The Use of Environmental Test Facilities for Purposes Beyond Their Original Design
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; Marner, W. J.
2000-01-01
Increasing demands from space flight project offices are requiring environmental testing facilities to become more versatile with increased capabilities. At the same time, maintaining a cost-effective approach to test operations has driven efforts to use these facilities for purposes beyond their original design. This paper presents an overview of the Jet Propulsion Laboratory's efforts to provide JPL's space flight projects with test facilities to meet unique test requirements and to serve the needs of selected outside customers. The large number of recent Mars Missions, including the Mars Pathfinder project, have required testing of components and systems in a Martian surface environment in facilities originally designed for deep space testing. The unique problems associated with performing these tests are discussed, along with practical solutions. Other unique test requirements are discussed including the use of space simulation chambers for testing high altitude balloon gondolas and the use of vacuum chambers for system level test firing of an ion propulsion engine.
Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide
NASA Technical Reports Server (NTRS)
Hacker, Scott
2012-01-01
The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.
A unique high heat flux facility for testing hypersonic engine components
NASA Technical Reports Server (NTRS)
Melis, Matthew E.; Gladden, Herbert J.
1990-01-01
This paper describes the Hot Gas Facility, a unique, reliable, and cost-effective high-heat-flux facility for testing hypersonic engine components developed at the NASA Lewis Research Center. The Hot Gas Facility is capable of providing heat fluxes ranging from 200 Btu/sq ft per sec on flat surfaces up to 8000 Btu/sq ft per sec at a leading edge stagnation point. The usefulness of the Hot Gas Facility for the NASP community was demonstrated by testing hydrogen-cooled structures over a range of temperatures and pressures. Ranges of the Reynolds numbers, Prandtl numbers, enthalpy, and heat fluxes similar to those expected during hypersonic flights were achieved.
Aircraft Landing Dynamics Facility - A unique facility with new capabilities
NASA Technical Reports Server (NTRS)
Davis, P. A.; Stubbs, S. M.; Tanner, J. A.
1985-01-01
The Aircraft Landing Dynamics Facility (ALDF), formerly called the Landing Loads Track, is described. The paper gives a historical overview of the original NASA Langley Research Center Landing Loads Track and discusses the unique features of this national test facility. Comparisons are made between the original track characteristics and the new capabilities of the Aircraft Landing Dynamics Facility following the recently completed facility update. Details of the new propulsion and arresting gear systems are presented along with the novel features of the new high-speed carriage. The data acquisition system is described and the paper concludes with a review of future test programs.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Johnson, R. Keith; Piatak, David J.; Florance, Jennifer P.; Rivera, Jose A., Jr.
2003-01-01
The Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities compared to testing in air. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. This paper describes TDT capabilities that make it particularly suited for aeroelasticity testing. The paper also discusses the nature of recent test activities in the TDT, including summaries of several specific tests. Finally, the paper documents recent facility improvement projects and the continuous statistical quality assessment effort for the TDT.
The Altitude Wind Tunnel (AWT): A unique facility for propulsion system and adverse weather testing
NASA Technical Reports Server (NTRS)
Chamberlin, R.
1985-01-01
A need has arisen for a new wind tunnel facility with unique capabilities for testing propulsion systems and for conducting research in adverse weather conditions. New propulsion system concepts, new aircraft configurations with an unprecedented degree of propulsion system/aircraft integration, and requirements for aircraft operation in adverse weather dictate the need for a new test facility. Required capabilities include simulation of both altitude pressure and temperature, large size, full subsonic speed range, propulsion system operation, and weather simulation (i.e., icing, heavy rain). A cost effective rehabilitation of the NASA Lewis Research Center's Altitude Wind Tunnel (AWT) will provide a facility with all these capabilities.
Overview of Engineering Design and Analysis at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Ryan, Harry; Congiardo, Jared; Junell, Justin; Kirkpatrick, Richard
2007-01-01
A wide range of rocket propulsion test work occurs at the NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2, E-3 and E-4) test facilities. The propulsion test engineer at NASA SSC faces many challenges associated with designing and operating a test facility due to the extreme operating conditions (e.g., cryogenic temperatures, high pressures) of the various system components and the uniqueness of many of the components and systems. The purpose of this paper is to briefly describe the NASA SSC Engineering Science Directorate s design and analysis processes, experience, and modeling techniques that are used to design and support the operation of unique rocket propulsion test facilities.
The NASA integrated test facility and its impact on flight research
NASA Technical Reports Server (NTRS)
Mackall, D. A.; Pickett, M. D.; Schilling, L. J.; Wagner, C. A.
1988-01-01
The Integrated Test Facility (ITF), being built at NASA Ames-Dryden Flight Research Facility, will provide new test capabilities for emerging research aircraft. An overview of the ITF and the challenges being addressed by this unique facility are outlined. The current ITF capabilities, being developed with the X-29 Forward Swept Wing Program, are discussed along with future ITF activities.
Engine component instrumentation development facility at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan
1992-01-01
The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
Overview of Propellant Delivery Systems at the NASA John C. Stennis Space Center
NASA Technical Reports Server (NTRS)
Haselmaier, L. Haynes; Field, Robert E.; Ryan, Harry M.; Dickey, Jonathan C.
2006-01-01
A wide range of rocket propulsion test work occurs at he NASA John C. Stennis Space Center (SSC) including full-scale engine test activities at test facilities A-1, A-2, B-1 and B-2 as well as combustion device research and development activities at the E-Complex (E-1, E-2. E-3 and E-4) test facilities. One of the greatest challenges associated with operating a test facility is maintaining the health of the primary propellant system and test-critical support systems. The challenge emerges due to the fact that the operating conditions of the various system components are extreme (e.g., low temperatures, high pressures) and due to the fact that many of the components and systems are unique. The purpose of this paper is to briefly describe the experience and modeling techniques that are used to operate the unique test facilities at NASA SSC that continue to support successful propulsion testing.
Space Propulsion Research Facility (B-2): An Innovative, Multi-Purpose Test Facility
NASA Technical Reports Server (NTRS)
Hill, Gerald M.; Weaver, Harold F.; Kudlac, Maureen T.; Maloney, Christian T.; Evans, Richard K.
2011-01-01
The Space Propulsion Research Facility, commonly referred to as B-2, is designed to hot fire rocket engines or upper stage launch vehicles with up to 890,000 N force (200,000 lb force), after environmental conditioning of the test article in simulated thermal vacuum space environment. As NASA s third largest thermal vacuum facility, and the largest designed to store and transfer large quantities of propellant, it is uniquely suited to support developmental testing associated with large lightweight structures and Cryogenic Fluid Management (CFM) systems, as well as non-traditional propulsion test programs such as Electric and In-Space propulsion. B-2 has undergone refurbishment of key subsystems to support the NASA s future test needs, including data acquisition and controls, vacuum, and propellant systems. This paper details the modernization efforts at B-2 to support the Nation s thermal vacuum/propellant test capabilities, the unique design considerations implemented for efficient operations and maintenance, and ultimately to reduce test costs.
Space Shuttle wind tunnel testing program
NASA Technical Reports Server (NTRS)
Whitnah, A. M.; Hillje, E. R.
1984-01-01
A major phase of the Space Shuttle Vehicle (SSV) Development Program was the acquisition of data through the space shuttle wind tunnel testing program. It became obvious that the large number of configuration/environment combinations would necessitate an extremely large wind tunnel testing program. To make the most efficient use of available test facilities and to assist the prime contractor for orbiter design and space shuttle vehicle integration, a unique management plan was devised for the design and development phase. The space shuttle program is reviewed together with the evolutional development of the shuttle configuration. The wind tunnel testing rationale and the associated test program management plan and its overall results is reviewed. Information is given for the various facilities and models used within this program. A unique posttest documentation procedure and a summary of the types of test per disciplines, per facility, and per model are presented with detailed listing of the posttest documentation.
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Garcia, Jerry L.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for forty years. The facility has a rich history of significant contributions to the design of many United States commercial transports, military aircraft, launch vehicles, and spacecraft. The facility has many features that contribute to its uniqueness for aeroelasticity testing, perhaps the most important feature being the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model-building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind tunnel models. Aeroelastic scaling for the heavy gas results in lower model structural frequencies. Lower model frequencies tend to a make aeroelastic testing safer. This paper will describe major developments in the testing capabilities at the TDT throughout its history, the current status of the facility, and planned additions and improvements to its capabilities in the near future.
(abstract) Cryogenic Telescope Test Facility
NASA Technical Reports Server (NTRS)
Luchik, T. S.; Chave, R. G.; Nash, A. E.
1995-01-01
An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.
A unique facility for V/STOL aircraft hover testing. [Langley Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.; Gillespie, E. A.; Lane, A. G.
1979-01-01
The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight.
The New Heavy Gas Testing Capability in the NASA Langley Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Cole, Stanley R.; Rivera, Jose A., Jr.
1997-01-01
The NASA Langley Transonic Dynamics Tunnel (TDT) has provided a unique capability for aeroelastic testing for over thirty-five years. The facility has a rich history of significant contributions to the design of many United States commercial transports and military aircraft. The facility has many features which contribute to its uniqueness for aeroelasticity testing; however, perhaps the most important facility capability is the use of a heavy gas test medium to achieve higher test densities. Higher test medium densities substantially improve model building requirements and therefore simplify the fabrication process for building aeroelastically scaled wind-tunnel models. The heavy gas also provides other testing benefits, including reduction in the power requirements to operate the facility during testing. Unfortunately, the use of the original heavy gas has been curtailed due to environmental concerns. A new gas, referred to as R-134a, has been identified as a suitable replacement for the former TDT heavy gas. The TDT is currently undergoing a facility upgrade to allow testing in R-134a heavy gas. This replacement gas will result in an operational test envelope, model scaling advantages, and general testing capabilities similar to those available with the former TDT heavy gas. As such, the TDT is expected to remain a viable facility for aeroelasticity research and aircraft dynamic clearance testing well into the 21st century. This paper describes the anticipated advantages and facility calibration plans for the new heavy gas and briefly reviews several past test programs that exemplify the possible benefits of heavy gas testing.
FY11 Facility Assessment Study for Aeronautics Test Program
NASA Technical Reports Server (NTRS)
Loboda, John A.; Sydnor, George H.
2013-01-01
This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.
2013-01-01
NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.
Mechanical Components Branch Test Facilities and Capabilities
NASA Technical Reports Server (NTRS)
Oswald, Fred B.
2004-01-01
The Mechanical Components Branch at NASA Glenn Research Center formulates, conducts, and manages research focused on propulsion systems for both present and advanced aeronautical and space vehicles. The branch is comprised of research teams that perform basic research in three areas: mechanical drives, aerospace seals, and space mechanisms. Each team has unique facilities for testing aerospace hardware and concepts. This report presents an overview of the Mechanical Components Branch test facilities.
NASA Lewis Research Center's Preheated Combustor and Materials Test Facility
NASA Technical Reports Server (NTRS)
Nemets, Steve A.; Ehlers, Robert C.; Parrott, Edith
1995-01-01
The Preheated Combustor and Materials Test Facility (PCMTF) in the Engine Research Building (ERB) at the NASA Lewis Research Center is one of two unique combustor facilities that provide a nonvitiated air supply to two test stands, where the air can be used for research combustor testing and high-temperature materials testing. Stand A is used as a research combustor stand, whereas stand B is used for cyclic and survivability tests of aerospace materials at high temperatures. Both stands can accommodate in-house and private industry research programs. The PCMTF is capable of providing up to 30 lb/s (pps) of nonvitiated, 450 psig combustion air at temperatures ranging from 850 to 1150 g F. A 5000 gal tank located outdoors adjacent to the test facility can provide jet fuel at a pressure of 900 psig and a flow rate of 11 gal/min (gpm). Gaseous hydrogen from a 70,000 cu ft (CF) tuber is also available as a fuel. Approximately 500 gpm of cooling water cools the research hardware and exhaust gases. Such cooling is necessary because the air stream reaches temperatures as high as 3000 deg F. The PCMTF provides industry and Government with a facility for studying the combustion process and for obtaining valuable test information on advanced materials. This report describes the facility's support systems and unique capabilities.
NASA Technical Reports Server (NTRS)
Kelly, H. N.; Wieting, A. R.
1984-01-01
A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.
Advanced high temperature heat flux sensors
NASA Technical Reports Server (NTRS)
Atkinson, W.; Hobart, H. F.; Strange, R. R.
1983-01-01
To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.
Overview of the Orion Vibroacoustic Test Capability at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Hughes, William O.; Hozman, Aron D.; McNelis, Mark E.; Otten, Kim D.
2008-01-01
In order to support the environmental test needs for our new Orion and Constellation program, NASA is developing unique world-class test facilities. To optimize this testing of spaceflight hardware while minimizing transportation issues, a one-stop, under one roof test capability is being developed at the Space Power Facility at the NASA Glenn Research Center's Plum Brook Station. This facility will provide the capability to perform the following environmental testing: (1) reverberation acoustic testing, (2) mechanical base-shake sine testing, (3) modal testing, (4) thermal-vacuum testing, and (5) EMI/EMC (electromagnetic interference and compatibility) testing. An overview of this test capability will be provided in this presentation, with special focus on the two new vibroacoustic test facilities currently being designed and built, the Reverberant Acoustic Test Facility (RATF) and the Mechanical Vibration Facility (MVF). Testing of the engineering developmental hardware and qualification hardware of the Orion (Crew Exploration Vehicle) will commence shortly after the facilities are commissioned.
Unique life sciences research facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.
1994-01-01
The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.
X-ray Cryogenic Facility (XRCF) Handbook
NASA Technical Reports Server (NTRS)
Kegley, Jeffrey R.
2016-01-01
The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama Huntsville, and more.
NASA Technical Reports Server (NTRS)
Springer, Darlene
1989-01-01
Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.
Ground test challenges in the development of the Space Shuttle orbiter auxiliary power unit
NASA Technical Reports Server (NTRS)
Chaffee, N. H.; Lance, R. J.; Weary, D. P.
1984-01-01
A conventional aircraft hydraulic system design approach was selected to provide fluid power for the Space Shuttle Orbiter. Developing the power unit, known as the Auxiliary Power Unit (APU), to drive the hydraulic pumps presented a major technological challenge. A small, high speed turbine drive unit powered by catalytically decomposed hydrazine and operating in the pulse mode was selected to meet the requirement. Because of limitations of vendor test facilities, significant portions of the development, flight qualification, and postflight anomaly testing of the Orbiter APU were accomplished at the Johnson Space Center (JSC) test facilities. This paper discusses the unique requirements of attitude, gravity forces, pressure profiles, and thermal environments which had to be satisfied by the APU, and presents the unique test facility and simulation techniques employed to meet the ground test requirements. In particular, the development of the zero-g lubrication system, the development of necessary APU thermal control techniques, the accomplishment of integrated systems tests, and the postflight investigation of the APU lube oil cooler behavior are discussed.
Automated rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cynthia
1992-01-01
The facilities at Marshall Space Flight Center and JSC to be utilized to develop and test an autonomous rendezvous and capture (ARC) system are described. This includes equipment and personnel facility capabilities to devise, develop, qualify, and integrate ARC elements and subsystems into flight programs. Attention is given to the use of a LEO test facility, the current concept and unique system elements of the ARC, and the options available to develop ARC technology.
NASA Langley's Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.
1993-01-01
The Aircraft Landing Dynamics Facility (ALDF) is a unique facility with the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A brief historical overview of the original Landing Loads Track (LLT) is given, followed by a detailed description of the new ALDF systems and operational capabilities.
Spacecraft propulsion systems test capability at the NASA White Sands Test Facility
NASA Technical Reports Server (NTRS)
Baker, Pleddie; Gorham, Richard
1993-01-01
The NASA White Sands Facility (WSTF), a component insallation of the Johnson Space Center, is located on a 94-square-mile site in southwestern New Mexico. WSTF maintains many unique capabilities to support its mission to test and evaluate spacecraft materials, components, and propulsion systems to enable the safe human exploration and utilization of space. WSTF has tested over 340 rocket engines with more than 2.5 million firings to date. Included are propulsion system testing for Apollo, Shuttle, and now Space Station as well as unmanned spacecraft such as Viking, Pioneer, and Mars Observer. This paper describes the current WSTF propulsion test facilities and capabilities.
A unique facility for V/STOL aircraft hover testing
NASA Technical Reports Server (NTRS)
Culpepper, R. G.; Murphy, R. D.
1979-01-01
The paper discusses the Navy's XFV-12A tethered hover testing capabilities utilizing NASA's Impact Dynamic Research Facility (IDRF) at Langley. The facility allows for both static and dynamic tethered hover test operations to be undertaken with safety. The installation which consists of the 'Z' system (tether), restraint system, static tiedowns and the control room and console, is presented in detail. Among the capabilities demonstrated were the ability to recover the aircraft anytime during a test, to rapidly and safely define control limits, and to provide a realistic environment for pilot training and proficiency in VTOL flight.
The NASA Glen Research Center's Hypersonic Tunnel Facility. Chapter 16
NASA Technical Reports Server (NTRS)
Woike, Mark R.; Willis, Brian P.
2001-01-01
The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF) is a blow-down, freejet wind tunnel that provides true enthalpy flight conditions for Mach numbers of 5, 6, and 7. The Hypersonic Tunnel Facility is unique due to its large scale and use of non-vitiated (clean air) flow. A 3MW graphite core storage heater is used to heat the test medium of gaseous nitrogen to the high stagnation temperatures required to produce true enthalpy conditions. Gaseous oxygen is mixed into the heated test flow to generate the true air simulation. The freejet test section is 1.07m (42 in.) in diameter and 4.3m (14 ft) in length. The facility is well suited for the testing of large scale airbreathing propulsion systems. In this chapter, a brief history and detailed description of the facility are presented along with a discussion of the facility's application towards hypersonic airbreathing propulsion testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Church, M.; Edwards, H.; Harms, E.
2013-10-01
Fermilab is the nation’s particle physics laboratory, supported by the DOE Office of High Energy Physics (OHEP). Fermilab is a world leader in accelerators, with a demonstrated track-record— spanning four decades—of excellence in accelerator science and technology. We describe the significant opportunity to complete, in a highly leveraged manner, a unique accelerator research facility that supports the broad strategic goals in accelerator science and technology within the OHEP. While the US accelerator-based HEP program is oriented toward the Intensity Frontier, which requires modern superconducting linear accelerators and advanced highintensity storage rings, there are no accelerator test facilities that support themore » accelerator science of the Intensity Frontier. Further, nearly all proposed future accelerators for Discovery Science will rely on superconducting radiofrequency (SRF) acceleration, yet there are no dedicated test facilities to study SRF capabilities for beam acceleration and manipulation in prototypic conditions. Finally, there are a wide range of experiments and research programs beyond particle physics that require the unique beam parameters that will only be available at Fermilab’s Advanced Superconducting Test Accelerator (ASTA). To address these needs we submit this proposal for an Accelerator R&D User Facility at ASTA. The ASTA program is based on the capability provided by an SRF linac (which provides electron beams from 50 MeV to nearly 1 GeV) and a small storage ring (with the ability to store either electrons or protons) to enable a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop transformative approaches to particle-beam generation, acceleration and manipulation which cannot be done elsewhere. It will also establish a unique resource for R&D towards Energy Frontier facilities and a test-bed for SRF accelerators and high brightness beam applications in support of the OHEP mission of Accelerator Stewardship.« less
Reagan Test Site Distributed Operations
2012-01-01
for missile testing because of its geography and its strategic location in the Pacific [ 1 ]. The atoll’s distance from launch facilities at Vandenberg...research on ballistic missile defense 50 years ago (Figure 1 ). The subsequent development of RTS’s unique instrumentation sensors, including high...control center including hardware, software, networks, and the facility functioned successfully. FIGURE 1 . The map shows the isolated location of the
Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2010-01-01
The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.
Pre-Flight Testing of Spaceborne GPS Receivers using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, R.
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket balloon. The GPS simulation system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and tests sites. The GPS facility has been operational since early 1996 and has utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulation, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
Pre-Flight Testing of Spaceborne GPS Receivers Using a GPS Constellation Simulator
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Davis, Edward; Alonso, Roberto
1999-01-01
The NASA Goddard Space Flight Center (GSFC) Global Positioning System (GPS) applications test facility has been established within the GSFC Guidance Navigation and Control Center. The GPS test facility is currently housing the Global Simulation Systems Inc. (GSSI) STR2760 GPS satellite 40-channel attitude simulator and a STR4760 12-channel navigation simulator. The facility also contains a few other resources such as an atomic time standard test bed, a rooftop antenna platform and a radome. It provides a new capability for high dynamics GPS simulations of space flight that is unique within the aerospace community. The GPS facility provides a critical element for the development and testing of GPS based technologies i.e. position, attitude and precise time determination used on-board a spacecraft, suborbital rocket or balloon. The GPS simulator system is configured in a transportable rack and is available for GPS component development as well as for component, spacecraft subsystem and system level testing at spacecraft integration and test sites. The GPS facility has been operational since early 1996 and has been utilized by space flight projects carrying GPS experiments, such as the OrbView-2 and the Argentine SAC-A spacecrafts. The SAC-A pre-flight test data obtained by using the STR2760 simulator and the comparison with preliminary analysis of the GPS data from SAC-A telemetry are summarized. This paper describes pre-flight tests and simulations used to support a unique spaceborne GPS experiment. The GPS experiment mission objectives and the test program are described, as well as the GPS test facility configuration needed to verify experiment feasibility. Some operational and critical issues inherent in GPS receiver pre-flight tests and simulations using this GPS simulator, and test methodology are described. Simulation and flight data are presented. A complete program of pre-flight testing of spaceborne GPS receivers using a GPS constellation simulator is detailed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biancardi, F.R.; Michels, H.H.; Sienel, T.H.
1996-10-01
The purpose of this program was to conduct experimental and analytical efforts to determine lubricant circulation characteristics of new HFC/POE pairs and HFC/mineral oil pairs in a representative central residential HVAC system and to compare their behavior with the traditional HCFC-22/mineral oil (refrigerant/lubricant) pair. A dynamic test facility was designed and built to conduct the experimental efforts. This facility provided a unique capability to visually and physically measure oil circulation rates, on-line, in operating systems. A unique on-line ultraviolet-based measurement device was used to obtain detailed data on the rate and level of lubricant oil circulated within the operating heatmore » pump system. The experimental and analytical data developed during the program are presented as a function of vapor velocity, refrigerant/lubricant viscosity, system features and equipment. Both visual observations and instrumentation were used to understand ``worst case`` oil circulation situations. This report is presented in two volumes. Volume 1 contains a complete description of the program scope, objective, test results summary, conclusions, description of test facility and recommendations for future effort. Volume 2 contains all of the program test data essentially as taken from the laboratory dynamic test facility during the sequence of runs.« less
A New Large Vibration Test Facility Concept for the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Ross, Brian P.; Johnson, Eric L.; Hoksbergen, Joel; Lund, Doug
2014-01-01
The James Webb Space Telescope consists of three main components, the Integrated Science Instrument Module (ISIM) Element, the Optical Telescope Element (OTE), and the Spacecraft Element. The ISIM and OTE are being assembled at the National Aeronautics and Space Administration's Goddard Spaceflight Center (GSFC). The combined OTE and ISIM Elements, called OTIS, will undergo sine vibration testing before leaving Goddard. OTIS is the largest payload ever tested at Goddard and the existing GSFC vibration facilities are incapable of performing a sine vibration test of the OTIS payload. As a result, a new large vibration test facility is being designed. The new facility will consist of a vertical system with a guided head expander and a horizontal system with a hydrostatic slip table. The project is currently in the final design phase with installation to begin in early 2015 and the facility is expected to be operational by late 2015. This paper will describe the unique requirements for a new large vibration test facility and present the selected final design concepts.
NASA Technical Reports Server (NTRS)
Hughes, Mark S.; Hebert, Phillip W.; Davis, Dawn M.; Jensen, Scott L.; Abell, Frederick K., Jr.
2004-01-01
The John C. Stennis Space Center (SSC) provides test operations services to a variety of customers, including NASA, DoD, and commercial enterprises for the development of current and next-generation rocket propulsion systems. Many of these testing services are provided in the E-Complex test facilities composed of three active test stands (E1, E2, & E3) and 7 total test positions. Each test position is outfitted with unique sets of data acquisition and controls hardware and software that record both facility and test article data and enable safe operation of the test facility. This paper addresses each system in more detail including efforts to upgrade hardware and software.
Zero Gravity Research Facility User's Guide
NASA Technical Reports Server (NTRS)
Thompson, Dennis M.
1999-01-01
The Zero Gravity Research Facility (ZGF) is operated by the Space Experiments Division of the NASA John H. Glenn Research Center (GRC) for investigators sponsored by the Microgravity Science and Applications Division of NASA Headquarters. This unique facility has been utilized by scientists and engineers for reduced gravity experimentation since 1966. The ZGF has provided fundamental scientific information, has been used as an important test facility in the space flight hardware design, development, and test process, and has also been a valuable source of data in the flight experiment definition process. The purpose of this document is to provide information and guidance to prospective researchers regarding the design, buildup, and testing of microgravity experiments.
NASA Johnson Space Center Usability Testing and Analysis Facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, M.
2004-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.
NASA Technical Reports Server (NTRS)
Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.
2010-01-01
An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration
Description of Liquid Nitrogen Experimental Test Facility
NASA Technical Reports Server (NTRS)
Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.
1991-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
Description of liquid nitrogen experimental test facility
NASA Technical Reports Server (NTRS)
Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.
1992-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2012-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
NASA Technical Reports Server (NTRS)
Evans, Richard K.; Hill, Gerald M.
2014-01-01
Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.
1963-05-10
The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.
1967-07-28
The Marshall Space Flight Center (MSFC) played a crucial role in the development of the huge Saturn rockets that delivered humans to the moon in the 1960s. Many unique facilities existed at MSFC for the development and testing of the Saturn rockets. Affectionately nicknamed “The Arm Farm”, the Random Motion/ Lift-Off Simulator was one of those unique facilities. This facility was developed to test the swingarm mechanisms that were used to hold the rocket in position until lift-off. The Arm Farm provided the capability of testing the detachment and reconnection of various arms under brutally realistic conditions. The 18-acre facility consisted of more than a half dozen arm test positions and one position for testing access arms used by the Apollo astronauts. Each test position had two elements: a vehicle simulator for duplicating motions during countdown and launch; and a section duplicating the launch tower. The vehicle simulator duplicated the portion of the vehicle skin that contained the umbilical connections and personnel access hatches. Driven by a hydraulic servo system, the vehicle simulator produced relative motion between the vehicle and tower. On the Arm Farm, extreme environmental conditions (such as a launch scrub during an approaching Florida thunderstorm) could be simulated. The dramatic scenes that the Marshall engineers and technicians created at the Arm Farm permitted the gathering of crucial technical and engineering data to ensure a successful real time launch from the Kennedy Space Center.
Ground test experiment for large space structures
NASA Technical Reports Server (NTRS)
Tollison, D. K.; Waites, H. B.
1985-01-01
In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.
Restoration of the Hypersonic Tunnel Facility at NASA Glenn Research Center, Plum Brook Station
NASA Technical Reports Server (NTRS)
Woodling, Mark A.
2000-01-01
The NASA Glenn Research Center's Hypersonic Tunnel Facility (HTF), located at the Plum Brook Station in Sandusky, Ohio, is a non-vitiated, free-jet facility, capable of testing large-scale propulsion systems at Mach Numbers from 5 to 7. As a result of a component failure in September of 1996, a restoration project was initiated in mid- 1997 to repair the damage to the facility. Following the 2-1/2 year effort, the HTF has been returned to an operational condition. Significant repairs and operational improvements have been implemented in order to ensure facility reliability and personnel safety. As of January 2000, this unique, state-of-the-art facility was ready for integrated systems testing.
A low-density boundary-layer wind tunnel facility
NASA Technical Reports Server (NTRS)
White, B. R.
1987-01-01
This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Lee, Jinho; Stephens, John W.; Hostler, Robert W., Jr.; VonKamp, William D.
2010-01-01
The Hypersonic Tunnel Facility (HTF) located at the NASA Glenn Research Center s Plum Brook Station in Sandusky, Ohio, is the nation s only large-scale, non-vitiated, hypersonic propulsion test facility. The HTF, with its 4-story graphite induction heater, is capable of duplicating Mach 5, 6, and 7 flight conditions. This unique propulsion system test facility has experienced several standby and reactivation cycles. The intent of the paper is to overview the HTF capabilities to the propulsion community, present the current status of HTF, and share the lessons learned from putting a large-scale facility into mothball status for a later restart
Brief, Why the Launch Equipment Test Facility Needs a Laser Tracker
NASA Technical Reports Server (NTRS)
Yue, Shiu H.
2011-01-01
The NASA Kennedy Space Center Launch Equipment Test Facility (LETF) supports a wide spectrum of testing and development activities. This capability was originally established in the 1970's to allow full-scale qualification of Space Shuttle umbilicals and T-O release mechanisms. The LETF has leveraged these unique test capabilities to evolve into a versatile test and development area that supports the entire spectrum of operational programs at KSC. These capabilities are historically Aerospace related, but can certainly can be adapted for other industries. One of the more unique test fixtures is the Vehicle Motion Simulator or the VMS. The VMS simulates all of the motions that a launch vehicle will experience from the time of its roll-out to the launch pad, through roughly the first X second of launch. The VMS enables the development and qualification testing of umbilical systems in both pre-launch and launch environments. The VMS can be used to verify operations procedures, clearances, disconnect systems performance &margins, and vehicle loads through processing flow motion excursions.
NETL- High-Pressure Combustion Research Facility
None
2018-02-14
NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.
1986-01-01
Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);
Beauty and the beast: results of the Rhode Island smokefree shop initiative.
Linnan, Laura A; Emmons, Karen M; Abrams, David B
2002-01-01
Licensed hairdressing facilities are prevalent in communities nationwide and represent a unique and promising channel for delivering public health interventions. The Rhode Island Smokefree Shop Initiative tested the feasibility of using these facilities to deliver smoking policy interventions statewide. A statewide survey of hairdressing facilities was followed by interventions targeted to the readiness level (high/low) of respondents to adopt smoke-free policies.
Development and use of interactive displays in real-time ground support research facilities
NASA Technical Reports Server (NTRS)
Rhea, Donald C.; Hammons, Kvin R.; Malone, Jacqueline C.; Nesel, Michael C.
1989-01-01
The NASA Western Aeronautical Test Range (WATR) is one of the world's most advanced aeronautical research flight test support facilities. A variety of advanced and often unique real-time interactive displays has been developed for use in the mission control centers (MCC) to support research flight and ground testing. These dispalys consist of applications operating on systems described as real-time interactive graphics super workstations and real-time interactive PC/AT compatible workstations. This paper reviews these two types of workstations and the specific applications operating on each display system. The applications provide examples that demonstrate overall system capability applicable for use in other ground-based real-time research/test facilities.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
None
2018-01-16
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun, the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.
Mode S data link transponder flight test results
DOT National Transportation Integrated Search
1997-02-01
The Federal Aviation Administration (FAA) William J. Hughes Technical Center is : in the unique position of having the facilities designed to test Mode S radars : and transponders. A vendor supplied an early production model of a Mode S : transponder...
Beauty and the Beast: Results of the Rhode Island Smokefree Shop Initiative
Linnan, Laura A.; Emmons, Karen M.; Abrams, David B.
2002-01-01
Licensed hairdressing facilities are prevalent in communities nationwide and represent a unique and promising channel for delivering public health interventions. The Rhode Island Smokefree Shop Initiative tested the feasibility of using these facilities to deliver smoking policy interventions statewide. A statewide survey of hairdressing facilities was followed by interventions targeted to the readiness level (high/low) of respondents to adopt smoke-free policies. PMID:11772752
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
2001-07-25
Since the 1940s the Dryden Flight Research Center, Edwards, California, has developed a unique and highly specialized capability for conducting flight research programs. The organization, made up of pilots, scientists, engineers, technicians, and mechanics, has been and will continue to be leaders in the field of advanced aeronautics. Located on the northwest "shore" of Rogers Dry Lake, the complex was built around the original administrative-hangar building constructed in 1954. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the Integrated Test Facility. One of the most prominent structures is the space shuttle program's Mate-Demate Device and hangar in Area A to the north of the main complex. On the lakebed surface is a Compass Rose that gives pilots an instant compass heading. The Dryden complex originated at Edwards Air Force Base in support of the X-1 supersonic flight program. As other high-speed aircraft entered research programs, the facility became permanent and grew from a staff of five engineers in 1947 to a population in 2006 of nearly 1100 full-time government and contractor employees.
The CERN-EU high-energy Reference Field (CERF) facility: applications and latest developments
NASA Astrophysics Data System (ADS)
Silari, Marco; Pozzi, Fabio
2017-09-01
The CERF facility at CERN provides an almost unique high-energy workplace reference radiation field for the calibration and test of radiation protection instrumentation employed at high-energy accelerator facilities and for aircraft and space dosimetry. This paper describes the main features of the facility and supplies a non-exhaustive list of recent (as of 2005) applications for which CERF is used. Upgrade work started in 2015 to provide the scientific and industrial communities with a state-of-the-art reference facility is also discussed.
The National Transonic Facility
NASA Technical Reports Server (NTRS)
Holmes, H. K.
1986-01-01
The National Transonic Facility, NTF, is a high Reynolds Number facility where the increase in Reynolds Number is obtained by operating at high pressures and low temperatures. Liquid nitrogen is allowed to vaporize, making gaseous nitrogen the test medium with temperatures extending down to approximately 100 degrees Kelvin. These factors have created unique, new challenges to those developing sensors and instrumentation. Pressure vessels, thermal enclosures or elaborate temperature compensations schemes, are needed for environmental protection and special materials are needed for sensors and model fabrication. The need for a new measurement, model deformation, was also created. An extensive program to develop the unique sensors and instrumentation was initiated. The data acquisition system and systems to measure aerodynamic forces and pressures, model attitude, and model deformation, are discussed.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley
2007-01-01
Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.
Stockpile Stewardship: How We Ensure the Nuclear Deterrent Without Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-09-04
In the 1990s, the U.S. nuclear weapons program shifted emphasis from developing new designs to dismantling thousands of existing weapons and maintaining a much smaller enduring stockpile. The United States ceased underground nuclear testing, and the Department of Energy created the Stockpile Stewardship Program to maintain the safety, security, and reliability of the U.S. nuclear deterrent without full-scale testing. This video gives a behind the scenes look at a set of unique capabilities at Lawrence Livermore that are indispensable to the Stockpile Stewardship Program: high performance computing, the Superblock category II nuclear facility, the JASPER a two stage gas gun,more » the High Explosive Applications Facility (HEAF), the National Ignition Facility (NIF), and the Site 300 contained firing facility.« less
The NASA Ames 16-Inch Shock Tunnel Nozzle Simulations and Experimental Comparison
NASA Technical Reports Server (NTRS)
TokarcikPolsky, S.; Papadopoulos, P.; Venkatapathy, E.; Delwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
The 16-Inch Shock Tunnel at NASA Ames Research Center is a unique test facility used for hypersonic propulsion testing. To provide information necessary to understand the hypersonic testing of the combustor model, computational simulations of the facility nozzle were performed and results are compared with available experimental data, namely static pressure along the nozzle walls and pitot pressure at the exit of the nozzle section. Both quasi-one-dimensional and axisymmetric approaches were used to study the numerous modeling issues involved. The facility nozzle flow was examined for three hypersonic test conditions, and the computational results are presented in detail. The effects of variations in reservoir conditions, boundary layer growth, and parameters of numerical modeling are explored.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
Langley Aircraft Landing Dynamics Facility
NASA Technical Reports Server (NTRS)
Davis, Pamela A.; Stubbs, Sandy M.; Tanner, John A.
1987-01-01
The Langley Research Center has recently upgraded the Landing Loads Track (LLT) to improve the capability of low-cost testing of conventional and advanced landing gear systems. The unique feature of the Langley Aircraft Landing Dynamics Facility (ALDF) is the ability to test aircraft landing gear systems on actual runway surfaces at operational ground speeds and loading conditions. A historical overview of the original LLT is given, followed by a detailed description of the new ALDF systems and operational capabilities.
Testing of the 3M Company Composite Conductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stovall, John P; Rizy, D Tom; Kisner, Roger A
2010-10-01
The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum-Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors. The objective of this work is to accelerate the commercial acceptance by electric utilities of this new conductor design by testing four representative conductor classes in controlled conditions. A unique facility called the Powerline Conductor Accelerated Testing (PCAT) Facility was built at ORNL for testing overhead conductors. The PCAT has been uniquely designed for testing overhead bare transmission line conductors at high currents and temperatures after they have beenmore » installed and tensioned to the manufacturer's specifications. The ability to operate a transmission line conductor in this manner does not exist elsewhere in the United States. Four classes of ACCR cable designed by the 3M Company have been successfully test at ORNL small, medium, large and small/compact. Based on these and other manufacturer tests, the 3M Company has successfully introduced the ACCR into the commercial market and has completed over twenty installations for utility companies.« less
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Protoflight photovoltaic power module system-level tests in the space power facility
NASA Technical Reports Server (NTRS)
Rivera, Juan C.; Kirch, Luke A.
1989-01-01
Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.
Three-dimensional laser window formation
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1992-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report discusses in detail the aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities associated with the formation of these windows. Included in this discussion are the design criteria, bonding mediums, and evaluation testing for three-dimensional laser windows.
Pretest uncertainty analysis for chemical rocket engine tests
NASA Technical Reports Server (NTRS)
Davidian, Kenneth J.
1987-01-01
A parametric pretest uncertainty analysis has been performed for a chemical rocket engine test at a unique 1000:1 area ratio altitude test facility. Results from the parametric study provide the error limits required in order to maintain a maximum uncertainty of 1 percent on specific impulse. Equations used in the uncertainty analysis are presented.
Window Observational Research Facility (WORF)
NASA Technical Reports Server (NTRS)
Pelfrey, Joseph; Sledd, Annette
2007-01-01
This viewgraph document concerns the Window Observational Research Facility (WORF) Rack, a unique facility designed for use with the US Lab Destiny Module window. WORF will provide valuable resources for Earth Science payloads along with serving the purpose of protecting the lab window. The facility can be used for remote sensing instrumentation test and validation in a shirt sleeve environment. WORF will also provide a training platform for crewmembers to do orbital observations of other planetary bodies. WORF payloads will be able to conduct terrestrial studies utilizing the data collected from utilizing WORF and the lab window.
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2015-10-01
This unique environmental simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
A large high vacuum, high pumping speed space simulation chamber for electric propulsion
NASA Technical Reports Server (NTRS)
Grisnik, Stanley P.; Parkes, James E.
1994-01-01
Testing high power electric propulsion devices poses unique requirements on space simulation facilities. Very high pumping speeds are required to maintain high vacuum levels while handling large volumes of exhaust products. These pumping speeds are significantly higher than those available in most existing vacuum facilities. There is also a requirement for relatively large vacuum chamber dimensions to minimize facility wall/thruster plume interactions and to accommodate far field plume diagnostic measurements. A 4.57 m (15 ft) diameter by 19.2 m (63 ft) long vacuum chamber at NASA Lewis Research Center is described. The chamber utilizes oil diffusion pumps in combination with cryopanels to achieve high vacuum pumping speeds at high vacuum levels. The facility is computer controlled for all phases of operation from start-up, through testing, to shutdown. The computer control system increases the utilization of the facility and reduces the manpower requirements needed for facility operations.
NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina L.
2005-01-01
The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.
Mach 5 to 7 RBCC Propulsion System Testing at NASA-LeRC HTF
NASA Technical Reports Server (NTRS)
Perkins, H. Douglas; Thomas, Scott R.; Pack, William D.
1996-01-01
A series of Mach 5 to 7 freejet tests of a Rocket Based Combined Cycle (RBCC) engine were cnducted at the NASA Lewis Research Center (LERC) Hypersonic Tunnel Facility (HTF). This paper describes the configuration and operation of the HTF and the RBCC engine during these tests. A number of facility support systems are described which were added or modified to enhance the HTF test capability for conducting this experiment. The unfueled aerodynamic perfor- mance of the RBCC engine flowpath is also presented and compared to sub-scale test results previously obtained in the NASA LERC I x I Supersonic Wind Tunnel (SWT) and to Computational Fluid Dynamic (CFD) analysis results. This test program demonstrated a successful configuration of the HTF for facility starting and operation with a generic RBCC type engine and an increased range of facility operating conditions. The ability of sub-scale testing and CFD analysis to predict flowpath performance was also shown. The HTF is a freejet, blowdown propulsion test facility that can simulate up to Mach 7 flight conditions with true air composition. Mach 5, 6, and 7 facility nozzles are available, each with an exit diameter of 42 in. This combination of clean air, large scale, and Mach 7 capabilities is unique to the HTF. This RBCC engine study is the first engine test program conducted at the HTF since 1974.
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Arrington, Lynn A.; Kleinhenz, Julie E.; Marshall, William M.
2012-01-01
A relocated rocket engine test facility, the Altitude Combustion Stand (ACS), was activated in 2009 at the NASA Glenn Research Center. This facility has the capability to test with a variety of propellants and up to a thrust level of 2000 lbf (8.9 kN) with precise measurement of propellant conditions, propellant flow rates, thrust and altitude conditions. These measurements enable accurate determination of a thruster and/or nozzle s altitude performance for both technology development and flight qualification purposes. In addition the facility was designed to enable efficient test operations to control costs for technology and advanced development projects. A liquid oxygen-liquid methane technology development test program was conducted in the ACS from the fall of 2009 to the fall of 2010. Three test phases were conducted investigating different operational modes and in addition, the project required the complexity of controlling propellant inlet temperatures over an extremely wide range. Despite the challenges of a unique propellant (liquid methane) and wide operating conditions, the facility performed well and delivered up to 24 hot fire tests in a single test day. The resulting data validated the feasibility of utilizing this propellant combination for future deep space applications.
NASA Technical Reports Server (NTRS)
1996-01-01
The Hydrologic Instrumentation Facility (HIF) at Stennis Space Center is a unique high-tech facility that provides hydrologic instrumentation support to the U. S. Geological Survey and other federal agencies worldwide. The HIF has the responsibility for warehousing, testing, evaluating, designing, repairing, and calibrating numerous pieces of hydrologic instrumentation, which is used in studying water on the surface, in the soil, and in the atmosphere of the Earth.
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Innovations at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, J.; Iversen, J. J.; Alois, S.; Rasmussen, K. R.
2017-09-01
This unique and recently improved planetary simulation facility is capable of re-creating extreme terrestrial, Martian and other planetary environments. It is supported by EU activities including Europlanet 2020 RI and a volcanology network VERTIGO. It is also used as a test facility by ESA for the forthcoming ExoMars 2020 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and Industrial community. The latest research and networking activities will be presented.
Operational Phase Life Cycle Assessment of Select NASA Ground Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Marshall, Timothy J.; McGinnis, Sean
2011-01-01
NASA's Aeronautics Test Program (ATP) is responsible for many large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. In order to accomplish these national objectives, significant energy and resources are consumed. A select group of facilities was analyzed using life-cycle assessment (LCA) to determine carbon footprint and environmental impacts. Most of these impacts stem from electricity and natural gas consumption, used directly at the facility and to generate support processes such as compressed air and steam. Other activities were analyzed but determined to be smaller in scale and frequency with relatively negligible environmental impacts. More specialized facilities use R-134a, R-14, jet fuels, or nitrogen gas, and these unique inputs can have a considerable effect on a facility s overall environmental impact. The results of this LCA will be useful to ATP and NASA as the nation looks to identify its top energy consumers and NASA looks to maximize research output and minimize environmental impact. Keywords: NASA, Aeronautics, Wind tunnel, Keyword 4, Keyword 5
Totaro, Sara; Cotogno, Giulio; Rasmussen, Kirsten; Pianella, Francesca; Roncaglia, Marco; Olsson, Heidi; Riego Sintes, Juan M; Crutzen, Hugues P
2016-11-01
The European Commission has established a Nanomaterials Repository that hosts industrially manufactured nanomaterials that are distributed world-wide for safety testing of nanomaterials. In a first instance these materials were tested in the OECD Testing Programme. They have then also been tested in several EU funded research projects. The JRC Repository of Nanomaterials has thus developed into serving the global scientific community active in the nanoEHS (regulatory) research. The unique Repository facility is a state-of-the-art installation that allows customised sub-sampling under the safest possible conditions, with traceable final sample vials distributed world-wide for research purposes. This paper describes the design of the Repository to perform a semi-automated subsampling procedure, offering high degree of flexibility and precision in the preparation of NM vials for customers, while guaranteeing the safety of the operators, and environmental protection. The JRC nanomaterials are representative for part of the world NMs market. Their wide use world-wide facilitates the generation of comparable and reliable experimental results and datasets in (regulatory) research by the scientific community, ultimately supporting the further development of the OECD regulatory test guidelines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Improving Large-Scale Testing Capability by Modifying the 40- by 80-ft Wind Tunnel
NASA Technical Reports Server (NTRS)
Mort, Kenneth W.; Soderman, Paul T.; Eckert, William T.
1979-01-01
Interagency studies conducted during the last several years have indicated the need to Improve full-scale testing capabilities. The studies showed that the most effective trade between test capability and facility cost was provided by re-powering the existing Ames Research Center 40- by 80-ft Wind Tunnel to Increase the maximum speed from about 100 m/s (200 knots) lo about 150 m/s (300 knots) and by adding a new 24- by 37-m (80- by 120-ft) test section powered for about a 50-m/s (100-knot) maximum speed. This paper reviews the design of the facility, a few or its capabilities, and some of its unique features.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2008-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
NASA Technical Reports Server (NTRS)
Edwards, Daryl A.
2007-01-01
Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.
Research at a European Planetary Simulation Facility
NASA Astrophysics Data System (ADS)
Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob
2016-04-01
A unique environmental simulation facility will be presented which is capable of re-creating extreme terrestrial or other planetary environments. It is supported by EU activities including a volcanology network VERTIGO and a planetology network Europlanet 2020 RI. It is also used as a test facility by ESA for the forthcoming ExoMars 2018 mission. Specifically it is capable of recreating the key physical parameters such as temperature, pressure (gas composition), wind flow and importantly the suspension/transport of dust or sand particulates. This facility is available both to the scientific and industrial community. Details of this laboratory facility will be presented and some of the most recent activities will be summarized. For information on access to this facility please contact the author.
The BepiColombo/SERENA Integrated Test Campaign
NASA Astrophysics Data System (ADS)
Orsini, Stefano; De Angelis, Elisabetta; Livi, Stefano; Lichtenegger, Herbert; Barabash, Stas; Milillo, Anna; Wurz, Peter; Olivieri, Angelo; D'Arcio, Luigi; Phillips, Mark; Laky, Gunter; Wieser, Martin; Camozzi, Fabio; Di Lellis, Andrea M.; Mura, Alessandro; Lazzarotto, Francesco; Aronica, Alessandro; Rispoli, Rosanna; Verolli, Nello; Piazza, Daniele
2017-04-01
The activities related to the BepiColombo/MPO/SERENA Integrated Test (SIT, held in February 2017 by the vacuum facility at the University of Bern, CH) are presented. This campaign is a unique opportunity to test the experiment performances, with all the four flight-spare instruments of SERENA (ELENA, STROFIO, PICAM, AND MIPA, simultaneously operated by the System Control Unit (SCU), in a fully operational configuration. The test is focused on the On-Board Commanding Procedure and on the Science Operation Basic Procedure, with the goal of providing a comprehensive picture of the on-board S/W facility both in nominal and more resource demanding conditions. Such a test is a powerful tool for allowing SERENA to perform the best possible observation of the particle populations surrounding Mercury.
Popping a Hole in High-Speed Pursuits
NASA Technical Reports Server (NTRS)
2005-01-01
NASA s Plum Brook Station, a 6,400-acre, remote test installation site for Glenn Research Center, houses unique, world-class test facilities, including the world s largest space environment simulation chamber and the world s only laboratory capable of full-scale rocket engine firings and launch vehicle system level tests at high-altitude conditions. Plum Brook Station performs complex and innovative ground tests for the U.S. Government (civilian and military), the international aerospace community, as well as the private sector. Popping a Hole in High-Speed Pursuits Recently, Plum Brook Station s test facilities and NASA s engineering experience were combined to improve a family of tire deflating devices (TDDs) that helps law enforcement agents safely, simply, and successfully stop fleeing vehicles in high-speed pursuit
The Superorbital Expansion Tube concept, experiment and analysis
NASA Technical Reports Server (NTRS)
Neely, A. J.; Morgan, R. G.
1995-01-01
In response to the need for ground testing facilities for super orbital re-entry research, a small scale facility has been set up at the University of Queensland to demonstrate the superorbital expansion tube concept. This unique device is a free piston driven, triple diaphragm, impulse shock facility which uses the enthalpy multiplication mechanism of the unsteady expansion process and the addition of a secondary shock driver to further heat the driver gas. The pilot facility has been operated to produce quasi-steady test flows in air with shock velocities in excess of 13 km/s and with a usable test flow duration of the order of 15 micro sec. an experimental condition produced in the facility with total enthalpy of 108 MJ/kg and a total pressure of 335 MPa is reported. A simple analytical flow model which accounts for non-ideal rupture of the light tertiary diaphragm and the resulting entropy increase in the test gas is discussed. It is shown that equilibrium calculations more accurately model the unsteady expansion process than calculations assuming frozen chemistry. This is because the high enthalpy flows produced in the facility can only be achieved if the chemical energy stored in the test flow during shock heating of the test gas is partially returned to the flow during the process of unsteady expansion. Measurements of heat transfer rates to a flat plate demonstrate the usability of test flow for aerothermodynamic testing and comparison of these rates with empirical calculations confirms the usable accuracy of the flow model.
On the Development of a Unique Arc Jet Test Apparatus for Control Surface Seal Evaluations
NASA Technical Reports Server (NTRS)
Finkbeiner, Joshua R.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; Robbie, Malcolm; Baker, Gus; Erker, Arthur
2004-01-01
NASA Glenn has developed a unique test apparatus capable of evaluating control surface seal and flap designs under simulated reentry heating conditions in NASA Johnson's arc jet test facility. The test apparatus is capable of testing a variety of seal designs with a variety of control surface materials and designs using modular components. The flap angle can be varied during testing, allowing modification of the seal environment while testing is in progress. The flap angle is varied using an innovative transmission system which limits heat transfer from the hot flap structure to the motor, all while keeping the components properly aligned regardless of thermal expansion. A combination of active and passive cooling is employed to prevent thermal damage to the test fixture while still obtaining the target seal temperature.
Multiloop Integral System Test (MIST): MIST Facility Functional Specification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, T F; Koksal, C G; Moskal, T E
1991-04-01
The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility --more » the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs.« less
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Dickens, Kevin W.; Skaff, Tony F.; Cmar, Mark D.; VanMeter, Matthew J.; Haberbusch, Mark S.
1998-01-01
The Spacecraft Propulsion Research Facility at the NASA Lewis Research Center's Plum Brook Station was reactivated in order to conduct flight simulation ground tests of the Delta 3 cryogenic upper stage. The tests were a cooperative effort between The Boeing Company, Pratt and Whitney, and NASA. They included demonstration of tanking and detanking of liquid hydrogen, liquid oxygen and helium pressurant gas as well as 12 engine firings simulating first, second, and third burns at altitude conditions. A key to the success of these tests was the performance of the primary facility systems and their interfaces with the vehicle. These systems included the structural support of the vehicle, propellant supplies, data acquisition, facility control systems, and the altitude exhaust system. While the facility connections to the vehicle umbilical panel simulated the performance of the launch pad systems, additional purge and electrical connections were also required which were unique to ground testing of the vehicle. The altitude exhaust system permitted an approximate simulation of the boost-phase pressure profile by rapidly pumping the test chamber from 13 psia to 0.5 psia as well as maintaining altitude conditions during extended steady-state firings. The performance of the steam driven ejector exhaust system has been correlated with variations in cooling water temperature during these tests. This correlation and comparisons to limited data available from Centaur tests conducted in the facility from 1969-1971 provided insight into optimizing the operation of the exhaust system for future tests. Overall, the facility proved to be robust and flexible for vehicle space simulation engine firings and enabled all test objectives to be successfully completed within the planned schedule.
Plans for an ERL Test Facility at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik; Bruning, O S; Calaga, Buchi Rama Rao
2014-12-01
The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and theirmore » tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.« less
NASA Technical Reports Server (NTRS)
Thomas, Scott R.; Trefny, Charles J.; Pack, William D.
1995-01-01
The NASA Lewis Research Center's Hypersonic Tunnel Facility (HTF) is a free-jet, blowdown propulsion test facility that can simulate up to Mach-7 flight conditions with true air composition. Mach-5, -6, and -7 nozzles, each with a 42 inch exit diameter, are available. Previously obtained calibration data indicate that the test flow uniformity of the HTF is good. The facility, without modifications, can accommodate models approximately 10 feet long. The test gas is heated using a graphite core induction heater that generates a nonvitiated flow. The combination of clean-air, large-scale, and Mach-7 capabilities is unique to the HTF and enables an accurate propulsion performance determination. The reactivation of the HTF, in progress since 1990, includes refurbishing the graphite heater, the steam generation plant, the gaseous oxygen system, and all control systems. All systems were checked out and recertified, and environmental systems were upgraded to meet current standards. The data systems were also upgraded to current standards and a communication link with NASA-wide computers was added. In May 1994, the reactivation was complete, and an integrated systems test was conducted to verify facility operability. This paper describes the reactivation, the facility status, the operating capabilities, and specific applications of the HTF.
Large-Scale Wind Turbine Testing in the NASA 24.4m (80) by 36.6m(120) Wind Tunnel
NASA Technical Reports Server (NTRS)
Zell, Peter T.; Imprexia, Cliff (Technical Monitor)
2000-01-01
The 80- by 120-Foot Wind Tunnel at NASA Ames Research Center in California provides a unique capability to test large-scale wind turbines under controlled conditions. This special capability is now available for domestic and foreign entities wishing to test large-scale wind turbines. The presentation will focus on facility capabilities to perform wind turbine tests and typical research objectives for this type of testing.
The rationale and design features for the 40 by 80/80 by 120 foot wind tunnel
NASA Technical Reports Server (NTRS)
Mort, K. W.; Kelly, M. W.; Hickey, D. H.
1976-01-01
A substantial increase in the test capability of full scale wind tunnels is considered. In order to determine the most cost effective means for providing this desired increase in test capability, a series of design studies were conducted of various new facilities as well as of major modifications to the existing 40- by 80-foot wind tunnel. The most effective trade between test capability and facility cost was provided by repowering the existing 40 by 80 foot wind tunnel to increase the maximum speed from 200 knots to 300 knots and by the addition of a new 80- by 120-foot test section having a 110 knot maximum speed. The design of the facility is described with special emphasis on the unique features, such as the drive system which absorbs nearly four times the power without an increase in noise, and the large flow diversion devices required to interface the two test sections to a single drive.
Centaur Rocket in Space Propulsion Research Facility (B-2)
1969-07-21
A Centaur second-stage rocket in the Space Propulsion Research Facility, better known as B‒2, operating at NASA’s Plum Brook Station in Sandusky, Ohio. Centaur was designed to be used with an Atlas booster to send the Surveyor spacecraft to the moon in the mid-1960s. After those missions, the rocket was modified to launch a series of astronomical observation satellites into orbit and send space probes to other planets. Researchers conducted a series of systems tests at the Plum Brook test stands to improve the Centaur fuel pumping system. Follow up full-scale tests in the B-2 facility led to the eventual removal of the boost pumps from the design. This reduced the system’s complexity and significantly reduced the cost of a Centaur rocket. The Centaur tests were the first use of the new B-2 facility. B‒2 was the world's only high altitude test facility capable of full-scale rocket engine and launch vehicle system level tests. It was created to test rocket propulsion systems with up to 100,000 pounds of thrust in a simulated space environment. The facility has the unique ability to maintain a vacuum at the rocket’s nozzle while the engine is firing. The rocket fires into a 120-foot deep spray chamber which cools the exhaust before it is ejected outside the facility. B‒2 simulated space using giant diffusion pumps to reduce chamber pressure 10-6 torr, nitrogen-filled cold walls create cryogenic temperatures, and quartz lamps replicate the radiation of the sun.
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Smith, C. A.; Johnson, W.
1985-01-01
The unique capabilities of the National Full-Scale Aerodynamics Complex (NFAC) for testing rotorcraft systems are described. The test facilities include the 40- by 80-Foot Wind Tunnel, the 80- by 120-Foot Wind Tunnel, and the Outdoor Aerodynamic Research Facility. The Ames 7- by 10-Foot Subsonic Wind Tunnel is also used in support of the rotor research programs conducted in the NFAC. Detailed descriptions of each of the facilities, with an emphasis on helicopter rotor test capability, are presented. The special purpose rotor test equipment used in conducting helicopter research is reviewed. Test rigs to operate full-scale helicopter main rotors, helicopter tail rotors, and tilting prop-rotors are available, as well as full-scale and small-scale rotor systems for use in various research programs. The test procedures used in conducting rotor experiments are discussed together with representative data obtained from previous test programs. Specific examples are given for rotor performance, loads, acoustics, system interactions, dynamic and aeroelastic stability, and advanced technology and prototype demonstration models.
The National Transonic Facility: A Research Retrospective
NASA Technical Reports Server (NTRS)
Wahls, R. A.
2001-01-01
An overview of the National Transonic Facility (NTF) from a research utilization perspective is provided. The facility was born in the 1970s from an internationally recognized need for a high Reynolds number test capability based on previous experiences with preflight predictions of aerodynamic characteristics and an anticipated need in support of research and development for future aerospace vehicle systems. Selection of the cryogenic concept to meet the need, unique capabilities of the facility, and the eventual research utilization of the facility are discussed. The primary purpose of the paper is to expose the range of investigations that have used the NTF since being declared operational in late 1984; limited research results are included, though many more can be found in the references.
The BepiColombo/SERENA package: Serena Integrated Test campaign
NASA Astrophysics Data System (ADS)
Orsini, S.; De Angelis, E.; Livi, S.; Lichtenegger, H.; Barabash, S.; Milillo, A.; Wurz, P.; Olivieir, A.; D'Arcio, L.; Philips, M.; Laky, G.; Wieser, M.; Camozzi, F.; Di Lellis, A. M.; Rispoli, R.; Jeszenesky, H.; Mura, A.; Aronica, A.; Lazzarotto, F.; Vertolli, N.
2017-09-01
The activities related to the BepiColombo/ MPO/SERENA Integrated Test (SIT, held in February-March 2017 inside the thermal vacuum facility at the University of Bern, Phys. Inst.) are presented. This campaign has been a unique opportunity to test the experiment performances, with all the four flight-spare instruments of SERENA (ELENA, STROFIO, PICAM, and MIPA, simultaneously operated by the System Control Unit (SCU), in a fully operational configuration.
Survey Of Wind Tunnels At Langley Research Center
NASA Technical Reports Server (NTRS)
Bower, Robert E.
1989-01-01
Report presented at AIAA 14th Aerodynamic Testing Conference on current capabilities and planned improvements at NASA Langley Research Center's major wind tunnels. Focuses on 14 major tunnels, 8 unique in world, 3 unique in country. Covers Langley Spin Tunnel. Includes new National Transonic Facility (NTF). Also surveys Langley Unitary Plan Wind Tunnel (UPWT). Addresses resurgence of inexpensive simple-to-operate research tunnels. Predicts no shortage of tools for aerospace researcher and engineer in next decade or two.
Update on the Puerto Rico Electric Power Authority`s spinning reserve battery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1996-11-01
The Puerto Rico Electric Power Authority completed start-up testing and began commercial operation of a 20MW/14MWh battery energy storage facility in April 1995. The battery system was installed to provide rapid spinning reserve and frequency control for the utility`s island electrical system. This paper outlines the needs of an island utility for rapid spinning reserve; identifies Puerto Rico`s unique challenges; reviews the technical and economic analyses that justified installation of a battery energy system; describes the storage facility that was installed; and presents preliminary operating results of the facility.
Solar energy storage via liquid filled cans - Test data and analysis
NASA Technical Reports Server (NTRS)
Saha, H.
1978-01-01
This paper describes the design of a solar thermal storage test facility with water-filled metal cans as heat storage medium and also presents some preliminary tests results and analysis. This combination of solid and liquid mediums shows unique heat transfer and heat contents characteristics and will be well suited for use with solar air systems for space and hot water heating. The trends of the test results acquired thus far are representative of the test bed characteristics while operating in the various modes.
NASA Technical Reports Server (NTRS)
Hensarling, Paula L.
2007-01-01
The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy.
Applications of Computational Methods for Dynamic Stability and Control Derivatives
NASA Technical Reports Server (NTRS)
Green, Lawrence L.; Spence, Angela M.
2004-01-01
Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.
NASA Technical Reports Server (NTRS)
Chambers, William V.
2004-01-01
The National Highway Traffic Safety Administration (NHTSA) approached NASA to evaluate vehicle rollover resistance using the High Capacity Centrifuge Facility. Testing was planned for six different sport utility vehicles. Previous methods for simulating the rollover conditions were considered to be not indicative of the true driving conditions. A more realistic gradual application of side loading could be achieved by using a centrifuge facility. A unique load measuring lower support system was designed to measure tire loading on the inboard tires and to indicate tire liftoff. This lower support system was designed to more closely emulate the actual rollover conditions. Additional design features were provided to mitigate potential safety hazards.
Quantification of wind flow in the European Mars Simulation Wind Tunnel Facility
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Merrison, J. P.; Iversen, J. J.; Nornberg, P.
2012-04-01
We present the European Mars Simulation Wind Tunnel facility, a unique prototype facility capable of simulating a wide range of environmental conditions, such as those which can be found at the surface of Earth or Mars. The chamber complements several other large-scale simulation facilities at Aarhus University, Denmark. The facility consists of a 50 m3 environmental chamber capable of operating at low pressure (0.02 - 1000 mbar) and cryogenic temperatures (-130 °C up to +60 °C). This chamber houses a re-circulating wind tunnel capable of generating wind speeds up to 25 m/s and has a dust injection system that can produce suspended particulates (aerosols). It employs a unique LED based optical illumination system (solar simulator) and an advanced network based control system. Laser based optoelectronic instrumentation is used to quantify and monitor wind flow, dust suspension and deposition. This involves a commercial Laser Doppler Anemometer (LDA) and a Particle Dynamics Analysis receiver (PDA), which are small laser based instruments specifically designed for measuring wind speed and sizes of particles situated in a wind flow. Wind flow calibrations will be performed with the LDA system and presented. Pressure and temperature calibrations will follow in order to enable the facility to be used for the testing, development, calibration and comparison of e.g. meteorological sensors under a wide range of environmental conditions as well as multi-disciplinary scientific studies. The wind tunnel is accessible to international collaborators and space agencies for instrument testing, calibration and qualification. It has been financed by the European Space Agency (ESA) as well as the Aarhus University Science Faculty and the Villum Kann Rasmussen Foundation.
Shield evaluation and performance testing at the USMB`s Strategic Structures Testing Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barczak, T.M.; Gearhart, D.F.
1996-12-31
Historically, shield performance testing is conducted by the support manufacturers at European facilities. The U.S. Bureau of Mines (USBM) has conducted extensive research in shield Mechanics and is now opening its Strategic Structures Testing (SST) Laboratory to the mining industry for shield performance testing. The SST Laboratory provides unique shield testing capabilities using the Mine Roof Simulator (MRS) load frame. The MRS provides realistic and cost-effective shield evaluation by combining both vertical and horizontal loading into a single load cycle; whereas, several load cycles would be required to obtain this loading in a static frame. In addition to these advantages,more » the USBM acts as an independent research organization to provide an unbiased assessment of shield performance. This paper describes the USBM`s shield testing program that is designed specifically to simulate in-service mining conditions using the unique the capabilities of the SST Laboratory.« less
A Summary of DOD-Sponsored Research Performed at NASA Langley's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.; Lyle, Karen H.
2004-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft.-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The IDRF was originally built in the early 1960's for use as a Lunar Landing Research Facility. As such, the facility was configured to simulate the reduced gravitational environment of the Moon, allowing the Apollo astronauts to practice lunar landings under realistic conditions. In 1985, the IDRF was designated a National Historic Landmark based on its significant contributions to the Apollo Moon Landing Program. In the early 1970's the facility was converted into its current configuration as a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft, airframe components, and space vehicles in support of the General Aviation (GA) aircraft industry, the U.S. Department of Defense (DOD), the rotorcraft industry, and the NASA Space program. The objectives of this paper are twofold: to describe the IDRF facility and its unique capabilities for conducting structural impact testing, and to summarize the impact tests performed at the IDRF in support of the DOD. These tests cover a time period of roughly 2 1/2 decades, beginning in 1975 with the full-scale crash test of a CH-47 Chinook helicopter, and ending in 1999 with the external fuel system qualification test of a UH-60 Black Hawk helicopter. NASA officially closed the IDRF in September 2003; consequently, it is important to document the past contributions made in improved human survivability and impact tolerance through DOD-sponsored research performed at the IDRF.
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.; Johns, Albert L.; Bury, Mark E.
2002-01-01
NASA Glenn Research Center and Lockheed Martin tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Test objectives were to determine and document similarities and uniqueness of the tunnels and to verify that the 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility when compared to the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). Conclusions are that the data from the two facilities compares very favorably and that the 10-by 10-Foot Supersonic Wind Tunnel at NASA Glenn Research Center is a viable low-speed wind tunnel.
Orion Crew Module Structural Test Article Offload
2016-11-15
NASA’s Super Guppy aircraft, carrying the Orion crew module structural test article, arrived at the Shuttle Landing Facility operated by Space Florida at NASA’s Kennedy Space Center in Florida. The unique aircraft has been opened to reveal the container holding the STA. The test article will be transported to the Neil Armstrong Operations and Checkout Building high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion Crew Module Structural Test Article Offload
2016-11-15
NASA’s Super Guppy aircraft, carrying the Orion crew module structural test article (STA), arrived at the Shuttle Landing Facility operated by Space Florida at NASA’s Kennedy Space Center in Florida. The unique aircraft is being opened to offload the STA. The test article will be transported to the Neil Armstrong Operations and Checkout Building high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion Crew Module Structural Test Article Offload
2016-11-15
NASA’s Super Guppy aircraft, carrying the Orion crew module structural test article, arrived at the Shuttle Landing Facility operated by Space Florida at NASA’s Kennedy Space Center in Florida. The unique aircraft has been opened and the container holding the STA is being offloaded. The test article will be transported to the Neil Armstrong Operations and Checkout Building high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion Crew Module Structural Test Article Offload
2016-11-15
NASA’s Super Guppy aircraft, carrying the Orion crew module structural test article (STA), arrived at the Shuttle Landing Facility operated by Space Florida at NASA’s Kennedy Space Center in Florida. The front of the unique aircraft is being opened to offload the STA. The test article will be transported to the Neil Armstrong Operations and Checkout Building high bay for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
The 11th Space Simulation Conference
NASA Technical Reports Server (NTRS)
Bond, A. C. (Editor)
1980-01-01
Subject areas range from specialized issues dealing with the space and entry environments to the environmental testing of systems and complete spacecraft of present-day vintage. Various papers consider: the test and development of several key systems of the orbiter vehicle; integrated tests of complete satellites; new and unique test facilities developed to meet the demanding requirements of high fidelity simulation of test environments; and contamination species, including the instrumentation for detection and measurement of such. Special topics include improved thermal protection methodologies and approaches, sophisticated sensor developments, and other related testing and development areas.
Innovative Coatings Potentially Lower Facility Maintenance Costs
NASA Technical Reports Server (NTRS)
2013-01-01
Through extensive testing at Stennis Space Center, Nanocepts Inc. of Lexington, Kentucky, received key validation of the effectiveness of its photocatalytic coatings. Now a NASA Dual Use Technology partner, the company s commercial coatings offer unique environmental and medical benefits, and their self-cleaning properties help limit grime buildup on buildings.
NASA Astrophysics Data System (ADS)
Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio
2016-05-01
In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.
Testing activities at the National Battery Test Laboratory
NASA Astrophysics Data System (ADS)
Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.
The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.
NASA Technical Reports Server (NTRS)
Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.
2004-01-01
The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.
Hyperthermal Environments Simulator for Nuclear Rocket Engine Development
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.
2011-01-01
An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.
“Modular Biospheres” New testbed platforms for public environmental education and research
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.
HIV testing in correctional institutions: evaluating existing strategies, setting new standards.
Basu, Sanjay; Smith-Rohrberg, Duncan; Hanck, Sarah; Altice, Frederick L
2005-01-01
Before introducing an HIV testing protocol into correctional facilities, the unique nature of these environments must be taken into account. We analyze three testing strategies that have been used in correctional settings--mandatory, voluntary, and routine "opt out" testing--and conclude that routine testing is most likely beneficial to inmates, the correctional system, and the outside community. The ethics of pre-release testing, and the issues surrounding segregation, confidentiality, and linking prisoners with community-based care, also play a role in determining how best to establish HIV testing strategies in correctional facilities. Testing must be performed in a manner that is not simply beneficial to public health, but also enhances the safety and health status of individual inmates. Longer-stay prison settings provide ample opportunities not just for testing but also for in-depth counseling, mental health and substance abuse treatment, and antiretroviral therapy. Jails present added complexities because of their shorter stay with respect to prisons, and testing, treatment, and counseling policies must be adapted to these settings.
Contributions of Transonic Dynamics Tunnel Testing to Airplane Flutter Clearance
NASA Technical Reports Server (NTRS)
Rivera, Jose A.; Florance, James R.
2000-01-01
The Transonic Dynamics Tunnel (TDT) became in operational in 1960, and since that time has achieved the status of the world's premier wind tunnel for testing large in aeroelastically scaled models at transonic speeds. The facility has many features that contribute to its uniqueness for aeroelastic testing. This paper will briefly describe these capabilities and features, and their relevance to aeroelastic testing. Contributions to specific airplane configurations and highlights from the flutter tests performed in the TDT aimed at investigating the aeroelastic characteristics of these configurations are presented.
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2018-07-01
Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2017-11-01
Large-scale free-piston driven expansion tubes have uniquely high total pressure capabilities which make them an important resource for development of access-to-space scramjet engine technology. However, many aspects of their operation are complex, and their test flows are fundamentally unsteady and difficult to measure. While computational fluid dynamics methods provide an important tool for quantifying these flows, these calculations become very expensive with increasing facility size and therefore have to be carefully constructed to ensure sufficient accuracy is achieved within feasible computational times. This study examines modelling strategies for a Mach 10 scramjet test condition developed for The University of Queensland's X3 facility. The present paper outlines the challenges associated with test flow reconstruction, describes the experimental set-up for the X3 experiments, and then details the development of an experimentally tuned quasi-one-dimensional CFD model of the full facility. The 1-D model, which accurately captures longitudinal wave processes, is used to calculate the transient flow history in the shock tube. This becomes the inflow to a higher-fidelity 2-D axisymmetric simulation of the downstream facility, detailed in the Part 2 companion paper, leading to a validated, fully defined nozzle exit test flow.
The New Facilities for Neutron Radiography at the LVR-15 Reactor
NASA Astrophysics Data System (ADS)
Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.; Krejci, F.; Jakubek, J.
2016-09-01
Neutron radiography is an imaging method often used at research reactor sites. Back in 2011 a project was started with the goal to build a neutron radiography facility at the site of the LVR-15 research reactor in Rez, Czech Republic. In the scope of the project two horizontal channels were adapted for the needs of neutron radiography. This comprises the HC1 channel which offers an intense thermal neutron beam with a diameter of 10 cm, which can be used for imaging of larger samples, and the HC3 channel which beam is restricted just to 4x80 mm2, but is highly thermalized, collimated and reduced from gamma background, thus capable of providing better radiograph resolution. Both facilities are equipped with newest Timepix based detectors, with thin 6LiF converters for neutron detection capable of delivering high resolution. Both facilities offer a unique opportunity for non-destructive testing in the Czech region. In 2015 both facilities were put into test operation and several radiographs were acquired, which are presented in the following text.
Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer.J.; Lundstrom, B.; Simpson, M.
2014-06-01
The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distributionmore » feeder simulation.« less
NASA Astrophysics Data System (ADS)
Stromqvist Vetelino, Frida; Borbath, Michael R.; Andrews, Larry C.; Phillips, Ronald L.; Burdge, Geoffrey L.; Chin, Peter G.; Galus, Darren J.; Wayne, David; Pescatore, Robert; Cowan, Doris; Thomas, Frederick
2005-08-01
The Shuttle Landing Facility runway at the Kennedy Space Center in Cape Canaveral, Florida is almost 5 km long and 100 m wide. Its homogeneous environment makes it a unique and ideal place for testing and evaluating EO systems. An experiment, with the goal of characterizing atmospheric parameters on the runway, was conducted in June 2005. Weather data was collected and the refractive index structure parameter was measured with a commercial scintillometer. The inner scale of turbulence was inferred from wind speed measurements and surface roughness. Values of the crosswind speed obtained from the scintillometer were compared with wind measurements taken by a weather station.
Space Environmental Effects Testing Capability at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
DeWittBurns, H.; Craven, Paul; Finckenor, Miria; Nehls, Mary; Schneider, Todd; Vaughn, Jason
2012-01-01
Understanding the effects of the space environment on materials and systems is fundamental and essential for mission success. If not properly understood and designed for, the effects of the environment can lead to degradation of materials, reduction of functional lifetime, and system failure. In response to this need, the Marshall Space Flight Center has developed world class Space Environmental Effects (SEE) expertise and test facilities to simulate the space environment. Capabilities include multiple unique test systems comprising the most complete SEE testing capability available. These test capabilities include charged particle radiation (electrons, protons, ions), ultraviolet radiation (UV), vacuum ultraviolet radiation (VUV), atomic oxygen, plasma effects, space craft charging, lunar surface and planetary effects, vacuum effects, and hypervelocity impacts as well as the combination of these capabilities. In addition to the uniqueness of the individual test capabilities, MSFC is the only NASA facility where the effects of the different space environments can be tested in one location. Combined with additional analytical capabilities for pre- and post-test evaluation, MSFC is a one-stop shop for materials testing and analysis. The SEE testing and analysis are performed by a team of award winning experts nationally recognized for their contributions in the study of the effects of the space environment on materials and systems. With this broad expertise in space environmental effects and the variety of test systems and equipment available, MSFC is able to customize tests with a demonstrated ability to rapidly adapt and reconfigure systems to meet customers needs. Extensive flight experiment experience bolsters this simulation and analysis capability with a comprehensive understanding of space environmental effects.
A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test
NASA Technical Reports Server (NTRS)
Messer, Bradley P.
2004-01-01
Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.
High-Strength Composite Fabric Tested at Structural Benchmark Test Facility
NASA Technical Reports Server (NTRS)
Krause, David L.
2002-01-01
Large sheets of ultrahigh strength fabric were put to the test at NASA Glenn Research Center's Structural Benchmark Test Facility. The material was stretched like a snare drum head until the last ounce of strength was reached, when it burst with a cacophonous release of tension. Along the way, the 3-ft square samples were also pulled, warped, tweaked, pinched, and yanked to predict the material's physical reactions to the many loads that it will experience during its proposed use. The material tested was a unique multi-ply composite fabric, reinforced with fibers that had a tensile strength eight times that of common carbon steel. The fiber plies were oriented at 0 and 90 to provide great membrane stiffness, as well as oriented at 45 to provide an unusually high resistance to shear distortion. The fabric's heritage is in astronaut space suits and other NASA programs.
NASA GRC's High Pressure Burner Rig Facility and Materials Test Capabilities
NASA Technical Reports Server (NTRS)
Robinson, R. Craig
1999-01-01
The High Pressure Burner Rig (HPBR) at NASA Glenn Research Center is a high-velocity. pressurized combustion test rig used for high-temperature environmental durability studies of advanced materials and components. The facility burns jet fuel and air in controlled ratios, simulating combustion gas chemistries and temperatures that are realistic to those in gas turbine engines. In addition, the test section is capable of simulating the pressures and gas velocities representative of today's aircraft. The HPBR provides a relatively inexpensive. yet sophisticated means for researchers to study the high-temperature oxidation of advanced materials. The facility has the unique capability of operating under both fuel-lean and fuel-rich gas mixtures. using a fume incinerator to eliminate any harmful byproduct emissions (CO, H2S) of rich-burn operation. Test samples are easily accessible for ongoing inspection and documentation of weight change, thickness, cracking, and other metrics. Temperature measurement is available in the form of both thermocouples and optical pyrometery. and the facility is equipped with quartz windows for observation and video taping. Operating conditions include: (1) 1.0 kg/sec (2.0 lbm/sec) combustion and secondary cooling airflow capability: (2) Equivalence ratios of 0.5- 1.0 (lean) to 1.5-2.0 (rich), with typically 10% H2O vapor pressure: (3) Gas temperatures ranging 700-1650 C (1300-3000 F): (4) Test pressures ranging 4-12 atmospheres: (5) Gas flow velocities ranging 10-30 m/s (50-100) ft/sec.: and (6) Cyclic and steady-state exposure capabilities. The facility has historically been used to test coupon-size materials. including metals and ceramics. However complex-shaped components have also been tested including cylinders, airfoils, and film-cooled end walls. The facility has also been used to develop thin-film temperature measurement sensors.
Postirradiation thermocyclic loading of ferritic-martensitic structural materials
NASA Astrophysics Data System (ADS)
Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.
Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.
Main Building (4800) at Dryden FRC
1991-09-05
The X-1E research aircraft provides a striking view at the entrance of NASA's Dryden Flight Research Center, Edwards, California. The X-1E, one of the three original X-1 aircraft modified with a raised cockpit canopy and an ejection seat, was flown at the facility between 1953 and 1958 to investigate speeds at twice that of sound, and also to evaluate a thin wing designed for high-speed flight. The Dryden complex was originally established in 1946 as a small high-speed flight station to support the X-1 program. The X-1 was the first aircraft to fly at supersonic speeds. The main administrative building is to the rear of the X-1E and is the center of a research installation that has grown to more than 450 government employees and nearly 400 civilian contractors. Located on the northwest "shore" of Rogers Dry Lake, the Dryden Center was built around the original administrative-hangar building constructed in 1954 at a cost of $3.8 million. Since then many additional support and operational facilities have been built including a number of unique test facilities such as the Thermalstructures Research Facility, Flow Visualization Facility, and the newest addition, the Integrated Test Facility.
Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD
NASA Technical Reports Server (NTRS)
Lau, Kei Y.; Holden, M. S.
2011-01-01
This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.
Life-Cycle Assessments of Selected NASA Ground-Based Test Facilities
NASA Technical Reports Server (NTRS)
Sydnor, George Honeycutt
2012-01-01
In the past two years, two separate facility-specific life cycle assessments (LCAs) have been performed as summer student projects. The first project focused on 13 facilities managed by NASA s Aeronautics Test Program (ATP), an organization responsible for large, high-energy ground test facilities that accomplish the nation s most advanced aerospace research. A facility inventory was created for each facility, and the operational-phase carbon footprint and environmental impact were calculated. The largest impacts stemmed from electricity and natural gas used directly at the facility and to generate support processes such as compressed air and steam. However, in specialized facilities that use unique inputs like R-134a, R-14, jet fuels, or nitrogen gas, these sometimes had a considerable effect on the facility s overall environmental impact. The second LCA project was conducted on the NASA Ames Arc Jet Complex and also involved creating a facility inventory and calculating the carbon footprint and environmental impact. In addition, operational alternatives were analyzed for their effectiveness at reducing impact. Overall, the Arc Jet Complex impact is dominated by the natural-gas fired boiler producing steam on-site, but alternatives were provided that could reduce the impact of the boiler operation, some of which are already being implemented. The data and results provided by these LCA projects are beneficial to both the individual facilities and NASA as a whole; the results have already been used in a proposal to reduce carbon footprint at Ames Research Center. To help future life cycle projects, several lessons learned have been recommended as simple and effective infrastructure improvements to NASA, including better utility metering and data recording and standardization of modeling choices and methods. These studies also increased sensitivity to and appreciation for quantifying the impact of NASA s activities.
NASA Technical Reports Server (NTRS)
Zapata, R. N.; Humphris, R. R.; Henderson, K. C.
1975-01-01
The unique design and operational characteristics of a prototype magnetic suspension and balance facility which utilizes superconductor technology are described and discussed from the point of view of scalability to large sizes. The successful experimental demonstration of the feasibility of this new magnetic suspension concept of the University of Virginia, together with the success of the cryogenic wind-tunnel concept developed at Langley Research Center, appear to have finally opened the way to clean-tunnel, high-Re aerodynamic testing. Results of calculations corresponding to a two-step design extrapolation from the observed performance of the prototype magnetic suspension system to a system compatible with the projected cryogenic transonic research tunnel are presented to give an order-of-magnitude estimate of expected performance characteristics. Research areas where progress should lead to improved design and performance of large facilities are discussed.
Ballistocraft: a novel facility for microgravity research.
Mesland, D; Paris, D; Huijser, R; Lammertse, P; Postema, R
1995-05-01
One of ESA's aims is to provide the microgravity research community with various microgravity exposure facilities. Those facilities include drop towers, sounding rockets, and parabolic flights on board aircraft, in addition to orbital spacecraft. Microgravity flights are usually achieved using large aircraft like the French 'Caravelle' that offer a large payload volume and where a person can be present to perform the experiments and to participate as a human test-subject. However, the microgravity community is also very interested in a flexible, complementary facility that would allow frequent and repetitive exposure to microgravity for a laboratory-type of payload. ESA has therefore undertaken a study of the potential of using a 'ballistocraft', a small unmanned aircraft, to provide a low-cost facility for short-duration (30-40 seconds) microgravity experimentation. Fokker Space & Systems performed the study under an ESA contract, supported by Dutch national funding. To assess the ballistocraft, a simple breadboard of the facility was built and flight tests were performed. The ability of the on-board controller to achieve automated parabolic flights was demonstrated, and the performance of the controller in one-g level flights, and in flights with both zero-g and partial-g setpoints, was evaluated. The partial-g flights are a unique and valuable feature of the facility.
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Ray, Edward J.
1988-01-01
The unique combination of adaptive wall technology with a contonuous flow cryogenic wind tunnel is described. This powerful combination allows wind tunnel users to carry out 2-D tests at flight Reynolds numbers with wall interference essentially eliminated. Validation testing was conducted to support this claim using well tested symmetrical and cambered airfoils at transonic speeds and high Reynolds numbers. The test section hardware has four solid walls, with the floor and ceiling flexible. The method of adapting/shaping the floor and ceiling to eliminate top and bottom wall interference at its source is outlined. Data comparisons for different size models tested and others in several sophisticated 2-D wind tunnels are made. In addition, the effects of Reynolds number, testing at high lift with associated large flexible wall movements, the uniqueness of the adapted wall shapes, and the effects of sidewall boundary layer control are examined. The 0.3-m TCT is now the most advanced 2-D research facility anywhere.
Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel Validated for Low-Speed (Subsonic) Operation
NASA Technical Reports Server (NTRS)
Hoffman, Thomas R.
2001-01-01
The NASA Glenn Research Center and Lockheed Martin Corporation tested an aircraft model in two wind tunnels to compare low-speed (subsonic) flow characteristics. Objectives of the test were to determine and document the similarities and uniqueness of the tunnels and to validate that Glenn's 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) is a viable low-speed test facility. Results from two of Glenn's wind tunnels compare very favorably and show that the 10x10 SWT is a viable low-speed wind tunnel. The Subsonic Comparison Test was a joint effort by NASA and Lockheed Martin using the Lockheed Martin's Joint Strike Fighter Concept Demonstration Aircraft model. Although Glenn's 10310 and 836 SWT's have many similarities, they also have unique characteristics. Therefore, test data were collected for multiple model configurations at various vertical locations in the test section, starting at the test section centerline and extending into the ceiling and floor boundary layers.
Test Before You Fly - High Fidelity Planetary Environment Simulation
NASA Technical Reports Server (NTRS)
Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary
2012-01-01
The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.
2017-11-01
The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.
Upgrades at the NASA Langley Research Center National Transonic Facility
NASA Technical Reports Server (NTRS)
Paryz, Roman W.
2012-01-01
Several projects have been completed or are nearing completion at the NASA Langley Research Center (LaRC) National Transonic Facility (NTF). The addition of a Model Flow-Control/Propulsion Simulation test capability to the NTF provides a unique, transonic, high-Reynolds number test capability that is well suited for research in propulsion airframe integration studies, circulation control high-lift concepts, powered lift, and cruise separation flow control. A 1992 vintage Facility Automation System (FAS) that performs the control functions for tunnel pressure, temperature, Mach number, model position, safety interlock and supervisory controls was replaced using current, commercially available components. This FAS upgrade also involved a design study for the replacement of the facility Mach measurement system and the development of a software-based simulation model of NTF processes and control systems. The FAS upgrades were validated by a post upgrade verification wind tunnel test. The data acquisition system (DAS) upgrade project involves the design, purchase, build, integration, installation and verification of a new DAS by replacing several early 1990's vintage computer systems with state of the art hardware/software. This paper provides an update on the progress made in these efforts. See reference 1.
Development and testing of a novel subsea production system and control buoy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The remoteness of Australia`s northwest shelf presents challenges for the economic viability of offshore resource-development projects. Accordingly, the East Spar development has been designed to minimize capital and life-cycle costs to ensure the long-term viability of this offshore gas field. The offshore facilities are made up of a novel unmanned navigation, communication, and control (NCC) buoy linked to a subsea-production system that includes heat exchangers, insert-retrievable choke valves, multiphase flow-meters, and an on-line pipeline-corrosion monitoring system. The technological building blocks for field development are industry proved. However, the novel arrangement of this proven technology into a remotely controlled, self-contained, minimum-maintenancemore » unmanned facility is unique and has led to many challenges during the design and testing of the NCC buoy and subsea facilities. Among these challenges has been the formulation of an integration test program of the NCC buoy and subsea hardware that proves, as far as reasonably possible, the complete functionality of each equipment item and interface, subject to constraints imposed by schedule, cost, and logistics. Integration testing is particularly important to confirm that the offshore facilities will operate as designed with sufficient reliability and system redundancy to ensure continuous operation throughout the 20-year field life.« less
Cost effectiveness as applied to the Viking Lander systems-level thermal development test program
NASA Technical Reports Server (NTRS)
Buna, T.; Shupert, T. C.
1974-01-01
The economic aspects of thermal testing at the systems-level as applied to the Viking Lander Capsule thermal development program are reviewed. The unique mission profile and pioneering scientific goals of Viking imposed novel requirements on testing, including the development of a simulation technique for the Martian thermal environment. The selected approach included modifications of an existing conventional thermal vacuum facility, and improved test-operational techniques that are applicable to the simulation of the other mission phases as well, thereby contributing significantly to the cost effectiveness of the overall thermal test program.
ATR NSUF Instrumentation Enhancement Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joy L. Rempe; Mitchell K. Meyer; Darrell L. Knudson
A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to expand instrumentation available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing real-time measurements of key irradiation parameters is emphasized because of their potential to increase data fidelity and reduce posttest examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing new sensors now available to users ofmore » the ATR NSUF. In addition, progress is reported on current research efforts to provide improved in-pile instrumentation to users.« less
Integration Process for Payloads in the Fluids and Combustion Facility
NASA Technical Reports Server (NTRS)
Free, James M.; Nall, Marsha M.
2001-01-01
The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.
LETS: Lunar Environments Test System
NASA Technical Reports Server (NTRS)
Vaughn, Jason A.; Schneider, Todd; Craven, Paul; Norwood, Joey
2008-01-01
The Environmental Effects Branch (EM50) at the Marshall Space Flight Center has developed a unique capability within the agency, namely the Lunar Environment Test System (LETS). LETS is a cryo-pumped vacuum chamber facility capable of high vacuum (10-7 Torr). LETS is a cylindrical chamber, 30 in. (0.8 m) diameter by 48 in. (1.2 m) long thermally controlled vacuum system. The chamber is equipped with a full array of radiation sources including vacuum ultraviolet, electron, and proton radiation. The unique feature of LETS is that it contains a large lunar simulant bed (18 in. x 40 in. x 6 in.) holding 75 kg of JSC-1a simulant while operating at a vacuum of 10-7 Torr. This facility allows three applications: 1) to study the charging, levitation and migration of dust particles, 2) to simulate the radiation environment on the lunar surface, and 3) to electrically charge the lunar simulant enhancing the attraction and adhesion of dust particles to test articles more closely simulating the lunar surface dust environment. LETS has numerous diagnostic instruments including TREK electrostatic probes, residual gas analyzer (RGA), temperature controlled quartz crystal microbalance (TQCM), and particle imaging velocimeter (PIV). Finally, LETS uses continuous Labview data acquisition for computer monitoring and system control.
Light Microscopy Module Imaging Tested and Demonstrated
NASA Technical Reports Server (NTRS)
Gati, Frank
2004-01-01
The Fluids Integrated Rack (FIR), a facility-class payload, and the Light Microscopy Module (LMM), a subrack payload, are integrated research facilities that will fly in the U.S. Laboratory module, Destiny, aboard the International Space Station. Both facilities are being engineered, designed, and developed at the NASA Glenn Research Center by Northrop Grumman Information Technology. The FIR is a modular, multiuser scientific research facility that is one of two racks that make up the Fluids and Combustion Facility (the other being the Combustion Integrated Rack). The FIR has a large volume dedicated for experimental hardware; easily reconfigurable diagnostics, power, and data systems that allow for unique experiment configurations; and customizable software. The FIR will also provide imagers, light sources, power management and control, command and data handling for facility and experiment hardware, and data processing and storage. The first payload in the FIR will be the LMM. The LMM integrated with the FIR is a remotely controllable, automated, on-orbit microscope subrack facility, with key diagnostic capabilities for meeting science requirements--including video microscopy to observe microscopic phenonema and dynamic interactions, interferometry to make thin-film measurements with nanometer resolution, laser tweezers to manipulate micrometer-sized particles, confocal microscopy to provide enhanced three-dimensional visualization of structures, and spectrophotometry to measure the photonic properties of materials. Vibration disturbances were identified early in the LMM development phase as a high risk for contaminating the science microgravity environment. An integrated FIR-LMM test was conducted in Glenn's Acoustics Test Laboratory to assess mechanical sources of vibration and their impact to microscopic imaging. The primary purpose of the test was to characterize the LMM response at the sample location, the x-y stage within the microscope, to vibration emissions from the FIR and LMM support structures.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Phillips, M.; Etheridge, D.
2012-07-01
Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less
Prospects for a Muon Spin Resonance Facility in the Fermilab MuCool Test Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, John A.; Johnstone, Carol
This paper investigates the feasibility of re-purposing the MuCool Test Area (MTA) beamline and experimental hall to support a Muon Spin Resonance (MuSR) facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing high- intensity beam absorber and, another, upgraded stage, that implements an optimized production target pile,more » a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H$^-$ beam into a micropulse substructure – a muon creation timing scheme – which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.« less
Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence
NASA Astrophysics Data System (ADS)
Pham-van-Diep, Gerald; Erwin, Daniel D.; Deininger, William D.; Pivirotto, Thomas J.
1989-07-01
A method for measuring the axial and transverse plume velocities and internal energy distributions in rarified thruster plumes by using pulsed laser-induced fluorescence (LIF) of atomic hydrogen Balmer lines is described. The results of an application of this technique for velocity mapping of a 30-kW ammonia arc-jet plume generated in the JPL arc-jet testing facility (which is uniquely suited for these measurements due to the end-on optical access provided by its ninety-degree-bent diffuser) are described. A schematic diagram of the JPL facility with LIF setup is included.
Process material management in the Space Station environment
NASA Technical Reports Server (NTRS)
Perry, J. L.; Humphries, W. R.
1988-01-01
The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.
Navy nurse anesthetists at Fleet Hospital Five: the Desert Shield/Storm experience.
Hrezo, Richard J
2003-06-01
In 1990, the United States Navy deployed its first operational fleet hospital: "Fleet Hospital Five" in support of Operation Desert Shield/Storm. Within 2 weeks of notification, the 900 medical providers assigned to this medical facility, which was capable of providing major trauma surgery and critical care, were on their way to Al Jabayl, Saudi Arabia. This article discusses the unique characteristics of this facility and introduces the crucial role that nurse anesthetists play. The article also introduces several innovative ideas that were developed and tested to expand the capabilities of the hospital.
The LAM space active optics facility
NASA Astrophysics Data System (ADS)
Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.
2017-11-01
The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.
Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module
NASA Technical Reports Server (NTRS)
VanCampen, Julie
2004-01-01
The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.
Multiple dopant injection system for small rocket engines
NASA Technical Reports Server (NTRS)
Sakala, G. G.; Raines, N. G.
1992-01-01
The Diagnostics Test Facility (DTF) at NASA's Stennis Space Center (SSC) was designed and built to provide a standard rocket engine exhaust plume for use in the research and development of engine health monitoring instrumentation. A 1000 lb thrust class liquid oxygen (LOX)-gaseous hydrogen (GH2) fueled rocket engine is used as the subscale plume source to simulate the SSME during experimentation and instrument development. The ability of the DTF to provide efficient, and low cost test operations makes it uniquely suited for plume diagnostic experimentation. The most unique feature of the DTF is the Multiple Dopant Injection System (MDIS) that is used to seed the exhaust plume with the desired element or metal alloy. The dopant injection takes place at the fuel injector, yielding a very uniform and homogeneous distribution of the seeding material in the exhaust plume. The MDIS allows during a single test firing of the DTF, the seeding of the exhaust plume with up to three different dopants and also provides distilled water base lines between the dopants. A number of plume diagnostic-related experiments have already utilized the unique capabilities of the DTF.
Equivalent electron fluence for space qualification of shallow junction heteroface GaAs solar cells
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Stock, L. V.
1984-01-01
It is desirable to perform qualification tests prior to deployment of solar cells in space power applications. Such test procedures are complicated by the complex mixture of differing radiation components in space which are difficult to simulate in ground test facilities. Although it has been shown that an equivalent electron fluence ratio cannot be uniquely defined for monoenergetic proton exposure of GaAs shallow junction cells, an equivalent electron fluence test can be defined for common spectral components of protons found in space. Equivalent electron fluence levels for the geosynchronous environment are presented.
Economic Analysis of National Nuclear Security Administration (NNSA) Modernization Alternatives
2007-11-01
without nuclear testing; works to reduce global danger from weapons of mass destruction; provides the U.S. Navy with safe and effective nuclear...SFE) covers the acquisition of glove boxes, long-lead facility, and actinide chemistry/materials characterization (AC/MC) equipment whose uniqueness...Hazard Category II AC/MC and actinide Research and Development operations, special nuclear 5 Babcock
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallen, David; Petrone, Floriana; Buckle, Ian
The U.S. Department of Energy (DOE) has ownership and operational responsibility for a large enterprise of nuclear facilities that provide essential functions to DOE missions ranging from national security to discovery science and energy research. These facilities support a number of DOE programs and offices including the National Nuclear Security Administration, Office of Science, and Office of Environmental Management. With many unique and “one of a kind” functions, these facilities represent a tremendous national investment, and assuring their safety and integrity is fundamental to the success of a breadth of DOE programs. Many DOE critical facilities are located in regionsmore » with significant natural phenomenon hazards including major earthquakes and DOE has been a leader in developing standards for the seismic analysis of nuclear facilities. Attaining and sustaining excellence in nuclear facility design and management must be a core competency of the DOE. An important part of nuclear facility management is the ability to monitor facilities and rapidly assess the response and integrity of the facilities after any major upset event. Experience in the western U.S. has shown that understanding facility integrity after a major earthquake is a significant challenge which, lacking key data, can require extensive effort and significant time. In the work described in the attached report, a transformational approach to earthquake monitoring of facilities is described and demonstrated. An entirely new type of optically-based sensor that can directly and accurately measure the earthquake-induced deformations of a critical facility has been developed and tested. This report summarizes large-scale shake table testing of the sensor concept on a representative steel frame building structure, and provides quantitative data on the accuracy of the sensor measurements.« less
NASA Technical Reports Server (NTRS)
Leger, Lubert J.; Koontz, Steven L.; Visentine, James T.; Hunton, Donald
1993-01-01
An overview of EOIM-III, designed to produce benchmark atomic oxygen reactivity data is presented. Ambient density measurements are conducted using a quadrupole mass spectrometer calibrated for atomic oxygen measurements in a unique ground-based test facility. The combination of these data with the predictions of ambient density models permits an assessment of the accuracy of measured reaction rates on a variety of materials, many of which have never been tested in LEO previously.
A Generalized Simulation Model for a Typical Medical Treatment Facility Obstetrical Unit
1993-03-01
not surprising. The medical center has a variety of specialized departments and clinics, each with unique characteristics . Studies performed for these...DRG relates a set of patient’s demographic, dia nostic, and therapeutic characteristics to the hospital’s resources they consume so!that each DRG is... epatient waiting dumanoa tbent wait Patient entle L&D Wxdl wait U (rood 0 . (Dewviy) v ’ Figure 3.5. Inpatient Testing Flowchart 3-9 4- 2 Outpatient testing
Development of a master health facility list in Nigeria.
Makinde, Olusesan Ayodeji; Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie
2014-01-01
Abstract. Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort.
2013-08-06
CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, ceramic materials are positioned for Advanced Partial Angle Computed Tomography testing. The activity is part of work performed by PaR Systems, Inc. under a partnership agreement with NASA. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis
2013-08-06
CAPE CANAVERAL, Fla. – In Hangar N at Cape Canaveral Air Force Station, PaR Systems, Inc. operations engineer Lu Bell conducts a phase array ultrasonic inspection. NASA's Kennedy Space Center in Florida recently established a partnership agreement with PaR Systems, Inc. of Shoreview, Minn., for operation of the Hangar N facility and its nondestructive testing and evaluation equipment. As the spaceport transitions from a historically government-only launch facility to a multi-user spaceport for both federal and commercial customers, partnerships between the space agency and other organizations will be a key element in that effort. Hangar N is located at Cape Canaveral Air Force Station adjacent to Kennedy and houses a unique inventory of test and evaluation equipment and the capability for current and future mission spaceflight support. Photo credit: NASA/ Dimitri Gerondidakis
Valenstein, Paul N; Wang, Edward; O'Donohue, Tom
2003-12-01
The Veterans Health Administration (VA) operates the largest integrated laboratory network in the United States. To assess whether the unique characteristics of VA laboratories impact efficiency of operations, we compared the productivity of VA and non-VA facilities. Financial and activity data were prospectively collected from 124 VA and 131 non-VA laboratories enrolled in the College of American Pathologists Laboratory Management Index Program (LMIP) during 2002. In addition, secular trends in 5 productivity ratios were calculated for VA and non-VA laboratories enrolled in LMIP from 1997 through 2002. Veterans Health Administration and non-VA facilities did not differ significantly in size. Inpatients accounted for a lower percentage of testing at VA facilities than non-VA facilities (21.7% vs 37.3%; P <.001). Technical staff at the median VA facility were paid more than at non-VA facilities (28.11/h dollars vs 22.60/h dollars, salaries plus benefits; P <.001), VA laboratories employed a smaller percentage of nontechnical staff (30.0% vs 41.9%; P <.001), and workers at VA laboratories worked less time per hour paid (85.5% vs 88.5%; P <.001). However, labor productivity was significantly higher at VA than at non-VA facilities (30 448 test results/total full-time equivalent (FTE)/y vs 19 260 results/total FTE; P <.001), resulting in lower labor expense per on-site test at VA sites than at non-VA sites (1.79 dollars/result vs 2.08 dollars/result; P <.001). Veterans Health Administration laboratories paid less per test for consumables (P =.003), depreciation, and maintenance than their non-VA counterparts (all P <.001), resulting in lower overall cost per on-site test result (2.64 dollars vs 3.40 dollars; P <.001). Cost per referred (sent-out) test did not differ significantly between the 2 groups. Analysis of 6-year trends showed significant increases in both VA (P <.001) and non-VA (P =.02) labor productivity (on-site tests/total FTE). Expenses at VA laboratories for labor per test, consumables per test, overall expense per test, and overall laboratory expense per discharge decreased significantly during the 6-year period (P <.001), while in non-VA facilities the corresponding ratios showed no significant change. Overall productivity of VA laboratories is superior to that of non-VA facilities enrolled in LMIP. The principal advantages enjoyed by the VA are higher-than-average labor productivity (tests/FTE) and lower-than-average consumable expenses.
A modern space simulation facility to accommodate high production acceptance testing
NASA Technical Reports Server (NTRS)
Glover, J. D.
1986-01-01
A space simulation laboratory that supports acceptance testing of spacecraft and associated subsystems at throughput rates as high as nine per year is discussed. The laboratory includes a computer operated 27' by 30' space simulation, a 20' by 20' by 20' thermal cycle chamber and an eight station thermal cycle/thermal vacuum test system. The design philosophy and unique features of each system are discussed. The development of operating procedures, test team requirements, test team integration, and other peripheral activation details are described. A discussion of special accommodations for the efficient utilization of the systems in support of high rate production is presented.
Hypervelocity Impact Test Facility: A gun for hire
NASA Technical Reports Server (NTRS)
Johnson, Calvin R.; Rose, M. F.; Hill, D. C.; Best, S.; Chaloupka, T.; Crawford, G.; Crumpler, M.; Stephens, B.
1994-01-01
An affordable technique has been developed to duplicate the types of impacts observed on spacecraft, including the Shuttle, by use of a certified Hypervelocity Impact Facility (HIF) which propels particulates using capacitor driven electric gun techniques. The fully operational facility provides a flux of particles in the 10-100 micron diameter range with a velocity distribution covering the space debris and interplanetary dust particle environment. HIF measurements of particle size, composition, impact angle and velocity distribution indicate that such parameters can be controlled in a specified, tailored test designed for or by the user. Unique diagnostics enable researchers to fully describe the impact for evaluating the 'targets' under full power or load. Users regularly evaluate space hardware, including solar cells, coatings, and materials, exposing selected portions of space-qualified items to a wide range of impact events and environmental conditions. Benefits include corroboration of data obtained from impact events, flight simulation of designs, accelerated aging of systems, and development of manufacturing techniques.
Simulating Extraterrestrial Ices in the Laboratory
NASA Astrophysics Data System (ADS)
Berisford, D. F.; Carey, E. M.; Hand, K. P.; Choukroun, M.
2017-12-01
Several ongoing experiments at JPL attempt to simulate the ice environment for various regimes associated with icy moons. The Europa Penitent Ice Experiment (EPIX) simulates the surface environment of an icy moon, to investigate the physics of ice surface morphology growth. This experiment features half-meter-scale cryogenic ice samples, cryogenic radiative sink environment, vacuum conditions, and diurnal cycling solar simulation. The experiment also includes several smaller fixed-geometry vacuum chambers for ice simulation at Earth-like and intermediate temperature and vacuum conditions for development of surface morphology growth scaling relations. Additionally, an ice cutting facility built on a similar platform provides qualitative data on the mechanical behavior of cryogenic ice with impurities under vacuum, and allows testing of ice cutting/sampling tools relevant for landing spacecraft. A larger cutting facility is under construction at JPL, which will provide more quantitative data and allow full-scale sampling tool tests. Another facility, the JPL Ice Physics Laboratory, features icy analog simulant preparation abilities that range icy solar system objects such as Mars, Ceres and the icy satellites of Saturn and Jupiter. In addition, the Ice Physics Lab has unique facilities for Icy Analog Tidal Simulation and Rheological Studies of Cryogenic Icy Slurries, as well as equipment to perform thermal and mechanical properties testing on icy analog materials and their response to sinusoidal tidal stresses.
Detailed design of the large-bore 8 T superconducting magnet for the NAFASSY test facility
NASA Astrophysics Data System (ADS)
Corato, V.; Affinito, L.; Anemona, A.; Besi Vetrella, U.; Di Zenobio, A.; Fiamozzi Zignani, C.; Freda, R.; Messina, G.; Muzzi, L.; Perrella, M.; Reccia, L.; Tomassetti, G.; Turtù, S.; della Corte, A.
2015-03-01
The ‘NAFASSY’ (NAtional FAcility for Superconducting SYstems) facility is designed to test wound conductor samples under high-field conditions at variable temperatures. Due to its unique features, it is reasonable to assume that in the near future NAFASSY will have a preeminent role at the international level in the qualification of long coiled cables in operative conditions. The magnetic system consists of a large warm bore background solenoid, made up of three series-connected grading sections obtained by winding three different Nb3Sn Cable-in-Conduit Conductors. Thanks to the financial support of the Italian Ministry for University and Research the low-field coil is currently under production. The design has been properly modified to allow the system to operate also as a stand-alone facility, with an inner bore diameter of 1144 mm. This magnet is able to provide about 7 T on its axis and about 8 T close to the insert inner radius, giving the possibility of performing a test relevant for large-sized NbTi or medium-field Nb3Sn conductors. The detailed design of the 8 T magnet, including the electro-magnetic, structural and thermo-hydraulic analysis, is here reported, as well as the production status.
Development and psychometric testing of the Supportive Supervisory Scale.
McGilton, Katherine S
2010-06-01
To describe the development and psychometric testing of the Supportive Supervisory Scale (SSS). The development of the items of the scale was based on Winnicott's relationship theory and on focus groups with 26 healthcare aides (HCAs) and 30 supervisors from six long-term care (LTC) facilities in Ontario, Canada. Content validity of the 15-item instrument was established by a panel of experts. Based on a secondary analysis of data collected from 222 HCAs in 10 LTC facilities in Ontario, Canada, the SSS was subjected to principal components analysis with oblique rotation. A two-factor solution was accepted, which is consistent with the theoretical conceptualization of the instrument. Factor I was labeled Respects Uniqueness and Factor II was labeled Being Reliable. Internal consistency of Factor I was .95, and that of Factor II was .91. Discriminant validity was also established. The focus groups revealed that "being available to staff" while "recognizing the HCA as an individual, and taking a moment to get to know them" was essential to feeling supported by their supervisor. The SSS is a reliable and valid measure of supervisory support of supervisors working in LTC facilities. At the core of supportive supervision is the supervisor's ability to develop and maintain positive relationships with each HCA. It is through respecting the uniqueness of each HCA and being reliable that supervisor-HCA relationships can flourish. Supportive leadership in LTC settings is a major contributor to HCAs' job satisfaction and retention and to quality of patient care. Therefore, a tool developed and tested to measure supervisors' supportive capacities in LTC is primal to evaluate the effectiveness of supervisors in these environments.
Optical Diagnosis of Gas Turbine Combustors Being Conducted
NASA Technical Reports Server (NTRS)
Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; DeGroot, Wilhelmus A.
2001-01-01
Researchers at the NASA Glenn Research Center, in collaboration with industry, are reducing gas turbine engine emissions by studying visually the air-fuel interactions and combustion processes in combustors. This is especially critical for next generation engines that, in order to be more fuel-efficient, operate at higher temperatures and pressures than the current fleet engines. Optically based experiments were conducted in support of the Ultra-Efficient Engine Technology program in Glenn's unique, world-class, advanced subsonic combustion rig (ASCR) facility. The ASCR can supply air and jet fuel at the flow rates, temperatures, and pressures that simulate the conditions expected in the combustors of high-performance, civilian aircraft engines. In addition, this facility is large enough to support true sectors ("pie" slices of a full annular combustor). Sectors enable one to test true shapes rather than rectangular approximations of the actual hardware. Therefore, there is no compromise to actual engine geometry. A schematic drawing of the sector test stand is shown. The test hardware is mounted just upstream of the instrumentation section. The test stand can accommodate hardware up to 0.76-m diameter by 1.2-m long; thus sectors or small full annular combustors can be examined in this facility. Planar (two-dimensional) imaging using laser-induced fluorescence and Mie scattering, chemiluminescence, and video imagery were obtained for a variety of engine cycle conditions. The hardware tested was a double annular sector (two adjacent fuel injectors aligned radially) representing approximately 15 of a full annular combustor. An example of the two-dimensional data obtained for this configuration is also shown. The fluorescence data show the location of fuel and hydroxyl radical (OH) along the centerline of the fuel injectors. The chemiluminescence data show C2 within the total observable volume. The top row of this figure shows images obtained at an engine low-power condition, and the bottom row shows data from a higher power operating point. The data show distinctly the differences in flame structure between low-power and high-power engine conditions, in both location and amount of species produced (OH, C2) or consumed (fuel). The unique capability of the facility coupled with its optical accessibility helps to eliminate the need for high-pressure performance extrapolations. Tests such as described here have been used successfully to assess the performance of fuel-injection concepts and to modify those designs, if needed.
NASA Astrophysics Data System (ADS)
Mérand, A.
2018-03-01
ESO's Very Large Telescope Interferometer (VLTI) was a unique facility when it was conceived more than 30 years ago, and it remains competitive today in the field of milli-arcsecond angular resolution astronomy. Over the past decade, while the VLTI matured into an operationally efficient facility, it became limited by its first-generation instruments. As the second generation of VLTI instrumentation achieves first light, further developments for this unique facility are being planned and are described here.
A Benders based rolling horizon algorithm for a dynamic facility location problem
Marufuzzaman,, Mohammad; Gedik, Ridvan; Roni, Mohammad S.
2016-06-28
This study presents a well-known capacitated dynamic facility location problem (DFLP) that satisfies the customer demand at a minimum cost by determining the time period for opening, closing, or retaining an existing facility in a given location. To solve this challenging NP-hard problem, this paper develops a unique hybrid solution algorithm that combines a rolling horizon algorithm with an accelerated Benders decomposition algorithm. Extensive computational experiments are performed on benchmark test instances to evaluate the hybrid algorithm’s efficiency and robustness in solving the DFLP problem. Computational results indicate that the hybrid Benders based rolling horizon algorithm consistently offers high qualitymore » feasible solutions in a much shorter computational time period than the standalone rolling horizon and accelerated Benders decomposition algorithms in the experimental range.« less
Development of a Master Health Facility List in Nigeria
Azeez, Aderemi; Bamidele, Samson; Oyemakinde, Akin; Oyediran, Kolawole Azeez; Adebayo, Wura; Fapohunda, Bolaji; Abioye, Abimbola; Mullen, Stephanie
2014-01-01
Abstract Introduction Routine Health Information Systems (RHIS) are increasingly transitioning to electronic platforms in several developing countries. Establishment of a Master Facility List (MFL) to standardize the allocation of unique identifiers for health facilities can overcome identification issues and support health facility management. The Nigerian Federal Ministry of Health (FMOH) recently developed a MFL, and we present the process and outcome. Methods The MFL was developed from the ground up, and includes a state code, a local government area (LGA) code, health facility ownership (public or private), the level of care, and an exclusive LGA level health facility serial number, as part of the unique identifier system in Nigeria. To develop the MFL, the LGAs sent the list of all health facilities in their jurisdiction to the state, which in turn collated for all LGAs under them before sending to the FMOH. At the FMOH, a group of RHIS experts verified the list and identifiers for each state. Results The national MFL consists of 34,423 health facilities uniquely identified. The list has been published and is available for worldwide access; it is currently used for planning and management of health services in Nigeria. Discussion Unique identifiers are a basic component of any information system. However, poor planning and execution of implementing this key standard can diminish the success of the RHIS. Conclusion Development and adherence to standards is the hallmark for a national health information infrastructure. Explicit processes and multi-level stakeholder engagement is necessary to ensuring the success of the effort. PMID:25422720
Unique DNA-barcoded aerosol test particles for studying aerosol transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.
Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less
Unique DNA-barcoded aerosol test particles for studying aerosol transport
Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; ...
2016-03-22
Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickman, D.O.
Various aspects of zirconium alloy development for light water reactors in the UK and Scandinavia are reviewed, including the contribution made by some unique nuclear testing facilities. Among the problems encountered were the irradiation enhancement of corrosion and hydrogen pickup, crud deposition, iodine-induced stress-corrosion cracking on power ramping, and severe cladding deformation in loss-of-coolant accident conditions. The causes and behavior of defects, including hydride defects and fretting corrosion, are discussed.
An Overview of Unsteady Pressure Measurements in the Transonic Dynamics Tunnel
NASA Technical Reports Server (NTRS)
Schuster, David M.; Edwards, John W.; Bennett, Robert M.
2000-01-01
The NASA Langley Transonic Dynamics Tunnel has served as a unique national facility for aeroelastic testing for over forty years. A significant portion of this testing has been to measure unsteady pressures on models undergoing flutter, forced oscillations, or buffet. These tests have ranged from early launch vehicle buffet to flutter of a generic high-speed transport. This paper will highlight some of the test techniques, model design approaches, and the many unsteady pressure tests conducted in the TDT. The objectives and results of the data acquired during these tests will be summarized for each case and a brief discussion of ongoing research involving unsteady pressure measurements and new TDT capabilities will be presented.
NASA Technical Reports Server (NTRS)
Martinez, Andres; Benavides, Jose Victor; Ormsby, Steve L.; GuarnerosLuna, Ali
2014-01-01
Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
2011-03-02
John C. Stennis Space Center is celebrating its 50th anniversary in 2011. NASA announced plans to build a rocket engine test facility in Hancock County, Miss., on Oct. 25, 1961. A new anniversary logo highlights the theme of the anniversary year - celebrating Stennis as a unique federal city and its five decades of powering America's space dreams. Stennis is home to more than 30 federal, state, academic and private organizations and several technology-based companies. In addition to testing Apollo Program rocket stages that carried humans to the moon, Stennis tested every main engine used in more than 130 space shuttle flights.
Low Background Counting at LBNL
Smith, A. R.; Thomas, K. J.; Norman, E. B.; ...
2015-03-24
The Low Background Facility (LBF) at Lawrence Berkeley National Laboratory in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background cave and remotely at an underground location that historically has operated underground in Oroville, CA, but has recently been relocated to the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K)more » or common cosmogenic/anthropogenic products, as well as active screening via Neutron Activation Analysis for specific applications. The LBF also provides hosting services for general R&D testing in low background environments on the surface or underground for background testing of detector systems or similar prototyping. A general overview of the facilities, services, and sensitivities is presented. Recent activities and upgrades will also be presented, such as the completion of a 3π anticoincidence shield at the surface station and environmental monitoring of Fukushima fallout. The LBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.« less
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1990-01-01
The Cosmic Background Explorer Observatory (COBE) underwent a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
NASA Technical Reports Server (NTRS)
Milam, Laura J.
1991-01-01
The Cosmic Background Explorer Observatory (COBE) underwant a thermal vacuum thermal balance test in the Space Environment Simulator (SES). This was the largest and most complex test ever conducted at this facility. The 4 x 4 m (13 x 13 ft) spacecraft weighed approx. 2223 kg (4900 lbs) for the test. The test set up included simulator panels for the inboard solar array panels, simulator panels for the flight cowlings, Sun and Earth Sensor stimuli, Thermal Radio Frequency Shield heater stimuli and a cryopanel for thermal control in the Attitude Control System Shunt Dissipator area. The fixturing also included a unique 4.3 m (14 ft) diameter Gaseous Helium Cryopanel which provided a 20 K environment for the calibration of one of the spacecraft's instruments, the Differential Microwave Radiometer. This cryogenic panel caused extra contamination concerns and a special method was developed and written into the test procedure to prevent the high buildup of condensibles on the panel which could have led to backstreaming of the thermal vacuum chamber. The test was completed with a high quality simulated space environment provided to the spacecraft. The test requirements, test set up, and special fixturing are described.
The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT
NASA Technical Reports Server (NTRS)
da Silva, Benjamim; Galvao, M. C.; Pereira, Clovis Solano
2008-01-01
The main objective of this paper is to present the capabilities of the new anechoic shielded rooms designed for space and commercial applications as part of the Integration and Testing Laboratory (LIT, Laboratorio de Integracao e Testes) in Brazil. A new anechoic shielded room named CBA2 has been in full operation since March 2007 and a remodeled chamber CBA1 is planned to be ready by the end of 2008, replacing an old facility which was in operation for the last 18 years. The Brazilian Space Program started with very small and simple satellites and the old CBA1 chamber was conceived in 1987 to accomplish the EMI/EMC tests not requiring significant volumes. Since the very beginning this facility was also used by the private sector for other applications mainly due to the absorption of digital electronics in all kind of products. The intense use of this facility during the last years, operating three shifts a day, caused a normal degradation and imposed several limitations. Therefore, a new totally remodeled chamber was designed considering the state of the art in terms of absorbers and associated instrumentation. On the other hand the facility CBA2 was conceived, designed and implemented to test large satellites taking into account the advance of the technology in terms of RF frequencies, power level, testing methodologies and several other factors. A very interesting and unique aspect of this project was the partnership between the private sector and governmental institution. As a result, the total investment was shared between several companies and consequently a time-sharing use of the facility as well.
An Experimental Investigation of Compressible Dynamic Stall on a Pitching Airfoil
NASA Astrophysics Data System (ADS)
Thorne, Katie; Bowles, Patrick
2009-11-01
A new facility has been designed and constructed at the University of Notre Dame to investigate dynamic stall on a 2-D pitching airfoil at high subsonic Mach numbers. This work is motivated by the need to investigate dynamic stall at conditions relevant to military helicopters. One focus of the experiments is to characterize the role of shock/boundary layer interactions during the pitching cycle. The new dynamic stall facility is integrated into a closed-loop, low turbulence wind tunnel capable of achieving test section Mach numbers in excess of M = 0.6. The design of the dynamic stall test section was focused on achieving reduced pitching frequencies of up to k = 0.2 and chord Reynolds numbers up to 5 x10^6. The facility has the unique ability to execute non-harmonic pitching motions through the use of an actuated pitch link mechanism. Optical access is provided to allow the use of high-speed and Schlieren imaging. Thirty-one flush mounted Kulite dynamic pressure transducers provide the instantaneous unsteady surface pressure distribution over the airfoil. Initial dynamic stall measurements obtained in the new facility will be described.
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
Experimental Physical Sciences Vistas: MaRIE (draft)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlachter, Jack
To achieve breakthrough scientific discoveries in the 21st century, a convergence and integration of world-leading experimental facilities and capabilities with theory, modeling, and simulation is necessary. In this issue of Experimental Physical Sciences Vistas, I am excited to present our plans for Los Alamos National Laboratory's future flagship experimental facility, MaRIE (Matter-Radiation Interactions in Extremes). MaRIE is a facility that will provide transformational understanding of matter in extreme conditions required to reduce or resolve key weapons performance uncertainties, develop the materials needed for advanced energy systems, and transform our ability to create materials by design. Our unique role in materialsmore » science starting with the Manhattan Project has positioned us well to develop a contemporary materials strategy pushing the frontiers of controlled functionality - the design and tailoring of a material for the unique demands of a specific application. Controlled functionality requires improvement in understanding of the structure and properties of materials in order to synthesize and process materials with unique characteristics. In the nuclear weapons program today, improving data and models to increase confidence in the stockpile can take years from concept to new knowledge. Our goal with MaRIE is to accelerate this process by enhancing predictive capability - the ability to compute a priori the observables of an experiment or test and pertinent confidence intervals using verified and validated simulation tools. It is a science-based approach that includes the use of advanced experimental tools, theoretical models, and multi-physics codes, simultaneously dealing with multiple aspects of physical operation of a system that are needed to develop an increasingly mature predictive capability. This same approach is needed to accelerate improvements to other systems such as nuclear reactors. MaRIE will be valuable to many national security science challenges. Our first issue of Vistas focused on our current national user facilities (the Los Alamos Neutron Science Center [LANSCE], the National High Magnetic Field Laboratory-Pulsed Field Facility, and the Center for Integrated Nanotechnologies) and the vitality they bring to our Laboratory. These facilities are a magnet for students, postdoctoral researchers, and staff members from all over the world. This, in turn, allows us to continue to develop and maintain our strong staff across the relevant disciplines and conduct world-class discovery science. The second issue of Vistas was devoted entirely to the Laboratory's materials strategy - one of the three strategic science thrusts for the Laboratory. This strategy has helped focus our thinking for MaRIE. We believe there is a bright future in cutting-edge experimental materials research, and that a 21st-century facility with unique capability is necessary to fulfill this goal. The Laboratory has spent the last several years defining MaRIE, and this issue of Vistas presents our current vision of that facility. MaRIE will leverage LANSCE and our other user facilities, as well as our internal and external materials community for decades to come, giving Los Alamos a unique competitive advantage, advancing materials science for the Laboratory's missions and attracting and recruiting scientists of international stature. MaRIE will give the international materials research community a suite of tools capable of meeting a broad range of outstanding grand challenges.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Richard P.
2017-07-01
Sandia National Laboratories has developed a broad set of capabilities in quantum information science (QIS), including elements of quantum computing, quantum communications, and quantum sensing. The Sandia QIS program is built atop unique DOE investments at the laboratories, including the MESA microelectronics fabrication facility, the Center for Integrated Nanotechnologies (CINT) facilities (joint with LANL), the Ion Beam Laboratory, and ASC High Performance Computing (HPC) facilities. Sandia has invested $75 M of LDRD funding over 12 years to develop unique, differentiating capabilities that leverage these DOE infrastructure investments.
Safety Practices Followed in ISRO Launch Complex- An Overview
NASA Astrophysics Data System (ADS)
Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.
2005-12-01
The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.
GEOTAIL Spacecraft historical data report
NASA Technical Reports Server (NTRS)
Boersig, George R.; Kruse, Lawrence F.
1993-01-01
The purpose of this GEOTAIL Historical Report is to document ground processing operations information gathered on the GEOTAIL mission during processing activities at the Cape Canaveral Air Force Station (CCAFS). It is hoped that this report may aid management analysis, improve integration processing and forecasting of processing trends, and reduce real-time schedule changes. The GEOTAIL payload is the third Delta 2 Expendable Launch Vehicle (ELV) mission to document historical data. Comparisons of planned versus as-run schedule information are displayed. Information will generally fall into the following categories: (1) payload stay times (payload processing facility/hazardous processing facility/launch complex-17A); (2) payload processing times (planned, actual); (3) schedule delays; (4) integrated test times (experiments/launch vehicle); (5) unique customer support requirements; (6) modifications performed at facilities; (7) other appropriate information (Appendices A & B); and (8) lessons learned (reference Appendix C).
Using space for technology development - Planning for the Space Station era
NASA Technical Reports Server (NTRS)
Ambrus, Judith H.; Couch, Lana M.; Rosen, Robert R.; Gartrell, Charles F.
1989-01-01
Experience with the Shuttle and free-flying satellites as technology test-beds has shown the feasibility and desirability of using space assets as a facility for technology development. Thus, by the time the Space Station era will have arrived, the technologist will be ready for an accessible engineering facility in space. As the 21st century is approached, it is expected that virtually every flight to the Space Station Freedom will be required to carry one or more research, technology, and engineering experiments. The experiments planned will utilize both the pressurized volume, and the external payload attachment facilities. A unique, but extremely important, class of experiments will use the Space Station itself as an experimental vehicle. Based upon recent examination of possible Space Station Freedom assembly sequences, technology payloads may well utilize 20-30 percent of available resources.
Applications of UAVs for Remote Sensing of Critical Infrastructure
NASA Technical Reports Server (NTRS)
Wegener, Steve; Brass, James; Schoenung, Susan
2003-01-01
The surveillance of critical facilities and national infrastructure such as waterways, roadways, pipelines and utilities requires advanced technological tools to provide timely, up to date information on structure status and integrity. Unmanned Aerial Vehicles (UAVs) are uniquely suited for these tasks, having large payload and long duration capabilities. UAVs also have the capability to fly dangerous and dull missions, orbiting for 24 hours over a particular area or facility providing around the clock surveillance with no personnel onboard. New UAV platforms and systems are becoming available for commercial use. High altitude platforms are being tested for use in communications, remote sensing, agriculture, forestry and disaster management. New payloads are being built and demonstrated onboard the UAVs in support of these applications. Smaller, lighter, lower power consumption imaging systems are currently being tested over coffee fields to determine yield and over fires to detect fire fronts and hotspots. Communication systems that relay video, meteorological and chemical data via satellite to users on the ground in real-time have also been demonstrated. Interest in this technology for infrastructure characterization and mapping has increased dramatically in the past year. Many of the UAV technological developments required for resource and disaster monitoring are being used for the infrastructure and facility mapping activity. This paper documents the unique contributions from NASA;s Environmental Research Aircraft and Sensor Technology (ERAST) program to these applications. ERAST is a UAV technology development effort by a consortium of private aeronautical companies and NASA. Details of demonstrations of UAV capabilities currently underway are also presented.
An outdoor test facility for the large-scale production of microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.A.; Weissman, J.; Goebel, R.
The goal of the US Department of EnergySolar Energy Research Institute's Aquatic Species Program is to develop the technology base to produce liquid fuels from microalgae. This technology is being initially developed for the desert Southwest. As part of this program an outdoor test facility has been designed and constructed in Roswell, New Mexico. The site has a large existing infrastructure, a suitable climate, and abundant saline groundwater. This facility will be used to evaluate productivity of microalgae strains and conduct large-scale experiments to increase biomass productivity while decreasing production costs. Six 3-m/sup 2/ fiberglass raceways were constructed. Several microalgaemore » strains were screened for growth, one of which had a short-term productivity rate of greater than 50 g dry wt m/sup /minus/2/ d/sup /minus/1/. Two large-scale, 0.1-ha raceways have also been built. These are being used to evaluate the performance trade-offs between low-cost earthen liners and higher cost plastic liners. A series of hydraulic measurements is also being carried out to evaluate future improved pond designs. Future plans include a 0.5-ha pond, which will be built in approximately 2 years to test a scaled-up system. This unique facility will be available to other researchers and industry for studies on microalgae productivity. 6 refs., 9 figs., 1 tab.« less
A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB
Sherman, Michael B.; Freiberg, Alexander N.; Razmus, Dennis; Yazuka, Shintaro; Koht, Craig; Hilser, Vincent J.; Lemon, Stanley M.; Brocard, Anne-Sophie; Zimmerman, Dee; Chiu, Wah; Watowich, Stanley J.; Weaver, Scott C.
2010-01-01
This article describes a unique cryo-electron microscopy (CryoEM) facility to study the three-dimensional organization of viruses at biological safety level 3 (BSL-3). This facility, the W. M. Keck Center for Virus Imaging, has successfully operated for more than a year without incident and was cleared for select agent studies by the Centers for Disease Control and Prevention (CDC). Standard operating procedures for the laboratory were developed and implemented to ensure its safe and efficient operation. This facility at the University of Texas Medical Branch (Galveston, TX) is the only such BSL-3 CryoEM facility approved for select agent research. PMID:21852942
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloudemans, J.R.
1991-08-01
The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to addresss the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the once-through integralmore » system (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in eleven volumes; Volumes 2 through 8 pertain to groups of Phase 3 tests by type, Volume 9 presents inter-group comparisons. Volume 10 provides comparisons between the RELAP5 MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later, Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include: test advisory grop (TAG) issues; facility scaling and design; test matrix; observations; comparisons of RELAP5 calculations to MIST observations; and MIST versus the TAG issues. 11 refs., 29 figs., 9 tabs.« less
Integrated Cryogenic Propulsion Test Article Thermal Vacuum Hotfire Testing
NASA Technical Reports Server (NTRS)
Morehead, Robert L.; Melcher, J. C.; Atwell, Matthew J.; Hurlbert, Eric A.
2017-01-01
In support of a facility characterization test, the Integrated Cryogenic Propulsion Test Article (ICPTA) was hotfire tested at a variety of simulated altitude and thermal conditions in the NASA Glenn Research Center Plum Brook Station In-Space Propulsion Thermal Vacuum Chamber (formerly B2). The ICPTA utilizes liquid oxygen and liquid methane propellants for its main engine and four reaction control engines, and uses a cold helium system for tank pressurization. The hotfire test series included high altitude, high vacuum, ambient temperature, and deep cryogenic environments, and several hundred sensors on the vehicle collected a range of system level data useful to characterize the operation of an integrated LOX/Methane spacecraft in the space environment - a unique data set for this propellant combination.
Shiota, Kozue; Goto, Shinichi; Tanenaga, Satoshi; Koyama, Keiko
2014-01-01
After five years of using our unique "school style" technique, we were able to increase the number of home discharges and decrease the number of days spent in the facility. In order to identify the factors underlying these results, a survey was conducted regarding changes of the physical and cognitive function while in the facility. The subjects included 41 patients who newly began using our facility. All subjects participated in both group and individual programs and were evaluated using the Mini Mental State Examination (MMSE), Frontal Assessment Battery at the bedside (FAB), Vitality Index and Functional Independence Measure (FIM) determined monthly starting the first day of entry into our facility. We compared the results using the Friedman test. The rate of participation in the group program was 81.9%. The average duration of participation in functional training as an individual program was 5.94 days, while that for Kumon learning therapy was 3.27 days. Effective improvements were noted in all four evaluation measurements: MMSE・FAB・Vitality Index・FIM. Improvements in the physical and cognitive function were obtained despite the status of the subjects as elderly individuals with chronic disease. Against this background, we applied interventions with rehabilitation using an intensive program for individuals and noted a pleasant experience during all activities in our unique "school style" protocol, which seeks to improve the subject's motivation. These factors are therefore important for improving the physical and cognitive function.
Facilities Engineering in NASA
NASA Technical Reports Server (NTRS)
Pagluiso, M. A.
1970-01-01
An overview of NASA facilities is given outlining some of the more interesting and unique aspects of engineering and facilities associated with the space program. Outlined are some of the policies under which the Office of Facilities conducts its business. Included are environmental quality control measures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns
2014-01-01
The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less
A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties
NASA Astrophysics Data System (ADS)
Li, Yanqiong
2018-02-01
Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.
Langley aerospace test highlights, 1988
NASA Technical Reports Server (NTRS)
1989-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1988 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
Solar Thermal Propulsion Optical Figure Measuring and Rocket Engine Testing
NASA Technical Reports Server (NTRS)
Bonometti, Joseph
1997-01-01
Solar thermal propulsion has been an important area of study for four years at the Propulsion Research Center. Significant resources have been devoted to the development of the UAH Solar Thermal Laboratory that provides unique, high temperature, test capabilities. The facility is fully operational and has successfully conducted a series of solar thruster shell experiments. Although presently dedicated to solar thermal propulsion, the facility has application to a variety of material processing, power generation, environmental clean-up, and other fundamental research studies. Additionally, the UAH Physics Department has joined the Center in support of an in-depth experimental investigation on Solar Thermal Upper Stage (STUS) concentrators. Laboratory space has been dedicated to the concentrator evaluation in the UAH Optics Building which includes a vertical light tunnel. Two, on-going, research efforts are being sponsored through NASA MSFC (Shooting Star Flight Experiment) and the McDonnell Douglas Corporation (Solar Thermal Upper Stage Technology Ground Demonstrator).
Code of Federal Regulations, 2011 CFR
2011-10-01
... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...
Code of Federal Regulations, 2010 CFR
2010-10-01
... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...
Code of Federal Regulations, 2014 CFR
2014-10-01
... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...
Code of Federal Regulations, 2013 CFR
2013-10-01
... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...
Code of Federal Regulations, 2012 CFR
2012-10-01
... laboratories and other study and research facilities of the Department will be made available to the national... study and research facilities of the Department. When such facilities are used by academic scientists, engineers, and students, the costs incurred for the operation of the unique or unusual research facilities...
ERIC Educational Resources Information Center
Erickson, Paul W.
2009-01-01
Long-range facility planning is a comprehensive process for preparing education institutions for the future and confirm that facilities meet current needs. A long-range facilities plan (LRFP) evaluates how facilities support programs and the educational needs of students, staff and the community. Each school district or college has unique needs…
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
Estimating earthquake-induced failure probability and downtime of critical facilities.
Porter, Keith; Ramer, Kyle
2012-01-01
Fault trees have long been used to estimate failure risk in earthquakes, especially for nuclear power plants (NPPs). One interesting application is that one can assess and manage the probability that two facilities - a primary and backup - would be simultaneously rendered inoperative in a single earthquake. Another is that one can calculate the probabilistic time required to restore a facility to functionality, and the probability that, during any given planning period, the facility would be rendered inoperative for any specified duration. A large new peer-reviewed library of component damageability and repair-time data for the first time enables fault trees to be used to calculate the seismic risk of operational failure and downtime for a wide variety of buildings other than NPPs. With the new library, seismic risk of both the failure probability and probabilistic downtime can be assessed and managed, considering the facility's unique combination of structural and non-structural components, their seismic installation conditions, and the other systems on which the facility relies. An example is offered of real computer data centres operated by a California utility. The fault trees were created and tested in collaboration with utility operators, and the failure probability and downtime results validated in several ways.
Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute
NASA Astrophysics Data System (ADS)
Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.
2004-02-01
The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.
Planning Requirements for Small School Facilities.
ERIC Educational Resources Information Center
Davis, J. Clark; McQueen, Robert
The unique requirements of small school facilities, designed to handle multiple curricular functions within the same operational space, necessitate the creation of educational specifications tying the curriculum to that portion of the facility in which each curriculum component will be implemented. Thus, in planning the facility the major concern…
NASA Technical Reports Server (NTRS)
Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)
1999-01-01
Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.
Modeling, simulation and control for a cryogenic fluid management facility, preliminary report
NASA Technical Reports Server (NTRS)
Turner, Max A.; Vanbuskirk, P. D.
1986-01-01
The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.
NASA Astrophysics Data System (ADS)
Hubbard, H. H.; Powell, C. A.
1981-06-01
A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Powell, C. A.
1981-01-01
A number of facilities were developed which provide a unique test capability for psychoacoustics and related human factors research. The design philosophy, physical layouts, dimensions, construction features, operating capabilities, and example applications for these facilities are described. In the exterior effects room, human subjects are exposed to the types of noises that are experienced outdoors, and in the interior effects room, subjects are exposed to the types of noises and noise-induced vibrations that are experience indoors. Subjects are also exposed to noises in an echo-free environment in the anechoic listening room. An aircraft noise synthesis system, which simulates aircraft flyover noise at an observer position on the ground, is used in conjunction with these three rooms. The passenger ride quality apparatus, a device for studying passenger response to noise and vibration in aircraft, or in other vehicles, is described.
Altitude Testing of Large Liquid Propellant Engines
NASA Technical Reports Server (NTRS)
Maynard, Bryon T.; Raines, Nickey G.
2010-01-01
The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight of the first Ares I vehicle. The A3 facility will be able to simulate pre-ignition altitude from sea-level to 100,000 feet and maintain it up to 650 seconds. Additionally the facility will be able to accommodate initial ignition, shutdown and then restart test profiles. A3 will produce up to 5000 lbm/sec of superheated steam utilizing a Chemical Steam generation system. Two separate inline steam ejectors will be used to produce a test cell vacuum to simulate the 100,000 ft required altitude. Operational capability will ensure that the facility can start up and shutdown without producing adverse pressure gradients across the J2X nozzle. The facility will have a modern thrust measurement system for accurate determination of engine performance. The latest advances in data acquisition and control will be incorporated to measure performance parameters during hotfire testing. Provisions are being made in the initial design of the new altitude facility to allow for testing of other, larger engines and potential upper stage launch vehicles that might require vacuum start testing of the engines. The new facility at Stennis Space Center will be complete and ready for hotfire operations in late 2010.
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
17 CFR 45.5 - Unique swap identifiers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... transmit a unique swap identifier as provided in paragraphs (a)(1) and (2) of this section. (1) Creation... prior to the reporting of required swap creation data. The unique swap identifier shall consist of a... execution facility or designated contract market with respect to unique swap identifier creation; and (ii...
Moving THEMIS to a spin table for testing at Astrotech
2007-01-12
In the Hazardous Processing Facility at Astrotech Space Operations, workers attach an overhead crane to the integrated THEMIS spacecraft. The carrier is being moved to a spin table for spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.
Moving THEMIS to a spin table for testing at Astrotech
2007-01-12
In the Hazardous Processing Facility at Astrotech Space Operations, workers guide the integrated THEMIS spacecraft onto the spin table in the foreground. There it will undergo spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.
NASA Technical Reports Server (NTRS)
Neal, Bradford A.; Stoliker, Patrick C.
2018-01-01
NASA AFRC is a United States government entity that conducts the integration and operation of new and unproven technologies into proven flight vehicles as well as the flight test of one-of-a-kind experimental aircraft. AFRC also maintains and operates several platform aircraft that allow the integration of a wide range of sensors to conduct airborne remote sensing, science observations and airborne infrared astronomy. To support these types of operations AFRC has the organization, facilities and tools to support the experimental flight test of unique vehicles and conduct airborne sensing/observing.
A Unique Software System For Simulation-to-Flight Research
NASA Technical Reports Server (NTRS)
Chung, Victoria I.; Hutchinson, Brian K.
2001-01-01
"Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
NASA Astrophysics Data System (ADS)
Barber, Corinne; DIRC at EIC Collaboration
2015-10-01
The High-B test facility at Thomas Jefferson National Accelerator Facility allows researchers to evaluate the gain of compact photon sensors, such as Micro-Channel-Plate Photomultipliers (MCP-PMTs), in magnetic fields up to 5 T. These ongoing studies support the development of a Detector of Internally Reflected Cherenkov light (DIRC) to be used in an Electron Ion Collider (EIC). Here, we present our summer 2015 activities to upgrade and improve the facility, and we show results for MCP-PMT gain changes in high B-fields. To monitor the light stability delivered to the MCP-PMTs being tested, we implemented a Silicon Photomultiplier (SiPM) in the setup and calibrated the ADC reading this sensor. A 405-nm Light-Emitting Diode (LED) housed in an optical tube compatible with neutral density filters was also installed. The filters provide an alternative way of reducing the light output of the LED to operate the MCP-PMTs in a single-photon mode. We calibrated a set of filters by means of a photodiode and measured the photon flux at multiple positions relative to the LED. This information helped us to design 3D-printed holders unique to each MCP-PMT so that the photocathode receives the greatest amount of light. The improvements to the setup allow for more precise PMT gain evaluation. This team includes 7 collaborators/co-authors besides myself: Yordanka Ilieva, Kijun Park, Greg Kalicy, Carl Zorn, Pawel Nadel-Turonski, Tongtong Cao, and Lee.
Material Damping Experiments at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Levine, Marie; White, Christopher
2003-01-01
A unique experimental facility has been designed to measure damping of materials at cryogenic temperatures. The test facility pays special attention to removing other sources of damping in the measurement by avoiding frictional interfaces, decoupling the test specimen from the support system, and by using a non-contacting measurement device; Damping data is obtained for materials (AI, GrEp, Be, Fused Quartz), strain amplitudes (less than 10-6 ppm), frequencies (20Hz-330Hz) and temperatures (20K-293K) relevant to future precision optical space missions. The test data shows a significant decrease in viscous damping at cryogenic temperatures and can be as low as 10-4%, but the amount of the damping decrease is a function of frequency and material. Contrary to the other materials whose damping monotonically decreased with temperature, damping of Fused Quartz increased substantially at cryo, after reaching a minimum at around l50 K. The damping is also shown to be insensitive to strain for low strain levels. At room temperatures, the test data correlates well to the analytical predictions of the Zener damping model. Discrepancies at cryogenic temperatures between the model predictions and the test data are observed.
NEEMO 21: Tools, Techniques, Technologies & Training for Science Exploration EVA
NASA Technical Reports Server (NTRS)
Graff, Trevor
2016-01-01
The 21st mission of the NASA Extreme Environment Mission Operations (NEEMO) was a highly integrated operational test and evaluation of tools, techniques, technologies, and training for science driven exploration during Extravehicular Activity (EVA).The 16-day mission was conducted from the Aquarius habitat, an underwater laboratory, off the coast of Key Largo, FL. The unique facility, authentic science objectives, and diverse skill-sets of the crew/team facilitate the planning and design for future space exploration.
NASA Astrophysics Data System (ADS)
Väyrynen, S.; Pusa, P.; Sane, P.; Tikkanen, P.; Räisänen, J.; Kuitunen, K.; Tuomisto, F.; Härkönen, J.; Kassamakov, I.; Tuominen, E.; Tuovinen, E.
2007-03-01
A novel facility for proton irradiation with sample cryocooling has been developed at the Accelerator Laboratory of Helsinki University (equipped with a 5 MV tandem accelerator). The setup enables unique experiments to be carried out within the temperature range of 10-300 K. The setup has been constructed for "on-line" studies of vacancies with positron annihilation spectroscopy (PAS) including the option for optical ionization of the vacancies, and for current-voltage ( IV) measurements of irradiated silicon particle detectors. The setup is described in detail and typical performance characteristics are provided. The facility functionality was tested by performing PAS experiments with high-resistivity silicon and by IV measurements for two types of irradiated silicon particle detectors.
Cryogenic Wind Tunnel Models. Design and Fabrication
NASA Technical Reports Server (NTRS)
Young, C. P., Jr. (Compiler); Gloss, B. B. (Compiler)
1983-01-01
The principal motivating factor was the National Transonic Facility (NTF). Since the NTF can achieve significantly higher Reynolds numbers at transonic speeds than other wind tunnels in the world, and will therefore occupy a unique position among ground test facilities, every effort is being made to ensure that model design and fabrication technology exists to allow researchers to take advantage of this high Reynolds number capability. Since a great deal of experience in designing and fabricating cryogenic wind tunnel models does not exist, and since the experience that does exist is scattered over a number of organizations, there is a need to bring existing experience in these areas together and share it among all interested parties. Representatives from government, the airframe industry, and universities are included.
Langley aeronautics and space test highlights, 1983
NASA Technical Reports Server (NTRS)
1984-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests which were performed during calendar year 1983 in Langley test facilities, a number of which are unique in the world are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research are illustrated.
Langley aerospace test highlights - 1986
NASA Technical Reports Server (NTRS)
1987-01-01
The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. This report highlights some of the significant tests which were performed during calendar year 1986 in Langley test facilities, a number of which are unique in the world. The report illustrates both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.
A Unique Test Facility to Measure Liner Performance with a Summary of Initial Test Results
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.
1997-01-01
A very ambitious study was initiated to obtain detailed acoustic and flow data with and without a liner in a duct containing a mean flow so that available theoretical models of duct liners can be validated. A unique flow-duct facility equipped with a sound source, liner box, flush-walled microphones, traversable microphones and traversable pressure and temperature probes was built. A unique set of instrumentation boxes equipped with computer controlled traverses were designed and built that allowed measurements of Mach number, temperature, SPLs and phases in two planes upstream of a liner section and two planes downstream at a large number of measurement points. Each pair of planes provided acoustic pressure gradients for use in estimating the particle velocities. Specially-built microphone probes were employed to make measurements in the presence of the flow. A microphone traverse was also designed to measure the distribution of SPLs and phases from the beginning of the liner to its end along the duct axis. All measurements were made with the help of cross-correlation techniques to reject flow noise and/or other obtrusive noise, if any. The facility was designed for future use at temperatures as high as 1500 F. In order to validate 2-D models in the presence of mean flow, the flow duct was equipped with a device to modify boundary layer flow on the smaller sides of a rectangular duct to simulate 2-D flow. A massive amount of data was acquired for use in validating duct liner models and will be provided to NASA in an electronic form. It was found that the sound in the plane-wave regime is well behaved within the duct and the results are repeatable from one run to another. At the higher frequencies corresponding to the higher-order modes, the SPLs within a duct are not repeatable from run to run. In fact, when two or more modes have the same frequency (i.e., for the degenerate modes), the SPLs in the duct varied between 2 dB to 12 dB from run to run. This made the calibration of the microphone probes extremely difficult at the higher frequencies.
Research at NASA's NFAC wind tunnels
NASA Technical Reports Server (NTRS)
Edenborough, H. Kipling
1990-01-01
The National Full-Scale Aerodynamics Complex (NFAC) is a unique combination of wind tunnels that allow the testing of aerodynamic and dynamic models at full or large scale. It can even accommodate actual aircraft with their engines running. Maintaining full-scale Reynolds numbers and testing with surface irregularities, protuberances, and control surface gaps that either closely match the full-scale or indeed are those of the full-scale aircraft help produce test data that accurately predict what can be expected from future flight investigations. This complex has grown from the venerable 40- by 80-ft wind tunnel that has served for over 40 years helping researchers obtain data to better understand the aerodynamics of a wide range of aircraft from helicopters to the space shuttle. A recent modification to the tunnel expanded its maximum speed capabilities, added a new 80- by 120-ft test section and provided extensive acoustic treatment. The modification is certain to make the NFAC an even more useful facility for NASA's ongoing research activities. A brief background is presented on the original facility and the kind of testing that has been accomplished using it through the years. A summary of the modification project and the measured capabilities of the two test sections is followed by a review of recent testing activities and of research projected for the future.
Shock Tube and Ballistic Range Facilities at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.
2010-01-01
The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.
Brookhaven National Laboratory's Accelerator Test Facility: research highlights and plans
NASA Astrophysics Data System (ADS)
Pogorelsky, I. V.; Ben-Zvi, I.
2014-08-01
The Accelerator Test Facility (ATF) at Brookhaven National Laboratory has served as a user facility for accelerator science for over a quarter of a century. In fulfilling this mission, the ATF offers the unique combination of a high-brightness 80 MeV electron beam that is synchronized to a 1 TW picosecond CO2 laser. We unveil herein our plan to considerably expand the ATF's floor space with an upgrade of the electron beam's energy to 300 MeV and the CO2 laser's peak power to 100 TW. This upgrade will propel the ATF even further to the forefront of research on advanced accelerators and radiation sources, supporting the most innovative ideas in this field. We discuss emerging opportunities for scientific breakthroughs, including the following: plasma wakefield acceleration studies in research directions already active at the ATF; laser wakefield acceleration (LWFA), where the longer laser wavelengths are expected to engender a proportional increase in the beam's charge while our linac will assure, for the first time, the opportunity to undertake detailed studies of seeding and staging of the LWFA; proton acceleration to the 100-200 MeV level, which is essential for medical applications; and others.
University of Washington Clinical Neutron Facility: Report on 26 Years of Operation
NASA Astrophysics Data System (ADS)
Laramore, George E.; Emery, Robert; Reid, David; Banerian, Stefani; Kalet, Ira; Jacky, Jonathan; Risler, Ruedi
2011-12-01
Particle radiotherapy facilities are highly capital intensive and must operate over decades to recoup the original investment. We describe the successful, long-term operation of a neutron radiotherapy center at the University of Washington, which has been operating continuously since September 1984. To date, 2836 patients have received neutron radiotherapy. The mission of the facility has also evolved to include the production of unique radioisotopes that cannot be made with the low-energy cyclotrons more commonly found in nuclear medicine departments. The facility is also used for neutron damage testing for industrial devices. In this paper, we describe the challenges of operating such a facility over an extended time period, including a planned maintenance and upgrade program serving diverse user groups, and summarize the major clinical results in terms of tumor control and normal tissue toxicity. Over time, the mix of patients being treated has shifted from common tumors such as prostate cancer, lung cancer, and squamous cell tumors of the head and neck to the rarer tumors such as salivary gland tumors and sarcomas due to the results of clinical trials. Current indications for neutron radiotherapy are described and neutron tolerance doses for a range of normal tissues presented.
The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research
NASA Technical Reports Server (NTRS)
Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David
2001-01-01
The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.
Catalog of Uncommon Facilities in Western Colleges and Universities.
ERIC Educational Resources Information Center
Viehland, Dennis, Comp.
A list of rare, and often unique, facilities in the western part of the United States is presented that is designed to serve as a resource for researchers. The list of facilities is a guide to what uncommon equipment, centers or institutes, and collections are available at western higher education facilities and what provisions exist for sharing…
A robotic observatory in the city
NASA Astrophysics Data System (ADS)
Ruch, Gerald T.; Johnston, Martin E.
2012-05-01
The University of St. Thomas (UST) Observatory is an educational facility integrated into UST's undergraduate curriculum as well as the curriculum of several local schools. Three characteristics combine to make the observatory unique. First, the telescope is tied directly to the support structure of a four-story parking ramp instead of an isolated pier. Second, the facility can be operated remotely over an Internet connection and is capable of performing observations without a human operator. Third, the facility is located on campus in the heart of a metropolitan area where light pollution is severe. Our tests indicate that, despite the lack of an isolated pier, vibrations from the ramp do not degrade the image quality at the telescope. The remote capability facilitates long and frequent observing sessions and allows others to use the facility without traveling to UST. Even with the high background due to city lights, the sensitivity and photometric accuracy of the system are sufficient to fulfill our pedagogical goals and to perform a variety of scientific investigations. In this paper, we outline our educational mission, provide a detailed description of the observatory, and discuss its performance characteristics.
Compound curvature laser window development
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.
Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD
NASA Technical Reports Server (NTRS)
Lau, Kei Y.; Holden, Michael
2010-01-01
This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at CUBRC, the test flow field calibration. It showed the versatility of the CUBRC LENS II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results. A more comprehensive discussion of the topics in this paper can be found in Chapter 6 of Reference [1]. The overall aspect of the test program has been discussed in an AIAA paper by Tim Wadhams [2]. The Shuttle Ascent Stack performance and related issues discussed in the Report [1] are not included in this paper. No ITAR data is included in this paper.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
The design and development of a large diameter high pressure quick acting propulsion valve and valve actuator is described. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing systems. The valve opens in less than 300 milliseconds releasing a 46-centimeter- (18-in.-) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
NASA Technical Reports Server (NTRS)
Srinivasan, K. V.
1986-01-01
This paper describes the design and development of a large diameter high pressure quick acting propulsion valve and valve actuator. The valve is the heart of a major test facility dedicated to conducting full scale performance tests of aircraft landing gear systems. The valve opens in less than 300 milliseconds releasing a 46 cm (18 in) diameter water jet and closes in 300 milliseconds. The four main components of the valve, i.e., valve body, safety shutter, high speed shutter, and pneumatic-hydraulic actuator, are discussed. This valve is unique and may have other aerospace and industrial applications.
Japanese Experiment Module arrival
2007-03-29
Several components for delivery to the International Space Station sit in test stands inside the Space Station Processing Facility highbay. To the right, from back to front, are the Japanese Experiment Module, the Raffaello multi-purpose logistics module, and the European Space Agency's Columbus scientific research module. To the left in front is the starboard truss segment S5. Behind it is the test stand that will hold the Experiment Logistics Module Pressurized Section for the Japanese Experiment Module. The logistics module is one of the components of the Japanese Experiment Module or JEM, also known as Kibo, which means "hope" in Japanese. Kibo comprises six components: two research facilities -- the Pressurized Module and Exposed Facility; a Logistics Module attached to each of them; a Remote Manipulator System; and an Inter-Orbit Communication System unit. Kibo also has a scientific airlock through which experiments are transferred and exposed to the external environment of space. Kibo is Japan's first human space facility and its primary contribution to the station. Kibo will enhance the unique research capabilities of the orbiting complex by providing an additional environment in which astronauts can conduct science experiments. The various components of JEM will be assembled in space over the course of three Space Shuttle missions. The first of those three missions, STS-123, will carry the Experiment Logistics Module Pressurized Section aboard the Space Shuttle Endeavour, targeted for launch in 2007.
NRES: The Network of Robotic Echelle Spectrographs
NASA Astrophysics Data System (ADS)
Siverd, Robert; Brown, Timothy M.; Henderson, Todd; Hygelund, John; Barnes, Stuart; Bowman, Mark; De Vera, Jon; Eastman, Jason D.; Kirby, Annie; Norbury, Martin; Smith, Cary; Taylor, Brook; Tufts, Joseph; Van Eyken, Julian C.
2017-06-01
Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four to six identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12. Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. Barring serious complications, we expect regular scheduled science observing to begin in mid-2017. Three additional units are in building or testing phases and slated for deployment in late 2017. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities. We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first unit, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of science cases.
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
14 CFR 171.265 - Glide path performance requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... impressed on the microwave carrier of the radiated glide slope signal in the form of a unique summation of... TRANSPORTATION (CONTINUED) NAVIGATIONAL FACILITIES NON-FEDERAL NAVIGATION FACILITIES Interim Standard Microwave... assumption that the aircraft is heading directly toward the facility. (a) The glide slope antenna system must...
Three-dimensional laser window formation for industrial application
NASA Technical Reports Server (NTRS)
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
NASA Technical Reports Server (NTRS)
Cornelson, C.; Fretter, E.
2004-01-01
NASA Ames has a long tradition in leadership with the use of ballistic ranges and shock tubes for the purpose of studying the physics and phenomena associated with hypervelocity flight. Cutting-edge areas of research run the gamut from aerodynamics, to impact physics, to flow-field structure and chemistry. This legacy of testing began in the NACA era of the 1940's with the Supersonic Free Flight Tunnel, and evolved dramatically up through the late 1950s with the pioneering work in the Ames Hypersonic Ballistic Range. The tradition continued in the mid-60s with the commissioning of the three newest facilities: the Ames Vertical Gun Range (AVGR) in 1964, the Hypervelocity Free Flight Facility (HFFF) in 1965 and the Electric Arc Shock Tube (EAST) in 1966. Today the Range Complex continues to provide unique and critical testing in support of the Nation's programs for planetary geology and geophysics; exobiology; solar system origins; earth atmospheric entry, planetary entry, and aerobraking vehicles; and various configurations for supersonic and hypersonic aircraft.
NASA Technical Reports Server (NTRS)
Marmolejo, Jose; Ewert, Michael
2016-01-01
The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.
Office of Science User Facilities Summary Report, Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-01-01
The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.
A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm
NASA Technical Reports Server (NTRS)
DellaCorte, Chris
1997-01-01
A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.
A Vibration Isolation System for Use in a Large Thermal Vacuum Test Facility
NASA Technical Reports Server (NTRS)
Hershfeld, Donald; VanCampen, Julie
2002-01-01
A thermal vacuum payload platform that is isolated from background vibration is required to support the development of future instruments for Hubble Space Telescope (HST) and the Next Generation Space Telescope (NGST) at the Goddard Space Flight Center (GSFC). Because of the size and weight of the thermal/vacuum facility in which the instruments are tested, it is not practical to isolate the entire facility externally. Therefore, a vibration isolation system has been designed and fabricated to be installed inside the chamber. The isolation system provides a payload interface of 3.05 m (10 feet) in diameter and is capable of supporting a maximum payload weight of 4536 kg (10,000 Lbs). A counterweight system has been included to insure stability of payloads having high centers of gravity. The vibration isolation system poses a potential problem in that leakage into the chamber could compromise the ability to maintain vacuum. Strict specifications were imposed on the isolation system design to minimize leakage. Vibration measurements, obtained inside the chamber, prior to installing the vibration isolation system, indicated levels in all axes of approximately 1 milli-g at about 20 Hz. The vibration isolation system was designed to provide a minimum attenuation of 40 dB to these levels. This paper describes the design and testing of this unique vibration isolation system. Problems with leakage and corrective methods are presented. Isolation performance results are also presented.
Langley aerospace test highlights, 1990
NASA Technical Reports Server (NTRS)
1991-01-01
The role of NASA-Langley is to perform basic and applied research necessary for the advancement of aeronautics and spaceflight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Some of the significant tests are highlighted which were performed during 1990 in the NASA-Langley test facilities, a number of which are unique in the world. Both the broad range of the research and technology activities at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research are illustrated. Other highlights of Langley research and technology for 1990 are described in Research and Technology 1990 Langley Research Center.
Electronics systems test laboratory testing of shuttle communications systems
NASA Technical Reports Server (NTRS)
Stoker, C. J.; Bromley, L. K.
1985-01-01
Shuttle communications and tracking systems space to space and space to ground compatibility and performance evaluations are conducted in the NASA Johnson Space Center Electronics Systems Test Laboratory (ESTL). This evaluation is accomplished through systems verification/certification tests using orbiter communications hardware in conjunction with other shuttle communications and tracking external elements to evaluate end to end system compatibility and to verify/certify that overall system performance meets program requirements before manned flight usage. In this role, the ESTL serves as a multielement major ground test facility. The ESTL capability and program concept are discussed. The system test philosophy for the complex communications channels is described in terms of the major phases. Results of space to space and space to ground systems tests are presented. Several examples of the ESTL's unique capabilities to locate and help resolve potential problems are discussed in detail.
Leski, Tomasz A.; Stockelman, Michael G.; Craft, David W.; Zurawski, Daniel V.; Kirkup, Benjamin C.; Vora, Gary J.
2014-01-01
Multidrug-resistant (MDR) Acinetobacter baumannii infections are of particular concern within medical treatment facilities, yet the gene assemblages that give rise to this phenotype remain poorly characterized. In this study, we tested 97 clinical A. baumannii isolates collected from military treatment facilities (MTFs) from 2003 to 2009 by using a molecular epidemiological approach that enabled for the simultaneous screening of 236 antimicrobial resistance genes. Overall, 80% of the isolates were found to be MDR, each strain harbored between one and 17 resistant determinants, and a total of 52 unique resistance determinants or gene families were detected which are known to confer resistance to β-lactam (e.g., blaGES-11, blaTEM, blaOXA-58), aminoglycoside (e.g., aphA1, aacC1, armA), macrolide (msrA, msrB), tetracycline [e.g., tet(A), tet(B), tet(39)], phenicol (e.g., cmlA4, catA1, cat4), quaternary amine (qacE, qacEΔ1), streptothricin (sat2), sulfonamide (sul1, sul2), and diaminopyrimidine (dfrA1, dfrA7, dfrA19) antimicrobial compounds. Importantly, 91% of the isolates harbored blaOXA-51-like carbapenemase genes (including six new variants), 40% harbored the blaOXA-23 carbapenemase gene, and 89% contained a variety of aminoglycoside resistance determinants with up to six unique determinants identified per strain. Many of the resistance determinants were found in potentially mobile gene cassettes; 45% and 7% of the isolates contained class 1 and class 2 integrons, respectively. Combined, the results demonstrate a facile approach that supports a more complete understanding of the genetic underpinnings of antimicrobial resistance to better assess the load, transmission, and evolution of MDR in MTF-associated A. baumannii. PMID:24247131
A Unique Facility For Metabolic and Thermoregulatory Studies
NASA Technical Reports Server (NTRS)
Williamson, Rebecca C.; Webbon, Bruce W.
1995-01-01
A unique exercise facility has been developed and used to perform tipper body ergometry tests for space applications. Originally designed to simulate the muscular, cardiovascular and thermoregulatory responses to working in zero gravity, this facility may be used to conduct basic thermoregulatory investigations applicable to multiple sclerosis patients. An environmental chamber houses the tipper body ergometer and permits control of temperature, air now and humidify. The chamber is a closed system and recirculate-s air after conditioning if. A Cybex Lipper body ergometer has been mounted horizontally on the wall of the environmental chamber. In this configuration, the subject lies underneath the arm crank on a supine seat in order to turn the crank. The supine seat can be removed in order to introduce other equipment into the chamber such as a stool to allow upright arm cranking, or a treadmill to allow walk-run experiments. Physiological and environmental signals are fed into a Strawberry Tree data acquisition system while being monitored and logged using the Workbench software program. Physiological monitoring capabilities include 3-lead EKG using an H-P patient monitor, 5 site skin temperature and core temperature using YSI thermistors, and O2 consumption and CO2 production using AMFTFK Applied Electrochemistry analyzers and sensors. This comprehensive data acquisition set tip allows for calculation of various thermoregulatory indices including heat storage, evaporative heat loss, latent heat loss, and metabolic rate. The current system is capable of adding more data acquisition channels if needed. Some potential studies that could be carried out using the facility include: 1) An investigation into the efficiency of cooling various segments of the body to lower Tc 1-2 F. 2) A series of heat and mass balance studies comparing various LCG configurations.
Use of personal protective equipment for respiratory protection.
Sargent, Edward V; Gallo, Frank
2003-01-01
Management of hazards in biomedical research facilities requires the application of the traditional industrial hygiene responsibilities of anticipation, recognition, evaluation, and control to characterize the work environment, evaluate tasks and equipment, identify hazards, define exposure groups, and recommend controls. Generally, the diversity and unique characteristics of hazards faced by laboratory and animal facility employees and the short-term and low-level nature of the exposures factor into the selection of proper exposure control measures in the laboratory. The proper selection of control measures is based on a hierarchy of elimination and minimization by engineering controls, followed last by personal protective equipment when exposures cannot be eliminated. Once it is decided that personal protective equipment is needed, specific regulations and guidelines define safety standards for research facilities, including the elements of a sound respiratory protection program. These elements include respirator selection (including appropriate protection factors), medical evaluation, fit testing, training, inspection, maintenance and care, quality, quantity and flow of breathing air, and routine and emergency use procedures.
New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P.
2004-01-01
A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and install the new compact arena in fiscal year 2002 has paid dividends in fiscal year 2003 and will for many years to come. It has provided a dedicated, high-quality acoustic arena to support low-speed fan testing for ANCF while minimizing scheduling impacts and improving operational productivity in the AAPL facility.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), points to data on the console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), stands inside the Japanese Experiment Module (JEM) that is undergoing a Multi-Element Integrated Test (MEIT) with the U.S. Node 2. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (left), with the National Space Development Agency of Japan (NASDA), works at a console during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM) in the Space Station Processing Facility. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 provides attach locations for the Japanese laboratory, as well as European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. Installation of the module will complete the U.S. Core of the ISS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, R.Y.; Johnson, T.L.; Johnson, R.P.
1995-12-31
This paper describes large scale hydrodynamic model tests of the Enserch Exploration Garden Banks 388 Floating Production Facility (FPF). This unique facility consists of a semi-submersible connected to a template on the sea floor 2,096 feet below the surface through a buoyant, free standing ``rigid`` riser. The top of the riser and its manifold are located well below the surface to minimize the forces exerted on the riser by waves. Numerous flexible conductors connect the semi-submersible to the manifold on the top of the riser. The emphasis of the model test program was to confirm the estimates of: The structuralmore » response of the buoyant, rigid production riser and an adjacent drilling riser; The relative displacements between the semisubmersible and the production riser; The relative displacements between the production riser and drilling riser; and The forces which must be endured by the tensioners and flexible hoses which join the semi-submersible to the production riser. The paper describes the planning and preparation of the model components, the unique aspects of the simulation of the environments and the structural properties of the models, the execution of the experiments and the handling of the large number of measurements necessary to characterize the response of the multi-component system. Finally, the data analysis tools which were employed to provide an understanding of the responses of the system are discussed. 22 figs., 1 tab.« less
Cryogenic experiences during W7-X HTS-current lead tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Thomas; Lietzow, Ralph
2014-01-29
The Karlsruhe Institute of Technology (KIT) was responsible for design, production and test of the High Temperature Superconductor (HTS) current leads (CL) for the stellerator Wendelstein 7-X (W7-X). 16 current leads were delivered. Detailed prototype tests as well as the final acceptance tests were performed at KIT, using a dedicated test cryostat assembled beside and connected to the main vacuum vessel of the TOSKA facility. A unique feature is the upside down orientation of the current leads due to the location of the power supplies in the basement of the experimental area of W7-X. The HTS-CL consists of three mainmore » parts: the cold end for the connection to the bus bar at 4.5 K, the HTS part operating in the temperature range from 4.5 K to 65 K and a copper heat exchanger (HEX) in the temperature range from 65 K to room temperature, which is cooled with 50 K helium. Therefore in TOSKA it is possible to cool test specimens simultaneously with helium at two different temperature levels. The current lead tests included different scenarios with currents up to 18.2 kA. In total, 10 cryogenic test campaigns with a total time of about 24 weeks were performed till beginning of 2013. The test facility as well as the 2 kW cryogenic plant of ITEP showed a very good reliability. However, during such a long and complex experimental campaign, one has to deal with failures, technical difficulties and incidents. The paper gives a summary of the test performance comprising the test preparation and operation. This includes the performance and reliability of the refrigerator and the test facility with reference to the process measuring and control system, the data acquisition system, as well as the building infrastructure.« less
Charter for the ARM Climate Research Facility Science Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, W
The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...
2016-08-11
The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less
Multiloop integral system test (MIST): Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gloudemans, J.R.
1991-04-01
The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility --more » the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. Volumes 2 through 8 pertain to groups of Phase 3 tests by type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the RELAP5/MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include, Test Advisory Group (TAG) issues, facility scaling and design, test matrix, observations, comparison of RELAP5 calculations to MIST observations, and MIST versus the TAG issues. MIST generated consistent integral-system data covering a wide range of transient interactions. MIST provided insight into integral system behavior and assisted the code effort. The MIST observations addressed each of the TAG issues. 11 refs., 29 figs., 9 tabs.« less
APPA Promotes Leadership in Energy and Sustainability with New FPI Tool
ERIC Educational Resources Information Center
Boyce, Darryl K.
2012-01-01
Although sustainability best practices for buildings are generally well understood, campuses face unique challenges because they are developed to support a diverse community with a variety of facilities. From academic facilities and labs to residences and sports facilities, all operate under one organizational umbrella. This can make it difficult…
EPA Policy for Innovative Environmental Technologies at Federal Facilities
This is a memo from the EPA Administrator, regarding the unique opportunities for the development and application of innovative technologies and approaches to pollution prevention, source control, site investigation, and remediation at Federal facilities.
Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo
2012-01-01
This paper summarizes the results of a longitudinal usability research study of a specially engineered sonic powered toothbrush with unique sensing and control technologies. The usability test was conducted with fourteen (14) consumers from the St. Louis, MO, USA area who use manual toothbrushes. The study consisted of consumers using the specially engineered sonic powered toothbrush with unique sensing and control technologies for three weeks. During the study, users participated in four toothbrush trials during weekly visits to the research facility. These trials were videotaped and were analyzed regarding brushing time, behavior, and technique. In addition, the users were required to use the toothbrush twice a day for their at-home brushing. The toothbrush had a positive impact on consumers' tooth brushing behavior. Users spent more time brushing their teeth with this toothbrush as compared to their manual toothbrush. In addition, users spent more time keeping the sonic toothbrush in the recommended angle during use. Finally, users perceived their teeth to be cleaner when using the specially engineered sonic powered toothbrush with unique sensing and control technologies. The specially engineered sonic powered toothbrush with unique sensing and control technologies left a positive impression on the users. The users perceived the toothbrush to clean their teeth better than a manual toothbrush.
Water NSTF Design, Instrumentation, and Test Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui
The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released formore » the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric variations and off-normal configurations. The facility design follows, including as-built dimensions and specifications of the various mechanical and liquid systems, design choices for the test section, water storage tank, and network piping. Specifications of the instrumentation suite are then presented, along with specific information on performance windows, measurement uncertainties, and installation locations. Finally, descriptions of the control systems and heat removal networks are provided, which have been engineered to support precise quantification of energy balances and facilitate well-controlled test operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, J.M.; Landry, E.F.; Beckwith, C.A.
1981-01-01
Studies were conducted to determine the influence of infiltration rate on poliovirus removal during groundwater recharge with tertiary-treated wastewater effluents. Experiments were conducted at a uniquely designed, field-situated test recharge basin facility through which some 62,000 m/sup 3/ of sewage had been previously applied. Recharge at high infiltration rates (75 to 100 cm/h) resulted in the movement of considerable numbers of seeded poliovirus to the groundwater. Moderately reduced infiltration rates (6 cm/h) affected significantly improved virus removal. Very low infiltration rates (0.5 to 1.0 cm/h), achieved by partial clogging of the test basin, yielded the greatest virus removal efficiencies.
Elevated temperature biaxial fatigue
NASA Technical Reports Server (NTRS)
Jordan, E. H.
1984-01-01
A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.
Moving THEMIS to a spin table for testing at Astrotech
2007-01-12
In the Hazardous Processing Facility at Astrotech Space Operations, a worker checks data on the integrated THEMIS spacecraft sitting on the spin table. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station.
The development of an airborne information management system for flight test
NASA Technical Reports Server (NTRS)
Bever, Glenn A.
1992-01-01
An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.
1994-01-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
1998-11-16
In the Payload Hazardous Servicing Facility, workers begin removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
A Qualitative Piloted Evaluation of the Tupolev Tu-144 Supersonic Transport
NASA Technical Reports Server (NTRS)
Rivers, Robert A.; Jackson, E. Bruce; Fullerton, C. Gordon; Cox, Timothy H.; Princen, Norman H.
2000-01-01
Two U.S. research pilots evaluated the Tupolev Tu-144 supersonic transport aircraft on three dedicated flights: one subsonic and two supersonic profiles. The flight profiles and maneuvers were developed jointly by Tupolev and U.S. engineers. The vehicle was found to have unique operational and flight characteristics that serve as lessons for designers of future supersonic transport aircraft. Vehicle subsystems and observed characteristics are described as are flight test planning and ground monitoring facilities. Maneuver descriptions and extended pilot narratives for each flight are included as appendices.
Turbine Seal Research at NASA GRC
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.
2011-01-01
Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.
NASA Technical Reports Server (NTRS)
Jackson, Dionne
2005-01-01
The NASA Materials Science Laboratory (MSL) provides science and engineering services to NASA and Contractor customers at KSC, including those working for the Space Shuttle. International Space Station. and Launch Services Programs. These services include: (1) Independent/unbiased failure analysis (2) Support to Accident/Mishap Investigation Boards (3) Materials testing and evaluation (4) Materials and Processes (M&P) engineering consultation (5) Metrology (6) Chemical analysis (including ID of unknown materials) (7) Mechanical design and fabrication We provide unique solutions to unusual and urgent problems associated with aerospace flight hardware, ground support equipment and related facilities.
Hypersonic engine seal development at NASA Lewis Research Center
NASA Astrophysics Data System (ADS)
Steinetz, Bruce M.
1994-07-01
NASA Lewis Research Center is developing advanced seal concepts and sealing technology for advanced combined cycle ramjet/scramjet engines being designed for the National Aerospace Plane (NASP). Technologies are being developed for both the dynamic seals that seal the sliding interfaces between articulating engine panels and sidewalls, and for the static seals that seal the heat exchanger to back-up structure interfaces. This viewgraph presentation provides an overview of the candidate engine seal concepts, seal material assessments, and unique test facilities used to assess the leakage and thermal performance of the seal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auban, Olivier; Paladino, Domenico; Zboray, Robert
2004-12-15
Twenty-five tests have been carried out in the large-scale thermal-hydraulic facility PANDA to investigate natural-circulation and stability behavior under low-pressure/low-power conditions, when void flashing might play an important role. This work, which extends the current experimental database to a large geometric scale, is of interest notably with regard to the start-up procedures in natural-circulation-cooled boiling water reactors. It should help the understanding of the physical phenomena that may cause flow instability in such conditions and can be used for validation of thermal-hydraulics system codes. The tests were performed at a constant power, balanced by a specific condenser heat removal capacity.more » The test matrix allowed the reactor pressure vessel power and pressure to be varied, as well as other parameters influencing the natural-circulation flow. The power spectra of flow oscillations showed in a few tests a major and unique resonance peak, and decay ratios between 0.5 and 0.9 have been found. The remainder of the tests showed an even more pronounced stable behavior. A classification of the tests is presented according to the circulation modes (from single-phase to two-phase flow) that could be assumed and particularly to the importance and the localization of the flashing phenomenon.« less
National Wind Technology Center Dynamic 5-Megawatt Dynamometer
Felker, Fort
2018-06-06
The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.
NASA Astrophysics Data System (ADS)
Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.
2018-03-01
Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.
Interactive Fringe Analysis System: Applications To Moire Contourogram And Interferogram
NASA Astrophysics Data System (ADS)
Yatagai, T.; Idesawa, M.; Yamaashi, Y.; Suzuki, M.
1982-10-01
A general purpose fringe pattern processing facility was developed in order to analyze moire photographs used for scoliosis diagnoses and interferometric patterns in optical shops. A TV camera reads a fringe profile to be analyzed, and peaks of the fringe are detected by a microcomputer. Fringe peak correction and fringe order determination are performed with the man-machine interactive software developed. A light pen facility and an image digitizer are employed for interaction. In the case of two-dimensional fringe analysis, we analyze independently analysis lines parallel to each other and a reference line perpendicular to the parallel analysis lines. Fringe orders of parallel analysis lines are uniquely determined by using the fringe order of the reference line. Some results of analysis of moire contourograms, interferometric testing of silicon wafers, and holographic measurement of thermal deformation are presented.
Ensuring US National Aeronautics Test Capabilities
NASA Technical Reports Server (NTRS)
Marshall, Timothy J.
2010-01-01
U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research process; and the reductions in wind tunnel testing requirements within the largest consumer of ATP wind tunnel test time, the Aeronautics Research Mission Directorate (ARMD). Retirement of the Space Shuttle Program and recent perturbations of NASA's Constellation Program will exacerbate this downward trend. Therefore it is crucial that ATP periodically revisit and determine which of its test capabilities are strategically important, which qualify as low-risk redundancies that could be put in an inactive status or closed, and address the challenges associated with both sustainment and improvements to the test capabilities that must remain active. This presentation will provide an overview of the ATP vision, mission, and goals as well as the challenges and opportunities the program is facing both today and in the future. We will discuss the strategy ATP is taking over the next five years to address the National aeronautics test capability challenges and what the program will do to capitalize on its opportunities to ensure a ready, robust and relevant portfolio of National aeronautics test capabilities.
NETL's Hybrid Performance, or Hyper, facility
None
2018-02-13
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.
2008-01-01
A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.
Sears, David; Mpimbaza, Arthur; Kigozi, Ruth; Sserwanga, Asadu; Chang, Michelle A.; Kapella, Bryan K.; Yoon, Steven; Kamya, Moses R.; Dorsey, Grant; Ruel, Theodore
2015-01-01
Background A better understanding of case management practices is required to improve inpatient pediatric care in resource-limited settings. Here we utilize data from a unique health facility-based surveillance system at six Ugandan hospitals to evaluate the quality of pediatric case management and the factors associated with appropriate care. Methods All children up to the age of 14 years admitted to six district or regional hospitals over 15 months were included in the study. Four case management categories were defined for analysis: suspected malaria, selected illnesses requiring antibiotics, suspected anemia, and diarrhea. The quality of case management for each category was determined by comparing recorded treatments with evidence-based best practices as defined in national guidelines. Associations between variables of interest and the receipt of appropriate case management were estimated using multivariable logistic regression. Results A total of 30,351 admissions were screened for inclusion in the analysis. Ninety-two percent of children met criteria for suspected malaria and 81% received appropriate case management. Thirty-two percent of children had selected illnesses requiring antibiotics and 89% received appropriate antibiotics. Thirty percent of children met criteria for suspected anemia and 38% received appropriate case management. Twelve percent of children had diarrhea and 18% received appropriate case management. Multivariable logistic regression revealed large differences in the quality of care between health facilities. There was also a strong association between a positive malaria diagnostic test result and the odds of receiving appropriate case management for comorbid non-malarial illnesses - children with a positive malaria test were more likely to receive appropriate care for anemia and less likely for illnesses requiring antibiotics and diarrhea. Conclusions Appropriate management of suspected anemia and diarrhea occurred infrequently. Pediatric quality improvement initiatives should target deficiencies in care unique to each health facility, and interventions should focus on the simultaneous management of multiple diagnoses. PMID:25992620
1998-11-12
The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
1998-11-12
The Stardust spacecraft sits in the Payload Hazardous Service Facility waiting to undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. At the top is the re-entry capsule. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
The Low Temperature Microgravity Physics Facility Project
NASA Technical Reports Server (NTRS)
Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.;
2000-01-01
We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.
1976-01-06
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo is of the horizontal liquid oxygen tanks.
Unique Tuft Test Facility Dramatically Reduces Brush Seal Development Costs
NASA Technical Reports Server (NTRS)
Fellenstein, James A.
1997-01-01
Brush seals have been incorporated in the latest turbine engines to reduce leakage and improve efficiency. However, the life of these seals is limited by wear. Studies have shown that optimal sealing characteristics for a brush seal occur before the interference fit between the brush and shaft is excessively worn. Research to develop improved tribopairs (brush and coating) with reduced wear and lower friction has been hindered by the lack of an accurate, low-cost, efficient test methodology. Estimated costs for evaluating a new material combination in an engine company seal test program are on the order of $100,000. To address this need, the NASA Lewis Research Center designed, built, and validated a unique, innovative brush seal tuft tester that slides a single tuft of brush seal wire against a rotating shaft under controlled loads, speeds, and temperatures comparable to those in turbine engines. As an initial screening tool, the brush seal tuft tester can tribologicaly evaluate candidate seal materials for 1/10th the cost of full-scale seal tests. Previous to the development of the brush seal tuft tester facility, most relevant tribological data had been obtained from full-scale seal tests conducted primarily to determine seal leakage characteristics. However, from a tribological point of view, these tests included the confounding effects of varying contact pressures, bristle flaring, high-temperature oxidation, and varying bristle contact angles. These confounding effects are overcome in tuft testing. The interface contact pressures can be either constant or varying depending on the tuft mounting device, and bristle wear can be measured optically with inscribed witness marks. In a recent cooperative program with a U.S. turbine engine manufacturer, five metallic wire candidates were tested against a plasma-sprayed Nichrome-bonded chrome carbide. The wire materials used during this collaboration were either nickel-chrome- or cobaltchrome-based superalloys. These tests corroborated full-scale seal test results and provided insight into previously untested combinations. As the cycle temperature for improved efficiency turbine engines increases, new brush seal materials combinations must be considered. Future brush seal tuft testing will include both metallic and ceramic bristles versus commercial and NASA-developed shaft coatings. The ultimate goal of this work is to expand the current data base so that seal designers can tailor brush seal materials to specific applications.
Opportunities and questions for the fundamental biological sciences in space
NASA Technical Reports Server (NTRS)
Sharp, Joseph C.; Vernikos, Joan
1993-01-01
With the advent of sophisticated space facilities we discuss the overall nature of some biological questions that can be addressed. We point out the need for broad participation by the biological community, the necessary facilities, and some unique requirements.
Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris
2017-09-28
CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Solar thermal vacuum tests of Magellan spacecraft
NASA Technical Reports Server (NTRS)
Neuman, James C.
1990-01-01
The Magellen solar/thermal/vacuum test involved a number of unique requirements and approaches. Because of the need to operate in orbit around Venus, the solar intensity requirement ranged up to 2.3 suns or Earth equivalent solar constants. Extensive modification to the solar simulator portion of the test facility were required to achieve this solar intensity. Venus albedo and infrared emission were simulated using temperature controlled movable louver panels to allow the spacecraft to view either a selectable temperature black heat source with closed louvers, or the chamber coldwall behind open louvers. The test conditions included widely varying solar intensities, multiple sun angles, alternate hardware configurations, steady state and transient cases, and cruise and orbital power profiles. Margin testing was also performed, wherein supplemental heaters were mounted to internal thermal blankets to verify spacecraft performance at higher than expected temperatures. The test was successful, uncovering some spacecraft anomalies and verifying the thermal design. The test support equipment experienced some anomalous behavior and a significant failure during the test.
Environmental Test Program for the Mars Exploration Rover Project
NASA Technical Reports Server (NTRS)
Fisher, Terry C.; VanVelzer, Paul L.
2004-01-01
On June 10 and July 7, 2003 the National Aeronautics and Space Administration (NASA) launched two spacecraft from Cape Canaveral, Florida for a six (6) months flight to the Red Planet, Mars. The two Mars Exploration Rover spacecraft landed safely on the planet in January 2004. Prior to the successful launch, both of the spacecraft were involved in a comprehensive test campaign that included development, qualification, and protoflight test programs. Testing was performed to simulate the environments associated with launch, inter-planetary cruise, landing on the planet and Mars surface operations. Unique test requirements included operating the spacecraft while the chamber pressure was controlled to simulate the decent to the planet from deep space, high impact landing loads and rover operations on the surface of the planet at 8 Torr and -130 C. This paper will present an overview of the test program that included vibration, pyro-shock, landing loads, acoustic noise, thermal vacuum and solar simulation testing at the Jet Propulsion Laboratory (JPL) Environmental Test Laboratory facilities in Pasadena, California.
NASA Technical Reports Server (NTRS)
Berman, Andrea H.; Whitmore, Mihriban
1996-01-01
The Apple(R) Newton(TM) MessagePad 110 was flown aboard the KC-135 reduced gravity aircraft for microgravity usability testing. The Newton served as the initial hand-held electronic logbook prototype for the International Space Station (ISS) Human Research Facility (HRF). Subjects performed three different tasks with the Newton: (1) using the stylus to tap on different sections of the screen in order to launch an application and to select options within it; (2) using the stylus to write, and; (3) correcting handwriting recognition errors in a handwriting-intensive application. Subjects rated handwriting in microgravity 'Borderline' and had great difficulties finding a way in which to adequately restrain themselves at the lower body in order to have their hands free for the Newton. Handwriting recognition was rated 'Unacceptable,' but this issue is hardware-related and not unique to the microgravity environment. It is suggested that the restraint and handwriting issues are related and require further joint research with the current Handheld Electronic Logbook prototype: the Norand Pen*key Model #6300.
NASA's Zero-g aircraft operations
NASA Technical Reports Server (NTRS)
Williams, R. K.
1988-01-01
NASA's Zero-g aircraft, operated by the Johnson Space Center, provides the unique weightless or zero-g environment of space flight for hardware development and test and astronaut training purposes. The program, which began in 1959, uses a slightly modified Boeing KC-135A aircraft, flying a parabolic trajectory, to produce weightless periods of 20 to 25 seconds. The program has supported the Mercury, Gemini, Apollo, Skylab, Apollo-Soyuz and Shuttle programs as well as a number of unmanned space operations. Typical experiments for flight in the aircraft have included materials processing experiments, welding, fluid manipulation, cryogenics, propellant tankage, satellite deployment dynamics, planetary sciences research, crew training with weightless indoctrination, space suits, tethers, etc., and medical studies including vestibular research. The facility is available to microgravity research organizations on a cost-reimbursable basis, providing a large, hands-on test area for diagnostic and support equipment for the Principal Investigators and providing an iterative-type design approach to microgravity experiment development. The facility allows concepts to be proven and baseline experimentation to be accomplished relatively inexpensively prior to committing to the large expense of a space flight.
Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities
NASA Technical Reports Server (NTRS)
Micol, J. R.
1998-01-01
Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility observe consoles during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Technicians in the Space Station Processing Facility work on a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
Production of negatively charged radioactive ion beams
Liu, Y.; Stracener, D. W.; Stora, T.
2017-02-15
Beams of short-lived radioactive nuclei are needed for frontier experimental research in nuclear structure, reactions, and astrophysics. Negatively charged radioactive ion beams have unique advantages and allow for the use of a tandem accelerator for post-acceleration, which can provide the highest beam quality and continuously variable energies. Negative ion beams can be obtained with high intensity and some unique beam purification techniques based on differences in electronegativity and chemical reactivity can be used to provide beams with high purity. This article describes the production of negative radioactive ion beams at the former holifield radioactive ion beam facility at Oak Ridgemore » National Laboratory and at the CERN ISOLDE facility with emphasis on the development of the negative ion sources employed at these two facilities.« less
NASA Technical Reports Server (NTRS)
1989-01-01
One of NASA'S agency-wide goals is the commercial development of space. To further this goal NASA is implementing a policy whereby U.S. firms are encouraged to utilize NASA facilities to develop and test concepts having commercial potential. Goddard, in keeping with this policy, will make the facilities and capabilities described in this document available to private entities at a reduced cost and on a noninterference basis with internal NASA programs. Some of these facilities include: (1) the Vibration Test Facility; (2) the Battery Test Facility; (3) the Large Area Pulsed Solar Simulator Facility; (4) the High Voltage Testing Facility; (5) the Magnetic Field Component Test Facility; (6) the Spacecraft Magnetic Test Facility; (7) the High Capacity Centrifuge Facility; (8) the Acoustic Test Facility; (9) the Electromagnetic Interference Test Facility; (10) the Space Simulation Test Facility; (11) the Static/Dynamic Balance Facility; (12) the High Speed Centrifuge Facility; (13) the Optical Thin Film Deposition Facility; (14) the Gold Plating Facility; (15) the Paint Formulation and Application Laboratory; (16) the Propulsion Research Laboratory; (17) the Wallops Range Facility; (18) the Optical Instrument Assembly and Test Facility; (19) the Massively Parallel Processor Facility; (20) the X-Ray Diffraction and Scanning Auger Microscopy/Spectroscopy Laboratory; (21) the Parts Analysis Laboratory; (22) the Radiation Test Facility; (23) the Ainsworth Vacuum Balance Facility; (24) the Metallography Laboratory; (25) the Scanning Electron Microscope Laboratory; (26) the Organic Analysis Laboratory; (27) the Outgassing Test Facility; and (28) the Fatigue, Fracture Mechanics and Mechanical Testing Laboratory.
Facility for testing ice drills
NASA Astrophysics Data System (ADS)
Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.
2017-05-01
The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.
Spacecraft fire-safety experiments for space station: Technology development mission
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1988-01-01
Three concept designs for low-gravity, fire-safety related experiments are presented, as selected for the purpose of addressing key issues of enhancing safety and yet encouraging access to long-duration, manned spacecraft such as the NASA space station. The selected low-gravity experiments are the following: (1) an investigation of the flame-spread rate and combustion-product evolution of the burning of typical thicknesses of spacecraft materials in very low-speed flows; (2) an evaluation of the interaction of fires and candidate extinguishers in various fire scenarios; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion. Each experiment is expected to provide fundamental combustion-science data, as well as the fire-safety applications, and each requires the unique long-duration, low-gravity environment of the space station. Two generic test facilities, i.e., the Combustion Tunnel Facility and the Combustion Facility, are proposed for space station accommodation to support the selected experiments. In addition, three near-term, fire-safety related experiments are described along with other related precursor activities.
First heated jettison test on the Centaur standard shroud
NASA Technical Reports Server (NTRS)
1974-01-01
The first in a planned series of heated jettison tests on the Centaur Standard Shround was conducted at NASA Plum Brook Station's Space Power Facility on November 19, 1973. The first 250-second portion of the test sequence involved heating the shroud with a specially-built fixture designed to provide a simulation of the heating environment encountered by the shroud during its ascent through the earth's atmosphere. The two heater halves, which were mounted on a rail system, were then retracted. This was followed by the jettison of the two shroud halves into catch nets positioned at 90 deg to the heater rails. The condition which made this test unique compared to the planned subsequent tests was the location of the maximum thermal line at 32 deg from the shroud separation plane. Information on the test hardware, configuration, and sequence is presented. Shroud thermal and deflection data encountered during the heating portion of the test sequence is compared with free-skin design temperatures in various graphical formats.
MMS Observatory Thermal Vacuum Results Contamination Summary
NASA Technical Reports Server (NTRS)
Rosecrans, Glenn P.; Errigo, Therese; Brieda, Lubos
2014-01-01
The MMS mission is a constellation of 4 observatories designed to investigate the fundamental plasma physics of reconnection in the Earths magnetosphere. Each spacecraft has undergone extensive environmental testing to prepare it for its minimum 2 year mission. The various instrument suites measure electric and magnetic fields, energetic particles, and plasma composition. Thermal vacuum testing was conducted at the Naval Research Laboratory (NRL) in their Big Blue vacuum chamber. The individual spacecraft were tested and enclosed in a cryopanel enclosure called a Hamster cage. Specific contamination control validations were actively monitored by several QCMs, a facility RGA, and at times, with 16 Ion Gauges. Each spacecraft underwent a bakeout phase, followed by 4 thermal cycles. Unique aspects of the TV environment included slow pump downs with represses, thruster firings, Helium identification, and monitoring pressure spikes with Ion gauges. Various data from these TV tests will be shown along with lessons learned.
Catalytic ignition of hydrogen/oxygen
NASA Technical Reports Server (NTRS)
Green, James M.; Zurawski, Robert L.
1988-01-01
An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.
NASA Technical Reports Server (NTRS)
Layton, G. P.
1984-01-01
New flight test techniques in use at Ames Dryden are reviewed. The use of the pilot in combination with ground and airborne computational capabilities to maximize data return is discussed, including the remotely piloted research vehicle technique for high-risk testing, the remotely augmented vehicle technique for handling qualities research, and use of ground computed flight director information to fly unique profiles such as constant Reynolds number profiles through the transonic flight regime. Techniques used for checkout and design verification of systems-oriented aircraft are discussed, including descriptions of the various simulations, iron bird setups, and vehicle tests. Some newly developed techniques to support the aeronautical research disciplines are discussed, including a new approach to position-error determination, and the use of a large skin friction balance for the measurement of drag caused by various excrescencies.
Nevada Test Site Resource Management Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of themore » RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.« less
2010-08-27
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Director of the center's Constellation Project Office Pepper Phillips talks to workers at the Launch Equipment Test Facility (LETF), which recently underwent a $35 million comprehensive upgrade that lasted four years. The LETF was established in the 1970s to support the qualification of the Space Shuttle Program’s umbilical and T-0 mechanisms. Throughout the years, it has supported the development of systems for shuttle and the International Space Station, Delta and Atlas rockets, and various research and development programs. The LETF has unique capabilities to evolve into a versatile test and development area that supports a wide spectrum of programs. For information on NASA's future plans, visit www.nasa.gov. Photo credit: NASA/Dimitri Gerondidakis
Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility
NASA Technical Reports Server (NTRS)
Howard, Samuel A.
2004-01-01
A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a technician takes readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians begin pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians take readings for pre-assembly measurements on the Japanese Experiment Module (JEM). Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-11-05
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the Japanese Experiment Module (JEM) rests on a workstand during pre-assembly measurement activities. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
A study of the operation of selected national research facilities
NASA Technical Reports Server (NTRS)
Eisner, M.
1974-01-01
The operation of national research facilities was studied. Conclusions of the study show that a strong resident scientific staff is required for successful facility operation. No unique scheme of scientific management is revealed except for the obvious fact that the management must be responsive to the users needs and requirements. Users groups provide a convenient channel through which these needs and requirements are communicated.
Physical-Education Facilities/Recreation Centers.
ERIC Educational Resources Information Center
American School & University, 2003
2003-01-01
Presents K-12 and college physical education/recreation facilities considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting unique concepts and ideas. For each citation, the article offers information on the firm,…
2003-08-26
KENNEDY SPACE CENTER, FLA. - From left, the Consul General of Japan Ko Kodaira, his daughter Reiko, astronaut Dr. Takao Doi, and Kodaira's wife Marie pause for a photograph in the Space Station Processing Facility during their visit to Kennedy Space Center (KSC). Doi represented Japan on Space Shuttle mission STS-87, the fourth U.S Microgravity Payload flight. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.
2003-08-26
KENNEDY SPACE CENTER, FLA. - NASA Manager Steve Cain explains aspects of Space Shuttle processing to Consul General of Japan Ko Kodaira and his family in the Orbiter Processing Facility during their visit to Kennedy Space Center (KSC). From left are Kodaira's wife Marie, his daughter Reiko, Kodaira, and Cain, Senior Future International Space Station Element Manager. Kodaira is touring the facilities at KSC at the invitation of the local office of the National Space Development Agency of Japan (NASDA) to acquaint him with KSC's unique processing capabilities.
1998-11-12
In the Payload Hazardous Service Facility, a worker looks over the re-entry capsule on top of the Stardust spacecraft. The spacecraft will undergo installation and testing of the solar arrays, plus final installation and testing of spacecraft instruments followed by an overall spacecraft functional test. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in the re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
ER-2 High Altitude Solar Cell Calibration Flights
NASA Technical Reports Server (NTRS)
Myers, Matthew G.; Piszczor, Michael F.
2015-01-01
The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.
Suited Occupant Injury Potential During Dynamic Spacecraft Flight Phases
NASA Technical Reports Server (NTRS)
Dub, Mark O.; McFarland, Shane M.
2010-01-01
In support of the Constellation Space Suit Element [CSSE], a new space-suit architecture will be created for support of Launch, Entry, Abort, Microgravity Extra- Vehicular Activity [EVA], and post-landing crew operations, safety and, under emergency conditions, survival. The space suit is unique in comparison to previous launch, entry, and abort [LEA] suit architectures in that it utilizes rigid mobility elements in the scye (i.e., shoulder) and the upper arm regions. The suit architecture also utilizes rigid thigh disconnect elements to create a quick disconnect approximately located above the knee. This feature allows commonality of the lower portion of the suit (from the thigh disconnect down), making the lower legs common across two suit configurations. This suit must interface with the Orion vehicle seat subsystem, which includes seat components, lateral supports, and restraints. Due to the unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic vehicle events, risks have been identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series has been developed in coordination with the Injury Biomechanics Research Laboratory [IBRL] to evaluate the likelihood and consequences of these potential issues. Testing includes use of Anthropomorphic Test Devices [ATDs; vernacularly referred to as "crash test dummies"], Post Mortem Human Subjects [PMHS], and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on test purpose and objectives; test hardware, facility, and setup; and preliminary results.
Plastic optical fibre sensor for Madeira wine monitoring
NASA Astrophysics Data System (ADS)
Novo, C.; Bilro, L.; Alberto, N.; Antunes, P.; Nogueira, R.; Pinto, J. L.
2014-08-01
Madeira wine is a fortified wine produced in Madeira Island, Portugal. Its characteristics are strongly influenced by the winemaking method used which includes a typical and unique step called estufagem. This process consists on heating the wine up to 55 ºC for at least 3 months. In this paper, the characterization of the sensor for the pilot scale facility of estufagem installed in Madeira University is presented, being the device an optimization of a previous version. The response of the sensor was tested towards colour and refractive index, showing a good performance. Madeira wine with different estufagem times was also analysed.
2007-01-12
KENNEDY SPACE CENTER, FLA. -- In the Hazardous Processing Facility at Astrotech Space Operations, workers prepare the integrated THEMIS spacecraft to be moved to a spin table for spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
2007-01-12
KENNEDY SPACE CENTER, FLA. -- In the Hazardous Processing Facility at Astrotech Space Operations, workers guide the integrated THEMIS spacecraft onto the spin table in the foreground. There it will undergo spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
1998-11-16
In the Payload Hazardous Servicing Facility, workers place one of the Stardust solar panels on a stand. The panels are being removed for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
1998-11-16
In the Payload Hazardous Servicing Facility, workers remove one of the Stardust solar panels for testing. The spacecraft Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule (seen on top, next to the solar panel) to be jettisoned from Stardust as it swings by Earth in January 2006
1998-11-16
In the Payload Hazardous Servicing Facility, workers remove the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule (seen at the top of the spacecraft in this photo) to be jettisoned from Stardust as it swings by Earth in January 2006
Academician Basov, high-power lasers, and the antimissile defense problem
NASA Astrophysics Data System (ADS)
Zarubin, Peter Vasilievich
2013-02-01
A review of the extensive program of the pioneering research and development of high-power lasers and laser radar undertaken in the USSR during the years 1964 to 1978 under the scientific supervision of N.G. Basov is presented. In the course of this program, many high-energy lasers with unique properties were created, new big research and design teams were formed, and the laser production and testing facilities were extended and developed. The program was fulfilled at many leading research institutions and design bureaus of the USSR Academy of Sciences and defense industry.
NASA Johnson Space Center Biomedical Research Resources
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1999-01-01
Johnson Space Center (JSC) medical sciences laboratories constitute a national resource for support of medical operations and life sciences research enabling a human presence in space. They play a critical role in evaluating, defining, and mitigation the untoward effect of human adaption to space flight. Over the years they have developed the unique facilities and expertise required to perform: biomedical sample analysis and physiological performance tests supporting medical evaluations of space flight crew members and scientific investigations of the operationally relevant medical, physiological, cellular, and biochemical issues associated with human space flight. A general overview of these laboratories is presented in viewgraph form.
NASA Astrophysics Data System (ADS)
Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.
2018-01-01
The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.
Mixed Oxide Fresh Fuel Package Auxiliary Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yapuncich, F.; Ross, A.; Clark, R.H.
2008-07-01
The United States Department of Energy's National Nuclear Security Administration (NNSA) is overseeing the construction the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) on the Savannah River Site. The new facility, being constructed by NNSA's contractor Shaw AREVA MOX Services, will fabricate fuel assemblies utilizing surplus plutonium as feedstock. The fuel will be used in designated commercial nuclear reactors. The MOX Fresh Fuel Package (MFFP), which has recently been licensed by the Nuclear Regulatory Commission (NRC) as a type B package (USA/9295/B(U)F-96), will be utilized to transport the fabricated fuel assemblies from the MFFF to the nuclear reactors. It wasmore » necessary to develop auxiliary equipment that would be able to efficiently handle the high precision fuel assemblies. Also, the physical constraints of the MFFF and the nuclear power plants require that the equipment be capable of loading and unloading the fuel assemblies both vertically and horizontally. The ability to reconfigure the load/unload evolution builds in a large degree of flexibility for the MFFP for the handling of many types of both fuel and non fuel payloads. The design and analysis met various technical specifications including dynamic and static seismic criteria. The fabrication was completed by three major fabrication facilities within the United States. The testing was conducted by Sandia National Laboratories. The unique design specifications and successful testing sequences will be discussed. (authors)« less
Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel
NASA Technical Reports Server (NTRS)
Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.
2006-01-01
The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such as the real-time angle of attack system and the new programmable logic controller enhance the test efficiency of the facility. The motivation for the upgrades and the expanded capabilities is described here.
Heitmann, Ryan J; Hill, Micah J; James, Aidita N; Schimmel, Tim; Segars, James H; Csokmay, John M; Cohen, Jacques; Payson, Mark D
2015-09-01
Infertility is a common disease, which causes many couples to seek treatment with assisted reproduction techniques. Many factors contribute to successful assisted reproduction technique outcomes. One important factor is laboratory environment and air quality. Our facility had the unique opportunity to compare consecutively used, but separate assisted reproduction technique laboratories, as a result of a required move. Environmental conditions were improved by strategic engineering designs. All other aspects of the IVF laboratory, including equipment, physicians, embryologists, nursing staff and protocols, were kept constant between facilities. Air quality testing showed improved air quality at the new IVF site. Embryo implantation (32.4% versus 24.3%; P < 0.01) and live birth (39.3% versus 31.8%, P < 0.05) were significantly increased in the new facility compared with the old facility. More patients met clinical criteria and underwent mandatory single embryo transfer on day 5 leading to both a reduction in multiple gestation pregnancies and increased numbers of vitrified embryos per patient with supernumerary embryos available. Improvements in IVF laboratory conditions and air quality had profound positive effects on laboratory measures and patient outcomes. This study further strengthens the importance of the laboratory environment and air quality in the success of an IVF programme. Published by Elsevier Ltd.
Development and applications of nondestructive evaluation at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Whitaker, Ann F.
1990-01-01
A brief description of facility design and equipment, facility usage, and typical investigations are presented for the following: Surface Inspection Facility; Advanced Computer Tomography Inspection Station (ACTIS); NDE Data Evaluation Facility; Thermographic Test Development Facility; Radiographic Test Facility; Realtime Radiographic Test Facility; Eddy Current Research Facility; Acoustic Emission Monitoring System; Advanced Ultrasonic Test Station (AUTS); Ultrasonic Test Facility; and Computer Controlled Scanning (CONSCAN) System.
Open Architecture Data System for NASA Langley Combined Loads Test System
NASA Technical Reports Server (NTRS)
Lightfoot, Michael C.; Ambur, Damodar R.
1998-01-01
The Combined Loads Test System (COLTS) is a new structures test complex that is being developed at NASA Langley Research Center (LaRC) to test large curved panels and cylindrical shell structures. These structural components are representative of aircraft fuselage sections of subsonic and supersonic transport aircraft and cryogenic tank structures of reusable launch vehicles. Test structures are subjected to combined loading conditions that simulate realistic flight load conditions. The facility consists of two pressure-box test machines and one combined loads test machine. Each test machine possesses a unique set of requirements or research data acquisition and real-time data display. Given the complex nature of the mechanical and thermal loads to be applied to the various research test articles, each data system has been designed with connectivity attributes that support both data acquisition and data management functions. This paper addresses the research driven data acquisition requirements for each test machine and demonstrates how an open architecture data system design not only meets those needs but provides robust data sharing between data systems including the various control systems which apply spectra of mechanical and thermal loading profiles.
Burning Plastics Investigated in Space for Unique US/Russian Cooperative Project
NASA Technical Reports Server (NTRS)
Friedman, Robert
2000-01-01
It is well known that fires in the low-gravity environment of Earth-orbiting spacecraft are different from fires on Earth. The flames lack the familiar upward plume, which is the result of gravitational buoyancy. These flames, however, are strongly influenced by minor airflow currents. A recent study conducted in low gravity (microgravity) on the Russian orbital station Mir used burning plastic rods mounted in a small chamber with a controllable fan to expose the flame to airflows of different velocities. In this unique project, a Russian scientific agency, the Keldysh Research Center, furnished the apparatus and directed the Mir tests, while the NASA Glenn Research Center at Lewis Field provided the test materials and the project management. Reference testing and calibrations in ground laboratories were conducted jointly by researchers at Keldysh and at the NASA Johnson Space Center's White Sands Test Facility. Multiple samples of three different plastics were burned in the tests: Delrin, a common material for valve bodies; PMMA, a plastic "glass"; and polyethylene, a familiar material for containers and films. Each burned with a unique spherical or egg-shaped flame that spread over the rod. The effect of varying the airflow was dramatic. At the highest airflow attainable in the combustion chamber, nearly 10 cm/sec (a typical ventilation breeze), the flames were bright and strong. As airflow velocity decreased, the flames became shorter but wider. In addition, the flames became less bright, and for PMMA and polyethylene, they showed two colors, a bright part decreasing in volume and a nearly invisible remainder (see the photographs). Finally, at a very low velocity, the flames extinguished. For the plastics tested, this minimum velocity was very low, around 0.3 to 0.5 cm/sec. This finding confirms that at least a slight airflow is required to maintain a flame in microgravity for these types of materials.
NASA Technical Reports Server (NTRS)
Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.
2012-01-01
Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.
Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colby, Eric R.; Hogan, Mark J.; /SLAC
Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less
HPV Vaccination Practices Among Juvenile Justice Facilities in the United States
Henderson, Courtney E.; Rich, Josiah D.; Lally, Michelle A.
2010-01-01
The juvenile justice setting provides a unique opportunity to administer the human papillomavirus (HPV) vaccine to a high-risk, medically underserved population. We examined current HPV vaccination practices in the United States. Most states (39) offer the HPV vaccine to females committed to juvenile justice facilities. PMID:20413087
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.
NREL Research Support Facility (RSF) Documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glover, Bill; Pless, Shanti; Torcellini, Paul
2010-01-01
The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.
NREL Research Support Facility (RSF) Documentary
Glover, Bill; Pless, Shanti; Torcellini, Paul; Judkoff, Ron; Detamore, Drew; Telesmanich, Eric
2017-12-09
The ideas and innovations that define NREL are now shaping the next generation of commercial office buildings. DOE's Research Support Facility at NREL, will set a new benchmark for affordable, sustainable commercial design and construction. The unique form of the RSF is driven by energy-saving strategies, many researched and advanced at NREL.
The Educational Facilities Professional's Practical Guide to Reducing the Campus Carbon Footprint
ERIC Educational Resources Information Center
Hignite, Karla
2009-01-01
As more institutions respond to the American College & University Presidents Climate Commitment, or are otherwise responsible for campus environmental stewardship, this implementation guide gives educational facilities professionals a practical framework for moving forward in their unique role within this process. The intent is to help facilities…
Smart Homes and Buildings Research at the Energy Systems Integration Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Dane; Sparn, Bethany; Hannegan, Bryan
Watch how NREL researchers are using the unique capabilities of the Energy Systems Integration Facility (ESIF) to develop technologies that will help the “smart” homes and buildings of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
TBCC Fan Stage Operability and Performance
NASA Technical Reports Server (NTRS)
Suder, Kenneth L.
2007-01-01
NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA s APNASA codes. Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.
2003-11-05
KENNEDY SPACE CENTER, FLA. - The Japanese Experiment Module (JEM) is moved on its workstand in the Space Station Processing Facility. The JEM will undergo pre-assembly measurements. Developed by the Japan Aerospace Exploration Agency (JAXA), the JEM will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility look over paperwork during a Multi-Element Integrated Test (MEIT) of the U.S. Node 2 and the Japanese Experiment Module (JEM). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by the National Space Development Agency of Japan (NASDA), is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), rests inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi (right), with the National Space Development Agency of Japan (NASDA), is inside the Japanese Experiment Module (JEM), undergoing a Multi-Element Integrated Test (MEIT) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Astronaut Soichi Noguchi, with the National Space Development Agency of Japan (NASDA), signals success during a Multi-Element Integrated Test (MEIT ) of the Japanese Experiment Module (JEM) in the Space Station Processing Facility. Noguchi is assigned to mission STS-114 as a mission specialist. Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The JEM, developed by NASDA, is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Design and Development of a Deep Acoustic Lining for the 40-by 80-Foot Wind Tunnel Test Section
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Schmitz, Fredric H.; Allen, Christopher S.; Jaeger, Stephen M.; Sacco, Joe N.; Mosher, Marianne; Hayes, Julie A.
2002-01-01
The work described in this report has made effective use of design teams to build a state-of-the-art anechoic wind-tunnel facility. Many potential design solutions were evaluated using engineering analysis, and computational tools. Design alternatives were then evaluated using specially developed testing techniques, Large-scale coupon testing was then performed to develop confidence that the preferred design would meet the acoustic, aerodynamic, and structural objectives of the project. Finally, designs were frozen and the final product was installed in the wind tunnel. The result of this technically ambitious project has been the creation of a unique acoustic wind tunnel. Its large test section (39 ft x 79 ft x SO ft), potentially near-anechoic environment, and medium subsonic speed capability (M = 0.45) will support a full range of aeroacoustic testing-from rotorcraft and other vertical takeoff and landing aircraft to the take-off/landing configurations of both subsonic and supersonic transports.
Technical Design Report for the FACET-II Project at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Electrons can “surf” on waves of plasma – a hot gas of charged particles – gaining very high energies in very short distances. This approach, called plasma wakefield acceleration, has the potential to dramatically shrink the size and cost of particle accelerators. Research at the SLAC National Accelerator Laboratory has demonstrated that plasmas can provide 1,000 times the acceleration in a given distance compared with current technologies. Developing revolutionary and more efficient acceleration techniques that allow for an affordable high-energy collider has been the focus of FACET, a National User Facility at SLAC. FACET used part of SLAC’s two-mile-long linearmore » accelerator to generate high-density beams of electrons and their antimatter counterparts, positrons. Research into plasma wakefield acceleration was the primary motivation for constructing FACET. In April 2016, FACET operations came to an end to make way for the second phase of SLAC’s x-ray laser, the LCLS-II, which will use part of the tunnel occupied by FACET. FACET-II is a new test facility to provide the unique capability to develop advanced acceleration and coherent radiation techniques with high-energy electron and positron beams. FACET-II represents a major upgrade over current FACET capabilities and the breadth of the potential research program makes it truly unique.« less
Unique, icy gathering system will serve Norman Wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, D.
One of the more unique communities on the Mackenzie River is Norman Wells, ca 90 miles south of the Arctic Circle and 450 air miles south of the Beaufort Sea. For over 50 yr, Norman Wells has been a major supplier of petroleum products to the Mackenzie Valley. The most unique aspect of Norman Wells is that it is underlain by a large reservoir of oil. Fifty wells in the area produce over 3000 bbl of light crude daily, which is refined locally. Esso Resources Canada Ltd. now is developing the field and expanding production. New facilities will include 151more » new wells for producing oil and injecting water, 6 artificial islands in the 3-mile wide river to accommodate gathering points, and a new central processing facility. The crude oil to be produced will be transported by Interprovincial Pipeline (NW) Ltd. from Norman Wells to Zama, Alta.« less
Controlled experiments for dense gas diffusion: Experimental design and execution, model comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egami, R.; Bowen, J.; Coulombe, W.
1995-07-01
An experimental baseline CO2 release experiment at the DOE Spill Test Facility on the Nevada Test Site in Southern Nevada is described. This experiment was unique in its use of CO2 as a surrogate gas representative of a variety of specific chemicals. Introductory discussion places the experiment in historical perspective. CO2 was selected as a surrogate gas to provide a data base suitable for evaluation of model scenarios involving a variety of specific dense gases. The experiment design and setup are described, including design rationale and quality assurance methods employed. Resulting experimental data are summarized. Data usefulness is examined throughmore » a preliminary comparison of experimental results with simulations performed using the SLAV and DEGADIS dense gas models.« less
The SR-71 Test Bed Aircraft: A Facility for High-Speed Flight Research
NASA Technical Reports Server (NTRS)
Corda, Stephen; Moes, Timothy R.; Mizukami, Masashi; Hass, Neal E.; Jones, Daniel; Monaghan, Richard C.; Ray, Ronald J.; Jarvis, Michele L.; Palumbo, Nathan
2000-01-01
The SR-71 test bed aircraft is shown to be a unique platform to flight-test large experiments to supersonic Mach numbers. The test bed hardware mounted on the SR-71 upper fuselage is described. This test bed hardware is composed of a fairing structure called the "canoe" and a large "reflection plane" flat plate for mounting experiments. Total experiment weights, including the canoe and reflection plane, as heavy as 14,500 lb can be mounted on the aircraft and flight-tested to speeds as fast as Mach 3.2 and altitudes as high as 80,000 ft. A brief description of the SR-71 aircraft is given, including details of the structural modifications to the fuselage, modifications to the J58 engines to provide increased thrust, and the addition of a research instrumentation system. Information is presented based on flight data that describes the SR-71 test bed aerodynamics, stability and control, structural and thermal loads, the canoe internal environment, and reflection plane flow quality. Guidelines for designing SR-71 test bed experiments are also provided.
Tiltrotor Acoustic Flight Test: Terminal Area Operations
NASA Technical Reports Server (NTRS)
SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.
1991-01-01
This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades
Advanced Visualization of Experimental Data in Real Time Using LiveView3D
NASA Technical Reports Server (NTRS)
Schwartz, Richard J.; Fleming, Gary A.
2006-01-01
LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed.
Small engine components test facility compressor testing cell at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Brokopp, Richard A.; Gronski, Robert S.
1992-01-01
LeRC has designed and constructed a new test facility. This facility, called the Small Engine Components Facility (SECTF) is used to test gas turbines and compressors at conditions similar to actual engine conditions. The SECTF is comprised of a compressor testing cell and a turbine testing cell. Only the compressor testing cell is described. The capability of the facility, the overall facility design, the instrumentation used in the facility, and the data acquisition system are discussed in detail.
NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community
NASA Astrophysics Data System (ADS)
Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.
2017-12-01
The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.
NASA Astrophysics Data System (ADS)
Blair, J. B.; Rabine, D.; Hofton, M. A.; Citrin, E.; Luthcke, S. B.; Misakonis, A.; Wake, S.
2015-12-01
Full waveform laser altimetry has demonstrated its ability to capture highly-accurate surface topography and vertical structure (e.g. vegetation height and structure) even in the most challenging conditions. NASA's high-altitude airborne laser altimeter, LVIS (the Land Vegetation, and Ice Sensor) has produced high-accuracy surface maps over a wide variety of science targets for the last 2 decades. Recently NASA has funded the transition of LVIS into a full-time NASA airborne Facility instrument to increase the amount and quality of the data and to decrease the end-user costs, to expand the utilization and application of this unique sensor capability. Based heavily on the existing LVIS sensor design, the Facility LVIS instrument includes numerous improvements for reliability, resolution, real-time performance monitoring and science products, decreased operational costs, and improved data turnaround time and consistency. The development of this Facility instrument is proceeding well and it is scheduled to begin operations testing in mid-2016. A comprehensive description of the LVIS Facility capability will be presented along with several mission scenarios and science applications examples. The sensor improvements included increased spatial resolution (footprints as small as 5 m), increased range precision (sub-cm single shot range precision), expanded dynamic range, improved detector sensitivity, operational autonomy, real-time flight line tracking, and overall increased reliability and sensor calibration stability. The science customer mission planning and data product interface will be discussed. Science applications of the LVIS Facility include: cryosphere, territorial ecology carbon cycle, hydrology, solid earth and natural hazards, and biodiversity.
Service on demand for ISS users
NASA Astrophysics Data System (ADS)
Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten
2002-07-01
Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines communication technologies, software tools and hardware to provide a simple and cost-efficient access to data from the station, using the interconnection ground subnetwork. BEOLOG is our efficient ground logistics service for the transportation of payload hardware and support equipment from the user location to the launch/landing sites for the ISS service flights and back home. The main function of this service is the planning and organisation of all packaging, handling, storage & transportation tasks according to international rules. In conclusion, we offer novel service elements for logistics ground- and flight-infrastructure, dedicated for ISS users. These services can be easily adapted to the needs of users and are suitable for other μg- platforms as well.
Wallops: The Management of Rapid Change
NASA Technical Reports Server (NTRS)
Kremer, Steven E.
2016-01-01
A unique national resource, Wallops Flight Facility's Research Range enables flexible, low-cost space access, in-flight science, and technology research for all of NASA and the nation. It is the only launch range that NASA owns. This is for Keynote Address and charts are primarily an overview of activities performed at Wallops Flight Facility.
The Linac Coherent Light Source
White, William E.; Robert, Aymeric; Dunne, Mike
2015-05-01
The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a mature FEL user facility. Our personal views about opportunities and challenges inherent to these unique light sources are discussed.
Smart Homes and Buildings Research at the Energy Systems Integration Facility
Christensen, Dane; Sparn, Bethany; Hannegan, Bryan
2018-01-16
Watch how NREL researchers are using the unique capabilities of the Energy Systems Integration Facility (ESIF) to develop technologies that will help the âsmartâ homes and buildings of the future perform efficiently and communicate effectively with the electricity grid while enhancing occupants' comfort and convenience.
Planning School Library Media Center Facilities for New Hampshire and Vermont. Vermont Edition.
ERIC Educational Resources Information Center
Snider, Susan C.; Schubert, Leda
This booklet provides guidelines and suggestions for planning school library media facilities. The intended audience is library media specialists; however, it is expected that administrators and architects may also find it useful. The importance of helping the architect understand the school media center's unique mission and relevant educational…
MSFC Optical Metrology: A National Resource
NASA Technical Reports Server (NTRS)
Burdine, Robert
1998-01-01
A national need exists for Large Diameter Optical Metrology Services. These services include the manufacture, testing, and assurance of precision and control necessary to assure the success of large optical projects. "Best Practices" are often relied on for manufacture and quality controls while optical projects are increasingly more demanding and complex. Marshall Space Flight Center (MSFC) has acquired unique optical measurement, testing and metrology capabilities through active participation in a wide variety of NASA optical programs. An overview of existing optical facilities and metrology capabilities is given with emphasis on use by other optical projects. Cost avoidance and project success is stressed through use of existing MSFC facilities and capabilities for measurement and metrology controls. Current issues in large diameter optical metrology are briefly reviewed. The need for a consistent and long duration Large Diameter Optical Metrology Service Group is presented with emphasis on the establishment of a National Large Diameter Optical Standards Laboratory. Proposals are made to develop MSFC optical standards and metrology capabilities as the primary national standards resource, providing access to MSFC Optical Core Competencies for manufacturers and researchers. Plans are presented for the development of a national lending library of precision optical standards with emphasis on cost avoidance while improving measurement assurance.
1963-09-18
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.
Space technology test facilities at the NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Gross, Anthony R.; Rodrigues, Annette T.
1990-01-01
The major space research and technology test facilities at the NASA Ames Research Center are divided into five categories: General Purpose, Life Support, Computer-Based Simulation, High Energy, and the Space Exploraton Test Facilities. The paper discusses selected facilities within each of the five categories and discusses some of the major programs in which these facilities have been involved. Special attention is given to the 20-G Man-Rated Centrifuge, the Human Research Facility, the Plant Crop Growth Facility, the Numerical Aerodynamic Simulation Facility, the Arc-Jet Complex and Hypersonic Test Facility, the Infrared Detector and Cryogenic Test Facility, and the Mars Wind Tunnel. Each facility is described along with its objectives, test parameter ranges, and major current programs and applications.
Scientific Ballooning in India - Recent Developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Srinivasan, S.; Subbarao, J. V.
Established in 1972, the National Balloon Facility operated by TIFR in Hyderabad, India is is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, Research and Development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is a hallmark of the Hyderabad balloon facility. In the past few years we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to size of 780,000 M^3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...
40 CFR 160.43 - Test system care facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... testing facility shall have a number of animal rooms or other test system areas separate from those... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as needed, to ensure...
The Development of a CO2 Test Capability in the NASA JSC ARCJet for Mars Reentry Simulation
NASA Technical Reports Server (NTRS)
DelPapa, Steven V.; Suess, Leonard; Shafer, Brian
2011-01-01
The Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF) located at NASA Johnson Space Center is used for simulating the extreme environment experienced upon reentry for the development and certification of thermal protection systems (TPS). The facility supports a large variety of programs and was heavily leveraged for the certification and operational support of the TPS for the Orbiter and, more recently, the development of the heat shield for CEV. This paper will provide more detail into the heritage of the facility. Unique attributes of the facility include a modular aerodynamically stabilized arc heater and independently controlled O2 and N2 for the test gases. When combining the O2 and N2 in a 23:77 mass ratio respectively the Earth s atmosphere is accurately simulated and via modification of this ratio the investigation of the effects of atomic oxygen on a material s response is possible. In the summer of 2010 a development effort was started to add CO2 as a third independently controlled test gas such that, when combined with N2, opens up the possibility of accurately simulating a Martian reentry environment. This paper will discuss the test facility, especially the arc heater, in more detail. Initial testing involved relatively low concentrations of CO2 combined with N2 for the primary purpose of gathering data to answer two pressing safety concerns. The first being the rate of production of carbon monoxide (CO) within the ejector vacuum system. The main concern was that CO can be flammable and possibly explosive at high enough concentrations and pressures. The hazard control during the development phase involved the use of injecting N2 inside the test chamber diffuser to dilute and reduce the concentration of any and all CO present. A residual gas analyzer (RGA) was used to determine the relative amount of CO in the exhaust gas and provide a conversion rate of CO2 to CO. This paper will discuss in more detail the results of the RGA data and the calculated conversion rate. The second safety concern addressed is the possible formation of hydrogen cyanide (HCN) and cyanide (CN). HCN would primarily be present in the cooling water while the CN would most probably condense onto the interior surfaces of the test chamber. Water samples and wipes of the test chamber surfaces were analyzed by an industrial hygienist for the presence of HCN and CN. His paper will discuss these results in more detail. Throughout this development effort measurements of the CO2:N2 flowfield were made with heat flux and pressure probes and with laser induced fluorescence (LIF) of the atomic oxygen. This paper will discuss these results
Signatures of Extended Storage of Used Nuclear Fuel in Casks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Eric Benton
2016-09-28
As the amount of used nuclear fuel continues to grow, more and more used nuclear fuel will be transferred to storage casks. A consolidated storage facility is currently in the planning stages for storing these casks, where at least 10,000 MTHM of fuel will be stored. This site will have potentially thousands of casks once it is operational. A facility this large presents new safeguards and nuclear material accounting concerns. A new signature based on the distribution of neutron sources and multiplication within casks was part of the Department of Energy Office of Nuclear Energy’s Material Protection, Account and Controlmore » Technologies (MPACT) campaign. Under this project we looked at fingerprinting each cask's neutron signature. Each cask has a unique set of fuel, with a unique spread of initial enrichment, burnup, cooling time, and power history. The unique set of fuel creates a unique signature of neutron intensity based on the arrangement of the assemblies. The unique arrangement of neutron sources and multiplication produces a reliable and unique identification of the cask that has been shown to be relatively constant over long time periods. The work presented here could be used to restore from a loss of continuity of knowledge at the storage site. This presentation will show the steps used to simulate and form this signature from the start of the effort through its conclusion in September 2016.« less
NASA Astrophysics Data System (ADS)
Carroll, Kieran A.
2000-01-01
This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .
Scientific ballooning in India Recent developments
NASA Astrophysics Data System (ADS)
Manchanda, R. K.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m 3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.
1999-02-17
Various materials are ready for testing in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
1999-02-17
Materials are being tested in the Kennedy Space Center's cryogenics test bed laboratory. The cryogenics laboratory is expanding to a larger test bed facility in order to offer research and development capabilities that will benefit projects originating from KSC, academia and private industry. Located in KSC's industrial area, the lab is equipped with a liquid nitrogen flow test area to test and evaluate cryogenic valves, flow-meters and other handling equipment in field conditions. A 6,000-gallon tank supplies liquid to low-flow and high-flow test sections. KSC engineers and scientists can also build system prototypes and then field test and analyze them with the center's unique equipment. Expanded cryogenic infrastructure will posture the Space Coast to support biological and medical researchers who use liquid nitrogen to preserve and store human and animal cells and to destroy cancer tissue using cryosurgery; hospitals that use superconductive magnets cooled in liquid helium for magnetic resonance imaging (MRI); the food industry, which uses liquid nitrogen for freezing and long-term storage; as well as the next generation of reusable launch vehicles currently in development
Lunar Atmosphere and Dust Environment Explorer Integration and Test
NASA Technical Reports Server (NTRS)
Wright, Michael R.; McCormick, John L.
2010-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA collaborative flight project to explore the lunar exosphere. It is being developed through a unique partnership between NASA's Ames Research Center (ARC) and Goddard Space Flight Center (GSFC). Each center brings its own experience and flight systems heritage to the task of integrating and testing the LADEE subsystems, instruments, and spacecraft. As an "in-house" flight project being implemented at low-cost and moderate risk, LADEE relies on single-string subsystems and protoflight hardware to accomplish its mission. Integration and test (l&T) of the LADEE spacecraft with the instruments will be performed at GSFC, and includes assembly, integration, functional testing, and flight qualification and acceptance testing. Due to the nature of the LADEE mission, l&T requirements include strict contamination control measures and instrument calibration procedures. Environmental testing will include electromagnetic compatibility (EMC), vibro-acoustic testing, and thermal-balance/vacuum. Upon successful completion of spacecraft l&T, LADEE will be launched from NASA's Wallops Flight Facility. Launch of the LADEE spacecraft is currently scheduled for December 2012.
Report on Cosmic Dust Capture Research and Development for the Exobiology Program
NASA Technical Reports Server (NTRS)
Nishioka, Kenji
1997-01-01
Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.
2007-01-12
KENNEDY SPACE CENTER, FLA. -- In the Hazardous Processing Facility at Astrotech Space Operations, workers get ready to move the integrated THEMIS spacecraft to the spin table in the foreground. There it will undergo spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
2007-01-12
KENNEDY SPACE CENTER, FLA. -- In the Hazardous Processing Facility at Astrotech Space Operations, workers attach an overhead crane to the integrated THEMIS spacecraft. The carrier is being moved to a spin table for spin-balance testing. THEMIS consists of five identical probes, the largest number of scientific satellites ever launched into orbit aboard a single rocket. This unique constellation of satellites will resolve the tantalizing mystery of what causes the spectacular sudden brightening of the aurora borealis and aurora australis - the fiery skies over the Earth's northern and southern polar regions. THEMIS is scheduled to launch Feb. 15 from Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton
A Review of Large Solid Rocket Motor Free Field Acoustics, Part I
NASA Technical Reports Server (NTRS)
Pilkey, Debbie; Kenny, Robert Jeremy
2011-01-01
At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years
Twenty-five years of aerodynamic research with IR imaging: A survey
NASA Technical Reports Server (NTRS)
Gartenberg, Ehud; Roberts, A. Sidney, Jr.
1991-01-01
Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure.
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
10 CFR 26.123 - Testing facility capabilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the same...
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
NASA Astrophysics Data System (ADS)
Senesi, R.; Andreani, C.; Bowden, Z.; Colognesi, D.; Degiorgi, E.; Fielding, A. L.; Mayers, J.; Nardone, M.; Norris, J.; Praitano, M.; Rhodes, N. J.; Stirling, W. G.; Tomkinson, J.; Uden, C.
2000-03-01
The VESUVIO project aims to provide unique prototype instrumentation at the ISIS-pulsed neutron source and to establish a routine experimental and theoretical program in neutron scattering spectroscopy at eV energies. This instrumentation will be specifically designed for high momentum, (20 Å-11 eV) inelastic neutron scattering studies of microscopic dynamical processes in materials and will represent a unique facility for EU researchers. It will allow to derive single-particle kinetic energies and single-particle momentum distributions, n(p), providing additional and/or complementary information to other neutron inelastic spectroscopic techniques.
Austin, Lauren A.; Mackey, Megan A.; Dreaden, Erik C.
2014-01-01
Nanotechnology is a rapidly growing area of research in part due to its integration into many biomedical applications. Within nanotechnology, gold and silver nanostructures are some of the most heavily utilized nanomaterial due to their unique optical, photothermal, and facile surface chemical properties. In this review, common colloid synthesis methods and biofunctionalization strategies of gold and silver nanostructures are highlighted. Their unique properties are also discussed in terms of their use in biodiagnostic, imaging, therapeutic, and drug delivery applications. Furthermore, relevant clinical applications utilizing gold and silver nanostructures are also presented. We also provide a table with reviews covering related topics. PMID:24894431
Design, construction and operation features of high-rise structures
NASA Astrophysics Data System (ADS)
Mylnik, Alexey; Mylnik, Vladimir; Zubeeva, Elena; Mukhamedzhanova, Olga
2018-03-01
The article considers design, construction and operation features of high-rise facilities. The analysis of various situations, that come from improper designing, construction and operation of unique facilities, is carried out. The integrated approach is suggested, when the problems of choosing acceptable constructional solutions related to the functional purpose, architectural solutions, methods of manufacturing and installation, operating conditions for unique buildings and structures are being tackled. A number of main causes for the emergency destruction of objects under construction and operation is considered. A number of measures are proposed on the basis of factor classification in order to efficiently prevent the situations, when various negative options of design loads and emergency impacts occur.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell
1998-01-01
Analytical and experimental studies conducted at the NASA Langley Research Center for investigating integrated cryogenic propellant tank systems for a Reusable Launch Vehicle are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, Thermal Protection System (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Thermal Structures Technology Development for Reusable Launch Vehicle Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Natividad, Roderick; Rivers, H. Kevin; Smith, Russell W.
2005-01-01
Analytical and experimental studies conducted at the NASA, Langley Research Center (LaRC) for investigating integrated cryogenic propellant tank systems for a reusable launch vehicle (RLV) are described. The cryogenic tanks are investigated as an integrated tank system. An integrated tank system includes the tank wall, cryogenic insulation, thermal protection system (TPS) attachment sub-structure, and TPS. Analysis codes are used to size the thicknesses of cryogenic insulation and TPS insulation for thermal loads, and to predict tank buckling strengths at various ring frame spacings. The unique test facilities developed for the testing of cryogenic tank components are described. Testing at cryogenic and high-temperatures verifies the integrity of materials, design concepts, manufacturing processes, and thermal/structural analyses. Test specimens ranging from the element level to the subcomponent level are subjected to projected vehicle operational mechanical loads and temperatures. The analytical and experimental studies described in this paper provide a portion of the basic information required for the development of light-weight reusable cryogenic propellant tanks.
Discriminative facility and its role in the perceived quality of interactional experiences.
Cheng, C; Chiu, C Y; Hong, Y Y; Cheung, J S
2001-10-01
Discriminative facility refers to an individual's sensitivity to subtle cues about the psychological meaning of a situation. This research aimed at examining (a) the conceptual distinctiveness of discriminative facility, (b) the situation-appropriate aspect of this construct, and (c) the relationship between discriminative facility and interpersonal experiences. Discriminative facility was assessed by a new measure of situation-appropriate behaviors across a variety of novel stressful situations. Results from study 1 showed that discriminative facility had weak positive relationships with cognitive complexity and nonsignificant relationships with self-monitoring and social desirability, indicating that discriminative facility is a unique construct. Results from Study 2 revealed that higher levels of discriminative facility were associated with higher levels of perceived social support and a greater number of pleasant interpersonal events experienced, thus providing support for the theoretical proposition that discriminative facility is an aspect of social intelligence.
NASA Astrophysics Data System (ADS)
Hardesty, J. O.; Ivey, M.; Helsel, F.; Dexheimer, D.; Cahill, C. F.; Bendure, A.; Lucero, D. A.; Roesler, E. L.
2016-12-01
This presentation will make the case for development of a permanent integrated research and testing station at Oliktok Point, Alaska; taking advantage of existing assets and infrastructure, controlled airspace, an active UAS program and local partnerships. Arctic research stations provide critical monitoring and research on climate change for conditions and trends in the Arctic. The US Chair of the Arctic Council has increased awareness of gaps in our understanding of Artic systems, scarce monitoring, lack of infrastructure and readiness for emergency response. Less sea ice brings competition for commercial shipping and resource extraction. Search and rescue, pollution mitigation and safe navigation need real-time, wide-area monitoring to respond to events. Multi-national responses for international traffic will drive a greater security presence to protect citizens and sovereign interests. To address research and technology gaps, there is a national need for a High Arctic Station with an approach that partners stakeholders from science, safety and security to develop comprehensive solutions. The Station should offer year-round use, logistic support and access to varied ecological settings; phased adaptation to changing needs; and support testing of technologies such as multiple autonomous platforms, renewable energies and microgrids, and sensors in Arctic settings. We propose an Arctic Station at Oliktok Point, Alaska. Combined with the Toolik Field Station and Barrow Environmental Observatory, they form a US network of Arctic Stations. An Oliktok Point Station can provide complementary and unique assets that include: ocean access, and coastal and terrestrial systems; road access; controlled airspaces on land and ocean; nearby air facilities, medical and logistic support; atmospheric observations from an adjacent ARM facility; connections to Barrow and Toolik; fiber-optic communications; University of Alaska Fairbanks UAS Test Facility partnership; and an airstrip and hangar for UAS. World-class Arctic research requires year-round access and facilities. The US currently conducts most Arctic research at stations outside the US. A US Arctic Station network enables monitoring that is specific to the US Arctic, to predict and understand impacts that affect people, communities and the planet.
A Game Theoretical Model for Location of Terror Response Facilities under Capacitated Resources
Kang, Qi; Xu, Weisheng; Wu, Qidi
2013-01-01
This paper is concerned with the effect of capacity constraints on the locations of terror response facilities. We assume that the state has limited resources, and multiple facilities may be involved in the response until the demand is satisfied consequently. We formulate a leader-follower game model between the state and the terrorist and prove the existence and uniqueness of the Nash equilibrium. An integer linear programming is proposed to obtain the equilibrium results when the facility number is fixed. The problem is demonstrated by a case study of the 19 districts of Shanghai, China. PMID:24459446
Jonathan W. Amy and the Amy Facility for Instrumentation Development.
Cooks, R Graham
2017-05-16
This Perspective describes the unique Jonathan Amy Facility for Chemical Instrumentation in the Department of Chemistry at Purdue University, tracing its history and mode of operation. It also describes aspects of the career of its namesake and some of his insights which have been central to analytical instrumentation development, improvement, and utilization, both at Purdue and nationally.
History of the Animal Care Program at Johnson Space Center
NASA Technical Reports Server (NTRS)
Khan-Mayberry, Noreen; Bassett, Stephanie
2010-01-01
NASA has a rich history of scientific research that has been conducted throughout our numerous manned spaceflight programs. This scientific research has included animal test subjects participating in various spaceflight missions, including most recently, Space Shuttle mission STS-131. The Animal Care Program at Johnson Space Center (JSC) in Houston, Texas is multi-faceted and unique in scope compared to other centers within the agency. The animal care program at JSC has evolved from strictly research to include a Longhorn facility and the Houston Zoo's Attwater Prairie Chicken refuge, which is used to help repopulate this endangered species. JSC is home to more than 300 species of animals including home of hundreds of white-tailed deer that roam freely throughout the center which pose unique issues in regards to population control and safety of NASA workers, visitors and tourists. We will give a broad overview of our day to day operations, animal research, community outreach and protection of animals at NASA Johnson Space Center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiskel, B.J.; Wozniewski, A.
This paper reports on an oil production facility at Norman Wells, N.W.T. The production is centered around the Mackenzie River with oil being produced from wells located on natural and artificial islands as well as from wells located on the mainland. Pipelines have been installed beneath the river to route production from the islands back to the central processing plant on the mainland. Cathodic protection was required for the pipelines crossing the Mackenzie River to prevent external corrosion in an environmentally sensitive area. Several difficulties were encountered in preparing an optimum cathodic design due to the unique production scheme, permafrostmore » and logistical problems associated with the northern location. An innovative approach was therefore required for the design, installation and testing of the cathodic protection system. This paper describes evolution of the cathodic protection system from a conventional one to a system utilizing a close groundbed concept and unique current return path.« less
Role of EIS in Materials and Coatings Selection for NASA's Launch Facilities
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2004-01-01
Corrosion studies began at NASA's John F. Kennedy Space Center (KSC) in 1966, during the Gemini/Apollo Programs, with the evaluation of long-term anti-corrosion coatings for carbon steel structures. NASAIKSC's Atmospheric Exposure Test Site was established at that time on the beach near the launch pad. In the years that followed, numerous studies at the site have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. The atmosphere at the launch pad is highly corrosive due to the proximity of the Atlantic Ocean, high heat from rocket exhaust, and since the introduction of the Space Shuttle, the acidic combustion products of the Solid Rocket Boosters (SRBs). Currently, NASAIKSC maintains about $2 billion worth of unique equipment and facilities, not including the orbiters, each valued at about $1.8 billion. Among the items: two launch complexes, two crawler transporters, three mobile launch platforms, and specialized testing equipment. Atmospheric exposure provides very valuable data but it takes a long time and relies on human visual inspection. NASA Technical Standard for Protective Coatings requires 18 months of good performance at the Atmospheric Exposure Test Site for preliminary approval and continued good performance for 5 years for final approval of a coating system. The use of electrochemical impedance spectroscopy (EIS) was introduced at KSC in 1989 as a supplement to the traditional dc electrochemical techniques and atmospheric exposure studies. This paper presents and overview of several projects in which EIS was used in order to select materials and coatings to be used at NASA's launch facilities [1-2].
NSUF Irradiated Materials Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, James Irvin
The Nuclear Science User Facilities has been in the process of establishing an innovative Irradiated Materials Library concept for maximizing the value of previous and on-going materials and nuclear fuels irradiation test campaigns, including utilization of real-world components retrieved from current and decommissioned reactors. When the ATR national scientific user facility was established in 2007 one of the goals of the program was to establish a library of irradiated samples for users to access and conduct research through competitively reviewed proposal process. As part of the initial effort, staff at the user facility identified legacy materials from previous programs thatmore » are still being stored in laboratories and hot-cell facilities at the INL. In addition other materials of interest were identified that are being stored outside the INL that the current owners have volunteered to enter into the library. Finally, over the course of the last several years, the ATR NSUF has irradiated more than 3500 specimens as part of NSUF competitively awarded research projects. The Logistics of managing this large inventory of highly radioactive poses unique challenges. This document will describe materials in the library, outline the policy for accessing these materials and put forth a strategy for making new additions to the library as well as establishing guidelines for minimum pedigree needed to be included in the library to limit the amount of material stored indefinitely without identified value.« less
Advanced servomanipulator remote maintenance demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, E.C.; Ladd, L.D.
1988-01-01
The Fuel Recycle Division (FRD) of the Oak Ridge National Laboratory (ORNL) is developing remote maintenance systems for the Consolidated Fuel Reprocessing Program for applications in future nuclear fuel cycle facilities. The most recent development is the advanced servomanipulator (ASM), a digitally controlled, force-reflecting, dual-arm, master/slave servomanipulator. A unique feature of ASM is that the slave arms are remotely maintainable. The ASM slave arms are composed of modules, each of which is capable of being removed and replaced by another manipulator system. The intent of this test was to demonstrate that the ASM slave arms could be completely disassembled andmore » reassembled remotely. This remote maintenance demonstration was performed using the Remote Operations and Maintenance Demonstration (ROMD) facility model M-2 servomanipulator maintenance system. Maintenance of ASM was successfully demonstrated using the M-2 servomanipulator and special fixtures. Recommendations, generally applicable to other remotely maintained equipment, have been made for maintainability improvements. 3 refs., 5 figs.« less
Randall, G. Kevin; Martin, Peter; MacDonald, Maurice; Margrett, Jennifer; Bishop, Alex J.; Poon, Leonard W.
2011-01-01
We investigated the influence of social relations on health outcomes in very late life by examining the support-efficacy convoy model among older adults who resided in three different residential environments (centenarians in private homes, n = 126; centenarians in assisted living facilities, n = 55; centenarians in nursing homes, n = 105). For each group, path analytic models were employed to test our hypotheses; analyses controlled for sex, mental status, education, perceived economic sufficiency, and activities of daily living. The hypothesized relationships among the models' variables were unique to each of the three groups; three different models fit the data depending upon residential environment. The direct and indirect effects of social relations assessments were positive for the mental and physical health of very old adults, suggesting that participants welcomed the support. However, residential status moderated the associations between the assessments of social relations, self-efficacy, and both outcomes, physical and mental health. PMID:21792391
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.
2012-01-01
In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.
Murray, P K
1998-08-01
The unique structure, role and operations of government high-security (HS) laboratories which work on animal diseases are described, with particular reference to the laboratories of nine countries. High-security laboratories provide cost-effective insurance against catastrophic losses which could occur following exotic disease outbreaks. The importance of these laboratories is reflected in the fact that several new laboratories have recently been constructed at considerable expense and older facilities have undergone major renovations. Biosecurity is fundamental to the operation of high-security laboratories, so good facility design and microbiological security practices are very important. High-security laboratories conduct exotic disease diagnosis, certification and surveillance, and also perform research into virology, disease pathogenesis and improvements to diagnostic tests and vaccines. The mandate of these laboratories includes the training of veterinarians in the recognition of exotic diseases. One extremely important role is the provision of expert advice on exotic diseases and participation (both nationally and internationally) in policy decisions regarding animal disease issues.
Rundek, Tatjana; Brown, Scott C; Wang, Kefeng; Dong, Chuanhui; Farrell, Mary Beth; Heller, Gary V; Gornik, Heather L; Hutchisson, Marge; Needleman, Laurence; Benenati, James F; Jaff, Michael R; Meier, George H; Perese, Susana; Bendick, Phillip; Hamburg, Naomi M; Lohr, Joann M; LaPerna, Lucy; Leers, Steven A; Lilly, Michael P; Tegeler, Charles; Alexandrov, Andrei V; Katanick, Sandra L
2014-10-01
There is limited information on the accreditation status and geographic distribution of vascular testing facilities in the US. The Centers for Medicare & Medicaid Services (CMS) provide reimbursement to facilities regardless of accreditation status. The aims were to: (1) identify the proportion of Intersocietal Accreditation Commission (IAC) accredited vascular testing facilities in a 5% random national sample of Medicare beneficiaries receiving outpatient vascular testing services; (2) describe the geographic distribution of these facilities. The VALUE (Vascular Accreditation, Location & Utilization Evaluation) Study examines the proportion of IAC accredited facilities providing vascular testing procedures nationally, and the geographic distribution and utilization of these facilities. The data set containing all facilities that billed Medicare for outpatient vascular testing services in 2011 (5% CMS Outpatient Limited Data Set (LDS) file) was examined, and locations of outpatient vascular testing facilities were obtained from the 2011 CMS/Medicare Provider of Services (POS) file. Of 13,462 total vascular testing facilities billing Medicare for vascular testing procedures in a 5% random Outpatient LDS for the US in 2011, 13% (n=1730) of facilities were IAC accredited. The percentage of IAC accredited vascular testing facilities in the LDS file varied significantly by US region, p<0.0001: 26%, 12%, 11%, and 7% for the Northeast, South, Midwest, and Western regions, respectively. Findings suggest that the proportion of outpatient vascular testing facilities that are IAC accredited is low and varies by region. Increasing the number of accredited vascular testing facilities to improve test quality is a hypothesis that should be tested in future research. © The Author(s) 2014.
Transfer orbit stage mechanisms thermal vacuum test
NASA Technical Reports Server (NTRS)
Oleary, Scott T.
1990-01-01
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Rongli; Daly, Edward; Drury, Michael
2015-09-01
We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carriedmore » out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.« less
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, T. H.; Robinson, W. R.; Holland, J. W.
1989-12-01
Results and analyses of margin to cladding failure and pre-failure axial expansion of metallic fuel are reported for TREAT in-pile transient overpower tests M5--M7. These are the first such tests on reference binary and ternary alloy fuel of the Integral Fast Reactor (IFR) concept with burnup ranging from 1 to 10 at. %. In all cases, test fuel was subjected to an exponential power rise on an 8 s period until either incipient or actual cladding failure was achieved. Objectives, designs and methods are described with emphasis on developments unique to metal fuel safety testing. The resulting database for claddingmore » failure threshold and prefailure fuel expansion is presented. The nature of the observed cladding failure and resultant fuel dispersals is described. Simple models of cladding failures and pre-failure axial expansions are described and compared with experimental results. Reported results include: temperature, flow, and pressure data from test instrumentation; fuel motion diagnostic data principally from the fast neutron hodoscope; and test remains described from both destructive and non-destructive post-test examination. 24 refs., 144 figs., 17 tabs.« less
Experimental Photogrammetric Techniques Used on Five Full-Scale Aircraft Crash Tests
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2016-01-01
Between 2013 and 2015, full-scale crash tests were conducted on five aircraft at the Landing and Impact Research Facility (LandIR) at NASA Langley Research Center (LaRC). Two tests were conducted on CH-46E airframes as part of the Transport Rotorcraft Airframe Crash Testbed (TRACT) project, and three tests were conduced on Cessna 172 aircraft as part of the Emergency Locator Transmitter Survivability and Reliability (ELTSAR) project. Each test served to evaluate a variety of crashworthy systems including: seats, occupants, restraints, composite energy absorbing structures, and Emergency Locator Transmitters. As part of each test, the aircraft were outfitted with a variety of internal and external cameras that were focused on unique aspects of the crash event. A subset of three camera was solely used in the acquisition of photogrammetric test data. Examples of this data range from simple two-dimensional marker tracking for the determination of aircraft impact conditions to entire full-scale airframe deformation to markerless tracking of Anthropomorphic Test Devices (ATDs, a.k.a. crash test dummies) during the crash event. This report describes and discusses the techniques used and implications resulting from the photogrammetric data acquired from each of the five tests.
Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber
NASA Technical Reports Server (NTRS)
Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.
2012-01-01
The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.
The design of an air-cooled metallic high temperature radial turbine
NASA Technical Reports Server (NTRS)
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray
NASA Technical Reports Server (NTRS)
Marek, C. J.; Baker, C. E.
1983-01-01
A study was undertaken to determine the effect of boundary layers on autoignition and flashback for premixed Jet-A fuel in a unique high-pressure windowed test facility. A plate was placed in the center of the fuel-air stream to establish a boundary layer. Four experimental configurations were tested: a 24.5-cm-long plate with either a pointed leading edge, a rounded edge or an edge with a 0.317-cm step, or the duct without the plate. Experiments at an equivalence ratio ranging from 0.4 to 0.9 were performed at pressures to 2500 kPa (25 atm.) at temperatures of 600, 645, and 700 K and velocities to 115 meters per second. Flame shapes were observed during flashback and autoignition using high speed cinematography. Flashback and autoignition limits were determined.
Venipuncture and intravenous infusion access during zero-gravity flight
NASA Technical Reports Server (NTRS)
Krupa, Debra T.; Gosbee, John; Billica, Roger; Bechtle, Perry; Creager, Gerald J.; Boyce, Joey B.
1991-01-01
The purpose of this experiment is to establish the difficulty associated with securing an intravenous (IV) catheter in place in microgravity flight and the techniques applicable in training the Crew Medical Officer (CMO) for Space Station Freedom, as well as aiding in the selection of appropriate hardware and supplies for the Health Maintenance Facility (HMF). The objectives are the following: (1) to determine the difficulties associated with venipuncture in a microgravity environment; (2) to evaluate the various methods of securing an IV catheter and attached tubing for infusion with regard to the unique environment; (3) to evaluate the various materials available for securing an intravenous catheter in place; and (4) to evaluate the fluid therapy administration system when functioning in a complete system. The inflight test procedures and other aspects of the KC-135 parabolic flight test to simulate microgravity are presented.
NASA Technical Reports Server (NTRS)
Scully, Robert C.
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the EMI/EMC Test Facility. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; Skifton, Richard; Stoots, Carl
2013-12-01
Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart ofmore » any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.« less
Facility Concepts for Mars Returned Sample Handling
NASA Technical Reports Server (NTRS)
Cohen, Marc M.; Briggs, Geoff (Technical Monitor)
2001-01-01
Samples returned from Mars must be held in quarantine until their biological safety has been determined. A significant challenge, unique to NASA's needs, is how to contain the samples (to protect the blaspheme) while simultaneously protecting their pristine nature. This paper presents a comparative analysis of several quarantine facility concepts for handling and analyzing these samples. The considerations in this design analysis include: modes of manipulation; capability for destructive as well as non-destructive testing; avoidance of cross-contamination; linear versus recursive processing; and sample storage and retrieval within a closed system. The ability to rigorously contain biologically hazardous materials has been amply demonstrated by facilities that meet the specifications of the Center for Disease Control Biosafety Level 4. The newly defined Planetary Protection Level Alpha must provide comparable containment while assuring that the samples remain pristine; the latter requirement is based on the need to avoid compromising science analyses by instrumentation of the highest possible sensitivity (among other things this will assure that there is no false positive detection of organisms or organic molecules - a situation that would delay or prevent the release of the samples from quarantine). Protection of the samples against contamination by terrestrial organisms and organic molecules makes a considerable impact upon the sample handling facility. The use of glove boxes appears to be impractical because of their tendency to leak and to surges. As a result, a returned sample quarantine facility must consider the use of automation and remote manipulation to carry out the various functions of sample handling and transfer within the system. The problem of maintaining sensitive and bulky instrumentation under the constraints of simultaneous sample containment and contamination protection also places demands on the architectural configuration of the facility that houses it.
NASA Astrophysics Data System (ADS)
Cerjan, Ch J.; Bernstein, L.; Berzak Hopkins, L.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cassata, W. S.; Brune, C. R.; Frenje, J.; Gatu-Johnson, M.; Gharibyan, N.; Grim, G.; Hagmann, Chr; Hamza, A.; Hatarik, R.; Hartouni, E. P.; Henry, E. A.; Herrmann, H.; Izumi, N.; Kalantar, D. H.; Khater, H. Y.; Kim, Y.; Kritcher, A.; Litvinov, Yu A.; Merrill, F.; Moody, K.; Neumayer, P.; Ratkiewicz, A.; Rinderknecht, H. G.; Sayre, D.; Shaughnessy, D.; Spears, B.; Stoeffl, W.; Tommasini, R.; Yeamans, Ch; Velsko, C.; Wiescher, M.; Couder, M.; Zylstra, A.; Schneider, D.
2018-03-01
The generation of dynamic high energy density plasmas in the pico- to nano-second time domain at high-energy laser facilities affords unprecedented nuclear science research possibilities. At the National Ignition Facility (NIF), the primary goal of inertial confinement fusion research has led to the synergistic development of a unique high brightness neutron source, sophisticated nuclear diagnostic instrumentation, and versatile experimental platforms. These novel experimental capabilities provide a new path to investigate nuclear processes and structural effects in the time, mass and energy density domains relevant to astrophysical phenomena in a unique terrestrial environment. Some immediate applications include neutron capture cross-section evaluation, fission fragment production, and ion energy loss measurement in electron-degenerate plasmas. More generally, the NIF conditions provide a singular environment to investigate the interplay of atomic and nuclear processes such as plasma screening effects upon thermonuclear reactivity. Achieving enhanced understanding of many of these effects will also significantly advance fusion energy research and challenge existing theoretical models.
ERIC Educational Resources Information Center
Reed, Bob H.; Harper, William A.
Participants in an airborne seminar were teams of individuals from sixteen institutions engaged in the early stages of planning and design. Novel and exciting features of each of the nineteen institutions visited during the "fly-in" were noted. A brief summary of the unique architectural features and facilities in each institution is given, some…
Behind the Scenes at Berkeley Lab - The Mechanical Fabrication Facility
Wells, Russell; Chavez, Pete; Davis, Curtis; Bentley, Brian
2018-04-16
Part of the Behind the Scenes series at Berkeley Lab, this video highlights the lab's mechanical fabrication facility and its exceptional ability to produce unique tools essential to the lab's scientific mission. Through a combination of skilled craftsmanship and precision equipment, machinists and engineers work with scientists to create exactly what's needed - whether it's measured in microns or meters.
Martin, Cody; Powell, David
2017-02-01
The 2009 Pinelake Health and Rehab Center shooting in Carthage, North Carolina, presents a unique case study for examining the specific considerations for mass violence events in senior living facilities. A variety of factors, including reduced sensory perception, reduced mobility, and cognitive decline, may increase the vulnerability of the populations of senior living facilities during mass violence events. Management of response aspects such as evacuation, relocation, and reunification also require special consideration in the context of mass violence at senior living facilities. Better awareness of these vulnerabilities and response considerations can assist facility administrators and emergency managers when preparing for potential mass violence events at senior living facilities. (Disaster Med Public Health Preparedness. 2017;11:150-152).
Safety management of an underground-based gravitational wave telescope: KAGRA
NASA Astrophysics Data System (ADS)
Ohishi, Naoko; Miyoki, Shinji; Uchiyama, Takashi; Miyakawa, Osamu; Ohashi, Masatake
2014-08-01
KAGRA is a unique gravitational wave telescope with its location underground and use of cryogenic mirrors. Safety management plays an important role for secure development and operation of such a unique and large facility. Based on relevant law in Japan, Labor Standard Act and Industrial Safety and Health Law, various countermeasures are mandated to avoid foreseeable accidents and diseases. In addition to the usual safety management of hazardous materials, such as cranes, organic solvents, lasers, there are specific safety issues in the tunnel. Prevention of collapse, flood, and fire accidents are the most critical issues for the underground facility. Ventilation is also important for prevention of air pollution by carbon monoxide, carbon dioxide, organic solvents and radon. Oxygen deficiency should also be prevented.
Survey of solar thermal test facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masterson, K.
The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jordan, Lee P.
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.
Activation of the E1 Ultra High Pressure Propulsion Test Facility at Stennis Space Center
NASA Technical Reports Server (NTRS)
Messer, Bradley; Messer, Elisabeth; Sewell, Dale; Sass, Jared; Lott, Jeff; Dutreix, Lionel, III
2001-01-01
After a decade of construction and a year of activation the El Ultra High Pressure Propulsion Test Facility at NASA's Stennis Space Center is fully operational. The El UHP Propulsion Test Facility is a multi-cell, multi-purpose component and engine test facility . The facility is capable of delivering cryogenic propellants at low, high, and ultra high pressures with flow rates ranging from a few pounds per second up to two thousand pounds per second. Facility activation is defined as a series of tasks required to transition between completion of construction and facility operational readiness. Activating the El UHP Propulsion Test Facility involved independent system checkouts, propellant system leak checks, fluid and gas sampling, gaseous system blow downs, pressurization and vent system checkouts, valve stability testing, valve tuning cryogenic cold flows, and functional readiness tests.
Nevada National Security Site Environmental Report Summary 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wills, Cathy
This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less
Lewis Research Center space station electric power system test facilities
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G.; Martin, Donald F.
1988-01-01
NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.
Testing the Solar Probe Cup, An Instrument Designed to Touch The Sun
NASA Technical Reports Server (NTRS)
Whittlesey, Phyllis; Case, Anthony; Kasper, Justin; Wright, Kenneth; Alterman, Benjamin; Cirtain, Jonathan; Bookbinder, Jay; Korreck, Kelly; Stevens, Michael; Schneider, Todd;
2014-01-01
Abstract: Solar Probe Plus will be the first, fastest, and closest mission to the Sun, providing the first direct sampling of the sub-Alfvénic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests are created for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight-like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.
Testing the Solar Probe Cup, an Instrument Designed to Touch the Sun
NASA Technical Reports Server (NTRS)
Whittlesey, Phyllis L.; Case, Anthony W.; Kasper, Justin Christophe; Wright, Kenneth H., Jr.; Alterman, Ben; Cirtain, Jonathan W.; Bookbinder, Jay; Korreck, Kelly E.; Stevens, Michael Louis
2014-01-01
Solar Probe Plus will be the first, fastest, and closest mission to the sun, providing the first direct sampling of the sub-Alfvenic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.
Nuclear thermal propulsion test facility requirements and development strategy
NASA Technical Reports Server (NTRS)
Allen, George C.; Warren, John; Clark, J. S.
1991-01-01
The Nuclear Thermal Propulsion (NTP) subpanel of the Space Nuclear Propulsion Test Facilities Panel evaluated facility requirements and strategies for nuclear thermal propulsion systems development. High pressure, solid core concepts were considered as the baseline for the evaluation, with low pressure concepts an alternative. The work of the NTP subpanel revealed that a wealth of facilities already exists to support NTP development, and that only a few new facilities must be constructed. Some modifications to existing facilities will be required. Present funding emphasis should be on long-lead-time items for the major new ground test facility complex and on facilities supporting nuclear fuel development, hot hydrogen flow test facilities, and low power critical facilities.
NASA Astrophysics Data System (ADS)
Koch, Karl
2010-05-01
Quantitative modeling of infrasound signals and development and verification of the corresponding atmospheric propagation models requires the use of well-calibrated sources. Numerous sources have been detected by the currently installed network of about 40 of the final 60 IMS infrasound stations. Besides non-nuclear explosions such as mining and quarry blasts and atmospheric phenomena like auroras, these sources include meteorites, volcanic eruptions and supersonic aircraft including re-entering spacecraft and rocket launches. All these sources of infrasound have one feature in common, in that their source parameters are not precisely known and the quantitative interpretation of the corresponding signals is therefore somewhat ambiguous. A source considered well-calibrated has been identified producing repeated infrasound signals at the IMS infrasound station IS26 in the Bavarian forest. The source results from propulsion tests of the ARIANE-5 rocket's main engine at a testing facility near Heilbronn, southern Germany. The test facility is at a range of 320 km and a backazimuth of ~280° from IS26. Ground-truth information was obtained for nearly 100 tests conducted in a 5-year period. Review of the available data for IS26 revealed that at least 28 of these tests show signals above the background noise level. These signals are verified based on the consistency of various signal parameters, e.g., arrival times, durations, and estimates of propagation characteristics (backazimuth, apparent velocity). Signal levels observed are a factor of 2-8 above the noise and reach values of up to 250 mPa for peak amplitudes, and a factor of 2-3 less for RMS measurements. Furthermore, only tests conducted during the months from October to April produce observable signals, indicating a significant change in infrasound propagation conditions between summer and winter months.
STD testing policies and practices in U.S. city and county jails.
Parece, M S; Herrera, G A; Voigt, R F; Middlekauff, S L; Irwin, K L
1999-09-01
Studies have shown that sexually transmitted disease (STD) rates are high in the incarcerated population. However, little is known about STD testing policies or practices in jails. To assess STD testing policies and practices in jails. The Division of STD Prevention developed and distributed an e-mail survey to 94 counties reporting more than 40 primary and secondary cases in 1996 or having cities with more than 200,000 persons. State and local STD program managers completed the assessment in collaboration with health departments and the main jail facilities in the selected counties. Most facilities (52-77%) had a policy for STD screening based only on symptoms or by arrestee request, and in these facilities, 0.2% to 6% of arrestees were tested. Facilities having a policy of offering routine testing tested only 3% to 45% of arrestees. Large facilities, facilities using public providers, and facilities routinely testing for syphilis using Stat RPR tested significantly more arrestees (P<0.05). Approximately half of the arrestees were released within 48 hours after intake, whereas 45% of facilities did not have STD testing results until after 48 hours. Most facilities had a policy for STD screening based only on symptoms or by arrestee request. Facilities having a policy of routine STD testing are not testing most of the arrestees. There is a small window (<48 hours) for STD testing and treatment before release. Smaller jails and facilities using private providers may need additional resources to increase STD testing levels. Correctional facilities should be considered an important setting for STD public health intervention where routine rapid STD screening and treatment on-site could be implemented.
2010-09-30
CAPE CANAVERAL, Fla. -- High overhead in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the Alpha Magnetic Spectrometer (AMS) hovers over a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
New Glass Serves as Window to Cutting-edge Lasers
NASA Technical Reports Server (NTRS)
2004-01-01
Since 1997, Marshall Space Flight Center s Electrostatic Levitator (ESL) facility has been used to study the characteristics of new metals, ceramics, and glass compounds - in both their hot molten states and as they are cooled to form solid materials. The ESL provides a unique way to test such substances without having to make contact with a container or crucible that would contaminate the sample. Simply put, objects analyzed in the levitator's chamber float in mid-air with no visible means of support or containment, suspended only by static electricity. While a sample object is levitated, a laser beam heats it until it melts so that scientists can measure its physical properties without interference from a container.
1993-05-18
A NASA F/A-18, specially modified to test the newest and most advanced system technologies, on its first research flight on May 21, 1993, at NASA's Dryden Flight Research Facility, Edwards, California. Flown by Dryden in a multi-year, joint NASA/DOD/industry program, the F/A-18 former Navy fighter was modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. The primary goal of the SRA program was to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, an overhead hoist lowers the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
2010-09-30
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, technicians guide the Alpha Magnetic Spectrometer (AMS) onto a rotation stand where it will be tested and processed for launch. AMS, a state-of-the-art particle physics detector, is designed to operate as an external experiment on the International Space Station. It will use the unique environment of space to study the universe and its origin by searching for dark matter. AMS will fly to the station aboard space shuttle Endeavour's STS-134 mission targeted to launch February, 2011. For more information visit: http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts134/index.html. Photo credit: NASA/Jack Pfaller
NASA Technical Reports Server (NTRS)
Doggett, Glen P.; Chokani, Ndaona
1996-01-01
An experimental investigation of the effects of angle of attack on hypersonic boundary-layer stability on a flared-cone model was conducted in the low-disturbance Mach-6 Nozzle-Test Chamber Facility at NASA Langley Research Center. This unique facility provided a 'quiet' flow test environment which is well suited for stability experiments because the low levels of freestream 'noise' minimize artificial stimulation of flow-disturbance growth. Surface pressure and temperature measurements documented the adverse-pressure gradient and transition-onset location. Hot-wire anemometry diagnostics were applied to identify the instability mechanisms which lead to transition. In addition, the mean flow over the flared-cone geometry was modeled by laminar Navier-Stokes computations. Results show that the boundary layer becomes more stable on the windward ray and less stable on the leeward ray relative to the zero-degree angle-of-attack case. The second-mode instability dominates the transition process at a zero-degree angle of attack, however, on the windward ray at an angle of attack this mode was completely stabilized. The less-dominant first-mode instability was slightly destabilized on the windward ray. Non-linear mechanisms such as saturation and harmonic generation are identified from the flow-disturbance bispectra.
Status of Mirror Development for the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
NASA Astrophysics Data System (ADS)
Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.; Ramsey, B.; Kolodziejczak, J.; Speegle, C.; Young, M.; Kester, T.; Cheimets, P.; Hertz, E.
2017-12-01
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to observe soft X-ray emissions at 0.5 - 2.0 keV energies (24 - 6 Å) from a solar active region. MaGIXS will, for the first time, obtain spatially resolved spectra of high-temperature, low-emission plasma within an active region core. The unique optical design includes a Wolter I telescope and a 3-optic grazing incidence spectrograph. The spectrograph consists of a finite conjugate, stigmatic mirror pair and a planar varied line space grating. The grazing incidence mirrors are being developed at NASA Marshall Space Flight Center (MSFC) and are produced using electroform nickel-replication techniques, employing the same facilities developed for HERO, FOXSI, ART-XC and IXPE. The MaGIXS mirror mandrels have been fabricated, figured, and have completed the first phase of polishing. A set of three test shells were replicated and exposed to X-rays in the Stray Light Facility (SLF) at MSFC. Here we present results from mandrel metrology and X-ray testing at the SLF. We also discuss the development of a new polishing technique for the MaGIXS mirror mandrels, where we plan to use the Zeeko polishing machine.
Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility
1991-10-09
Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.
Optimal pricing policies for services with consideration of facility maintenance costs
NASA Astrophysics Data System (ADS)
Yeh, Ruey Huei; Lin, Yi-Fang
2012-06-01
For survival and success, pricing is an essential issue for service firms. This article deals with the pricing strategies for services with substantial facility maintenance costs. For this purpose, a mathematical framework that incorporates service demand and facility deterioration is proposed to address the problem. The facility and customers constitute a service system driven by Poisson arrivals and exponential service times. A service demand with increasing price elasticity and a facility lifetime with strictly increasing failure rate are also adopted in modelling. By examining the bidirectional relationship between customer demand and facility deterioration in the profit model, the pricing policies of the service are investigated. Then analytical conditions of customer demand and facility lifetime are derived to achieve a unique optimal pricing policy. The comparative statics properties of the optimal policy are also explored. Finally, numerical examples are presented to illustrate the effects of parameter variations on the optimal pricing policy.
ATLAS with CARIBU: A laboratory portrait
Pardo, Richard C.; Savard, Guy; Janssens, Robert V. F.
2016-03-21
The Argonne Tandem Linac Accelerator System (ATLAS) is the world's first superconducting accelerator for projectiles heavier than the electron. This unique system is a U.S. Department of Energy (DOE) national user research facility open to scientists from all over the world. Here, it is located within the Physics Division at Argonne National Laboratory and is one of five large scientific user facilities located at the laboratory.
Design of a video teleconference facility for a synchronous satellite communications link
NASA Technical Reports Server (NTRS)
Richardson, M. D.
1979-01-01
The system requirements, design tradeoffs, and final design of a video teleconference facility are discussed, including proper lighting, graphics transmission, and picture aesthetics. Methods currently accepted in the television broadcast industry are used in the design. The unique problems associated with using an audio channel with a synchronous satellite communications link are discussed, and a final audio system design is presented.
COBRA accelerator for Sandia ICF diode research at Cornell University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.L.; Ingwersen, P.; Bennett, L.F.
1995-05-01
The new COBRA accelerator is being built in stages at the Laboratory of Plasma Studies in Cornell University where its applications will include extraction diode and ion beam research in support of the light ion inertial confinement fusion (ICF) program at Sandia National Laboratories. The 4- to 5-MV, 125- to 250-kA accelerator is based on a four-cavity inductive voltage adder (IVA) design. It is a combination of new ferromagnetically-isolated cavities and self magnetically insulated transmission line (MITL) hardware and components from existing Sandia and Cornell facilities: Marx generator capacitors, hardware, and power supply from the DEMON facility; water pulse formingmore » lines (PFL) and gas switch from the Subsystem Test Facility (STF); a HERMES-III intermediate store capacitor (ISC); and a modified ion diode from Cornell`s LION. The present accelerator consists of a single modified cavity similar to those of the Sandia SABRE accelerator and will be used to establish an operating system for the first stage initial lower voltage testing. Four new cavities will be fabricated and delivered in the first half of FY96 to complete the COBRA accelerator. COBRA is unique in the sense that each cavity is driven by a single pulse forming line, and the IVA output polarity may be reversed by rotating the cavities 180{degrees} about their vertical axis. The site preparations, tank construction, and diode design and development are taking place at Cornell with growing enthusiasm as this machine becomes a reality. Preliminary results with the single cavity and short positive inner cylinder MITL configuration will soon be available.« less
Survey of aircraft icing simulation test facilities in North America
NASA Technical Reports Server (NTRS)
Olsen, W.
1981-01-01
A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND ...
VIEW LOOKING SOUTH AT THE SATURN V (BLDG. 4550) AND SATURN I (BLDG. 4557) STRUCTURAL TEST FACILITIES, SATURN V TEST FACILITY IS IN THE FOREGROUND RIGHT. THE SATURN I TEST FACILITY IS IN THE BACKGROUND CENTER. - Marshall Space Flight Center, Saturn V Dynamic Test Facility, East Test Area, Huntsville, Madison County, AL
A new ion beam facility based on a 3 MV Tandetron™ at IFIN-HH, Romania
NASA Astrophysics Data System (ADS)
Burducea, I.; Straticiuc, M.; Ghiță, D. G.; Moșu, D. V.; Călinescu, C. I.; Podaru, N. C.; Mous, D. J. W.; Ursu, I.; Zamfir, N. V.
2015-09-01
A 3 MV Tandetron™ accelerator system has been installed and commissioned at the "Horia Hulubei" National Institute for Physics and Nuclear Engineering - IFIN-HH, Măgurele, Romania. The main purpose of this machine is to strengthen applied nuclear physics research ongoing in our institute for more than four decades. The accelerator system was developed by High Voltage Engineering Europa B.V. (HVE) and comprises three high energy beam lines. The first beam line is dedicated to ion beam analysis (IBA) techniques: Rutherford Backscattering Spectrometry - RBS, Nuclear Reaction Analysis - NRA, Particle Induced X-ray and γ-ray Emission - PIXE and PIGE and micro-beam experiments - μ-PIXE. The second beam line is dedicated to high energy ion implantation experiments and the third beam line was designed mainly for nuclear cross-sections measurements used in nuclear astrophysics. A unique feature, the first time in operation at an accelerator facility is the Na charge exchange canal (CEC), which is used to obtain high intensity beams of He- of at least 3 μA. The results of the acceptance tests demonstrate the huge potential of this new facility in various fields, from IBA to radiation hardness studies and from medical or environmental applications to astrophysics. The main features of the accelerator are presented in this paper.
40 CFR 792.31 - Testing facility management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...
NASA Astrophysics Data System (ADS)
Bilki, Burak
2018-03-01
The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2002-01-01
A gas-fueled high-pressure combustion facility with optical access, which was developed over the last 2 years, has just been completed. The High Pressure Gaseous Burner (HPGB) rig at the NASA Glenn Research Center can operate at sustained pressures up to 60 atm with a variety of gaseous fuels and liquid jet fuel. The facility is unique as it is the only continuous-flow, hydrogen-capable, 60-atm rig in the world with optical access. It will provide researchers with new insights into flame conditions that simulate the environment inside the ultra-high-pressure-ratio combustion chambers of tomorrow's advanced aircraft engines. The facility provides optical access to the flame zone, enabling the calibration of nonintrusive optical diagnostics to measure chemical species and temperature. The data from the HPGB rig enables the validation of numerical codes that simulate gas turbine combustors, such as the National Combustor Code (NCC). The validation of such numerical codes is often best achieved with nonintrusive optical diagnostic techniques that meet these goals: information-rich (multispecies) and quantitative while providing good spatial and time resolution. Achieving these goals is a challenge for most nonintrusive optical diagnostic techniques. Raman scattering is a technique that meets these challenges. Raman scattering occurs when intense laser light interacts with molecules to radiate light at a shifted wavelength (known as the Raman shift). This shift in wavelength is unique to each chemical species and provides a "fingerprint" of the different species present. The facility will first be used to gather a comprehensive data base of laser Raman spectra at high pressures. These calibration data will then be used to quantify future laser Raman measurements of chemical species concentration and temperature in this facility and other facilities that use Raman scattering.
Facility design consideration for continuous mix production of class 1.3 propellant
NASA Technical Reports Server (NTRS)
Williamson, K. L.; Schirk, P. G.
1994-01-01
In November of 1989, NASA awarded the Advanced Solid Rocket Motor (ASRM) contract to Lockheed Missiles and Space Company (LMSC) for production of advanced solid rocket motors using the continuous mix process. Aerojet ASRM division (AAD) was selected as the facility operator and RUST International Corporation provided the engineering, procurement, and construction management services. The continuous mix process mandates that the mix and cast facilities be 'close-coupled' along with the premix facilities, creating unique and challenging requirements for the facility designer. The classical approach to handling energetic materials-division into manageable quantities, segregation, and isolation-was not available due to these process requirements and quantities involved. This paper provides a description of the physical facilities, the continuous mix process, and discusses the monitoring and detection techniques used to mitigate hazards and prevent an incident.
1962-10-26
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.
1962-08-17
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a back side view of the Block House.
1962-11-15
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.
1962-01-23
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken January 23, 1962, shows the excavation of the Block House site.
1962-06-13
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.
1962-02-02
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photo, taken February 2, 1962, shows the excavation of the Block House site.
Antenna Test Facility (ATF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
Lin, Greg
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
Radiant Heat Test Facility (RHTF): User Test Planning Guide
NASA Technical Reports Server (NTRS)
DelPapa, Steven
2011-01-01
Test process, milestones and inputs are unknowns to first-time users of the RHTF. The User Test Planning Guide aids in establishing expectations for both NASA and non- NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.
NASA Technical Reports Server (NTRS)
Stradling, J.; Pippen, D. L.
1985-01-01
The NASA Johnson Space Center White Sands Test Facility (WSTF) performs aerospace materials testing and evaluation. Established in 1963, the facility grew from a NASA site dedicated to the development of space engines for the Apollo project to a major test facility. In addition to propulsion tests, it tests materials and components, aerospace fluids, and metals and alloys in simulated space environments.
40 CFR 160.31 - Testing facility management.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.
2016-01-01
A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.
Experimental Studies in Helicopter Vertical Climb Performance
NASA Technical Reports Server (NTRS)
McKillip, Robert M., Jr.
1996-01-01
Data and analysis from an experimental program to measure vertical climb performance on an eight-foot model rotor are presented. The rotor testing was performed using a unique moving-model facility capable of accurately simulating the flow conditions during axial flight, and was conducted from July 9, 1992 to July 16, 1992 at the Dynamic Model Track, or 'Long Track,' just prior to its demolition in August of 1992. Data collected during this brief test program included force and moment time histories from a sting-mounted strain gauge balance, support carriage velocity, and rotor rpm pulses. In addition, limited video footage (of marginal use) was recorded from smoke flow studies for both simulated vertical climb and descent trajectories. Analytical comparisons with these data include a series of progressively more detailed calculations ranging from simple momentum theory, a prescribed wake method, and a free-wake prediction.
Dispatch Scheduling to Maximize Exoplanet Detection
NASA Astrophysics Data System (ADS)
Johnson, Samson; McCrady, Nate; MINERVA
2016-01-01
MINERVA is a dedicated exoplanet detection telescope array using radial velocity measurements of nearby stars to detect planets. MINERVA will be a completely robotic facility, with a goal of maximizing the number of exoplanets detected. MINERVA requires a unique application of queue scheduling due to its automated nature and the requirement of high cadence observations. A dispatch scheduling algorithm is employed to create a dynamic and flexible selector of targets to observe, in which stars are chosen by assigning values through a weighting function. I designed and have begun testing a simulation which implements the functions of a dispatch scheduler and records observations based on target selections through the same principles that will be used at the commissioned site. These results will be used in a larger simulation that incorporates weather, planet occurrence statistics, and stellar noise to test the planet detection capabilities of MINERVA. This will be used to heuristically determine an optimal observing strategy for the MINERVA project.
Alternative Techniques for Testing A Highway Information Systems
NASA Technical Reports Server (NTRS)
Mast, Truman; Mast, Truman
1974-01-01
The highway transport system as contrasted with other modes of transportation is quite unique in that the users of the system are responsible for the guidance and control functions of the vehicle. Research has shown that improved forms of motorist information, such as highway signs and markings, can enhance the predictability and reliability of the driving task. Test and evaluation of promising new concepts in motorist information must preceed widespread endorsement and implementation on our highway system. This paper reviews the merits and limitations of presently available human factor research techniques--laboratory, instrumented vehicle and traffic performance studies on operational facilities--for evaluating the efficacy of motorist information concepts. Specific examples are given to demonstrate the utility and the interrelationships of the alternative research techniques and there is a discussion of the most pressing immediate and future needs for improved highway signing and road marking research methodology.
Using the tritium plasma experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
1993-06-01
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.
Sterilization validation for medical compresses at IRASM multipurpose irradiation facility
NASA Astrophysics Data System (ADS)
Alexandru, Mioara; Ene, Mihaela
2007-08-01
In Romania, IRASM Radiation Processing Center is the unique supplier of radiation sterilization services—industrial scale (ISO 9001:2000 and ISO 13485:2003 certified). Its Laboratory of Microbiological Testing is the sole third party competent laboratory (GLPractice License, ISO 17025 certification in progress) for pharmaceutics and medical devices as well. We here refer to medical compresses as a distinct category of sterile products, made from different kind of hydrophilic materials (cotton, non-woven, polyurethane foam) with or without an impregnated ointment base (paraffin, plant extracts). These products are included in the class of medical devices, but for the sterilization validation, from microbiological point of view, there are important differences in testing method compared to the common medical devices (syringes, catheters, etc). In this paper, we present some results and practical solutions chosen to perform a sterilization validation, compliant with ISO 11137: 2006.
Facility-level association of preoperative stress testing and postoperative adverse cardiac events.
Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M
2018-06-22
Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Moderator Demonstration Facility Design and Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClanahan, Tucker C.; Gallmeier, Franz X.; Iverson, Erik B.
2017-02-01
The Spallation Neutron Source (SNS) facility at Oak Ridge National Laboratory (ORNL) is implementing a Moderator Demonstration Facility (MDF) to demonstrate the performance characteristics of advanced moderators central to the Second Target Station (STS) for SNS. The MDF will use the "spare" front-end installation within the SNS accelerator support complex – an ion source, radio-frequency quadrupole (RFQ) accelerator, and medium-energy beam transport (MEBT) chopper - to provide a 2.5 MeV proton beam of peak current 50 mA and maximum pulse length of less than 10 s at a repetition rate of no more than 60 Hz to a suitable neutron-producingmore » target to demonstrate those aspects of moderator performance necessary to meet the goals of the STS design e ort. The accelerator beam parameters are not open to variation beyond that described above - they are fixed by the nature of the spare front-end installation (the Integrated Test Stand Facility; ITSF). Accordingly, there are some neutronic challenges in developing prototypic moderator illumination from a very non-prototypic primary neutron source; the spallation source we are attempting to mimic has an extended neutron source volume approximately 40 cm long (in the direction of the proton beam), approximately 10 cm wide (horizontally transverse to the proton beam) and approximately 5 cm high (vertically transverse to the proton beam), and an isotropic evaporation energy spectrum with mean energy above 1 MeV. In contrast, the primary neutron source available from the 7Li(p,n) reaction (the most prolific at 2.5 MeV proton energy by more than an order of magnitude) is strongly anisotropic, with an energy spectrum that is both strongly dependent on emission angle and kinematically limited to less than 700 keV, and the interaction zone between the incident protons and any target material (neutron-producing or not) is intrinsically limited to a few tens of microns. The MDF will be unique and innovative amongst the world’s moderator test facilities in that it will be intended to be very prototypic in terms of "moderator illumination" - the spatial variation of the neutron flux entering the moderator itself - as well as capable of testing so-called high-brightness moderators in a wing configuration.« less
Cygnus Performance in Subcritical Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.
2008-02-01
The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational featuresmore » were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.« less
Energy Systems Test Area (ESTA). Power Systems Test Facilities
NASA Technical Reports Server (NTRS)
Situ, Cindy H.
2010-01-01
This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.
Upgrade of the cryogenic CERN RF test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirotte, O.; Benda, V.; Brunner, O.
2014-01-29
With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RFmore » test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.« less
New NREL Research Facility Slashes Energy Use by 66 Percent
Thermal Test Facility, which serves as a showcase of energy-saving features and the home of NREL's cutting technologies now being developed at the Thermal Test Facility will help us reach this goal." The facility energy-efficient building design, NREL's Thermal Test Facility houses sophisticated equipment for
2003-08-27
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-09-03
KENNEDY SPACE CENTER, FLA. - Various elements intended for the International Space Station are lined up in the Space Station Processing Facility. The newest to arrive at KSC are in the rear: at left, the U.S. Node 2, and next to it at right, the Japanese Experiment Module (JEM). The two elements are undergoing a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the ISS and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. Developed by the National Space Development Agency of Japan (NASDA), the JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
2003-08-27
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, the U.S. Node 2 (center) and the Japanese Experiment Module (JEM), background right, await a Multi-Element Integrated Test (MEIT). Node 2 attaches to the end of the U.S. Lab on the International Space Station and provides attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and, eventually, Multipurpose Logistics Modules. It will provide the primary docking location for the Shuttle when a pressurized mating adapter is attached to Node 2. Installation of the module will complete the U.S. Core of the ISS. The National Space Development Agency of Japan (NASDA) developed their laboratory at the Tsukuba Space Center near Tokyo. It is the first element, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments.
Cyber Security for Lighting Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Fact sheet discusses cyber threats unique to lighting control systems in buildings and helps facility managers identify the types of lighting control systems that could introduce cybersecurity risks. Download the fact sheet.
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Motil, Susan M.
2003-01-01
A Light Microscopy Module (LMM) is being engineered, designed, and developed at the NASA Glenn Research Center. The LMM is planned as a remotely controllable on-orbit microscope subrack facility, allowing flexible scheduling and control of physical science and biological science experiments within Glenn s Fluids Integrated Rack on the International Space Station. The LMM concept is a modified commercial research imaging light microscope with powerful laser-diagnostic hardware and interfaces, creating a one-of-a-kind, state-of-the-art microscopic research facility. The microscope will house several different objectives, corresponding to magnifications of 10, 40, 50, 63, and 100. Features of the LMM include high-resolution color video microscopy, brightfield, darkfield, phase contrast, differential interference contrast, spectrophotometry, and confocal microscopy combined in a single configuration. Also, laser tweezers are integrated with the diagnostics as a sample manipulation technique. As part of the development phase of the LMM, it was necessary to quantify the microgravity disturbances generated by the control box fan. Isolating the fan was deemed necessary to reduce the fan speed harmonic amplitudes and to eliminate any broadband disturbances across the 60- to 70-Hz and 160- to 170-Hz frequency ranges. The accelerations generated by a control box fan component of the LMM were measured in the Microgravity Emissions Laboratory (MEL). The MEL is a low-frequency measurement system developed to simulate and verify the on-orbit International Space Station (ISS) microgravity environment. The accelerations generated by various operating components of the ISS, if too large, could hinder the science performed onboard by disturbing the microgravity environment. The MEL facility gives customers a test-verified way of measuring their compliance with ISS limitations on vibratory disturbance levels. The facility is unique in that inertial forces in 6 degrees of freedom can be characterized simultaneously for an operating test article. Vibratory disturbance levels are measured for engineering or flight-level hardware following development from component to subassembly through the rack-level configuration. The MEL can measure accelerations as small as 10-7g, the accuracy needed to confirm compliance with ISS requirements.
1963-09-05
At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.