Sample records for unique surface features

  1. The Role of Visual Working Memory in Attentive Tracking of Unique Objects

    ERIC Educational Resources Information Center

    Makovski, Tal; Jiang, Yuhong V.

    2009-01-01

    When tracking moving objects in space humans usually attend to the objects' spatial locations and update this information over time. To what extent do surface features assist attentive tracking? In this study we asked participants to track identical or uniquely colored objects. Tracking was enhanced when objects were unique in color. The benefit…

  2. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities

    PubMed Central

    Miller, Steven D.; Mills, Stephen P.; Elvidge, Christopher D.; Lindsey, Daniel T.; Lee, Thomas F.; Hawkins, Jeffrey D.

    2012-01-01

    Most environmental satellite radiometers use solar reflectance information when it is available during the day but must resort at night to emission signals from infrared bands, which offer poor sensitivity to low-level clouds and surface features. A few sensors can take advantage of moonlight, but the inconsistent availability of the lunar source limits measurement utility. Here we show that the Day/Night Band (DNB) low-light visible sensor on the recently launched Suomi National Polar-orbiting Partnership (NPP) satellite has the unique ability to image cloud and surface features by way of reflected airglow, starlight, and zodiacal light illumination. Examples collected during new moon reveal not only meteorological and surface features, but also the direct emission of airglow structures in the mesosphere, including expansive regions of diffuse glow and wave patterns forced by tropospheric convection. The ability to leverage diffuse illumination sources for nocturnal environmental sensing applications extends the advantages of visible-light information to moonless nights. PMID:22984179

  3. Utilization of satellite data for inventorying prairie ponds and lakes

    NASA Technical Reports Server (NTRS)

    Work, E. A., Jr.; Gilmer, D. S.

    1976-01-01

    ERTS-1 data were used in mapping open surface water features in the glaciated prairies. Emphasis was placed on the recognition of these features based upon water's uniquely low radiance in a single near-infrared waveband. On the basis of these results, thematic maps and statistics relating to open surface water were obtained. In a related effort, the added information content of multiple spectral wavebands was used for discriminating surface water at a level of detail finer than the virtual resolution of the data. The basic theory of this technique and some preliminary results are described.

  4. An Ultraviolet Spectrograph Concept for Exploring Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Schindhelm, E. R.; Hendrix, A. R.; Fleming, B. T.

    2018-05-01

    UV spectroscopy can probe dust/ice composition of the surface or plumes via uniquely identifying features. We present a technology concept for a future planetary science UV multi-object imaging spectrograph.

  5. Inverted Martian Craters in Lineated Glacial Valleys, Ismenius Lacus Region, Mars

    NASA Technical Reports Server (NTRS)

    McConnell, B. S.; Wilt, G. L.; Gillespie, A.; Newsom, H. E.

    2005-01-01

    We studied small, uniquely-shaped craters found on the surface of lineated terrain in the Ismenius Lacus region of Mars. By utilizing MOC and THEMIS satellite images, we located terrain including lineations (viscous flow features), smoothing of topography, and morphologic features such as polygons and gullies, which appear to be strong evidence of preexisting ice deposits.

  6. Voroprot: an interactive tool for the analysis and visualization of complex geometric features of protein structure.

    PubMed

    Olechnovic, Kliment; Margelevicius, Mindaugas; Venclovas, Ceslovas

    2011-03-01

    We present Voroprot, an interactive cross-platform software tool that provides a unique set of capabilities for exploring geometric features of protein structure. Voroprot allows the construction and visualization of the Apollonius diagram (also known as the additively weighted Voronoi diagram), the Apollonius graph, protein alpha shapes, interatomic contact surfaces, solvent accessible surfaces, pockets and cavities inside protein structure. Voroprot is available for Windows, Linux and Mac OS X operating systems and can be downloaded from http://www.ibt.lt/bioinformatics/voroprot/.

  7. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    PubMed

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  8. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  9. Methods of Determining Playa Surface Conditions Using Remote Sensing

    DTIC Science & Technology

    1987-10-08

    NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body

  10. Large-area ordered Ge-Si compound quantum dot molecules on dot-patterned Si (001) substrates

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Zhou, Tong; Wang, Shuguang; Fan, Yongliang; Zhong, Zhenyang

    2014-08-01

    We report on the formation of large-area ordered Ge-Si compound quantum dot molecules (CQDMs) in a combination of nanosphere lithography and self-assembly. Truncated-pyramid-like Si dots with {11n} facets are readily formed, which are spatially ordered in a large area with controlled period and size. Each Si dot induces four self-assembled Ge-rich dots at its base edges that can be fourfold symmetric along <110> directions. A model based on surface chemical potential accounts well for these phenomena. Our results disclose the critical effect of surface curvature on the diffusion and the aggregation of Ge adatoms and shed new light on the unique features and the inherent mechanism of self-assembled QDs on patterned substrates. Such a configuration of one Si QD surrounded by fourfold symmetric Ge-rich QDs can be seen as a CQDM with unique features, which will have potential applications in novel devices.

  11. Engineering Weyl Superfluid in Ultracold Fermionic Gases by One-Dimensional Optical Superlattices

    NASA Astrophysics Data System (ADS)

    Huang, Beibing

    2018-01-01

    In this paper, we theoretically demonstrate by using one-dimensional superlattices to couple two-dimensional time-reversal-breaking gapped topological superfluid models, an anomalous Weyl superfluid (WS) can be obtained. This new phase features its unique Fermi arc states (FAS) on the surfaces. In the conventional WS, FAS exist only for a part of the line connecting the projections of Weyl points and extending to the border and/or center of surface Brillouin zone. But for the anomalous WS, FAS exist for the whole line. As a proof of principle, we self-consistently at the mean-field level claim the achievement of the anomalous WS in the model with a dichromatic superlattice. In addition, inversion symmetry and band inversion in this model are analyzed to provide the unique features of identifying the anomalous WS experimentally by the momentum-resolved radio-frequency spectroscopy.

  12. Pollenkitt wetting mechanism enables species-specific tunable pollen adhesion.

    PubMed

    Lin, Haisheng; Gomez, Ismael; Meredith, J Carson

    2013-03-05

    Plant pollens are microscopic particles exhibiting a remarkable breadth of complex solid surface features. In addition, many pollen grains are coated with a viscous liquid, "pollenkitt", thought to play important roles in pollen dispersion and adhesion. However, there exist no quantitative studies of the effects of solid surface features or pollenkitt on adhesion of pollen grains, and it remains unclear what role these features play in pollen adhesion and transport. We report AFM adhesion measurements of five pollen species with a series of test surfaces in which each pollen has a unique solid surface morphology and pollenkitt volume. The results indicate that the combination of surface morphology (size and shape of echinate or reticulate features) with the pollenkitt volume provides pollens with a remarkably tunable adhesion to surfaces. With pollenkitt removed, pollen grains had relatively low adhesion strengths that were independent of surface chemistry and scalable with the tip radius of the pollen's ornamentation features, according to the Hamaker model. With the pollenkitt intact, adhesion was up to 3-6 times higher than the dry grains and exhibited strong substrate dependence. The adhesion enhancing effect of pollenkitt was driven by the formation of pollenkitt capillary bridges and was surprisingly species-dependent, with echinate insect-pollinated species (dandelion and sunflower) showing significantly stronger adhesion and higher substrate dependence than wind-pollinated species (ragweed, poplar, and olive). The combination of high pollenkitt volume and large convex, spiny surface features in echinate entomophilous varieties appears to enhance the spreading area of the liquid pollenkitt relative to varieties of pollen with less pollenkitt volume and less pronounced surface features. Measurements of pollenkitt surface energy indicate that the adhesive strength of capillary bridges is primarily dependent on nonpolar van der Waals interactions, with some contribution from the Lewis basic component of surface energy.

  13. Virus activated artificial ECM induces the osteoblastic differentiation of mesenchymal stem cells without osteogenic supplements

    PubMed Central

    Wang, Jianglin; Wang, Lin; Li, Xin; Mao, Chuanbin

    2013-01-01

    Biochemical and topographical features of an artificial extracellular matrix (aECM) can direct stem cell fate. However, it is difficult to vary only the biochemical cues without changing nanotopography to study their unique role. We took advantage of two unique features of M13 phage, a non-toxic nanofiber-like virus, to generate a virus-activated aECM with constant ordered ridge/groove nanotopography but displaying different fibronectin-derived peptides (RGD, its synergy site PHSRN, and a combination of RGD and PHSRN). One feature is the self-assembly of phage into a ridge/groove structure, another is the ease of genetically surface-displaying a peptide. We found that the unique ridge/groove nanotopography and the display of RGD and PHSRN could induce the osteoblastic differentiation of mesenchymal stem cells (MSCs) without any osteogenic supplements. The aECM formed through self-assembly and genetic engineering of phage can be used to understand the role of peptide cues in directing stem cell behavior while keeping nanotopography constant. PMID:23393624

  14. Laboratory Reflectance Spectra in the Middle-infrared: Effects of Grain Size on Spectral Features

    NASA Astrophysics Data System (ADS)

    Le Bras, A.; Erard, S.; Fulchignoni, M.

    2000-10-01

    Since spectral mineral features are sensitive to surface parameters, interpretation of remote-sensing asteroids spectra in terms of mineral composition is not easy nor unique, and laboratory spectra are needed in order to understand the influence of each parameter. We developped an experimental program at IAS, using the 2.5-120 microns interferometer spectrometer, to study the influence of surface parameters on mineral features. We present here the results obtained variing the grain size. We studied grain size effects with two types of terrestrial rocks: anorthosite (bright) and basalte (dark) in the 2-40 microns range. We observed variations of the spectral contrast with grain size, shifts in wavelengths and variations of the intensity of some characteristic spectral features, and appearence of transparency features at wavelengths longer than 8 microns.

  15. Self-assembled ultrathin nanotubes on diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming

    2014-04-01

    Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.

  16. Precursor state of oxygen molecules on the Si(001) surface during the initial room-temperature adsorption

    NASA Astrophysics Data System (ADS)

    Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul

    2012-10-01

    The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.

  17. A unique cell-surface protein phenotype distinguishes human small-cell from non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baylin, S.B.; Gazdar, A.F.; Minna, J.D.

    1982-08-01

    Radioiodination (/sup 125/I) and two-dimensional polyacrylamide gel electrophoresis was used to determine that small-(oat) cell lung carcinoma (SCC)-a tumor with neuroedocrine features-possesses a surface protein pattern distinct from the other types of lung cancer cells (squamous, adeno-, and large-cell undifferentiated carcinoma). Twelve distinguishing proteins, 40 to 70 kilodaltons (kDal), characterized four separate lines of SCC; three of these, designated E (60 kDal; pI = 7.3), S (30 kDal; pI = 6.0), and U 57 kDal; pI = 5.6), may be unique SCC gene products and were identified only in (/sup 35/S)methionine labeling of SCC and not in non-SCC or humanmore » fibroblasts. Two lines of adeno-, one of squamous, and one of undifferentiated large-cell lung carcinoma exhibited similar surface protein patterns to one another. Nine distinguishing proteins (40 to 100 kDal) and at least five large proteins (>100 kDal) were unique to these lines. The surface protein phenotypes for SCC and non-SCC were distinct from those for human lymphoblastoid cells and fibroblasts. However, the neuroendocrine features of SCC were further substantiated because 6 of the 12 distinguishing SCC surface proteins, including E and U, were identified on human neuroblastoma cells. The proteins identified should (i) help define differentiation steps for normal and neoplastic bronchial epithelial cells, (ii) prove useful in better classifying lung cancers, and (iii) be instrumental in tracing formation of neuroendocrine cells.« less

  18. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  19. RIPPLE - A new model for incompressible flows with free surfaces

    NASA Technical Reports Server (NTRS)

    Kothe, D. B.; Mjolsness, R. C.

    1991-01-01

    A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the continuum surface force model which represents surface tension as a (strongly) localized volume force. Other features include a higher-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE's unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods.

  20. 1992 Data Bank for Red Oak Lumber

    Treesearch

    Charles J. Gatchell; Janice K. Wiedenbeck; Elizabeth S. Walker; Elizabeth S. Walker

    1992-01-01

    The 1992 Data Bank for Red Oak Lumber is a collection of fully described FAS, Selects, No. 1 Common, and No. 2A Common boards (a total of 1,578 at present). The data bank has two unique features to aid in sample selection. The first feature is the double grading of FAS, No. 1 Common, and No. 2A Common boards to reflect the surface area in grading cuttings when grading...

  1. Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes.

    PubMed

    DeMartini, Daniel G; Ghoshal, Amitabh; Pandolfi, Erica; Weaver, Aaron T; Baum, Mary; Morse, Daniel E

    2013-10-01

    Loliginid squid use tunable multilayer reflectors to modulate the optical properties of their skin for camouflage and communication. Contained inside specialized cells called iridocytes, these photonic structures have been a model for investigations into bio-inspired adaptive optics. Here, we describe two distinct sexually dimorphic tunable biophotonic features in the commercially important species Doryteuthis opalescens: bright stripes of rainbow iridescence on the mantle just beneath each fin attachment and a bright white stripe centered on the dorsal surface of the mantle between the fins. Both of these cellular features are unique to the female; positioned in the same location as the conspicuously bright white testis in the male, they are completely switchable, transitioning between transparency and high reflectivity. The sexual dimorphism, location and tunability of these features suggest that they may function in mating or reproduction. These features provide advantageous new models for investigation of adaptive biophotonics. The intensely reflective cells of the iridescent stripes provide a greater signal-to-noise ratio than the adaptive iridocytes studied thus far, while the cells constituting the white stripe are adaptive leucophores--unique biological tunable broadband scatterers containing Mie-scattering organelles activated by acetylcholine, and a unique complement of reflectin proteins.

  2. The Pursuit of a Scalable Nanofabrication Platform for Use in Material and Life Science Applications

    PubMed Central

    GRATTON, STEPHANIE E. A.; WILLIAMS, STUART S.; NAPIER, MARY E.; POHLHAUS, PATRICK D.; ZHOU, ZHILIAN; WILES, KENTON B.; MAYNOR, BENJAMIN W.; SHEN, CLIFTON; OLAFSEN, TOVE; SAMULSKI, EDWARD T.; DESIMONE, JOSEPH M.

    2008-01-01

    CONSPECTUS In this Account, we describe the use of perfluoropolyether (PFPE)-based materials that are able to accurately mold and replicate micro- and nanosized features using traditional techniques such as embossing as well as new techniques that we developed to exploit the exceptional surface characteristics of fluorinated substrates. Because of the unique partial wetting and nonwetting characteristics of PFPEs, we were able to go beyond the usual molding and imprint lithography approaches and have created a technique called PRINT (Particle [or Pattern] Replication In Nonwetting Templates). PRINT is a distinctive “top-down” fabrication technique capable of generating isolated particles, arrays of particles, and arrays of patterned features for a plethora of applications in both nanomedicine and materials science. A particular strength of the PRINT technology is the high-resolution molding of well-defined particles with precise control over size, shape, deformability, and surface chemistry. The level of replication obtained showcases some of the unique characteristics of PFPE molding materials. In particular, these materials arise from very low surface energy precursors with positive spreading coefficients, can be photocured at ambient temperature, and are minimally adhesive, nonswelling, and conformable. These distinctive features enable the molding of materials with unique attributes and nanometer resolution that have unprecedented scientific and technological value. For example, in nanomedicine, the use of PFPE materials with the PRINT technique allows us to design particles in which we can tailor key therapeutic parameters such as bioavailability, biodistribution, target-specific cell penetration, and controlled cargo release. Similarly, in materials science, we can fabricate optical films and lens arrays, replicate complex, naturally occurring objects such as adenovirus particles, and create 2D patterned arrays of inorganic oxides. PMID:18720952

  3. Gold sputtered Blu-Ray disks as novel and cost effective sensors for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nieuwoudt, Michél. K.; Martin, Jacob W.; Oosterbeek, Reece N.; Novikova, Nina I.; Wang, Xindi; Malmström, Jenny; Williams, David E.; Simpson, M. C.

    2015-03-01

    Surface Enhanced Raman spectroscopy (SERS) offers sensitive and non-invasive detection of a variety of compounds as well as unparalleled information for establishing the molecular identity of both inorganic and organic compounds, not only in biological fluids but in all other aqueous and non-aqueous media. The localized hotspots produced through SERS at the solution/nanostructure interface of clustered gold or silver nano-particles enables detection levels of parts per trillion. Recent developments in advanced fabrication methods have enabled the manufacture of SERS substrates with repeatable surface nanostructures which provide reproducible quantitative analysis, historically a weakness of the SERS technique. In this paper we describe the novel use of gold sputtered Blu-Ray surfaces as SERS substrates. Blu-Ray disks provide ideal surfaces of SERS substrates with their repeatable and regular nano-gratings. We show that the unique surface features and composition of the recording surface enables the formation of gold nano-islands with nanogaps, simply through gold sputtering, and relate this to a 600 fold signal increase of the melamine Raman signal in aqueous solutions and detection to 68 ppb. Melamine is a triazine compound and appears not only as environmental contaminant in environmental groundwater but also as an adulterant in foods due to its high nitrogen content. We have shown significant SERS signal enhancements for spectra of melamine using gold-sputtered Blu-Ray disk surfaces, with reproducibility of 12%. Blu-Ray disks have a unique combination of design, surface features and composition of the recording surface which makes them ideal for preparation of SERS substrates by gold sputter-coating.

  4. Nanofluidic mixing via hybrid surface

    NASA Astrophysics Data System (ADS)

    Ye, Ziran; Li, Shunbo; Zhou, Bingpu; Hui, Yu Sanna; Shen, Rong; Wen, Weijia

    2014-10-01

    We report the design and fabrication of the nanofluidic mixer comprising hybrid hydrophobic/hydrophilic micro-patterns on the top and bottom walls of the nanochannel. The unique feature of such mixer is that, without any geometric structure inside the nanochannel, the mixing can be realized solely by the hybrid surfaces. Besides, the mixing length in nanomixer has been significantly shortened comparing to micromixer. We attribute the mixing achievement to be caused by the convection and chaotic flows of two fluids along the hybrid surface due to the large surface-to-volume ratio of the nanochannel.

  5. Nanofluidic mixing via hybrid surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Ziran; Li, Shunbo; Zhou, Bingpu

    2014-10-20

    We report the design and fabrication of the nanofluidic mixer comprising hybrid hydrophobic/hydrophilic micro-patterns on the top and bottom walls of the nanochannel. The unique feature of such mixer is that, without any geometric structure inside the nanochannel, the mixing can be realized solely by the hybrid surfaces. Besides, the mixing length in nanomixer has been significantly shortened comparing to micromixer. We attribute the mixing achievement to be caused by the convection and chaotic flows of two fluids along the hybrid surface due to the large surface-to-volume ratio of the nanochannel.

  6. Volgograd and vicinity: a Landsat view

    USGS Publications Warehouse

    Dando, William A.; Johnson, Gary E.

    1981-01-01

    Many diverse features can be discerned on the Landsat image of Volgograd and vicinity. Some of these features have resulted directly from man's alteration of the land surface in accordance with Stalin's and Khrushchev's plans for control of climate and for development in Volgograd and the surrounding area. Landsat images such as the one in this example provide the opportunity to inventory and assess man's imprint upon the land on a regional basis from a unique perspective.

  7. Surface critical behavior of thin Ising films at the ‘special point’

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Bekhechi, Smaine

    2003-03-01

    The critical surface phenomena of a magnetic thin Ising film is studied using numerical Monte-Carlo method based on Wolff cluster algorithm. With varying the surface coupling, js= Js/ J, the phase diagram exhibits a special surface coupling jsp at which all the films have a unique critical temperature Tc for an arbitrary thickness n. In spite of this, the critical exponent of the surface magnetization at the special point is found to increase with n. Moreover, non-universal features as well as dimensionality crossover from two- to three-dimensional behavior are found at this point.

  8. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    NASA Astrophysics Data System (ADS)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  9. Rational Design of Au@Pt Multibranched Nanostructures as Bifunctional Nanozymes.

    PubMed

    Wu, Jiangjiexing; Qin, Kang; Yuan, Dan; Tan, Jun; Qin, Li; Zhang, Xuejin; Wei, Hui

    2018-04-18

    One of the current challenges in nanozyme-based nanotechnology is the utilization of multifunctionalities in one material. In this regard, Au@Pt nanoparticles (NPs) with excellent enzyme-mimicking activities due to the Pt shell and unique surface plasmon resonance features from the Au core have attracted enormous research interest. However, the unique surface plasmon resonance features from the Au core have not been widely utilized. The practical problem of the optical-damping nature of Pt hinders the research into the combination of Au@Pt NPs' enzyme-mimicking properties with their surface-enhanced Raman scattering (SERS) activities. Herein, we rationally tuned the Pt amount to achieve Au@Pt NPs with simultaneous plasmonic and enzyme-mimicking activities. The results showed that Au@Pt NPs with 2.5% Pt produced the highest Raman signal in 2 min, which benefited from the remarkably accelerated catalytic oxidation of 3,3',5,5'-tetramethylbenzidine with the decorated Pt and strong electric field retained from the Au core for SERS. This study not only demonstrates the great promise of combining bimetallic nanomaterials' multiple functionalities but also provides rational guidelines to design high-performance nanozymes for potential biomedical applications.

  10. Micro-wear features on unique 100-Mrad cups: two retrieved cups compared to hip simulator wear study.

    PubMed

    Yamamoto, Kengo; Masaoka, Toshinori; Manaka, Masakazu; Oonishi, Hironobu; Clarke, Ian; Shoji, Hiromu; Kawanabe, Keiichi; Imakiire, Atsuhiro

    2004-04-01

    We studied the micro-wear phenomena of unique, extensively cross-linked polyethylene cups (cross-linked with 1,000 kGy-irradiation) that had been used briefly in Japan. Two retrievals (at 15 years) came from the Japanese "SOM" hip system (implanted 1971-78). These were compared to a set of 0 kGy and 500-1,500 kGy cups run in our hip simulator. The polyethylene cups that had not been cross-linked had the greatest wear. The worn areas had a burnished appearance and were clearly separated from the unworn region by a distinct ridge-line. The worn areas had lost all machine tracks, showed a large amount of UHMWPE 'flow', and long PE fibrils. The associated surface rippling was degraded. These features were considered synonymous with severe polyethylene wear. In contrast, the worn areas in the very cross-linked cups had a visibly matte surface and no ridge-line. Micro-examination showed that the machine tracks were still present. Ripple formations were less obvious than in the cups that were not cross-linked, polyethylene surface fibrils were scarcer and all the fibrils were much smaller than in the cups that were not crosslinked. Our two retrieved cups and the simulator cups confirmed the greater wear-resistance of very cross-linked polyethylene. It should also be noted that the SOM cup design and processing were unique and differed greatly from that of modern polyethylene cups.

  11. Pedunculated and telangiectatic merkel cell carcinoma: an unusual clinical presentation.

    PubMed

    Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco

    2013-05-01

    Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect.

  12. Manual modification and plasma exposure of boron nitride ceramic to study Hall effect thruster plasma channel material erosion

    NASA Astrophysics Data System (ADS)

    Satonik, Alexander J.

    Worn Hall effect thrusters (HET) show a variety of unique microstructures and elemental compositions in the boron nitride thruster channel walls. Worn thruster channels are typically created by running test thrusters in vacuum chambers for hundreds of hours. Studies were undertaken to manually modify samples of boron nitride without the use of a hall effect thruster. Samples were manually abraded with an abrasive blaster and sandpaper, in addition to a vacuum heater. Some of these samples were further exposed to a xenon plasma in a magnetron sputter device. Sandpaper and abrasive blaster tests were used to modify surface roughness values of the samples from 10,000 A to 150,000 A, matching worn thruster values. Vacuum heat treatments were performed on samples. These treatments showed the ability to modify chemical compositions of boron nitride samples, but not in a manner matching changes seen in worn thruster channels. Plasma erosion rate was shown to depend on the grade of the BN ceramic and the preparation of the surface prior to plasma exposure. Abraded samples were shown to erode 43% more than their pristine counterparts. Unique surface features and elemental compositions on the worn thruster channel samples were overwritten by new surface features on the ceramic grains. The microscope images of the ceramic surface show that the magnetron plasma source rounded the edges of the ceramic grains to closely match the worn HET surface. This effect was not as pronounced in studies of ion beam bombardment of the surface and appears to be a result of the quasi-neutral plasma environment.

  13. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.

    PubMed

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L

    2012-09-04

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.

  14. Disharmony of the spheres: Recent trends in planetary surface nomenclature

    USGS Publications Warehouse

    Pike, R.J.

    1976-01-01

    Inadvisable departures from tradition in naming newly mapped features on Mars, Mercury, and the Moon have been implemented and proposed since 1970. Functional need for place names also has become confused with cartographic convenience. Much of the resulting new nomenclature is neither unique, efficient, nor imaginative. The longstanding classical orientation in Solar System geography needs to be firmly reasserted. The Ma??dler scheme for designating smaller craters on the Moon should be retained and extended to the farside. Names of surface features on other bodies might best reflect the traditional connotations of planet and satellite names: for example, most crates on Mars would be named for mythical heroes and military personalities in ancient history, craters on Mercury might commemorate explorers or commercial luminaries, and features on Venus would bear the names of famous women. ?? 1976.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  16. Antifogging abilities of model nanotextures

    DOE PAGES

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; ...

    2017-02-27

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  17. Antifogging abilities of model nanotextures

    NASA Astrophysics Data System (ADS)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; Checco, Antonio; Black, Charles T.; Rahman, Atikur; Midavaine, Thierry; Clanet, Christophe; Quéré, David

    2017-06-01

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.

  18. Sapping Features of the Colorado Plateau: a Comparative Planetary Geology Field Guide

    NASA Technical Reports Server (NTRS)

    Howard, Alan D. (Editor); Kochel, R. Craig (Editor); Holt, Henry E. (Editor)

    1987-01-01

    This book is an attempt to determine geomorphic criteria to be used to distinguish between channels formed predominantly by sapping and seepage erosion and those formed principally by surface runoff processes. The geologic nature of the Colorado Plateau has resulted in geomorphic features that show similarities to some areas on Mars, especially certain valley networks within thick sandstone formations. Where spring sapping is an effective process, the valleys that develop are unique in terms of their morphology and network pattern.

  19. Mucosal melanoma: a clinically and biologically unique disease entity.

    PubMed

    Carvajal, Richard D; Spencer, Sharon A; Lydiatt, William

    2012-03-01

    Mucosal melanoma (MM) is an aggressive and clinically complex malignancy made more challenging by its relative rarity. Because of the rarity of MM as a whole, and because of the unique biology and clinical challenges of MM arising from each anatomic location, understanding of this disease and its optimal management remains limited. The impact of various treatment strategies on disease control and survival has been difficult to assess because of the small size of most reported series of MM arising from any one particular site, the retrospective nature of most series, and the lack of a uniform comprehensive staging system for this disease. This article summarizes the clinical, pathologic, and molecular features, and the diagnostic and therapeutic considerations for the management of MM, underscoring the similarities and differences from cutaneous melanoma. Furthermore, the distinct clinical features and management implications unique to melanoma arising from the mucosal surfaces of the head and neck, the anorectal region, and the female genital tract are highlighted.

  20. Pedunculated and Telangiectatic Merkel Cell Carcinoma: An Unusual Clinical Presentation

    PubMed Central

    Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco

    2013-01-01

    Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect. PMID:23723504

  1. Topographic design and application of hierarchical polymer surfaces replicated by microinjection compression molding

    NASA Astrophysics Data System (ADS)

    Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin

    2013-10-01

    In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.

  2. Evolutionary grinding model for nanometric control of surface roughness for aspheric optical surfaces.

    PubMed

    Han, Jeong-Yeol; Kim, Sug-Whan; Han, Inwoo; Kim, Geon-Hee

    2008-03-17

    A new evolutionary grinding process model has been developed for nanometric control of material removal from an aspheric surface of Zerodur substrate. The model incorporates novel control features such as i) a growing database; ii) an evolving, multi-variable regression equation; and iii) an adaptive correction factor for target surface roughness (Ra) for the next machine run. This process model demonstrated a unique evolutionary controllability of machining performance resulting in the final grinding accuracy (i.e. averaged difference between target and measured surface roughness) of -0.2+/-2.3(sigma) nm Ra over seven trial machine runs for the target surface roughness ranging from 115 nm to 64 nm Ra.

  3. Surface-enhanced Raman scattering and DFT investigation of 1,5-diphenylcarbazide and its metal complexes with Ca(II), Mn(II), Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile

    2014-09-01

    In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.

  4. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    PubMed Central

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-01-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications. PMID:28327611

  5. Tongue prints: A novel biometric and potential forensic tool.

    PubMed

    Radhika, T; Jeddy, Nadeem; Nithya, S

    2016-01-01

    Tongue is a vital internal organ well encased within the oral cavity and protected from the environment. It has unique features which differ from individual to individual and even between identical twins. The color, shape, and surface features are characteristic of every individual, and this serves as a tool for identification. Many modes of biometric systems have come into existence such as fingerprint, iris scan, skin color, signature verification, voice recognition, and face recognition. The search for a new personal identification method secure has led to the use of the lingual impression or the tongue print as a method of biometric authentication. Tongue characteristics exhibit sexual dimorphism thus aiding in the identification of the person. Emerging as a novel biometric tool, tongue prints also hold the promise of a potential forensic tool. This review highlights the uniqueness of tongue prints and its superiority over other biometric identification systems. The various methods of tongue print collection and the classification of tongue features are also elucidated.

  6. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  7. Distinguishing and diagnosing contemporary and conventional features of dental erosion.

    PubMed

    Bassiouny, Mohamed A

    2014-01-01

    The vast number and variety of erosion lesions encountered today require reconsideration of the traditional definition. Dental erosion associated with modern dietary habits can exhibit unique features that symbolize a departure from the decades-old conventional image known as tooth surface loss. The extent and diversity of contemporary erosion lesions often cause conflicting diagnoses. Specific examples of these features are presented in this article. The etiologies, genesis, course of development, and characteristics of these erosion lesions are discussed. Contemporary and conventional erosion lesions are distinguished from similar defects, such as mechanically induced wear, carious lesions, and dental fluorosis, which affect the human dentition.

  8. A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.

    PubMed

    Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali

    2017-08-21

    Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.

  9. Superhydrophobic Natural and Artificial Surfaces-A Structural Approach.

    PubMed

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-05-22

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports' wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of "nature's interventions" in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants' and animals' unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances.

  10. Analysis of cosmetic residues on a single human hair by ATR FT-IR microspectroscopy

    NASA Astrophysics Data System (ADS)

    Pienpinijtham, Prompong; Thammacharoen, Chuchaat; Naranitad, Suwimol; Ekgasit, Sanong

    2018-05-01

    In this work, ATR FT-IR spectra of single human hair and cosmetic residues on hair surface are successfully collected using a homemade dome-shaped Ge μIRE accessary installed on an infrared microscope. By collecting ATR spectra of hairs from the same person, the spectral patterns are identical and superimposed while different spectral features are observed from ATR spectra of hairs collected from different persons. The spectral differences depend on individual hair characteristics, chemical treatments, and cosmetics on hair surface. The "Contact-and-Collect" technique that transfers remarkable materials on the hair surface to the tip of the Ge μIRE enables an identification of cosmetics on a single hair. Moreover, the differences between un-split and split hairs are also studied in this report. These highly specific spectral features can be employed for unique identification or for differentiation of hairs based on the molecular structures of hairs and cosmetics on hairs.

  11. Utilization of satellite data for inventorying prairie ponds and lakes

    USGS Publications Warehouse

    Work, E.A.; Gilmer, D.S.

    1976-01-01

    By using data acquired by LANDSAT-1 (formerly ERTS- 1), studies were conducted in extracting information necessary for formulating management decisions relating to migratory waterfowl. Management decisions are based in part on an assessment ofhabitat characteristics, specifically numbers, distribution, and quality of ponds and lakes in the prime breeding range. This paper reports on a study concerned with mapping open surface water features in the glaciated prairies. Emphasis was placed on the recognition of these features based upon water's uniquely low radiance in a single nearinfrared waveband. The results of this recognition were thematic maps and statistics relating to open surface water. In a related effort, the added information content of multiple spectral wavebands was used for discriminating surface water at a level of detail finer than the virtual resolution of the data. The basic theory of this technique and some preliminary results are described.

  12. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features

    PubMed Central

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A.

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting. PMID:26274332

  13. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features.

    PubMed

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting.

  14. Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data

    USGS Publications Warehouse

    Lanza, Nina L.; Ollila, Ann M.; Cousin, Agnes; Wiens, Roger C.; Clegg, Samuel M.; Mangold, Nicolas; Bridges, Nathan; Cooper, Daniel; Schmidt, Mariek E.; Berger, Jeffrey; Arvidson, Raymond E.; Melikechi, Noureddine; Newsom, Horton E.; Tokar, Robert; Hardgrove, Craig; Mezzacappa, Alissa; Jackson, Ryan S.; Clark, Benton C.; Forni, Olivier; Maurice, Sylvestre; Nachon, Marion; Anderson, Ryan B.; Blank, Jennifer; Deans, Matthew; Delapp, Dorothea; Léveillé, Richard; McInroy, Rhonda; Martinez, Ronald; Meslin, Pierre-Yves; Pinet, Patrick

    2015-01-01

    Surface compositional features on rocks such as coatings and weathering rinds provide important information about past aqueous environments and water–rock interactions. The search for these features represents an important aspect of the Curiosity rover mission. With its unique ability to do fine-scale chemical depth profiling, the ChemCam laser-induced breakdown spectroscopy instrument (LIBS) onboard Curiosity can be used to both identify and analyze rock surface alteration features. In this study we analyze a terrestrial manganese-rich rock varnish coating on a basalt rock in the laboratory with the ChemCam engineering model to determine the LIBS signature of a natural rock coating. Results show that there is a systematic decrease in peak heights for elements such as Mn that are abundant in the coating but not the rock. There is significant spatial variation in the relative abundance of coating elements detected by LIBS depending on where on the rock surface sampled; this is due to the variability in thickness and spatial discontinuities in the coating. Similar trends have been identified in some martian rock targets in ChemCam data, suggesting that these rocks may have coatings or weathering rinds on their surfaces.

  15. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.

    PubMed

    Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A

    2005-07-07

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  16. Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site

    USGS Publications Warehouse

    Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.

    2005-01-01

    The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.

  17. Microscale Patterning of Thermoplastic Polymer Surfaces by Selective Solvent Swelling

    PubMed Central

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L.

    2012-01-01

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of microns, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication. PMID:22900539

  18. Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy.

    PubMed

    Xu, Lizhi; Gutbrod, Sarah R; Ma, Yinji; Petrossians, Artin; Liu, Yuhao; Webb, R Chad; Fan, Jonathan A; Yang, Zijian; Xu, Renxiao; Whalen, John J; Weiland, James D; Huang, Yonggang; Efimov, Igor R; Rogers, John A

    2015-03-11

    Advanced materials and fractal design concepts form the basis of a 3D conformal electronic platform with unique capabilities in cardiac electrotherapies. Fractal geometries, advanced electrode materials, and thin, elastomeric membranes yield a class of device capable of integration with the entire 3D surface of the heart, with unique operational capabilities in low power defibrillation. Co-integrated collections of sensors allow simultaneous monitoring of physiological responses. Animal experiments on Langendorff-perfused rabbit hearts demonstrate the key features of these systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality.

    PubMed

    Ramezani-Dakhel, Hadi; Mirau, Peter A; Naik, Rajesh R; Knecht, Marc R; Heinz, Hendrik

    2013-04-21

    Surfactant-stabilized metal nanoparticles have shown promise as catalysts although specific surface features and their influence on catalytic performance have not been well understood. We quantify the thermodynamic stability, the facet composition of the surface, and distinct atom types that affect rates of atom leaching for a series of twenty near-spherical Pd nanoparticles of 1.8 to 3.1 nm size using computational models. Cohesive energies indicate higher stability of certain particles that feature an approximate 60/20/20 ratio of {111}, {100}, and {110} facets while less stable particles exhibit widely variable facet composition. Unique patterns of atom types on the surface cause apparent differences in binding energies and changes in reactivity. Estimates of the relative rate of atom leaching as a function of particle size were obtained by the summation of Boltzmann-weighted binding energies over all surface atoms. Computed leaching rates are in good qualitative correlation with the measured catalytic activity of peptide-stabilized Pd nanoparticles of the same shape and size in Stille coupling reactions. The agreement supports rate-controlling contributions by atom leaching in the presence of reactive substrates. The computational approach provides a pathway to estimate the catalytic activity of metal nanostructures of engineered shape and size, and possible further refinements are described.

  20. Atmospheric form drag over Arctic sea ice derived from high-resolution IceBridge elevation data

    NASA Astrophysics Data System (ADS)

    Petty, A.; Tsamados, M.; Kurtz, N. T.

    2016-02-01

    Here we present a detailed analysis of atmospheric form drag over Arctic sea ice, using high resolution, three-dimensional surface elevation data from the NASA Operation IceBridge Airborne Topographic Mapper (ATM) laser altimeter. Surface features in the sea ice cover are detected using a novel feature-picking algorithm. We derive information regarding the height, spacing and orientation of unique surface features from 2009-2014 across both first-year and multiyear ice regimes. The topography results are used to explicitly calculate atmospheric form drag coefficients; utilizing existing form drag parameterizations. The atmospheric form drag coefficients show strong regional variability, mainly due to variability in ice type/age. The transition from a perennial to a seasonal ice cover therefore suggest a decrease in the atmospheric form drag coefficients over Arctic sea ice in recent decades. These results are also being used to calibrate a recent form drag parameterization scheme included in the sea ice model CICE, to improve the representation of form drag over Arctic sea ice in global climate models.

  1. Seismic imaging of the upper mantle beneath the northern Central Andean Plateau: Implications for surface topography

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Wagner, L. S.

    2015-12-01

    Extending over 1,800 km along the active South American Cordilleran margin, the Central Andean Plateau (CAP) as defined by the 3 km elevation contour is second only to the Tibetan Plateau in geographic extent. The uplift history of the 4 km high Plateau remains uncertain with paleoelevation studies along the CAP suggesting a complex, non-uniform uplift history. As part of the Central Andean Uplift and the Geodynamics of High Topography (CAUGHT) project, we use surface waves measured from ambient noise and two-plane wave tomography to image the S-wave velocity structure of the crust and upper mantle to investigate the upper mantle component of plateau uplift. We observe three main features in our S-wave velocity model including (1), a high velocity slab (2), a low velocity anomaly above the slab where the slab changes dip from near horizontal to a normal dip, and (3), a high-velocity feature in the mantle above the slab that extends along the length of the Altiplano from the base of the Moho to a depth of ~120 km with the highest velocities observed under Lake Titicaca. A strong spatial correlation exists between the lateral extent of this high-velocity feature beneath the Altiplano and the lower elevations of the Altiplano basin suggesting a potential relationship. Non-uniqueness in our seismic models preclude uniquely constraining this feature as an uppermost mantle feature bellow the Moho or as a connected eastward dipping feature extending up to 300 km in the mantle as seen in deeper mantle tomography studies. Determining if the high velocity feature represents a small lithospheric root or a delaminating lithospheric root extending ~300 km into the mantle requires more integration of observations, but either interpretation shows a strong geodynamic connection with the uppermost mantle and the current topography of the northern CAP.

  2. A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.

    2016-06-01

    This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.

  3. Some unique surface patterns on ignimbrites on Earth: A "bird's eye" view as a guide for planetary mappers

    NASA Astrophysics Data System (ADS)

    de Silva, Shanaka L.; Bailey, John E.

    2017-08-01

    Observations of terrestrial analogs are critical to aiding planetary mappers in interpreting surface lithologies on other planets. For instance, the presence of ignimbrites on Mars has been debated for over three decades and is supported by analogy with deposits on Earth. Critical evidence includes the geomorphic and surface expression of the deposits, and those in the Central Andes of South America are amongst the most-cited analogs. Herein we describe some prominent surface textures and patterns seen in ignimbrites on the scale of high-resolution remotely sensed data (10-1 m per pixel). These include pervasive joints and fractures that contribute to yardang form and development as well as prominent mounds, fissures, and fracture networks ("spiders", "bugs", "boxworks") on ignimbrite surfaces. While all these features are related to intrinsic cooling and degassing processes, the involvement of external water buried by hot pyroclastic flows enhances fumarolic activity, advective cooling, and joint development. Observations of these geomorphic expressions using remote sensing are only possible with the highest resolution data and limited surface erosion. For Mars, where similarly high resolution datasets are available (for example, the High Resolution Imaging Sensor Experiment or HiRISE) extensive dust cover may limit the recognition of similar features there. However significant relief on some of these features on Earth indicate they might still be detectable on Mars.

  4. Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application

    NASA Astrophysics Data System (ADS)

    Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan

    2018-03-01

    A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.

  5. Nanofabrication of ultra-low reflectivity black silicon surfaces and devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    White, Victor E.; Yee, Karl Y.; Balasubramanian, Kunjithapatham; Echternach, Pierre M.; Muller, Richard E.; Dickie, Matthew R.; Cady, Eric; Ryan, Daniel J.; Eastwood, Michael; van Gorp, Byron; Riggs, A. J. Eldorado; Zimmerman, Niel; Kasdin, N. Jeremy

    2015-08-01

    Optical devices with features exhibiting ultra low reflectivity on the order of 10-7 specular reflectance in the visible spectrum are required for coronagraph instruments and some spectrometers employed in space research. Nanofabrication technologies have been developed to produce such devices with various shapes and feature dimensions to meet these requirements. Infrared reflection is also suppressed significantly with chosen wafers and processes. Particularly, devices with very high (>0.9) and very low reflectivity (<10-7) on adjacent areas have been fabricated and characterized. Significantly increased surface area due to the long needle like nano structures also provides some unique applications in other technology areas. We present some of the approaches, challenges and achieved results in producing and characterizing such devices currently employed in laboratory testbeds and instruments.

  6. Superhydrophobic Natural and Artificial Surfaces—A Structural Approach

    PubMed Central

    Avrămescu, Roxana-Elena; Ghica, Mihaela Violeta; Dinu-Pîrvu, Cristina; Prisada, Răzvan; Popa, Lăcrămioara

    2018-01-01

    Since ancient times humans observed animal and plants features and tried to adapt them according to their own needs. Biomimetics represents the foundation of many inventions from various fields: From transportation devices (helicopter, airplane, submarine) and flying techniques, to sports’ wear industry (swimming suits, scuba diving gear, Velcro closure system), bullet proof vests made from Kevlar etc. It is true that nature provides numerous noteworthy models (shark skin, spider web, lotus leaves), referring both to the plant and animal kingdom. This review paper summarizes a few of “nature’s interventions” in human evolution, regarding understanding of surface wettability and development of innovative special surfaces. Empirical models are described in order to reveal the science behind special wettable surfaces (superhydrophobic /superhydrophilic). Materials and methods used in order to artificially obtain special wettable surfaces are described in correlation with plants’ and animals’ unique features. Emphasis is placed on joining superhydrophobic and superhydrophilic surfaces, with important applications in cell culturing, microorganism isolation/separation and molecule screening techniques. Bio-inspired wettability is presented as a constitutive part of traditional devices/systems, intended to improve their characteristics and extend performances. PMID:29789488

  7. Nano-assembly of nanodiamonds by conjugation to actin filaments.

    PubMed

    Bradac, Carlo; Say, Jana M; Rastogi, Ishan D; Cordina, Nicole M; Volz, Thomas; Brown, Louise J

    2016-03-01

    Fluorescent nanodiamonds (NDs) are remarkable objects. They possess unique mechanical and optical properties combined with high surface areas and controllable surface reactivity. They are non-toxic and hence suited for use in biological environments. NDs are also readily available and commercially inexpensive. Here, the exceptional capability of controlling and tailoring their surface chemistry is demonstrated. Small, bright diamond nanocrystals (size ˜30 nm) are conjugated to protein filaments of actin (length ˜3-7 µm). The conjugation to actin filaments is extremely selective and highly target-specific. These unique features, together with the relative simplicity of the conjugation-targeting method, make functionalised nanodiamonds a powerful and versatile platform in biomedicine and quantum nanotechnologies. Applications ranging from using NDs as superior biological markers to, potentially, developing novel bottom-up approaches for the fabrication of hybrid quantum devices that would bridge across the bio/solid-state interface are presented and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bonding thermoplastic polymers

    DOEpatents

    Wallow, Thomas I [Fremont, CA; Hunter, Marion C [Livermore, CA; Krafcik, Karen Lee [Livermore, CA; Morales, Alfredo M [Livermore, CA; Simmons, Blake A [San Francisco, CA; Domeier, Linda A [Danville, CA

    2008-06-24

    We demonstrate a new method for joining patterned thermoplastic parts into layered structures. The method takes advantage of case-II permeant diffusion to generate dimensionally controlled, activated bonding layers at the surfaces being joined. It is capable of producing bonds characterized by cohesive failure while preserving the fidelity of patterned features in the bonding surfaces. This approach is uniquely suited to production of microfluidic multilayer structures, as it allows the bond-forming interface between plastic parts to be precisely manipulated at micrometer length scales. The bond enhancing procedure is easily integrated in standard process flows and requires no specialized equipment.

  9. Surface force analysis of glycine adsorption on different crystal surfaces of titanium dioxide (TiO2).

    PubMed

    Ganbaatar, Narangerel; Imai, Kanae; Yano, Taka-Aki; Hara, Masahiko

    2017-01-01

    Surface force analysis with atomic force microscope (AFM) in which a single amino acid residue was mounted on the tip apex of AFM probe was carried out for the first time at the molecular level on titanium dioxide (TiO 2 ) as a representative mineral surface for prebiotic chemical evolution reactions. The force analyses on surfaces with three different crystal orientations revealed that the TiO 2 (110) surface has unique characteristics for adsorbing glycine molecules showing different features compared to those on TiO 2 (001) and (100). To examine this difference, we investigated thermal desorption spectroscopy (TDS) and the interaction between the PEG cross-linker and the three TiO 2 surfaces. Our data suggest that the different single crystal surfaces would provide different chemical evolution field for amino acid molecules.

  10. Biomimetic Transferable Surface for a Real Time Control over Wettability and Photoerasable Writing with Water Drop Lens

    PubMed Central

    Zillohu, Ahnaf Usman; Abdelaziz, Ramzy; Homaeigohar, Shahin; Krasnov, Igor; Müller, Martin; Strunskus, Thomas; Elbahri, Mady

    2014-01-01

    We demonstrate a transferable device that can turn wettability of surfaces to sticky or slippy, as per requirement. It is composed of polymeric yarn with a fibrous structure, which can be lifted and placed on any surface to render it the unique wettability properties. We introduce Polyvinylidenefluoride (PVDF) random fiber as biomimetic rose petal surface. When it is decorated with PVDF nanofibers yarns, the random mesh transform from rose petal sticky state into grass leaf slippy state. When it is placed on sticky, hydrophilic metal coin, it converts the surface of the coin to super hydrophobic. Adjustments in the yarn system, like interyarn spacing, can be done in real time to influence its wettability, which is a unique feature. Next, we load the polymer with a photochromic compound for chemical restructuring. It affects the sliding angle of water drop and makes the fibers optically active. We also demonstrate a “water droplets lens” concept that enables erasable writing on photochromic rose petal sticky fibrous surface. The droplet on a highly hydrophobic surface acts as a ball lens to concentrate light onto a hot spot; thereby we demonstrate UV light writing with water lenses and visible light erasing. PMID:25491016

  11. Study of Comets Composition and Structure

    NASA Astrophysics Data System (ADS)

    Khalaf, S. Z.; Selman, A. A.; Ali, H. S.

    2008-12-01

    The present paper focuses on the nature of the different interactions between cometary nucleus and tail with solar wind. The dynamics of the comet will impose many features that provide unique behavior of the comet when entering the solar system. These features are reviewed in this paper and few investigations are made. The calculations made in this work represent the analysis and interpretation of the different features of the comet, such as perihelion and eccentricity dependence on the gas production rate, and the dependence of the latter on the composition of the comet nucleus. The dependences of the heliocentric, bow shock, contact surface, and stand-off distances with gas production rate for many types of comets that cover linear and non-linear types are studied in this work. Important results are obtained which indicated the different physical interactions between cometary ions and solar wind. Furthermore, the important relation between mean molecular weight and gas production rate are analyzed and studied in this work and a conclusion is made that, as the gas production rate increases, the mean molecular weight will decrease exponentially. A detailed discussion for this unique relation is given.

  12. Functional mesoporous silica nanoparticles for bio-imaging applications.

    PubMed

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  13. Direct fabrication of bio-inspired gecko-like geometries with vat polymerization additive manufacturing method

    NASA Astrophysics Data System (ADS)

    Davoudinejad, A.; Ribo, M. M.; Pedersen, D. B.; Islam, A.; Tosello, G.

    2018-08-01

    Functional surfaces have proven their potential to solve many engineering problems, attracting great interest among the scientific community. Bio-inspired multi-hierarchical micro-structures grant the surfaces with new properties, such as hydrophobicity, adhesion, unique optical properties and so on. The geometry and fabrication of these surfaces are still under research. In this study, the feasibility of using direct fabrication of microscale features by additive manufacturing (AM) processes was investigated. The investigation was carried out using a specifically designed vat photopolymerization AM machine-tool suitable for precision manufacturing at the micro dimensional scale which has previously been developed, built and validated at the Technical University of Denmark. It was shown that it was possible to replicate a simplified surface inspired by the Tokay gecko, the geometry was previously designed and replicated by a complex multi-step micromanufacturing method extracted from the literature and used as benchmark. Ultimately, the smallest printed features were analyzed by conducting a sensitivity analysis to obtain the righteous parameters in terms of layer thickness and exposure time. Moreover, two more intricate designs were fabricated with the same parameters to assess the surfaces functionality by its wettability. The surface with increased density and decreased feature size showed a water contact angle (CA) of 124°  ±  0.10°, agreeing with the Cassie–Baxter model. These results indicate the possibility of using precision AM for a rapid, easy and reliable fabrication method for functional surfaces.

  14. Painting with Frost

    NASA Image and Video Library

    2016-12-07

    Subtle variations in color look like brush strokes as the lightly frosted terrain reflects light. These variations provide a backdrop to some exotic features referred to colloquially as "spiders." The radial channels branching out from a central depression are formed when the seasonal layer of dry ice turns to gas in the spring and erodes the surface, which is a uniquely Martian landform. http://photojournal.jpl.nasa.gov/catalog/PIA21214

  15. Stepwise molding, etching, and imprinting to form libraries of nanopatterned substrates.

    PubMed

    Zhao, Zhi; Cai, Yangjun; Liao, Wei-Ssu; Cremer, Paul S

    2013-06-04

    Herein, we describe a novel colloidal lithographic strategy for the stepwise patterning of planar substrates with numerous complex and unique designs. In conjunction with colloidal self-assembly, imprint molding, and capillary force lithography, reactive ion etching was used to create complex libraries of nanoscale features. This combinatorial strategy affords the ability to develop an exponentially increasing number of two-dimensional nanoscale patterns with each sequential step in the process. Specifically, dots, triangles, circles, and lines could be assembled on the surface separately and in combination with each other. Numerous architectures are obtained for the first time with high uniformity and reproducibility. These hexagonal arrays were made from polystyrene and gold features, whereby each surface element could be tuned from the micrometer size scale down to line widths of ~35 nm. The patterned area could be 1 cm(2) or even larger. The techniques described herein can be combined with further steps to make even larger libraries. Moreover, these polymer and metal features may prove useful in optical, sensing, and electronic applications.

  16. Identification of a Spectrally and Thermophysically Unique Region in Northern Amazonis Planitia, Mars: Surface Analysis using TES and THEMIS Data

    NASA Astrophysics Data System (ADS)

    Rogers, D.; Christensen, P. R.

    2002-12-01

    An intermediate-albedo (0.23-0.24) region located in northeastern Amazonis Planitia (approximately 900 km2 in area, centered at 40§N, 150§W) has been discovered to have a unique combination of certain spectral and thermophysical properties. The range of thermal inertia values for this region is 40-150 J/m2Ks1/2. On Mars, these values are usually indicative of a thick deposit of very fine-grained material (<63 microns) [1]. However, unlike typical dust deposits on Mars, this region exhibits moderate spectral contrast, with surface emissivity values ranging from 0.94-0.97 near 1030 cm-1. These emissivity values are uncharacteristic of fine-grained material [e.g., 2]. The modal mineralogy obtained by linear deconvolution of selected emissivity spectra from at least four different orbits over this region is not different than that reported for the Acidalia Planitia andesitic surface [3], within the mineral abundance detection limit estimated for TES [4]. However, the atmospherically-corrected surface spectral shape is distinct from the surface spectra common to Acidalia Planitia [3], Syrtis Major [3, 4], Sinus Meridiani [5] and Nili Fossae [6]. A spectral index was developed that describes the shape of a concave-down portion of the surface spectrum near 900 cm-1. A global 4 pixel-per-degree map of this index shows that the spectral character is unique to this region on Mars. MOC and THEMIS visible images available for this area show a uniform geomorphology consisting of parallel sinuous features trending NW-SE. Finally, THEMIS IR images show a sharp temperature contact that corresponds with the boundary of this area in the spectral index map. There are likely to be other explanations for reconciling the low thermal inertia with high spectral feature depth, however a favored hypothesis for this anomalous surface is that it is composed of a consolidated but highly porous material. This and other interpretations for this region will be discussed. References: [1] Kieffer et al. 1977, JGR, 82, 4249-4291; [2] Moersch and Christensen, 1995, JGR, 100, 7465-7477; [3] Bandfield et al. 2000, Science, 287, 1626-1630; [4] Christensen et al. 2000, JGR, 105, 9609-9621; [5] Christensen et al. 2000, JGR, 105, 9623-9642; [6] Hamilton et al. 2001, LPSC XXXII Abstracts, abstract 2184

  17. Highly Transparent Water-Repelling Surfaces based on Biomimetic Hierarchical Structure

    NASA Astrophysics Data System (ADS)

    Wooh, Sanghyuk; Koh, Jai; Yoon, Hyunsik; Char, Kookheon

    2013-03-01

    Nature is a great source of inspiration for creating unique structures with special functions. The representative examples of water-repelling surfaces in nature, such as lotus leaves, rose petals, and insect wings, consist of an array of bumps (or long hairs) and nanoscale surface features with different dimension scales. Herein, we introduced a method of realizing multi-dimensional hierarchical structures and water-repellancy of the surfaces with different drop impact scenarios. The multi-dimensional hierarchical structures were fabricated by soft imprinting method with TiO2 nanoparticle pastes. In order to achieve the enhanced hydrophobicity, fluorinated moieties were attached to the etched surfaces to lower the surface energy. As a result, super-hydrophobic surfaces with high transparency were realized (over 176° water contact angle), and for further investigation, these hierarchical surfaces with different drop impact scenarios were characterized by varying the impact speed, drop size, and the geometry of the surfaces.

  18. Application of confocal surface wave microscope to self-calibrated attenuation coefficient measurement by Goos-Hänchen phase shift modulation.

    PubMed

    Pechprasarn, Suejit; Chow, Terry W K; Somekh, Michael G

    2018-06-04

    In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ Ω ) and coupling (reradiation) loss (k″ c ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

  19. Visible-to-SWIR wavelength variation of skylight polarization

    NASA Astrophysics Data System (ADS)

    Dahl, Laura M.; Shaw, Joseph A.

    2015-09-01

    Knowledge of the polarization state of natural skylight is important to growing applications using polarimetric sensing. We previously published measurements and simulations illustrating the complex interaction between atmospheric and surface properties in determining the spectrum of skylight polarization from the visible to near-infrared (1 μm).1 Those results showed that skylight polarization can trend upward or downward, or even have unusual spectral discontinuities that arise because of sharp features in the underlying surface reflectance. The specific spectrum observed in a given case depended strongly on atmospheric and surface properties that varied with wavelength. In the previous study, the model was fed with actual measurements of highly variable aerosol and surface properties from locations around the world. Results, however, were limited to wavelengths below 1 μm from a lack in available satellite surface reflectance data at longer wavelengths. We now report measurement-driven simulations of skylight polarization from 350 nm to 2500 nm in the short-wave infrared (SWIR) using hand-held spectrometer measurements of spectral surface reflectance. The SWIR degree of linear polarization was found to be highly dependent on the aerosol size distribution and on the resulting relationship between the aerosol and Rayleigh optical depths. Unique polarization features in the modeled results were attributed to the surface reflectance and the skylight DoLP generally decreased as surface reflectance increased.

  20. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement.

    PubMed

    Arambula, Diego; Wong, Wenge; Medhekar, Bob A; Guo, Huatao; Gingery, Mari; Czornyj, Elizabeth; Liu, Minghsun; Dey, Sanghamitra; Ghosh, Partho; Miller, Jeff F

    2013-05-14

    Diversity-generating retroelements (DGRs) are a unique family of retroelements that confer selective advantages to their hosts by facilitating localized DNA sequence evolution through a specialized error-prone reverse transcription process. We characterized a DGR in Legionella pneumophila, an opportunistic human pathogen that causes Legionnaires disease. The L. pneumophila DGR is found within a horizontally acquired genomic island, and it can theoretically generate 10(26) unique nucleotide sequences in its target gene, legionella determinent target A (ldtA), creating a repertoire of 10(19) distinct proteins. Expression of the L. pneumophila DGR resulted in transfer of DNA sequence information from a template repeat to a variable repeat (VR) accompanied by adenine-specific mutagenesis of progeny VRs at the 3'end of ldtA. ldtA encodes a twin-arginine translocated lipoprotein that is anchored in the outer leaflet of the outer membrane, with its C-terminal variable region surface exposed. Related DGRs were identified in L. pneumophila clinical isolates that encode unique target proteins with homologous VRs, demonstrating the adaptability of DGR components. This work characterizes a DGR that diversifies a bacterial protein and confirms the hypothesis that DGR-mediated mutagenic homing occurs through a conserved mechanism. Comparative bioinformatics predicts that surface display of massively variable proteins is a defining feature of a subset of bacterial DGRs.

  1. Prolegomena to the Study of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2010-01-01

    The literature contains many approaches toward modeling of the friction stir welding (FSW) process with varying treatments of the weld metal properties. It is worthwhile to consider certain fundamental features of the process before attempting to interpret FSW phenomena: Because of the unique character of metal deformation (as opposed to, say, viscous deformation) a velocity "discontinuity" or shear surface occurs in FSW and determines much of the character of the welding mechanism. A shear surface may not always produce a sound bond. Balancing mechanical power input against conduction and convection heat losses yields a relation, a "temperature index", between spindle speed and travel speed to maintain constant weld temperature. But many process features are only weakly dependent upon temperature. Thus, unlike modeling of metal forming processes, it may be that modeling the FSW process independently of the material conditions has some merit.

  2. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    PubMed

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors.

    PubMed

    Han, Lei; Zhao, Yukun; Cui, Shan; Liang, Bo

    2018-06-01

    Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.

  4. Related magma-ice interactions: Possible origins of chasmata, chaos, and surface materials in Xanthe, Margaritifer, Meridiani Terrae, Mars

    USGS Publications Warehouse

    Chapman, M.G.; Tanaka, K.L.

    2002-01-01

    We examine here the close spatial and temporal associations among several unique features of Xanthe and Margaritifer Terrae, specifically the Valles Marineris troughs or chasmata and their interior deposits, chaotic terrain, the circum-Chryse outflow channels, and the subdued cratered material that covers Xanthe, Margaritifer, and Meridiani Terrae. Though previous hypotheses have attempted to explain the origin of individual features or subsets of these, we suggest that they may all be related. All of these features taken together present a consistent scenario that includes the processes of sub-ice volcanism and other magma/ice interactions, results of intrusive events during Late Noachian to Early Amazonian times. ?? 2002 Elsevier Science (USA).

  5. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    USGS Publications Warehouse

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  6. The surface of Mars: An unusual laboratory that preserves a record of catastrophic and unusual events

    USGS Publications Warehouse

    Chapman, M.G.

    2009-01-01

    Catastrophic and unusual events on Earth such as bolide impacts, megafloods, supereruptions, flood volcanism, and subice volcanism may have devastating effects when they occur. Although these processes have unique characteristics and form distinctive features and deposits, we have diffi culties identifying them and measuring the magnitude of their effects. Our diffi culties with interpreting these processes and identifying their consequences are understandable considering their infrequency on Earth, combined with the low preservation potential of their deposits in the terrestrial rock record. Although we know these events do happen, they are infrequent enough that the deposits are poorly preserved on the geologically active face of the Earth, where erosion, volcanism, and tectonism constantly change the surface. Unlike the Earth, on Mars catastrophic and unusual features are well preserved because of the slow modifi cation of the surface. Signifi cant precipitation has not occurred on Mars for billions of years and there appears to be no discrete crustal plates to have undergone subduction and destruction. Therefore the ancient surface of Mars preserves geologic features and deposits that result from these extraordinary events. Also, unlike the other planets, Mars is the most similar to our own, having an atmosphere, surface ice, volcanism, and evidence of onceflowing water. So although our understanding of precursors, processes, and possible biological effects of catastrophic and unusual processes is limited on Earth, some of these mysteries may be better understood through investigating the surface of Mars. ?? 2009 The Geological Society of America.

  7. Hidden Outgassing Dynamics at Kilauea (Hawaii) Lava Lake

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; Orr, T. R.; Houghton, B. F.; Scarlato, P.; Patrick, M. R.

    2014-12-01

    Lava lakes offer unique opportunities for understanding how magmatic volatiles physically escape from low-viscosity, vesicular magma in open-vent conditions, a process often referred to as magma outgassing. Large-scale lava convection movements and meter-scale bubble explosions, sometimes triggered by rock falls, are acknowledged outgassing processes but may not be the only ones. In 2013 we used high-frequency (50-500 Hz) thermal and visible imaging to investigate the short-timescale dynamics of the currently active Halema`uma`u lava lake. At that time, besides the dominant release of large bubbles, three types of peculiar outgassing features were observed on the lava lake surface. The first, diffusely observed throughout the observation experiment, consisted of prolonged (up to seconds) gas venting from 'spot vents'. These vents appeared to open and close without the ejection of material or bubble bursting, and were the site of hot gas emission. Spot vents were located both between and inside cooling plates, and followed the general circulation pattern together with the rest of the lava lake surface. The second feature, observed only once, consisted of the transient wobbling of the whole lava lake surface. This wobbling, with a wavelength of meters to tens of meters, was not related to any external trigger, and dampened soon without apparent consequences on the other lake dynamics. Finally, we observed large (meters) doming areas of the lake surface randomly fluctuating over seconds to minutes. These areas were either stationary or moved independently of the general lake surface circulation, and usually were not affected by other lake surface features (e.g., cooling plate boundaries). These three features, though trivial for the overall lake outgassing, testify that the lava lake has a complex shallow subsurface architecture, in which permeable channels and gas pockets act independently of the more common bubble bursts.

  8. Tool making, hand morphology and fossil hominins.

    PubMed

    Marzke, Mary W

    2013-11-19

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features.

  9. Tool making, hand morphology and fossil hominins

    PubMed Central

    Marzke, Mary W.

    2013-01-01

    Was stone tool making a factor in the evolution of human hand morphology? Is it possible to find evidence in fossil hominin hands for this capability? These questions are being addressed with increasingly sophisticated studies that are testing two hypotheses; (i) that humans have unique patterns of grip and hand movement capabilities compatible with effective stone tool making and use of the tools and, if this is the case, (ii) that there exist unique patterns of morphology in human hands that are consistent with these capabilities. Comparative analyses of human stone tool behaviours and chimpanzee feeding behaviours have revealed a distinctive set of forceful pinch grips by humans that are effective in the control of stones by one hand during manufacture and use of the tools. Comparative dissections, kinematic analyses and biomechanical studies indicate that humans do have a unique pattern of muscle architecture and joint surface form and functions consistent with the derived capabilities. A major remaining challenge is to identify skeletal features that reflect the full morphological pattern, and therefore may serve as clues to fossil hominin manipulative capabilities. Hominin fossils are evaluated for evidence of patterns of derived human grip and stress-accommodation features. PMID:24101624

  10. Earth as art three

    USGS Publications Warehouse

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  11. Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures

    USGS Publications Warehouse

    Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.E.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.

    1974-01-01

    The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.

  12. Near-infrared surface-enhanced-Raman-scattering (SERS) mediated detection of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2003-08-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman-Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  13. Near-infrared Surface-Enhanced-Raman-Scattering (SERS) mediated discrimination of single optically trapped bacterial spores

    NASA Astrophysics Data System (ADS)

    Alexander, Troy A.; Pellegrino, Paul M.; Gillespie, James B.

    2004-03-01

    A novel methodology has been developed for the investigation of bacterial spores. Specifically, this method has been used to probe the spore coat composition of two different Bacillus stearothermophilus variants. This technique may be useful in many applications; most notably, development of novel detection schemes toward potentially harmful bacteria. This method would also be useful as an ancillary environmental monitoring system where sterility is of importance (i.e., food preparation areas as well as invasive and minimally invasive medical applications). This unique detection scheme is based on the near-infrared (NIR) Surface-Enhanced-Raman- Scattering (SERS) from single, optically trapped, bacterial spores. The SERS spectra of bacterial spores in aqueous media have been measured using SERS substrates based on ~60-nm diameter gold colloids bound to 3-Aminopropyltriethoxysilane derivatized glass. The light from a 787-nm laser diode was used to trap/manipulate as well as simultaneously excite the SERS of an individual bacterial spore. The collected SERS spectra were examined for uniqueness and the applicability of this technique for the strain discrimination of Bacillus stearothermophilus spores. Comparison of normal Raman and SERS spectra reveal not only an enhancement of the normal Raman spectral features but also the appearance of spectral features absent in the normal Raman spectrum.

  14. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Photonic Crystal Enhanced Fluorescence for Early Breast Cancer Biomarker Detection

    PubMed Central

    Cunningham, Brian T.; Zangar, Richard C.

    2013-01-01

    Photonic crystal surfaces offer a compelling platform for improving the sensitivity of surface-based fluorescent assays used in disease diagnostics. Through the complementary processes of photonic crystal enhanced excitation and enhanced extraction, a periodic dielectric-based nanostructured surface can simultaneously increase the electric field intensity experienced by surface-bound fluorophores and increase the collection efficiency of emitted fluorescent photons. Through the ability to inexpensively fabricate photonic crystal surfaces over substantial surface areas, they are amenable to single-use applications in biological sensing, such as disease biomarker detection in serum. In this review, we will describe the motivation for implementing high-sensitivity, multiplexed biomarker detection in the context of breast cancer diagnosis. We will summarize recent efforts to improve the detection limits of such assays though the use of photonic crystal surfaces. Reduction of detection limits is driven by low autofluorescent substrates for photonic crystal fabrication, and detection instruments that take advantage of their unique features. PMID:22736539

  16. Scale-free networks of the earth’s surface

    NASA Astrophysics Data System (ADS)

    Liu, Gang; He, Jing; Luo, Kaitian; Gao, Peichao; Ma, Lei

    2016-06-01

    Studying the structure of real complex systems is of paramount importance in science and engineering. Despite our understanding of lots of real systems, we hardly cognize our unique living environment — the earth. The structural complexity of the earth’s surface is, however, still unknown in detail. Here, we define the modeling of graph topology for the earth’s surface, using the satellite images of the earth’s surface under different spatial resolutions derived from Google Earth. We find that the graph topologies of the earth’s surface are scale-free networks regardless of the spatial resolutions. For different spatial resolutions, the exponents of power-law distributions and the modularity are both quite different; however, the average clustering coefficient is approximately equal to a constant. We explore the morphology study of the earth’s surface, which enables a comprehensive understanding of the morphological feature of the earth’s surface.

  17. Influence of Surface Properties on the Adhesion of Staphylococcus epidermidis to Acrylic and Silicone

    PubMed Central

    Sousa, Cláudia; Teixeira, Pilar; Oliveira, Rosário

    2009-01-01

    The aim of the present study was to compare the ability of eight Staphylococcus epidermidis strains to adhere to acrylic and silicone, two polymers normally used in medical devices manufacture. Furthermore, it was tried to correlate that with the surface properties of substrata and cells. Therefore, hydrophobicity and surface tension components were calculated through contact angle measurements. Surface roughness of substrata was also assessed by atomic force microscopy (AFM). No relationship was found between microbial surface hydrophobicity and adhesion capability. Nevertheless, Staphylococcus epidermidis IE214 showed very unique adhesion behaviour, with cells highly aggregated between them, which is a consequence of their specific surface features. All strains, determined as being hydrophilic, adhered at a higher extent to silicone than to acrylic, most likely due to its more hydrophobic character and higher roughness. This demonstrates the importance of biomaterial surface characteristics for bacterial adhesion. PMID:20126579

  18. Tuning Wettability and Adhesion of Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti-wetting behavior of PCNT surface is consistent with our model predictions, derived based on thermodynamic theory of wetting. The surface of gecko feet is a very unique natural structured surface. The hierarchical surface structure of a Gecko toe pad is responsible for its reversible adhesive properties and superhydrophobicity. van der Waals interactions is known to be the key mechanism behind Gecko adhesion. However, we found that the wettability, thus the surface chemistry plays a significant role in Gecko adhesion mechanism, especially in the case of underwater adhesion. We used PECVD process to deposit a layer of coating with known chemistry on the surface of sheds of gecko toes to study the effect that wettability of the toe surface has on its adhesion. In summary, we demonstrated that PECVD can be effectively used as means of surface chemistry control for tunable structure-property relationship of three types of structured surfaces; each having unique surface features.

  19. The Unique Geomorphology and Physical Properties of the Vestalia Terra Plateau

    NASA Technical Reports Server (NTRS)

    Buczkowski, D.L.; Wyrick, D.Y.; Toplis, M.; Yingst, R. A.; Williams, D. A.; Garry, W. B.; Mest, S.; Kneissl, T.; Scully, J. E. C.; Nathues, A.; hide

    2014-01-01

    We produced a geologic map of the Av-9 Numisia quadrangle of asteroid Vesta using Dawn spacecraft data to serve as a tool to understand the geologic relations of surface features in this region. These features include the plateau Vestalia Terra, a hill named Brumalia Tholus, and an unusual "dark ribbon" material crossing the majority of the map area. Stratigraphic relations suggest that Vestalia Terra is one of the oldest features on Vesta, despite a model crater age date similar to that of much of the surface of the asteroid. Cornelia, Numisia and Drusilla craters reveal bright and dark material in their walls, and both Cornelia and Numisia have smooth and pitted terrains on their floors suggestive of the release of volatiles during or shortly after the impacts that formed these craters. Cornelia, Fabia and Teia craters have extensive bright ejecta lobes. While diogenitic material has been identified in association with the bright Teia and Fabia ejecta, hydroxyl has been detected in the dark material within Cornelia, Numisia and Drusilla. Three large pit crater chains appear in the map area, with an orientation similar to the equatorial troughs that cut the majority of Vesta. Analysis of these features has led to several interpretations of the geological history of the region. Vestalia Terra appears to be mechanically stronger than the rest of Vesta. Brumalia Tholus may be the surface representation of a dike-fed laccolith. The dark ribbon feature is proposed to represent a long-runout ejecta flow from Drusilla crater.

  20. Computer Graphics Meets Image Fusion: the Power of Texture Baking to Simultaneously Visualise 3d Surface Features and Colour

    NASA Astrophysics Data System (ADS)

    Verhoeven, G. J.

    2017-08-01

    Since a few years, structure-from-motion and multi-view stereo pipelines have become omnipresent in the cultural heritage domain. The fact that such Image-Based Modelling (IBM) approaches are capable of providing a photo-realistic texture along the threedimensional (3D) digital surface geometry is often considered a unique selling point, certainly for those cases that aim for a visually pleasing result. However, this texture can very often also obscure the underlying geometrical details of the surface, making it very hard to assess the morphological features of the digitised artefact or scene. Instead of constantly switching between the textured and untextured version of the 3D surface model, this paper presents a new method to generate a morphology-enhanced colour texture for the 3D polymesh. The presented approach tries to overcome this switching between objects visualisations by fusing the original colour texture data with a specific depiction of the surface normals. Whether applied to the original 3D surface model or a lowresolution derivative, this newly generated texture does not solely convey the colours in a proper way but also enhances the smalland large-scale spatial and morphological features that are hard or impossible to perceive in the original textured model. In addition, the technique is very useful for low-end 3D viewers, since no additional memory and computing capacity are needed to convey relief details properly. Apart from simple visualisation purposes, the textured 3D models are now also better suited for on-surface interpretative mapping and the generation of line drawings.

  1. Surface materials map of Afghanistan: carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of minerals that have diagnostic absorption features in the shortwave infrared wavelengths. These absorption features result primarily from characteristic chemical bonds and mineralogical vibrations. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  2. Microbiota fingerprints lose individually identifying features over time.

    PubMed

    Wilkins, David; Leung, Marcus H Y; Lee, Patrick K H

    2017-01-09

    Humans host individually unique skin microbiota, suggesting that microbiota traces transferred from skin to surfaces could serve as forensic markers analogous to fingerprints. While it is known that individuals leave identifiable microbiota traces on surfaces, it is not clear for how long these traces persist. Moreover, as skin and surface microbiota change with time, even persistent traces may lose their forensic potential as they would cease to resemble the microbiota of the person who left them. We followed skin and surface microbiota within households for four seasons to determine whether accurate microbiota-based matching of individuals to their households could be achieved across long time delays. While household surface microbiota traces could be matched to the correct occupant or occupants with 67% accuracy, accuracy decreased substantially when skin and surface samples were collected in different seasons, and particularly when surface samples were collected long after skin samples. Most OTUs persisted on skin or surfaces for less than one season, indicating that OTU loss was the major cause of decreased matching accuracy. OTUs that were more useful for individual identification persisted for less time and were less likely to be deposited from skin to surface, suggesting a trade-off between the longevity and identifying value of microbiota traces. While microbiota traces have potential forensic value, unlike fingerprints they are not static and may degrade in a way that preferentially erases features useful in identifying individuals.

  3. Bowl Inversion and Electronic Switching of Buckybowls on Gold.

    PubMed

    Fujii, Shintaro; Ziatdinov, Maxim; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kiguchi, Manabu

    2016-09-21

    Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp(2)-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.

  4. Development of the biology card sorting task to measure conceptual expertise in biology.

    PubMed

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  5. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys.

    PubMed

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H Felix

    2015-09-25

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system's functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements.

  6. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces.

    PubMed

    Hedayati, Mohammadhasan; Kipper, Matt J

    2018-06-15

    Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.

  7. Structural and phylogenetic analysis of Rhodobacter capsulatus NifF: uncovering general features of nitrogen-fixation (nif)-flavodoxins.

    PubMed

    Pérez-Dorado, Inmaculada; Bortolotti, Ana; Cortez, Néstor; Hermoso, Juan A

    2013-01-09

    Analysis of the crystal structure of NifF from Rhodobacter capsulatus and its homologues reported so far reflects the existence of unique structural features in nif flavodoxins: a leucine at the re face of the isoalloxazine, an eight-residue insertion at the C-terminus of the 50's loop and a remarkable difference in the electrostatic potential surface with respect to non-nif flavodoxins. A phylogenetic study on 64 sequences from 52 bacterial species revealed four clusters, including different functional prototypes, correlating the previously defined as "short-chain" with the firmicutes flavodoxins and the "long-chain" with gram-negative species. The comparison of Rhodobacter NifF structure with other bacterial flavodoxin prototypes discloses the concurrence of specific features of these functional electron donors to nitrogenase.

  8. Morphology and mechanisms of picosecond ablation of metal films on fused silica substrates

    NASA Astrophysics Data System (ADS)

    Bass, Isaac L.; Negres, Raluca A.; Stanion, Ken; Guss, Gabe; Keller, Wesley J.; Matthews, Manyalibo J.; Rubenchik, Alexander M.; Yoo, Jae Hyuck; Bude, Jeffrey D.

    2016-12-01

    The ablation of magnetron sputtered metal films on fused silica substrates by a 1053 nm, picosecond class laser was studied as part of a demonstration of its use for in-situ characterization of the laser spot under conditions commonly used at the sample plane for laser machining and damage studies. Film thicknesses were 60 and 120 nm. Depth profiles and SEM images of the ablation sites revealed several striking and unexpected features distinct from those typically observed for ablation of bulk metals. Very sharp thresholds were observed for both partial and complete ablation of the films. Partial film ablation was largely independent of laser fluence with a surface smoothness comparable to that of the unablated surface. Clear evidence of material displacement was seen at the boundary for complete film ablation. These features were common to a number of different metal films including Inconel on commercial neutral density filters, stainless steel, and aluminum. We will present data showing the morphology of the ablation sites on these films as well as a model of the possible physical mechanisms producing the unique features observed.

  9. Surfaces for high heat dissipation with no Leidenfrost limit

    NASA Astrophysics Data System (ADS)

    Sajadi, Seyed Mohammad; Irajizad, Peyman; Kashyap, Varun; Farokhnia, Nazanin; Ghasemi, Hadi

    2017-07-01

    Heat dissipation from hot surfaces through cooling droplets is limited by the Leidenfrost point (LFP), in which an insulating vapor film prevents direct contact between the cooling droplet and the hot surface. A range of approaches have been developed to raise this limit to higher temperatures, but the limit still exists. Recently, a surface architecture, decoupled hierarchical structure, was developed that allows the suppression of LFP completely. However, heat dissipation by the structure in the low superheat region was inferior to other surfaces and the structure required an extensive micro/nano fabrication procedure. Here, we present a metallic surface structure with no LFP and high heat dissipation capacity in all temperature ranges. The surface features the nucleate boiling phenomenon independent of the temperature with an approximate heat transfer coefficient of 20 kW m-2 K-1. This surface is developed in a one-step process with no micro/nano fabrication. We envision that this metallic surface provides a unique platform for high heat dissipation in power generation, photonics/electronics, and aviation systems.

  10. Unique Spectral Features Search In The 20 - 35 Micron Range of Mgs Tes Data

    NASA Astrophysics Data System (ADS)

    Altieri, F.; Bellucci, G.

    TES is the Thermal Emission Spectrometer aboard the NASA mission Mars Global Surveyor (MGS) orbiting around Mars since September 1997. It is collecting 6 - 50 micron thermal emission spectra and one of its principal purposes is to determine and map the Mars surface composition. Spectral features directly ascribable to sur- face minerals have been identified in the 20 - 35 micron spectral range: deposits of crystalline gray hematite have been localized in three regions, Sinus Meridiani, Aram Chaos and Valles Marineris [1, 2], and outcrops of olivines have been individuated in Nili Fossae [3]. The crystalline gray hematite areas have been interpreted to be formed by aqueous mineralization, indicating that liquid water was stable near the Mars sur- face for a long period of time in some limited regions. On the other hand there is no evidence in TES data for large scale occurrences (< 10 km) of moderate-grained (> 50 micron) carbonates exposed at the surface at a detection limit of 10 % [2]. Mars thermal emission spectra show, in general, significant variance between 20 and 35 mi- cron. This variance is not directly attributable to surface mineralogical components for the difficulty of discriminating the contribute of atmospheric components: CO2 and water vapour gas, dust and water ice aerosols. Moreover, the dust layer deposited on the soil has a spectral masking effect, obscuring superficial signature related to smaller mineral deposit and making difficult their identification. In this study we report some examples of single TES spectra with typical hematite and olivine bands and spectra with other unique features in the 20 - 35 micron range likely related to superficial components. For some of them we have analysed how the spectral features change in two different Mars seasons. These single TES pixels could be best investigated by instruments with an higher spatial resolution, as THEMIS and OMEGA. References: [1] Christensen P. R., et al., JGR, 105, 9623-9642, 2000. [2] Christensen P. R., et al., JGR,106, 23823-23871, 2001. [3] Hoefen T. M. and Clark R. N., LPS XXXII, 2049, 2001.

  11. A four-layer model for the heat budget of homogeneous land surfaces

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Monteith, J. L.

    1988-01-01

    The present model envisions the heat balance of a homogeneous land surface in terms of available energy, a set of driving potentials, and parameters for the physical state of the soil and vegetation. Two unique features of the model are: (1) the expression of the interaction of evaporation from the soil and from foliage by changes in the value of the saturation vapor pressure deficit of air in the canopy (the conclusions of this interaction being consistent with field observations); and (2) the treatment of sensible and latent heat exchange between the atmosphere and a soil consisting of two discrete layers.

  12. Temperature-driven Topological Phase Transition in MoTe2

    NASA Astrophysics Data System (ADS)

    Notis Berger, Ayelet; Andrade, Erick; Kerelsky, Alex; Cheong, Sang-Wook; Li, Jian; Bernevig, B. Andrei; Pasupathy, Abhay

    The discovery of several candidates predicted to be weyl semimetals has made it possible to experimentally study weyl fermions and their exotic properties. One example is MoTe2, a transition metal dichalcogenide. At temperatures below 240 K it is predicted to be a type II Weyl semimetal with four Weyl points close to the fermi level. As with most weyl semimetals, the complicated band structure causes difficulty in distinguishing features related to bulk states and those related to topological fermi arc surface states characteristic of weyl semimetals. MoTe2 is unique because of its temperature-driven phase change. At high temperatures, MoTe2 is monoclinic, with trivial surface states. When cooled below 240K, it undergoes a first order phase transition to become an orthorhombic weyl semimetal with topologically protected fermi arc surface states. We present STM and STS measurements on MoTe2 crystals in both states. In the orthorhombic phase, we observe scattering that is consistent with the presence of the Fermi-arc surface states. Upon warming into the monoclinic phase, these features disappear in the observed interference patterns, providing direct evidence of the topological nature of the fermi arcs in the Weyl phase

  13. Reduced Blood Coagulation on Roll-to-Roll, Shrink-Induced Superhydrophobic Plastics.

    PubMed

    Nokes, Jolie M; Liedert, Ralph; Kim, Monica Y; Siddiqui, Ali; Chu, Michael; Lee, Eugene K; Khine, Michelle

    2016-03-09

    The unique antiwetting properties of superhydrophobic (SH) surfaces prevent the adhesion of water and bodily fluids, including blood, urine, and saliva. While typical manufacturable approaches to create SH surfaces rely on chemical and structural modifications, such approaches are expensive, require postprocessing, and are often not biocompatible. By contrast, it is demonstrated that purely structural SH features are easily formed using high throughput roll-to-roll (R2R) manufacturing by shrinking a prestressed thermoplastic with a thin, stiff layer of silver and calcium. These features are subsequently embossed into any commercially available and Food and Drug Administration (FDA)-approved plastic. The R2R SH surfaces have contact angles >150° and contact angle hysteresis <10°. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200× reduction of blood residue area compared to the nonstructured controls of the same material. In addition, blood clotting is reduced >5× using whole blood directly from the patient. Furthermore, these surfaces can be easily configured into 3D shapes, as demonstrated with SH tubes. With the simple scale-up production and the eliminated need for anticoagulants to prevent clotting, the proposed conformable SH surfaces can be impactful for a wide range of medical tools, including catheters and microfluidic channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Co-crystal formation between two organic solids on the surface of Titan

    NASA Astrophysics Data System (ADS)

    Cable, M. L.; Vu, T. H.; Maynard-Casely, H. E.; Hodyss, R. P.

    2017-12-01

    Laboratory experiments of Titan molecular materials, informed by modeling, can help us to understand the complex and dynamic surface processes occurring on this moon at cryogenic temperatures. We previously demonstrated that two common organic materials on Titan, ethane and benzene, form a unique and stable co-crystalline structure at Titan surface temperatures. We have now characterized a second co-crystal that is stable on Titan, this time between two solids: acetylene and ammonia. The co-crystal forms within minutes at Titan surface temperature, as evidenced by new Raman spectral features in the lattice vibration and C-H bending regions. In addition, a red shift of the C-H stretching mode suggests that the acetylene-ammonia co-crystal is stabilized by a network of C-H···N interactions. Thermal stability studies indicate that this co-crystal remains intact to >110 K, and experiments with liquid methane and ethane reveal the co-crystal to be resistant to fluvial or pluvial exposure. Non-covalently bound structures such as these co-crystals point to far more complex surface interactions than previously believed on Titan. New physical and mechanical properties (deformation, plasticity, density, etc.), differences in storage of key species (i.e., ethane versus methane), variations in surface transport and new chemical gradients can all result in diverse surface features and chemistries of astrobiological interest.

  15. Plasmid DNA Delivery: Nanotopography Matters.

    PubMed

    Song, Hao; Yu, Meihua; Lu, Yao; Gu, Zhengying; Yang, Yannan; Zhang, Min; Fu, Jianye; Yu, Chengzhong

    2017-12-20

    Plasmid DNA molecules with unique loop structures have widespread bioapplications, in many cases relying heavily on delivery vehicles to introduce them into cells and achieve their functions. Herein, we demonstrate that control over delicate nanotopography of silica nanoparticles as plasmid DNA vectors has significant impact on the transfection efficacy. For silica nanoparticles with rambutan-, raspberry-, and flower-like morphologies composed of spike-, hemisphere-, and bowl-type subunit nanotopographies, respectively, the rambutan-like nanoparticles with spiky surfaces demonstrate the highest plasmid DNA binding capability and transfection efficacy of 88%, higher than those reported for silica-based nanovectors. Moreover, it is shown that the surface spikes of rambutan nanoparticles provide a continuous open space to bind DNA chains via multivalent interactions and protect the gene molecules sheltered in the spiky layer against nuclease degradation, exhibiting no significant transfection decay. This unique protection feature is in great contrast to a commercial transfection agent with similar transfection performance but poor protection capability against enzymatic cleavage. Our study provides new understandings in the rational design of nonviral vectors for efficient gene delivery.

  16. Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics.

    PubMed

    Gutruf, Philipp; Zeller, Eike; Walia, Sumeet; Nili, Hussein; Sriram, Sharath; Bhaskaran, Madhu

    2015-09-16

    The concept of realizing electronic applications on elastically stretchable "skins" that conform to irregularly shaped surfaces is revolutionizing fundamental research into mechanics and materials that can enable high performance stretchable devices. The ability to operate electronic devices under various mechanically stressed states can provide a set of unique functionalities that are beyond the capabilities of conventional rigid electronics. Here, a distinctive microtectonic effect enabled oxygen-deficient, nanopatterned zinc oxide (ZnO) thin films on an elastomeric substrate are introduced to realize large area, stretchable, transparent, and ultraportable sensors. The unique surface structures are exploited to create stretchable gas and ultraviolet light sensors, where the functional oxide itself is stretchable, both of which outperform their rigid counterparts under room temperature conditions. Nanoscale ZnO features are embedded in an elastomeric matrix function as tunable diffraction gratings, capable of sensing displacements with nanometre accuracy. These devices and the microtectonic oxide thin film approach show promise in enabling functional, transparent, and wearable electronics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment.

    PubMed

    Rosenholm, Jessica M; Sahlgren, Cecilia; Lindén, Mika

    2011-07-01

    The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.

  18. Multi-scale Visualization of Molecular Architecture Using Real-Time Ambient Occlusion in Sculptor.

    PubMed

    Wahle, Manuel; Wriggers, Willy

    2015-10-01

    The modeling of large biomolecular assemblies relies on an efficient rendering of their hierarchical architecture across a wide range of spatial level of detail. We describe a paradigm shift currently under way in computer graphics towards the use of more realistic global illumination models, and we apply the so-called ambient occlusion approach to our open-source multi-scale modeling program, Sculptor. While there are many other higher quality global illumination approaches going all the way up to full GPU-accelerated ray tracing, they do not provide size-specificity of the features they shade. Ambient occlusion is an aspect of global lighting that offers great visual benefits and powerful user customization. By estimating how other molecular shape features affect the reception of light at some surface point, it effectively simulates indirect shadowing. This effect occurs between molecular surfaces that are close to each other, or in pockets such as protein or ligand binding sites. By adding ambient occlusion, large macromolecular systems look much more natural, and the perception of characteristic surface features is strongly enhanced. In this work, we present a real-time implementation of screen space ambient occlusion that delivers realistic cues about tunable spatial scale characteristics of macromolecular architecture. Heretofore, the visualization of large biomolecular systems, comprising e.g. hundreds of thousands of atoms or Mega-Dalton size electron microscopy maps, did not take into account the length scales of interest or the spatial resolution of the data. Our approach has been uniquely customized with shading that is tuned for pockets and cavities of a user-defined size, making it useful for visualizing molecular features at multiple scales of interest. This is a feature that none of the conventional ambient occlusion approaches provide. Actual Sculptor screen shots illustrate how our implementation supports the size-dependent rendering of molecular surface features.

  19. Mass wasting features in Juventae Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Sarkar, Ranjan; Singh, Pragya; Porwal, Alok; Ganesh, Indujaa

    2016-07-01

    Introduction : We report mass-wasting features preserved as debris aprons from Juventae Chasma. Diverse lines of evidence and associated geomorphological features indicate that fluidized ice or water within the wall rocks of the chasma could be responsible for mobilizing the debris. Description : The distinctive features of the landslides in Juvenate Chasma are: (1) lack of a well-defined crown or a clear-cut section at their point of origin and instead the presence of amphitheatre-headed tributary canyons; (2) absence of slump blocks; (3) overlapping of debris aprons; (4) a variety of surface textures from fresh and grooved to degraded and chaotic; (5) rounded lobes of debris aprons; (6) large variation of sizes from small lumps (~0.52 m2) to large tongue shaped ones (~ 80 m2); (7) smaller average size of landslides as compared to other chasmas; and (8) occasional preservation of fresh surficial features indicating recent emplacement. Discussion : Amphitheatre-headed tributary canyons, which are formed due to ground water sapping, indicate that the same was responsible for wall-section collapse, although a structural control cannot be completely ruled out. The emplacement of the mass wasting features preferentially at the mouths of amphitheatre-headed tributary canyons along with the rounded flow fronts of the debris suggest fluids may have played a vital role in their emplacement. The mass-wasting features in Juventae Chasma are unique compared to other landslides in Valles Marineris despite commonalities such as the radial furrows, fan-shaped outlines, overlapping aprons and overtopped obstacles. The unique set of features and close association with amphitheatre-headed tributary canyons imply that the trigger of the landslides was not structural or tectonic but possibly weakness imparted by the presence of water or ice in the pore-spaces of the wall. Craters with fluidized ejecta blankets and scalloped depressions in the surrounding plateau also support this possibility. Depending on the amounts of fluids involved at the time of emplacement, these mass movements may also qualify as debris flows. The role of fluids in the Valles Marineris landslides is still debated; however, in the Juventae Chasma landslides we see unique features which set these apart from other landslides in Valles Marineris. Further study is required to fully investigate the mechanism of emplacement of these debris.

  20. Langley Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.

    1987-01-01

    The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.

  1. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  2. A Low-Cost Energy-Efficient Cableless Geophone Unit for Passive Surface Wave Surveys

    PubMed Central

    Dai, Kaoshan; Li, Xiaofeng; Lu, Chuan; You, Qingyu; Huang, Zhenhua; Wu, H. Felix

    2015-01-01

    The passive surface wave survey is a practical, non-invasive seismic exploration method that has increasingly been used in geotechnical engineering. However, in situ deployment of traditional wired geophones is labor intensive for a dense sensor array. Alternatively, stand-alone seismometers can be used, but they are bulky, heavy, and expensive because they are usually designed for long-term monitoring. To better facilitate field applications of the passive surface wave survey, a low-cost energy-efficient geophone system was developed in this study. The hardware design is presented in this paper. To validate the system’s functionality, both laboratory and field experiments were conducted. The unique feature of this newly-developed cableless geophone system allows for rapid field applications of the passive surface wave survey with dense array measurements. PMID:26404270

  3. Structural Mechanisms of Plant Glucan Phosphatases in Starch Metabolism

    PubMed Central

    Meekins, David A.; Vander Kooi, Craig W.; Gentry, Matthew S.

    2016-01-01

    Glucan phosphatases are a recently discovered class of enzymes that dephosphorylate starch and glycogen, thereby regulating energy metabolism. Plant genomes encode for two glucan phosphatases called Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2) that regulate starch metabolism by selectively dephosphorylating glucose moieties within starch glucan chains. Recently, the structures of both SEX4 and LSF2 were determined, with and without phosphoglucan products bound, revealing the mechanism for their unique activities. This review explores the structural and enzymatic features of the plant glucan phosphatases and outlines how they are uniquely adapted for carrying out their cellular functions. We outline the physical mechanisms employed by SEX4 and LSF2 to interact with starch glucans: SEX4 binds glucan chains via a continuous glucan binding platform comprised of its Dual Specificity Phosphatase (DSP) domain and Carbohydrate Binding Module (CBM) while LSF2 utilizes Surface Binding Sites (SBSs). SEX4 and LSF2 both contain a unique network of aromatic residues in their catalytic DSP domains that serve as glucan engagement platforms and are unique to the glucan phosphatases. We also discuss the phosphoglucan substrate specificities inherent to SEX4 and LSF2 and outline structural features within the active site that govern glucan orientation. This review defines the structural mechanism of the plant glucan phosphatases with respect to phosphatases, starch metabolism, and protein-glucan interaction; thereby providing a framework for their applications in both agricultural and industrial settings. PMID:26934589

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingfeng; Han, Lili; Jing, Hao

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  5. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    PubMed

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Surface passivation of semiconducting oxides by self-assembled nanoparticles

    PubMed Central

    Park, Dae-Sung; Wang, Haiyuan; Vasheghani Farahani, Sepehr K.; Walker, Marc; Bhatnagar, Akash; Seghier, Djelloul; Choi, Chel-Jong; Kang, Jie-Hun; McConville, Chris F.

    2016-01-01

    Physiochemical interactions which occur at the surfaces of oxide materials can significantly impair their performance in many device applications. As a result, surface passivation of oxide materials has been attempted via several deposition methods and with a number of different inert materials. Here, we demonstrate a novel approach to passivate the surface of a versatile semiconducting oxide, zinc oxide (ZnO), evoking a self-assembly methodology. This is achieved via thermodynamic phase transformation, to passivate the surface of ZnO thin films with BeO nanoparticles. Our unique approach involves the use of BexZn1-xO (BZO) alloy as a starting material that ultimately yields the required coverage of secondary phase BeO nanoparticles, and prevents thermally-induced lattice dissociation and defect-mediated chemisorption, which are undesirable features observed at the surface of undoped ZnO. This approach to surface passivation will allow the use of semiconducting oxides in a variety of different electronic applications, while maintaining the inherent properties of the materials. PMID:26757827

  7. Nanoporous Carbons: Looking Beyond Their Perception as Adsorbents, Catalyst Supports and Supercapacitors.

    PubMed

    Bandosz, Teresa J

    2016-02-01

    The discovery of carbon nanoforms, and especially graphene, has opened up new directions of science and technology. Many applications are based on the unique properties of graphene, such as its high electrical and thermal conductivity, strength, flexibility, photoactivity and transparency. Inspired by the emerging graphene science, we directed our efforts to the exploration of new applications of nanoporous (microporous) carbons. Their matrix is built of distorted graphene layers, between which pores with sizes ranging from a fraction of a nanometer to hundreds of nanometers exist. This is a very unique feature of nanoporous carbons resulting in their developed surface areas. Moreover, there are vast possibilities to modify the surface chemistry of carbons and thus their surface properties. Even though the traditional applications of porous carbons focus mainly on adsorption and separation, we decided to explore them as photocatalysts, oxygen reduction catalysts and sensors. Related to their visible-light activity, their possible application in solar energy harvesting is also indicated. This Personal Account presents our paths leading to the exploration of these directions, describing the results collected and difficulties encountered, along with the challenges remaining to be addressed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithographically Encrypted Inverse Opals for Anti-Counterfeiting Applications.

    PubMed

    Heo, Yongjoon; Kang, Hyelim; Lee, Joon-Seok; Oh, You-Kwan; Kim, Shin-Hyun

    2016-07-01

    Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red-shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    PubMed Central

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  10. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1985-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  11. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Chamis, Christos C.

    1987-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  12. Investigating the Formation of Mars Recurring Slope Lineae through Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Cantillo, D. C.; Hibbitts, C.; Wing, B. R.; Mushkin, A.; Stockstill-Cahill, K.; Viviano-Beck, C. E.

    2017-12-01

    The presence of low-albedo streaks on crater slopes, Recurring Slope Lineae (RSLs), may be evidence for present-day intermittent and repeated flow of water or brine on the surface of Mars. RSLs grow, fade, and can grow again seasonally as surface temperatures change [e.g. 1,2]. Although distinguishable by being darker than the surrounding terrain, they have no diagnostic absorption features [3] with the exception of a ferric feature that may be related to grain size [4] and the notable discovery of hydrated perchlorates at the base of one set of RSLs [5]. To explore liquid-based hypotheses for the formation of RSLs, we have constructed an environmental chamber that can simulate Martian surface conditions. The development of this chamber follows upon the successful completion of preliminary tests under a terrestrial atmosphere [6] to prove the optical design and subsequently under Mars pressure to verify the technical approach [7]. The Mars Analog Reflectance Spectroscopy (MARS) chamber is capable of exposing soils to brines from underneath, simulating possible subsurface wetting that could result in RSL formation. While maintaining Mars pressure and similar oxygen fugacity, the chamber will also allow the collection of spectra from 0.4 to 2.4 microns. Various brine compositions can be investigated, including solutions of iron chlorides. These unique salts can lower the soil albedo without inducing a spectral absorption feature, whereas other salts brighten the surface after drying or retain significant water [8]. Another possible darkening mechanism is also being explored within the MARS chamber. Experiments have shown that evaporation of liquid from palagonitic soils under Mars pressure create ubiquitous grain scale cavities within the surface [7]. This micro-roughness increases shadowing and darkens the surface, indicating it may be a process of darkening that is independent of brine composition.

  13. Apollo experience report: Descent propulsion system

    NASA Technical Reports Server (NTRS)

    Hammock, W. R., Jr.; Currie, E. C.; Fisher, A. E.

    1973-01-01

    The propulsion system for the descent stage of the lunar module was designed to provide thrust to transfer the fully loaded lunar module with two crewmen from the lunar parking orbit to the lunar surface. A history of the development of this system is presented. Development was accomplished primarily by ground testing of individual components and by testing the integrated system. Unique features of the descent propulsion system were the deep throttling capability and the use of a lightweight cryogenic helium pressurization system.

  14. Preliminary Airworthiness Evaluation of the Rutan Aircraft Factory (RAF) , Inc. LONG-EZ Airplane

    DTIC Science & Technology

    1983-06-01

    pounds. Unique features include composite construction, a nose mounted canard for pitch control, and a aid-wing high aspect ratio Eppler swept airfoil with...Rear 35 in. Height Front 36 in. Rear 35 in. 51 Table 2. Airfoil Geometry Ave rage Airfoil Measured Tolerance WING ( Eppler 1230) L 0.51: Incidence R 0.48...tests of the wings and control systems and determination of frequencies and modal damping of all airfoil surfaces. These tests were conducted by AVRADCOM

  15. Babinet-inverted optical Yagi-Uda antenna for unidirectional radiation to free space.

    PubMed

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-11

    Nanophotonics capable of directing radiation or enhancing quantum-emitter transition rates rely on plasmonic nanoantennas. We present here a novel Babinet-inverted magnetic-dipole-fed multislot optical Yagi-Uda antenna that exhibits highly unidirectional radiation to free space, achieved by engineering the relative phase of the interacting surface plasmon polaritons between the slot elements. The unique features of this nanoantenna can be harnessed for realizing energy transfer from one waveguide to another by working as a future "optical via".

  16. Evaluation of feature selection algorithms for classification in temporal lobe epilepsy based on MR images

    NASA Astrophysics Data System (ADS)

    Lai, Chunren; Guo, Shengwen; Cheng, Lina; Wang, Wensheng; Wu, Kai

    2017-02-01

    It's very important to differentiate the temporal lobe epilepsy (TLE) patients from healthy people and localize the abnormal brain regions of the TLE patients. The cortical features and changes can reveal the unique anatomical patterns of brain regions from the structural MR images. In this study, structural MR images from 28 normal controls (NC), 18 left TLE (LTLE), and 21 right TLE (RTLE) were acquired, and four types of cortical feature, namely cortical thickness (CTh), cortical surface area (CSA), gray matter volume (GMV), and mean curvature (MCu), were explored for discriminative analysis. Three feature selection methods, the independent sample t-test filtering, the sparse-constrained dimensionality reduction model (SCDRM), and the support vector machine-recursive feature elimination (SVM-RFE), were investigated to extract dominant regions with significant differences among the compared groups for classification using the SVM classifier. The results showed that the SVM-REF achieved the highest performance (most classifications with more than 92% accuracy), followed by the SCDRM, and the t-test. Especially, the surface area and gray volume matter exhibited prominent discriminative ability, and the performance of the SVM was improved significantly when the four cortical features were combined. Additionally, the dominant regions with higher classification weights were mainly located in temporal and frontal lobe, including the inferior temporal, entorhinal cortex, fusiform, parahippocampal cortex, middle frontal and frontal pole. It was demonstrated that the cortical features provided effective information to determine the abnormal anatomical pattern and the proposed method has the potential to improve the clinical diagnosis of the TLE.

  17. Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies.

    PubMed

    Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy

    2006-08-01

    Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.

  18. Advanced construction management for lunar base construction - Surface operations planner

    NASA Technical Reports Server (NTRS)

    Kehoe, Robert P.

    1992-01-01

    The study proposes a conceptual solution and lays the framework for developing a new, sophisticated and intelligent tool for a lunar base construction crew to use. This concept integrates expert systems for critical decision making, virtual reality for training, logistics and laydown optimization, automated productivity measurements, and an advanced scheduling tool to form a unique new planning tool. The concept features extensive use of computers and expert systems software to support the actual work, while allowing the crew to control the project from the lunar surface. Consideration is given to a logistics data base, laydown area management, flexible critical progress scheduler, video simulation of assembly tasks, and assembly information and tracking documentation.

  19. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  20. The analysis of initial Juno magnetometer data using a sparse magnetic field representation

    NASA Astrophysics Data System (ADS)

    Moore, Kimberly M.; Bloxham, Jeremy; Connerney, John E. P.; Jørgensen, John L.; Merayo, José M. G.

    2017-05-01

    The Juno spacecraft, now in polar orbit about Jupiter, passes much closer to Jupiter's surface than any previous spacecraft, presenting a unique opportunity to study the largest and most accessible planetary dynamo in the solar system. Here we present an analysis of magnetometer observations from Juno's first perijove pass (PJ1; to within 1.06 RJ of Jupiter's center). We calculate the residuals between the vector magnetic field observations and that calculated using the VIP4 spherical harmonic model and fit these residuals using an elastic net regression. The resulting model demonstrates how effective Juno's near-surface observations are in improving the spatial resolution of the magnetic field within the immediate vicinity of the orbit track. We identify two features resulting from our analyses: the presence of strong, oppositely signed pairs of flux patches near the equator and weak, possibly reversed-polarity patches of magnetic field over the polar regions. Additional orbits will be required to assess how robust these intriguing features are.

  1. Ice-Ridge Pile Up and the Genesis of Martian "Shorelines"

    NASA Technical Reports Server (NTRS)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Unique geomorphologic features such as basin terraces exhibiting topographic continuity have been found within several Martian craters as shown in Viking, MOC, and THEMIS images. These features, showing similarity to terrestrial shorelines, have been mapped and cataloged with significant effort [1]. Currently, open wave action on the surface of paleolakes has been hypothesized as the geomorphologic agent responsible for the generation of these features [2]. As consequence, feature interpretations, including shorelines, wave-cut benches, and bars are, befittingly, lacustrine. Because such interpretations and their formation mechanisms have profound implications for the climate and potential biological history of Mars, confidence is crucial. The insight acquired through linked quantitative modeling of geomorphologic agents and processes is key to accurately interpreting these features. In this vein, recent studies [3,4] involving the water wave energy in theoretical open water basins on Mars show minimal erosional effects due to water waves under Martian conditions. Consequently, sub-glacial lake flattens the surface, produces a local velocity increase over the lake, and creates a deviation of the ice flow from the main flow direction [11]. These consequences of ice flow are observed at Lake Vostok, Antarctica an excellent Martian analogue [11]. Martian observations include reticulate terrain exhibiting sharp inter-connected ridges speculated to reflect the deposition and reworking of ice blocks at the periphery of ice-covered lakes throughout Hellas [12]. Our model determines to what extent ice, a terrestrial geomorphologic agent, can alter the Martian landscape. Method: We study the evolution of crater ice plugs as the formation mechanism of surface features frequently identified as shorelines. In particular, we perform model integrations involving parameters such as ice slope and purity, atmospheric pressure and temperature, crater shape and composition, and an energy balance between solar flux, geothermal flux, latent heat, and ablation. Our ultimate goal is to understand how an intracrater ice plug could create the observed shoreline features and how these

  2. Fabrication of anodic aluminium oxide templates on curved surfaces.

    PubMed

    Yin, Aijun; Guico, Rodney S; Xu, Jimmy

    2007-01-24

    Aluminium anodization provides a simple and inexpensive way to obtain nanoporous templates with uniform and controllable pore diameters and periods over a wide range. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on arbitrary surfaces, such as curved surfaces, which has not yet been well studied or applied in nanofabrication. In this paper, we characterize the anodization of Al films on silicon substrates with a curved top surface. The structures of the resultant anodic aluminium oxide (AAO) films are examined by scanning electron microscopy. Unique features including cessation, bending, and branching of pore channels are observed in the curved area. Possible growth mechanisms are proposed, which can also contribute to the understanding of the self-organization mechanism in the formation of porous AAO membranes. The new structures may open new opportunities in optical, electronic and electrochemical applications.

  3. An algorithm-based topographical biomaterials library to instruct cell fate

    PubMed Central

    Unadkat, Hemant V.; Hulsman, Marc; Cornelissen, Kamiel; Papenburg, Bernke J.; Truckenmüller, Roman K.; Carpenter, Anne E.; Wessling, Matthias; Post, Gerhard F.; Uetz, Marc; Reinders, Marcel J. T.; Stamatialis, Dimitrios; van Blitterswijk, Clemens A.; de Boer, Jan

    2011-01-01

    It is increasingly recognized that material surface topography is able to evoke specific cellular responses, endowing materials with instructive properties that were formerly reserved for growth factors. This opens the window to improve upon, in a cost-effective manner, biological performance of any surface used in the human body. Unfortunately, the interplay between surface topographies and cell behavior is complex and still incompletely understood. Rational approaches to search for bioactive surfaces will therefore omit previously unperceived interactions. Hence, in the present study, we use mathematical algorithms to design nonbiased, random surface features and produce chips of poly(lactic acid) with 2,176 different topographies. With human mesenchymal stromal cells (hMSCs) grown on the chips and using high-content imaging, we reveal unique, formerly unknown, surface topographies that are able to induce MSC proliferation or osteogenic differentiation. Moreover, we correlate parameters of the mathematical algorithms to cellular responses, which yield novel design criteria for these particular parameters. In conclusion, we demonstrate that randomized libraries of surface topographies can be broadly applied to unravel the interplay between cells and surface topography and to find improved material surfaces. PMID:21949368

  4. Cross-cutting Relationships of Surface Features on Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Europa shows a very complex terrain of ridges and fractures. The absence of large craters and the low number of small craters indicates that this surface is geologically young. The relative ages of the ridges can be determined by using the principle of cross-cutting relationships; i.e. older features are cross-cut by younger features. Using this principle, planetary geologists are able to unravel the sequence of events in this seemingly chaotic terrain to unfold Europa's unique geologic history.

    The spacecraft Galileo obtained this image on February 20, 1997. The area covered in this image is approximately 11 miles (18 kilometers) by 8.5 miles (14 kilometers) across, near 15 North, 273 West. North is toward the top of the image, with the sun illuminating from the right.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  5. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  6. UbSRD: The Ubiquitin Structural Relational Database.

    PubMed

    Harrison, Joseph S; Jacobs, Tim M; Houlihan, Kevin; Van Doorslaer, Koenraad; Kuhlman, Brian

    2016-02-22

    The structurally defined ubiquitin-like homology fold (UBL) can engage in several unique protein-protein interactions and many of these complexes have been characterized with high-resolution techniques. Using Rosetta's structural classification tools, we have created the Ubiquitin Structural Relational Database (UbSRD), an SQL database of features for all 509 UBL-containing structures in the PDB, allowing users to browse these structures by protein-protein interaction and providing a platform for quantitative analysis of structural features. We used UbSRD to define the recognition features of ubiquitin (UBQ) and SUMO observed in the PDB and the orientation of the UBQ tail while interacting with certain types of proteins. While some of the interaction surfaces on UBQ and SUMO overlap, each molecule has distinct features that aid in molecular discrimination. Additionally, we find that the UBQ tail is malleable and can adopt a variety of conformations upon binding. UbSRD is accessible as an online resource at rosettadesign.med.unc.edu/ubsrd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications

    NASA Astrophysics Data System (ADS)

    Kniffin, Gabriel Paul

    Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology, and other areas of science and engineering. The method allows the generation of accurate 3D THz tomographic images of objects with irregular, non-planar surfaces using a simple planar scan geometry, thereby facilitating the integration of 3D THz imaging into mainstream NDE use.

  8. Hand veins feature extraction using DT-CNNS

    NASA Astrophysics Data System (ADS)

    Malki, Suleyman; Spaanenburg, Lambert

    2007-05-01

    As the identification process is based on the unique patterns of the users, biometrics technologies are expected to provide highly secure authentication systems. The existing systems using fingerprints or retina patterns are, however, very vulnerable. One's fingerprints are accessible as soon as the person touches a surface, while a high resolution camera easily captures the retina pattern. Thus, both patterns can easily be "stolen" and forged. Beside, technical considerations decrease the usability for these methods. Due to the direct contact with the finger, the sensor gets dirty, which decreases the authentication success ratio. Aligning the eye with a camera to capture the retina pattern gives uncomfortable feeling. On the other hand, vein patterns of either a palm of the hand or a single finger offer stable, unique and repeatable biometrics features. A fingerprint-based identification system using Cellular Neural Networks has already been proposed by Gao. His system covers all stages of a typical fingerprint verification procedure from Image Preprocessing to Feature Matching. This paper performs a critical review of the individual algorithmic steps. Notably, the operation of False Feature Elimination is applied only once instead of 3 times. Furthermore, the number of iterations is limited to 1 for all used templates. Hence, the computational need of the feedback contribution is removed. Consequently the computational effort is drastically reduced without a notable chance in quality. This allows a full integration of the detection mechanism. The system is prototyped on a Xilinx Virtex II Pro P30 FPGA.

  9. Babinet-Inverted Optical Yagi-Uda Antenna for Unidirectional Radiation to Free Space

    NASA Astrophysics Data System (ADS)

    Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Choe, Jong-Ho; Lee, Jongcheon; Lee, Jaesoong; Jeong, Heejeong; Kim, Un Jeong; Park, Yeonsang; Song, In Yong; Park, Q.-Han; Hwang, Sung Woo; Kim, Kinam; Lee, Chang-Won

    2014-06-01

    Plasmonic nanoantennas are key elements in nanophotonics capable of directing radiation or enhancing the transition rate of a quantum emitter. Slot-type magnetic-dipole nanoantennas, which are complementary structures of typical electric-dipole-type antennas, have received little attention, leaving their antenna properties largely unexplored. Here we present a novel magnetic-dipole-fed multi-slot optical Yagi-Uda antenna. By engineering the relative phase of the interacting surface plasmon polaritons between the slot elements, we demonstrate that the optical antenna exhibits highly unidirectional radiation to free space. The unique features of the slot-based magnetic nanoantenna provide a new possibility of achieving integrated features such as energy transfer from one waveguide to another by working as a future optical via.

  10. Aqueous Black Colloids of Reticular Nanostructured Gold

    NASA Astrophysics Data System (ADS)

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

  11. Effort towards symmetric removal and surface smoothening of 1.3-GHz niobium single-cell cavity in vertical electropolishing using a unique cathode

    NASA Astrophysics Data System (ADS)

    Chouhan, Vijay; Kato, Shigeki; Nii, Keisuke; Yamaguchi, Takanori; Sawabe, Motoaki; Hayano, Hitoshi; Ida, Yoshiaki

    2017-08-01

    A detailed study on vertical electropolishing (VEP) of a 1.3-GHz single-cell niobium coupon cavity, which contains six coupons and four viewports at different positions, is reported. The cavity was vertically electropolished using a conventional rod and three types of unique cathodes named as Ninja cathodes, which were designed to have four retractable blades made of either an insulator or a metal or a combination of both. This study reveals the effect of the cathodes and their rotation speed on uniformity in removal thickness and surface morphology at different positions inside the cavity. Removal thickness was measured at several positions of the cavity using an ultrasonic thickness gauge and the surface features of the coupons were examined by an optical microscope and a surface profiler. The Ninja cathode with partial metallic blades was found to be effective not only in reducing asymmetric removal, which is one of the major problems in VEP and might be caused by the accumulation of hydrogen (H2 ) gas bubbles on the top iris of the cavity, but also in yielding a smooth surface of the entire cavity. A higher rotation speed of the Ninja cathode prevents bubble accumulation on the upper iris, and might result in a viscous layer of similar thickness in the cavity cell. Moreover, a higher electric field at the equator owing to the proximity of partial metallic blades to the equator surface resulted in a smooth surface. The effects of H2 gas bubbles and stirring were also observed in lab EP experiments.

  12. Featured Image: Diamonds in a Meteorite

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    This unique image which measures only 60 x 80 micrometers across reveals details in the Kapoeta meteorite, an 11-kg stone that fell in South Sudan in 1942. The sparkle in the image? A cluster of nanodiamonds discovered embedded in the stone in a recent study led by Yassir Abdu (University of Sharjah, United Arab Emirates). Abdu and collaborators showed that these nanodiamonds have similar spectral features to the interiors of dense interstellar clouds and they dont show any signs of shock features. This may suggest that the nanodiamonds were formed by condensation of nebular gases early in the history of the solar system. The diamonds were trapped in the surface material of the Kapoeta meteorites parent body, thought to be the asteroid Vesta. To read more about the authors study, check out the original article below.CitationYassir A. Abdu et al 2018 ApJL 856 L9. doi:10.3847/2041-8213/aab433

  13. A Systematic Review of Behavioral Interventions to Reduce Condomless Sex and Increase HIV Testing for Latino MSM.

    PubMed

    Pérez, Ashley; Santamaria, E Karina; Operario, Don

    2017-12-15

    Latino men who have sex with men (MSM) in the United States are disproportionately affected by HIV, and there have been calls to improve availability of culturally sensitive HIV prevention programs for this population. This article provides a systematic review of intervention programs to reduce condomless sex and/or increase HIV testing among Latino MSM. We searched four electronic databases using a systematic review protocol, screened 1777 unique records, and identified ten interventions analyzing data from 2871 Latino MSM. Four studies reported reductions in condomless anal intercourse, and one reported reductions in number of sexual partners. All studies incorporated surface structure cultural features such as bilingual study recruitment, but the incorporation of deep structure cultural features, such as machismo and sexual silence, was lacking. There is a need for rigorously designed interventions that incorporate deep structure cultural features in order to reduce HIV among Latino MSM.

  14. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus.

    PubMed

    Bachert, Beth A; Choi, Soo J; LaSala, Paul R; Harper, Tiffany I; McNitt, Dudley H; Boehm, Dylan T; Caswell, Clayton C; Ciborowski, Pawel; Keene, Douglas R; Flores, Anthony R; Musser, James M; Squeglia, Flavia; Marasco, Daniela; Berisio, Rita; Lukomski, Slawomir

    2016-01-01

    The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.

  15. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  16. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.; Kim, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the potential predictability of the broad-scale and regional monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both Sea Surface Temperatures (SST) and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. However, for regional monsoons, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  17. Systems-Level Annotation of a Metabolomics Data Set Reduces 25 000 Features to Fewer than 1000 Unique Metabolites.

    PubMed

    Mahieu, Nathaniel G; Patti, Gary J

    2017-10-03

    When using liquid chromatography/mass spectrometry (LC/MS) to perform untargeted metabolomics, it is now routine to detect tens of thousands of features from biological samples. Poor understanding of the data, however, has complicated interpretation and masked the number of unique metabolites actually being measured in an experiment. Here we place an upper bound on the number of unique metabolites detected in Escherichia coli samples analyzed with one untargeted metabolomics method. We first group multiple features arising from the same analyte, which we call "degenerate features", using a context-driven annotation approach. Surprisingly, this analysis revealed thousands of previously unreported degeneracies that reduced the number of unique analytes to ∼2961. We then applied an orthogonal approach to remove nonbiological features from the data using the 13 C-based credentialing technology. This further reduced the number of unique analytes to less than 1000. Our 90% reduction in data is 5-fold greater than previously published studies. On the basis of the results, we propose an alternative approach to untargeted metabolomics that relies on thoroughly annotated reference data sets. To this end, we introduce the creDBle database ( http://creDBle.wustl.edu ), which contains accurate mass, retention time, and MS/MS fragmentation data as well as annotations of all credentialed features.

  18. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherly, K. B.; Rakesh, K.

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with themore » theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.« less

  19. The First Year of Cassini RADAR Observations of Titan

    NASA Astrophysics Data System (ADS)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing < 3% of Titan`s surface) reveal that Titan is geologically young and complex (see Elachi et al., 2005, Science 13, 970-4). Significant variations were seen between the range of features seen in the Ta swath (centered at ~50N, 80W) and T3 (~ 30N, 70W) : the large-scale radiometric properties also differed, with T3 being radar-brighter. A variety of features have been identified in SAR, including two large impact craters, cryovolcanic flows and a probable volcanic dome. Dendritic and braided radar-bright sinuous channels, some 180km long, are evidence of fluvial activity. `Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  20. Surface materials map of Afghanistan: iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Kokaly, Raymond F.; Hoefen, Todd M.; Dudek, Kathleen B.; Livo, Keith E.

    2012-01-01

    This map shows the distribution of selected iron-bearing minerals and other materials derived from analysis of HyMap imaging spectrometer data of Afghanistan. Using a NASA (National Aeronautics and Space Administration) WB-57 aircraft flown at an altitude of ~15,240 meters or ~50,000 feet, 218 flight lines of data were collected over Afghanistan between August 22 and October 2, 2007. The HyMap data were converted to apparent surface reflectance, then further empirically adjusted using ground-based reflectance measurements. The reflectance spectrum of each pixel of HyMap data was compared to the spectral features of reference entries in a spectral library of minerals, vegetation, water, ice, and snow. This map shows the spatial distribution of iron-bearing minerals and other materials having diagnostic absorptions at visible and near-infrared wavelengths. These absorptions result from electronic processes in the minerals. Several criteria, including (1) the reliability of detection and discrimination of minerals using the HyMap spectrometer data, (2) the relative abundance of minerals, and (3) the importance of particular minerals to studies of Afghanistan's natural resources, guided the selection of entries in the reference spectral library and, therefore, guided the selection of mineral classes shown on this map. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated. Minerals having similar spectral features were less easily discriminated, especially where the minerals were not particularly abundant and (or) where vegetation cover reduced the absorption strength of mineral features. Complications in reflectance calibration also affected the detection and identification of minerals.

  1. A study on the physicochemical properties of hydroalcoholic solutions to improve the direct exfoliation of natural graphite down to few-layers graphene

    NASA Astrophysics Data System (ADS)

    Fedi, Filippo; Miglietta, Maria Lucia; Polichetti, Tiziana; Ricciardella, Filiberto; Massera, Ettore; Ninno, Domenico; Di Francia, Girolamo

    2015-03-01

    Straightforward methods to produce pristine graphene flakes in large quantities are based on the liquid-phase exfoliation processes. These one-step physical transformations of graphite into graphene offer many unique advantages. To date, a large number of liquids have been employed as exfoliation media exploiting their thermodynamic and chemical features as compared to those of graphene. Here, we pursued the goal of realizing water based mixtures to exfoliate graphite and disperse graphene without the aid of surfactants. To this aim, aqueous mixtures with suitable values of surface tension and Hansen solubility parameters (HSPs), were specifically designed and used. The very high water surface tension was decreased by the addition of solvents with lower surface tensions such as alcohols, obtaining, in this way, more favourable HSP distances. The specific role of each of these thermodynamic features was finally investigated. The results showed that the designed hydroalcoholic solutions were effective in both the graphite exfoliation and dispersion without the addition of any surfactants or other stabilizing agents. Stable graphene suspensions were obtained at concentration comparable to those produced with low-boiling solvents and water/surfactants.

  2. The effect of ultrasonic nanocrystalline surface modification on the high-frequency fretting wear behavior of AISI304 steel.

    PubMed

    Cho, In-Shik; Lee, Chang-Soon; Amanov, Auezhan; Pyoun, Young-Shik; Park, In-Gyu

    2011-01-01

    The fact that one of fundamental characteristics of fretting is the very small sliding amplitude dictates the unique feature of wear mechanism. Ultrasonic Nanocrystalline Surface Modification (UNSM) technology was applied in order to investigate its effect on the high-frequency fretting wear behavior of AISI304 steel. Its influence on the fretting wear is also reported in this paper with these treated and untreated samples. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. UNSM creates homogenous nanocrystalline structures as well on the surface. UNSM process is expected to eliminate or significantly retard the formation of fretting wear. Nanocrystalline structure generation after UNSM has been reported to produce its unique structure and to offer a variety of beneficial properties compared to conventionally treated materials. A deformed layer of 220 microm exhibits high dislocation density, where top layer transformed to a nanostructure of the grain size in 23 nm and mechanical twins were observed. Deformation-induced martensite was observed to form at the intersections of mechanical twins, whose volume fraction has increased up to 38.4% and wear loss rate at 800,000 cycles has decreased by 40%. In this paper, experimental results are discussed to elucidate potential mechanism of high-frequency fretting wear.

  3. Unique secreted–surface protein complex of Lactobacillus rhamnosus, identified by phage display

    PubMed Central

    Gagic, Dragana; Wen, Wesley; Collett, Michael A; Rakonjac, Jasna

    2013-01-01

    Proteins are the most diverse structures on bacterial surfaces; hence, they are candidates for species- and strain-specific interactions of bacteria with the host, environment, and other microorganisms. Genomics has decoded thousands of bacterial surface and secreted proteins, yet the function of most cannot be predicted because of the enormous variability and a lack of experimental data that would allow deduction of function through homology. Here, we used phage display to identify a pair of interacting extracellular proteins in the probiotic bacterium Lactobacillus rhamnosus HN001. A secreted protein, SpcA, containing two bacterial immunoglobulin-like domains type 3 (Big-3) and a domain distantly related to plant pathogen response domain 1 (PR-1-like) was identified by screening of an L. rhamnosus HN001 library using HN001 cells as bait. The SpcA-“docking” protein, SpcB, was in turn detected by another phage display library screening, using purified SpcA as bait. SpcB is a 3275-residue cell-surface protein that contains general features of large glycosylated Serine-rich adhesins/fibrils from gram-positive bacteria, including the hallmark signal sequence motif KxYKxGKxW. Both proteins are encoded by genes within a L. rhamnosus-unique gene cluster that distinguishes this species from other lactobacilli. To our knowledge, this is the first example of a secreted-docking protein pair identified in lactobacilli. PMID:23233310

  4. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    PubMed Central

    Zhao, Fuli; Liu, Huiming; Mathe, Salva D. R.; Dong, Anjie

    2017-01-01

    Covalent organic frameworks (COFs) are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O) linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic. PMID:29283423

  5. Facet control of gold nanorods

    DOE PAGES

    Zhang, Qingfeng; Han, Lili; Jing, Hao; ...

    2016-01-21

    While great success has been achieved in fine-tuning the aspect ratios and thereby the plasmon resonances of cylindrical Au nanorods, facet control with atomic level precision on the highly curved nanorod surfaces has long been a significantly more challenging task. The intrinsic structural complexity and lack of precise facet control of the nanorod surfaces remain the major obstacles for the atomic-level elucidation of the structure–property relationships that underpin the intriguing catalytic performance of Au nanorods. Here we demonstrate that the facets of single-crystalline Au nanorods can be precisely tailored using cuprous ions and cetyltrimethylammonium bromide as a unique pair ofmore » surface capping competitors to guide the particle geometry evolution during nanorod overgrowth. By deliberately maneuvering the competition between cuprous ions and cetyltrimethylammonium bromide, we have been able to create, in a highly controllable and selective manner, an entire family of nanorod-derived anisotropic multifaceted geometries whose surfaces are enclosed by specific types of well-defined high-index and low-index facets. This facet-controlled nanorod overgrowth approach also allows us to fine-tune the particle aspect ratios while well-preserving all the characteristic facets and geometric features of the faceted Au nanorods. Furthermore, taking full advantage of the combined structural and plasmonic tunability, we have further studied the facet-dependent heterogeneous catalysis on well-faceted Au nanorods using surface-enhanced Raman spectroscopy as an ultrasensitive spectroscopic tool with unique time-resolving and molecular finger-printing capabilities.« less

  6. Follow the line: Mysterious bright streaks on Dione and Rhea

    NASA Astrophysics Data System (ADS)

    Martin, E. S.; Patthoff, D. A.

    2017-12-01

    Our recent mapping of the wispy terrains of Saturn's moons Dione and Rhea has revealed unique linear features that are generally long (10s-100s km), narrow (1-10 km), brighter than the surrounding terrains, and their detection may be sensitive to lighting geometries. We refer to these features as `linear virgae.' Wherever linear virgae are observed, they appear to crosscut all other structures, suggesting that they are the youngest features on these satellites. Despite their young age and wide distribution, linear virgae on Rhea and Dione have largely been overlooked in the literature. Linear virgae on Dione have previously been identified in Voyager and Cassini Data, but their formation remains an open question. If linear virgae are found to be endogenic, it would suggest that the surfaces of Dione and Rhea have been active recently. Alternatively, if linear virgae are exogenic it would suggest that the surfaces have been modified by a possibly common mechanism. Further work would be necessary to determine both a source of material and the dynamical environment that could produce these features. Here we present detailed morphometric measurements to further constrain whether linear virgae on Rhea and Dione share common origins. We complete an in-depth assessment of the lighting geometries where these features are visible. If linear virgae in the Saturnian system show common morphologies and distributions, a new, recently active, possibly system-wide mechanism may be revealed, thereby improving our understanding of the recent dynamical environment around Saturn.

  7. Unique crater morphologies on Vesta, and the context of a deep regolith and intermediate gravity

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Nathues, A.; Vincent, J. B.; Sierks, H.

    2012-04-01

    The Dawn spacecraft orbiting the minor planet Vesta has revealed details of the surface properties on a key object for the understanding of the evolution processes in an early epoch of our planetary system. In order to understand these phenomena the three dimensional structure of the surface must be deduced from identifiable processes known to be present elsewhere in the planetary system. Therefore the morphology of impact craters and their geological context (Keil 2002, Clark et al. 2002) plays an important role. They expose material at significant depth in the surface layers, they show a chronologic sequence of rearrangement of the original uppermost layer of Vesta, and their apparent mechanical properties fill the gap between topographic roughness and micro-structural photometric roughness and porosity. Many impact craters on Vesta show significant differences to impact craters on the Moon and Mercury, where their morphology is basically dominated by a rigid surface, and to those on volatile-rich surfaces like on Mars or the icy satellites of the outer planets. The closest match with Vestan crater morphologies is that with those on Lutetia (Vincent et al. 2012). This similarity can be seen by signs of granular fluidity in land-slide phenomena. A prominent and unique property of craters on Vesta is the occurrence of features showing singular concentric central pits, which so far have been associated with liquid materials: either molten rock on Mercury or the Moon, or the liquefaction of ice on Mars, Ganymede, and Callisto (Schultz, 1988). Selected from a collection of 200 sample features in the diameter range 1 to 30 km, some prototypes of this type are presented as indicators of such a porous regolith. The prototypes include simple hopper-shaped to pan-shaped features (the basic structure), but also a subclass with approximately circular symmetric multiple-depression structure (features typically larger than 10 km), and a subclass with unusual halo shapes not observed in regular impact craters. Main criteria of establishment of a causal link between the outer halo and the inner depression are the unique coincidence of their morphologies, the consistency from an 'evolutionary' point of view, and a statistically significant excess with respect to the expected number of chance configurations. These criteria have been tested and confirmed. The variety of features with the basic structure is consistent with more than a single kind of process. Several active and passive modes of their generation could be identified by the observational evidence, e.g. the collapse of a porous area shaken by the seismic wave from an impact into a regolith layer with high porosity. The required geophysical context is the presence of a sufficiently deep layer of regolith, a suitable distribution of size and shapes of its constituents, a deposit under low velocity and low pressure conditions, and a specific seismic history. These conditions are met by the giant impacts on Vesta, the 'intermediate' gravity (escape velocity sufficient for retention of ejecta but small for complete structural destruction by re-impactors), and the environment of craters of intermediate diameter (in the range of 10 km). Then significantly deep layers with similar properties can be created with the intact porosity of a fractal aggregate (Kaye, 1989). Diagnostic data are the histograms of the local distribution, the determination of surface roughness on all scales. Test areas on opposite sides of Vesta with areas of 400 km2 show differences in the abundance of pit craters to normal ones by a factor of two. Locally the fraction of pit craters exceeds 50% of all, whereas elsewhere they are obviously rare. Since under-abundance is found in the low albedo hemisphere of Vesta, a correlation with composition is indicated. The existence of the necessary conditions for the formation of a porous regolith has been tested by calculation of the trajectories of crater ejecta on the rapidly rotating object Vesta. Results show that on the trailing side of the original impact the opportunity for very slow re-impacts (less than a few meters per second) is significantly enhanced. Also the traveling times for the seismic wave and the arrival of ejecta have been compared, resulting in consistent details of the distance distribution of the related compactions. Further evidence comes from the analysis of brightness profiles of the surface which demonstrates local smoothing. The distribution of diameter ratio of halo to central depression matches that found for the Iovian satellite Callisto, thus hinting to the granular fluidity of the regolith on Vesta. Another unique type of interacting craters on Vesta is shown, which is related to different stages of compaction of the regolith. Concluding, it is shown that for individual features strong indications are found for a common origin of a crater and a surrounding halo by identifiable processes. A completely equivalent environment of impacts has been created by Lohse et al (2004) in laboratory, resulting in strikingly similar features. Therefore the paradigms of crater erosion and saturation have to be expanded to porous collapses. Age determinations by crater counts are affected. Although it is obvious that also some of these features were created by chance, even then the outcome in the sense of a compaction process can be studied.

  8. Photonic surface waves on metamaterial interfaces

    NASA Astrophysics Data System (ADS)

    Takayama, O.; Bogdanov, A. A.; Lavrinenko, A. V.

    2017-11-01

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. Research on surface waves has been flourishing in the last few decades due to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on near-field techniques, contributing to the establishment of nanophotonics as a field of research. Up to now, a wide variety of surface waves has been investigated in numerous material and structure settings. This article reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of surface wave, we discuss the material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods.

  9. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.

  10. Functional anatomy of the temporomandibular joint (I).

    PubMed

    Sava, Anca; Scutariu, Mihaela Monica

    2012-01-01

    Jaw movement is analyzed as the action between two rigid components jointed together in a particular way, the movable mandible against the stabilized cranium. Jaw articulation distinguishes form most other synovial joints of the body by the coincidence of certain characteristic features. Its articular surfaces are not covered by hyaline cartilage as elsewhere. The two jointed components carry teeth the shape, position and occlusion of which having a unique influence on specific positions and movements within the joint. A fibrocartilaginous disc is interposed between upper and lower articular surfaces; this disc compensates for the incongruities in opposing parts and allows sliding, pivoting, and rotating movements between the bony components. These are the reasons for our review of the functional anatomy of the temporomandibular joint.

  11. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  12. Photovoltaic module mounting system

    DOEpatents

    Miros, Robert H. J. [Fairfax, CA; Mittan, Margaret Birmingham [Oakland, CA; Seery, Martin N [San Rafael, CA; Holland, Rodney H [Novato, CA

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  13. Microwave properties of sea ice in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Onstott, R. G.; Larson, R. W.

    1986-01-01

    Active microwave properties of summer sea ice were measured. Backscatter data were acquired at frequencies from 1 to 17 GHz, at angles from 0 to 70 deg from vertical, and with like and cross antenna polarizations. Results show that melt-water, snow thickness, snowpack morphology, snow surface roughness, ice surface roughness, and deformation characteristics are the fundamental scene parameters which govern the summer sea ice backscatter response. A thick, wet snow cover dominates the backscatter response and masks any ice sheet features below. However, snow and melt-water are not distributed uniformly and the stage of melt may also be quite variable. These nonuniformities related to ice type are not necessarily well understood and produce unique microwave signature characteristics.

  14. Quad-Tree Visual-Calculus Analysis of Satellite Coverage

    NASA Technical Reports Server (NTRS)

    Lo, Martin W.; Hockney, George; Kwan, Bruce

    2003-01-01

    An improved method of analysis of coverage of areas of the Earth by a constellation of radio-communication or scientific-observation satellites has been developed. This method is intended to supplant an older method in which the global-coverage-analysis problem is solved from a ground-to-satellite perspective. The present method provides for rapid and efficient analysis. This method is derived from a satellite-to-ground perspective and involves a unique combination of two techniques for multiresolution representation of map features on the surface of a sphere.

  15. Crystal structure of casein kinase-1, a phosphate-directed protein kinase.

    PubMed Central

    Xu, R M; Carmel, G; Sweet, R M; Kuret, J; Cheng, X

    1995-01-01

    The structure of a truncated variant of casein kinase-1 from Schizosaccharomyces pombe, has been determined in complex with MgATP at 2.0 A resolution. The model resembles the 'closed', ATP-bound conformations of the cyclin-dependent kinase 2 and the cAMP-dependent protein kinase, with clear differences in the structure of surface loops that impart unique features to casein kinase-1. The structure is of unphosphorylated, active conformation of casein kinase-1 and the peptide-binding site is fully accessible to substrate. Images PMID:7889932

  16. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    PubMed Central

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  17. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, E. G.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1977-01-01

    The morphology and optical properties of the surface of Mercury resemble those of the Moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  18. Television observations of Mercury by Mariner 10

    NASA Technical Reports Server (NTRS)

    Murray, B. C.; Belton, M. J. S.; Danielson, G. E.; Davies, M. E.; Gault, D. E.; Hapke, B.; Oleary, B.; Strom, R. G.; Suomi, V.; Trask, N.

    1974-01-01

    The morphology and optical properties of the surface of Mercury resemble that of the moon in remarkable detail, recording a very similar sequence of events; chemical and mineralogical similarity of the outer layers is implied. Mercury is probably a differentiated planet with an iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of any landform is found. Large-scale scarps and ridges unlike lunar or Martian features may reflect a unique period of planetary compression near the end of heavy bombardment, perhaps related to contraction of the core.

  19. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior

    PubMed Central

    Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-01-01

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219

  20. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    PubMed

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  1. Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties

    NASA Astrophysics Data System (ADS)

    Wang, Wenxing; Yan, Yucong; Zhou, Ning; Zhang, Hui; Li, Dongsheng; Yang, Deren

    2016-02-01

    Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules.Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-mediated approach for selective deposition of Au nanorings on the periphery of Pd seeds with the structure of an ultrathin nanosheet through the island growth mode. In combination with selective etching of Pd nanosheets, Au nanorings are eventually produced. We can control the outer diameter and wall thickness of the nanorings by simply varying the size of the Pd nanosheets and reaction time. By taking the advantage of this size controllability, the nanorings show tunable surface plasmonic properties in the near infrared (NIR) region arising from both the in-plane dipole and face resonance modes. Owing to their good surface plasmonic properties, the nanorings show substantially enhanced surface-enhanced Raman spectroscopy (SERS) performance for rhodamine 6G, and are therefore confirmed as good SERS substrates to detect trace amounts of molecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08613b

  2. Heliophysics Science and the Moon: Potential Solar and Space Physics Science for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This report addresses both these features new science enabled by NASAs exploration initiative and enabling science that is critical to ensuring a safe return to the Moon and onward to Mars. The areas of interest are structured into four main themes: Theme 1: Heliophysics Science of the Moon Studies of the Moons unique magnetodynamic plasma environment. Theme 2: Space Weather, Safeguarding the Journey Studies aimed at developing a predictive capability for space weather hazards. Theme 3: The Moon as a Historical Record Studies of the variation of the lunar regolith to uncover the history of the Sun, solar system, local interstellar medium, galaxy, and universe. Theme 4: The Moon as a Heliophysics Science Platform Using the unique environment of the lunar surface as a platform to provide observations beneficial to advancing heliophysics science.

  3. Geography From Another Dimension

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The GEODESY software program is intended to promote geographical awareness among students with its remote sensing capabilities to observe the Earth's surface from distant vantage points. Students and teachers using GEODESY learn to interpret and analyze geographical data pertaining to the physical attributes of their community. For example, the program provides a digital environment of physical features, such as mountains and bodies of water, as well as man-made features, such as roads and parks, using aerial photography, satellite imagery, and geographic information systems data in accordance with National Geography Standards. The main goal is to have the students and teachers gain a better understanding of the unique forces that drive their coexistence. GEODESY was developed with technical assistance and financial support from Stennis Space Center's Commercial Remote Sensing Program Office, now known as the Earth Science Applications Directorate.

  4. Isolation and Versatile Derivatization of an Unsaturated Anionic Silicon Cluster (Siliconoid)

    PubMed Central

    Willmes, Philipp; Leszczyńska, Kinga; Heider, Yannic; Abersfelder, Kai; Zimmer, Michael; Huch, Volker

    2016-01-01

    Abstract The characteristic features of bulk silicon surfaces are echoed in the related partially substituted—and thus unsaturated—neutral silicon clusters (siliconoids). The incorporation of siliconoids into more‐extended frameworks is promising owing to their unique electronic features, but further developments in this regard are limited by the notable absence of functionalized siliconoid derivatives until now. Herein we report the isolation and full characterization of the lithium salt of an anionic R5Si6‐siliconoid, thus providing the missing link between silicon‐based Zintl anions and siliconoid clusters. Proof‐of‐principle for the high potential of this species for the efficient transfer of the intact unsaturated R5Si6 moiety is demonstrated by clean reactions with representative electrophiles of Groups 13, 14, and 15. PMID:26800440

  5. Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Song, Kai; Clays, Koen

    2018-03-01

    In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.

  6. Bioinspired Single-Walled Carbon Nanotubes as a Spider Silk Structure for Ultrahigh Mechanical Property.

    PubMed

    Luo, Chengzhi; Li, Fangying; Li, Delong; Fu, Qiang; Pan, Chunxu

    2016-11-16

    Due to its unique hierarchical structure, natural spider silk features exceptional mechanical properties such as high tensile strength and great extensibility, making it one of the toughest materials. Herein, we design bioinspired spider silk single-walled carbon nanotubes (BISS-SWCNTs) that combine the hierarchical structure of spider silk and the high strength and conductivity of SWCNTs. To imitate the hierarchical structure, Fe nanoparticles are embedded on the surface of directly synthesized SWCNTs skeleton followed by coating an amorphous carbon layer. The carbon layer forms the spider silk-featured skin-core structure with SWCNTs, thus making the tube junction tougher. The embedded Fe nanoparticles act as glue spots for preventing interfacial slippages between the BISS-SWCNTs and the reinforced matrix. With only 2.1 wt % BISS-SWCNTs added, the tensile strength and Young's modulus of the BISS-SWCNTs/PMMA composites can be improved by 300%. More importantly, the BISS-SWCNTs also retain the high conductivity and transmittance of the pristine SWCNTs film. This unique bioinspired material will be of great importance in applications of multifunctional composite materials and has important implications for the future of biomimetic materials.

  7. The management of nonunion and malunion of the distal humerus--a 30-year experience.

    PubMed

    Jupiter, Jesse B

    2008-01-01

    This personal series of nonunions of the distal humerus reviews unique features of this problem, categorizes them according to unique anatomic features, and presents pitfalls and pearls in the management of these complex reconstructive problems.

  8. Naming the newly found landforms on Venus

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Russell, J. F.

    1991-01-01

    The mapping of Venus is unique in the history of cartigraphy; never has so much territory been discovered and mapped in so short a period of time. Therefore, in the interest of international scientific communication, there is a unique urgency to the development of a system of names for surface features on Venus. The process began with the naming of features seen on radar images taken from Earth and continued through mapping expeditions of the U.S. and U.S.S.R. However, the Magellan Mission resolves features twenty-five times smaller than those mapped previously, and its radar data will cover an area nearly equivalent to that of the continents and the sea-floors of the Earth combined. The International Astronomical Union (IAU) was charged with the formal endorsement of names of features on the planets. Proposed names are collected, approved, and applied through the IAU Working Group for Planetary System Nomenclature (WGPSN) and its task groups, prior to IAU approval by the IAU General Assembly. Names approved by the WGPSN and its task groups, prior to final approval may be used on published maps and articles, provided that their provisional nature is stipulated. The IAU has established themes for the names to be used on each of the planets; names of historical and mythological women are used on Venus. Names of political entities and those identified with active religions are not acceptable, and a person must have been deceased for three years or more to be considered. Any interested person may propose a name for consideration by the IAU.

  9. Towards a Better Corrosion Resistance and Biocompatibility Improvement of Nitinol Medical Devices

    NASA Astrophysics Data System (ADS)

    Rokicki, Ryszard; Hryniewicz, Tadeusz; Pulletikurthi, Chandan; Rokosz, Krzysztof; Munroe, Norman

    2015-04-01

    Haemocompatibility of Nitinol implantable devices and their corrosion resistance as well as resistance to fracture are very important features of advanced medical implants. The authors of the paper present some novel methods capable to improve Nitinol implantable devices to some marked degree beyond currently used electropolishing (EP) processes. Instead, a magnetoelectropolishing process should be advised. The polarization study shows that magnetoelectropolished Nitinol surface is more corrosion resistant than that obtained after a standard EP and has a unique ability to repassivate the surface. Currently used sterilization processes of Nitinol implantable devices can dramatically change physicochemical properties of medical device and by this influence its biocompatibility. The Authors' experimental results clearly show the way to improve biocompatibility of NiTi alloy surface. The final sodium hypochlorite treatment should replace currently used Nitinol implantable devices sterilization methods which rationale was also given in our previous study.

  10. Phenyl/Perfluorophenyl Stacking Interactions Enhance Structural Order in Two-Dimensional Covalent Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C; Braunecker, Wade A; Hurst, Katherine E

    A two-dimensional imine-based covalent organic framework (COF) was designed and synthesized such that phenyl and perfluorophenyl structural units can seamlessly alternate between layers of the framework. X-ray diffraction of the COF powders reveals a striking increase in crystallinity for the COF with self-complementary phenyl/perfluorophenyl interactions (FASt-COF). Whereas measured values of the Brunauer-Emmet-Teller (BET) surface areas for the nonfluorinated Base-COF and the COF employing hydrogen bonding were ~37% and 59%, respectively, of their theoretical Connolly surface areas, the BET value for FASt-COF achieves >90% of its theoretical value (~1700 m2/g). Transmission electron microscopy images also revealed unique micron-sized rodlike features inmore » FASt-COF that were not present in the other materials. The results highlight a promising approach for improving surface areas and long-range order in two-dimensional COFs.« less

  11. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  12. Venus geology

    NASA Astrophysics Data System (ADS)

    McLaughlin, W. I.

    1991-05-01

    The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.

  13. Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D).

    PubMed

    Hess, Peter; Lomonosov, Alexey M; Mayer, Andreas P

    2014-01-01

    The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump-probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Surface-enabled propulsion and control of colloidal microwheels.

    PubMed

    Tasci, T O; Herson, P S; Neeves, K B; Marr, D W M

    2016-01-04

    Propulsion at the microscale requires unique strategies such as the undulating or rotating filaments that microorganisms have evolved to swim. These features however can be difficult to artificially replicate and control, limiting the ability to actuate and direct engineered microdevices to targeted locations within practical timeframes. An alternative propulsion strategy to swimming is rolling. Here we report that low-strength magnetic fields can reversibly assemble wheel-shaped devices in situ from individual colloidal building blocks and also drive, rotate and direct them along surfaces at velocities faster than most other microscale propulsion schemes. By varying spin frequency and angle relative to the surface, we demonstrate that microwheels can be directed rapidly and precisely along user-defined paths. Such in situ assembly of readily modified colloidal devices capable of targeted movements provides a practical transport and delivery tool for microscale applications, especially those in complex or tortuous geometries.

  15. Self-organized molecular films with long-range quasiperiodic order.

    PubMed

    Fournée, Vincent; Gaudry, Émilie; Ledieu, Julian; de Weerd, Marie-Cécile; Wu, Dongmei; Lograsso, Thomas

    2014-04-22

    Self-organized molecular films with long-range quasiperiodic order have been grown by using the complex potential energy landscape of quasicrystalline surfaces as templates. The long-range order arises from a specific subset of quasilattice sites acting as preferred adsorption sites for the molecules, thus enforcing a quasiperiodic structure in the film. These adsorption sites exhibit a local 5-fold symmetry resulting from the cut by the surface plane through the cluster units identified in the bulk solid. Symmetry matching between the C60 fullerene and the substrate leads to a preferred adsorption configuration of the molecules with a pentagonal face down, a feature unique to quasicrystalline surfaces, enabling efficient chemical bonding at the molecule-substrate interface. This finding offers opportunities to investigate the physical properties of model 2D quasiperiodic systems, as the molecules can be functionalized to yield architectures with tailor-made properties.

  16. Appropriate Simulants are a Requirement for Mars Surface Systems Technology Development

    NASA Technical Reports Server (NTRS)

    Edmunson, Jennifer E.; McLemore, Carole A.; Rickman, Douglas L.

    2012-01-01

    To date, there are two simulants for martian regolith: JSC Mars-1A, produced from palagonitic (weathered) basaltic tephra mined from the Pu'u Nene cinder cone in Hawaii [1] by commercial company Orbitec, and Mojave Mars Simulant (MMS), produced from Saddleback Basalt in the western Mojave desert by the Jet Propulsion Laboratory [2]. Until numerous recent orbiters, rovers, and landers were sent to Mars, weathered basalt was surmised to cover every inch of the martian landscape. All missions since Viking have disproven that the entire martian surface is weathered basalt. In fact, the outcrops, features, and surfaces that are significantly different from weathered basalt are too numerous to realistically count. There are gullies, evaporites, sand dunes, lake deposits, hydrothermal deposits, alluvium, etc. that indicate sedimentary and chemical processes. There is no one size fits all simulant. Each unique area requires its own simulant in order to test technologies and hardware, thereby reducing risk.

  17. Observations of Lunar Swirls by the Diviner Lunar Radiometer Experiment

    NASA Technical Reports Server (NTRS)

    Glotch, T. D.; Greenhagen, B. T.; Lucey, P. G.; Bandfield, J. L.; Hayne, Paul O.; Allen, Carlton C.; Elphic, Richard C.; Paige, D. A.

    2012-01-01

    The presence of anomalous, high albedo markings on the lunar surface has been known since the Apollo era. These features, collectively known as lunar swirls, occur on both the mare and highlands. Some swirls are associated with the antipodes of major impact basins, while all are associated with magnetic field anomalies of varying strength. Three mechanisms have been proposed for the formation of the swirls: (1) solar wind standoff due to the presence of magnetic fields, (2) micrometeoroid or comet swarms impacting and disturbing the lunar surface, revealing unweathered regolith, and (3) transport and deposition of fine-grained feldspathic material. Diviner s unique capabilities to determine silicate composition and degree of space weathering of the lunar surface, in addition to its capabilities to determine thermophysical properties from night-time temperature measurements, make it an ideal instrument to examine the swirls and help differentiate among the three proposed formation mechanisms.

  18. Surface-enabled propulsion and control of colloidal microwheels

    PubMed Central

    Tasci, T. O.; Herson, P. S.; Neeves, K. B.; Marr, D. W. M.

    2016-01-01

    Propulsion at the microscale requires unique strategies such as the undulating or rotating filaments that microorganisms have evolved to swim. These features however can be difficult to artificially replicate and control, limiting the ability to actuate and direct engineered microdevices to targeted locations within practical timeframes. An alternative propulsion strategy to swimming is rolling. Here we report that low-strength magnetic fields can reversibly assemble wheel-shaped devices in situ from individual colloidal building blocks and also drive, rotate and direct them along surfaces at velocities faster than most other microscale propulsion schemes. By varying spin frequency and angle relative to the surface, we demonstrate that microwheels can be directed rapidly and precisely along user-defined paths. Such in situ assembly of readily modified colloidal devices capable of targeted movements provides a practical transport and delivery tool for microscale applications, especially those in complex or tortuous geometries. PMID:26725747

  19. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  20. The UV reflectance of Patroclus: Exploring the surface composition and origins of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Molyneux, Pippa

    2017-08-01

    (617) Patroclus is a binary system comprising two almost equally sized Trojan asteroids, Patroclus and Menoetius. (617) Patroclus has never been observed in the UV spectral region, which contains important diagnostic features of major Trojan surface constituents inferred from fits to visible-near IR spectra. Previous spectral observations have not been spatially resolved, precluding a direct spectral comparison of the two bodies. We propose to obtain full surface UV reflectance maps of both Patroclus and Menoetius using the STIS G230L mode, to search for characteristic absorption features of silicates, carbons/graphites and NH3, which together make up the major inferred Jupiter Trojan surface constituents, and for signs of ''spectral bluing'' that occurs for space-weathered objects. The Jupiter Trojans are believed to represent the most readily accessible Kuiper Belt material in the solar system, having been scattered from that region to their current orbits following a dynamical instability. A direct spectral comparison of Patroclus and Menoetius, indicating whether the objects share a common origin and evolution, will explore the hypothesis that the system is a rare binary survivor of this scattering. (617) Patroclus is also a target of the upcoming Lucy mission, and constraints on surface composition would represent a valuable input to instrument configuration and observation planning work for the mission. As Lucy will not carry a UV instrument, the proposed observations would remain unique and complementary to the results of the mission.

  1. Effective arrangement of separated transmit-only/receive-only RF coil for improvement of B1 homogeneity at 7 Tesla

    NASA Astrophysics Data System (ADS)

    Im, Geun Ho; Seo, Jeong-Hoon; Kim, Kyoung-Nam; Heo, Phil; Chung, Julius Juhyun; Jang, Moon-Sun; Lee, Jung Hee; Kim, Jae-Hun; Kim, Sun I.

    2014-09-01

    This article presents an effective arrangement with shifted transmit (Tx)-only and receive (Rx)-only (TORO) radiofrequency (RF) coils in a single-channel surface coil for improving the magnetic flux ( B 1) homogeneity in an ultra-high field (UHF) magnetic resonance imaging (MRI) scanner. The proposed new methodology for the coil arrangement using the shifted TORO RF coils was demonstrated for coils with 50-mm, 100-mm, and 150-mm-square surfaces and the results were compared to those for general Tx/Rx surface coils with the same dimensions. The computational analysis indicated that a homogeneous B1 field was achieved when the Rx-only coil was shifted in the two-dimensional xy-plane away from the Tx-only coils. Because the proposed coil configuration provides a unique opportunity for increasing the B 1 homogeneity, this feature is likely to increase the feasibility via new coil arrangements of UHF surface design and fabrication.

  2. Atomic force microscopy study of the structure function relationships of the biofilm-forming bacterium Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Cross, Sarah E.; Kreth, Jens; Zhu, Lin; Qi, Fengxia; Pelling, Andrew E.; Shi, Wenyuan; Gimzewski, James K.

    2006-02-01

    Atomic force microscopy (AFM) has garnered much interest in recent years for its ability to probe the structure, function and cellular nanomechanics inherent to specific biological cells. In particular, we have used AFM to probe the important structure-function relationships of the bacterium Streptococcus mutans. S. mutans is the primary aetiological agent in human dental caries (tooth decay), and is of medical importance due to the virulence properties of these cells in biofilm initiation and formation, leading to increased tolerance to antibiotics. We have used AFM to characterize the unique surface structures of distinct mutants of S. mutans. These mutations are located in specific genes that encode surface proteins, thus using AFM we have resolved characteristic surface features for mutant strains compared to the wild type. Ultimately, our characterization of surface morphology has shown distinct differences in the local properties displayed by various S. mutans strains on the nanoscale, which is imperative for understanding the collective properties of these cells in biofilm formation.

  3. Data Quality Assurance and Provenance Tracking in ICOADS Release 3.0

    NASA Astrophysics Data System (ADS)

    Cram, T.; Worley, S. J.; Ji, Z.; Schuster, D.

    2017-12-01

    The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) Release 3.0 (R3.0) is the world's most extensive collection of global surface marine meteorological in situ observational data. Managed under an international partnership, it contains over 455 million unique multi-parameter records, dates back to 1662, and is updated monthly in near real-time. It is a foundational dataset for weather and climate research that has been used by thousands of users. By using rigorous data preparation methods, new IT infrastructure, and International Maritime Meteorological Archive (IMMA) format enhancements, ICOADS R3.0 is exemplary in data quality assurance, provenance tracking, and capturing user feedback. The features in this data lifecycle management will be presented and include, but are not limited to, written data translation specification for each data source being added to ICOADS, assignment of data source identification parameters, attachment of the original data in the IMMA format to support future re-evaluation if necessary, permanently assigned unique identification on every record making data development and community collaborations easily possible using a relational database infrastructure, and extensible capacity of the IMMA format to augment the data richness beyond the primary scope of marine surface data. Some recent augmentations are more completely specified ocean observations from profiling observing systems, feedback data submitted by the atmospheric and oceanographic reanalysis providers, higher quality edited cloud reports, and community provided data value adjustments with uncertainty estimates. Highlights covering these ICOADS value-added features will be explained and the open free access from NCAR will be briefly described.

  4. Biotite weathering in a natural forest setting near Derome, Sweden

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Z.; Negrich, K.; Hassenkam, T.; Wallander, H.; Stipp, S. L.

    2011-12-01

    Chemical weathering is a key process in non-nitrogen nutrient acquisition by microbes, fungi and plants. Biotite is commonly the major source of potassium, magnesium and iron. A unique opportunity arose to study natural weathering of biotite by mixed conifer and hardwood forest vegetation and associated microbes and fungi at an abandoned mine site. After the mining stopped over 30 years ago biotite was left behind in piles and the forest vegetation progressively colonized the site. Samples were collected from the top 40 cm of the biotite piles in a vicinity of pine, spruce and birch trees and included some young seedlings. Macroscopic observations documented abundant hyphal growth between the sheets of biotite. We hypothesized that fungal hyphae grow between the sheets to explore the nutrient source and weather the biotite leaving hyphal-sized etched channels on the basal surfaces. Biotite surfaces were examined with atomic force microscopy (AFM) and environmental scanning electron microscopy (ESEM) in their natural state and after removing the biological material from the mineral surfaces. The ESEM images show extensive hyphal colonization and patchy biofilm cover of the entire biotite surface on and within the sheets and at the edges of the particles. Fungal hyphae did not attach strongly to the basal surfaces of the biotite flakes as a result of small particles on the surfaces and the uneven micro-topography. The AFM images illustrate a complex microbial community around the fungal hyphae and detailed fungal morphology. High resolution AFM images show unique globular features of diameter 10-100 nm on all biofilm surfaces. However, removal of the biological material resulted in smooth and un-etched surfaces indicating that either our removal techniques are too invasive and destroy the surface layers of interest, or the etching of the basal surface is not the main mechanism for chemical weathering and base-cation nutrient immobilization in this natural setting. Species-specific interactions at the biofilm-microbe-fungus-mineral interface and spatial distribution in the biotite pile are under further investigation.

  5. 3D Seismic Interpretation of a Plio-Pleistocene Mass Transport Deposit in the Deepwater Taranaki Basin of New Zealand

    NASA Astrophysics Data System (ADS)

    Rusconi, Francisco Jose

    A series of Plio-Pleistocene mass transport deposits (MTD) have been identified in the deepwater Taranaki Basin, in New Zealand, using the Romney 3D seismic survey, which covers an area of approximately 2000 km2. One of these MTDs has been chosen for description and interpretation based on high confidence mapping of its boundary surfaces. The deposit exhibits an array of interesting features similar to those documented by researchers elsewhere plus a unique basal feature unlike those previously observed. The basal shear surface exhibits erosional features such as grooves, "monkey fingers", and glide tracks. Internally, the MTD is typically characterized by low impedance, chaotic, semi-transparent reflectors surrounding isolated coherent packages of seismic facies interpreted as intact blocks rafted within the mass transport complex. Distally, the deposit presents outrunner blocks and pressure ridges. The new element described in this work consists of a composite feature that includes a protruding obstacle ("shield block") on the paleo-seafloor that acted as a barrier to subsequent flows as they advanced downslope. These blocks disrupt the incoming flow and result in elongate, downflow negative features ("erosional shadow scours"), which are then infilled by the mass transport deposit, and are preserved as elongate isochore thicks. Kinematic evidence provided by various structures suggests that the MTD flow direction was SE-NW toward bathyal depths. The features presented and the absence of extensional headwall structures, such as local arcuate glide planes and rotated slide blocks, suggest that this part of the deposit belongs to the translational to distal domain of the MTD, and its source area is expected to be somewhere toward the SE in a paleo continental slope.

  6. DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.

    2013-06-03

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that providemore » cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.« less

  7. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9

    PubMed Central

    2011-01-01

    Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. Conclusions The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9. PMID:21995282

  8. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9.

    PubMed

    Goh, Yong Jun; Goin, Caitlin; O'Flaherty, Sarah; Altermann, Eric; Hutkins, Robert

    2011-08-30

    Streptococcus thermophilus represents the only species among the streptococci that has "Generally Regarded As Safe" status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9.

  9. Curve Set Feature-Based Robust and Fast Pose Estimation Algorithm

    PubMed Central

    Hashimoto, Koichi

    2017-01-01

    Bin picking refers to picking the randomly-piled objects from a bin for industrial production purposes, and robotic bin picking is always used in automated assembly lines. In order to achieve a higher productivity, a fast and robust pose estimation algorithm is necessary to recognize and localize the randomly-piled parts. This paper proposes a pose estimation algorithm for bin picking tasks using point cloud data. A novel descriptor Curve Set Feature (CSF) is proposed to describe a point by the surface fluctuation around this point and is also capable of evaluating poses. The Rotation Match Feature (RMF) is proposed to match CSF efficiently. The matching process combines the idea of the matching in 2D space of origin Point Pair Feature (PPF) algorithm with nearest neighbor search. A voxel-based pose verification method is introduced to evaluate the poses and proved to be more than 30-times faster than the kd-tree-based verification method. Our algorithm is evaluated against a large number of synthetic and real scenes and proven to be robust to noise, able to detect metal parts, more accurately and more than 10-times faster than PPF and Oriented, Unique and Repeatable (OUR)-Clustered Viewpoint Feature Histogram (CVFH). PMID:28771216

  10. Far Ultraviolet Spectroscopy of Saturn's Icy Moon Rhea

    NASA Astrophysics Data System (ADS)

    Elowitz, Mark; Hendrix, Amanda; Mason, Nigel J.; Sivaraman, Bhalamurugan

    2018-01-01

    We present an analysis of spatially resolved, far-UV reflectance spectra of Saturn’s icy satellite Rhea, collected by the Cassini Ultraviolet Imaging Spectrograph (UVIS). In recent years ultraviolet spectroscopy has become an important tool for analysing the icy satellites of the outer solar system (1Hendrix & Hansen, 2008). Far-UV spectroscopy provides unique information about the molecular structure and electronic transitions of chemical species. Many molecules that are suspected to be present in the icy surfaces of moons in the outer solar system have broad absorption features due to electronic transitions that occur in the far-UV portion of the spectrum. The studies show that Rhea, like the other icy satellites of the Saturnian system are dominated by water-ice as evident by the 165-nm absorption edge, with minor UV absorbing contaminants. Far-UV spectra of several Saturnian icy satellites, including Rhea and Dione, show an unexplained weak absorption feature centered near 184 nm. To carry out the geochemical survey of Rhea’s surface, the UVIS observations are compared with vacuum-UV spectra of thin-ice samples measured in laboratory experiments. Thin film laboratory spectra of water-ice and other molecular compounds in the solid phase were collected at near-vacuum conditions and temperatures identical to those at the surface of Rhea. Comparison between the observed far-UV spectra of Rhea’s surface ice and modelled spectra based on laboratory absorption measurements of different non-water-ice compounds show that two possible chemical compounds could explain the 184-nm absorption feature. The two molecular compounds include simple chlorine molecules and hydrazine monohydrate. Attempts to explain the source(s) of these compounds on Rhea and the scientific implications of their possible discovery will be summarized.[1] Hendrix, A. R. & Hansen, C. J. (2008). Icarus, 193, pp. 323-333.

  11. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  12. Chemically Active, Porous 3D-Printed Thermoplastic Composites.

    PubMed

    Evans, Kent A; Kennedy, Zachary C; Arey, Bruce W; Christ, Josef F; Schaef, Herbert T; Nune, Satish K; Erikson, Rebecca L

    2018-05-02

    Metal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer. MOFs (zeolitic imidazolate framework; ZIF-8) were incorporated homogeneously into both poly(lactic acid) (PLA) and thermoplastic polyurethane (TPU) matrices at high loadings (up to 50% by mass), extruded into filaments, and utilized for on-demand access to 3D structures by fused deposition modeling. Printed, rigid PLA/MOF composites display a large surface area (SA avg = 531 m 2 g -1 ) and hierarchical pore features, whereas flexible TPU/MOF composites achieve a high surface area (SA avg = 706 m 2 g -1 ) by employing a simple method developed to expose obstructed micropores postprinting. Critically, embedded particles in the plastic matrices retain their ability to participate in chemical interactions characteristic of the parent framework. The fabrication strategies were extended to other MOFs and illustrate the potential of 3D printing to create unique porous and high surface area chemically active structures.

  13. Asian Monsoons: Variability, Predictability, and Sensitivity to External Forcing

    NASA Technical Reports Server (NTRS)

    Yang, Song; Lau, K.-M.

    1999-01-01

    In this study, we have addressed the interannual variations of Asian monsoons including both broad-scale and regional monsoon components. Particular attention is devoted to the identities of the South China Sea monsoon and Indian monsoon. We use CPC Merged Analysis of Precipitation and NCEP reanalyses to define regional monsoon indices and to depict the various monsoons. Parallel modeling studies have also been carried out to assess the role of boundary forcing and the potential predictability of the monsoons. Each monsoon is characterized by its unique features. While the South Asian monsoon represents a classical monsoon in which anomalous circulation is governed by Rossby-wave dynamics, the Southeast Asian monsoon symbolizes a "hybrid" monsoon that features multi-cellular meridional circulation over eastern Asia. The broad-scale Asian monsoon links to the basin-wide atmospheric circulation over the Indian-Pacific oceans. Both SST and land surface processes are important for determining the variations of all monsoons. For the broad-scale monsoon, SST anomalies are more important than land surface processes. For regional monsoons, however, land surface processes may become equally important. Both observation and model shows that the broad-scale monsoon is potentially more predictable than regional monsoons, and that the Southeast Asian monsoon may possess higher predictability than the South Asian monsoon.

  14. Simulating Extraterrestrial Ices in the Laboratory

    NASA Astrophysics Data System (ADS)

    Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.

    2017-12-01

    Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.

  15. Numerical simulation of helicopter engine plume in forward flight

    NASA Technical Reports Server (NTRS)

    Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.

    1994-01-01

    Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  17. Large area ultraviolet photodetector on surface modified Si:GaN layers

    NASA Astrophysics Data System (ADS)

    Anitha, R.; R., Ramesh; Loganathan, R.; Vavilapalli, Durga Sankar; Baskar, K.; Singh, Shubra

    2018-03-01

    Unique features of semiconductor based heterostructured photoelectric devices have drawn considerable attention in the recent past. In the present work, large area UV photodetector has been fabricated utilizing interesting Zinc oxide microstructures on etched Si:GaN layers. The surface of Si:GaN layer grown by metal organic chemical vapor deposition method on sapphire has been modified by chemical etching to control the microstructure. The photodetector exhibits response to Ultraviolet light only. Optimum etching of Si:GaN was required to exhibit higher responsivity (0.96 A/W) and detectivity (∼4.87 × 109 Jones), the two important parameters for a photodetector. Present method offers a tunable functionality of photodetector through modification of top layer microstructure. A comparison with state of art materials has also been presented.

  18. Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.

    PubMed

    Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun

    2012-02-28

    While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

  19. Micro- and nanofluidic systems in devices for biological, medical and environmental research

    NASA Astrophysics Data System (ADS)

    Evstrapov, A. A.

    2017-11-01

    The use of micro- and nanofluidic systems in modern analytical instruments allow you to implement a number of unique opportunities and achieve ultra-high measurement sensitivity. The possibility of manipulation of the individual biological objects (cells, bacteria, viruses, proteins, nucleic acids) in a liquid medium caused the development of devices on microchip platform for methods: chromatographic and electrophoretic analyzes; polymerase chain reaction; sequencing of nucleic acids; immunoassay; cytometric studies. Development of micro and nano fabrication technologies, materials science, surface chemistry, analytical chemistry, cell engineering have led to the creation of a unique systems such as “lab-on-a-chip”, “human-on-a-chip” and other. This article discusses common in microfluidics materials and methods of making functional structures. Examples of integration of nanoscale structures in microfluidic devices for the implementation of new features and improve the technical characteristics of devices and systems are shown.

  20. Combining unique properties of dendrimers and magnetic nanoparticles towards cancer theranostics.

    PubMed

    Chandra, Sudeshna; Nigam, Saumya; Bahadur, Dhirendra

    2014-01-01

    Magnetic nanoparticles (MNPs) are a well explored class of nanomaterials, known for their high magnetization and biocompatibility thus finding their way in several biomedical applications viz., drug delivery, magnetic resonance imaging contrast agent, immunoassay, detoxification of biological fluids and cell separation, biosensing and hyperthermia. On other hand, dendrimers are a class of hyperbranched, mostly symmetrical polymers that originate from a central core with repetitive branching units, called monomers, thus forming a globular structure. Due to their structural properties and controlled size, dendrimers have emerged as an attractive material for biomedical applications particularly as carriers for therapeutic cargo. Of late, researchers have started attempting to combine the unique features of dendrimer chemistry with the versatile magnetic nanoparticles to provide a facile platform for enhanced therapeutics and biomedical applications. This review intends to present the advances made towards fabrication of dendrimer based magnetic nanoparticles with varied surface architecture and their contribution towards theranostics, particularly for cancer.

  1. Detection of Papaverine for the Possible Identification of Illicit Opium Cultivation.

    PubMed

    Mirsafavi, Rustin Y; Lai, Kristine; Kline, Neal D; Fountain, Augustus W; Meinhart, Carl D; Moskovits, Martin

    2017-02-07

    Papaverine is a non-narcotic alkaloid found endemically and uniquely in the latex of the opium poppy. It is normally refined out of the opioids that the latex is typically collected for, hence its presence in a sample is strong prima facie evidence that the carrier from whom the sample was collected is implicated in the mass cultivation of poppies or the collection and handling of their latex. We describe an analysis technique combining surface-enhanced Raman spectroscopy (SERS) with microfluidics for detecting papaverine at low concentrations and show that its SERS spectrum has unique spectroscopic features that allows its detection at low concentrations among typical opioids. The analysis requires approximately 2.5 min from sample loading to results, which is compatible with field use. The weak acid properties of papaverine hydrochloride were investigated, and Raman bands belonging to the protonated and unprotonated forms of the isoquinoline ring of papaverine were identified.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying

    In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membranemore » using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.« less

  3. Aptamer-Based Methods for Detection of Circulating Tumor Cells and Their Potential for Personalized Diagnostics.

    PubMed

    Zamay, Anna S; Zamay, Galina S; Kolovskaya, Olga S; Zamay, Tatiana N; Berezovski, Maxim V

    2017-01-01

    Cancer diagnostics and treatment monitoring rely on sensing and counting of rare cells such as cancer circulating tumor cells (CTCs) in blood. Many analytical techniques have been developed to reliably detect and quantify CTCs using unique physical shape and size of tumor cells and/or distinctive patterns of cell surface biomarkers. Main problems of CTC bioanalysis are in the small number of cells that are present in the circulation and heterogeneity of CTCs. In this chapter, we describe recent progress towards the selection and application of synthetic DNA or RNA aptamers to capture and detect CTCs in blood. Antibody-based approaches for cell isolation and purification are limited because of an antibody's negative effect on cell viability and purity. Aptamers transform cell isolation technology, because they bind and release cells on-demand. The unique feature of anti-CTC aptamers is that the aptamers are selected for cell surface biomarkers in their native state, and conformation without previous knowledge of their biomarkers. Once aptamers are produced, they can be used to identify CTC biomarkers using mass spectrometry. The biomarkers and corresponding aptamers can be exploited to improve cancer diagnostics and therapies .

  4. Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.

    PubMed

    Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon

    2016-12-14

    We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.

  5. Micrometeoroid Impacts on the Hubble Sace Telescope Wide Field and Planetary Camera 2: Ion Beam Analysis of Subtle Impactor Traces

    NASA Technical Reports Server (NTRS)

    Grime, G. W.; Webb, R. P.; Jeynes, C.; Palitsin, V. V.; Colaux, J. L.; Kearsley, A. T.; Ross, D. K.; Anz-Meador, P.; Liou, J. C.; Opiela, J.; hide

    2014-01-01

    Recognition of origin for particles responsible for impact damage on spacecraft such as the Hubble Space Telescope (HST) relies upon postflight analysis of returned materials. A unique opportunity arose in 2009 with collection of the Wide Field and Planetary Camera 2 (WFPC2) from HST by shuttle mission STS-125. A preliminary optical survey confirmed that there were hundreds of impact features on the radiator surface. Following extensive discussion between NASA, ESA, NHM and IBC, a collaborative research program was initiated, employing scanning electron microscopy (SEM) and ion beam analysis (IBA) to determine the nature of the impacting grains. Even though some WFPC2 impact features are large, and easily seen without the use of a microscope, impactor remnants may be hard to find.

  6. Experimental and simulation study results for video landmark acquisition and tracking technology

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Tietz, J. C.; Thomas, H. M.; Lowrie, J. W.

    1979-01-01

    A synopsis of related Earth observation technology is provided and includes surface-feature tracking, generic feature classification and landmark identification, and navigation by multicolor correlation. With the advent of the Space Shuttle era, the NASA role takes on new significance in that one can now conceive of dedicated Earth resources missions. Space Shuttle also provides a unique test bed for evaluating advanced sensor technology like that described in this report. As a result of this type of rationale, the FILE OSTA-1 Shuttle experiment, which grew out of the Video Landmark Acquisition and Tracking (VILAT) activity, was developed and is described in this report along with the relevant tradeoffs. In addition, a synopsis of FILE computer simulation activity is included. This synopsis relates to future required capabilities such as landmark registration, reacquisition, and tracking.

  7. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time provides significant opportunities in cost savings in both equipment protection and waste minimization.

  8. Structure and engineering of celluloses.

    PubMed

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-02-01

    Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose-YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by -26 mV and -42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  10. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  11. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  12. Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces – A Novel Method of Enhancing Flow-Resistant Cell Adhesion

    PubMed Central

    Tran, Phat L.; Gamboa, Jessica R.; McCracken, Katherine E.; Riley, Mark R.

    2014-01-01

    Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear. PMID:23225491

  13. Photonics surface waves on metamaterials interfaces.

    PubMed

    Takayama, Osamu; Bogdanov, Andrey; Lavrinenko, Andrei V

    2017-09-12

    A surface wave (SW) in optics is a light wave, which is supported at an interface of two dissimilar media and propagates along the interface with its field amplitude exponentially decaying away from the boundary. The research on surface waves has been flourishing in last few decades thanks to their unique properties of surface sensitivity and field localization. These features have resulted in applications in nano-guiding, sensing, light-trapping and imaging based on the near-field techniques, contributing to the establishment of the nanophotonics as a field of research. Up to present, a wide variety of surface waves has been investigated in numerous material and structure settings. This paper reviews the recent progress and development in the physics of SWs localized at metamaterial interfaces, as well as bulk media in order to provide broader perspectives on optical surface waves in general. For each type of the surface waves, we discuss material and structural platforms. We mainly focus on experimental realizations in the visible and near-infrared wavelength ranges. We also address existing and potential application of SWs in chemical and biological sensing, and experimental excitation and characterization methods. © 2017 IOP Publishing Ltd.

  14. Systematic validation and atomic force microscopy of non-covalent short oligonucleotide barcode microarrays.

    PubMed

    Cook, Michael A; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-02-06

    Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.

  15. A catheter friction tester using balance sensor: Combined evaluation of the effects of mechanical properties of tubing materials and surface coatings.

    PubMed

    Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan

    2018-04-24

    In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Metal oxide nanosensors using polymeric membranes, enzymes and antibody receptors as ion and molecular recognition elements.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-05-16

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices.

  17. Development of automated optical verification technologies for control systems

    NASA Astrophysics Data System (ADS)

    Volegov, Peter L.; Podgornov, Vladimir A.

    1999-08-01

    The report considers optical techniques for automated verification of object's identity designed for control system of nuclear objects. There are presented results of experimental researches and results of development of pattern recognition techniques carried out under the ISTC project number 772 with the purpose of identification of unique feature of surface structure of a controlled object and effects of its random treatment. Possibilities of industrial introduction of the developed technologies in frames of USA and Russia laboratories' lab-to-lab cooperation, including development of up-to-date systems for nuclear material control and accounting are examined.

  18. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  19. Microstructural and Compositional Features of the Fibrous and Hyaline Cartilage on the Medial Tibial Plateau Imply a Unique Role for the Hopping Locomotion of Kangaroo

    PubMed Central

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E.; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos. PMID:24058543

  20. Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo.

    PubMed

    He, Bo; Wu, Jian Ping; Xu, Jiake; Day, Robert E; Kirk, Thomas Brett

    2013-01-01

    Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.

  1. Identification Of Minangkabau Landscape Characters

    NASA Astrophysics Data System (ADS)

    Asrina, M.; Gunawan, A.; Aris, Munandar

    2017-10-01

    Minangkabau is one of cultures in indonesia which occupies landscape intact. Landscape of Minangkabau have a very close relationship with the culture of the people. Uniqueness of Minangkabau culture and landscape forming an inseparable characterunity. The landscape is necessarily identified to know the inherent landscape characters. The objective of this study was to identify the character of the Minangkabau landscape characterizes its uniqueness. The study was conducted by using descriptive method comprised literature review and field observasion. Observed the landscape characters comprised two main features, they were major and minor features. Indetification of the features was conducted in two original areas (darek) of the Minangkabau traditional society. The research results showed that major features or natural features of the landscape were predominantly landform, landcover, and hidrology. All luhak (districts) of Minangkabau showed similar main features such as hill, canyon, lake, valley, and forest. The existence of natural features such as hills, canyon and valleys characterizes the nature of minangkabau landscape. Minor features formed by Minangkabau cultural society were agricultural land and settlement. Rumah gadang (big house) is one of famous minor features characterizes the Minangkabau culture. In addition, several historical artefacts of building and others structure may strengthen uniqueness of the Minangkabau landscape character, such as The royal palace, inscription, and tunnels.

  2. Methods, systems and devices for detecting threatening objects and for classifying magnetic data

    DOEpatents

    Kotter, Dale K [Shelley, ID; Roybal, Lyle G [Idaho Falls, ID; Rohrbaugh, David T [Idaho Falls, ID; Spencer, David F [Idaho Falls, ID

    2012-01-24

    A method for detecting threatening objects in a security screening system. The method includes a step of classifying unique features of magnetic data as representing a threatening object. Another step includes acquiring magnetic data. Another step includes determining if the acquired magnetic data comprises a unique feature.

  3. Family-based risk factors for non-suicidal self-injury: Considering influences of maltreatment, adverse family-life experiences, and parent-child relational risk.

    PubMed

    Martin, Jodi; Bureau, Jean-François; Yurkowski, Kim; Fournier, Tania Renaud; Lafontaine, Marie-France; Cloutier, Paula

    2016-06-01

    The current investigation addressed the potential for unique influences of perceived childhood maltreatment, adverse family-life events, and parent-child relational trauma on the lifetime occurrence and addictive features of non-suicidal self-injury (NSSI). Participants included 957 undergraduate students (747 females; M = 20.14 years, SD = 3.88) who completed online questionnaires regarding the key variables under study. Although self-injuring youth reported more experiences with each family-based risk factor, different patterns of association were found when lifetime engagement in NSSI or its addictive features were under study. Perceived parent-child relational trauma was uniquely linked with NSSI behavior after accounting for perceived childhood maltreatment; adverse family-life events had an additional unique association. In contrast, perceived paternal maltreatment was uniquely related with NSSI's addictive features. Findings underline the importance of studying inter-related family-based risk factors of NSSI simultaneously for a comprehensive understanding of familial correlates of NSSI behavior and its underlying features. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  4. Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior

    PubMed Central

    Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.

    2016-01-01

    The rat vibrissal system is an important model for the study of somatosensation, but the small size and rapid speed of the vibrissae have precluded measuring precise vibrissal-object contact sequences during behavior. We used a laser light sheet to quantify, with 1 ms resolution, the spatiotemporal structure of whisker-surface contact as five naïve rats freely explored a flat, vertical glass wall. Consistent with previous work, we show that the whisk cycle cannot be uniquely defined because different whiskers often move asynchronously, but that quasi-periodic (~8 Hz) variations in head velocity represent a distinct temporal feature on which to lock analysis. Around times of minimum head velocity, whiskers protract to make contact with the surface, and then sustain contact with the surface for extended durations (~25–60 ms) before detaching. This behavior results in discrete temporal windows in which large numbers of whiskers are in contact with the surface. These “sustained collective contact intervals” (SCCIs) were observed on 100% of whisks for all five rats. The overall spatiotemporal structure of the SCCIs can be qualitatively predicted based on information about head pose and the average whisk cycle. In contrast, precise sequences of whisker-surface contact depend on detailed head and whisker kinematics. Sequences of vibrissal contact were highly variable, equally likely to propagate in all directions across the array. Somewhat more structure was found when sequences of contacts were examined on a row-wise basis. In striking contrast to the high variability associated with contact sequences, a consistent feature of each SCCI was that the contact locations of the whiskers on the glass converged and moved more slowly on the sheet. Together, these findings lead us to propose that the rat uses a strategy of “windowed sampling” to extract an object's spatial features: specifically, the rat spatially integrates quasi-static mechanical signals across whiskers during the period of sustained contact, resembling an “enclosing” haptic procedure. PMID:26778990

  5. Multisensor Fusion for Change Detection

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B.

    2005-12-01

    Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach with detecting surface elevation changes on the Byrd Glacier, Antarctica, with aerial imagery from 1980s and ICESat laser altimetry data from 2003-05. Change detection from such disparate data sets is an intricate fusion problem, beginning with sensor alignment, and on to reasoning with spatial information as to where changes occurred and to what extent.

  6. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2014-02-01

    Watershed-scale modeling can be a valuable tool to aid in quantification of water quality and yield; however, several challenges remain. In many watersheds, it is difficult to adequately quantify hydrologic partitioning. Data scarcity is prevalent, accuracy of spatially distributed meteorology is difficult to quantify, forest encroachment and land use issues are common, and surface water and groundwater abstractions substantially modify watershed-based processes. Our objective is to assess the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall-runoff processes in complex mountainous terrain. To accomplish this, we developed a unique quality-control, gap-filling algorithm for interpolation of high-frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. The interdisciplinary model was calibrated to a unique combination of statistical, hydrologic, and plant growth metrics. Our results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. The addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. While this study shows the challenges of applying the SWAT model to complex terrain and extreme environments; by incorporating anthropogenic features into modeling scenarios, we can enhance our understanding of the hydroecological impact.

  7. The genome sequence of Leishmania (Leishmania) amazonensis: functional annotation and extended analysis of gene models.

    PubMed

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; Carmona e Ferreira, Renata; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-12-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3'-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.

  8. The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

    PubMed Central

    Real, Fernando; Vidal, Ramon Oliveira; Carazzolle, Marcelo Falsarella; Mondego, Jorge Maurício Costa; Costa, Gustavo Gilson Lacerda; Herai, Roberto Hirochi; Würtele, Martin; de Carvalho, Lucas Miguel; e Ferreira, Renata Carmona; Mortara, Renato Arruda; Barbiéri, Clara Lucia; Mieczkowski, Piotr; da Silveira, José Franco; Briones, Marcelo Ribeiro da Silva; Pereira, Gonçalo Amarante Guimarães; Bahia, Diana

    2013-01-01

    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. PMID:23857904

  9. Evaluation of the automatic optical authentication technologies for control systems of objects

    NASA Astrophysics Data System (ADS)

    Averkin, Vladimir V.; Volegov, Peter L.; Podgornov, Vladimir A.

    2000-03-01

    The report considers the evaluation of the automatic optical authentication technologies for the automated integrated system of physical protection, control and accounting of nuclear materials at RFNC-VNIITF, and for providing of the nuclear materials nonproliferation regime. The report presents the nuclear object authentication objectives and strategies, the methodology of the automatic optical authentication and results of the development of pattern recognition techniques carried out under the ISTC project #772 with the purpose of identification of unique features of surface structure of a controlled object and effects of its random treatment. The current decision of following functional control tasks is described in the report: confirmation of the item authenticity (proof of the absence of its substitution by an item of similar shape), control over unforeseen change of item state, control over unauthorized access to the item. The most important distinctive feature of all techniques is not comprehensive description of some properties of controlled item, but unique identification of item using minimum necessary set of parameters, properly comprising identification attribute of the item. The main emphasis in the technical approach is made on the development of rather simple technological methods for the first time intended for use in the systems of physical protection, control and accounting of nuclear materials. The developed authentication devices and system are described.

  10. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  11. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  12. Biochemical Regulatory Features of Activation-Induced Cytidine Deaminase Remain Conserved from Lampreys to Humans

    PubMed Central

    King, Justin J.; Amemiya, Chris T.; Hsu, Ellen

    2017-01-01

    ABSTRACT Activation-induced cytidine deaminase (AID) is a genome-mutating enzyme that initiates class switch recombination and somatic hypermutation of antibodies in jawed vertebrates. We previously described the biochemical properties of human AID and found that it is an unusual enzyme in that it exhibits binding affinities for its substrate DNA and catalytic rates several orders of magnitude higher and lower, respectively, than a typical enzyme. Recently, we solved the functional structure of AID and demonstrated that these properties are due to nonspecific DNA binding on its surface, along with a catalytic pocket that predominantly assumes a closed conformation. Here we investigated the biochemical properties of AID from a sea lamprey, nurse shark, tetraodon, and coelacanth: representative species chosen because their lineages diverged at the earliest critical junctures in evolution of adaptive immunity. We found that these earliest-diverged AID orthologs are active cytidine deaminases that exhibit unique substrate specificities and thermosensitivities. Significant amino acid sequence divergence among these AID orthologs is predicted to manifest as notable structural differences. However, despite major differences in sequence specificities, thermosensitivities, and structural features, all orthologs share the unusually high DNA binding affinities and low catalytic rates. This absolute conservation is evidence for biological significance of these unique biochemical properties. PMID:28716949

  13. The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.

    2017-11-01

    The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.

  14. Dust-Tolerant Intelligent Electrical Connection System

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Dokos, Adam; Perotti, Jose; Calle, Carlos; Mueller, Robert; Bastin, Gary; Carlson, Jeffrey; Townsend, Ivan, III; Immer, Chirstopher; Medelius, Pedro

    2012-01-01

    Faults in wiring systems are a serious concern for the aerospace and aeronautic (commercial, military, and civilian) industries. Circuit failures and vehicle accidents have occurred and have been attributed to faulty wiring created by open and/or short circuits. Often, such circuit failures occur due to vibration during vehicle launch or operation. Therefore, developing non-intrusive fault-tolerant techniques is necessary to detect circuit faults and automatically route signals through alternate recovery paths while the vehicle or lunar surface systems equipment is in operation. Electrical connector concepts combining dust mitigation strategies and cable diagnostic technologies have significant application for lunar and Martian surface systems, as well as for dusty terrestrial applications. The dust-tolerant intelligent electrical connection system has several novel concepts and unique features. It combines intelligent cable diagnostics (health monitoring) and automatic circuit routing capabilities into a dust-tolerant electrical umbilical. It retrofits a clamshell protective dust cover to an existing connector for reduced gravity operation, and features a universal connector housing with three styles of dust protection: inverted cap, rotating cap, and clamshell. It uses a self-healing membrane as a dust barrier for electrical connectors where required, while also combining lotus leaf technology for applications where a dust-resistant coating providing low surface tension is needed to mitigate Van der Waals forces, thereby disallowing dust particle adhesion to connector surfaces. It also permits using a ruggedized iris mechanism with an embedded electrodynamic dust shield as a dust barrier for electrical connectors where required.

  15. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral Surface Materials Map of Quadrangle 3268, Khayr Kot (521) and Urgun (522) Quadrangles, Afghanistan, Showing Iron-bearing Minerals and Other Materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) quadrangles, Afghanistan, showing iron-bearing minerals and other material

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Total knee replacement with natural rollback.

    PubMed

    Wachowski, Martin Michael; Walde, Tim Alexander; Balcarek, Peter; Schüttrumpf, Jan Philipp; Frosch, Stephan; Stauffenberg, Caspar; Frosch, Karl-Heinz; Fiedler, Christoph; Fanghänel, Jochen; Kubein-Meesenburg, Dietmar; Nägerl, Hans

    2012-03-20

    A novel class of total knee replacement (AEQUOS G1) is introduced which features a unique design of the articular surfaces. Based on the anatomy of the human knee and differing from all other prostheses, the lateral tibial "plateau" is convexly curved and the lateral femoral condyle is posteriorly shifted in relation to the medial femoral condyle. Under compressive forces the configuration of the articular surfaces of human knees constrains the relative motion of femur and tibia in flexion/extension. This constrained motion is equivalent to that of a four-bar linkage, the virtual 4 pivots of which are given by the centres of curvature of the articulating surfaces. The dimensions of the four-bar linkage were optimized to the effect that constrained motion of the total knee replacement (TKR) follows the flexional motion of the human knee in close approximation, particularly during gait. In pilot studies lateral X-ray pictures have demonstrated that AEQUOS G1 can feature the natural rollback in vivo. Rollback relieves the load of the patello-femoral joint and minimizes retropatellar pressure. This mechanism should reduce the prevalence of anterior knee pain. The articulating surfaces roll predominantly in the stance phase. Consequently sliding friction is replaced by the lesser rolling friction under load. Producing rollback should minimize material wear due to friction and maximize the lifetime of the prosthesis. To definitely confirm these theses one has to wait for the long term results. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. In situ template synthesis of hollow nanospheres assembled from NiCo2S4@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2017-05-10

    Transition-metal sulfide hollow nanostructures have received intensive attention in energy-related applications due to their unique structural features and high electrochemical activities. Here, a well-designed composite of NiCo 2 S 4 @C is successfully fabricated using a facile in situ template removal method. The obtained composite shows unique microstructures of hollow nanospheres (∼650 nm in diameter) assembled from ultrathin NiCo 2 S 4 @C nanosheets, in which numerous scattered NiCo 2 S 4 nanoparticles are embedded in ultrathin carbon nanosheets, exhibiting mesoporous features with a high surface area of 247.25 m 2 g -1 . When used as anode materials for LIBs, NiCo 2 S 4 @C hollow nanospheres exhibit a high reversible capacity of 1592 mA h g -1 at a current density of 500 mA g -1 , enhanced cycling performance maintaining a capacity of 1178 mA h g -1 after 200 cycles, and a remarkable rate capability. Meanwhile, the hollow nanospheres display excellent catalytic activity as ORR catalysts with a four-electron pathway and superior durability to that of commercial Pt/C catalysts. Their excellent lithium storage and ORR catalysis performance can be attributed to the rational incorporation of high-activity NiCo 2 S 4 and ultrathin carbon nanosheets, as well as unique hollow microstructures, which offer efficient electron/ion transport, an enhanced electroactive material/electrolyte contact area, numerous active sites, and excellent structural stability.

  19. Saddle-like topological surface states on the T T'X family of compounds (T , T' = Transition metal, X =Si , Ge)

    NASA Astrophysics Data System (ADS)

    Singh, Bahadur; Zhou, Xiaoting; Lin, Hsin; Bansil, Arun

    2018-02-01

    Topological nodal-line semimetals are exotic conductors that host symmetry-protected conducting nodal lines in their bulk electronic spectrum and nontrivial drumhead states on the surface. Based on first-principles calculations and an effective model analysis, we identify the presence of topological nodal-line semimetal states in the low crystalline symmetric T T'X family of compounds (T ,T' = transition metal, X = Si or Ge) in the absence of spin-orbit coupling (SOC). Taking ZrPtGe as an exemplar system, we show that owing to small lattice symmetry this material harbors a single nodal line on the ky=0 plane with large energy dispersion and unique drumhead surface state with a saddlelike energy dispersion. When the SOC is included, the nodal line gaps out and the system transitions to a strong topological insulator state with Z2=(1 ;000 ) . The topological surface state evolves from the drumhead surface state via the sharing of its saddlelike energy dispersion within the bulk energy gap. These features differ remarkably from those of the currently known topological surface states in topological insulators such as Bi2Se3 with Dirac-cone-like energy dispersions.

  20. Modelling and analysis of flux surface mapping experiments on W7-X

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Otte, Matthias; Bozhenkov, Sergey; Sunn Pedersen, Thomas; Bräuer, Torsten; Gates, David; Neilson, Hutch; W7-X Team

    2015-11-01

    The measurement and compensation of error fields in W7-X will be key to the device achieving high beta steady state operations. Flux surface mapping utilizes the vacuum magnetic flux surfaces, a feature unique to stellarators and heliotrons, to allow direct measurement of magnetic topology, and thereby allows a highly accurate determination of remnant magnetic field errors. As will be reported separately at this meeting, the first measurements confirming the existence of nested flux surfaces in W7-X have been made. In this presentation, a synthetic diagnostic for the flux surface mapping diagnostic is presented. It utilizes Poincaré traces to construct an image of the flux surface consistent with the measured camera geometry, fluorescent rod sweep plane, and emitter beam position. Forward modeling of the high-iota configuration will be presented demonstrating an ability to measure the intrinsic error field using the U.S. supplied trim coil system on W7-X, and a first experimental assessment of error fields in W7-X will be presented. This work has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy.

  1. Geometry- and Length Scale-Dependent Deformation and Recovery on Micro- and Nanopatterned Shape Memory Polymer Surfaces

    PubMed Central

    Lee, Wei Li; Low, Hong Yee

    2016-01-01

    Micro- and nanoscale surface textures, when optimally designed, present a unique approach to improve surface functionalities. Coupling surface texture with shape memory polymers may generate reversibly tuneable surface properties. A shape memory polyetherurethane is used to prepare various surface textures including 2 μm- and 200 nm-gratings, 250 nm-pillars and 200 nm-holes. The mechanical deformation via stretching and recovery of the surface texture are investigated as a function of length scales and shapes. Results show the 200 nm-grating exhibiting more deformation than 2 μm-grating. Grating imparts anisotropic and surface area-to-volume effects, causing different degree of deformation between gratings and pillars under the same applied macroscopic strain. Full distribution of stress within the film causes the holes to deform more substantially than the pillars. In the recovery study, unlike a nearly complete recovery for the gratings after 10 transformation cycles, the high contribution of surface energy impedes the recovery of holes and pillars. The surface textures are shown to perform a switchable wetting function. This study provides insights into how geometric features of shape memory surface patterns can be designed to modulate the shape programming and recovery, and how the control of reversibly deformable surface textures can be applied to transfer microdroplets. PMID:27026290

  2. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  3. Characterization of barium strontium titanate thin films on sapphire substrate prepared via RF magnetron sputtering system

    NASA Astrophysics Data System (ADS)

    Jamaluddin, F. W.; Khalid, M. F. Abdul; Mamat, M. H.; Zoolfakar, A. S.; Zulkefle, M. A.; Rusop, M.; Awang, Z.

    2018-05-01

    Barium Strontium Titanate (Ba0.5Sr0.5TiO3) is known to have a high dielectric constant and low loss at microwave frequencies. These unique features are useful for many electronic applications. This paper focuses on material characterization of BST thin films deposited on sapphire substrate by RF magnetron sputtering system. The sample was then annealed at 900 °C for two hours. Several methods were used to characterize the structural properties of the material such as X-ray diffraction (XRD) and atomic force microscopy (AFM). Field emission scanning electron microscopy (FESEM) was used to analyze the surface morphology of the thin film. From the results obtained, it can be shown that the annealed sample had a rougher surface and better crystallinity as compared to as-deposited sample.

  4. System for precise position registration

    DOEpatents

    Sundelin, Ronald M.; Wang, Tong

    2005-11-22

    An apparatus for enabling accurate retaining of a precise position, such as for reacquisition of a microscopic spot or feature having a size of 0.1 mm or less, on broad-area surfaces after non-in situ processing. The apparatus includes a sample and sample holder. The sample holder includes a base and three support posts. Two of the support posts interact with a cylindrical hole and a U-groove in the sample to establish location of one point on the sample and a line through the sample. Simultaneous contact of the third support post with the surface of the sample defines a plane through the sample. All points of the sample are therefore uniquely defined by the sample and sample holder. The position registration system of the current invention provides accuracy, as measured in x, y repeatability, of at least 140 .mu.m.

  5. The application of thermodynamic and spectroscopic techniques to adhesion in the polyimide/Ti 6-4 and polyphenylquinoxaline/Ti 6-4 systems

    NASA Technical Reports Server (NTRS)

    Dias, S.; Wightman, J. P.

    1984-01-01

    The results of calorimetric measurements of Ti adherend surfaces are presented. The measurements were carried out after several chemical pretreatments and after fracture of several lap shear samples aged at high temperature. The exact composition of the Ti samples was Ti(6 percent Al-4 percent V). The adhesives used were polyimides and polyphenylquinoxalines (PPQ). Each chemical pretreatment was accompanied by a unique spectroscopic feature which was characterized by XPS, SEM, and specular reflectance infrared spectroscopy. The energetics of the interaction between primer solutions and the Ti adherend were evaluated by microcalorimetry. Changes in the structure of the surface oxide layer upon heating of the adherend were deduced from immersion temperatures of the PI and PPQ solutions. The XPS and SEM data are given is a table.

  6. Imaging with New Classic and Vision at the NPOI

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders

    2018-04-01

    The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.

  7. Electroreduction of carbon monoxide over a copper nanocube catalyst: Surface structure and pH dependence on selectivity

    DOE PAGES

    Roberts, F. Sloan; Kuhl, Kendra P.; Nilsson, Anders

    2016-02-16

    The activity and selectivity for CO 2/CO reduction over copper electrodes is strongly dependent on the local surface structure of the catalyst and the pH of the electrolyte. Here we investigate a unique, copper nanocube surface (CuCube) as a CO reduction electrode under neutral and basic pH, using online electrochemical mass spectroscopy (OLEMS) to determine the onset potentials and relative intensities of methane and ethylene production. To relate the unique selectivity to the surface structure, the CuCube surface reactivity is compared to polycrystalline copper and three single crystals under the same reaction conditions. Here, we find that the high selectivitymore » for ethylene over the CuCube surface is most comparable to the Cu(100) surface, which has the cubic unit cell. However, the suppression of methane production over CuCube is unique to that particular surface. Basic pH is also shown to enhance ethylene selectivity on all surfaces, again with the CuCube surface being unique.« less

  8. Desktop Nanofabrication with Massively Multiplexed Beam Pen Lithography

    PubMed Central

    Liao, Xing; Brown, Keith A.; Schmucker, Abrin L.; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A.

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimeter-scale surfaces has been a long standing goal of the nanotechnology community. If such a ‘desktop nanofab’ could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared to the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high throughput nano- to macroscale photochemistry with relevance to biology and medicine. PMID:23868336

  9. 'Faultless' ignorance: strengths and limitations of epistemic definitions of confabulation.

    PubMed

    Bortolotti, Lisa; Cox, Rochelle E

    2009-12-01

    There is no satisfactory account for the general phenomenon of confabulation, for the following reasons: (1) confabulation occurs in a number of pathological and non-pathological conditions; (2) impairments giving rise to confabulation are likely to have different neural bases; and (3) there is no unique theory explaining the aetiology of confabulations. An epistemic approach to defining confabulation could solve all of these issues, by focusing on the surface features of the phenomenon. However, existing epistemic accounts are unable to offer sufficient conditions for confabulation and tend to emphasise only its epistemic disadvantages. In this paper, we argue that a satisfactory epistemic account of confabulation should also acknowledge those features which are (potentially) epistemically advantageous. For example, confabulation may allow subjects to exercise some control over their own cognitive life which is instrumental to the construction or preservation of their sense of self.

  10. Aerial Explorers

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Pisanich, Greg; Ippolito, Corey

    2005-01-01

    This paper presents recent results from a mission architecture study of planetary aerial explorers. In this study, several mission scenarios were developed in simulation and evaluated on success in meeting mission goals. This aerial explorer mission architecture study is unique in comparison with previous Mars airplane research activities. The study examines how aerial vehicles can find and gain access to otherwise inaccessible terrain features of interest. The aerial explorer also engages in a high-level of (indirect) surface interaction, despite not typically being able to takeoff and land or to engage in multiple flights/sorties. To achieve this goal, a new mission paradigm is proposed: aerial explorers should be considered as an additional element in the overall Entry, Descent, Landing System (EDLS) process. Further, aerial vehicles should be considered primarily as carrier/utility platforms whose purpose is to deliver air-deployed sensors and robotic devices, or symbiotes, to those high-value terrain features of interest.

  11. Geologic Mapping of the Nili Fossae Region of Mars: MTM Quadrangles 20287, 20282, 25287, 25282, 30287, and 30282

    NASA Technical Reports Server (NTRS)

    Bleamaster, Leslie F., III; Crown, David A.

    2010-01-01

    Geologic mapping studies at the 1:1M-scale are being used to assess geologic materials and processes that shape the highlands along the Arabia Terra dichotomy boundary. In particular, this mapping will provide a regional context and evaluate the distribution, stratigraphic position, and potential lateral continuity of compositionally distinct outcrops identified by spectral instruments currently in orbit (i.e., CRISM and OMEGA). Placing these landscapes, their material units, structural features, and unique compositional outcrops into spatial and temporal context with the remainder of the Arabia Terra dichotomy boundary may provide constraints on: 1) origin of the dichotomy boundary, 2) paleoenvironments and climate conditions, and 3) various fluvial-nival modification processes related to past and present volatile distribution and their putative reservoirs (aquifers, lakes and oceans, surface and ground ice) and the influences of nearby volcanic and tectonic features on hydrologic processes, including hydrothermal alteration, across the region.

  12. Desktop nanofabrication with massively multiplexed beam pen lithography.

    PubMed

    Liao, Xing; Brown, Keith A; Schmucker, Abrin L; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A

    2013-01-01

    The development of a lithographic method that can rapidly define nanoscale features across centimetre-scale surfaces has been a long-standing goal for the nanotechnology community. If such a 'desktop nanofab' could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimetre areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared with the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high-throughput nano- to macroscale photochemistry with relevance to biology and medicine.

  13. Comparative genomics of Paracoccus sp. SM22M-07 isolated from coral mucus: insights into bacteria-host interactions.

    PubMed

    Carlos, Camila; Pereira, Letícia Bianca; Ottoboni, Laura Maria Mariscal

    2017-06-01

    One of the main goals of coral microbiology is to understand the ways in which coral-bacteria associations are established and maintained. This work describes the sequencing of the genome of Paracoccus sp. SM22M-07 isolated from the mucus of the endemic Brazilian coral species Mussismilia hispida. Comparative analysis was used to identify unique genomic features of SM22M-07 that might be involved in its adaptation to the marine ecosystem and the nutrient-rich environment provided by coral mucus, as well as in the establishment and strengthening of the interaction with the host. These features included genes related to the type IV protein secretion system, erythritol catabolism, and succinoglycan biosynthesis. We experimentally confirmed the production of succinoglycan by Paracoccus sp. SM22M-07 and we hypothesize that it may be involved in the association of the bacterium with coral surfaces.

  14. National Hydrography Dataset (NHD)

    USGS Publications Warehouse

    ,

    2001-01-01

    The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.

  15. Nanotechnology: toxicologic pathology.

    PubMed

    Hubbs, Ann F; Sargent, Linda M; Porter, Dale W; Sager, Tina M; Chen, Bean T; Frazer, David G; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R; Reynolds, Steven H; Battelli, Lori A; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L; Mercer, Robert R

    2013-02-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies.

  16. Nanotechnology: Toxicologic Pathology

    PubMed Central

    Hubbs, Ann F.; Sargent, Linda M.; Porter, Dale W.; Sager, Tina M.; Chen, Bean T.; Frazer, David G.; Castranova, Vincent; Sriram, Krishnan; Nurkiewicz, Timothy R.; Reynolds, Steven H.; Battelli, Lori A.; Schwegler-Berry, Diane; McKinney, Walter; Fluharty, Kara L.; Mercer, Robert R.

    2015-01-01

    Nanotechnology involves technology, science, and engineering in dimensions less than 100 nm. A virtually infinite number of potential nanoscale products can be produced from many different molecules and their combinations. The exponentially increasing number of nanoscale products will solve critical needs in engineering, science, and medicine. However, the virtually infinite number of potential nanotechnology products is a challenge for toxicologic pathologists. Because of their size, nanoparticulates can have therapeutic and toxic effects distinct from micron-sized particulates of the same composition. In the nanoscale, distinct intercellular and intracellular translocation pathways may provide a different distribution than that obtained by micron-sized particulates. Nanoparticulates interact with subcellular structures including microtubules, actin filaments, centrosomes, and chromatin; interactions that may be facilitated in the nanoscale. Features that distinguish nanoparticulates from fine particulates include increased surface area per unit mass and quantum effects. In addition, some nanotechnology products, including the fullerenes, have a novel and reactive surface. Augmented microscopic procedures including enhanced dark-field imaging, immunofluorescence, field-emission scanning electron microscopy, transmission electron microscopy, and confocal microscopy are useful when evaluating nanoparticulate toxicologic pathology. Thus, the pathology assessment is facilitated by understanding the unique features at the nanoscale and the tools that can assist in evaluating nanotoxicology studies. PMID:23389777

  17. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  18. The Density Code for the Development of a Vaccine?

    PubMed Central

    Cheng, Wei

    2016-01-01

    The development of prophylactic vaccines remains largely empirical in nature and rarely have general rules been applied in the strategic decision and the formulation of a viral vaccine. Currently there are a total of 15 virus agents from 12 unique virus families with vaccines licensed by the US Food and Drug Administration. Extensive structural information on these viral particles and potential mechanisms of protection are available for the majority of these virus pathogens and their respective vaccines. Here I review the quantitative features of these viral surface antigens in relation to the molecular mechanisms of B cell activation, and point out a potential correlation between the density of immunogenic proteins displayed on the surface of the vaccine antigen carrier and the success of a vaccine. These features help us understand the humoral immunity induced by viral vaccines on a quantitative ground and re-emphasize the importance of antigen density on the activation of the immune system. Although the detailed mechanisms behind this phenomenon remain to be explored, it implies that both the size of antigen carriers and the density of immunogenic proteins displayed on these carriers are important parameters that may need to be optimized for the formulation of a vaccine. PMID:27649885

  19. UV Reflectance of Jupiter's Moon Europa and Asteroid (16) Psyche

    NASA Astrophysics Data System (ADS)

    Becker, T. M.; Retherford, K. D.; Roth, L.; Hendrix, A.; McGrath, M. A.; Cunningham, N.; Feaga, L. M.; Saur, J.; Elkins-Tanton, L. T.; Walhund, J. E.; Molyneux, P.

    2017-12-01

    Surface reflectance observations of solar system objects in the UV are not only complimentary to longer wavelength observations for identifying surface composition, but can also reveal new and meaningful information about the surfaces of those bodies. On Europa, far-UV (FUV) spectral observations made by the Hubble Space Telescope (HST) show that the surface lacks a strong water ice absorption edge near 165 nm, which is intriguing because such a band has been detected on most icy satellites. This may suggest that radiolytic processing by Jupiter's magnetosphere has altered the surface, causing absorption at wavelengths longward of the H2O edge, masking this feature. Additionally, the FUV spectra are blue (increasing albedo with shorter wavelengths), and regions that are observed to be dark in the visible appear bright in the FUV. This spectral inversion, also observed on the Moon and some asteroids, may provide insight into the properties of the surface material and how they are processed.We also explore the UV reflectance spectra of the main belt asteroid (16) Psyche. This asteroid is believed to be the metallic remnant core of a differentiated asteroid, stripped of its mantle through collisions. However, there is speculation that the asteroid could have formed as-is from highly reduced metal-rich material near the Sun early in the formation of the solar system. Further, spectral observations in the infrared have revealed pyroxene and hydroxyl on the asteroid's surface, complicating the interpretation that (16) Psyche is a pure metallic object. Laboratory studies indicate that there are diagnostic spectral features in the UV that could be useful for determining the surface composition. We obtained HST observations of Psyche from 160 - 300 nm. Preliminary results show a featureless, red-sloped spectrum, inconsistent with significant amounts of pyroxene on the surface. We will present the spectra of Europa and the asteroid (16) Psyche and discuss the unique details unveiled by studies of these objects in the UV.

  20. Decomposition and organic matter quality in continental peatlands: The ghost of permafrost past

    USGS Publications Warehouse

    Turetsky, M.R.

    2004-01-01

    Permafrost patterning in boreal peatlands contributes to landscape heterogeneity, as peat plateaus, palsas, and localized permafrost mounds are interspersed among unfrozen bogs and fens. The degradation of localized permafrost in peatlands alters local topography, hydrology, thermal regimes, and plant communities, and creates unique peatland features called "internal lawns." I used laboratory incubations to quantify carbon dioxide (CO 2) production in peat formed under different permafrost regimes (with permafrost, without permafrost, melted permafrost), and explored the relationships among proximate organic matter fractions, nutrient concentrations, and decomposition. Peat within each feature (internal lawn, bog, permafrost mound) is more chemically similar than peat collected within the same province (Alberta, Saskatchewan) or within depth intervals (surface, deep). Internal lawn peat produces more CO2 than the other peatland types. Across peatland features, acid-insoluble material (AIM) and AIM/nitrogen are significant predictors of decomposition. However, within each peatland feature, soluble proximate fractions are better predictors of CO2 production. Permafrost stability in peatlands influences plant and soil environments, which control litter inputs, organic matter quality, and decomposition rates. Spatial patterns of permafrost, as well as ecosystem processes within various permafrost features, should be considered when assessing the fate of soil carbon in northern ecosystems. ?? 2004 Springer Science+Business Media, Inc.

  1. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    PubMed Central

    Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.

    2015-01-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings. PMID:26679096

  2. Micro-masonry for 3D additive micromanufacturing.

    PubMed

    Keum, Hohyun; Kim, Seok

    2014-08-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.

  3. NASA CYGNSS Satellite Measurements and Applications

    NASA Astrophysics Data System (ADS)

    Murray, J. J.; Ruf, C. S.; Baker, N. L.; Green, D. S.; Stough, T.

    2017-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  4. Facile Synthesis of Conductive Polypyrrole Wrinkle Topographies on Polydimethylsiloxane via a Swelling-Deswelling Process and Their Potential Uses in Tissue Engineering.

    PubMed

    Aufan, M Rifqi; Sumi, Yang; Kim, Semin; Lee, Jae Young

    2015-10-28

    Electrically conducting biomaterials have gained great attention in various biomedical studies especially to influence cell and tissue responses. In addition, wrinkling can present a unique topography that can modulate cell-material interactions. In this study, we developed a simple method to create wrinkle topographies of conductive polypyrrole (wPPy) on soft polydimethylsiloxane surfaces via a swelling-deswelling process during and after PPy polymerization and by varying the thickness of the PPy top layers. As a result, various features of wPPy in the range of the nano- and microscales were successfully obtained. In vitro cell culture studies with NIH 3T3 fibroblasts and PC12 neuronal cells indicated that the conductive wrinkle topographies promote cell adhesion and neurite outgrowth of PC12 cells. Our studies help to elucidate the design of the surface coating and patterning of conducting polymers, which will enable us to simultaneously provide topographical and electrical signals to improve cell-surface interactions for potential tissue-engineering applications.

  5. Nanoporous Gold Nanocomposites as a Versatile Platform for Plasmonic Engineering and Sensing

    PubMed Central

    Zhao, Fusheng; Zeng, Jianbo; Shih, Wei-Chuan

    2017-01-01

    Plasmonic metal nanostructures have shown great potential in sensing applications. Among various materials and structures, monolithic nanoporous gold disks (NPGD) have several unique features such as three-dimensional (3D) porous network, large surface area, tunable plasmonic resonance, high-density hot-spots, and excellent architectural integrity and environmental stability. They exhibit a great potential in surface-enhanced spectroscopy, photothermal conversion, and plasmonic sensing. In this work, interactions between smaller colloidal gold nanoparticles (AuNP) and individual NPGDs are studied. Specifically, colloidal gold nanoparticles with different sizes are loaded onto NPGD substrates to form NPG hybrid nanocomposites with tunable plasmonic resonance peaks in the near-infrared spectral range. Newly formed plasmonic hot-spots due to the coupling between individual nanoparticles and NPG disk have been identified in the nanocomposites, which have been experimentally studied using extinction and surface-enhanced Raman scattering. Numerical modeling and simulations have been employed to further unravel various coupling scenarios between AuNP and NPGDs. PMID:28657586

  6. Selective layer-free blood serum ionogram based on ion-specific interactions with a nanotransistor

    NASA Astrophysics Data System (ADS)

    Sivakumarasamy, R.; Hartkamp, R.; Siboulet, B.; Dufrêche, J.-F.; Nishiguchi, K.; Fujiwara, A.; Clément, N.

    2018-05-01

    Despite being ubiquitous in the fields of chemistry and biology, the ion-specific effects of electrolytes pose major challenges for researchers. A lack of understanding about ion-specific surface interactions has hampered the development and application of materials for (bio-)chemical sensor applications. Here, we show that scaling a silicon nanotransistor sensor down to 25 nm provides a unique opportunity to understand and exploit ion-specific surface interactions, yielding a surface that is highly sensitive to cations and inert to pH. The unprecedented sensitivity of these devices to Na+ and divalent ions can be attributed to an overscreening effect via molecular dynamics. The surface potential of multi-ion solutions is well described by the sum of the electrochemical potentials of each cation, enabling selective measurements of a target ion concentration without requiring a selective organic layer. We use these features to construct a blood serum ionogram for Na+, K+, Ca2+ and Mg2+, in an important step towards the development of a versatile, durable and mobile chemical or blood diagnostic tool.

  7. Laser surface texturing for high control of interference fit joint load bearing

    NASA Astrophysics Data System (ADS)

    Obeidi, M. Ahmed; McCarthy, E.; Brabazon, D.

    2017-10-01

    Laser beams attract the attention of researchers, engineers and manufacturer as they can deliver high energy with finite controlled processing parameters and heat affected zone (HAZ) on almost all kind of materials [1-3]. Laser beams can be generated in the broad range of wavelengths, energies and beam modes in addition to the unique property of propagation in straight lines with less or negligible divergence [3]. These features made lasers preferential for metal treatment and surface modification over the conventional machining and heat treatment methods. Laser material forming and processing is prosperous and competitive because of its flexibility and the creation of new solutions and techniques [3-5]. This study is focused on the laser surface texture of 316L stainless steel pins for the application of interference fit, widely used in automotive and aerospace industry. The main laser processing parameters applied are the power, frequency and the overlapping laser beam scans. The produced samples were characterized by measuring the increase in the insertion diameter, insertion and removal force, surface morphology and cross section alteration and the modified layer chemical composition and residual stresses.

  8. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of southern China.

    PubMed

    Wang, Shuo; Sun, Chengkai; Sullivan, Corwin; Xu, Xing

    2013-01-01

    This paper describes a new oviraptorid dinosaur taxon, Ganzhousaurus nankangensis gen. et sp. nov., based on a specimen collected from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City, Jiangxi Province, southern China. This new taxon is distinguishable from other oviraptorids based on the following unique combination of primitive and derived features: relatively shallow dentary; absence of fossa or pneumatopore on lateral surface of dentary; weakly downturned anterior mandibular end; shallow depression immediately surrounding anterior margin of external mandibular fenestra; external mandibular fenestra subdivided by anterior process of surangular; dentary posteroventral process slightly twisted and positioned on mandibular ventrolateral surface; shallow longitudinal groove along medial surface of dentary posteroventral process; angular anterior process wider transversely than deep dorsoventrally; sharp groove along ventrolateral surface of angular anterior process; ventral border of external mandibular fenestra formed mainly by angular; ventral flange along distal half of metatarsal II; and arctometatarsal condition absent. Phylogenetic analysis places Ganzhousaurus nankangensis gen. et sp. nov. in the clade Oviraptoridae, together with Oviraptor, Citipati, Rinchenia and the unnamed Zamyn Khondt oviraptorid.

  9. Periodicity in Attachment Organelle Revealed by Electron Cryotomography Suggests Conformational Changes in Gliding Mechanism of Mycoplasma pneumoniae

    PubMed Central

    Kawamoto, Akihiro; Matsuo, Lisa; Kato, Takayuki; Yamamoto, Hiroki

    2016-01-01

    ABSTRACT Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. PMID:27073090

  10. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  11. Explosive Boiling at Very Low Heat Fluxes: A Microgravity Phenomenon

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Lin, C. S.; Knoll, R. H.; Bentz, M. D.

    1993-01-01

    The paper presents experimental observations of explosive boiling from a large (relative to bubble sizes) flat heating surface at very low heat fluxes in microgravity. The explosive boiling is characterized as either a rapid growth of vapor mass over the entire heating surface due to the flashing of superheated liquid or a violent boiling spread following the appearance of single bubbles on the heating surface. Pool boiling data with saturated Freon 113 was obtained in the microgravity environment of the space shuttle. The unique features of the experimental results are the sustainability of high liquid superheat for long periods and the occurrence of explosive boiling at low heat fluxes (0.2 to 1.2 kW/sq m). For a heat flux of 1.0 kW/sq m a wall superheat of 17.9 degrees C was attained in ten minutes of heating. This was followed by an explosive boiling accompanied with a pressure spike and a violent bulk liquid motion. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Stable nucleate boiling continued following the explosive boiling.

  12. From the Cover: Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features

    NASA Astrophysics Data System (ADS)

    Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé

    2006-08-01

    The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction

  13. Mid-infrared spectroscopy to better characterize icy moon surface compositions

    NASA Astrophysics Data System (ADS)

    Young, Cindy L.; Wray, James J.; Hand, Kevin P.; Poston, Michael; Carlson, Robert W.; Clark, Roger Nelson; Spencer, John R.; Jennings, Donald

    2016-10-01

    Previous spectroscopy work on icy moons has focused primarily on the visible and near-IR portion of the spectrum due to challenges presented by a low signal to noise ratio at the longer wavelengths. However, the mid-IR is the region of the strongest fundamental vibrations of many important types of molecules (e.g., organics) and has the potential to reveal unique compositional information [1]. We use the wealth of data that is now available from Cassini's Composite Infrared Spectrometer (CIRS) to average spectra over similar regions to improve the signal to noise, helping to reveal spectral features never before observed.Our initial work has already led to the detection and tentative laboratory identification of the first spectral features observed for any icy moon in the mid-IR [2]. On Iapetus' dark terrain, we found an emissivity feature at ~855 cm-1 and a possible doublet at 660 and 690 cm-1 that does not correspond to any known instrument artifacts. We attributed the 855 cm-1 feature to fine-grained silicates, similar to those found in dust on Mars and in meteorites, which are nearly featureless at shorter wavelengths [e.g., 3, 4]. Silicates on the dark terrains of Saturn's icy moons have been suspected for decades, but there have been no definitive detections until this work.We measured the vacuum, low temperature mid-IR spectra of various fine-grained powdered silicates, including Mg-rich serpentines, often present in meteorites. Some of these materials do have emissivity features near 855 cm-1 and exhibit a doublet. Presently, we are continuing to comb the CIRS icy moon database for spectral features (particularly focusing on the warmer surfaces in the Saturn system) and are performing further vacuum chamber measurements to experiment with more sample types and ice/sample mixtures to determine the impacts of changing conditions in the chamber on features. We are also working to understand how surface porosity and mixing with various darkening agents may impact our spectra.[1] Flasar, F. M., et al. (2004), Space Sci Rev, 115, 169.[2] Young, C. L., et al. (2015), ApJ Lett., 811, L27.[3] Christensen, P. R., et al. (2004), Sci, 306, 1733.[4] McAdam, M. M., et al. (2015), Icar, 245, 320.

  14. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    PubMed

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  15. An intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-09-01

    Poisson disk sampling has excellent spatial and spectral properties, and plays an important role in a variety of visual computing. Although many promising algorithms have been proposed for multidimensional sampling in euclidean space, very few studies have been reported with regard to the problem of generating Poisson disks on surfaces due to the complicated nature of the surface. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. In sharp contrast to the conventional parallel approaches, our method neither partitions the given surface into small patches nor uses any spatial data structure to maintain the voids in the sampling domain. Instead, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. Our algorithm guarantees that the generated Poisson disks are uniformly and randomly distributed without bias. It is worth noting that our method is intrinsic and independent of the embedding space. This intrinsic feature allows us to generate Poisson disk patterns on arbitrary surfaces in IR(n). To our knowledge, this is the first intrinsic, parallel, and accurate algorithm for surface Poisson disk sampling. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  16. Systematic Validation and Atomic Force Microscopy of Non-Covalent Short Oligonucleotide Barcode Microarrays

    PubMed Central

    Cook, Michael A.; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip

    2008-01-01

    Background Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20–60 base) unique sequence tags, or “barcodes”, associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Methodology/Principal Findings Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5′-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. Conclusions/Significance These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis. PMID:18253494

  17. Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.

    PubMed

    Li, Yongsheng; Shi, Jianlin

    2014-05-28

    Hollow-structured mesoporous materials (HMMs), as a kind of mesoporous material with unique morphology, have been of great interest in the past decade because of the subtle combination of the hollow architecture with the mesoporous nanostructure. Benefitting from the merits of low density, large void space, large specific surface area, and, especially, the good biocompatibility, HMMs present promising application prospects in various fields, such as adsorption and storage, confined catalysis when catalytically active species are incorporated in the core and/or shell, controlled drug release, targeted drug delivery, and simultaneous diagnosis and therapy of cancers when the surface and/or core of the HMMs are functionalized with functional ligands and/or nanoparticles, and so on. In this review, recent progress in the design, synthesis, functionalization, and applications of hollow mesoporous materials are discussed. Two main synthetic strategies, soft-templating and hard-templating routes, are broadly sorted and described in detail. Progress in the main application aspects of HMMs, such as adsorption and storage, catalysis, and biomedicine, are also discussed in detail in this article, in terms of the unique features of the combined large void space in the core and the mesoporous network in the shell. Functionalization of the core and pore/outer surfaces with functional organic groups and/or nanoparticles, and their performance, are summarized in this article. Finally, an outlook of their prospects and challenges in terms of their controlled synthesis and scaled application is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal Oxide Nanosensors Using Polymeric Membranes, Enzymes and Antibody Receptors as Ion and Molecular Recognition Elements

    PubMed Central

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-01-01

    The concept of recognition and biofunctionality has attracted increasing interest in the fields of chemistry and material sciences. Advances in the field of nanotechnology for the synthesis of desired metal oxide nanostructures have provided a solid platform for the integration of nanoelectronic devices. These nanoelectronics-based devices have the ability to recognize molecular species of living organisms, and they have created the possibility for advanced chemical sensing functionalities with low limits of detection in the nanomolar range. In this review, various metal oxides, such as ZnO-, CuO-, and NiO-based nanosensors, are described using different methods (receptors) of functionalization for molecular and ion recognition. These functionalized metal oxide surfaces with a specific receptor involve either a complex formation between the receptor and the analyte or an electrostatic interaction during the chemical sensing of analytes. Metal oxide nanostructures are considered revolutionary nanomaterials that have a specific surface for the immobilization of biomolecules with much needed orientation, good conformation and enhanced biological activity which further improve the sensing properties of nanosensors. Metal oxide nanostructures are associated with certain unique optical, electrical and molecular characteristics in addition to unique functionalities and surface charge features which shows attractive platforms for interfacing biorecognition elements with effective transducing properties for signal amplification. There is a great opportunity in the near future for metal oxide nanostructure-based miniaturization and the development of engineering sensor devices. PMID:24841244

  19. Digital Astronaut Photography: A Discovery Dataset for Archaeology

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.

    2010-01-01

    Astronaut photography acquired from the International Space Station (ISS) using commercial off-the-shelf cameras offers a freely-accessible source for high to very high resolution (4-20 m/pixel) visible-wavelength digital data of Earth. Since ISS Expedition 1 in 2000, over 373,000 images of the Earth-Moon system (including land surface, ocean, atmospheric, and lunar images) have been added to the Gateway to Astronaut Photography of Earth online database (http://eol.jsc.nasa.gov ). Handheld astronaut photographs vary in look angle, time of acquisition, solar illumination, and spatial resolution. These attributes of digital astronaut photography result from a unique combination of ISS orbital dynamics, mission operations, camera systems, and the individual skills of the astronaut. The variable nature of astronaut photography makes the dataset uniquely useful for archaeological applications in comparison with more traditional nadir-viewing multispectral datasets acquired from unmanned orbital platforms. For example, surface features such as trenches, walls, ruins, urban patterns, and vegetation clearing and regrowth patterns may be accentuated by low sun angles and oblique viewing conditions (Fig. 1). High spatial resolution digital astronaut photographs can also be used with sophisticated land cover classification and spatial analysis approaches like Object Based Image Analysis, increasing the potential for use in archaeological characterization of landscapes and specific sites.

  20. LETS: Lunar Environments Test System

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey

    2008-01-01

    The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.

  1. Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors.

    PubMed

    Zhu, Jixin; Cao, Liujun; Wu, Yingsi; Gong, Yongji; Liu, Zheng; Hoster, Harry E; Zhang, Yunhuai; Zhang, Shengtao; Yang, Shubin; Yan, Qingyu; Ajayan, Pulickel M; Vajtai, Robert

    2013-01-01

    Various two-dimensional (2D) materials have recently attracted great attention owing to their unique properties and wide application potential in electronics, catalysis, energy storage, and conversion. However, large-scale production of ultrathin sheets and functional nanosheets remains a scientific and engineering challenge. Here we demonstrate an efficient approach for large-scale production of V2O5 nanosheets having a thickness of 4 nm and utilization as building blocks for constructing 3D architectures via a freeze-drying process. The resulting highly flexible V2O5 structures possess a surface area of 133 m(2) g(-1), ultrathin walls, and multilevel pores. Such unique features are favorable for providing easy access of the electrolyte to the structure when they are used as a supercapacitor electrode, and they also provide a large electroactive surface that advantageous in energy storage applications. As a consequence, a high specific capacitance of 451 F g(-1) is achieved in a neutral aqueous Na2SO4 electrolyte as the 3D architectures are utilized for energy storage. Remarkably, the capacitance retention after 4000 cycles is more than 90%, and the energy density is up to 107 W·h·kg(-1) at a high power density of 9.4 kW kg(-1).

  2. A new species of Leiobunum from Arizona, U. S. A. highlights the limits of typological classification in harvestmen (Opiliones: Sclerosomatidae: Leiobuninae).

    PubMed

    Shultz, Jeffrey W

    2018-01-09

    A new species of leiobunine harvestman from the Chiricahua Mountains of Arizona is described. The species lacks pro- and retrolateral submarginal rows of coxal denticles, a feature often considered diagnostic for the polyphyletic Nelima, and has greatly reduced ventral dentition on the palpal claw, as in the monotypic Leuronychus. In most other respects, the species is uniquely similar to members of a clade from central and western Mexico currently in the poly- and/or paraphyletic Leiobunum. These traits include a supracheliceral lamina with a wide transverse plate and a canaliculate ocularium, with an anterior surface that slopes dorsoposteriorly and a posterior surface that bulges rearward and is constricted at its base.  There is thus a conflict between classification using traditional diagnostic characters and classification using unique similarity of non-traditional characters. The problem is exacerbated by the problematic status of each candidate genus. Here the species is placed in Leiobunum as L. silum sp. nov., a decision that gives weight to probable phylogenetic affinity with species currently placed in that genus. Leiobunum silum provides an excellent example of the limits of traditional typological classification and the need for a broad-scale morphological and molecular revision of sclerosomatid harvestmen.

  3. Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening

    NASA Astrophysics Data System (ADS)

    Linman, Matthew J.; Cheng, Quan Jason

    Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.

  4. Power Requirements for The NASA Mars Design Reference Architecture (DRA) 5.0

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    2009-01-01

    This paper summarizes the power systems analysis results from NASA s recent Mars DRA 5.0 study which examined three architecture options and resulting mission requirements for a human Mars landing mission in the post-2030 timeframe. DRA 5.0 features a long approximately 500 day surface stay split mission using separate cargo and crewed Mars transfer vehicles. Two cargo flights, utilizing minimum energy trajectories, pre-deploy a cargo lander to the surface and a habitat lander into a 24-hour elliptical Mars parking orbit where it remains until the arrival of the crew during the next mission opportunity approximately 26 months later. The pre-deployment of cargo poses unique challenges for set-up and emplacement of surface assets that results in the need for self or robotically deployed designs. Three surface architecture options were evaluated for breadth of science content, extent of exploration range/capability and variations in system concepts and technology. This paper describes the power requirements for the surface operations of the three mission options, power system analyses including discussion of the nuclear fission, solar photovoltaic and radioisotope concepts for main base power and long range mobility.

  5. Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology

    PubMed Central

    Wang, Zhongying; Tonderys, Daniel; Leggett, Susan E.; Williams, Evelyn Kendall; Kiani, Mehrdad T.; Steinberg, Ruben Spitz; Qiu, Yang; Wong, Ian Y.; Hurt, Robert H.

    2015-01-01

    Textured surfaces with periodic topographical features and long-range order are highly attractive for directing cell-material interactions. They mimic physiological environments more accurately than planar surfaces and can fundamentally alter cell alignment, shape, gene expression, and cellular assembly into superstructures or microtissues. Here we demonstrate for the first time that wrinkled graphene-based surfaces are suitable as textured cell attachment substrates, and that engineered wrinkling can dramatically alter cell alignment and morphology. The wrinkled surfaces are fabricated by graphene oxide wet deposition onto pre-stretched elastomers followed by relaxation and mild thermal treatment to stabilize the films in cell culture medium. Multilayer graphene oxide films form periodic, delaminated buckle textures whose wavelengths and amplitudes can be systematically tuned by variation in the wet deposition process. Human and murine fibroblasts attach to these textured films and remain viable, while developing pronounced alignment and elongation relative to those on planar graphene controls. Compared to lithographic patterning of nanogratings, this method has advantages in the simplicity and scalability of fabrication, as well as the opportunity to couple the use of topographic cues with the unique conductive, adsorptive, or barrier properties of graphene materials for functional biomedical devices. PMID:25848137

  6. Texture- and deformability-based surface recognition by tactile image analysis.

    PubMed

    Khasnobish, Anwesha; Pal, Monalisa; Tibarewala, D N; Konar, Amit; Pal, Kunal

    2016-08-01

    Deformability and texture are two unique object characteristics which are essential for appropriate surface recognition by tactile exploration. Tactile sensation is required to be incorporated in artificial arms for rehabilitative and other human-computer interface applications to achieve efficient and human-like manoeuvring. To accomplish the same, surface recognition by tactile data analysis is one of the prerequisites. The aim of this work is to develop effective technique for identification of various surfaces based on deformability and texture by analysing tactile images which are obtained during dynamic exploration of the item by artificial arms whose gripper is fitted with tactile sensors. Tactile data have been acquired, while human beings as well as a robot hand fitted with tactile sensors explored the objects. The tactile images are pre-processed, and relevant features are extracted from the tactile images. These features are provided as input to the variants of support vector machine (SVM), linear discriminant analysis and k-nearest neighbour (kNN) for classification. Based on deformability, six household surfaces are recognized from their corresponding tactile images. Moreover, based on texture five surfaces of daily use are classified. The method adopted in the former two cases has also been applied for deformability- and texture-based recognition of four biomembranes, i.e. membranes prepared from biomaterials which can be used for various applications such as drug delivery and implants. Linear SVM performed best for recognizing surface deformability with an accuracy of 83 % in 82.60 ms, whereas kNN classifier recognizes surfaces of daily use having different textures with an accuracy of 89 % in 54.25 ms and SVM with radial basis function kernel recognizes biomembranes with an accuracy of 78 % in 53.35 ms. The classifiers are observed to generalize well on the unseen test datasets with very high performance to achieve efficient material recognition based on its deformability and texture.

  7. Temporal changes in surface roughness around 88°S from repeat high-resolution Airborne Topographic Mapper laser altimetry

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Brunt, K. M.; Medley, B.; Casey, K.; Neumann, T.

    2017-12-01

    The southern convergence of all ICESat-2 and CryoSat-2 tracks at 88°S is in a region of relatively low accumulation and surface slope making it ideal for satellite altimetry calibration and validation. In order to evaluate the stability and surface characteristics of the area we have analyzed repeat airborne laser altimetry measurements acquired around 88°S during 2014 and 2016 by NASA's Airborne Topographic Mapper (ATM) as part of Operation IceBridge. ATM is a conical scanner that operates at a wavelength of 532 nm, with a footprint of 1 meter and a 250-m-wide swath on the ground. The ATM Level 2 ICESSN data product includes slope and roughness estimates in 80 m × 80 m platelets across the swath. The mean surface roughness around 88°S for the 2014 data is 9.4 ± 2.0 cm, with the repeat flights in 2016 showing 8.6 ± 2.8 cm. The 2014 data reveals several areas where surface roughness doubles over very short spatial scales of only a few hundred meters. These features are several tens of km wide and appear to be oriented parallel to the main sastrugi direction visible in ATM spot elevation data and Digital Mapping System (DMS) visual imagery collected simultaneously. The rougher surface features are also present in the CReSIS snow radar data collected at the same time. These areas of increased surface roughness disappear in 2016 or seem to be significantly reduced in amplitude with the sharpness of the edges significantly reduced. The combination of simultaneous altimetry, snow radar and visual imagery on a regional scale provides a unique data set to study small scale deposition and erosional processes and their temporal variability. Our long-term goal is to quantify the spatial variability in snow accumulation rates south of 86°S in support of past, current and future altimetry measurements and surface mass balance model evaluation.

  8. Composite, ordered material having sharp surface features

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  9. Osseointegrated dental implants produced via microwave processing

    NASA Astrophysics Data System (ADS)

    Kutty, Muralithran G.

    This research is a comprehensive effort to develop osseointegrated dental implants via microwave processing. A net-shape microwave sintering procedure was employed to fabricate dental implants. Commercial pure titanium powders (-100, -200 and -325 mesh sizes) were used in this work. This process eliminates the need for machining of implants and prevents contamination. The idea was to take advantage of the peculiar way microwave couple with metallic powders, i.e. generating heat in the interior of the sample and dissipating it away through the surface. The desired features for an implant, a dense core with surface pores, is not possible via conventional sintering. Coating with hydroxyapatite via electrodeposition and chemical combustion vapor deposition was also attempted to further enhance the bioactivity of this layer. Surface roughness and area were measured using a non-contact surface profilometer to further describe the unique surface. In-vitro studies, conducted using osteoblast cells extracted from neonatal rat calvarial, showed improved cell growth on all the uncoated porous samples. However, the highest cell growth was observed on the -200 mesh size samples. The higher surface area of the -200 mesh samples is attributed to this observation. This work was able to identify the processing parameters for titanium in microwave and establishes the importance of surface area as a key parameter for cell growth on porous surfaces as compared to surface roughness.

  10. {112} Polar surfaces of copper(indium,gallium)selenide: Properties and effects on crystal growth

    NASA Astrophysics Data System (ADS)

    Liao, Dongxiang

    Cu(In,Ga)Se2 (GIGS) are promising materials for thin film photovoltaic applications. This work studies the epitaxial growth of CIGS single crystal films on GaAs substrates of various orientations and characterizes the properties of the thin films. A surprising finding is the strong tendency of film surfaces to facet to {112} planes. The work attempted to establish the connections between the film morphology, the surface energies, the surface chemical compositions, and the reconstruction of polar surfaces. Using angle-resolved photoelectron emission spectroscopy, I found that there is a severe Cu depletion at the first 1-2 layer of the free surface of CuInSe2 and the surface is semiconducting. The results strongly support the model of a reconstructed non-stoichiometric polar surface and exclude the previously believed existence of a bulk second phase on the CIS surface. Unique features of the film morphology suggest that the properties and structure of the polar surfaces have great effects on the growth of the crystals, and probably on the incorporation of the large amount of point defects. Measured chemical composition profiles indicate that the Cu depletion observed on free CIGS surface remains at the CIGS/CdS heterojunction interface and Cd is incorporated into the surface of CIGS. It is proposed that this non-stoichiometric composition leads to charge imbalance at the interface and causes the type-inversion of the CIGS surface, which are favorable for the device performance.

  11. On the mass of static metrics with positive cosmological constant: I

    NASA Astrophysics Data System (ADS)

    Borghini, Stefano; Mazzieri, Lorenzo

    2018-06-01

    In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.

  12. Optically pumped VECSELs: review of technology and progress

    NASA Astrophysics Data System (ADS)

    Guina, M.; Rantamäki, A.; Härkönen, A.

    2017-09-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) are the most versatile laser sources, combining unique features such as wide spectral coverage, ultrashort pulse operation, low noise properties, high output power, high brightness and compact form-factor. This paper reviews the recent technological developments of VECSELs in connection with the new milestones that continue to pave the way towards their use in numerous applications. Significant attention is devoted to the fabrication of VECSEL gain mirrors in challenging wavelength regions, especially at the yellow and red wavelengths. The reviewed fabrication approaches address wafer-bonded VECSEL structures as well as the use of hybrid mirror structures. Moreover, a comprehensive summary of VECSEL characterization methods is presented; the discussion covers different stages of VECSEL development and different operation regimes, pointing out specific characterization techniques for each of them. Finally, several emerging applications are discussed, with emphasis on the unique application objectives that VECSELs render possible, for example in atom and molecular physics, dermatology and spectroscopy.

  13. Processing and characterization of epoxy composites reinforced with short human hair

    NASA Astrophysics Data System (ADS)

    Prasad Nanda, Bishnu; Satapathy, Alok

    2017-02-01

    Human hair is a biological fiber with well characterized microstructure. It has many unique properties like high tensile strength, thermal insulation, unique chemical composition, elastic recovery, scaly surface etc. But due to its slow decomposition, it creates many environmental problems. Although a number of utilization avenues are already in place, hair is still considered as a biological waste. In view of this, the present work makes an attempt to explore the possibility of fabricating a class of polymer composites reinforced with short human hair fibers. Epoxy composites with different proportions of hair fiber (0, 2, 4, 6 and 8 wt.%) are prepared by simple hand lay-up technique. Mechanical properties such as tensile, flexural and compressive strengths were evaluated by conducting tests as per ASTM standards. It was found out that with the increase in fiber content, the tensile and flexural strength of the composite were increasing significantly while the compressive strength improved marginally. Scanning electron microscopy was done on these samples to observe the microstructural features.

  14. Signature of nonadiabatic coupling in excited-state vibrational modes.

    PubMed

    Soler, Miguel A; Nelson, Tammie; Roitberg, Adrian E; Tretiak, Sergei; Fernandez-Alberti, Sebastian

    2014-11-13

    Using analytical excited-state gradients, vibrational normal modes have been calculated at the minimum of the electronic excited-state potential energy surfaces for a set of extended conjugated molecules with different coupling between them. Molecular model systems composed of units of polyphenylene ethynylene (PPE), polyphenylenevinylene (PPV), and naphthacene/pentacene (NP) have been considered. In all cases except the NP model, the influence of the nonadiabatic coupling on the excited-state equilibrium normal modes is revealed as a unique highest frequency adiabatic vibrational mode that overlaps with the coupling vector. This feature is removed by using a locally diabatic representation in which the effect of NA interaction is removed. Comparison of the original adiabatic modes with a set of vibrational modes computed in the locally diabatic representation demonstrates that the effect of nonadiabaticity is confined to only a few modes. This suggests that the nonadiabatic character of a molecular system may be detected spectroscopically by identifying these unique state-specific high frequency vibrational modes.

  15. Silk-microfluidics for advanced biotechnological applications: A progressive review.

    PubMed

    Konwarh, Rocktotpal; Gupta, Prerak; Mandal, Biman B

    2016-01-01

    Silk based biomaterials have not only carved a unique niche in the domain of regenerative medicine but new avenues are also being explored for lab-on-a-chip applications. It is pertinent to note that biospinning of silk represents nature's signature microfluidic-maneuver. Elucidation of non-Newtonian flow of silk in the glands of spiders and silkworms has inspired researchers to fabricate devices for continuous extrusion and concentration of silk. Microfluidic channel networks within porous silk scaffolds ensure optimal nutrient and oxygen supply apart from serving as precursors for vascularization in tissue engineering applications. On the other hand, unique topographical features and surface wettability of natural silk fibers have inspired development of a number of simple and cost-effective devices for applications like blood typing and chemical sensing. This review mirrors the recent progress and challenges in the domain of silk-microfluidics for prospective avant-garde applications in the realm of biotechnology. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Surface mapping via unsupervised classification of remote sensing: application to MESSENGER/MASCS and DAWN/VIRS data.

    NASA Astrophysics Data System (ADS)

    D'Amore, M.; Le Scaon, R.; Helbert, J.; Maturilli, A.

    2017-12-01

    Machine-learning achieved unprecedented results in high-dimensional data processing tasks with wide applications in various fields. Due to the growing number of complex nonlinear systems that have to be investigated in science and the bare raw size of data nowadays available, ML offers the unique ability to extract knowledge, regardless the specific application field. Examples are image segmentation, supervised/unsupervised/ semi-supervised classification, feature extraction, data dimensionality analysis/reduction.The MASCS instrument has mapped Mercury surface in the 400-1145 nm wavelength range during orbital observations by the MESSENGER spacecraft. We have conducted k-means unsupervised hierarchical clustering to identify and characterize spectral units from MASCS observations. The results display a dichotomy: a polar and equatorial units, possibly linked to compositional differences or weathering due to irradiation. To explore possible relations between composition and spectral behavior, we have compared the spectral provinces with elemental abundance maps derived from MESSENGER's X-Ray Spectrometer (XRS).For the Vesta application on DAWN Visible and infrared spectrometer (VIR) data, we explored several Machine Learning techniques: image segmentation method, stream algorithm and hierarchical clustering.The algorithm successfully separates the Olivine outcrops around two craters on Vesta's surface [1]. New maps summarizing the spectral and chemical signature of the surface could be automatically produced.We conclude that instead of hand digging in data, scientist could choose a subset of algorithms with well known feature (i.e. efficacy on the particular problem, speed, accuracy) and focus their effort in understanding what important characteristic of the groups found in the data mean. [1] E Ammannito et al. "Olivine in an unexpected location on Vesta's surface". In: Nature 504.7478 (2013), pp. 122-125.

  17. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    PubMed Central

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  18. Development of 3D electromagnetic modeling tools for airborne vehicles

    NASA Technical Reports Server (NTRS)

    Volakis, John L.

    1992-01-01

    The main goal of this project is to develop methodologies for scattering by airborne composite vehicles. Although our primary focus continues to be the development of a general purpose code for analyzing the entire structure as a single unit, a number of other tasks are also pursued in parallel with this effort. These tasks are important in testing the overall approach and in developing suitable models for materials coatings, junctions and, more generally, in assessing the effectiveness of the various parts comprising the final code. Here, we briefly discuss our progress on the five different tasks which were pursued during this period. Our progress on each of these tasks is described in the detailed reports (listed at the end of this report) and the memoranda included. The first task described below is, of course, the core of this project and deals with the development of the overall code. Undoubtedly, it is the outcome of the research which was funded by NASA-Ames and the Navy over the past three years. During this year we developed the first finite element code for scattering by structures of arbitrary shape and composition. The code employs a new absorbing boundary condition which allows termination of the finite element mesh only 0.3 lambda from the outer surface of the target. This leads to a remarkable reduction of the mesh size and is a unique feature of the code. Other unique features of this code include capabilities to model resistive sheets, impedance sheets and anisotropic materials. This last capability is the latest feature of the code and is still under development. The code has been extensively validated for a number of composite geometries and some examples are given. The validation of the code is still in progress for anisotropic and larger non-metallic geometries and cavities. The developed finite element code is based on a Galerkin's formulation and employs edge-based tetrahedral elements for discretizing the dielectric sections and the region between the target and the outer mesh termination boundary (ATB). This boundary is placed in conformity with the target's outer surface, thus resulting in additional reduction of the unknown count.

  19. Toward the Atomic-Level Mass Analysis of Biomolecules by the Scanning Atom Probe.

    PubMed

    Nishikawa, Osamu; Taniguchi, Masahiro

    2017-04-01

    In 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.

  20. One-step, simple, and green synthesis of tin dioxide/graphene nanocomposites and their application to lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Zhang, Dongjie; Li, Yue; Cheng, Hao; Wang, Mingqiang; Wang, Xueqin; Bai, Yongping; Lv, Haibao; Yao, Yongtao; Shao, Lu; Huang, Yudong

    2014-10-01

    Graphene with extraordinary thermal, mechanical and electrical properties offers possibilities in a variety of applications. Recent advances in the synthesis of graphene composites using supercritical fluids are highlighted. Supercritical fluids exhibit unique features for the synthesis of composites due to its low viscosity, high diffusivity, near-zero surface tension, and tunability. Here, we report the preparation of tin dioxide (SnO2)/graphene nanocomposite through supercritical CO2 method. It demonstrates that the SnO2 nanoparticles are homogeneously dispersed on the surface of graphene sheets with a particle size of 2.3-2.6 nm. The SnO2/graphene nanocomposites exhibit higher lithium storage capacity and better cycling performance compared to that of the similar CNT nanocomposites. The reported synthetic procedure is straightforward, green and inexpensive. And it may be readily adopted to produce large quantities of graphene based nanocomposites.

  1. Evidence for the interior evolution of Ceres from geologic analysis of fractures

    USGS Publications Warehouse

    Scully, Jennifer E. C.; Buczkowski, Debra; Schmedemann, Nico; Raymond, Carol A.; Castillo-Rogez, Julie C.; Scott King,; Bland, Michael T.; Ermakov, Anton; O'Brien, D.P.; Marchi, S.; Longobardo, A.; Russell, C.T.; Fu, R.R.; Neveu, M.

    2017-01-01

    Ceres is the largest asteroid belt object, and the Dawn spacecraft observed Ceres since 2015. Dawn observed two morphologically distinct linear features on Ceres's surface: secondary crater chains and pit chains. Pit chains provide unique insights into Ceres's interior evolution. We interpret pit chains called the Samhain Catenae as the surface expression of subsurface fractures. Using the pit chains' spacings, we estimate that the localized thickness of Ceres's fractured, outer layer is approximately ≥58 km, at least ~14 km greater than the global average. We hypothesize that extensional stresses, induced by a region of upwelling material arising from convection/diapirism, formed the Samhain Catenae. We derive characteristics for this upwelling material, which can be used as constraints in future interior modeling studies. For example, its predicted location coincides with Hanami Planum, a high-elevation region with a negative residual gravity anomaly, which may be surficial evidence for this proposed region of upwelling material.

  2. Blaschko-linear “Congenital Mixed Hemato-lymphangio-keratoma Serpiginosum” Naeviforme

    PubMed Central

    Çağlar, Aysel; Altinay, Serdar

    2018-01-01

    We present the case of a 15-year-old girl who presented with an unusual grouping of lesions on her upper left leg. The lesions had been present since birth. The patient had five different types of lesions: 1) transparent grouped or scattered yellowish vesicles; 2) keratotic-surfaced, grouped dark-yellowish papules; 3) bright-red grouped papules; 4) keratotic-surfaced grouped dark-red papules; and 5) patchy, punctate, and erythematous red macules. All of the lesions were intertwined along the lines of Blaschko and were in the form of irregular serpiginous plaques. Histopathological examinations of the lesions showed three main histological features, and diagnoses of the lesions were made as lymphangioma circumscriptum, lymphangiokeratoma, and verrucous hemangioma. To the best of our knowledge, such intertwined lesions have never been reported in the literature. Hence, we suggest that the name of this unique combination of lesions be “congenital nevoid mixed hemato-lymphangio-keratoma serpiginosum.”

  3. Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros

    NASA Astrophysics Data System (ADS)

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N.; Westhoff, Guido

    2013-05-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV - near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  4. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  5. Excess electrons in reduced rutile and anatase TiO2

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Jin; Wen, Bo; Zhou, Chuanyao; Selloni, Annabella; Liu, Li-Min

    2018-05-01

    As a prototypical photocatalyst, TiO2 is a material of scientific and technological interest. In photocatalysis and other applications, TiO2 is often reduced, behaving as an n-type semiconductor with unique physico-chemical properties. In this review, we summarize recent advances in the understanding of the fundamental properties and applications of excess electrons in reduced, undoped TiO2. We discuss the characteristics of excess electrons in the bulk and at the surface of rutile and anatase TiO2 focusing on their localization, spatial distribution, energy levels, and dynamical properties. We examine specific features of the electronic states for photoexcited TiO2, for intrinsic oxygen vacancy and Ti interstitial defects, and for surface hydroxyls. We discuss similarities and differences in the behaviors of excess electrons in the rutile and anatase phases. Finally, we consider the effect of excess electrons on the reactivity, focusing on the interaction between excess electrons and adsorbates.

  6. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  7. Mango core inner shell membrane template-directed synthesis of porous ZnO films and their application for enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Lei; Ye, Zhizhen; Zhao, Minggang; Cai, Hui; Huang, Jingyun

    2013-11-01

    Micro/nano-porous ZnO films were synthesized through a simple biotemplate-directed method using mango core inner shell membranes as templates. The achieved ZnO films with wrinkles on the surface are combined of large holes and small pores in the bulk. High specific surface area, numerous microspaces, and small channels for fluid circulation provided by this unique structure along with the good biocompatibility and electron communication features of ZnO material make the product an ideal platform for the immobilization of enzymes The fabricated glucose biosensor based on the porous ZnO films exhibits good selective detection ability of analyte with good stability, high sensitivity of 50.58 μA cm-2 mM-1 and a wide linear range of 0.2-5.6 mM along with a low detection limit of 10 μM.

  8. Fiber optic probe enabled by surface-enhanced Raman scattering for early diagnosis of potential acute rejection of kidney transplant

    NASA Astrophysics Data System (ADS)

    Chi, Jingmao; Chen, Hui; Tolias, Peter; Du, Henry

    2014-06-01

    We have explored the use of a fiber-optic probe with surface-enhanced Raman scattering (SERS) sensing modality for early, noninvasive and, rapid diagnosis of potential renal acute rejection (AR) and other renal graft dysfunction of kidney transplant patients. Multimode silica optical fiber immobilized with colloidal Ag nanoparticles at the distal end was used for SERS measurements of as-collected urine samples at 632.8 nm excitation wavelength. All patients with abnormal renal graft function (3 AR episodes and 2 graft failure episodes) who were clinically diagnosed independently show common unique SERS spectral features in the urines collected just one day after transplant. SERS-based fiber-optic probe has excellent potential to be a bedside tool for early diagnosis of kidney transplant patients for timely medical intervention of patients at high risk of transplant dysfunction.

  9. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  10. A multi-structural and multi-functional integrated fog collection system in cactus.

    PubMed

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  11. Simulation of Mechanical Behavior of Agglutinates

    NASA Technical Reports Server (NTRS)

    Nakagawa, Masami; Moon, Tae-Hyun

    2005-01-01

    Due to lack of "real" lunar soil or even lunar simulant, it is difficult to characterize the interaction between lunar soil (or simulant) with different surfaces that are involved in excavation and processing machinery. One unique feature possessed by lunar soil is the agglutinates produced by repeated high-speed micrometeoroid impacts and subsequent pulverization[l and 2]. The large particles are impacted by micrometeoroids [Fig.l] and pulverized to produce finer particles. This process continues until there are no more "large" particles left on the surface of the moon. Due to high impact speed, the impact melting process fuses fines to make agglutinates such as shown in Fig. 2. We will present a series of simulation results and movies will be shown to indicate brittle behavior of each individual agglutinate and also similar compressibility charts shown by Carrier et al. [3]. Fig. 3 shows our preliminary result of the simulated oedometer tests.

  12. Mass movements on Venus - Preliminary results from Magellan cycle 1 observations

    NASA Technical Reports Server (NTRS)

    Malin, Michael C.

    1992-01-01

    A preliminary assessment of mass movements and their geomorphic characteristics as determined from visual inspection of Magellan cycle 1 synthetic aperture radar images is described. The primary data set was a catalog of over 200 ten-inch square photographic prints of full-resolution mosaic image data records. Venus exhibits unambiguous evidence of mass movements at a variety of scales. Mass movements appear mostly in the form of block and rock movements; there is little evidence of regolith and sediment movements. Unique Venusian conditions may play a role in the creation of some mass movement features. Dark (smooth) surfaces surrounding many rockslide avalanches are probably fine materials emplaced as part of the mass movement process, as airfall, surface-hugging density flows, or coarse-depleted debris flows. The size and efficiency of emplacement of landslide deposits on Venus are comparable to those seen on Mars, which in turn generally resemble terrestrial occurrences.

  13. Snake velvet black: hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros.

    PubMed

    Spinner, Marlene; Kovalev, Alexander; Gorb, Stanislav N; Westhoff, Guido

    2013-01-01

    The West African Gaboon viper (Bitis rhinoceros) is a master of camouflage due to its colouration pattern. Its skin is geometrically patterned and features black spots that purport an exceptional spatial depth due to their velvety surface texture. Our study shades light on micromorphology, optical characteristics and principles behind such a velvet black appearance. We revealed a unique hierarchical pattern of leaf-like microstructures striated with nanoridges on the snake scales that coincides with the distribution of black colouration. Velvet black sites demonstrate four times lower reflectance and higher absorbance than other scales in the UV-near IR spectral range. The combination of surface structures impeding reflectance and absorbing dark pigments, deposited in the skin material, provides reflecting less than 11% of the light reflected by a polytetrafluoroethylene diffuse reflectance standard in any direction. A view-angle independent black structural colour in snakes is reported here for the first time.

  14. Hyperspectral surface materials map of quadrangle 3568, Pul-e Khumri (503) and Charikar (504) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3562, Khawja-Jir (403) and Murghab (404) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangle 3462, Herat (409) and Chishti Sharif (410) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangle 3368, Ghazni (515) and Gardez (516) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3468, Chak-e Wardak-Siyahgird (509) and Kabul (510) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3364, Pasaband (417) and Markaz-e Kajiran (418) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral surface materials map of quadrangle 3264, Naw Zad-Musa Qala (423) and Dihrawud (424) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangle 3266, Uruzgan (519) and Moqur (520) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3470, Jalalabad (511) and Chaghasaray (512) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangle 3564, Jowand (405) and Gurziwan (406) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3466, La`l wa Sar Jangal (507) and Bamyan (508) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangle 3362, Shindand (415) and Tulak (416) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  12. Hyperspectral surface materials map of quadrangle 3268, Khayr Kot (521) and Urgun (522) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  13. Hyperspectral surface materials map of quadrangles 2962 and 3062, Gawdezereh (615), Galachah (616), Chahar Burjak (609), and Khan Neshin (610) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  14. Hyperspectral surface materials map of quadrangles 3668 and 3768, Baghlan (221), Taluqan (222), Imam Sahib (215), and Rustaq (216) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  15. Hyperspectral surface materials map of quadrangle 3262, Farah (421) and Hokumat-e-pur-Chaman (422) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  16. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  17. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; King, Trude V.V.; Kokaly, Raymond F.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  18. Hyperspectral surface materials map of quadrangle 3366, Gizab (513) and Nawer (514) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  19. Hyperspectral surface materials map of quadrangle 3770, Faizabad (217) and Parkhaw (218) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  20. Hyperspectral surface materials map of quadrangle 3570, Tagab-e-Munjan (505) and Asmar-Kamdesh (506) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  1. Hyperspectral surface materials map of quadrangle 3670, Jurm-Kishim (223) and Zebak (224) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  2. Hyperspectral Surface Materials Map of Quadrangle 3566, Sangcharak (501) and Sayghan-o-Kamard (502) Quadrangles, Afghanistan, Showing Carbonates, Phyllosilicates, Sulfates, Altered Minerals, and Other Materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Hyperspectral surface materials map of quadrangles 3666 and 3766, Balkh (219), Mazar-e Sharif (220), Qarqin (213), and Hazara Toghai (214) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  4. Hyperspectral surface materials map of quadrangle 3162, Chakhansur (603) and Kotalak (604) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  5. Hyperspectral surface materials map of quadrangle 3464, Shahrak (411) and Kasi (412) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  6. Hyperspectral surface materials map of quadrangles 3360 and 3460, Kawir-e Naizar (413), Kohe-Mahmudo-Esmailjan (414), Kol-e Namaksar (407), and Ghoriyan (408) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan.Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines.The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  7. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  8. Hyperspectral surface materials map of quadrangle 3164, Lashkar Gah (605) and Kandahar (606) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  9. Hyperspectral surface materials map of quadrangle 3260, Dasht-e-Chah-e-Mazar (419) and Anar Darah (420) quadrangles, Afghanistan, showing iron-bearing minerals and other materials

    USGS Publications Warehouse

    King, Trude V.V.; Hoefen, Todd M.; Kokaly, Raymond F.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected iron-bearing minerals and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. This map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Goethite and jarosite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  10. Hyperspectral surface materials map of quadrangles 3664 and 3764, Char Shengo (123), Shibirghan (124), Jalajin (117), and Kham-Ab (118) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.; Livo, Keith E.; Johnson, Michaela R.; Giles, Stuart A.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  11. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    USGS Publications Warehouse

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  12. Replication of surface features from a master model to an amorphous metallic article

    DOEpatents

    Johnson, William L.; Bakke, Eric; Peker, Atakan

    1999-01-01

    The surface features of an article are replicated by preparing a master model having a preselected surface feature thereon which is to be replicated, and replicating the preselected surface feature of the master model. The replication is accomplished by providing a piece of a bulk-solidifying amorphous metallic alloy, contacting the piece of the bulk-solidifying amorphous metallic alloy to the surface of the master model at an elevated replication temperature to transfer a negative copy of the preselected surface feature of the master model to the piece, and separating the piece having the negative copy of the preselected surface feature from the master model.

  13. Containerless protein crystal growth method

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Chung, Sang K.

    1991-01-01

    A method of growing protein crystals from levitated drops is introduced and unique features of containerless approach in 1-g and micro-G laboratories are discussed. Electrostatic multidrop levitation system which is capable of simultaneous four drop levitation is described. A method of controlling protein saturation level in a programmed way is introduced and discussed. Finally, some of the unique features of containerless approach of protein crystal growth in space are discussed and summarized.

  14. Simultaneous measurement of dynamic force and spatial thin film thickness between deformable and solid surfaces by integrated thin liquid film force apparatus.

    PubMed

    Zhang, Xurui; Tchoukov, Plamen; Manica, Rogerio; Wang, Louxiang; Liu, Qingxia; Xu, Zhenghe

    2016-11-09

    Interactions involving deformable surfaces reveal a number of distinguishing physicochemical characteristics that do not exist in interactions between rigid solid surfaces. A unique fully custom-designed instrument, referred to as integrated thin liquid film force apparatus (ITLFFA), was developed to study the interactions between one deformable and one solid surface in liquid. Incorporating a bimorph force sensor with interferometry, this device allows for the simultaneous measurement of the time-dependent interaction force and the corresponding spatiotemporal film thickness of the intervening liquid film. The ITLFFA possesses the specific feature of conducting measurement under a wide range of hydrodynamic conditions, with a displacement velocity of deformable surfaces ranging from 2 μm s -1 to 50 mm s -1 . Equipped with a high speed camera, the results of a bubble interacting with hydrophilic and partially hydrophobic surfaces in aqueous solutions indicated that ITLFFA can provide information on interaction forces and thin liquid film drainage dynamics not only in a stable film but also in films of the quick rupture process. The weak interaction force was extracted from a measured film profile. Because of its well-characterized experimental conditions, ITLFFA permits the accurate and quantitative comparison/validation between measured and calculated interaction forces and temporal film profiles.

  15. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles.

    PubMed

    Abnous, Khalil; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Emrani, Ahmad Sarreshtehdar

    2018-08-22

    Herein, a novel colorimetric aptasensor was introduced for detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles (AuNPs) and the catalytic activity of the surfaces of AuNPs. Simplicity and detection of cocaine in a short time (only 35 min) are some of the unique features of the proposed sensing strategy. In the presence of cocaine, triple-fragment aptamer (TFA) forms on the surfaces of AuNPs, leading to a significant decrease of the catalytic activity of AuNPs and the color of samples remains yellow. In the absence of target, TFA does not form on the surfaces of AuNPs and 4-Nitrophenol, as a colorimetric agent, has more access to the surfaces of AuNPs, resulting in the reduction of 4-Nitrophenol and the color of sample changes from yellow to colorless. The sensing strategy showed good specificity, a limit of detection (LOD) of 440 pM and a dynamic range over 2-100 nM. The sensing method was also successfully applied to detect cocaine in spiked human serum samples with recovery of 94.71-98.63%. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Bright field segmentation tomography (BFST) for use as surface identification in stereomicroscopy

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline R.; Namati, Eman; de Ryk, Jessica; Hoffman, Eric A.; McLennan, Geoffrey

    2004-07-01

    Stereomicroscopy is an important method for use in image acquisition because it provides a 3D image of an object when other microscopic techniques can only provide the image in 2D. One challenge that is being faced with this type of imaging is determining the top surface of a sample that has otherwise indistinguishable surface and planar characteristics. We have developed a system that creates oblique illumination and in conjunction with image processing, the top surface can be viewed. The BFST consists of the Leica MZ12 stereomicroscope with a unique attached lighting source. The lighting source consists of eight light emitting diodes (LED's) that are separated by 45-degree angles. Each LED in this system illuminates with a 20-degree viewing angle once per cycle with a shadow over the rest of the sample. Subsequently, eight segmented images are taken per cycle. After the images are captured they are stacked through image addition to achieve the full field of view, and the surface is then easily identified. Image processing techniques, such as skeletonization can be used for further enhancement and measurement. With the use of BFST, advances can be made in detecting surface features from metals to tissue samples, such as in the analytical assessment of pulmonary emphysema using the technique of mean linear intercept.

  17. Dynamics and internal structure of an Alaskan debris-covered glacier from repeat airborne photogrammetry and surface geophysics

    NASA Astrophysics Data System (ADS)

    Holt, John; Levy, Joseph; Petersen, Eric; Larsen, Chris; Fahnestock, Mark

    2016-04-01

    Debris-covered glaciers and rock glaciers encompass a range of compositions and activity, and can be useful paleoclimate indicators. They also respond differently to ongoing climate change than glaciers without a protective cover. Their flow dynamics are not well understood, and their unique surface morphologies, including lobate fronts and arcuate ridges, likely result from viscous flow influenced by a combination of composition, structure, and climatic factors. However, basic connections between flow kinematics and surface morphology have not yet been established, limiting our ability to understand these features. In order to begin to address this problem we have undertaken airborne and surface studies of multiple debris-covered glaciers in Alaska and the western U.S. Sourdough Rock Glacier in the St. Elias Mountains, Alaska, is completely debris-covered and exhibits numerous transverse compressional ridges. Its trunk also exhibits highly regular bumps and swales with a wavelength of ~175 m and amplitudes up to 12 m. In the middle trunk, lineations (boulder trains and furrows) bend around a point roughly 200m from the eastern edge. We acquired five high-resolution airborne surveys of Sourdough Rock Glacier between late 2013 and late 2015 using lidar and photogrammetry to assess annual and seasonal change at the sub-meter level. Differencing the DTMs provides vertical change while feature tracking in orthophotos provide horizontal velocities that indicate meters of annual motion. The flow field is highly correlated with surface features; in particular, compressional ridges in the lower lobe. Stranded, formerly active lobes are also apparent. Surface geophysical studies were undertaken to constrain internal structure and composition using a combination of ground-penetrating radar (GPR) at 50 and 100 MHz in six transects, and time-domain electromagnetic (TDEM) measurements at 47 locations, primarily in an along-flow transect and two cross-flow transects. We infer from the GPR and TDEM data that Sourdough Rock Glacier is 40-50 m thick and consists of a core of relatively pure glacier ice preserved under a 2.5-3 m thick debris mantle. In conclusion, Sourdough is actively flowing, with surface velocities that correlate with surface slope and thickness. A bedrock restriction is inferred from bending flow lines, low surface velocities, and localized thinning of the ice. This comprehensive suite of observations provides the potential to model ice flow and to ultimately link details of the surface morphology to accumulation and rheology through flow kinematics and internal structure.

  18. Landcover Mapping of the McMurdo Ice Shelf Using Landsat and WorldView Image Data

    NASA Astrophysics Data System (ADS)

    Hansen, E. K.; Macdonald, G.; Mayer, D. P.; MacAyeal, D. R.

    2016-12-01

    Ice shelves bound approximately half of the Antarctic coast and act to buttress the glaciers that feed them. The collapse of the Larsen B Ice Shelf on the Antarctic Peninsula highlights the importance of processes at the surface for an ice shelf's stability. The McMurdo Ice Shelf is unique among Antarctic ice shelves in that it exists in a relatively warm climate zone and is thus more vulnerable to climate change than colder ice shelves at similar latitudes. However, little is known quantitatively about the surface cover types across the ice shelf, impeding the study of its hydrology and of the origins of its features. In particular, no work has been done linking field observations of supraglacial channels to shelf-wide surface hydrology. We will present the first satellite-derived multiscale landcover map of the McMurdo Ice Shelf based on Landsat 8 and WorldView-2 image data. Landcover types are extracted using supervised classification methods referenced to field observations. Landsat 8 provides coverage of the entire ice shelf ( 5,000 km2) at 30 m/pixel, sufficient to distinguish glacial ice, debris cover, and large supraglacial lakes. WorldView data cover a smaller area— 300 km2 at 2 m/pixel—and thus allow detailed mapping of features that are not spatially resolved by Landsat, such as supraglacial channels and small fractures across the ice shelf's surface. We take advantage of the higher resolution of WorldView-2 data to calculate the area of mid-summer surface water in channels and melt ponds within a detailed study area and use this as the basis for a spectral mixture model in order to estimate the total surface water area across the ice shelf. We intend to use the maps to guide strategic planning of future field research into the seasonal surface hydrology and climate stability of the McMurdo Ice Shelf.

  19. An examination of the relationship between childhood emotional abuse and borderline personality disorder features: the role of difficulties with emotion regulation.

    PubMed

    Kuo, Janice R; Khoury, Jennifer E; Metcalfe, Rebecca; Fitzpatrick, Skye; Goodwill, Alasdair

    2015-01-01

    Childhood abuse has been consistently linked with borderline personality disorder (BPD) and recent studies suggest that some forms of childhood abuse might be uniquely related to both BPD and BPD features. In addition, difficulties with emotion regulation have been found to be associated with childhood abuse, BPD, as well as BPD features. The present study examined (1) whether frequency of childhood emotional abuse is uniquely associated with BPD feature severity when controlling for other forms of childhood abuse and (2) whether difficulties with emotion regulation accounts for the relationship between childhood emotional abuse and BPD feature severity. A sample of undergraduates (n=243) completed the Childhood Trauma Questionnaire - Short Form, Difficulties in Emotion Regulation Scale, and Borderline Symptom List-23. Multiple regression analyses and Structural Equation Modeling were conducted. Results indicated that frequency of childhood emotional abuse (and not sexual or physical abuse) was uniquely associated with BPD feature severity. In addition, while there was no direct path between childhood emotional abuse, childhood physical abuse, or childhood sexual abuse and BPD features, there was an indirect relationship between childhood emotional abuse and BPD features through difficulties with emotion regulation. These findings suggest that, of the different forms of childhood abuse, emotional abuse specifically, may have a developmental role in BPD pathology. Prevention and treatment of BPD pathology might benefit from the provision of emotion regulation strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Osborne 1.

    ERIC Educational Resources Information Center

    McWilliams, Peter

    1982-01-01

    Describes the unique features, available software, performance capabilities, system options, costs, advantages, disadvantages, and eccentricities of the Osborne 1 microcomputer. A table summarizes specifications, features, and costs. (JL)

  1. Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Bandfield, J. L.; Clark, R. N.; Edgett, K. S.; Hamilton, V. E.; Hoefen, T.; Kieffer, H. H.; Kuzmin, R. O.; Lane, M. D.; Malin, M. C.

    1999-01-01

    The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite ((alpha-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350-750 km in size centered near 2 S latitude between 0 and 5 W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and >525/cm, and by the absence of silicate fundamentals in the 1000/cm region. Spectral features resulting from atmospheric CO2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (>5-10 micron). Diameters up to and greater than 100s of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles <5-10 micron in diameter (either as an unpacked or hard-packed powders) fail to match the TES spectra. The spectrally-derived areal abundance of hematite varies with particle size from approximately 10% for particles >30 micron in diameter to 40-60% for unpacked 10 micron powders. The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter <5-10 micron), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it could be a late-stage sedimentary unit, or it could be a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse-grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: (1) chemical precipitation that includes origin by (a) precipitation from oxygenated, Fe-rich water (iron formations), (b) hydrothermal extraction and crystal growth.

  2. Changes in lava effusion rate, explosion characteristics and degassing revealed by time-series photogrammetry and feature tracking velocimetry of Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Grocke, S.; Benage, M.

    2016-12-01

    The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These findings indicate that gas permeability may be proportional to magma ascent and strain rate in dome-forming eruptions.

  3. Multiple Routes to Smart Nanostructured Materials from Diatom Microalgae: A Chemical Perspective.

    PubMed

    Ragni, Roberta; Cicco, Stefania R; Vona, Danilo; Farinola, Gianluca M

    2018-05-01

    Diatoms are unicellular photosynthetic microalgae, ubiquitously diffused in both marine and freshwater environments, which exist worldwide with more than 100 000 species, each with different morphologies and dimensions, but typically ranging from 10 to 200 µm. A special feature of diatoms is their production of siliceous micro- to nanoporous cell walls, the frustules, whose hierarchical organization of silica layers produces extraordinarily intricate pore patterns. Due to the high surface area, mechanical resistance, unique optical features, and biocompatibility, a number of applications of diatom frustules have been investigated in photonics, sensing, optoelectronics, biomedicine, and energy conversion and storage. Current progress in diatom-based nanotechnology relies primarily on the availability of various strategies to isolate frustules, retaining their morphological features, and modify their chemical composition for applications that are not restricted to those of the bare biosilica produced by diatoms. Chemical or biological methods that decorate, integrate, convert, or mimic diatoms' biosilica shells while preserving their structural features represent powerful tools in developing scalable, low-cost routes to a wide variety of nanostructured smart materials. Here, the different approaches to chemical modification as the basis for the description of applications relating to the different materials thus obtained are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Polygenetic Karsted Hardground Omission Surfaces in Lower Silurian Neritic Limestones: a Signature of Early Paleozoic Calcite Seas

    NASA Astrophysics Data System (ADS)

    James, Noel P.; Desrochers, André; Kyser, Kurt T.

    2015-04-01

    Exquisitely preserved and well-exposed rocky paleoshoreline omission surfaces in Lower Silurian Chicotte Formation limestones on Anticosti Island, Quebec, are interpreted to be the product of combined marine and meteoric diagenesis. The different omission features include; 1) planar erosional bedding tops, 2) scalloped erosional surfaces, 3) knobs, ridges, and swales at bedding contacts, and 4) paleoscarps. An interpretation is proposed that relates specific omission surface styles to different diagenetic-depositional processes that took place in separate terrestrial-peritidal-shallow neritic zones. Such processes were linked to fluctuations in relative sea level with specific zones of diagenesis such as; 1) karst corrosion, 2) peritidal erosion, 3) subtidal seawater flushing and cementation, and 4) shallow subtidal deposition. Most surfaces are interpreted to have been the result of initial extensive shallow-water synsedimentary lithification that were, as sea level fell, altered by exposure and subaerial corrosion, only to be buried by sediments as sea level rose again. This succession was repeated several times resulting in a suite of recurring polyphase omission surfaces through many meters of stratigraphic section. Synsedimentary cloudy marine cements are well preserved and are thus interpreted to have been calcitic originally. Aragonite components are rare and thought to have to have been dissolved just below the Silurian seafloor. Large molluscs that survived such seafloor removal were nonetheless leached and the resultant megamoulds were filled with synsedimentary calcite cement. These Silurian inner neritic-strandline omission surfaces are temporally unique. They are part of a suite of marine omission surfaces that are mostly found in early Paleozoic neritic carbonate sedimentary rocks. These karsted hardgrounds formed during a calcite-sea time of elevated marine carbonate saturation and extensive marine cement precipitation. The contemporaneous greenhouse atmosphere was supercharged with CO2 leading to profound surface karst under strongly acid rain. Younger peritidal omission surfaces, although potentially formed during aragonite or calcite sea times, would have been subject to very different terrestrial diagenetic process with lower atmospheric pCO2 values but increasingly complex biogenic soils producing dissimilar alteration features.

  5. On the factors governing water vapor turbulence mixing in the convective boundary layer over land: Concept and data analysis technique using ground-based lidar measurements.

    PubMed

    Pal, Sandip

    2016-06-01

    The convective boundary layer (CBL) turbulence is the key process for exchanging heat, momentum, moisture and trace gases between the earth's surface and the lower part of the troposphere. The turbulence parameterization of the CBL is a challenging but important component in numerical models. In particular, correct estimation of CBL turbulence features, parameterization, and the determination of the contribution of eddy diffusivity are important for simulating convection initiation, and the dispersion of health hazardous air pollutants and Greenhouse gases. In general, measurements of higher-order moments of water vapor mixing ratio (q) variability yield unique estimates of turbulence in the CBL. Using the high-resolution lidar-derived profiles of q variance, third-order moment, and skewness and analyzing concurrent profiles of vertical velocity, potential temperature, horizontal wind and time series of near-surface measurements of surface flux and meteorological parameters, a conceptual framework based on bottom up approach is proposed here for the first time for a robust characterization of the turbulent structure of CBL over land so that our understanding on the processes governing CBL q turbulence could be improved. Finally, principal component analyses will be applied on the lidar-derived long-term data sets of q turbulence statistics to identify the meteorological factors and the dominant physical mechanisms governing the CBL turbulence features. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A simple definitive test for chloride salts on Europa

    NASA Astrophysics Data System (ADS)

    Brown, Michael

    2016-10-01

    Europa is a prime location for exploring our concepts of habitability throughout the solar system. As importantly, Europa is a case study for how liquid water drives the geochemistry and geophysics in a world very different from our own. One of the keys to understanding the liquid water's effect on habitability, geochemistry, and even on geophysics is understanding the chemistry of the internal ocean. Evaporites on the surface of Europa provide a window into this ocean chemistry. Recent observations have overturned 15 years worth of assumptions about the chemistry of Europa's ocean and have suggested that chloride salts - rather than sulfate salts - could be the most abundant constituent in the ocean and in the surface evaporites. The possibility of chloride salts has major implications for geophysics and habitability, but, because chloride salts are basically featureless, definitive spectral evidence was thought impossible.New laboratory data now shows, however, that electron irradiation with Europa-like fluxes imparts distinct spectral absorption features on chloride salts. These spectral features, in specific bands between 430 and 830 nm, are uniquely accessible to high spatial resolution HST spectroscopy. We propose a very simple program to obtain four separate high spatial resolution STIS slit scans across the disk of Europa to construct a global spectral map which will detect and map these surface salts. These observations can definitively identify chloride salts on Europa and fundamentally change our understanding of this world. Rarely can such a simple and short program with HST have the possibility of obtaining such conclusive and transformative results.

  7. Patterns of differences in brain morphology in humans as compared to extant apes.

    PubMed

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Patterns of differences in brain morphology in humans as compared to extant apes

    PubMed Central

    Aldridge, Kristina

    2010-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. PMID:21056456

  9. Feature Acquisition with Imbalanced Training Data

    NASA Technical Reports Server (NTRS)

    Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.; Jones, Dayton L.

    2011-01-01

    This work considers cost-sensitive feature acquisition that attempts to classify a candidate datapoint from incomplete information. In this task, an agent acquires features of the datapoint using one or more costly diagnostic tests, and eventually ascribes a classification label. A cost function describes both the penalties for feature acquisition, as well as misclassification errors. A common solution is a Cost Sensitive Decision Tree (CSDT), a branching sequence of tests with features acquired at interior decision points and class assignment at the leaves. CSDT's can incorporate a wide range of diagnostic tests and can reflect arbitrary cost structures. They are particularly useful for online applications due to their low computational overhead. In this innovation, CSDT's are applied to cost-sensitive feature acquisition where the goal is to recognize very rare or unique phenomena in real time. Example applications from this domain include four areas. In stream processing, one seeks unique events in a real time data stream that is too large to store. In fault protection, a system must adapt quickly to react to anticipated errors by triggering repair activities or follow- up diagnostics. With real-time sensor networks, one seeks to classify unique, new events as they occur. With observational sciences, a new generation of instrumentation seeks unique events through online analysis of large observational datasets. This work presents a solution based on transfer learning principles that permits principled CSDT learning while exploiting any prior knowledge of the designer to correct both between-class and withinclass imbalance. Training examples are adaptively reweighted based on a decomposition of the data attributes. The result is a new, nonparametric representation that matches the anticipated attribute distribution for the target events.

  10. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.

    PubMed

    Zhang, Shichao; Xing, Malcolm; Li, Bingyun

    2018-06-01

    Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  11. Surface currents in the Bohai Sea derived from the Korean Geostationary Ocean Color Imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Wang, M.

    2016-02-01

    The first geostationary ocean color satellite sensor, the Geostationary Ocean Color Imager (GOCI) onboard the Korean Communication, Ocean, and Meteorological Satellite can monitor and measure ocean phenomena over an area of 2500 × 2500 km2 around the western Pacific region centered at 36°N and 130°E. Hourly measurements during the day around 9:00 to 16:00 local time are a unique capability of GOCI to monitor ocean features of higher temporal variability. In this presentation, we show some recent results of GOCI-derived ocean surface currents in the Bohai Sea using the Maximum Cross-Correlation (MCC) feature tracking method and compare the results with altimetry-inversed tidal current observations produced from Oregon State University (OSU) Tidal Inversion Software (OTIS). The performance of the GOCI-based MCC method is assessed and the discrepancies between the GOCI- and OTIS-derived currents are evaluated. A series of sensitivity studies are conducted with images from various satellite products and of various time differences, MCC adjustable parameters, and influence from other forcings such as wind, to find the best setups for optimal MCC performance. Our results demonstrate that GOCI can effectively provide real-time monitoring of not only water optical, biological, and biogeochemical variability, but also the physical dynamics in the region.

  12. Endocranial shape asymmetries in Pan paniscus, Pan troglodytes and Gorilla gorilla assessed via skull based landmark analysis.

    PubMed

    Balzeau, Antoine; Gilissen, Emmanuel

    2010-07-01

    Brain shape asymmetries or petalias consist of the extension of one cerebral hemisphere beyond the other. A larger frontal or caudal projection is usually coupled with a larger lateral extent of the more projecting hemisphere relative to the other. The concurrence of these petalial components is characteristic of hominins. Studies aimed at quantifying petalial asymmetries in human and great ape endocasts rely on the definition of the midline of the endocranial surface. Studies of brain material show that, at least in humans, most of the medial surface of the left occipital lobe distorts along the midline and protrudes on to the right side, making it difficult for midline and corresponding left and right reference point identification. In order to accurately quantify and compare brain shape asymmetries in extant hominid species, we propose here a new protocol based on the objective definition of cranial landmarks. We describe and quantify for the first time in three dimensions the positions of frontal and occipital protrusions in large samples of Pan paniscus, Pan troglodytes and Gorilla gorilla. This study confirms the existence of frontal and occipital petalias in African apes. Moreover, the detailed analysis of the 3D structure of these petalias reveals shared features, as well as features that are unique to the different great ape species.

  13. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  14. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  15. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  16. Length-scale crossover of the hydrophobic interaction in a coarse-grained water model.

    PubMed

    Chaimovich, Aviel; Shell, M Scott

    2013-11-01

    It has been difficult to establish a clear connection between the hydrophobic interaction among small molecules typically studied in molecular simulations (a weak, oscillatory force) and that found between large, macroscopic surfaces in experiments (a strong, monotonic force). Here, we show that both types of interaction can emerge with a simple, core-softened water model that captures water's unique pairwise structure. As in hydrophobic hydration, we find that the hydrophobic interaction manifests a length-scale dependence, exhibiting distinct driving forces in the molecular and macroscopic regimes. Moreover, the ability of this simple model to capture both regimes suggests that several features of the hydrophobic force can be understood merely through water's pair correlations.

  17. Multipolarization radar images for geologic mapping and vegetation discrimination

    NASA Technical Reports Server (NTRS)

    Evans, D. L.; Farr, T. G.; Ford, J. P.; Thompson, T. W.; Werner, C. L.

    1986-01-01

    NASA has developed an airborne SAR that simultaneously yields image data in four linear polarizations in L-band with 10-m resolution over a swath of about 10 km. Signal data are recorded both optically and digitally and annotated in each of the channels to facilitate completely automated digital correlation. Comparison of the relative intensities of the different polarizations furnishes discriminatory mapping information. Local intensity variations in like-polarization images result from topographic effects, while strong cross polarization responses denote the effects of vegetation cover and, in some cases, possible scattering from the subsurface. In each of the areas studied, multiple polarization data led to the discrimination and mapping of unique surface unit features.

  18. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    PubMed Central

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  19. HIV is Now a Manageable Long-Term Condition, But What Makes it Unique? A Qualitative Study Exploring Views About Distinguishing Features from Multi-Professional HIV Specialists in North West England.

    PubMed

    Jelliman, Pauline; Porcellato, Lorna

    HIV is evolving from a life-threatening infection to a long-term, manageable condition because of medical advances, radical changes in health and social care policy, and the impact of an aging population. However, HIV remains complex, presenting unique characteristics distinguishing it from other long-term conditions (LTCs). Our aim in this qualitative descriptive study was to identify and explore these features in the context of LTCs. A focus group (FG) method was used to gather the views and experiences of multi-professional HIV specialists who worked in North West England. Twenty-four staff participated in FGs (n = 3), which were audio recorded, manually transcribed, and thematically analyzed. We found four main themes: (a) stigma, (b) challenges faced by HIV specialists, (c) lack HIV-related knowledge, and (d) unique features, termed "stand alone." We concluded that these distinguishing features hindered full recognition and acceptance of HIV as an LTC. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  20. An Intrinsic Algorithm for Parallel Poisson Disk Sampling on Arbitrary Surfaces.

    PubMed

    Ying, Xiang; Xin, Shi-Qing; Sun, Qian; He, Ying

    2013-03-08

    Poisson disk sampling plays an important role in a variety of visual computing, due to its useful statistical property in distribution and the absence of aliasing artifacts. While many effective techniques have been proposed to generate Poisson disk distribution in Euclidean space, relatively few work has been reported to the surface counterpart. This paper presents an intrinsic algorithm for parallel Poisson disk sampling on arbitrary surfaces. We propose a new technique for parallelizing the dart throwing. Rather than the conventional approaches that explicitly partition the spatial domain to generate the samples in parallel, our approach assigns each sample candidate a random and unique priority that is unbiased with regard to the distribution. Hence, multiple threads can process the candidates simultaneously and resolve conflicts by checking the given priority values. It is worth noting that our algorithm is accurate as the generated Poisson disks are uniformly and randomly distributed without bias. Our method is intrinsic in that all the computations are based on the intrinsic metric and are independent of the embedding space. This intrinsic feature allows us to generate Poisson disk distributions on arbitrary surfaces. Furthermore, by manipulating the spatially varying density function, we can obtain adaptive sampling easily.

  1. Absolute flux measurements for swift atoms

    NASA Technical Reports Server (NTRS)

    Fink, M.; Kohl, D. A.; Keto, J. W.; Antoniewicz, P.

    1987-01-01

    While a torsion balance in vacuum can easily measure the momentum transfer from a gas beam impinging on a surface attached to the balance, this measurement depends on the accommodation coefficients of the atoms with the surface and the distribution of the recoil. A torsion balance is described for making absolute flux measurements independent of recoil effects. The torsion balance is a conventional taut suspension wire design and the Young modulus of the wire determines the relationship between the displacement and the applied torque. A compensating magnetic field is applied to maintain zero displacement and provide critical damping. The unique feature is to couple the impinging gas beam to the torsion balance via a Wood's horn, i.e., a thin wall tube with a gradual 90 deg bend. Just as light is trapped in a Wood's horn by specular reflection from the curved surfaces, the gas beam diffuses through the tube. Instead of trapping the beam, the end of the tube is open so that the atoms exit the tube at 90 deg to their original direction. Therefore, all of the forward momentum of the gas beam is transferred to the torsion balance independent of the angle of reflection from the surfaces inside the tube.

  2. Ceramic-based microelectrode arrays: recording surface characteristics and topographical analysis

    PubMed Central

    Talauliker, Pooja M.; Price, David A.; Burmeister, Jason J.; Nagari, Silpa; Quintero, Jorge E.; Pomerleau, Francois; Huettl, Peter; Hastings, J. Todd; Gerhardt, Greg A.

    2011-01-01

    Amperometric measurements using microelectrode arrays (MEAs) provide spatially and temporally resolved measures of neuromolecules in the central nervous system of rats, mice and non-human primates. Multi-site MEAs can be mass fabricated on ceramic (Al2O3) substrate using photolithographic methods, imparting a high level of precision and reproducibility in a rigid but durable recording device. Although the functional capabilities of MEAs have been previously documented for both anesthetized and freely-moving paradigms, the performance enabling intrinsic physical properties of the MEA device have not heretofore been presented. In these studies, spectral analysis confirmed that the MEA recording sites were primarily composed of elemental platinum (Pt°). In keeping with the precision of the photolithographic process, scanning electron microscopy revealed that the Pt recording sites have unique microwell geometries post-fabrication. Atomic force microscopy demonstrated that the recording surfaces have nanoscale irregularities in the form of elevations and depressions, which contribute to increased current per unit area that exceeds previously reported microelectrode designs. The ceramic substrate on the back face of the MEA was characterized by low nanoscale texture and the ceramic sides consisted of an extended network of ridges and cavities. Thus, individual recording sites have a unique Pt° composition and surface profile that has not been previously observed for Pt-based microelectrodes. These features likely impact the physical chemistry of the device, which may influence adhesion of biological molecules and tissue as well as electrochemical recording performance post-implantation. This study is a necessary step towards understanding and extending the performance abilities of MEAs in vivo. PMID:21513736

  3. Polyelectrolyte Multilayer Film Coated Silver Nanorods: An Effective Carrier System for Externally Activated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Paramasivam, Gokul; Sharma, Varsha; Sundaramurthy, Anandhakumar

    2017-08-01

    Nanoparticle anisotropy offers unique functions and features in comparison with spherical nanoparticles (NPs) and makes anisotropic nanoparticles (ANPs) promising candidates in applications like drug delivery, imaging, biosensing and theranostics. Presence of surface active groups (e.g. amine, and carboxylate groups) on their surface provides binding sites for ligands or other biomolecules, and hence, this could be targeted for specific part or cells in our body. In the quest of such surface modification, functionalization of ANPs along Layer-by-Layer (LbL) coating of oppositely charged polyelectrolytes (PE) reduces cellular toxicity and promotes easy encapsulation of drugs. In this work, we report the silver nanorods (AgNRs) synthesis by adsorbate directed synthetic approach using cetyltrimethyl ammonium bromide (CTAB). The formed ANPs is investigated by scanning electron microscopy (SEM) and UV-Visible (UV-Vis) spectroscopy revealing the shaping of AgNRs of 3-16 nm aspect ratio with some presence of triangles. These NRs were further coated with bio polymers of chitosan (CH) and dextran sulphate (DS) through LbL approach and used for encapsulation of water soluble anti-bacterial drugs like ciprofloxacin hydrochloride (CFH). The encapsulation of drugs and profiles of drug release were investigated and compared to that of spherical silver nanoparticles (AgNPs). The added advantages of the proposed drug delivery system (DDS) can be externally activated to release the loaded drug and used as contrast agents for biological imaging under exposure to NIR light. Such system shows unique and attractive characteristics required for drug delivery and bioimaging thus offering the scope for further development as theranostic material.

  4. SERS-Based Prognosis of Kidney Transplant Outcome

    NASA Astrophysics Data System (ADS)

    Chi, Jingmao

    Kidney transplant is the predominant procedure of all organ transplants around the world. The number of patients on the waiting list for a kidney is growing rapidly, yet the number of donations does not keep up with the fast-growing need. This thesis focuses on the surface-enhanced Raman scattering (SERS) analysis of urine samples for prognosis of kidney transplant outcome, which can potentially let patients have a more timely treatment as well as expand the organ pool for transplant. We have observed unique SERS spectral features from urine samples of kidney transplant recipients that have strong associations with the kidney acute rejection (AR) based on the analysis of urine one day after the transplant. Our ability to provide an early prognosis of transplant outcome is a significant advance over the current gold standard of clinical diagnosis, which occurs weeks or months after the surgical procedure. The SERS analysis has also been applied to urine samples from deceased kidney donors. Excellent classification ability was achieved when the enhanced PCA-LDA analysis was used to classify and identify urine samples from different cases. The sensitivity of the acute tubular necrosis (ATN) class is more than 90%, which can indicate the usable kidneys in the high failure risk category. This analysis can help clinicians identify usable kidneys which would be discarded using conventional clinic methods as high failure risk. To investigate the biomarkers that cause the unique SERS features, an HPLC-SERS-MS approach was established. The high-performance liquid chromatography (HPLC) was used to separate the urinary components to reduce the sample complexity. The mass spectrometry (MS) was used to determine the formulas and the structures of the biomarkers. The presence of 1-methyl-2-pyrrolidone (NMP) and adenine in urine samples were confirmed by both MS and SERS analysis. Succinylmonocholine, a metabolite of suxamethonium, has a potential to be the biomarker that causes the unique SERS spectral features that indicate kidney AR. By integrating SERS analysis with statistical and chemical analysis and with the promising outcomes, this research has made a significant contribution in exploring the frontier of SERS analysis in biomedical sensing and diagnosis.

  5. TiO2-PANI/Cork composite: A new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation.

    PubMed

    Sboui, Mouheb; Nsib, Mohamed Faouzi; Rayes, Ali; Swaminathan, Meenakshisundaram; Houas, Ammar

    2017-10-01

    A novel photocatalyst based on TiO 2 -PANI composite supported on small pieces of cork has been reported. It was prepared by simple impregnation method of the polyaniline (PANI)-modified TiO 2 on cork. The TiO 2 -PANI/Cork catalyst shows the unique feature of floating on the water surface. The as-synthesized catalyst was characterized by X-ray diffraction (XRD), scanning electron micrograph (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectra (UV-vis DRS) and the Brunauer-Emmett-Teller (BET) surface area analysis. Characterization suggested the formation of anatase highly dispersed on the cork surface. The prepared floating photocatalyst showed high efficiency for the degradation of methyl orange dye and other organic pollutants under solar irradiation and constrained conditions, i.e., no-stirring and no-oxygenation. The TiO 2 -PANI/Cork floating photocatalyst can be reused for at least four consecutive times without significant decrease of the degradation efficiency. Copyright © 2017. Published by Elsevier B.V.

  6. Estimating flood risk along the coasts of United States considering compounding effects of multiple flood drivers

    NASA Astrophysics Data System (ADS)

    Moftakhari Rostamkhani, H.; Salvadori, G.; AghaKouchak, A.; Sanders, B. F.; Matthew, R.

    2016-12-01

    NASA launched the CYGNSS mission 15 December 2016 which comprises a constellation of eight satellites flying in a low inclination (tropical) Earth orbit. Each satellite measures up to four independent GPS signals scattered by the ocean, to obtain surface roughness, near surface wind speed, and air-sea latent heat flux. Utilizing such a large number of satellites, these measurements which are uniquely able to penetrate clouds and heavy precipitation, allows CYGNSS to frequently sample tropical cyclone intensification and of the diurnal cycle of winds. Additionally, data retrievals over land have proven effective to map surface water and soil moisture. Engineering commissioning of the constellation was successfully completed in March 2017 and the mission is now conducting science measurements. An overview of the CYGNSS system, mission and measurement concept will be presented, together with highlights of early on-orbit performance. Scientific results obtained during the 2017 hurricane season and featured at the NASA CYGNSS Applications Workshop in Monterey, CA 31 October - 2 November 2, 2017 will also be presented.

  7. Electrokinetic Response of Charge-Selective Nanostructured Polymeric Membranes

    NASA Astrophysics Data System (ADS)

    Schiffbauer, Jarrod; Li, Diya; Gao, Feng; Phillip, William; Chang, Hsueh-Chia

    2017-11-01

    Nanostructured polymeric membranes, with a tunable pore size and ease of surface molecular functionalization, are a promising material for separations, filtration, and sensing applications. Recently, such membranes have been fabricated wherein the ion selectivity is imparted by self-assembled functional groups through a two-step process. Amine groups are used to provide a positive surface charge and acid groups are used to yield a negative charge. The membranes can be fabricated as either singly-charged or patterned/mosaic membranes, where there are alternating regions of amine- lined or acid-lined pores. We demonstrate that such membranes, in addition to having many features in common with other charge selective membranes (i.e. AMX or Nafion), display a unique single-membrane rectification behavior. This is due to the asymmetric distribution of charged functional groups during the fabrication process. We demonstrate this rectification effect using both dc current-voltage characteristics as well as dc-biased electrical impedance spectroscopy. Furthermore, surface charge changes due to dc concentration polarization and generation of localized pH shifts are monitored using electrical impedance spectroscopy. (formerly at University of Notre Dame).

  8. Quantifying the density of surface capping ligands on semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Zhan, Naiqian; Palui, Goutam; Merkl, Jan-Philip; Mattoussi, Hedi

    2015-03-01

    We have designed a new set of coordinating ligands made of a lipoic acid (LA) anchor and poly(ethylene glycol) (PEG) hydrophilic moiety appended with a terminal aldehyde for the surface functionalization of QDs. This ligand design was combined with a recently developed photoligation strategy to prepare hydrophilic CdSe-ZnS QDs with good control over the fraction of intact aldehyde (-CHO) groups per nanocrystal. We further applied the efficient hydrazone ligation to react aldehyde-QDs with 2-hydrazinopyridine (2-HP). This covalent modification produces QD-conjugates with a well-defined absorption feature at 350 nm ascribed to the hydrazone chromophore. We exploited this unique optical signature to accurately measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied. This allowed us to extract an estimate for the number of LA-PEG ligands per QD. These results suggest that hydrazone ligation has the potential to provide a simple and general analytical method to estimate the number of surface ligands for a variety of nanocrystals such as metal, metal oxide and semiconductor nanocrystals.

  9. Micro-masonry for 3D Additive Micromanufacturing

    PubMed Central

    Keum, Hohyun; Kim, Seok

    2014-01-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178

  10. A novel RNA binding surface of the TAM domain of TIP5/BAZ2A mediates epigenetic regulation of rRNA genes.

    PubMed

    Anosova, Irina; Melnik, Svitlana; Tripsianes, Konstantinos; Kateb, Fatiha; Grummt, Ingrid; Sattler, Michael

    2015-05-26

    The chromatin remodeling complex NoRC, comprising the subunits SNF2h and TIP5/BAZ2A, mediates heterochromatin formation at major clusters of repetitive elements, including rRNA genes, centromeres and telomeres. Association with chromatin requires the interaction of the TAM (TIP5/ARBP/MBD) domain of TIP5 with noncoding RNA, which targets NoRC to specific genomic loci. Here, we show that the NMR structure of the TAM domain of TIP5 resembles the fold of the MBD domain, found in methyl-CpG binding proteins. However, the TAM domain exhibits an extended MBD fold with unique C-terminal extensions that constitute a novel surface for RNA binding. Mutation of critical amino acids within this surface abolishes RNA binding in vitro and in vivo. Our results explain the distinct binding specificities of TAM and MBD domains to RNA and methylated DNA, respectively, and reveal structural features for the interaction of NoRC with non-coding RNA. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Dynamic and structural properties of room-temperature ionic liquids near silica and carbon surfaces.

    PubMed

    Li, Song; Han, Kee Sung; Feng, Guang; Hagaman, Edward W; Vlcek, Lukas; Cummings, Peter T

    2013-08-06

    The dynamic and structural properties of a room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium(trifluoromethanesulfonimide) ([C4mim][Tf2N]) confined in silica and carbon mesopores were investigated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) experiments. The complex interfacial microstructures of confined [C4mim][Tf2N] are attributed to the distinctive surface features of the silica mesopore. The temperature-dependent diffusion coefficients of [C4mim][Tf2N] confined in the silica or carbon mesopore exhibit divergent behavior. The loading fraction (f = 1.0, 0.5, and 0.25) has a large effect on the magnitude of the diffusion coefficient in the silica pore and displays weaker temperature dependence as the loading fraction decreases. The diffusion coefficients of mesoporous carbon-confined [C4mim][Tf2N] are relatively insensitive to the loading faction and exhibit a temperature dependence that is similar to the bulk dependence at all loading levels. Such phenomena can be attributed to the unique surface heterogeneity, dissimilar interfacial microstructures, and interaction potential profile of RTILs near silica and carbon walls.

  12. Bioinspired Zwitterionic Surface Coatings with Robust Photostability and Fouling Resistance.

    PubMed

    Huang, Chun-Jen; Chu, Sz-Hau; Wang, Lin-Chuan; Li, Chien-Hung; Lee, T Randall

    2015-10-28

    Great care has been paid to the biointerface between a bulk material and the biological environment, which plays a key role in the optimized performance of medical devices. In this work, we report a new superhydrophilic adsorbate, called L-cysteine betaine (Cys-b), having branched zwitterionic groups that give rise to surfaces and nanoparticles with enhanced chemical stability, biofouling resistance, and inertness to environmental changes. Cys-b was synthesized from the amphoteric sulfur-containing amino acid, L-cysteine (Cys), by quaternization of its amino group. Gold surfaces modified with Cys-b exhibited prominent repellence against the nonspecific adsorption of proteins, bacteria, and fibroblast cells. In addition, Cys-b existed in zwitterionic form over a wide pH range (i.e., pH 3.4 to 10.8), and showed excellent suppression in photoinduced oxidation on gold substrates. Furthermore, the modification of hollow Ag@Au nanoshells with Cys-b gave rise to nanoparticles with excellent colloidal stability and resistance to coordinative interaction with Cu(2+). Taken together, the unique features of Cys-b offer a new nanoscale coating for use in a wide spectrum of applications.

  13. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    PubMed

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  15. Alluvial Fans on Dunes in Kaiser Crater Suggest Niveo-Aeolian and Denivation Processes on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.

    2005-01-01

    On Earth, cold region sand dunes often contain inter-bedded sand, snow, and ice. These mixed deposits of wind-driven snow, sand, silt, vegetal debris, or other detritus have been termed Niveo-aeolian deposits. These deposits are often coupled with features that are due to melting or sublimation of snow, called denivation features. Snow and ice may be incorporated into dunes on Mars in three ways. Diffusion of water vapour into pore spaces is the widely accepted mechanism for the accretion of premafrost ice. Additional mechanisms may include the burial by sand of snow that has fallen on the dune surface or the synchronous transportation and deposition of snow, sand and ice. Both of these mechanisms have been reported for polar dunes on Earth. Niveo-aeolian deposits in polar deserts on Earth have unique morphologies and sedimentary structures that are generally not found in warm desert dunes. Recent analysis of MOC-scale data have found evidence for potential niveo-aeolian and denivation deposits in sand dunes on Mars.

  16. Scientific rationale for selecting northwest Isidis Planitia (14 deg - 17 deg N latitude, 278 deg - 281 deg longitude) as a potential Mars Pathfinder landing site

    NASA Technical Reports Server (NTRS)

    Parker, Tim J.; Rice, Jim W.

    1994-01-01

    The northwest Isidis Basin offers a unique opportunity to land near a fretted terrain lowland/upland boundary that meets both the latitudinal and elevation requirements imposed on the spacecraft. The landing site lies east of erosional scarps and among remnant massif inselbergs of the Syrtis Major volcanic plains. The plains surface throughout Isidis exhibits abundant, low-relief mounds that are the local expression of the 'thumbprint terrain' that is common within a few hundred kilometers of the lowland/upland boundary. The massif inselbergs are not as numerous nor as massive as those fretted terrains to the northwest, so local slopes are not expected to be steep. Neither feature should pose a serious threat to the lander. Landing on or adjacent to one of these features would enhance the science return and would help to pinpoint the landing site in Viking and subsequent orbiter images by offering views of landmarks beyond the local horizon.

  17. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  18. Performance and Design Considerations of a Novel Dual-Material Gate Carbon Nanotube Field-Effect Transistors: Nonequilibrium Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Arefinia, Zahra; Orouji, Ali A.

    2009-02-01

    The concept of dual-material gate (DMG) is applied to the carbon nanotube field-effect transistor (CNTFET) with doped source and drain extensions, and the features exhibited by the resulting new structure, i.e., the DMG-CNTFET structure, have been examined for the first time by developing a two-dimensional (2D) full quantum simulation. The simulations have been done by the self-consistent solution of 2D Poisson-Schrödinger equations, within the nonequilibrium Green's function (NEGF) formalism. The results show DMG-CNTFET decreases significantly leakage current and drain conductance and increases on-off current ratio and voltage gain as compared to the single material gate counterparts CNTFET. It is seen that short channel effects in this structure are suppressed because of the perceivable step in the surface potential profile, which screens the drain potential. Moreover, these unique features can be controlled by engineering the workfunction and length of the gate metals. Therefore, this work provides an incentive for further experimental exploration.

  19. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J [Naperville, IL; Hryn, John N [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  20. Ranger's Legacy

    NASA Technical Reports Server (NTRS)

    1987-01-01

    With its Landsat satellites, development of sensors, and advancement of processing techniques, NASA provided the initial technology base for another Earth-benefit application of image processing, Earth resources survey by means of remote sensing. Since each object has its own unique "signature," it is possible to distinguish among surface features and to generate computer-processed imagery identifying specific features of importance to resource managers. This capability, commercialized by Perceptive Scientific Instruments, Inc., offers practical application in such areas as agricultural crop forecasting, rangeland and forest management, land use planning, mineral and petroleum exploration, map making, water quality evaluation and disaster assessment. Major users of the technology have been federal, state, and local governments, but it is making its way into commercial operations, for example, resource exploration companies looking for oil, gas and mineral sources, and timber production firms seeking more efficient treeland management. Supporting both government and private users is a small industry composed of companies producing the processing hardware software. As is the case in the medical application, many of these companies are direct offspring of NASA's work.

  1. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    PubMed

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  2. High Temperature and High Pressure Mixtures of Iron Oxides from the Impact Event at the Bee Bluff Crypto-Meteorite Impact Crater of South Texas

    NASA Astrophysics Data System (ADS)

    Graham, R. A.

    2012-10-01

    Disturbed geology within a several km diameter surface area of sedimentary Carrizo Sandstone near Uvalde, Texas, indicates the presence of a partially buried meteorite impact crater. Identification of its impact origin is supported by detailed studies but quartz grains recovered from distances of about100 km from the structure also show planar deformation features (PDFs). While PDFs are recognized as uniquely from impact processes, quantitative interpretation requires extension of Hugoniot materials models to more realistic grain-level, mixture models. Carrizo sandstone is a porous mixture of fine quartz and goethite. At impact pressures of tens of GPa, goethite separates into hematite and water vapor upon release of impact pressure. Samples from six different locations up to 50 km from the impact site preserve characteristic features resulting from mixtures of goethite, its water vapor, hematite and quartz. Spheroids resulting from local radial acceleration of mixed density, hot products are common at various sites. Local hydrodynamic instabilities cause similar effects.

  3. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  4. Coexistence of type-II Dirac point and weak topological phase in Pt 3 Sn

    DOE PAGES

    Kim, Minsung; Wang, Cai -Zhuang; Ho, Kai -Ming

    2017-11-06

    Intriguing topological phases may appear in both insulating and semimetallic states. Topological insulators exhibit topologically nontrivial band inversion, while topological Dirac/Weyl semimetals show “relativistic” linear band crossings. Here, we report an unusual topological state of Pt 3Sn, where the two topological features appear simultaneously. Based on first-principles calculations, we show that Pt 3Sn is a three-dimensional weak topological semimetal with topologically nontrivial band inversion between the valence and conduction bands, where the band structure also possesses type-II Dirac points at the boundary of two electron pockets. The formation of the Dirac points can be understood in terms of the representationsmore » of relevant symmetry groups and the compatibility relations. The topological surface states appear in accordance with the nontrivial bulk band topology. As a result, the unique coexistence of the two distinct topological features in Pt 3Sn enlarges the material scope in topological physics, and is potentially useful for spintronics.« less

  5. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells

    PubMed Central

    Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.

    2016-01-01

    Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757

  6. Roll-to-roll, shrink-induced superhydrophobic surfaces for antibacterial applications, enhanced point-of-care detection, and blood anticoagulation

    NASA Astrophysics Data System (ADS)

    Nokes, Jolie McLane

    Superhydrophobic (SH) surfaces are desirable because of their unique anti-wetting behavior. Fluid prefers to bead up (contact angle >150°) and roll off (contact angle hysteresis <10°) a SH surface because micro- and nanostructure features trap air pockets. Fluid only adheres to the peaks of the structures, causing minimal adhesion to the surface. Here, shrink-induced SH plastics are fabricated for a plethora of applications, including antibacterial applications, enhanced point-of-care (POC) detection, and reduced blood coagulation. Additionally, these purely structural SH surfaces are achieved in a roll-to-roll (R2R) platform for scalable manufacturing. Because their self-cleaning and water resistant properties, structurally modified SH surfaces prohibit bacterial growth and obviate bacterial chemical resistance. Antibacterial properties are demonstrated in a variety of SH plastics by preventing gram-negative Escherichia coli (E. coli) bacterial growth >150x compared to flat when fluid is rinsed and >20x without rinsing. Therefore, a robust and stable means to prevent bacteria growth is possible. Next, protein in urine is detected using a simple colorimetric output by evaporating droplets on a SH surface. Contrary to evaporation on a flat surface, evaporation on a SH surface allows fluid to dramatically concentrate because the weak adhesion constantly decreases the footprint area. On a SH surface, molecules in solution are confined to a footprint area 8.5x smaller than the original. By concentrating molecules, greater than 160x improvements in detection sensitivity are achieved compared to controls. Utility is demonstrated by detecting protein in urine in the pre-eclampsia range (150-300microgmL -1) for pregnant women. Further, SH surfaces repel bodily fluids including blood, urine, and saliva. Importantly, the surfaces minimize blood adhesion, leading to reduced blood coagulation without the need for anticoagulants. SH surfaces have >4200x and >28x reduction of blood residue area and volume compared to the non-structured controls of the same material. In addition, blood clotting area is reduced >5x using whole blood directly from the patient. In this study, biocompatible SH surfaces are achieved using commodity shrink-wrap film and are scaled up for R2R manufacturing. The purely structural modification negates complex and expensive post processing, and SH features are achieved in commercially-available and FDA-approved plastics.

  7. Ambient response of a unique performance-based design building with dynamic response modification features

    USGS Publications Warehouse

    Çelebi, Mehmet; Huang, Moh; Shakal, Antony; Hooper, John; Klemencic, Ron

    2012-01-01

    A 64-story, performance-based design building with reinforced concrete core shear-walls and unique dynamic response modification features (tuned liquid sloshing dampers and buckling-restrained braces) has been instrumented with a monitoring array of 72 channels of accelerometers. Ambient vibration data recorded are analyzed to identify modes and associated frequencies and damping. The low-amplitude dynamic characteristics are considerably different than those computed from design analyses, but serve as a baseline against which to compare with future strong shaking responses. Such studies help to improve our understanding of the effectiveness of the added features to the building and help improve designs in the future.

  8. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  9. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are demonstrated in the aerosol mass spectra shown in Figure 2. The aromatic aerosol also demonstrates strong chemical reactivity when exposed to laboratory air, indicating substantial stored chemical potential. Oxidatoin and solubility studies wil be presented and implicatoins for prebiotic chemistry o nTitan will be discussed.

  10. Support and Development of Workflow Protocols for High Throughput Single-Lap-Joint Testing-Experimental

    DTIC Science & Technology

    2013-04-01

    preparation, and presence of an overflow fillet for a high strength epoxy and ductile methacylate adhesive. A unique feature of this study was the...of expanding adhesive joint test configurations as part of the GEMS program. 15. SUBJECT TERMS single lap joint, adhesion, aluminum, epoxy ... epoxy and ductile methacylate adhesive. A unique feature of this study was the use of untrained GEMS (Gains in the Education of Mathematics and Sci

  11. Reanalysis of Clementine Bistatic Radar Data from the Lunar South Pole

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.; Tyler, G. Leonard

    1998-01-01

    On 9 April 1994 the Clementine spacecraft high-gain antenna was aimed toward the Moon's surface and the resulting 13-cm wavelength radio echoes were received on Earth. Using these data, we have found that the lunar surface generally follows a Lambertian bistatic scattering function sigma(sub 0) = K(sub D)cos(theta(sub i) with K(sub D) approx. 0.003 for the opposite (expected) sense of circular polarization and K(sub D) approx. 0.001 for the same (unexpected) sense. But there are important deviations-of up to 50% in some parts of the echo spectrum-from this simple form. Based on an earlier analysis of these same data, Nozette et al. claimed detection of an enhancement in echoes with right circular polarization from regions near the South Pole in a near-backscatter geometry. Such behavior would be consistent with presence of perhaps large quantities of water ice near the Pole. We have been unable to reproduce that result. Although we find weak suggestions of enhanced echoes at the time of South Pole backscatter, similar features are present at earlier and later times, adjacent frequencies, and in left circular polarization. If enhanced backscatter is present, it is not unique to the South Pole; if not unique to the Pole, then ice is less likely as an explanation for the enhancement.

  12. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species.

    PubMed

    Tabish, Tanveer A; Zhang, Shaowei; Winyard, Paul G

    2018-05-01

    Graphene has a promising future in applications such as disease diagnosis, cancer therapy, drug/gene delivery, bio-imaging and antibacterial approaches owing to graphene's unique physical, chemical and mechanical properties alongside minimal toxicity to normal cells, and photo-stability. However, these unique features and bioavailability of graphene are fraught with uncertainties and concerns for environmental and occupational exposure. Changes in the physicochemical properties of graphene affect biological responses including reactive oxygen species (ROS) production. Lower production of ROS by currently available theranostic agents, e.g. magnetic nanoparticles, carbon nanotubes, gold nanostructures or polymeric nanoparticles, restricts their clinical application in cancer therapy. Oxidative stress induced by graphene accumulated in living organs is due to acellular factors which may affect physiological interactions between graphene and target tissues and cells. Acellular factors include particle size, shape, surface charge, surface containing functional groups, and light activation. Cellular responses such as mitochondrial respiration, graphene-cell interactions and pH of the medium are also determinants of ROS production. The mechanisms of ROS production by graphene and the role of ROS for cancer treatment, are poorly understood. The aim of this review is to set the theoretical basis for further research in developing graphene-based theranostic platforms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    NASA Astrophysics Data System (ADS)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of <2 microns. Thin-film membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to <50 nm. Additionally, these membranes may be non-porous or porous (with controllable pore sizes from 200 nm to <5 nm), for sophisticated size-based separations. With previous and current support from the NIH SBIR program, we have built several unique devices, and demonstrated improved separations, cell culturing, and imaging (optical and electron microscopy) versus standard products. Being ceramic, the material is much more robust to demanding environments (e.g. high and low temperatures and organic solvents), compared to polymer-based devices. Additionally, we have applied multiple surface modification techniques, including atomic layer deposition, to manipulate properties such as electrical conductivity. This microfabrication technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  14. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    NASA Technical Reports Server (NTRS)

    Williams, Martha K.; Smith, Trent M.; Roberson, Luke B.; Yang, Feng; Nelson, Gordon L.

    2010-01-01

    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica.

  15. Cubic mesoporous Ag@CN: a high performance humidity sensor.

    PubMed

    Tomer, Vijay K; Thangaraj, Nishanthi; Gahlot, Sweta; Kailasam, Kamalakannan

    2016-12-01

    The fabrication of highly responsive, rapid response/recovery and durable relative humidity (%RH) sensors that can precisely monitor humidity levels still remains a considerable challenge for realizing the next generation humidity sensing applications. Herein, we report a remarkably sensitive and rapid %RH sensor having a reversible response using a nanocasting route for synthesizing mesoporous g-CN (commonly known as g-C 3 N 4 ). The 3D replicated cubic mesostructure provides a high surface area thereby increasing the adsorption, transmission of charge carriers and desorption of water molecules across the sensor surfaces. Owing to its unique structure, the mesoporous g-CN functionalized with well dispersed catalytic Ag nanoparticles exhibits excellent sensitivity in the 11-98% RH range while retaining high stability, negligible hysteresis and superior real time %RH detection performances. Compared to conventional resistive sensors based on metal oxides, a rapid response time (3 s) and recovery time (1.4 s) were observed in the 11-98% RH range. Such impressive features originate from the planar morphology of g-CN as well as unique physical affinity and favourable electronic band positions of this material that facilitate water adsorption and charge transportation. Mesoporous g-CN with Ag nanoparticles is demonstrated to provide an effective strategy in designing high performance %RH sensors and show great promise for utilization of mesoporous 2D layered materials in the Internet of Things and next generation humidity sensing applications.

  16. Scattering effects of machined optical surfaces

    NASA Astrophysics Data System (ADS)

    Thompson, Anita Kotha

    1998-09-01

    Optical fabrication is one of the most labor-intensive industries in existence. Lensmakers use pitch to affix glass blanks to metal chucks that hold the glass as they grind it with tools that have not changed much in fifty years. Recent demands placed on traditional optical fabrication processes in terms of surface accuracy, smoothnesses, and cost effectiveness has resulted in the exploitation of precision machining technology to develop a new generation of computer numerically controlled (CNC) optical fabrication equipment. This new kind of precision machining process is called deterministic microgrinding. The most conspicuous feature of optical surfaces manufactured by the precision machining processes (such as single-point diamond turning or deterministic microgrinding) is the presence of residual cutting tool marks. These residual tool marks exhibit a highly structured topography of periodic azimuthal or radial deterministic marks in addition to random microroughness. These distinct topographic features give rise to surface scattering effects that can significantly degrade optical performance. In this dissertation project we investigate the scattering behavior of machined optical surfaces and their imaging characteristics. In particular, we will characterize the residual optical fabrication errors and relate the resulting scattering behavior to the tool and machine parameters in order to evaluate and improve the deterministic microgrinding process. Other desired information derived from the investigation of scattering behavior is the optical fabrication tolerances necessary to satisfy specific image quality requirements. Optical fabrication tolerances are a major cost driver for any precision optical manufacturing technology. The derivation and control of the optical fabrication tolerances necessary for different applications and operating wavelength regimes will play a unique and central role in establishing deterministic microgrinding as a preferred and a cost-effective optical fabrication process. Other well understood optical fabrication processes will also be reviewed and a performance comparison with the conventional grinding and polishing technique will be made to determine any inherent advantages in the optical quality of surfaces produced by other techniques.

  17. Cell-material interactions revealed via material techniques of surface patterning.

    PubMed

    Yao, Xiang; Peng, Rong; Ding, Jiandong

    2013-10-04

    Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flexible Microsensor Array for the Root Zone Monitoring of Porous Tube Plant Growth System

    NASA Technical Reports Server (NTRS)

    Sathyan, Sandeep; Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.

    2004-01-01

    Control of oxygen and water in the root zone is vital to support plant growth in the microgravity environment. The ability to control these sometimes opposing parameters in the root zone is dependent upon the availability of sensors to detect these elements and provide feedback for control systems. In the present study we demonstrate the feasibility of using microsensor arrays on a flexible substrate for dissolved oxygen detection, and a 4-point impedance microprobe for surface wetness detection on the surface of a porous tube (PT) nutrient delivery system. The oxygen microsensor reported surface oxygen concentrations that correlated with the oxygen concentrations of the solution inside the PT when operated at positive pressures. At negative pressures the microsensor shows convergence to zero saturation (2.2 micro mol/L) values due to inadequate water film formation on porous tube surface. The 4-point microprobe is useful as a wetness detector as it provides a clear differentiation between dry and wet surfaces. The unique features of the dissolved oxygen microsensor array and 4-point microprobe include small and simple design, flexibility and multipoint sensing. The demonstrated technology is anticipated to provide low cost, and highly reliable sensor feedback monitoring plant growth nutrient delivery system in both terrestrial and microgravity environments.

  19. Mid-infrared thermal imaging for an effective mapping of surface materials and sub-surface detachments in mural paintings: integration of thermography and thermal quasi-reflectography

    NASA Astrophysics Data System (ADS)

    Daffara, C.; Parisotto, S.; Mariotti, P. I.

    2015-06-01

    Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.

  20. Platforms for hyperspectral imaging, in-situ optical and acoustical imaging in urbanized regions

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R.; Oney, Taylor

    2016-10-01

    Hyperspectral measurements of the water surface of urban coastal waters are presented. Oblique bidirectional reflectance factor imagery was acquired made in a turbid coastal sub estuary of the Indian River Lagoon, Florida and along coastal surf zone waters of the nearby Atlantic Ocean. Imagery was also collected using a pushbroom hyperspectral imager mounted on a fixed platform with a calibrated circular mechatronic rotation stage. Oblique imagery of the shoreline and subsurface features clearly shows subsurface bottom features and rip current features within the surf zone water column. In-situ hyperspectral optical signatures were acquired from a vessel as a function of depth to determine the attenuation spectrum in Palm Bay. A unique stationary platform methodology to acquire subsurface acoustic images showing the presence of moving bottom boundary nephelometric layers passing through the acoustic fan beam. The acoustic fan beam imagery indicated the presence of oscillatory subsurface waves in the urbanized coastal estuary. Hyperspectral imaging using the fixed platform techniques are being used to collect hyperspectral bidirectional reflectance factor (BRF) measurements from locations at buildings and bridges in order to provide new opportunities to advance our scientific understanding of aquatic environments in urbanized regions.

  1. Multi-Modal Ultra-Widefield Imaging Features in Waardenburg Syndrome

    PubMed Central

    Choudhry, Netan; Rao, Rajesh C.

    2015-01-01

    Background Waardenburg syndrome is characterized by a group of features including; telecanthus, a broad nasal root, synophrys of the eyebrows, piedbaldism, heterochromia irides, and deaf-mutism. Hypopigmentation of the choroid is a unique feature of this condition examined with multi-modal Ultra-Widefield Imaging in this report. Material/Methods Report of a single case. Results Bilateral symmetric choroidal hypopigmentation was observed with hypoautofluorescence in the region of hypopigmentation. Fluorescein angiography revealed a normal vasculature, however a thickened choroid was seen on Enhanced-Depth Imaging Spectral-Domain OCT (EDI SD-OCT). Conclusion(s) Choroidal hypopigmentation is a unique feature of Waardenburg syndrome, which can be visualized with ultra-widefield fundus autofluorescence. The choroid may also be thickened in this condition and its thickness measured with EDI SD-OCT. PMID:26114849

  2. Hyperspectral surface materials map of quadrangles 2964, 2966, 3064, and 3066, Shah-Esmail (617), Reg-Alaqadari (618), Samandkhan-Karez (713), Laki-Bander (611), Jahangir-Naweran (612), and Sreh-Chena (707) quadrangles, Afghanistan, showing carbonates, phyllosilicates, sulfates, altered minerals, and other materials

    USGS Publications Warehouse

    Hoefen, Todd M.; Kokaly, Raymond F.; King, Trude V.V.; Livo, Keith E.; Giles, Stuart A.; Johnson, Michaela R.

    2013-01-01

    This map shows the spatial distribution of selected carbonates, phyllosilicates, sulfates, altered minerals, and other materials derived from analysis of airborne HyMap™ imaging spectrometer (hyperspectral) data of Afghanistan collected in late 2007. The map is one in a series of U.S. Geological Survey/Afghanistan Geological Survey quadrangle maps covering Afghanistan. Flown at an altitude of 50,000 feet (15,240 meters (m)), the HyMap™ imaging spectrometer measured reflected sunlight in 128 channels, covering wavelengths between 0.4 and 2.5 μm. The data were georeferenced, atmospherically corrected and converted to apparent surface reflectance, empirically adjusted using ground-based reflectance measurements, and combined into a mosaic with 23-m pixel spacing. Variations in water vapor and dust content of the atmosphere, in solar angle, and in surface elevation complicated correction; therefore, some classification differences may be present between adjacent flight lines. The reflectance spectrum of each pixel of HyMap™ imaging spectrometer data was compared to the reference materials in a spectral library of minerals, vegetation, water, and other materials. Minerals occurring abundantly at the surface and those having unique spectral features were easily detected and discriminated, while minerals having slightly different compositions but similar spectral features were less easily discriminated; thus, some map classes consist of several minerals having similar spectra, such as “Epidote or chlorite.” A designation of “Not classified” was assigned to the pixel when there was no match with reference spectra.

  3. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further themore » similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.« less

  4. Imaging microscopic distribution of antifungal agents in dandruff treatments with stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Natalie L.; Singh, Bhumika; Jones, Andrew; Moger, Julian

    2017-06-01

    Treatment of dandruff condition usually involves use of antidandruff shampoos containing antifungal agents. Different antifungal agents show variable clinical efficacy based on their cutaneous distribution and bioavailability. Using stimulated Raman scattering (SRS), we mapped the distribution of unlabeled low-molecular weight antifungal compounds zinc pyrithione (ZnPT) and climbazole (CBZ) on the surface of intact porcine skin with cellular precision. SRS has sufficient chemical selectivity and sensitivity to detect the agents on the skin surface based on their unique chemical motifs that do not occur naturally in biological tissues. Moreover, SRS is able to correlate the distribution of the agents with the morphological features of the skin using the CH2 stretch mode, which is abundant in skin lipids. This is a significant strength of the technique since it allows the microscopic accumulation of the agents to be correlated with physiological features and their chemical environment without the use of counter stains. Our findings show that due to its lower solubility, ZnPT coats the surface of the skin with a sparse layer of crystals in the size range of 1 to 4 μm. This is consistent with the current understanding of the mode of action of ZnPT. In contrast, CBZ being more soluble and hydrophobic resulted in diffuse homogeneous distribution. It predominantly resided in microscopic lipid-rich crevasses and penetrated up to 60 μm into the infundibular spaces surrounding the hair shaft. The ability of the SRS to selectively map the distribution of agents on the skin's surface has the potential to provide insight into the mechanisms underpinning the topical application of antifungal or skin-active agents that could lead to the rational engineering of enhanced formulations.

  5. Aquarius: A Mission to Monitor Sea Surface Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lagerloef, G. S. E.; Pellerano, F.; Yueh, S.; Colomb, R.

    2006-01-01

    Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument for measuring salinity is the radiometer. The scatterometer will provide a correction for surface roughness (waves) which is one of the largest potential sources of error in the retrieval. Unique features of the sensor are the large reflector (2.5 meter offset fed reflector with three feeds), polarimetric operation, and the tight thermal control. The three feeds produce three beams arranged to image in pushbroom fashion looking to the side of the orbit away from the sun to avoid sunglint. Polarimetric operation is included to assist in correcting for Faraday rotation which can be important at L-band. The tight thermal control is necessary to meet stability requirements (less than 0.12K drift over 7 days) which have been imposed to assist in meeting the science requirements for the retrieval of surface salinity (0.2 psu). The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6ad6pm (ascending at 6 pm). The objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. To accomplish this, the measurement goals are a spatial resolution of 100 km and retrieval accuracy of 0.2 psu globally on a monthly basis. Aquarius is being developed by NASA and is a partnership between JPL and the Goddard Space Flight Center. The SAC-D mission is being developed by CONAE and will include the spacecraft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.

  6. Europa's Great Lakes

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  7. AP1000{sup R} severe accident features and post-Fukushima considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scobel, J. H.; Schulz, T. L.; Williams, M. G.

    2012-07-01

    The AP1000{sup R} passive nuclear power plant is uniquely equipped to withstand an extended station blackout scenario such as the events following the earthquake and tsunami at Fukushima without compromising core and containment integrity. The AP1000 plant shuts down the reactor, cools the core, containment and spent fuel pool for more than 3 days using passive systems that do not require AC or DC power or operator actions. Following this passive coping period, minimal operator actions are needed to extend the operation of the passive features to 7 days using installed equipment. To provide defense-in-depth for design extension conditions, themore » AP1000 plant has engineered features that mitigate the effects of core damage. Engineered features retain damaged core debris within the reactor vessel as a key feature. Other aspects of the design protect containment integrity during severe accidents, including unique features of the AP1000 design relative to passive containment cooling with water and air, and hydrogen management. (authors)« less

  8. Description of Eucyclops tziscao sp. n., E. angeli sp. n., and a new record of E. festivus Lindberg, 1955 (Cyclopoida, Cyclopidae, Eucyclopinae) in Chiapas, Mexico

    PubMed Central

    Gutiérrez-Aguirre, Martha Angélica; Mercado-Salas, Nancy Fabiola; Cervantes-Martínez, Adrián

    2013-01-01

    Abstract Two new species of the freshwater cyclopoid genera Eucyclops are described, Eucyclops tziscao sp. n. and E. angeli sp. n. Both species belong to the serrulatus-group defined by morphological features such as: the presence of distal spinules or hair-like setae (groups N1 and N2) on frontal surface of antennal basis; the fourth leg coxa with a strong inner spine that bears dense setules on inner side, yet proximally naked (large gap) on outer side; and a 12-segmented antennule with smooth hyaline membrane on the three distalmost segments. Eucyclops tziscao sp. n. is morphologically similar to E. bondi and E. conrowae but differs from these species in having a unique combination of characters, including a caudal ramus 4.05±0.25 times as long as wide, lateral seta of Enp3P4 modified as a strong, sclerotized blunt seta, coxal spine of fourth leg with inner spinule-like setules distally, and sixth leg of males bearing a strong and long inner spine 2.3 times longer than median seta. Eucyclops angeli sp. n. can be distinguished by an unique combination of morphological features: the short caudal ramus; the long spine on the sixth antennular segment of A1; the presence of one additional group of spinules (N12’) on the caudal surface of A2; the presence of long setae in females, or short spinules in males on the lateral margin of fourth prosomite; the strong ornamentation of the intercoxal sclerite of P4, specially group I modified as long denticles; the distal modified setae of Exp3P3 and Exp3P4 in females and males; and the short lateral seta of P5. Finally, we report on a new record of E. festivus in México, and add data on morphology of the species. PMID:24294085

  9. Application of Geologic Mapping Techniques and Autonomous Feature Detection to Future Exploration of Europa

    NASA Astrophysics Data System (ADS)

    Bunte, M. K.; Tanaka, K. L.; Doggett, T.; Figueredo, P. H.; Lin, Y.; Greeley, R.; Saripalli, S.; Bell, J. F.

    2013-12-01

    Europa's extremely young surface age, evidence for extensive resurfacing, and indications of a sub-surface ocean elevate its astrobiological potential for habitable environments and make it a compelling focus for study. Knowledge of the global distribution and timing of Europan geologic units is a key step in understanding the history of the satellite and for identifying areas relevant for exploration. I have produced a 1:15M scale global geologic map of Europa which represents a proportionate distribution of four unit types and associated features: plains, linea, chaos, and crater materials. Mapping techniques differ somewhat from other planetary maps but do provide a method to establish stratigraphic markers and to illustrate the surface history through four periods of formation as a function of framework lineament cross-cutting relationships. Correlations of observed features on Europa with Earth analogs enforce a multi-process theory for formation rather than the typical reliance on the principle of parsimony. Lenticulae and microchaos are genetically similar and most likely form by diapirism. Platy and blocky chaos units, endmembers of archetypical chaos, are best explained by brine mobilization. Ridges account for the majority of lineaments and may form by a number of methods indicative of local conditions; most form by either tidal pumping or shear heating. The variety of morphologies exhibited by bands indicates that multiple formation mechanisms apply once fracturing of the brittle surface over a ductile subsurface is initiated. Mapping results support the interpretation that Europa's shell has thickened over time resulting in changes in the style and intensity of deformation. Mapping serves as an index for change detection and classification, aids in pre-encounter targeting, and supports the selection of potential landing sites. Highest priority target areas are those which indicate geophysical activity by the presence of volcanic plumes, outgassing, or disrupted surface morphologies. Areas of high interest include lineaments and chaos margins. The limitations on detecting activity at these locations are approximated by studying similar observed conditions on other bodies. By adapting machine learning and data mining techniques to signatures of plumes and morphology, I have demonstrated autonomous rule-based detection of known features using edge-detection and supervised classification methods. These methods successfully detect ≤94% of known volcanic plumes or jets at Io, Enceladus, and comets. They also allow recognition of multiple feature types. Applying these results to conditions expected for Europa enables a prediction of the potential for detection of similar features and enables recommendations for mission concepts to increase the science return and efficiency of future missions to observe Europa. This post-Galileo view of Europa provides a synthesis of the overall history of this unique icy satellite and will be a useful frame of reference for future exploration of the jovian system and other potentially active outer solar system bodies.

  10. Breaking the polar-nonpolar division in solvation free energy prediction.

    PubMed

    Wang, Bao; Wang, Chengzhang; Wu, Kedi; Wei, Guo-Wei

    2018-02-05

    Implicit solvent models divide solvation free energies into polar and nonpolar additive contributions, whereas polar and nonpolar interactions are inseparable and nonadditive. We present a feature functional theory (FFT) framework to break this ad hoc division. The essential ideas of FFT are as follows: (i) representability assumption: there exists a microscopic feature vector that can uniquely characterize and distinguish one molecule from another; (ii) feature-function relationship assumption: the macroscopic features, including solvation free energy, of a molecule is a functional of microscopic feature vectors; and (iii) similarity assumption: molecules with similar microscopic features have similar macroscopic properties, such as solvation free energies. Based on these assumptions, solvation free energy prediction is carried out in the following protocol. First, we construct a molecular microscopic feature vector that is efficient in characterizing the solvation process using quantum mechanics and Poisson-Boltzmann theory. Microscopic feature vectors are combined with macroscopic features, that is, physical observable, to form extended feature vectors. Additionally, we partition a solvation dataset into queries according to molecular compositions. Moreover, for each target molecule, we adopt a machine learning algorithm for its nearest neighbor search, based on the selected microscopic feature vectors. Finally, from the extended feature vectors of obtained nearest neighbors, we construct a functional of solvation free energy, which is employed to predict the solvation free energy of the target molecule. The proposed FFT model has been extensively validated via a large dataset of 668 molecules. The leave-one-out test gives an optimal root-mean-square error (RMSE) of 1.05 kcal/mol. FFT predictions of SAMPL0, SAMPL1, SAMPL2, SAMPL3, and SAMPL4 challenge sets deliver the RMSEs of 0.61, 1.86, 1.64, 0.86, and 1.14 kcal/mol, respectively. Using a test set of 94 molecules and its associated training set, the present approach was carefully compared with a classic solvation model based on weighted solvent accessible surface area. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Bioreducible Fluorinated Peptide Dendrimers Capable of Circumventing Various Physiological Barriers for Highly Efficient and Safe Gene Delivery.

    PubMed

    Cai, Xiaojun; Jin, Rongrong; Wang, Jiali; Yue, Dong; Jiang, Qian; Wu, Yao; Gu, Zhongwei

    2016-03-09

    Polymeric vectors have shown great promise in the development of safe and efficient gene delivery systems; however, only a few have been developed in clinical settings due to poor transport across multiple physiological barriers. To address this issue and promote clinical translocation of polymeric vectors, a new type of polymeric vector, bioreducible fluorinated peptide dendrimers (BFPDs), was designed and synthesized by reversible cross-linking of fluorinated low generation peptide dendrimers. Through masterly integration all of the features of reversible cross-linking, fluorination, and polyhedral oligomeric silsesquioxane (POSS) core-based peptide dendrimers, this novel vector exhibited lots of unique features, including (i) inactive surface to resist protein interactions; (ii) virus-mimicking surface topography to augment cellular uptake; (iii) fluorination-mediated efficient cellular uptake, endosome escape, cytoplasm trafficking, and nuclear entry, and (iv) disulfide-cleavage-mediated polyplex disassembly and DNA release that allows efficient DNA transcription. Noteworthy, all of these features are functionally important and can synergistically facilitate DNA transport from solution to the nucleus. As a consequences, BFPDs showed excellent gene transfection efficiency in several cell lines (∼95% in HEK293 cells) and superior biocompatibility compared with polyethylenimine (PEI). Meanwhile BFPDs provided excellent serum resistance in gene delivery. More importantly, BFPDs offer considerable in vivo gene transfection efficiency (in muscular tissues and in HepG2 tumor xenografts), which was approximately 77-fold higher than that of PEI in luciferase activity. These results suggest bioreducible fluorinated peptide dendrimers are a new class of highly efficient and safe gene delivery vectors and should be used in clinical settings.

  12. The spread of attention across features of a surface

    PubMed Central

    Ernst, Zachary Raymond; Jazayeri, Mehrdad

    2013-01-01

    Contrasting theories of visual attention have emphasized selection by spatial location, individual features, and whole objects. We used functional magnetic resonance imaging to ask whether and how attention to one feature of an object spreads to other features of the same object. Subjects viewed two spatially superimposed surfaces of random dots that were segregated by distinct color-motion conjunctions. The color and direction of motion of each surface changed smoothly and in a cyclical fashion. Subjects were required to track one feature (e.g., color) of one of the two surfaces and detect brief moments when the attended feature diverged from its smooth trajectory. To tease apart the effect of attention to individual features on the hemodynamic response, we used a frequency-tagging scheme. In this scheme, the stimulus features (color and direction of motion) are modulated periodically at distinct frequencies so that the contribution of each feature to the hemodynamics can be inferred from the harmonic response at the corresponding frequency. We found that attention to one feature (e.g., color) of one surface increased the response modulation not only to the attended feature but also to the other feature (e.g., motion) of the same surface. This attentional modulation was evident in multiple visual areas and was present as early as V1. The spread of attention to the behaviorally irrelevant features of a surface suggests that attention may automatically select all features of a single object. Thus object-based attention may be supported by an enhancement of feature-specific sensory signals in the visual cortex. PMID:23883860

  13. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Castells, Victoria; Van Tassel, Paul R.

    2005-02-01

    Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.

  14. Giraffe genome sequence reveals clues to its unique morphology and physiology

    PubMed Central

    Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.

    2016-01-01

    The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213

  15. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

    PubMed Central

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes. PMID:28685115

  16. Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process.

    PubMed

    Baumgärtner, Benjamin; Möller, Hendrik; Neumann, Thomas; Volkmer, Dirk

    2017-01-01

    A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol-gel-processing of silica precursors is used to deposit a silica coating directly on the fiber's surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

  17. 10 CFR 100.10 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...

  18. 10 CFR 100.10 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...

  19. 10 CFR 100.10 - Factors to be considered when evaluating sites.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reactor incorporates unique or unusual features having a significant bearing on the probability or consequences of accidental release of radioactive materials; (4) The safety features that are to be engineered... radioactive fission products. In addition, the site location and the engineered features included as...

  20. Planetary Nomenclature: An Overview and Update for 2017

    NASA Astrophysics Data System (ADS)

    Gaither, Tenielle; Hayward, Rose; IAU Working GroupPlanetary System Nomenclature

    2017-10-01

    The task of naming planetary surface features, rings, and natural satellites is managed by the International Astronomical Union’s (IAU) Working Group for Planetary System Nomenclature (WGPSN). There are currently 15,361 IAU-approved surface feature names on 41 planetary bodies, including moons and asteroids. The members of the WGPSN and its task groups have worked since the early 1970s to provide a clear, unambiguous system of planetary nomenclature that represents cultures and countries from all regions of Earth. WGPSN members include Rita Schulz (Chair) and 9 other members representing countries around the globe. The participation of knowledgeable scientists and experts in this process is vital to its success of the IAU WGPSN . Planetary nomenclature is a tool used to uniquely identify features on the surfaces of planets or satellites so they can be located, described, and discussed in publications, including peer-review journals, maps and conference presentations. Approved names are listed in the Transactions of the IAU and on the Gazetteer of Planetary Nomenclature website. Any names currently in use that are not listed the Gazetteer are not official. Planetary names must adhere to rules and conventions established by the IAU WGPSN (see http://planetarynames.wr.usgs.gov/Page/Rules for the complete list). The gazetteer includes an online Name Request Form (http://planetarynames.wr.usgs.gov/FeatureNameRequest) that can be used by members of the professional science community. Name requests are first reviewed by one of six task groups (Mercury, Venus, Moon, Mars, Outer Solar System, and Small Bodies). After a task group has reviewed a proposal, it is submitted to the WGPSN. Allow four to six weeks for the review and approval process. Upon WGPSN approval, names are considered formally approved and it is then appropriate to use them in publications. Approved names are immediately entered into the database and shown on the website. Questions about the nomenclature database and the naming process can be sent to Rosalyn Hayward, USGS Astrogeology Science Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, or by email to rhayward@usgs.gov.

  1. Impact origin of sediments at the Opportunity landing site on Mars.

    PubMed

    Knauth, L Paul; Burt, Donald M; Wohletz, Kenneth H

    2005-12-22

    Mars Exploration Rover Opportunity discovered sediments with layered structures thought to be unique to aqueous deposition and with minerals attributed to evaporation of an acidic salty sea. Remarkable iron-rich spherules were ascribed to later groundwater alteration, and the inferred abundance of water reinforced optimism that Mars was once habitable. The layered structures, however, are not unique to water deposition, and the scenario encounters difficulties in accounting for highly soluble salts admixed with less soluble salts, the lack of clay minerals from acid-rock reactions, high sphericity and near-uniform sizes of the spherules and the absence of a basin boundary. Here we present a simple alternative explanation involving deposition from a ground-hugging turbulent flow of rock fragments, salts, sulphides, brines and ice produced by meteorite impact. Subsequent weathering by intergranular water films can account for all of the features observed without invoking shallow seas, lakes or near-surface aquifers. Layered sequences observed elsewhere on heavily cratered Mars and attributed to wind, water or volcanism may well have formed similarly. If so, the search for past life on Mars should be reassessed accordingly.

  2. Fluorescence lifetime as a new parameter in analytical cytology measurements

    NASA Astrophysics Data System (ADS)

    Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.

    1996-05-01

    A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.

  3. An elastic model of partial budding of retroviruses

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Nguyen, Toan

    2008-03-01

    Retroviruses are characterized by their unique infection strategy of reverse transcription, in which the genetic information flows from RNA back to DNA. The most well known representative is the human immunodeficiency virus (HIV). Unlike budding of traditional enveloped viruses, retrovirus budding happens together with the formation of spherical virus capsids at the cell membrane. Led by this unique budding mechanism, we proposed an elastic model of retrovirus budding in this work. We found that if the lipid molecules of the membrane are supplied fast enough from the cell interior, the budding always proceeds to completion. In the opposite limit, there is an optimal size of partially budded virions. The zenith angle of these partially spherical capsids, α, is given by α˜(2̂/κσ)^1/4, where κ is the bending modulus of the membrane, σ is the surface tension of the membrane, and τ characterizes the strength of capsid protein interaction. If τ is large enough such that α˜π, the budding is complete. Our model explained many features of retrovirus partial budding observed in experiments.

  4. Stimuli-responsive supramolecular micellar assemblies of cetylpyridinium chloride with cucurbit[5/7]urils.

    PubMed

    Choudhury, Sharmistha Dutta; Barooah, Nilotpal; Aswal, Vinod Kumar; Pal, Haridas; Bhasikuttan, Achikanath C; Mohanty, Jyotirmayee

    2014-05-21

    This article demonstrates, for the first time, construction of novel cucurbituril (CB)-adorned supramolecular micellar assemblies of a cationic surfactant, cetylpyridinium chloride (CPC), through noncovalent host-guest interactions. The distinct cation receptor features and cavity dimensions of the CB5 and CB7 homologues assert that the macrocyclic hosts remain complexed with the CPC monomers and take part in the micelle formation, a unique observation in contrast to that of the classical host, β-cyclodextrin. The cooperative contributions of the CB macrocycles in the micelle formation have been documented by the photochemical, surface tension, conductivity, DOSY NMR, and SANS measurements. The contrasting downward and upward shifts in the cmc of the CPC surfactant, respectively, with CB5 and CB7 hosts provide a unique opportunity for the controlled tuning of the micellization region for CPC from 0.57 to 1.6 mM, by using a combination of the macrocyclic hosts. The article also establishes the reversible response of these soft supramolecular micellar structures to thermal-stimuli, which projects their utility for on-demand smart drug-delivery vehicles.

  5. Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.

    PubMed

    Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy

    2017-01-01

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.

  6. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Unique sudden onsets capture attention even when observers are in feature-search mode.

    PubMed

    Spalek, Thomas M; Yanko, Matthew R; Poiese, Paola; Lagroix, Hayley E P

    2012-01-01

    Two sources of attentional capture have been proposed: stimulus-driven (exogenous) and goal-oriented (endogenous). A resolution between these modes of capture has not been straightforward. Even such a clearly exogenous event as the sudden onset of a stimulus can be said to capture attention endogenously if observers operate in singleton-detection mode rather than feature-search mode. In four experiments we show that a unique sudden onset captures attention even when observers are in feature-search mode. The displays were rapid serial visual presentation (RSVP) streams of differently coloured letters with the target letter defined by a specific colour. Distractors were four #s, one of the target colour, surrounding one of the non-target letters. Capture was substantially reduced when the onset of the distractor array was not unique because it was preceded by other sets of four grey # arrays in the RSVP stream. This provides unambiguous evidence that attention can be captured both exogenously and endogenously within a single task.

  8. Proteins without unique 3D structures: biotechnological applications of intrinsically unstable/disordered proteins.

    PubMed

    Uversky, Vladimir N

    2015-03-01

    Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins or regions that do not have unique 3D structures under functional conditions. Therefore, from the viewpoint of their lack of stable 3D structure, IDPs/IDPRs are inherently unstable. As much as structure and function of normal ordered globular proteins are determined by their amino acid sequences, the lack of unique 3D structure in IDPs/IDPRs and their disorder-based functionality are also encoded in the amino acid sequences. Because of their specific sequence features and distinctive conformational behavior, these intrinsically unstable proteins or regions have several applications in biotechnology. This review introduces some of the most characteristic features of IDPs/IDPRs (such as peculiarities of amino acid sequences of these proteins and regions, their major structural features, and peculiar responses to changes in their environment) and describes how these features can be used in the biotechnology, for example for the proteome-wide analysis of the abundance of extended IDPs, for recombinant protein isolation and purification, as polypeptide nanoparticles for drug delivery, as solubilization tools, and as thermally sensitive carriers of active peptides and proteins. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images.

    PubMed

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI-cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI-NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI-NC comparison. The best performances obtained by the SVM classifier using the essential features were 5-40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease.

  10. Presenting the Rain-Sea Interaction Facility

    NASA Technical Reports Server (NTRS)

    Bliven, Larry F.; Elfouhaily, Tonas M.

    1993-01-01

    The new Rain-Sea Interaction Facility (RSIF) was established at GSFC/WFF and the first finds are presented. The unique feature of this laboratory is the ability to systematically study microwave scattering from a water surface roughened by artificial rain, for which the droplets are at terminal velocity. The fundamental instruments and systems (e.g., the rain simulator, scatterometers, and surface elevation probes) were installed and evaluated during these first experiments - so the majority of the data were obtained with the rain simulator at 1 m above the water tank. From these initial experiments, three new models were proposed: the square-root function for NCS vs. R, the log Gaussian model for ring-wave elevation frequency spectrum, and the Erland probability density distribution for back scattered power. Rain rate is the main input for these models, although the coefficients may be dependent upon other factors (drop-size distribution, fall velocity, radar configuration, etc.). The facility is functional and we foresee collaborative studies with investigators who are engaged in measuring and modeling rain-sea interaction processes.

  11. Nonlinear AC susceptibility, surface and bulk shielding

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; D'Anna, G.; Benoit, W.

    1996-02-01

    We calculate the nonlinear AC response of a thin superconducting strip in perpendicular field, shielded by an edge current due to the geometrical barrier. A comparison with the results for infinite samples in parallel field, screened by a surface barrier, and with those for screening by a bulk current in the critical state, shows that the AC response due to a barrier has general features that are independent of geometry, and that are significantly different from those for screening by a bulk current in the critical state. By consequence, the nonlinear (global) AC susceptibility can be used to determine the origin of magnetic irreversibility. A comparison with experiments on a Bi 2Sr 2CaCu 2O 8+δ crystal shows that in this material, the low-frequency AC screening at high temperature is mainly due to the screening by an edge current, and that this is the unique source of the nonlinear magnetic response at temperatures above 40 K.

  12. Reader Architectures for Wireless Surface Acoustic Wave Sensors.

    PubMed

    Lurz, Fabian; Ostertag, Thomas; Scheiner, Benedict; Weigel, Robert; Koelpin, Alexander

    2018-05-28

    Wireless surface acoustic wave (SAW) sensors have some unique features that make them promising for industrial metrology. Their decisive advantage lies in their purely passive operation and the wireless readout capability allowing the installation also at particularly inaccessible locations. Furthermore, they are small, low-cost and rugged components on highly stable substrate materials and thus particularly suited for harsh environments. Nevertheless, a sensor itself does not carry out any measurement but always requires a suitable excitation and interrogation circuit: a reader. A variety of different architectures have been presented and investigated up to now. This review paper gives a comprehensive survey of the present state of reader architectures such as time domain sampling (TDS), frequency domain sampling (FDS) and hybrid concepts for both SAW resonators and reflective SAW delay line sensors. Furthermore, critical performance parameters such as measurement accuracy, dynamic range, update rate, and hardware costs of the state of the art in science and industry are presented, compared and discussed.

  13. Design and Fabrication of the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Kozub, Thomas; Majeski, Richard; Kaita, Robert; Priniski, Craig; Zakharov, Leonid

    2006-10-01

    The design objective of the lithium tokamak experiment (LTX) is to investigate the equilibrium and stability of tokamak discharges with near-zero recycling. The construction of LTX incorporates the conversion of the existing current drive experiment (CDX) vessel into one with a nearly complete plasma facing surface of liquid lithium This paper will describe the design, fabrication, and installation activities required to convert CDX into LTX. The most significant new feature is the addition of a plasma facing liner on a shell that will be operated at 300 C to 400 C and covered with an evaporated layer of liquid lithium. The shell has been fabricated in-house from explosively bonded stainless steel on copper to a rather unique geometry to match the outer flux surface. Other significant device modifications include the construction of a new ohmic heating power system, rebuilding of the vacuum vessel, new lithium evaporators, additional diagnostics, modifications to the poloidal field coil geometry and their associated power supplies. Details on the progress of this conversion will be reported.

  14. The Th17 Lineage: From Barrier Surfaces Homeostasis to Autoimmunity, Cancer, and HIV-1 Pathogenesis.

    PubMed

    Wacleche, Vanessa Sue; Landay, Alan; Routy, Jean-Pierre; Ancuta, Petronela

    2017-10-19

    The T helper 17 (Th17) cells represent a subset of CD4+ T-cells with unique effector functions, developmental plasticity, and stem-cell features. Th17 cells bridge innate and adaptive immunity against fungal and bacterial infections at skin and mucosal barrier surfaces. Although Th17 cells have been extensively studied in the context of autoimmunity, their role in various other pathologies is underexplored and remains an area of open investigation. This review summarizes the history of Th17 cell discovery and the current knowledge relative to the beneficial role of Th17 cells in maintaining mucosal immunity homeostasis. We further discuss the concept of Th17 pathogenicity in the context of autoimmunity, cancer, and HIV infection, and we review the most recent discoveries on molecular mechanisms regulating HIV replication/persistence in pathogenic Th17 cells. Finally, we stress the need for novel fundamental research discovery-based Th17-specific therapeutic interventions to treat pathogenic conditions associated with Th17 abnormalities, including HIV infection.

  15. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  16. Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Xu, Zhenghe; Wang, Feng

    2008-03-01

    Mesoporous silica coatings were synthesized on dense liquid silica-coated magnetite particles using cetyl-trimethyl-ammonium chloride (CTAC) as molecular templates, followed by sol-gel process. A specific surface area of the synthesized particles as high as 150 m 2/g was obtained. After functionalization with mercapto-propyl-trimethoxy-silane (MPTS) through silanation reaction, the particles exhibited high affinity of mercury in aqueous solutions. Atomic force microscopy (AFM), zeta potential measurement, thermal gravimetric analysis (TGA), analytical transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic absorption spectroscopy (AAS) were used to characterize the synthesis processes, surface functionalization, and mercury adsorption on the synthesized magnetite particles. The loading capacity of the particles for mercury was determined to be as high as 14 mg/g at pH 2. A unique feature of strong magnetism of the synthesized nanocomposite particles makes the subsequent separation of the magnetic sorbents from complex multiphase suspensions convenient and effective.

  17. Nontrivial Nature and Penetration Depth of Topological Surface States in SmB6 Thin Films

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Li, Yufan; Gu, Lei; Ding, Junjia; Chang, Houchen; Janantha, P. A. Praveen; Kalinikos, Boris; Novosad, Valentyn; Hoffmann, Axel; Wu, Ruqian; Chien, C. L.; Wu, Mingzhong

    2018-05-01

    The nontrivial feature and penetration depth of the topological surface states (TSS) in SmB6 were studied via spin pumping. The experiments used SmB6 thin films grown on the bulk magnetic insulator Y3Fe5O12 (YIG). Upon the excitation of magnetization precession in the YIG, a spin current is generated in the SmB6 that produces, via spin-orbit coupling, a lateral electrical voltage in the film. This spin-pumping voltage signal becomes considerably stronger as the temperature decreases from 150 to 10 K, and such an enhancement most likely originates from the spin-momentum locking of the TSS and may thereby serve as evidence for the nontrivial nature of the TSS. The voltage data also show a unique film thickness dependence that suggests a TSS depth of ˜32 nm . The spin-pumping results are supported by transport measurements and analyses using a tight binding model.

  18. Active hydrogen evolution through lattice distortion in metallic MoTe2

    NASA Astrophysics Data System (ADS)

    Seok, Jinbong; Lee, Jun-Ho; Cho, Suyeon; Ji, Byungdo; Kim, Hyo Won; Kwon, Min; Kim, Dohyun; Kim, Young-Min; Oh, Sang Ho; Wng Kim, Sung; Lee, Young Hee; Son, Young-Woo; Yang, Heejun

    2017-06-01

    Engineering surface atoms of transition metal dichalcogenides (TMDs) is a promising way to design catalysts for efficient electrochemical reactions including the hydrogen evolution reaction (HER). However, materials processing based on TMDs, such as vacancy creation or edge exposure, for active HER, has resulted in insufficient atomic-precision lattice homogeneity and a lack of clear understanding of HER over 2D materials. Here, we report a durable and effective HER at atomically defined reaction sites in 2D layered semimetallic MoTe2 with intrinsic turnover frequency (TOF) of 0.14 s-1 at 0 mV overpotential, which cannot be explained by the traditional volcano plot analysis. Unlike former electrochemical catalysts, the rate-determining step of the HER on the semimetallic MoTe2, hydrogen adsorption, drives Peierls-type lattice distortion that, together with a surface charge density wave, unexpectedly enhances the HER. The active HER using unique 2D features of layered TMDs enables an optimal design of electrochemical catalysts and paves the way for a hydrogen economy.

  19. Carbon nanotube biosensors

    PubMed Central

    Tîlmaciu, Carmen-Mihaela; Morris, May C.

    2015-01-01

    Nanomaterials possess unique features which make them particularly attractive for biosensing applications. In particular, carbon nanotubes (CNTs) can serve as scaffolds for immobilization of biomolecules at their surface, and combine several exceptional physical, chemical, electrical, and optical characteristics properties which make them one of the best suited materials for the transduction of signals associated with the recognition of analytes, metabolites, or disease biomarkers. Here we provide a comprehensive review on these carbon nanostructures, in which we describe their structural and physical properties, functionalization and cellular uptake, biocompatibility, and toxicity issues. We further review historical developments in the field of biosensors, and describe the different types of biosensors which have been developed over time, with specific focus on CNT-conjugates engineered for biosensing applications, and in particular detection of cancer biomarkers. PMID:26579509

  20. A brief geologic history of Volusia County, Florida

    USGS Publications Warehouse

    German, Edward R.

    2009-01-01

    Volusia County is in a unique and beautiful setting. This Florida landscape is characterized by low coastal plains bordered by upland areas of sandy ridges and many lakes. Beautiful streams and springs abound within the vicinity. Underneath the land surface is a deep layer of limestone rocks that stores fresh, clean water used to serve drinking and other needs. However, the landscape and the subsurface rocks have not always been as they appear today. These features are the result of environmental forces and processes that began millions of years ago and are still ongoing. This fact sheet provides a brief geologic history of the Earth, Florida, and Volusia County, with an emphasis on explaining why the Volusia County landscape and geologic structure exists as it does today.

Top