Aleksey V.; Yorke, James A.; Crepeau, Marc W.; Puiu, Daniela; Salzberg, Steven L.; de Jong, Pieter J.; Mockaitis, Keithanne; Main, Doreen; Langley, Charles H.; Neale, David B.

    2014-01-01

    The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20–40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.), which comprises 20.1 Gb of sequence. The MAKER-P annotation pipeline combined evidence-based alignments and ab initio predictions to generate 50,172 gene models, of which 15,653 are classified as high confidence. Clustering these gene models with 13 other plant species resulted in 20,646 gene families, of which 1554 are predicted to be unique to conifers. Among the conifer gene families, 159 are composed exclusively of loblolly pine members. The gene models for loblolly pine have the highest median and mean intron lengths of 24 fully sequenced plant genomes. Conifer genomes are full of repetitive DNA, with the most significant contributions from long-terminal-repeat retrotransposons. In depth analysis of the tandem and interspersed repetitive content yielded a combined estimate of 82%. PMID:24653211

  1. TCRmodel: high resolution modeling of T cell receptors from sequence.

    PubMed

    Gowthaman, Ragul; Pierce, Brian G

    2018-05-22

    T cell receptors (TCRs), along with antibodies, are responsible for specific antigen recognition in the adaptive immune response, and millions of unique TCRs are estimated to be present in each individual. Understanding the structural basis of TCR targeting has implications in vaccine design, autoimmunity, as well as T cell therapies for cancer. Given advances in deep sequencing leading to immune repertoire-level TCR sequence data, fast and accurate modeling methods are needed to elucidate shared and unique 3D structural features of these molecules which lead to their antigen targeting and cross-reactivity. We developed a new algorithm in the program Rosetta to model TCRs from sequence, and implemented this functionality in a web server, TCRmodel. This web server provides an easy to use interface, and models are generated quickly that users can investigate in the browser and download. Benchmarking of this method using a set of nonredundant recently released TCR crystal structures shows that models are accurate and compare favorably to models from another available modeling method. This server enables the community to obtain insights into TCRs of interest, and can be combined with methods to model and design TCR recognition of antigens. The TCRmodel server is available at: http://tcrmodel.ibbr.umd.edu/.

  2. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov

    NASA Technical Reports Server (NTRS)

    Wisotzkey, J. D.; Jurtshuk, P. Jr; Fox, G. E.; Deinhard, G.; Poralla, K.

    1992-01-01

    Comparative 16S rRNA (rDNA) sequence analyses performed on the thermophilic Bacillus species Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus revealed that these organisms are sufficiently different from the traditional Bacillus species to warrant reclassification in a new genus, Alicyclobacillus gen. nov. An analysis of 16S rRNA sequences established that these three thermoacidophiles cluster in a group that differs markedly from both the obligately thermophilic organisms Bacillus stearothermophilus and the facultatively thermophilic organism Bacillus coagulans, as well as many other common mesophilic and thermophilic Bacillus species. The thermoacidophilic Bacillus species B. acidocaldarius, B. acidoterrestris, and B. cycloheptanicus also are unique in that they possess omega-alicylic fatty acid as the major natural membranous lipid component, which is a rare phenotype that has not been found in any other Bacillus species characterized to date. This phenotype, along with the 16S rRNA sequence data, suggests that these thermoacidophiles are biochemically and genetically unique and supports the proposal that they should be reclassified in the new genus Alicyclobacillus.

  3. Applying the Concept of Peptide Uniqueness to Anti-Polio Vaccination.

    PubMed

    Kanduc, Darja; Fasano, Candida; Capone, Giovanni; Pesce Delfino, Antonella; Calabrò, Michele; Polimeno, Lorenzo

    2015-01-01

    Although rare, adverse events may associate with anti-poliovirus vaccination thus possibly hampering global polio eradication worldwide. To design peptide-based anti-polio vaccines exempt from potential cross-reactivity risks and possibly able to reduce rare potential adverse events such as the postvaccine paralytic poliomyelitis due to the tendency of the poliovirus genome to mutate. Proteins from poliovirus type 1, strain Mahoney, were analyzed for amino acid sequence identity to the human proteome at the pentapeptide level, searching for sequences that (1) have zero percent of identity to human proteins, (2) are potentially endowed with an immunologic potential, and (3) are highly conserved among poliovirus strains. Sequence analyses produced a set of consensus epitopic peptides potentially able to generate specific anti-polio immune responses exempt from cross-reactivity with the human host. Peptide sequences unique to poliovirus proteins and conserved among polio strains might help formulate a specific and universal anti-polio vaccine able to react with multiple viral strains and exempt from the burden of possible cross-reactions with human proteins. As an additional advantage, using a peptide-based vaccine instead of current anti-polio DNA vaccines would eliminate the rare post-polio poliomyelitis cases and other disabling symptoms that may appear following vaccination.

  4. Transcriptomic Analysis of the Salivary Glands of an Invasive Whitefly

    PubMed Central

    Su, Yun-Lin; Li, Jun-Min; Li, Meng; Luan, Jun-Bo; Ye, Xiao-Dong; Wang, Xiao-Wei; Liu, Shu-Sheng

    2012-01-01

    Background Some species of the whitefly Bemisia tabaci complex cause tremendous losses to crops worldwide through feeding directly and virus transmission indirectly. The primary salivary glands of whiteflies are critical for their feeding and virus transmission. However, partly due to their tiny size, research on whitefly salivary glands is limited and our knowledge on these glands is scarce. Methodology/Principal Findings We sequenced the transcriptome of the primary salivary glands of the Mediterranean species of B. tabaci complex using an effective cDNA amplification method in combination with short read sequencing (Illumina). In a single run, we obtained 13,615 unigenes. The quantity of the unigenes obtained from the salivary glands of the whitefly is at least four folds of the salivary gland genes from other plant-sucking insects. To reveal the functions of the primary glands, sequence similarity search and comparisons with the whole transcriptome of the whitefly were performed. The results demonstrated that the genes related to metabolism and transport were significantly enriched in the primary salivary glands. Furthermore, we found that a number of highly expressed genes in the salivary glands might be involved in secretory protein processing, secretion and virus transmission. To identify potential proteins of whitefly saliva, the translated unigenes were put into secretory protein prediction. Finally, 295 genes were predicted to encode secretory proteins and some of them might play important roles in whitefly feeding. Conclusions/Significance: The combined method of cDNA amplification, Illumina sequencing and de novo assembly is suitable for transcriptomic analysis of tiny organs in insects. Through analysis of the transcriptome, genomic features of the primary salivary glands were dissected and biologically important proteins, especially secreted proteins, were predicted. Our findings provide substantial sequence information for the primary salivary glands of whiteflies and will be the basis for future studies on whitefly-plant interactions and virus transmission. PMID:22745728

  5. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution.

    PubMed

    Kim, Hoon; Zheng, Siyuan; Amini, Seyed S; Virk, Selene M; Mikkelsen, Tom; Brat, Daniel J; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E; Cohen, Mark L; Van Meir, Erwin G; Scarpace, Lisa; Laird, Peter W; Weinstein, John N; Lander, Eric S; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S; Verhaak, Roel G W

    2015-03-01

    Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼ 7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. © 2015 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Crystal structure of Toll-like receptor adaptor MAL/TIRAP reveals the molecular basis for signal transduction and disease protection

    PubMed Central

    Valkov, Eugene; Stamp, Anna; DiMaio, Frank; Baker, David; Verstak, Brett; Roversi, Pietro; Kellie, Stuart; Sweet, Matthew J.; Mansell, Ashley; Gay, Nicholas J.; Martin, Jennifer L.; Kobe, Bostjan

    2011-01-01

    Initiation of the innate immune response requires agonist recognition by pathogen-recognition receptors such as the Toll-like receptors (TLRs). Toll/interleukin-1 receptor (TIR) domain-containing adaptors are critical in orchestrating the signal transduction pathways after TLR and interleukin-1 receptor activation. Myeloid differentiation primary response gene 88 (MyD88) adaptor-like (MAL)/TIR domain-containing adaptor protein (TIRAP) is involved in bridging MyD88 to TLR2 and TLR4 in response to bacterial infection. Genetic studies have associated a number of unique single-nucleotide polymorphisms in MAL with protection against invasive microbial infection, but a molecular understanding has been hampered by a lack of structural information. The present study describes the crystal structure of MAL TIR domain. Significant structural differences exist in the overall fold of MAL compared with other TIR domain structures: A sequence motif comprising a β-strand in other TIR domains instead corresponds to a long loop, placing the functionally important “BB loop” proline motif in a unique surface position in MAL. The structure suggests possible dimerization and MyD88-interacting interfaces, and we confirm the key interface residues by coimmunoprecipitation using site-directed mutants. Jointly, our results provide a molecular and structural basis for the role of MAL in TLR signaling and disease protection. PMID:21873236

  7. Are Attitudes Toward Writing and Reading Separable Constructs? A Study With Primary Grade Children

    PubMed Central

    Graham, Steve; Berninger, Virginia; Abbott, Robert

    2012-01-01

    This study examined whether or not attitude towards writing is a unique and separable construct from attitude towards reading for young, beginning writers. Participants were 128 first-grade children (70 girls and 58 boys) and 113 third-grade students (57 girls and 56 boys). Each child was individually administered a 24 item attitude measure, which contained 12 items assessing attitude towards writing and 12 parallel items for reading. Students also wrote a narrative about a personal event in their life. A factor analysis of the 24 item attitude measure provided evidence that generally support the contention that writing and reading attitudes are separable constructs for young beginning writers, as it yielded three factors: a writing attitude factor with 9 items, a reading attitude factor with 9 parallel items, and an attitude about literacy interactions with others factor containing 4 items (2 items in writing and 2 parallel items in reading). Further validation that attitude towards writing is a separable construct from attitude towards reading was obtained at the third-grade level, where writing attitude made a unique and significant contribution, beyond the other two attitude measures, to the prediction of three measures of writing: quality, length, and longest correct word sequence. At the first-grade level, none of the 3 attitude measures predicted students’ writing performance. Finally, girls had more positive attitudes concerning reading and writing than boys. PMID:22736933

  8. Expression of Chicken DEC205 Reflects the Unique Structure and Function of the Avian Immune System

    PubMed Central

    Staines, Karen; Young, John R.; Butter, Colin

    2013-01-01

    The generation of appropriate adaptive immune responses relies critically on dendritic cells, about which relatively little is known in chickens, a vital livestock species, in comparison with man and mouse. We cloned and sequenced chicken DEC205 cDNA and used this knowledge to produce quantitative PCR assays and monoclonal antibodies to study expression of DEC205 as well as CD83. The gene structure of DEC205 was identical to those of other species. Transcripts of both genes were found at higher levels in lymphoid tissues and the expression of DEC205 in normal birds had a characteristic distribution in the primary lymphoid organs. In spleen, DEC205 was seen on cells ideally located to trap antigen. In thymus it was found on cells thought to participate in the education of T cells, and in the bursa on cells that may be involved in presentation of antigen to B cells and regulation of B cell migration. The expression of DEC205 on cells other than antigen presenting cells (APC) is also described. Isolated splenocytes strongly expressing DEC205 but not the KUL01 antigen have morphology similar to mammalian dendritic cells and the distinct expression of DEC205 within the avian-specific Bursa of Fabricius alludes to a unique function in this organ of B cell diversification. PMID:23326318

  9. Predicted secondary structure similarity in the absence of primary amino acid sequence homology: hepatitis B virus open reading frames.

    PubMed Central

    Schaeffer, E; Sninsky, J J

    1984-01-01

    Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835

  10. Transformation of temporal sequences in the zebra finch auditory system

    PubMed Central

    Lim, Yoonseob; Lagoy, Ryan; Shinn-Cunningham, Barbara G; Gardner, Timothy J

    2016-01-01

    This study examines how temporally patterned stimuli are transformed as they propagate from primary to secondary zones in the thalamorecipient auditory pallium in zebra finches. Using a new class of synthetic click stimuli, we find a robust mapping from temporal sequences in the primary zone to distinct population vectors in secondary auditory areas. We tested whether songbirds could discriminate synthetic click sequences in an operant setup and found that a robust behavioral discrimination is present for click sequences composed of intervals ranging from 11 ms to 40 ms, but breaks down for stimuli composed of longer inter-click intervals. This work suggests that the analog of the songbird auditory cortex transforms temporal patterns to sequence-selective population responses or ‘spatial codes', and that these distinct population responses contribute to behavioral discrimination of temporally complex sounds. DOI: http://dx.doi.org/10.7554/eLife.18205.001 PMID:27897971

  11. RNAi-mediated endogene silencing in strawberry fruit: detection of primary and secondary siRNAs by deep sequencing.

    PubMed

    Härtl, Katja; Kalinowski, Gregor; Hoffmann, Thomas; Preuss, Anja; Schwab, Wilfried

    2017-05-01

    RNA interference (RNAi) has been exploited as a reverse genetic tool for functional genomics in the nonmodel species strawberry (Fragaria × ananassa) since 2006. Here, we analysed for the first time different but overlapping nucleotide sections (>200 nt) of two endogenous genes, FaCHS (chalcone synthase) and FaOMT (O-methyltransferase), as inducer sequences and a transitive vector system to compare their gene silencing efficiencies. In total, ten vectors were assembled each containing the nucleotide sequence of one fragment in sense and corresponding antisense orientation separated by an intron (inverted hairpin construct, ihp). All sequence fragments along the full lengths of both target genes resulted in a significant down-regulation of the respective gene expression and related metabolite levels. Quantitative PCR data and successful application of a transitive vector system coinciding with a phenotypic change suggested propagation of the silencing signal. The spreading of the signal in strawberry fruit in the 3' direction was shown for the first time by the detection of secondary small interfering RNAs (siRNAs) outside of the primary targets by deep sequencing. Down-regulation of endogenes by the transitive method was less effective than silencing by ihp constructs probably because the numbers of primary siRNAs exceeded the quantity of secondary siRNAs by three orders of magnitude. Besides, we observed consistent hotspots of primary and secondary siRNA formation along the target sequence which fall within a distance of less than 200 nt. Thus, ihp vectors seem to be superior over the transitive vector system for functional genomics in strawberry fruit. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.

    PubMed

    Yeh, Chuan-Ming; Liu, Zhong-Jian; Tsai, Wen-Chieh

    2018-01-01

    Next-generation sequencing technologies are revolutionizing biology by permitting, transcriptome sequencing, whole-genome sequencing and resequencing, and genome-wide single nucleotide polymorphism profiling. Orchid research has benefited from this breakthrough, and a few orchid genomes are now available; new biological questions can be approached and new breeding strategies can be designed. The first part of this review describes the unique features of orchid biology. The second part provides an overview of the current next-generation sequencing platforms, many of which are already used in plant laboratories. The third part summarizes the state of orchid transcriptome and genome sequencing and illustrates current achievements. The genetic sequences currently obtained will not only provide a broad scope for the study of orchid biology, but also serves as a starting point for uncovering the mystery of orchid evolution.

  13. Multiplex analysis of DNA

    DOEpatents

    Church, George M.; Kieffer-Higgins, Stephen

    1992-01-01

    This invention features vectors and a method for sequencing DNA. The method includes the steps of: a) ligating the DNA into a vector comprising a tag sequence, the tag sequence includes at least 15 bases, wherein the tag sequence will not hybridize to the DNA under stringent hybridization conditions and is unique in the vector, to form a hybrid vector, b) treating the hybrid vector in a plurality of vessels to produce fragments comprising the tag sequence, wherein the fragments differ in length and terminate at a fixed known base or bases, wherein the fixed known base or bases differs in each vessel, c) separating the fragments from each vessel according to their size, d) hybridizing the fragments with an oligonucleotide able to hybridize specifically with the tag sequence, and e) detecting the pattern of hybridization of the tag sequence, wherein the pattern reflects the nucleotide sequence of the DNA.

  14. Molecular characterization of Taenia multiceps isolates from Gansu Province, China by sequencing of mitochondrial cytochrome C oxidase subunit 1.

    PubMed

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan

    2013-04-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

  15. Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1

    PubMed Central

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu

    2013-01-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087

  16. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I.1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea

    PubMed Central

    Zhalnina, Kateryna V.; Dias, Raquel; Leonard, Michael T.; Dorr de Quadros, Patricia; Camargo, Flavio A. O.; Drew, Jennifer C.; Farmerie, William G.; Daroub, Samira H.; Triplett, Eric W.

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group. PMID:24999826

  17. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    PubMed Central

    Van Nostrand, Joy D.; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong

    2017-01-01

    Illumina’s MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1–3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility. PMID:28453559

  18. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Chongqing; Wu, Liyou; Qin, Yujia

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less

  19. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    DOE PAGES

    Wen, Chongqing; Wu, Liyou; Qin, Yujia; ...

    2017-04-28

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less

  20. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform.

    PubMed

    Wen, Chongqing; Wu, Liyou; Qin, Yujia; Van Nostrand, Joy D; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong

    2017-01-01

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.

  1. Providing Perinatal Mental Health Services in Pediatric Primary Care

    ERIC Educational Resources Information Center

    Talmi, Ayelet; Stafford, Brian; Buchholz, Melissa

    2009-01-01

    After birth, newborns and their caregivers are seen routinely and frequently in pediatric primary care settings. The close succession of visits in the first few months of life puts pediatric primary care professionals in a unique position to enhance infant mental health by developing strong relationships with caregivers, supporting babies and…

  2. Adenosine-to-Inosine Editing of MicroRNA-487b Alters Target Gene Selection After Ischemia and Promotes Neovascularization.

    PubMed

    van der Kwast, Reginald V C T; van Ingen, Eva; Parma, Laura; Peters, Hendrika A B; Quax, Paul H A; Nossent, A Yaël

    2018-02-02

    Adenosine-to-inosine editing of microRNAs has the potential to cause a shift in target site selection. 2'-O-ribose-methylation of adenosine residues, however, has been shown to inhibit adenosine-to-inosine editing. To investigate whether angiomiR miR487b is subject to adenosine-to-inosine editing or 2'-O-ribose-methylation during neovascularization. Complementary DNA was prepared from C57BL/6-mice subjected to hindlimb ischemia. Using Sanger sequencing and endonuclease digestion, we identified and validated adenosine-to-inosine editing of the miR487b seed sequence. In the gastrocnemius muscle, pri-miR487b editing increased from 6.7±0.4% before to 11.7±1.6% ( P =0.02) 1 day after ischemia. Edited pri-miR487b is processed into a novel microRNA, edited miR487b, which is also upregulated after ischemia. We confirmed editing of miR487b in multiple human primary vascular cell types. Short interfering RNA-mediated knockdown demonstrated that editing is adenosine deaminase acting on RNA 1 and 2 dependent. Using reverse-transcription at low dNTP concentrations followed by quantitative-PCR, we found that the same adenosine residue is methylated in mice and human primary cells. In the murine gastrocnemius, the estimated methylation fraction increased from 32.8±14% before to 53.6±12% 1 day after ischemia. Short interfering RNA knockdown confirmed that methylation is fibrillarin dependent. Although we could not confirm that methylation directly inhibits editing, we do show that adenosine deaminase acting on RNA 1 and 2 and fibrillarin negatively influence each other's expression. Using multiple luciferase reporter gene assays, we could demonstrate that editing results in a complete switch of target site selection. In human primary cells, we confirmed the shift in miR487b targeting after editing, resulting in a edited miR487b targetome that is enriched for multiple proangiogenic pathways. Furthermore, overexpression of edited miR487b, but not wild-type miR487b, stimulates angiogenesis in both in vitro and ex vivo assays. MiR487b is edited in the seed sequence in mice and humans, resulting in a novel, proangiogenic microRNA with a unique targetome. The rate of miR487b editing, as well as 2'-O-ribose-methylation, is increased in murine muscle tissue during postischemic neovascularization. Our findings suggest miR487b editing plays an intricate role in postischemic neovascularization. © 2017 American Heart Association, Inc.

  3. Mutational patterns in chemotherapy resistant muscle-invasive bladder cancer.

    PubMed

    Liu, David; Abbosh, Philip; Keliher, Daniel; Reardon, Brendan; Miao, Diana; Mouw, Kent; Weiner-Taylor, Amaro; Wankowicz, Stephanie; Han, Garam; Teo, Min Yuen; Cipolla, Catharine; Kim, Jaegil; Iyer, Gopa; Al-Ahmadie, Hikmat; Dulaimi, Essel; Chen, David Y T; Alpaugh, R Katherine; Hoffman-Censits, Jean; Garraway, Levi A; Getz, Gad; Carter, Scott L; Bellmunt, Joaquim; Plimack, Elizabeth R; Rosenberg, Jonathan E; Van Allen, Eliezer M

    2017-12-19

    Despite continued widespread use, the genomic effects of cisplatin-based chemotherapy and implications for subsequent treatment are incompletely characterized. Here, we analyze whole exome sequencing of matched pre- and post-neoadjuvant cisplatin-based chemotherapy primary bladder tumor samples from 30 muscle-invasive bladder cancer patients. We observe no overall increase in tumor mutational burden post-chemotherapy, though a significant proportion of subclonal mutations are unique to the matched pre- or post-treatment tumor, suggesting chemotherapy-induced and/or spatial heterogeneity. We subsequently identify and validate a novel mutational signature in post-treatment tumors consistent with known characteristics of cisplatin damage and repair. We find that post-treatment tumor heterogeneity predicts worse overall survival, and further observe alterations in cell-cycle and immune checkpoint regulation genes in post-treatment tumors. These results provide insight into the clinical and genomic dynamics of tumor evolution with cisplatin-based chemotherapy, suggest mechanisms of clinical resistance, and inform development of clinically relevant biomarkers and trials of combination therapies.

  4. In vitro transcription of a cloned mouse ribosomal RNA gene.

    PubMed Central

    Mishima, Y; Yamamoto, O; Kominami, R; Muramatsu, M

    1981-01-01

    An in vitro transcription system which utilizes cloned mouse ribosomal RNA gene (rDNA) fragments and a mouse cell extract has been developed. RNA polymerases I is apparently responsible for this transcription as evidenced by the complete resistance to a high concentration (200 micrograms/ml) of alpha-amanitin. Run-off products obtained with three different truncated rDNA fragments indicated that RNA was transcribed from a unique site of rDNA. The S1 nuclease protection mapping of the in vitro product and of in vivo 45S RNA confirmed this site, indicating that, in this in vitro system, transcription of rDNA started from the same site as in vivo. This site is located at several hundred nucleotides upstream from the putative initiation site reported by us (1) and by others (2). Some sequence homology surrounding this region was noted among mouse, Xenopus laevis and Drosophila melanogaster. The data also suggest that some processing of the primary transcript occurs in this in vitro system. Images PMID:6278446

  5. Copper metallothioneins.

    PubMed

    Calvo, Jenifer; Jung, Hunmin; Meloni, Gabriele

    2017-04-01

    Metallothioneins (MTs) are a class of low molecular weight and cysteine-rich metal binding proteins present in all the branches of the tree of life. MTs efficiently bind with high affinity several essential and toxic divalent and monovalent transition metals by forming characteristic polynuclear metal-thiolate clusters within their structure. MTs fulfil multiple biological functions related to their metal binding properties, with essential roles in both Zn(II) and Cu(I) homeostasis as well as metal detoxification. Depending on the organism considered, the primary sequence, and the specific physiological and metabolic status, Cu(I)-bound MT isoforms have been isolated, and their chemistry and biology characterized. Besides the recognized role in the biochemistry of divalent metals, it is becoming evident that unique biological functions in selectively controlling copper levels, its reactivity as well as copper-mediated biochemical processes have evolved in some members of the MT superfamily. Selected examples are reviewed to highlight the peculiar chemical properties and biological functions of copper MTs. © 2016 IUBMB Life, 69(4):236-245, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    PubMed

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  7. On the joint spectral density of bivariate random sequences. Thesis Technical Report No. 21

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1995-01-01

    For univariate random sequences, the power spectral density acts like a probability density function of the frequencies present in the sequence. This dissertation extends that concept to bivariate random sequences. For this purpose, a function called the joint spectral density is defined that represents a joint probability weighing of the frequency content of pairs of random sequences. Given a pair of random sequences, the joint spectral density is not uniquely determined in the absence of any constraints. Two approaches to constraining the sequences are suggested: (1) assume the sequences are the margins of some stationary random field, (2) assume the sequences conform to a particular model that is linked to the joint spectral density. For both approaches, the properties of the resulting sequences are investigated in some detail, and simulation is used to corroborate theoretical results. It is concluded that under either of these two constraints, the joint spectral density can be computed from the non-stationary cross-correlation.

  8. Applications of Single-Cell Sequencing for Multiomics.

    PubMed

    Xu, Yungang; Zhou, Xiaobo

    2018-01-01

    Single-cell sequencing interrogates the sequence or chromatin information from individual cells with advanced next-generation sequencing technologies. It provides a higher resolution of cellular differences and a better understanding of the underlying genetic and epigenetic mechanisms of an individual cell in the context of its survival and adaptation to microenvironment. However, it is more challenging to perform single-cell sequencing and downstream data analysis, owing to the minimal amount of starting materials, sample loss, and contamination. In addition, due to the picogram level of the amount of nucleic acids used, heavy amplification is often needed during sample preparation of single-cell sequencing, resulting in the uneven coverage, noise, and inaccurate quantification of sequencing data. All these unique properties raise challenges in and thus high demands for computational methods that specifically fit single-cell sequencing data. We here comprehensively survey the current strategies and challenges for multiple single-cell sequencing, including single-cell transcriptome, genome, and epigenome, beginning with a brief introduction to multiple sequencing techniques for single cells.

  9. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia).

    PubMed

    Kawagoshi, Taiki; Nishida, Chizuko; Ota, Hidetoshi; Kumazawa, Yoshinori; Endo, Hideki; Matsuda, Yoichi

    2008-01-01

    Crocodilians have several unique karyotypic features, such as small diploid chromosome numbers (30-42) and the absence of dot-shaped microchromosomes. Of the extant crocodilian species, the Siamese crocodile (Crocodylus siamensis) has no more than 2n = 30, comprising mostly bi-armed chromosomes with large centromeric heterochromatin blocks. To investigate the molecular structures of C-heterochromatin and genomic compartmentalization in the karyotype, characterized by the disappearance of tiny microchromosomes and reduced chromosome number, we performed molecular cloning of centromeric repetitive sequences and chromosome mapping of the 18S-28S rDNA and telomeric (TTAGGG)( n ) sequences. The centromeric heterochromatin was composed mainly of two repetitive sequence families whose characteristics were quite different. Two types of GC-rich CSI-HindIII family sequences, the 305 bp CSI-HindIII-S (G+C content, 61.3%) and 424 bp CSI-HindIII-M (63.1%), were localized to the intensely PI-stained centric regions of all chromosomes, except for chromosome 2 with PI-negative heterochromatin. The 94 bp CSI-DraI (G+C content, 48.9%) was tandem-arrayed satellite DNA and localized to chromosome 2 and four pairs of small-sized chromosomes. The chromosomal size-dependent genomic compartmentalization that is supposedly unique to the Archosauromorpha was probably lost in the crocodilian lineage with the disappearance of microchromosomes followed by the homogenization of centromeric repetitive sequences between chromosomes, except for chromosome 2.

  10. Analysis of secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Haynes, Paul A; Breci, Linda; Francisco, Wilson A

    2005-08-01

    MS/MS techniques in proteomics make possible the identification of proteins from organisms with little or no genome sequence information available. Peptide sequences are obtained from tandem mass spectra by matching peptide mass and fragmentation information to protein sequence information from related organisms, including unannotated genome sequence data. This peptide identification data can then be grouped and reconstructed into protein data. In this study, we have used this approach to study protein secretion by Aspergillus flavus, a filamentous fungus for which very little genome sequence information is available. A. flavus is capable of degrading the flavonoid rutin (quercetin 3-O-glycoside), as the only source of carbon via an extracellular enzyme system. In this continuing study, a proteomic analysis was used to identify secreted proteins from A. flavus when grown on rutin. The growth media glucose and potato dextrose were used to identify differentially expressed secreted proteins. The secreted proteins were analyzed by 1- and 2-DE and MS/MS. A total of 51 unique A. flavus secreted proteins were identified from the three growth conditions. Ten proteins were unique to rutin-, five to glucose- and one to potato dextrose-grown A. flavus. Sixteen secreted proteins were common to all three media. Fourteen identifications were of hypothetical proteins or proteins of unknown functions. To our knowledge, this is the first extensive proteomic study conducted to identify the secreted proteins from a filamentous fungus.

  11. SSMART: Sequence-structure motif identification for RNA-binding proteins.

    PubMed

    Munteanu, Alina; Mukherjee, Neelanjan; Ohler, Uwe

    2018-06-11

    RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability: SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary data are available at Bioinformatics online.

  12. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China.

    PubMed

    Huang, Xiao Dan; Tan, Hui Yin; Long, Ruijun; Liang, Juan Boo; Wright, André-Denis G

    2012-10-19

    Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from "energy-saving" animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle.

  13. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China

    PubMed Central

    2012-01-01

    Background Methane emissions by methanogen from livestock ruminants have significantly contributed to the agricultural greenhouse gas effect. It is worthwhile to compare methanogen from “energy-saving” animal (yak) and normal animal (cattle) in order to investigate the link between methanogen structure and low methane production. Results Diversity of methanogens from the yak and cattle rumen was investigated by analysis of 16S rRNA gene sequences from rumen digesta samples from four yaks (209 clones) and four cattle (205 clones) from the Qinghai-Tibetan Plateau area (QTP). Overall, a total of 414 clones (i.e. sequences) were examined and assigned to 95 operational taxonomic units (OTUs) using MOTHUR, based upon a 98% species-level identity criterion. Forty-six OTUs were unique to the yak clone library and 34 OTUs were unique to the cattle clone library, while 15 OTUs were found in both libraries. Of the 95 OTUs, 93 putative new species were identified. Sequences belonging to the Thermoplasmatales-affiliated Linage C (TALC) were found to dominate in both libraries, accounting for 80.9% and 62.9% of the sequences from the yak and cattle clone libraries, respectively. Sequences belonging to the Methanobacteriales represented the second largest clade in both libraries. However, Methanobrevibacter wolinii (QTPC 110) was only found in the cattle library. The number of clones from the order Methanomicrobiales was greater in cattle than in the yak clone library. Although the Shannon index value indicated similar diversity between the two libraries, the Libshuff analysis indicated that the methanogen community structure of the yak was significantly different than those from cattle. Conclusion This study revealed for the first time the molecular diversity of methanogen community in yaks and cattle in Qinghai-Tibetan Plateau area in China. From the analysis, we conclude that yaks have a unique rumen microbial ecosystem that is significantly different from that of cattle, this may also help to explain why yak produce less methane than cattle. PMID:23078429

  14. Genome of Horsepox Virus

    PubMed Central

    Tulman, E. R.; Delhon, G.; Afonso, C. L.; Lu, Z.; Zsak, L.; Sandybaev, N. T.; Kerembekova, U. Z.; Zaitsev, V. L.; Kutish, G. F.; Rock, D. L.

    2006-01-01

    Here we present the genomic sequence of horsepox virus (HSPV) isolate MNR-76, an orthopoxvirus (OPV) isolated in 1976 from diseased Mongolian horses. The 212-kbp genome contained 7.5-kbp inverted terminal repeats and lacked extensive terminal tandem repetition. HSPV contained 236 open reading frames (ORFs) with similarity to those in other OPVs, with those in the central 100-kbp region most conserved relative to other OPVs. Phylogenetic analysis of the conserved region indicated that HSPV is closely related to sequenced isolates of vaccinia virus (VACV) and rabbitpox virus, clearly grouping together these VACV-like viruses. Fifty-four HSPV ORFs likely represented fragments of 25 orthologous OPV genes, including in the central region the only known fragmented form of an OPV ribonucleotide reductase large subunit gene. In terminal genomic regions, HSPV lacked full-length homologues of genes variably fragmented in other VACV-like viruses but was unique in fragmentation of the homologue of VACV strain Copenhagen B6R, a gene intact in other known VACV-like viruses. Notably, HSPV contained in terminal genomic regions 17 kbp of OPV-like sequence absent in known VACV-like viruses, including fragments of genes intact in other OPVs and approximately 1.4 kb of sequence present only in cowpox virus (CPXV). HSPV also contained seven full-length genes fragmented or missing in other VACV-like viruses, including intact homologues of the CPXV strain GRI-90 D2L/I4R CrmB and D13L CD30-like tumor necrosis factor receptors, D3L/I3R and C1L ankyrin repeat proteins, B19R kelch-like protein, D7L BTB/POZ domain protein, and B22R variola virus B22R-like protein. These results indicated that HSPV contains unique genomic features likely contributing to a unique virulence/host range phenotype. They also indicated that while closely related to known VACV-like viruses, HSPV contains additional, potentially ancestral sequences absent in other VACV-like viruses. PMID:16940536

  15. Genetic Architecture of the Delis-Kaplan Executive Function System Trail Making Test: Evidence for Distinct Genetic Influences on Executive Function

    PubMed Central

    Vasilopoulos, Terrie; Franz, Carol E.; Panizzon, Matthew S.; Xian, Hong; Grant, Michael D.; Lyons, Michael J; Toomey, Rosemary; Jacobson, Kristen C.; Kremen, William S.

    2012-01-01

    Objective To examine how genes and environments contribute to relationships among Trail Making test conditions and the extent to which these conditions have unique genetic and environmental influences. Method Participants included 1237 middle-aged male twins from the Vietnam-Era Twin Study of Aging (VESTA). The Delis-Kaplan Executive Function System Trail Making test included visual searching, number and letter sequencing, and set-shifting components. Results Phenotypic correlations among Trails conditions ranged from 0.29 – 0.60, and genes accounted for the majority (58–84%) of each correlation. Overall heritability ranged from 0.34 to 0.62 across conditions. Phenotypic factor analysis suggested a single factor. In contrast, genetic models revealed a single common genetic factor but also unique genetic influences separate from the common factor. Genetic variance (i.e., heritability) of number and letter sequencing was completely explained by the common genetic factor while unique genetic influences separate from the common factor accounted for 57% and 21% of the heritabilities of visual search and set-shifting, respectively. After accounting for general cognitive ability, unique genetic influences accounted for 64% and 31% of those heritabilities. Conclusions A common genetic factor, most likely representing a combination of speed and sequencing accounted for most of the correlation among Trails 1–4. Distinct genetic factors, however, accounted for a portion of variance in visual scanning and set-shifting. Thus, although traditional phenotypic shared variance analysis techniques suggest only one general factor underlying different neuropsychological functions in non-patient populations, examining the genetic underpinnings of cognitive processes with twin analysis can uncover more complex etiological processes. PMID:22201299

  16. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    PubMed

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  17. A New Way to Introduce Microarray Technology in a Lecture/Laboratory Setting by Studying the Evolution of This Modern Technology

    ERIC Educational Resources Information Center

    Rowland-Goldsmith, Melissa

    2009-01-01

    DNA microarray is an ordered grid containing known sequences of DNA, which represent many of the genes in a particular organism. Each DNA sequence is unique to a specific gene. This technology enables the researcher to screen many genes from cells or tissue grown in different conditions. We developed an undergraduate lecture and laboratory…

  18. Draft Genome Sequence of Mycobacterium chimaera Type Strain Fl-0169.

    PubMed

    Pfaller, Stacy; Tokarev, Vasily; Kessler, Collin; McLimans, Christopher; Gomez-Alvarez, Vicente; Wright, Justin; King, Dawn; Lamendella, Regina

    2017-02-23

    We report here the draft genome sequence of the type strain Mycobacterium chimaera Fl-0169, a member of the Mycobacterium avium complex (MAC). M. chimaera Fl-0169 T was isolated from a patient in Italy and is highly similar to strains of M. chimaera isolated in Ireland, although Fl-0169 T possesses unique virulence genes. Copyright © 2017 Pfaller et al.

  19. Clustered regularly interspaced short palindromic repeats (CRISPRs) for the genotyping of bacterial pathogens.

    PubMed

    Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine

    2009-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences composed of a succession of repeats (23- to 47-bp long) separated by unique sequences called spacers. Polymorphism can be observed in different strains of a species and may be used for genotyping. We describe protocols and bioinformatics tools that allow the identification of CRISPRs from sequenced genomes, their comparison, and their component determination (the direct repeats and the spacers). A schematic representation of the spacer organization can be produced, allowing an easy comparison between strains.

  20. Nucleotide Sequence Analysis of RNA Synthesized from Rabbit Globin Complementary DNA

    PubMed Central

    Poon, Raymond; Paddock, Gary V.; Heindell, Howard; Whitcome, Philip; Salser, Winston; Kacian, Dan; Bank, Arthur; Gambino, Roberto; Ramirez, Francesco

    1974-01-01

    Rabbit globin complementary DNA made with RNA-dependent DNA polymerase (reverse transcriptase) was used as template for in vitro synthesis of 32P-labeled RNA. The sequences of the nucleotides in most of the fragments resulting from combined ribonuclease T1 and alkaline phosphatase digestion have been determined. Several fragments were long enough to fit uniquely with the α or β globin amino-acid sequences. These data demonstrate that the cDNA was copied from globin mRNA and contained no detectable contaminants. Images PMID:4139714

  1. Molecular Signatures of Microbial Metabolism in an Actively Growing, Silicified, Microbial Structure from Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Ferreira, M.; Creveling, J.; Hilburn, I.; Karlsson, E.; Pepe-Ranney, C.; Spear, J.; Dawson, S.; Geobio2008, I.

    2008-12-01

    Silicified structures that exhibit a putative biologic component in their formation permeate the rock record as stromatolites. We have studied a silicified microbial structure from a hot spring in Yellowstone National Park using phenotypic, phylogenetic, and metagenomic analyses to determine microbial carbon metabolic pathways and the phylogenetic affiliations of microbes present in this unique structure. In this multi-faceted approach, dominant physiologies, specifically with regards to anaerobic and aerobic metabolisms, were inferred from 16S rRNA gene sequences and 454 sequencing data from bulk DNA samples of the structure. Carbon utilization as indicated by ECO Biolog plates showed abundant heterotrophy and heterotrophic diversity throughout the microbial structure. Microbes within the structure are able to utilize all tested sources of carbohydrates, lipids/fatty acids, and protein/amino acids as carbon sources. ECO plate testing of the hot spring water yielded considerable less carbohydrate consumption (only 4 out of 13 tested carbohydrates) and similar lipids/fatty acids and protein/amino acids consumption (2 out of 3 and 5 out of 5 tested sources respectively). Full length 16S rRNA gene sequences and metagenomic 454 pyrosequencing of community DNA showed limited diversity among primary producers. From the 16S data, the majority of the autotrophs are inferred to utilize the Calvin cycle for CO2 fixation, followed by 3-hydroxypropionate/4- hydroxybutyrate CO2 fixation. However, an analysis of the metagenomic data compared to the KEGG database does not show genes directly involved with Calvin cycle carbon fixation. Further BLAST searches of our data failed to find significant matches within our 6514 metagenomic sequences to known RuBisCo sequences taken from the NCBI database. This is likely due to a far under-sampled dataset of metagenomic sequences, and the low number (958) that had matches to the KEGG pathways database. Anaerobic versus aerobic physiology also can be estimated from the 16S clone libraries. Phylogenetic analysis of recovered 16S sequences suggests that 15% of the 16S sequences can be attributed to anaerobic microbes while 42% likely come from aerobes. The remaining 43% of 16S rRNA gene sequences belong to metabolically unassigned phyla both known and novel. This preliminary study demonstrates that the small spatially stratified silicified microbial structure present on the margins of a hot spring contains a rich and complex microbial community with different trophic levels and enzymatic pathways.

  2. Amelogenin Evolution and Tetrapod Enamel Structure

    PubMed Central

    Diekwisch, Thomas G.H.; Jin, Tianquan; Wang, Xinping; Ito, Yoshihiro; Schmidt, Marcella; Druzinsky, Robert; Yamane, Akira; Luan, Xianghong

    2009-01-01

    Amelogenins are the major proteins involved in tooth enamel formation. In the present study we have cloned and sequenced four novel amelogenins from three amphibian species in order to analyze similarities and differences between mammalian and non-mammalian amelogenins. The newly sequenced amphibian amelogenin sequences were from a Red-eyed tree frog (Litoria chloris) and a Mexican axolotl (Ambystoma mexicanum). We identified two amelogenin isoforms in the Eastern Red-backed Salamander (Plethodon cinereus). Sequence comparisons confirmed that non-mammalian amelogenins are overall shorter than their mammalian counterparts, contain less proline and less glutamine, and feature shorter polyproline tripeptide repeat stretches than mammalian amelogenins. We propose that unique sequence parameters of mammalian amelogenins might be a pre-requisite for complex mammalian enamel prism architecture. PMID:19828974

  3. Sequence Learning and Selection Difficulty

    ERIC Educational Resources Information Center

    Rowland, Lee A.; Shanks, David R.

    2006-01-01

    The authors studied the role of attention as a selection mechanism in implicit learning by examining the effect on primary sequence learning of performing a demanding target-selection task. Participants were trained on probabilistic sequences in a novel version of the serial reaction time (SRT) task, with dual- and triple-stimulus participants…

  4. Frequency, Contingency and Online Processing of Multiword Sequences: An Eye-Tracking Study

    ERIC Educational Resources Information Center

    Yi, Wei; Lu, Shiyi; Ma, Guojie

    2017-01-01

    Frequency and contingency are two primary statistical factors that drive the acquisition and processing of language. This study explores the role of phrasal frequency and contingency (the co-occurrence probability/statistical association of the constituent words in multiword sequences) during online processing of multiword sequences. Meanwhile, it…

  5. Characterization of Microbial Population Structures in Recreational Waters and Primary Sources of Fecal Pollution with a Next-Generation Sequencing Approach

    EPA Science Inventory

    The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...

  6. A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity.

    PubMed

    Hobbs, Matthew; Pavasovic, Ana; King, Andrew G; Prentis, Peter J; Eldridge, Mark D B; Chen, Zhiliang; Colgan, Donald J; Polkinghorne, Adam; Wilkins, Marc R; Flanagan, Cheyne; Gillett, Amber; Hanger, Jon; Johnson, Rebecca N; Timms, Peter

    2014-09-11

    The koala, Phascolarctos cinereus, is a biologically unique and evolutionarily distinct Australian arboreal marsupial. The goal of this study was to sequence the transcriptome from several tissues of two geographically separate koalas, and to create the first comprehensive catalog of annotated transcripts for this species, enabling detailed analysis of the unique attributes of this threatened native marsupial, including infection by the koala retrovirus. RNA-Seq data was generated from a range of tissues from one male and one female koala and assembled de novo into transcripts using Velvet-Oases. Transcript abundance in each tissue was estimated. Transcripts were searched for likely protein-coding regions and a non-redundant set of 117,563 putative protein sequences was produced. In similarity searches there were 84,907 (72%) sequences that aligned to at least one sequence in the NCBI nr protein database. The best alignments were to sequences from other marsupials. After applying a reciprocal best hit requirement of koala sequences to those from tammar wallaby, Tasmanian devil and the gray short-tailed opossum, we estimate that our transcriptome dataset represents approximately 15,000 koala genes. The marsupial alignment information was used to look for potential gene duplications and we report evidence for copy number expansion of the alpha amylase gene, and of an aldehyde reductase gene.Koala retrovirus (KoRV) transcripts were detected in the transcriptomes. These were analysed in detail and the structure of the spliced envelope gene transcript was determined. There was appreciable sequence diversity within KoRV, with 233 sites in the KoRV genome showing small insertions/deletions or single nucleotide polymorphisms. Both koalas had sequences from the KoRV-A subtype, but the male koala transcriptome has, in addition, sequences more closely related to the KoRV-B subtype. This is the first report of a KoRV-B-like sequence in a wild population. This transcriptomic dataset is a useful resource for molecular genetic studies of the koala, for evolutionary genetic studies of marsupials, for validation and annotation of the koala genome sequence, and for investigation of koala retrovirus. Annotated transcripts can be browsed and queried at http://koalagenome.org.

  7. Bacterial CRISPR Regions: General Features and their Potential for Epidemiological Molecular Typing Studies.

    PubMed

    Karimi, Zahra; Ahmadi, Ali; Najafi, Ali; Ranjbar, Reza

    2018-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci as novel and applicable regions in prokaryotic genomes have gained great attraction in the post genomics era. These unique regions are diverse in number and sequence composition in different pathogenic bacteria and thereby can be a suitable candidate for molecular epidemiology and genotyping studies. Results:Furthermore, the arrayed structure of CRISPR loci (several unique repeats spaced with the variable sequence) and associated cas genes act as an active prokaryotic immune system against viral replication and conjugative elements. This property can be used as a tool for RNA editing in bioengineering studies. The aim of this review was to survey some details about the history, nature, and potential applications of CRISPR arrays in both genetic engineering and bacterial genotyping studies.

  8. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs.

    PubMed

    Lan, DaoLiang; Xiong, XianRong; Ji, WenHui; Li, Jian; Mipam, Tserang-Donko; Ai, Yi; Chai, ZhiXin

    2018-04-01

    The yak (Bos grunniens), which is a unique bovine breed that is distributed mainly in the Qinghai-Tibetan Plateau, is considered a good model for studying plateau adaptability in mammals. The lungs are important functional organs that enable animals to adapt to their external environment. However, the genetic mechanism underlying the adaptability of yak lungs to harsh plateau environments remains unknown. To explore the unique evolutionary process and genetic mechanism of yak adaptation to plateau environments, we performed transcriptome sequencing of yak and cattle (Bos taurus) lungs using RNA-Seq technology and a subsequent comparison analysis to identify the positively selected genes in the yak. After deep sequencing, a normal transcriptome profile of yak lung that containing a total of 16,815 expressed genes was obtained, and the characteristics of yak lungs transcriptome was described by functional analysis. Furthermore, Ka/Ks comparison statistics result showed that 39 strong positively selected genes are identified from yak lungs. Further GO and KEGG analysis was conducted for the functional annotation of these genes. The results of this study provide valuable data for further explorations of the unique evolutionary process of high-altitude hypoxia adaptation in yaks in the Tibetan Plateau and the genetic mechanism at the molecular level.

  9. Genetic characteristics of eighty-seven patients with the Wiskott-Aldrich syndrome.

    PubMed

    Gulácsy, Vera; Freiberger, Tomas; Shcherbina, Anna; Pac, Malgorzata; Chernyshova, Liudmyla; Avcin, Tadej; Kondratenko, Irina; Kostyuchenko, Larysa; Prokofjeva, Tatjana; Pasic, Srdjan; Bernatowska, Ewa; Kutukculer, Necil; Rascon, Jelena; Iagaru, Nicolae; Mazza, Cinzia; Tóth, Beáta; Erdos, Melinda; van der Burg, Mirjam; Maródi, László

    2011-02-01

    The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immune deficiency disorder characterized by thrombocytopenia, small platelet size, eczema, recurrent infections, and increased risk of autoimmune disorders and malignancies. WAS is caused by mutations in the WASP gene which encodes WASP, a 502-amino acid protein. WASP plays a critical role in actin cytoskeleton organization and signalling, and functions of immune cells. We present here the results of genetic analysis of patients with WAS from eleven Eastern and Central European (ECE) countries and Turkey. Clinical and haematological information of 87 affected males and 48 carrier females from 77 WAS families were collected. The WASP gene was sequenced from genomic DNA of patients with WAS, as well as their family members to identify carriers. In this large cohort, we identified 62 unique mutations including 17 novel sequence variants. The mutations were scattered throughout the WASP gene and included single base pair changes (17 missense and 11 nonsense mutations), 7 small insertions, 18 deletions, and 9 splice site defects. Genetic counselling and prenatal diagnosis were applied in four affected families. This study was part of the J Project aimed at identifying genetic basis of primary immunodeficiency disease in ECE countries. This report provides the first comprehensive overview of the molecular genetic and demographic features of WAS in ECE. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family

    PubMed Central

    Bevans, Carville G.; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-01-01

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant α-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades. PMID:26230708

  11. A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation.

    PubMed

    Leighton, Philip A; Schusser, Benjamin; Yi, Henry; Glanville, Jacob; Harriman, William

    2015-01-01

    Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals.

  12. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    PubMed

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  14. Structural Characterization and Evolutionary Relationship of High-Molecular-Weight Glutenin Subunit Genes in Roegneria nakaii and Roegneria alashanica.

    PubMed

    Zhang, Lujun; Li, Zhixin; Fan, Renchun; Wei, Bo; Zhang, Xiangqi

    2016-07-19

    The Roegneria of Triticeae is a large genus including about 130 allopolyploid species. Little is known about its high-molecular-weight glutenin subunits (HMW-GSs). Here, we reported six novel HMW-GS genes from R. nakaii and R. alashanica. Sequencing indicated that Rny1, Rny3, and Ray1 possessed intact open reading frames (ORFs), whereas Rny2, Rny4, and Ray2 harbored in-frame stop codons. All of the six genes possessed a similar primary structure to known HMW-GS, while showing some unique characteristics. Their coding regions were significantly shorter than Glu-1 genes in wheat. The amino acid sequences revealed that all of the six genes were intermediate towards the y-type. The phylogenetic analysis showed that the HMW-GSs from species with St, StY, or StH genome(s) clustered in an independent clade, varying from the typical x- and y-type clusters. Thus, the Glu-1 locus in R. nakaii and R. alashanica is a very primitive glutenin locus across evolution. The six genes were phylogenetically split into two groups clustered to different clades, respectively, each of the two clades included the HMW-GSs from species with St (diploid and tetraploid species), StY, and StH genomes. Hence, it is concluded that the six Roegneria HMW-GS genes are from two St genomes undergoing slight differentiation.

  15. Functional Characteristics of the Naked Mole Rat μ-Opioid Receptor

    PubMed Central

    Roth, Clarisse A.

    2013-01-01

    While humans and most animals respond to µ-opioid receptor (MOR) agonists with analgesia and decreased aggression, in the naked mole rat (NMR) opioids induce hyperalgesia and severe aggression. Single nucleotide polymorphisms in the human mu-opioid receptor gene (OPRM1) can underlie altered behavioral responses to opioids. Therefore, we hypothesized that the primary structure of the NMR MOR may differ from other species. Sequencing of the NMR oprm1 revealed strong homology to other mammals, but exposed three unique amino acids that might affect receptor-ligand interactions. The NMR and rat oprm1 sequences were cloned into mammalian expression vectors and transfected into HEK293 cells. Radioligand binding and 3'-5'-cyclic adenosine monophosphate (cAMP) enzyme immunoassays were used to compare opioid binding and opioid-mediated cAMP inhibition. At normalized opioid receptor protein levels we detected significantly lower [3H]DAMGO binding to NMR compared to rat MOR, but no significant difference in DAMGO-induced cAMP inhibition. Strong DAMGO-induced MOR internalization was detectable using radioligand binding and confocal imaging in HEK293 cells expressing rat or NMR receptor, while morphine showed weak or no effects. In summary, we found minor functional differences between rat and NMR MOR suggesting that other differences e.g. in anatomical distribution of MOR underlie the NMR's extreme reaction to opioids. PMID:24312175

  16. Androgen Receptor and its Splice Variant, AR-V7, Differentially Regulate FOXA1 Sensitive Genes in LNCaP Prostate Cancer Cells

    PubMed Central

    Krause, William C.; Shafi, Ayesha A.; Nakka, Manjula; Weigel, Nancy L.

    2014-01-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation. PMID:25008967

  17. Comparative Genomics of Carp Herpesviruses

    PubMed Central

    Kurobe, Tomofumi; Gatherer, Derek; Cunningham, Charles; Korf, Ian; Fukuda, Hideo; Hedrick, Ronald P.; Waltzek, Thomas B.

    2013-01-01

    Three alloherpesviruses are known to cause disease in cyprinid fish: cyprinid herpesviruses 1 and 3 (CyHV1 and CyHV3) in common carp and koi and cyprinid herpesvirus 2 (CyHV2) in goldfish. We have determined the genome sequences of CyHV1 and CyHV2 and compared them with the published CyHV3 sequence. The CyHV1 and CyHV2 genomes are 291,144 and 290,304 bp, respectively, in size, and thus the CyHV3 genome, at 295,146 bp, remains the largest recorded among the herpesviruses. Each of the three genomes consists of a unique region flanked at each terminus by a sizeable direct repeat. The CyHV1, CyHV2, and CyHV3 genomes are predicted to contain 137, 150, and 155 unique, functional protein-coding genes, respectively, of which six, four, and eight, respectively, are duplicated in the terminal repeat. The three viruses share 120 orthologous genes in a largely colinear arrangement, of which up to 55 are also conserved in the other member of the genus Cyprinivirus, anguillid herpesvirus 1. Twelve genes are conserved convincingly in all sequenced alloherpesviruses, and two others are conserved marginally. The reference CyHV3 strain has been reported to contain five fragmented genes that are presumably nonfunctional. The CyHV2 strain has two fragmented genes, and the CyHV1 strain has none. CyHV1, CyHV2, and CyHV3 have five, six, and five families of paralogous genes, respectively. One family unique to CyHV1 is related to cellular JUNB, which encodes a transcription factor involved in oncogenesis. To our knowledge, this is the first time that JUNB-related sequences have been reported in a herpesvirus. PMID:23269803

  18. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  19. Comparative fecal metagenomics unveils unique functional capacity of the swine gut

    PubMed Central

    2011-01-01

    Background Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes. Other abundant proteins unique to the distal swine gut shared high sequence homology to putative carbohydrate membrane transporters. Conclusions The results from this metagenomic survey demonstrated the presence of genes associated with resistance to antibiotics and carbohydrate metabolism suggesting that the swine gut microbiome may be shaped by husbandry practices. PMID:21575148

  20. On the role of the SMA in the discrete sequence production task: a TMS study. Transcranial Magnetic Stimulation.

    PubMed

    Verwey, Willem B; Lammens, Robin; van Honk, Jack

    2002-01-01

    Participants practiced two discrete six-key sequences for a total of 420 trials. The 1 x 6 sequence had a unique order of key presses while the 2 x 3 sequence involved repetition of a three-key segment. Both sequences showed a long interkey interval halfway the sequence indicating hierarchical sequence control in that not only the 2 x 3 but also the 1 x 6 sequence was executed as two successive motor chunks. Besides, the second part of both sequences was executed faster than the first part. This supports the earlier notion of a motor processor executing the elements of familiar motor chunks and a cognitive processor triggering either these motor chunks or individual sequence elements. Low-frequency, off-line transcranial magnetic stimulation (TMS) of the supplementary motor area (SMA) counteracted normal improvement with practice of key presses at all sequence positions. Together, these results are in line with the notion that with moderate practice, the SMA executes short sequence fragments that are concatenated by other brain structures.

  1. Children as Researchers in Primary Schools: Choice, Voice and Participation

    ERIC Educational Resources Information Center

    Bucknall, Sue

    2012-01-01

    "Children as Researchers in Primary Schools" is an innovative and unique resource for practitioners supporting children to become "real world" researchers in the primary classroom. It will supply you with the skills and ideas you need to implement a "children as researchers" framework in your school that can be adapted for different ages and…

  2. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica . All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  3. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress

    PubMed Central

    2013-01-01

    Background Chrysanthemum is one of the most important ornamental crops in the world and drought stress seriously limits its production and distribution. In order to generate a functional genomics resource and obtain a deeper understanding of the molecular mechanisms regarding chrysanthemum responses to dehydration stress, we performed large-scale transcriptome sequencing of chrysanthemum plants under dehydration stress using the Illumina sequencing technology. Results Two cDNA libraries constructed from mRNAs of control and dehydration-treated seedlings were sequenced by Illumina technology. A total of more than 100 million reads were generated and de novo assembled into 98,180 unique transcripts which were further extensively annotated by comparing their sequencing to different protein databases. Biochemical pathways were predicted from these transcript sequences. Furthermore, we performed gene expression profiling analysis upon dehydration treatment in chrysanthemum and identified 8,558 dehydration-responsive unique transcripts, including 307 transcription factors and 229 protein kinases and many well-known stress responsive genes. Gene ontology (GO) term enrichment and biochemical pathway analyses showed that dehydration stress caused changes in hormone response, secondary and amino acid metabolism, and light and photoperiod response. These findings suggest that drought tolerance of chrysanthemum plants may be related to the regulation of hormone biosynthesis and signaling, reduction of oxidative damage, stabilization of cell proteins and structures, and maintenance of energy and carbon supply. Conclusions Our transcriptome sequences can provide a valuable resource for chrysanthemum breeding and research and novel insights into chrysanthemum responses to dehydration stress and offer candidate genes or markers that can be used to guide future studies attempting to breed drought tolerant chrysanthemum cultivars. PMID:24074255

  4. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  5. The role of heterologous chloroplast sequence elements in transgene integration and expression.

    PubMed

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-04-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.

  6. The Role of Heterologous Chloroplast Sequence Elements in Transgene Integration and Expression1[W][OA

    PubMed Central

    Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry

    2010-01-01

    Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101

  7. RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis

    PubMed Central

    Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab

    2012-01-01

    RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. Availability http://www.cemb.edu.pk/sw.html Abbreviations RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language. PMID:23055611

  8. The diploid genome sequence of an Asian individual

    PubMed Central

    Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian

    2009-01-01

    Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735

  9. Complete Chloroplast Genome Sequences of Mongolia Medicine Artemisia frigida and Phylogenetic Relationships with Other Plants

    PubMed Central

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A.; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Background Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. Methodology/Principal Findings The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. Conclusion The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny studies within Artemisia species and also within the Asteraceae family. PMID:23460871

  10. 25 Years of GenBank

    MedlinePlus

    ... this page please turn Javascript on. Unique DNA database has helped advance scientific discoveries worldwide Since its origin 25 years ago, the database of nucleic acid sequences known as GenBank has ...

  11. Dubinett - Targeted Sequencing 2012 — EDRN Public Portal

    Cancer.gov

    we propose to use targeted massively parallel DNA sequencing to identify somatic alterations within mutational hotspots in matched sets of primary lung tumors, premalignant lesions, and adjacent,histologically normal lung tissue.

  12. Using DNA-labelled nano- and microparticles to track particle transport in the environment

    NASA Astrophysics Data System (ADS)

    McNew, Coy; Wang, Chaozi; Dahlke, Helen; Lyon, Steve; Walter, Todd

    2017-04-01

    By utilizing bio-molecular nanotechnology developed for nano-medicines and drug delivery, we are able to produce DNA-labelled nano- and microparticle tracers for use in a myriad of environmental systems. The use of custom sequenced DNA allows for the fabrication of an enormous number of uniquely labelled tracers with identical transport properties (approximately 1.61 x 1060 unique sequences), each independently quantifiable, that can be applied simultaneously in any hydrologic system. By controlling the fabrication procedure to produce particles of custom size and charge, we are able to tag each size-charge combination uniquely in order to directly probe the effect of these variables on the transport properties of the particles. Here we present our methods for fabrication, extraction, and analysis of the DNA nano- and microparticle tracers, along with results from several successful applications of the tracers, including transport and retention analysis at the lab, continuum, and field scales. To date, our DNA-labelled nano- and microparticle tracers have proved useful in surface and subsurface water applications, soil retention, and even subglacial flow pathways. The range of potential applications continue to prove nearly limitless.

  13. The visual pigments of the West Indian manatee (Trichechus manatus).

    PubMed

    Newman, Lucy A; Robinson, Phyllis R

    2006-10-01

    Manatees are unique among the fully aquatic marine mammals in that they are herbivorous creatures, with hunting strategies restricted to grazing on sea-grasses. Since the other groups of (carnivorous) marine mammals have been found to possess various visual system adaptations to their unique visual environments, it was of interest to investigate the visual capability of the manatee. Previous work, both behavioral (Griebel & Schmid, 1996), and ultrastructural (Cohen, Tucker, & Odell, 1982; unpublished work cited by Griebel & Peichl, 2003), has suggested that manatees have the dichromatic color vision typical of diurnal mammals. This study uses molecular techniques to investigate the cone visual pigments of the manatee. The aim was to clone and sequence cone opsins from the retina, and, if possible, express and reconstitute functional visual pigments to perform spectral analysis. Both LWS and SWS cone opsins were cloned and sequenced from manatee retinae, which, upon expression and spectral analysis, had lambda(max) values of 555 and 410 nm, respectively. The expression of both the LWS and SWS cone opsin in the manatee retina is unique as both pinnipeds and cetaceans only express a cone LWS opsin.

  14. Malignancies in Primary Sclerosing Cholangitis – A Continuing Threat

    PubMed Central

    Bonato, Giulia; Cristoferi, Laura; Strazzabosco, Mario; Fabris, Luca

    2016-01-01

    Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease of unknown etiology, primarily targeting cholangiocytes at any portion of the biliary tree. No effective medical treatments are currently available. A unique feature of PSC is its close association (about 80%) with inflammatory bowel disease (IBD), mainly ulcerative colitis (UC). As in many chronic inflammatory conditions, cancer development can complicate PSC, accounting for >40% of deaths. Cholangiocarcinoma (CCA), gallbladder carcinoma (GBC) and colorectal carcinoma (CRC) have been variably associated to PSC, with a prevalence up to 13–14%. The risk of cancer is one of the most challenging issues in the management of PSC; it raises several questions about cancer surveillance, early diagnosis, prevention and treatment. Key Messages Among the different cancers complicating PSC, CCA is the most relevant, because it is more frequent (incidence of 0.5–1.5%) and because the prognosis is poor (5-year survival <10%). Early diagnosis of CCA in PSC can be difficult because lesions may not be evident in radiological studies. Surgical resection provides disappointing results; liver transplantation combined with neoadjuvant chemoradiotherapy is being proposed, but this approach is limited to a highly selected group of patients and is available only in a few specialized centers. Similar to CCA, GBC carries a dismal prognosis. Since it is difficult to discriminate GBC from other gallbladder abnormalities, cholecystectomy has been proposed in all gallbladder lesions detected in PSC, regardless of their size. CRC is a frequent complication of PSC associated to UC; its incidence steadily increases with time of colitis, reaching up to 20–30% of the patients after 20 years. Colonoscopy with extensive histologic sampling at an annual/biannual interval is an effective surveillance strategy. However, when dysplastic lesions are detected, preemptive proctocolectomy should be considered. Conclusions PSC may be regarded as paradigmatic of the sequence leading from chronic inflammatory epithelial damage to neoplastic transformation. Understanding the molecular mechanisms regulating this patho-genetic sequence, may improve strategies of disease surveillance and cancer prevention and treatment. PSC is a chronic inflammatory cholangiopathy of unknown etiology but likely immune-mediated, characterized by peribiliary inflammation and fibrosis leading to strictures in any portion (intra-and/or extrahepatic) of the bile duct system. No effective medical treatments are currently available. A unique feature of PSC is the close association (about 80%) with IBD, mainly UC, often diagnosed before PSC (PSC/UC). As in other chronic inflammatory diseases, development of malignancies is a feared complication of PSC. PMID:26641079

  15. Insights from Human/Mouse genome comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less

  16. Behavioral change in rural practice: improving patient motivation in primary care.

    PubMed

    Clark, Karen; Weir, Christine

    2013-01-01

    As the disparities in rural healthcare have become better understood, the need to adjust and compensate for these unique challenges becomes a priority. This manuscript suggests three constructs that can be readily integrated into rural care providers' daily work to improve treatment outcomes. Autonomy support, relational support, and competence support are among the motivational constructs discussed with a special consideration for the unique cultural and environmental influences of rural West Virginia residents. The overall objective of this review is to renew the basic tenants of shared decision making as they related to successful behavioral change in primary care.

  17. Natural Selection and Adaptive Evolution of Leptin in the Ochotona Family Driven by the Cold Environmental Stress

    PubMed Central

    Yang, Jie; Wang, Zhen Long; Zhao, Xin Quan; Wang, De Peng; Qi, De Lin; Xu, Bao Hong; Ren, Yong Hong; Tian, Hui Fang

    2008-01-01

    Background Environmental stress can accelerate the evolutionary rate of specific stress-response proteins and create new functions specialized for different environments, enhancing an organism's fitness to stressful environments. Pikas (order Lagomorpha), endemic, non-hibernating mammals in the modern Holarctic Region, live in cold regions at either high altitudes or high latitudes and have a maximum distribution of species diversification confined to the Qinghai-Tibet Plateau. Variations in energy metabolism are remarkable for them living in cold environments. Leptin, an adipocyte-derived hormone, plays important roles in energy homeostasis. Methodology/Principal Findings To examine the extent of leptin variations within the Ochotona family, we cloned the entire coding sequence of pika leptin from 6 species in two regions (Qinghai-Tibet Plateau and Inner Mongolia steppe in China) and the leptin sequences of plateau pikas (O. curzonia) from different altitudes on Qinghai-Tibet Plateau. We carried out both DNA and amino acid sequence analyses in molecular evolution and compared modeled spatial structures. Our results show that positive selection (PS) acts on pika leptin, while nine PS sites located within the functionally significant segment 85-119 of leptin and one unique motif appeared only in pika lineages-the ATP synthase α and β subunit signature site. To reveal the environmental factors affecting sequence evolution of pika leptin, relative rate test was performed in pikas from different altitudes. Stepwise multiple regression shows that temperature is significantly and negatively correlated with the rates of non-synonymous substitution (Ka) and amino acid substitution (Aa), whereas altitude does not significantly affect synonymous substitution (Ks), Ka and Aa. Conclusions/Significance Our findings support the viewpoint that adaptive evolution may occur in pika leptin, which may play important roles in pikas' ecological adaptation to extreme environmental stress. We speculate that cold, and probably not hypoxia, may be the primary environmental factor for driving adaptive evolution of pika leptin. PMID:18213380

  18. Development of a DNA Barcoding System for Seagrasses: Successful but Not Simple

    PubMed Central

    Lucas, Christina; Thangaradjou, Thirunavakkarasu; Papenbrock, Jutta

    2012-01-01

    Seagrasses, a unique group of submerged flowering plants, profoundly influence the physical, chemical and biological environments of coastal waters through their high primary productivity and nutrient recycling ability. They provide habitat for aquatic life, alter water flow, stabilize the ground and mitigate the impact of nutrient pollution. at the coast region. Although on a global scale seagrasses represent less than 0.1% of the angiosperm taxa, the taxonomical ambiguity in delineating seagrass species is high. Thus, the taxonomy of several genera is unsolved. While seagrasses are capable of performing both, sexual and asexual reproduction, vegetative reproduction is common and sexual progenies are always short lived and epimeral in nature. This makes species differentiation often difficult, especially for non-taxonomists since the flower as a distinct morphological trait is missing. Our goal is to develop a DNA barcoding system assisting also non-taxonomists to identify regional seagrass species. The results will be corroborated by publicly available sequence data. The main focus is on the 14 described seagrass species of India, supplemented with seagrasses from temperate regions. According to the recommendations of the Consortium for the Barcoding of Life (CBOL) rbcL and matK were used in this study. After optimization of the DNA extraction method from preserved seagrass material, the respective sequences were amplified from all species analyzed. Tree- and character-based approaches demonstrate that the rbcL sequence fragment is capable of resolving up to family and genus level. Only matK sequences were reliable in resolving species and partially the ecotype level. Additionally, a plastidic gene spacer was included in the analysis to confirm the identification level. Although the analysis of these three loci solved several nodes, a few complexes remained unsolved, even when constructing a combined tree for all three loci. Our approaches contribute to the understanding of the morphological plasticity of seagrasses versus genetic differentiation. PMID:22253849

  19. 6 Essential Questions for Problem Solving

    ERIC Educational Resources Information Center

    Kress, Nancy Emerson

    2017-01-01

    One of the primary expectations that the author has for her students is for them to develop greater independence when solving complex and unique mathematical problems. The story of how the author supports her students as they gain confidence and independence with complex and unique problem-solving tasks, while honoring their expectations with…

  20. Isolation and primary structural analysis of two conjugated polyketone reductases from Candida parapsilosis.

    PubMed

    Hidalgo, A R; Akond, M A; Kita, K; Kataoka, M; Shimizu, S

    2001-12-01

    Two conjugated polyketone reductases (CPRs) were isolated from Candida parapsilosis IFO 0708. The primary structures of CPRs (C1 and C2) were analyzed by amino acid sequencing. The amino acid sequences of both enzymes had high similarity to those of several proteins of the aldo-keto-reductase (AKR) superfamily. However, several amino acid residues in the putative active sites of AKRs were not conserved in CPRs-C1 and -C2.

Top