NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
Code of Federal Regulations, 2011 CFR
2011-07-01
... distributes that product in interstate commerce for export from the United States. Foam Insulation Product, when used to describe a product containing or consisting of plastic foam, means a product containing or consisting of the following types of foam: (1) Closed cell rigid polyurethane foam; (2) Closed cell rigid...
Code of Federal Regulations, 2012 CFR
2012-07-01
... distributes that product in interstate commerce for export from the United States. Foam Insulation Product, when used to describe a product containing or consisting of plastic foam, means a product containing or consisting of the following types of foam: (1) Closed cell rigid polyurethane foam; (2) Closed cell rigid...
Code of Federal Regulations, 2014 CFR
2014-07-01
... distributes that product in interstate commerce for export from the United States. Foam Insulation Product, when used to describe a product containing or consisting of plastic foam, means a product containing or consisting of the following types of foam: (1) Closed cell rigid polyurethane foam; (2) Closed cell rigid...
Code of Federal Regulations, 2013 CFR
2013-07-01
... distributes that product in interstate commerce for export from the United States. Foam Insulation Product, when used to describe a product containing or consisting of plastic foam, means a product containing or consisting of the following types of foam: (1) Closed cell rigid polyurethane foam; (2) Closed cell rigid...
Climate Change Impacts on Freshwater Recreational Fishing in the United States
Using a geographic information system, a spatially explicit modeling framework was developed consisting grid cells organized into 2,099 eight-digit hydrologic unit code (HUC-8) polygons for the coterminous United States. Projected temperature and precipitation changes associated...
NASA Technical Reports Server (NTRS)
Kapoor, V. J.; Valco, G. J.; Skebe, G. G.; Evans, J. C., Jr.
1985-01-01
Integrated circuit technology has been successfully applied to the design and fabrication of 0.5 x 0.5-cm planar multijunction solar-cell chips. Each of these solar cells consisted of six voltage-generating unit cells monolithically connected in series and fabricated on a 75-micron-thick, p-type, single crystal, silicon substrate. A contact photolithic process employing five photomask levels together with a standard microelectronics batch-processing technique were used to construct the solar-cell chip. The open-circuit voltage increased rapidly with increasing illumination up to 5 AM1 suns where it began to saturate at the sum of the individual unit-cell voltages at a maximum of 3.0 V. A short-circuit current density per unit cell of 240 mA/sq cm was observed at 10 AM1 suns.
Apparatus measures swelling of membranes in electrochemical cells
NASA Technical Reports Server (NTRS)
Hennigan, T. J.
1965-01-01
Apparatus consisting of a pressure plate unit, four springs of known spring constant and a micrometer measures the swelling and force exerted by the polymer membranes of alkaline electrochemical cells.
United States Food and Drug Administration Regulation of Gene and Cell Therapies.
Bailey, Alexander M; Arcidiacono, Judith; Benton, Kimberly A; Taraporewala, Zenobia; Winitsky, Steve
2015-01-01
The United States (US) Food and Drug Administration (FDA) is a regulatory agency that has oversight for a wide range of products entering the US market, including gene and cell therapies. The regulatory approach for these products is similar to other medical products within the United States and consists of a multitiered framework of statutes, regulations, and guidance documents. Within this framework, there is considerable flexibility which is necessary due to the biological and technical complexity of these products in general. This chapter provides an overview of the US FDA regulatory oversight of gene and cell therapy products.
Flores, Ana I; McKenna, David H; Montalbán, M Angeles; De la Cruz, Javier; Wagner, John E; Bornstein, Rafael
2009-04-01
The CD34+ cell content is a predictive factor for engraftment and survival after umbilical cord blood (UCB) transplantation. The high variability in the CD34 assay results in different recommended cell doses for infusion across transplant centers and also limits the clinical utility of the CD34+ cell counts provided by cord blood banks (CBBs). This bi-institutional study was intended to understand the sources of this variability. The level of CD34 agreement between the University of Minnesota (UM) and the Madrid CBB (MCBB) was evaluated on 50 UCB units before and after cryopreservation. Two cryopreserved vials per unit were thawed and processed at both laboratories. Dual-platform ISHAGE-based flow cytometry was used for CD34 enumeration. Postthaw nucleated cell recoveries were similar. However, whereas CD34+ cell enumeration before freezing was 0.35 +/- 0.22 percent, the results after thawing were 0.98 +/- 0.65 and 0.57 +/- 0.39 percent at UM and MCBB, respectively. Bland-Altman plots analysis ruled out the interchangeability of MCBB and UM CD34 values. Differences in the initial cell acquisition settings accounted for most of the CD34 discrepancy, which was no longer present after normalization of the forward scatter threshold for cell acquisition. The standardization of CD34+ cell enumeration by flow cytometry is strongly reliant on a consistent initial cell acquisition procedure. The interlaboratory variation can be minimized by using frozen cell aliquots as reference samples. Both requisites should be considered for CD34 testing and UCB unit selection by regulatory institutions involved with cord blood banking and transplantation.
Charge-Control Unit for Testing Lithium-Ion Cells
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.
2008-01-01
A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.
NASA Technical Reports Server (NTRS)
1976-01-01
The National Cancer Institute worked with Goddard Space Flight Center to propose a solution to the blood-cell freezing problem. White blood cells and bone marrow are stored for future use by leukemia patients as a result of Goddard and Jet Propulsion Laboratory expertise in electronics and cryogenics. White blood cell and bone marrow bank established using freezing unit. Freezing unit monitors temperature of cells themselves. Thermocouple placed against polyethylene container relays temperature signals to an electronic system which controls small heaters located outside container. Heaters allow liquid nitrogen to circulate at constant temperature and maintain consistent freezing rate. Ability to freeze, store, and thaw white cells and bone marrow without damage is important in leukemia treatment.
ERIC Educational Resources Information Center
Primo, Emiliano D.; Otero, Lisandro H.; Ruiz, Francisco; Klinke, Sebastián; Giordano, Walter
2018-01-01
The bacterial cell wall, a structural unit of peptidoglycan polymer comprised of glycan strands consisting of a repeating disaccharide motif [N-acetylglucosamine (NAG) and N-acetylmuramylpentapeptide (NAM pentapeptide)], encases bacteria and provides structural integrity and protection. Lysozymes are enzymes that break down the bacterial cell wall…
A Novel Unit Cell for Active Switches in the Millimeter-Wave Frequency Range
NASA Astrophysics Data System (ADS)
Müller, Daniel; Scherer, Gunnar; Lewark, Ulrich J.; Massler, Hermann; Wagner, Sandrine; Tessmann, Axel; Leuther, Arnulf; Zwick, Thomas; Kallfass, Ingmar
2018-02-01
This paper presents a novel transistor unit cell which is intended to realize compact active switches in the high millimeter-wave frequency range. The unit cell consists of the combination of shunt and common gate transistor within a four-finger transistor cell, achieving gain in the amplifying state as well as good isolation in the isolating state. Gate width-dependent characteristics of the unit cell as well as the design of actual switch implementations are discussed in detail. To verify the concept, two switches, a single pole double throw (SPDT) switch and single pole quadruple throw (SP4T) switch, intended for the WR3 frequency range (220-325 GHz) were manufactured and characterized. The measured gain at 250 GHz is 4.6 and 2.2 dB for the SPDT and SP4T switch, respectively. An isolation of more than 24 dB for the SPDT switch and 12.8 dB for the SP4T switch was achieved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Battery Assemblies § 7.42 Definitions. The following definitions apply in this subpart: Battery assembly. A unit or units consisting of cells and their electrical connections, assembled in a battery box or boxes with covers. Battery box. The exterior sides, bottom, and...
Composite Bipolar Plate for Unitized Fuel Cell/Electrolyzer Systems
NASA Technical Reports Server (NTRS)
Mittelsteadt, Cortney K.; Braff, William
2009-01-01
In a substantial improvement over present alkaline systems, an advanced hybrid bipolar plate for a unitized fuel cell/electrolyzer has been developed. This design, which operates on pure feed streams (H2/O2 and water, respectively) consists of a porous metallic foil filled with a polymer that has very high water transport properties. Combined with a second metallic plate, the pore-filled metallic plates form a bipolar plate with an empty cavity in the center.
Life Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Life Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) past life (focusing on dinosaurs and fossil formation, types, and importance); (2) animal life (examining groups of invertebrates and vertebrates, cells, reproduction, and classification systems); (3) plant life…
Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Robert; Little, Bonnie Colleen
The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consisted of a containment cell, two treatment systems, four associated waste staging and storage areas, and support areas; all were used for management of remediation wastes between 1997 and 2003.
Active cells for redundant and configurable articulated structures
NASA Astrophysics Data System (ADS)
Swensen, John P.; Nawroj, Ahsan I.; Pounds, Paul E. I.; Dollar, Aaron M.
2014-10-01
The proposed research effort explores the development of active cells—simple contractile electro-mechanical units that can be used as the material basis for larger articulable structures. Each cell, which might be considered a ‘muscle unit,’ consists of a contractile Nitinol Shape Memory Alloy (SMA) core with conductive terminals. Large numbers of these cells might be combined and externally powered to change phase, contracting to either articulate with a large strain or increase the stiffness of the ensemble, depending on the cell design. Unlike traditional work in modular robotics, the approach presented here focuses on cells that have a simplistic design and function, are inexpensive to fabricate, and are eventually scalable to sub-millimeter sizes, working toward our vision of articulated and robotic structures that can be custom-fabricated from large numbers of general cell units, similar to biological structures. In this paper, we present the design of the active cells and demonstrate their usage with three articulated structures built with them.
Nair, P N
1983-01-01
A crypto-lymphatic unit was observed at the left lateral aspect of the uvula of a mature female monkey, Macaca fascicularis. A light- and transmission electron-microscopic investigation revealed that the lumen of the crypt was filled with bacteria, desquamated epithelial cells, lymphocytes and neutrophils. The non-keratinized stratified squamous epithelium of the crypt was fragmented and showed heavy mononuclear cell infiltration and surface discontinuities, exposing lymphoid cells to foreign material. The lymphatic parenchyma consisted of organized lymphatic tissue including germinal centres. The resident cell population included lymphocytes of varying size, blastforming B- and T-lymphocytes and two types of reticular cells resembling the fibroblastic reticulum cell and the follicular dendritic cell, respectively. Occasionally granulocytes were encountered. At its base and laterally the crypto-lymphatic unit was ensheathed by a thin connective tissue capsule. Three other monkeys of the same species failed to reveal similar structures at the same site.
The neurovascular unit, matrix proteases, and innate inflammation.
del Zoppo, Gregory J
2010-10-01
In the central nervous system, microvessel-neuron interactions appear highly coordinated. The rapid simultaneous responses of the microvasculature, neurons, and glia to focal ischemia in experimental ischemic stroke suggest that these responses could be viewed in a unitary fashion, rather than as individual components. The "neurovascular unit" consists of microvessels (endothelial cells-basal lamina matrix-astrocyte end-feet [and pericytes]), astrocytes, neurons and their axons, and other supporting cells that are likely to modulate the function of the "unit." Each cell component generates an inflammatory response to ischemia. Matrix metalloproteinase (MMP)-9 was first associated with hemorrhagic transformation following focal ischemia in an experimental model. A series of studies of ischemic stroke patients also suggests a relationship between MMP-9 levels and several consequences of ischemic injury, including hemorrhagic transformation. Recent experimental work suggests specific cell sources for MMP-9 generation and for matrix proteases from four distinct families that could impact neurovascular unit integrity. © 2010 New York Academy of Sciences.
The mechanism by which arabinoxylanases can recognize highly decorated xylans
USDA-ARS?s Scientific Manuscript database
The enzymatic degradation of plant cell walls is an important biological process of increasing environmental and industrial significance. Xylan, a major component of the plant cell wall, consists of a backbone of beta 1,4-xylose (Xylp) units that are often decorated with arabinofuranose (Araf) side ...
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-03-01
Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when α approached respectively 0 and infinity. Copyright © 2015 Elsevier B.V. All rights reserved.
Method and apparatus for adding electrolyte to a fuel cell stack
DOE Office of Scientific and Technical Information (OSTI.GOV)
Congdon, J.V.; English, J.G.
1986-06-24
A process is described for adding electrolyte to a fuel cell stack, the stack comprising sheet-like elements defining a plurality of fuel cell units disposed one atop the other in abutting relationship, the units defining a substantially flat, vertically extending face, each unit including a cell comprising a pair of sheet-like spaced apart gas porous electrodes with a porous matrix layer sandwiched therebetween for retaining electrolyte during cell operation, each unit also including a sheet-like substantially non-porous separator, the separator being sandwiched between the cells of adjacent units. The improvement described here consists of: extending at least one of themore » sheet-like elements of each of a plurality of the fuel cell units outwardly from the stack face to define horizontal tabs disposed one above the other; depositing dilute electrolyte directly from electrolyte supply means upon substantially the full length, parallel to the stack face, of at least the uppermost tab, the tabs being constructed and arranged such that at least a portion of the deposited electrolyte cascades from tab to tab and down the face of the stack, the deposited electrolyte being absorbed by capillary action into the elements of the stack, the step of depositing continuing until all of the electrodes and matrix layers of the stack are fully saturated with the dilute electrolyte; and thereafter evaporating liquid from the saturated elements under controlled conditions of humidity and temperature until the stack has a desired electrolyte volume and electrolyte concentration therein.« less
Deng, Li; Zhang, Yuanyuan; Zhu, Jianfeng; Zhang, Chen
2018-06-05
A wide-band and high gain circularly polarized (CP) graphene-based reflectarray operating in the THz regime is proposed and theoretically investigated in this paper. The proposed reflectarray consists of a THz CP source and several graphene-based unit-cells. Taking advantages of the Pancharatnam Berry (PB) phase principle, the graphene-based unit-cell is capable of realizing a tunable phase range of 360° in a wide-band (1.4⁻1.7 THz) by unit-cell rotating, overcoming the restriction of intrinsic narrow-band resonance in graphene. Therefore, this graphene-based unit-cell exhibits superior bandwidth and phase tunability to its previous counterparts. To demonstrate this, a wide-band (1.4⁻1.7 THz) focusing metasurface based on the proposed unit-cell that exhibits excellent focusing effect was designed. Then, according to the reversibility of the optical path, a CP reflectarray was realized by placing a wide-band CP THz source at the focal point of the metasurface. Numerical simulation demonstrates that this reflectarray can achieve a stable high gain up to 15 dBic and an axial ratio around 2.1 dB over the 1.4⁻1.7 THz band. The good radiation performance of the proposed CP reflectarray, as demonstrated, underlines its suitability for the THz communication applications. Moreover, the design principle of this graphene-based reflectarray with a full 360° phase range tunable unit-cells provides a new pathway to design high-performance CP reflectarray in the THz regime.
NASA Astrophysics Data System (ADS)
Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong
A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.
Baslow, Morris H
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological "operating system", a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of "neuronal words and languages" for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic-synaptic-dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA-NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function.
The report describes Phase II of a demonstration of the utilization of commercial phosphoric acid fuel cells to recover energy from landfill gas. This phase consisted primarily of the construction and testing of a Gas Pretreatment Unit (GPU) whose function is to remove those impu...
Mechanisms of efferent-mediated responses in the turtle posterior crista.
Holt, Joseph C; Lysakowski, Anna; Goldberg, Jay M
2006-12-20
To study the cellular mechanisms of efferent actions, we recorded from vestibular-nerve afferents close to the turtle posterior crista while efferent fibers were electrically stimulated. Efferent-mediated responses were obtained from calyx-bearing (CD, calyx and dimorphic) afferents and from bouton (B) afferents distinguished by their neuroepithelial locations into BT units near the torus and BM units at intermediate sites. The spike discharge of CD units is strongly excited by efferent stimulation, whereas BT and BM units are inhibited, with BM units also showing a postinhibitory excitation. Synaptic activity was recorded intracellularly after spikes were blocked. Responses of BT/BM units to single efferent shocks consist of a brief depolarization followed by a prolonged hyperpolarization. Both components reflect variations in hair-cell quantal release rates and are eliminated by pharmacological antagonists of alpha9/alpha10 nicotinic receptors. Blocking calcium-dependent SK potassium channels converts the biphasic response into a prolonged depolarization. Results can be explained, as in other hair-cell systems, by the sequential activation of alpha9/alpha10 and SK channels. In BM units, the postinhibitory excitation is based on an increased rate of hair-cell quanta and depends on the preceding inhibition. There is, in addition, an efferent-mediated, direct depolarization of BT/BM and CD fibers. In CD units, it is the exclusive efferent response. Nicotinic antagonists have different effects on hair-cell efferent actions and on the direct depolarization of CD and BT/BM units. Ultrastructural studies, besides confirming the efferent innervation of type II hair cells and calyx endings, show that turtle efferents commonly contact afferent boutons terminating on type II hair cells.
Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae
Jia, Fei; Kacira, Murat; Ogden, Kimberly L.
2015-01-01
A multi-wavelength based optical density sensor unit was designed, developed, and evaluated to monitor microalgae growth in real time. The system consisted of five main components including: (1) laser diode modules as light sources; (2) photodiodes as detectors; (3) driver circuit; (4) flow cell; and (5) sensor housing temperature controller. The sensor unit was designed to be integrated into any microalgae culture system for both real time and non-real time optical density measurements and algae growth monitoring applications. It was shown that the sensor unit was capable of monitoring the dynamics and physiological changes of the microalgae culture in real-time. Algae biomass concentration was accurately estimated with optical density measurements at 650, 685 and 780 nm wavelengths used by the sensor unit. The sensor unit was able to monitor cell concentration as high as 1.05 g·L−1 (1.51 × 108 cells·mL−1) during the culture growth without any sample preparation for the measurements. Since high cell concentrations do not need to be diluted using the sensor unit, the system has the potential to be used in industrial microalgae cultivation systems for real time monitoring and control applications that can lead to improved resource use efficiency. PMID:26364640
Baslow, Morris H.
2011-01-01
The human brain is a complex organ made up of neurons and several other cell types, and whose role is processing information for use in eliciting behaviors. However, the composition of its repeating cellular units for both structure and function are unresolved. Based on recent descriptions of the brain's physiological “operating system”, a function of the tri-cellular metabolism of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) for supply of energy, and on the nature of “neuronal words and languages” for intercellular communication, insights into the brain's modular structural and functional units have been gained. In this article, it is proposed that the basic structural unit in brain is defined by its physiological operating system, and that it consists of a single neuron, and one or more astrocytes, oligodendrocytes, and vascular system endothelial cells. It is also proposed that the basic functional unit in the brain is defined by how neurons communicate, and consists of two neurons and their interconnecting dendritic–synaptic–dendritic field. Since a functional unit is composed of two neurons, it requires two structural units to form a functional unit. Thus, the brain can be envisioned as being made up of the three-dimensional stacking and intertwining of myriad structural units which results not only in its gross structure, but also in producing a uniform distribution of binary functional units. Since the physiological NAA–NAAG operating system for supply of energy is repeated in every structural unit, it is positioned to control global brain function. PMID:21720525
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
1998-09-30
This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that themore » landfill cells were used for solid waste disposal, including disposal of UXO.« less
Research opportunities in loss of red blood cell mass in space flight
NASA Technical Reports Server (NTRS)
Talbot, J. M.; Fisher, K. D.
1985-01-01
Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.
The human urothelium consists of multiple clonal units, each maintained by a stem cell.
Gaisa, Nadine T; Graham, Trevor A; McDonald, Stuart A C; Cañadillas-Lopez, Sagrario; Poulsom, Richard; Heidenreich, Axel; Jakse, Gerhard; Tadrous, Paul J; Knuechel, Ruth; Wright, Nicholas A
2011-10-01
Little is known about the clonal architecture of human urothelium. It is likely that urothelial stem cells reside within the basal epithelial layer, yet lineage tracing from a single stem cell as a means to show the presence of a urothelial stem cell has never been performed. Here, we identify clonally related cell areas within human bladder mucosa in order to visualize epithelial fields maintained by a single founder/stem cell. Sixteen frozen cystectomy specimens were serially sectioned. Patches of cells deficient for the mitochondrially encoded enzyme cytochrome c oxidase (CCO) were identified using dual-colour enzyme histochemistry. To show that these patches represent clonal proliferations, small CCO-proficient and -deficient areas were individually laser-capture microdissected and the entire mitochondrial genome (mtDNA) in each area was PCR amplified and sequenced to identify mtDNA mutations. Immunohistochemistry was performed for the different cell layers of the urothelium and adjacent mesenchyme. CCO-deficient patches could be observed in normal urothelium of all cystectomy specimens. The two-dimensional length of these negative patches varied from 2-3 cells (about 30 µm) to 4.7 mm. Each cell area within a CCO-deficient patch contained an identical somatic mtDNA mutation, indicating that the patch was a clonal unit. Patches contained all the mature cell differentiation stages present in the urothelium, suggesting the presence of a stem cell. Our results demonstrate that the normal mucosa of human bladder contains stem cell-derived clonal units that actively replenish the urothelium during ageing. The size of the clonal unit attributable to each stem cell was broadly distributed, suggesting replacement of one stem cell clone by another. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Harkness, John E.; Hymer, W. C.; Rosenberger, James L.; Grindeland, Richard E.
1984-01-01
It is shown that the implantation of encapsulated pituitary cells into heterozygous lit/+ mice inhibited the average percentage change in weight gain as compared to controls. However, homozygous lit/lit mice receiving cell-filled capsules consistently had higher percentage weight gains than their control counterparts. It was also found that thyroid-supplemented mutant mice with pituitary cell implants had significantly higher organ and carcass weights than other mutant groups.
Bifunctional catalytic electrode
NASA Technical Reports Server (NTRS)
Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)
2005-01-01
The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.
Multijunction high voltage concentrator solar cells
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C.; Chai, A.-T.
1981-01-01
The standard integrated circuit technology has been developed to design and fabricate new innovative planar multi-junction solar cell chips for concentrated sunlight applications. This 1 cm x 1 cm cell consisted of several voltage generating regions called unit cells which were internally connected in series within a single chip resulting in high open circuit voltages. Typical open-circuit voltages of 3.6 V and short-circuit currents of 90 ma were obtained at 80 AM1 suns. A dramatic increase in both short circuit current and open circuit voltage with increased light levels was observed.
Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram
NASA Technical Reports Server (NTRS)
Lee, P. J.
1984-01-01
The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.
Phenotypic, molecular, and functional characterization of human peripheral blood CD34+/THY1+ cells.
Humeau, L; Bardin, F; Maroc, C; Alario, T; Galindo, R; Mannoni, P; Chabannon, C
1996-02-01
A subset of mobilized CD34+ cells present in patient aphereses expresses Thy1 (CDw90). This population contains most long-term culture initiating cells, as assayed with a murine stromal cell line. It also contains a significant proportion of colony-forming unit granulocyte macrophage, but very few burst-forming unit erythroid. The limited differentiation towards the erythroid lineage is further confirmed by the absence of GATA-1 mRNA in the CD34+/Thy1+ subset, and by the low level of c-kit expression. The CD34+/Thy1+ subset appears phenotypically and functionally heterogeneous, a finding consistent with its high representation, compared to phenotypes such as CD34+/CD38-. Therefore, while at least some of CD34+/Thy1+ cells may be infectable by retroviral vectors, as shown by the presence of a transcript for the receptor for murine amphotropic retroviruses, the use of this selection strategy to specifically target human stem cells appears questionable.
Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W
2015-02-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.
Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.
2015-01-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142
Yoshihara, Kazuki; Takagi, Kohei; Son, Aoi; Kurihara, Ryohsuke; Tanabe, Kazuhito
2017-08-17
The use of DNA aggregates could be a promising strategy for the molecular imaging of biological functions. Herein, phosphorescent oligodeoxynucleotides were designed with the aim of visualizing oxygen fluctuation in tumor cells. DNA-ruthenium conjugates (DRCs) that consisted of oligodeoxynucleotides, a phosphorescent ruthenium complex, a pyrene unit for high oxygen responsiveness, and a nitroimidazole unit as a tumor-targeting unit were prepared. In general, oligonucleotides have low cell permeability because of their own negative charges; however, the DRC formed aggregates in aqueous solution due to the hydrophobic pyrene and nitroimidazole groups, and smoothly penetrated the cellular membrane to accumulate in tumor cells in a hypoxia-selective manner. The oxygen-dependent phosphorescence of DRC in cells was also observed. In vivo experiments revealed that aggregates of DRC accumulated in hypoxic tumor tissue that was transplanted into the left leg of mice, and showed that oxygen fluctuations in tumor tissue could be monitored by tracking of the phosphorescence emission of DRC. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Knall, Astrid-Caroline; Jones, Andrew O F; Kunert, Birgit; Resel, Roland; Reishofer, David; Zach, Peter W; Kirkus, Mindaugas; McCulloch, Iain; Rath, Thomas
2017-01-01
Herein, we describe the synthesis and characterization of a conjugated donor-acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD-BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC 70 BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS 2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD-BDT/CuInS 2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.
3D braid scaffolds for regeneration of articular cartilage.
Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol
2014-06-01
Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1992-01-01
A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.
Hicks, R P; Abercrombie, J J; Wong, R K; Leung, K P
2013-01-01
A series of 36 synthetic antimicrobial peptides containing unnatural amino acids were screened to determine their effectiveness to treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pnemoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogens, which are known to commonly infect chronic wounds. The primary amino acid sequences of these peptides incorporate either three or six dipeptide units consisting of the unnatural amino acids Tetrahydroisoquinolinecarboxylic acid (Tic) and Octahydroindolecarboxylic acid (Oic). The Tic-Oic dipeptide units are separated by SPACER amino acids with specific physicochemical properties that control how these peptides interact with bacterial cell membranes of different chemical compositions. These peptides exhibited minimum inhibitory concentrations (MIC) against these pathogens in the range from >100 to 6.25 μg/mL. The observed diversity of MIC values for these peptides against the various bacterial strains are consistent with our hypothesis that the complementarity of the physicochemical properties of the peptide and the lipid of the bacteria's cell membrane determines the resulting antibacterial activity of the peptide. Published by Elsevier Ltd.
Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction
NASA Astrophysics Data System (ADS)
Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng
2018-03-01
A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.
Fiber networks amplify active stress
Ronceray, Pierre; Broedersz, Chase P.
2016-01-01
Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks’ disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue. PMID:26921325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, X.Q.
1992-01-01
The authors have studied a simple model consisting of a chain of atoms with two atoms per unit cell. This model develops two bands when the inter-cell and intra-cell hopping amplitudes are different. They have found that superconductivity predominantly occurs when the Fermi level is close to the top of the upper band where the wavefunction has antibonding feature both inside the unit cell and between unit cells. Superconductivity occurs only in a restricted parameter range when the Fermi level is close to the top of the lower band because of the repulsive interaction within the unit cell. They findmore » that pair expectation values that 'mix' carriers of both bands can exist when interband interactions other than V12 of Suhl et al are present. But the magnitude of the 'mixed pairs' order parameters is much smaller than that of the intra-band pairs. The V12 of Suhl et al is the most important interband interaction that gives rise to the main features of a two-band model: a single transition temperature and two different gaps. They have used the model of hole superconductivity to study the variation of T(sub c) among transition metal series--the Matthias rules. They have found that the observed T(sub c)'s are consistent with superconductivity of a metal with multiple bands at the Fermi level being caused by the single band with strongest antibonding character at the Fermi level. When the Fermi level is the lower part of a band, there is no T(sub c). As the band is gradually filled, T(sub c) rises, passes through a maximum, then drops to zero when the band is full. This characteristic feature is independent of any fine structure of the band. The position of the peak and the width of the peak are correlated. Quantitative agreement with the experimental results is obtained by choosing parameters of onsite Coulomb interaction U, modulated hopping term Delta-t, and nearest neighbor repulsion V to fit the magnitude of T(sub c) and the positions of experimental peaks.« less
A numerical approximation to the elastic properties of sphere-reinforced composites
NASA Astrophysics Data System (ADS)
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
Sputtek, Andreas; Lioznov, Michael; Kröger, Nikolaus; Rowe, Arthur W
2011-04-01
We investigated two different plastic freezing bags, namely the most recently U.S. Food and Drug Administration (FDA)-approved CryoMACS(®) freezing bag (200-074-402) from Miltenyi Biotec and the familiar Cryocyte(®) freezing bag (R4R9955) from (Baxter Healthcare, Deerfield, IL, United States) for the cryogenic storage of human hematopoietic progenitor cells (HPC). The study material consisted of 12 frozen HPC pairs (= 24 transplant units) that were no longer needed for autologous treatment of patients. After thawing, one unit of a pair was transferred into the Miltenyi (M) bag; the other unit remained in the original Baxter (B) bag. After refreezing both units, all units were stored again under cryogenic conditions either partially immersed in liquid nitrogen (n = 22) or in the vapor phase over liquid nitrogen, n = 2, <-170°) before thawing. The correlation coefficients (r) between the results obtained from the two bag types were high for white blood cells (WBC) content (r = 0.98), mononuclear cells (MNC) (r = 0.97), lymphocytes (r = 0.98), monocytes (r = 0.96), membrane integrity (r = 0.93), concentration of 'free' hemoglobin (r = 0.97) and hemolysis rate (r = 0.95). With regard to clonogenicity, there were no significant differences (Student's paired t-test) for the three parameters investigated [i.e. total number of colonies, including the numbers of burst-forming units-erythroid (BFU-E) and colony-forming units-granulocyte-macrophage (CFU-GM) colonies, respectively). The CryoMACS freezing bag 200-074-402 is bioequivalent to the Cryocyte freezing container R4R9955. An advantageous feature of the CryoMACS is that its double-sterile wrapping provides additional safety regarding potential cross-contamination during cryogenic storage.
Absolute pressure transducers for space shuttle and orbiter propulsion and control systems
NASA Technical Reports Server (NTRS)
Bolta, J. J.
1974-01-01
A preliminary design was completed, reviewing of such subjects as: the trade studies for media isolation and one sensor vs. two sensors for two bridges; compensation resistors; unit design; hydrogen embrittlement; sealing techniques and test station design. A design substantiation phase was finished, consisting of testing of a prototype unit and fabrication technique studies. A cryogenic test station was implemented and prototype sensor cells were fabricated, sensors assembled, and cryogenic tests performed.
A novel field generator for magnetic stimulation in cell culture experiments.
Vogt, G; Schrefl, A; Mitteregger, R; Falkenhagen, D
1997-06-01
A novel field generator specially designed to examine the influence of low frequency magnetic fields on specific cell material was constructed and characterized. The exposure unit described in this paper consists of a controller unit and three sets of coils. The field generator permits a precious definition of the revelant signal parameters and allows the superposition of alternating current (AC) and direct current (DC) magnetic fields. Critical system parameters were monitored continuously. The three sets of coils, each arranged in the Helmholtz Configuration were characterized. After data processing and visualization the results showed a constant and homogeneous field within the experimental area. The special coil design also allows their use in an incubator.
Stack configurations for tubular solid oxide fuel cells
Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.
2010-08-31
A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.
Yin, Liyan; He, Chunsheng; Huang, Chusen; Zhu, Weiping; Wang, Xin; Xu, Yufang; Qian, Xuhong
2012-05-11
A polymeric fluorescent sensor PNME, consisting of A4 and N-isopropylacrylamide (NIPAM) units, was synthesized. PNME exhibited dual responses to pH and temperature, and could be used as an intracellular pH sensor for lysosomes imaging. Moreover, it also could sense different temperature change in living cells at 25 and 37 °C, respectively. This journal is © The Royal Society of Chemistry 2012
The Focal Surface of the JEM-EUSO Telescope
NASA Technical Reports Server (NTRS)
Kawasaki, Yoshiya
2007-01-01
Extreme Universe Space Observatory onboard JEM/EP (JEM-EUSO) is a space mission to study extremely high-energy cosmic rays. The JEM-EUSO instrument is a wide-angle refractive telescope in near-ultraviolet wavelength region to observe time-resolved atmospheric fluorescence images of the extensive air showers from the International Space Station. The focal surface is a spherical curved surface, and its area amounts to about 4.5 square m. The focal surface detector is covered with about 6,000 multi-anode photomultipliers (MAPMTs). The focal surface detector consists of Photo-Detector-Modules, each of which consists of 9 Elementary Cells (ECs). The EC contains 4 units of the MAPMTs. Therefore, about 1,500 ECs or about 160 PDMS are arranged on the whole of the focal surface of JEM- EUSO. The EC is a basic unit of the front-end electronics. The PDM is a, basic unit of the data acquisition system
Material Modeling of Stony Meteorites for Mechanical Properties
NASA Astrophysics Data System (ADS)
Agrawal, P.
2016-12-01
To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale modeling of atmospheric entry for asteroids. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology. Structural tests are also being performed on some of the meteorites including Tamdakht and Mbole to validate the predictions from unit cell models.
Experimental observation of negative effective gravity in water waves.
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.
Continuous Manufacturing of Recombinant Therapeutic Proteins: Upstream and Downstream Technologies.
Patil, Rohan; Walther, Jason
2017-03-07
Continuous biomanufacturing of recombinant therapeutic proteins offers several potential advantages over conventional batch processing, including reduced cost of goods, more flexible and responsive manufacturing facilities, and improved and consistent product quality. Although continuous approaches to various upstream and downstream unit operations have been considered and studied for decades, in recent years interest and application have accelerated. Researchers have achieved increasingly higher levels of process intensification, and have also begun to integrate different continuous unit operations into larger, holistically continuous processes. This review first discusses approaches for continuous cell culture, with a focus on perfusion-enabling cell separation technologies including gravitational, centrifugal, and acoustic settling, as well as filtration-based techniques. We follow with a review of various continuous downstream unit operations, covering categories such as clarification, chromatography, formulation, and viral inactivation and filtration. The review ends by summarizing case studies of integrated and continuous processing as reported in the literature.
Experimental Observation of Negative Effective Gravity in Water Waves
Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming
2013-01-01
The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132
Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.
Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li
2018-03-21
Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.
TADs are 3D structural units of higher-order chromosome organization in Drosophila
Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo
2018-01-01
Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869
NASA Technical Reports Server (NTRS)
Bennett, Charles W.; Keys, Denney J.; Rao, Gopalakrishna M.; Wannemacher, Hari E.; Vaidyanathan, Harry
1997-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missile and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of die tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18,202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 18,202 cycles, including: end of charge mid discharge cell voltages and voltage gradients; end of charge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11,998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery perfortnances as a funcfion of cycle life for both the real-time LEO and the accelerated life test regimes.
EOS--AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan H.
1999-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell. 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three. 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operatina at +30 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements throuch the first 18,202 cycles, including: end of chargee and discharge cell voltages and voltace -radients; end of charge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11,998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery performances as a function of cycle life for both the real time LEO and the accelerated life test regimes.
EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, Charles W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, Hari
1998-01-01
This paper reports the interim results Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-1 cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 18202 LEO cycles completed as of September 1, 1997. Each cycle consists of a 64-minute charge (VT at 1,507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5 percent DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60 percent DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 amperes (VT at 1.54 volts per cell to 1.90 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battery, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (minus 5 deg) cold plate. The entire assembly is located in a thermal chamber operating at plus 3 deg. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at plus 10 deg. The real-time LEO life test battery has met all performance requirements through the first 18,202 cycles, including: end of charge and discharge cell voltages and voltage gradients; end of charge and discharge cells pressures; within cell and between cell temperature gradients dischare capacity; current and power levels; and all charge parameters. The accelerated stress test battery has completed 11998 cycles when the test was terminated. The stress test unit met all test parameters. This paper reports battery performances as a function of cycle life for both the real-time LEO and the accelerated life test regimes.
Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes
NASA Astrophysics Data System (ADS)
Qi, Bingkun; Zhang, Lingxuan; Ge, Li
2018-03-01
We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.
Islam, Mohammad Tariqul; Islam, Md. Moinul; Samsuzzaman, Md.; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah
2015-01-01
This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors. PMID:26007721
Islam, Mohammad Tariqul; Islam, Md Moinul; Samsuzzaman, Md; Faruque, Mohammad Rashed Iqbal; Misran, Norbahiah
2015-05-20
This paper presents a negative index metamaterial incorporated UWB antenna with an integration of complementary SRR (split-ring resonator) and CLS (capacitive loaded strip) unit cells for microwave imaging sensor applications. This metamaterial UWB antenna sensor consists of four unit cells along one axis, where each unit cell incorporates a complementary SRR and CLS pair. This integration enables a design layout that allows both a negative value of permittivity and a negative value of permeability simultaneous, resulting in a durable negative index to enhance the antenna sensor performance for microwave imaging sensor applications. The proposed MTM antenna sensor was designed and fabricated on an FR4 substrate having a thickness of 1.6 mm and a dielectric constant of 4.6. The electrical dimensions of this antenna sensor are 0.20 λ × 0.29 λ at a lower frequency of 3.1 GHz. This antenna sensor achieves a 131.5% bandwidth (VSWR < 2) covering the frequency bands from 3.1 GHz to more than 15 GHz with a maximum gain of 6.57 dBi. High fidelity factor and gain, smooth surface-current distribution and nearly omni-directional radiation patterns with low cross-polarization confirm that the proposed negative index UWB antenna is a promising entrant in the field of microwave imaging sensors.
Thermal expansion of coesite determined by synchrotron powder X-ray diffraction
NASA Astrophysics Data System (ADS)
Kulik, Eleonora; Murzin, Vadim; Kawaguchi, Shogo; Nishiyama, Norimasa; Katsura, Tomoo
2018-05-01
Thermal expansion of synthetic coesite was studied with synchrotron powder X-ray diffraction in the temperature range of 100-1000 K. We determined the unit cell parameters of monoclinic coesite (a, b, c, and β) every 50 K in this temperature range. We observed that a and b parameters increase with increasing temperature, while c decreases. The β angle also decreases with temperature and approaches 120°. As a result, the unit cell volume expands by only 0.7% in this temperature range. Our measurements provide thermal expansion coefficients of coesite as a function of temperature: it increases from 3.4 × 10-6 K-1 at 100 K to 9.3 × 10-6 K-1 at 600 K and remains nearly constant above this temperature. The Suzuki model based on the zero-pressure Mie-Grüneisen equation of state was implemented to fit the unit cell volume data. The refined parameters are {V_0} = 546.30(2) Å3, Q = 7.20(12) × 106 J/mol and {θ D} = 1018(43) K, where {θ D} is the Debye temperature and {V_0} is the unit cell volume at 0 K with an assumption that {K^' } is equal to 1.8. The obtained Debye temperature is consistent with that determined in a previous study for heat capacity measurements.
Negative-Electrode Catalysts for Fe/Cr Redox Cells
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Hagedorn, N.
1987-01-01
Electrodes perform more consistently and less expensive. Surfaces catalyzed by bismuth and bismuth/lead developed for application on chromium electrode in iron/chromium redox electrochemical energy storage system. NASA Fe/Cr storage system incorporates two soluble electrodes consisting of acidified solutions of iron chloride (FeC13 and FeC12) and chromium chloride (CrC13 and CrC12) oxidized and reduced in power-conversion unit to store and produce electricity. Electrolytes circulated with pumps and stored in external tanks.
Testing strong-segregation theory against self-consistent-field theory for block copolymer melts
NASA Astrophysics Data System (ADS)
Matsen, M. W.
2001-06-01
We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.
Corrective Action Management Unit Report of Post-Closure Care Activities Calendar Year 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziock, Robert; Little, Bonnie Colleen
The Corrective Action Management Unit (CAMU) at Sandia National Laboratories, New Mexico (SNL/NM) consists of a containment cell and ancillary systems that underwent regulatory closure in 2003 in accordance with the Closure Plan in Appendix D of the Class 3 Permit Modification (SNL/NM September 1997). The containment cell was closed with wastes in place. On January 27, 2015, the New Mexico Environment Department (NMED) issued the Hazardous Waste Facility Operating Permit (Permit) for Sandia National Laboratories (NMED January 2015). The Permit became effective February 26, 2015. The CAMU is undergoing post-closure care in accordance with the Permit, as revised andmore » updated. This CAMU Report of Post-Closure Care Activities documents all activities and results for Calendar Year (CY) 2017 as required by the Permit. The CAMU containment cell consists of engineered barriers including a cover system, a bottom liner with a leachate collection and removal system (LCRS), and a vadose zone monitoring system (VZMS). The VZMS provides information on soil conditions under the cell for early leak detection. The VZMS consists of three monitoring subsystems, which include the primary subliner (PSL), a vertical sensor array (VSA), and the Chemical Waste Landfill (CWL) sanitary sewer (CSS) line. The PSL, VSA, and CSS monitoring subsystems are monitored quarterly for soil moisture concentration, the VSA is monitored quarterly for soil temperature, and the VSA and CSS monitoring subsystems are monitored annually for volatile organic compound (VOC) concentrations in the soil vapor at various depths. Baseline data for the soil moisture, soil temperature, and soil vapor were established between October 2003 and September 2004.« less
A direct methanol fuel cell system to power a humanoid robot
NASA Astrophysics Data System (ADS)
Joh, Han-Ik; Ha, Tae Jung; Hwang, Sang Youp; Kim, Jong-Ho; Chae, Seung-Hoon; Cho, Jae Hyung; Prabhuram, Joghee; Kim, Soo-Kil; Lim, Tae-Hoon; Cho, Baek-Kyu; Oh, Jun-Ho; Moon, Sang Heup; Ha, Heung Yong
In this study, a direct methanol fuel cell (DMFC) system, which is the first of its kind, has been developed to power a humanoid robot. The DMFC system consists of a stack, a balance of plant (BOP), a power management unit (PMU), and a back-up battery. The stack has 42 unit cells and is able to produce about 400 W at 19.3 V. The robot is 125 cm tall, weighs 56 kg, and consumes 210 W during normal operation. The robot is integrated with the DMFC system that powers the robot in a stable manner for more than 2 h. The power consumption by the robot during various motions is studied, and load sharing between the fuel cell and the back-up battery is also observed. The loss of methanol feed due to crossover and evaporation amounts to 32.0% and the efficiency of the DMFC system in terms of net electric power is 22.0%.
Performance of 7-cells Dye Sensitized Solar Module in Z-type Series Interconnection
NASA Astrophysics Data System (ADS)
Nur Anggraini, Putri; Muliani, Lia; Maulani Nursam, Natalita; Hidayat, Jojo
2018-01-01
Dye sensitized solar cells (DSSC) is becoming attractive research topic as third generation solar cells technology since it provides clean energy and low cost fabrication. In this study, DSSC was fabricated into module scale, which is important for practical applications. The module was prepared in sandwich structure consisting of TiO2 working electrode and Pt counter electrode on conductive substrate with an area of 100 mm x 100 mm, which was distributed into seven active cells. TiO2 paste was deposited on FTO glass as working electrode with a size of 10 mm x 98 mm per unit cell by screen printing method. Each cell was connected in Z-type series that able to produce high voltage. I - V measurement was applied in two methods consisting of laboratory testing using sun simulator under 500 W/m2 of illumination and outdoor testing using a digital multimeter under direct sunlight. The result shows that DSSC module has photoconversion efficiency of 1.08% and 1.17% for laboratory and outdoor testing, respectively. The module was also tested in three different times to monitor its stability performance.
Microscopic functional anatomy: Integumentary system: Chapter 17
Elliott, Diane G.; Ostrander, Gary K.
2000-01-01
Many of the features of the fish integument can only be observed microscopically. Because there are over 20,000 living fishes, mostly higher bony fishes (teleosts), a great diversity exists in the microscopic anatomy of the integument. This chapter presents several examples from varied taxonomic groups to illustrate the variation in morphological features. As in all vertebrate epidermis, the fundamental structural unit is the epithelial cell. This is the only constant feature, as a great diversity of cell types exists in the various fish taxa. Some of these include apocrine mucous cells and a variety of other secretory cells, ionocytes, sensory cells, and wandering cells such as leukocytes. The dermis consists essentially of two sets of collagen fibers arranged in opposing geodesic spirals around the body. The dermis of most fishes is divided into two major layers. The upper (outer) layer, the stratum spongiosum or stratum laxum, is a loose network of connective tissue, whereas the lower layer, the stratum compactum, is a dense layer consisting primarily of orthogonal collagen bands. There are also specialized dermal elements such as chromatophores scales, and fin rays.
Platz, Franz
2006-07-01
The premetamorphotic morphology and metamorphotic degeneration of the tail notochord of anuran tadpoles has been investigated. For this purpose the functional anatomy and origin of the notochord turgor was analysed in 10 species macroscopically and using light, transmission and scanning electron microscopic techniques. The notochord consists of the fibrous notochord sheath, which surrounds the notochord cells. Within the sheath these cells form a net-like unit. The inner cells are derived from the marginal notochord cells (chordoblasts). They are protected from mechanical overload by intracellular filaments and desmosomes. Due to their vacuoles, which are filled with a hyaline liquid, they have a constant volume but are deformable. Dissolved substances may pass from the vascularized fin to the notochord cells. The transport from marginal to inner cells occurs via cytopempsis and micropinocytosis. The morphological correlation of this process consists of multiple membrane invaginations and intracellular vesicles. Within the notochord cells a high turgor pressure has been observed. During metamorphosis the membrane vesiculation persists and the notochord cells degenerate. Due to the loss of turgor pressure the tight consistency of the notochord is lost. The collagen filaments and the elastic membrane of the notochord sheath dissolve. Notochord cells with their filaments, high turgor pressure and their central vacuole can function as a combined mechanical and physiological system, which is adaptable to the needs of pressure, compression, tensile and bending forces.
Solar cell array design handbook, volume 1
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1976-01-01
Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.
Military Potential Test of Elapsed-Time Indicator, P/N 85986X
1967-06-13
consisting basically of an electrolytic mercury cell, an accutron-quality mercury battery, and a pressure switch . The unit weighs 1. 687 ounces. Installed, it...orientation from 18 inches’ distance. The test item is actuated by a pressure switch which senses an actuating pressure of 40 t 5 pounds per square inch
Bediako, Shawn M; Lanzkron, Sophie; Diener-West, Marie; Onojobi, Gladys; Beach, Mary C; Haywood, Carlton
2016-05-01
Research about the influence of stigma on health outcomes in sickle cell disease is limited. We administered the recently developed Measure of Sickle Cell Stigma to 262 patients in the United States. The Measure of Sickle Cell Stigma yielded very good internal consistency and four interpretable factors. Significant associations among stigma, pain-related healthcare utilization, and perceived disease severity were observed for three of the four stigma factors (F range = 2.78-5.44). The Measure of Sickle Cell Stigma appears to be a useful tool for measuring disease-specific stigma among adults living with sickle cell disease, and further assessment of its clinical utility is warranted. © The Author(s) 2014.
Microfabrication of proangiogenic cell-laden alginate-g-pyrrole hydrogels.
DeVolder, Ross J; Zill, Andrew T; Jeong, Jae H; Kong, Hyunjoon
2012-11-01
Cells have been extensively studied for their uses in various therapies because of their capacities to produce therapeutic proteins and recreate new tissues. It has often been suggested that the efficacy of cell therapies can greatly be improved through the ability to localize and regulate cellular activities at a transplantation site; however, the technologies for this control are lacking. Therefore, this study reports a cell-Laden hydrogel patch engineered to support the proliferation and angiogenic growth factor expression of cells adhered to their surfaces, and to further promote neovascularization. Hydrogels consisting of alginate chemically linked with pyrrole units, termed alginate-g-pyrrole, were prepared through an oxidative cross-linking reaction between pyrrole units. Fibroblasts adhered to the alginate-g-pyrrole hydrogels, and exhibited increased proliferation and overall vascular endothelial growth factor (VEGF) expression, compared to those on pyrrole-free hydrogels. Furthermore, the alginate-g-pyrrole hydrogel surfaces were modified to present microposts, subsequently increasing the amount of pyrrole units on their surfaces. Cells adhered to the microfabricated gel surfaces exhibited increased proliferation and overall VEGF expression proportional to the density of the microposts. The resulting micropatterned alginate-g-pyrrole hydrogels exhibited increases in the size and density of mature blood vessels when implanted on chick chorioallantoic membranes (CAMs). The hydrogel system developed in this study will be broadly useful for improving the efficacy of a wide array of cell-based wound healing and tissue regenerative therapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kran, A.
1978-01-01
PECAN (Photovoltaic Energy Conversion Analysis) is a highly interactive decision analysis and support system. It simulates the prospects for widespread use of solar cells for the generation of electrical power. PECAN consists of a set of integrated APL functions for evaluating the potential of terrestrial photovoltaics. Specifically, the system is a deterministic simulator, which translates present and future manufacturing technology into economic and financial terms, using the production unit concept. It guides solar cell development in three areas: tactical decision making, strategic planning, and the formulation of alternative options.
Series circuit of organic thin-film solar cells for conversion of water into hydrogen.
Aoki, Atsushi; Naruse, Mitsuru; Abe, Takayuki
2013-07-22
A series circuit of bulk hetero-junction (BHJ) organic thin-film solar cells (OSCs) is investigated for electrolyzing water to gaseous hydrogen and oxygen. The BHJ OSCs applied consist of poly(3-hexylthiophene) as a donor and [6,6]-phenyl C61 butyric acid methyl ester as an acceptor. A series circuit of six such OSC units has an open circuit voltage (V(oc)) of 3.4 V, which is enough to electrolyze water. The short circuit current (J(sc)), fill factor (FF), and energy conversion efficiency (η) are independent of the number of unit cells. A maximum electric power of 8.86 mW cm(-2) is obtained at the voltage of 2.35 V. By combining a water electrolysis cell with the series circuit solar cells, the electrolyzing current and voltage obtained are 1.09 mA and 2.3 V under a simulated solar light irradiation (100 mW cm(-2), AM1.5G), and in one hour 0.65 mL hydrogen is generated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity
NASA Technical Reports Server (NTRS)
Corder, Eric L.; Briscoe, Jeri
2004-01-01
In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm crystal to be viewed in the vertical dimension on a standard NTSC monitor (4:3 aspect ratio). Images of the 10 crystals are collected periodically and stored in sets by the DACU.
The Daniell cell, Ohm's law, and the emergence of the International System of Units
NASA Astrophysics Data System (ADS)
Jayson, Joel S.
2014-01-01
Telegraphy originated in the 1830s and 40 s and flourished in the following decades but with a patchwork of electrical standards. Electromotive force was for the most part measured in units of the predominant Daniell cell, but each telegraphy company had their own resistance standard. In 1862, the British Association for the Advancement of Science formed a committee to address this situation. By 1873, they had given definition to the electromagnetic system of units (emu) and defined the practical units of the ohm as 109 emu units of resistance and the volt as 108 emu units of electromotive force. These recommendations were ratified and expanded upon in a series of international congresses held between 1881 and 1904. A proposal by Giovanni Giorgi in 1901 took advantage of a coincidence between the conversion of the units of energy in the emu system (the erg) and in the practical system (the Joule). As it was, the same conversion factor existed between the cgs based emu system and a theretofore undefined MKS system. By introducing another unit X (where X could be any of the practical electrical units), Giorgi demonstrated that a self-consistent MKSX system was tenable without the need for multiplying factors. Ultimately, the ampere was selected as the fourth unit. It took nearly 60 years, but in 1960, Giorgi's proposal was incorporated as the core of the newly inaugurated International System of Units (SI). This article surveys the physics, physicists, and events that contributed to those developments.
NASA Technical Reports Server (NTRS)
Hatton, J. P.; Lewis, M. L.; Roquefeuil, S. B.; Chaput, D.; Cazenave, J. P.; Schmitt, D. A.
1998-01-01
The results of experiments performed in recent years on board facilities such as the Space Shuttle/Spacelab have demonstrated that many cell systems, ranging from simple bacteria to mammalian cells, are sensitive to the microgravity environment, suggesting gravity affects fundamental cellular processes. However, performing well-controlled experiments aboard spacecraft offers unique challenges to the cell biologist. Although systems such as the European 'Biorack' provide generic experiment facilities including an incubator, on-board 1-g reference centrifuge, and contained area for manipulations, the experimenter must still establish a system for performing cell culture experiments that is compatible with the constraints of spaceflight. Two different cell culture kits developed by the French Space Agency, CNES, were recently used to perform a series of experiments during four flights of the 'Biorack' facility aboard the Space Shuttle. The first unit, Generic Cell Activation Kit 1 (GCAK-1), contains six separate culture units per cassette, each consisting of a culture chamber, activator chamber, filtration system (permitting separation of cells from supernatant in-flight), injection port, and supernatant collection chamber. The second unit (GCAK-2) also contains six separate culture units, including a culture, activator, and fixation chambers. Both hardware units permit relatively complex cell culture manipulations without extensive use of spacecraft resources (crew time, volume, mass, power), or the need for excessive safety measures. Possible operations include stimulation of cultures with activators, separation of cells from supernatant, fixation/lysis, manipulation of radiolabelled reagents, and medium exchange. Investigations performed aboard the Space Shuttle in six different experiments used Jurkat, purified T-cells or U937 cells, the results of which are reported separately. We report here the behaviour of Jurkat and U937 cells in the GCAK hardware in ground-based investigations simulating the conditions expected in the flight experiment. Several parameters including cell concentration, time between cell loading and activation, and storage temperature on cell survival were examined to characterise cell response and optimise the experiments to be flown aboard the Space Shuttle. Results indicate that the objectives of the experiments could be met with delays up to 5 days between cell loading into the hardware and initial in flight experiment activation, without the need for medium exchange. Experiment hardware of this kind, which is adaptable to a wide range of cell types and can be easily interfaced to different spacecraft facilities, offers the possibility for a wide range of experimenters successfully and easily to utilise future flight opportunities.
Liu, Hanhui; Li, Mengping; Kaner, Richard B; Chen, Songyan; Pei, Qibing
2018-05-09
Owing to the need for portable and sustainable energy sources and the development trend for microminiaturization and multifunctionalization in the electronic components, the study of integrated self-charging power packs has attracted increasing attention. A new self-charging power pack consisting of a silicon nanowire array/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) hybrid solar cell and a laser-scribed graphene (LSG) supercapacitor has been fabricated. The Si nanowire array/PEDOT:PSS hybrid solar cell structure exhibited a high power conversion efficiency (PCE) of 12.37%. The LSG demonstrated excellent energy storage capability for the power pack, with high current density, energy density, and cyclic stability when compared to other supercapacitor electrodes such as active carbon and conducting polymers. The overall efficiency of the power unit is 2.92%.
Lee, Young-Ho; Park, Ho-Won; Lee, Ju-Hyun; Seo, Hyun-Woo; Lee, Si-Young
2012-01-01
The purpose of our study was to evaluate the effect of photodynamic therapy (PDT), using erythrosine as a photosensitizing agent and a dental halogen curing unit as a light source, on Streptococcus mutans in a biofilm phase. The S. mutans biofilms were formed in a 24-well cell culture cluster. Test groups consisted of biofilms divided into four groups: group 1: no photosensitizer or light irradiation treatment (control group); group 2: photosensitizer treatment alone; group 3: light irradiation alone; group 4: photosensitizer treatment and light irradiation. After treatments, the numbers of colony-forming unit (CFU) were counted and samples were examined by confocal laser scanning fluorescence microscopy (CLSM). Only group 4 (combined treatment) resulted in significant increases in cell death, with rates of 75% and 55% after 8 h of incubation, and 74% and 42% at 12 h, for biofilms formed in brain–heart infusion (BHI) broth supplemented with 0% or 0.1% sucrose, respectively. Therefore, PDT of S. mutans biofilms using a combination of erythrosine and a dental halogen curing unit, both widely used in dental clinics, resulted in a significant increase in cell death. The PDT effects are decreased in biofilms that form in the presence of sucrose. PMID:23222991
Crystal-Chemical Correlations in Chromites from Kimberlitic and Non-Kimberlitic Sources.
NASA Astrophysics Data System (ADS)
Freckelton, C. N.; Flemming, R. L.
2009-05-01
This study explores the utility of micro X-ray diffraction (μXRD) as a tool for diamond exploration, as a compliment to current industry-standard techniques such as electron probe microanalysis (EPMA). Here we examine chromite. As one of the first phases to crystallize in mantle rocks, it is a useful indicator of upper mantle magmatic conditions in rocks that have been sampled by kimberlites. In addition, chromite does not alter easily from chemical and physical weathering processes. As such, chromite is a useful kimberlite indicator mineral in diamond exploration. We present correlations between crystal structure (unit cell) and chemical composition of chromite, (Fe,Mg)[Cr, Al]2O4, using correlated μXRD and EPMA data for 133 chromites from a three source locations: Two kimberlite sources and one non-kimberlitic source from an Archean granite/greenstone terrain. Quantitative analysis was performed using Electron Probe Microanalysis (EPMA) at Mineral Services, South Africa, prior to the loan of the samples. Randomly-oriented chromite grains, approximately 500 μm in diameter, were analyzed as previously mounted for EPMA. Micro X-ray-diffraction was performed using a Bruker D8-Discover Diffractometer, with θ-θ geometry, with CuKα radiation, operating at 40 kV and 40 mA, with nominal beam diameter of 500 μm. The data were collected in omega scan mode. Two dimensional General Area Detector Diffraction System (GADDS) images were collected for 20 minutes per image, and integrated to produce one-dimensional plots of intensity versus 2θ, for subsequent unit cell refinement using CELREF. Although all samples in this study were considered to be 'chromite', a plot of Cr/(Cr+Al) versus Fe2+/(Fe2++Mg) shows extensive substitution among four dominant members: chromite (FeCr2O4), magnesio-chromite (MgCr2O4), spinel (MgAl2O4), and hercynite (FeAl2O4), where Mg and Fe2+ substitute for one another on the tetrahedral site, and Cr and Al substitute for one another on the octahedral site. Our data are widely variable as compared to the field occupied by chromite inclusions in diamonds (high Cr and Mg (˜60 wt %) and very low Ti (˜0.40 wt %). Plots of the unit cell parameter, ao, versus composition demonstrate a decrease in unit cell size with increasing Al content (and corresponding decrease in Cr content), consistent with a smaller cation radius for Al versus Cr (Al=0.675 Å and Cr=0.905 Å). The trend in unit cell size is unlikely to be effected by Mg-Fe substitution because of the very small difference in their tetrahedral cation radii (Fe2+=0.835 Å and Mg=0.86 Å). Initial plots of composition versus unit cell parameter were clearly able to distinguish a difference between unit cell of kimberlitic chromites and non-kimberlitic chromites. The significantly higher Cr content in kimberlitic chromites (radius=0.905 Å), and correspondingly higher Al content in non-kimberlitic chromites (radius=0.675 Å), results in a striking bimodal distribution in unit cell parameter, ao, where kimberlitic chromites have a larger unit cell (> 8.3 Å) than non-kimberlitic chromites (< 8.3 Å). This preliminary data provides a useful starting point for screening minerals from naturally relevant chromite solid solutions using their corresponding unit cell parameters. Future work will examine which site substitutions (octahedral versus tetrahedral) are affecting the unit cell as well as the effect of cation order-disorder on unit cell parameters.
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
Fiber networks amplify active stress
NASA Astrophysics Data System (ADS)
Lenz, Martin; Ronceray, Pierre; Broedersz, Chase
Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.
Heleg-Shabtai, Vered; Aizen, Ruth; Sharon, Etery; Sohn, Yang Sung; Trifonov, Alexander; Enkin, Natalie; Freage, Lina; Nechushtai, Rachel; Willner, Itamar
2016-06-15
Mesoporous SiO2 nanoparticles, MP-SiO2 NPs, are functionalized with the boronic acid ligand units. The pores of the MP-SiO2 NPs are loaded with the anticancer drug mitoxantrone, and the pores are capped with the anticancer drug gossypol. The resulting two-drug-functionalized MP-SiO2 NPs provide a potential stimuli-responsive anticancer drug carrier for cooperative chemotherapeutic treatment. In vitro experiments reveal that the MP-SiO2 NPs are unlocked under environmental conditions present in cancer cells, e.g., acidic pH and lactic acid overexpressed in cancer cells. The effective unlocking of the capping units under these conditions is attributed to the acidic hydrolysis of the boronate ester capping units and to the cooperative separation of the boronate ester bridges by the lactate ligand. The gossypol-capped mitoxantrone-loaded MP-SiO2 NPs reveals preferential cytotoxicity toward cancer cells and cooperative chemotherapeutic activities toward the cancer cells. The MCF-10A epithelial breast cells and the malignant MDA-MB-231 breast cancer cells treated with the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed after a time-interval of 5 days a cell death of ca. 8% and 60%, respectively. Also, the gossypol-capped mitoxantrone-loaded MP-SiO2 NPs revealed superior cancer-cell death (ca. 60%) as compared to control carriers consisting of β-cyclodextrin-capped mitoxantrone-loaded (ca. 40%) under similar loading of the mitoxantrone drug. The drugs-loaded MP-SiO2 NPs reveal impressive long-term stabilities.
Differences in reward processing between putative cell types in primate prefrontal cortex
Fan, Hongwei; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli. PMID:29261734
Differences in reward processing between putative cell types in primate prefrontal cortex.
Fan, Hongwei; Pan, Xiaochuan; Wang, Rubin; Sakagami, Masamichi
2017-01-01
Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.
Wang, Tao; Zhang, Yaozhong; Wei, Longfei; Teng, Yuhan G; Honda, Tadashi; Ojima, Iwao
2018-04-30
A unique asymmetric bow-tie poly(amidoamine) (PAMAM) dendrimer (ABTD) scaffold was designed and developed as a well-defined macromolecular carrier for tumor-targeted drug delivery. The ABTD scaffold in this study consists of a G3-half-dendron (G3-HD) unit and a G1-half-dendron (G1-HD) unit, bearing thiol moiety in each unit and a bis(maleimide) linker unit, which undergo sequential thiol-maleimide coupling to assemble the scaffold. This assembly methodology is applicable to all other combinations of different generations of PAMAM dendrimers. In the prototype ABTD in this study, 16 biotin moieties were tethered to the G3-HD unit and 4 payloads (new-generation taxoid) to the G1-HD via a self-immolative linker to form an ABTD-tumor-targeting conjugate (ABTD-TTC-1). Two other ABTD-TTCs were synthesized, wherein the G1-HD unit was tethered to a fluorescence-labeled taxoid or to a fluorescent probe. These three ABTD-TTCs were constructed by using a common key ABTD 6 bearing a terminal acetylene group in the G1-HD unit, which was fully characterized as a single molecule by high-resolution mass spectrometry and NMR despite its high molecular weight ( M w : 12 876). Then, the click reaction was employed to couple ABTD 6 with a small-molecule payload or fluorescence probe unit bearing a terminal azide moiety. ABTD-TTC-3, as a surrogate of ABTD-TTC-2, showed substantially enhanced internalization into two cancer cell lines via receptor-mediated endocytosis, attributed to multibinding effect. ABTD-TTC-1 exhibited a remarkable selectivity to cancer cells (1400-7500 times) compared to human normal cells, which demonstrates the salient feature and bright prospect of the ABTD-based tumor-targeted drug-delivery system.
NASA Astrophysics Data System (ADS)
Mosby, Matthew; Matouš, Karel
2015-12-01
Three-dimensional simulations capable of resolving the large range of spatial scales, from the failure-zone thickness up to the size of the representative unit cell, in damage mechanics problems of particle reinforced adhesives are presented. We show that resolving this wide range of scales in complex three-dimensional heterogeneous morphologies is essential in order to apprehend fracture characteristics, such as strength, fracture toughness and shape of the softening profile. Moreover, we show that computations that resolve essential physical length scales capture the particle size-effect in fracture toughness, for example. In the vein of image-based computational materials science, we construct statistically optimal unit cells containing hundreds to thousands of particles. We show that these statistically representative unit cells are capable of capturing the first- and second-order probability functions of a given data-source with better accuracy than traditional inclusion packing techniques. In order to accomplish these large computations, we use a parallel multiscale cohesive formulation and extend it to finite strains including damage mechanics. The high-performance parallel computational framework is executed on up to 1024 processing cores. A mesh convergence and a representative unit cell study are performed. Quantifying the complex damage patterns in simulations consisting of tens of millions of computational cells and millions of highly nonlinear equations requires data-mining the parallel simulations, and we propose two damage metrics to quantify the damage patterns. A detailed study of volume fraction and filler size on the macroscopic traction-separation response of heterogeneous adhesives is presented.
Fabrication of multijunction high voltage concentrator solar cells by integrated circuit technology
NASA Technical Reports Server (NTRS)
Valco, G. J.; Kapoor, V. J.; Evans, J. C., Jr.; Chai, A.-T.
1981-01-01
Standard integrated circuit technology has been developed for the design and fabrication of planar multijunction (PMJ) solar cell chips. Each 1 cm x 1 cm solar chip consisted of six n(+)/p, back contacted, internally series interconnected unit cells. These high open circuit voltage solar cells were fabricated on 2 ohm-cm, p-type 75 microns thick, silicon substrates. A five photomask level process employing contact photolithography was used to pattern for boron diffusions, phorphorus diffusions, and contact metallization. Fabricated devices demonstrated an open circuit voltage of 3.6 volts and a short circuit current of 90 mA at 80 AMl suns. An equivalent circuit model of the planar multi-junction solar cell was developed.
Born to run: creating the muscle fiber.
Schejter, Eyal D; Baylies, Mary K
2010-10-01
From the muscles that control the blink of your eye to those that allow you to walk, the basic architecture of muscle is the same: muscles consist of bundles of the unit muscle cell, the muscle fiber. The unique morphology of the individual muscle fiber is dictated by the functional demands necessary to generate and withstand the forces of contraction, which in turn leads to movement. Contractile muscle fibers are elongated, syncytial cells, which interact with both the nervous and skeletal systems to govern body motion. In this review, we focus on three key cell-cell and cell-matrix contact processes, that are necessary to create this exquisitely specialized cell: cell fusion, cell elongation, and establishment of a myotendinous junction. We address these processes by highlighting recent findings from the Drosophila model system. Copyright © 2010 Elsevier Ltd. All rights reserved.
The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random dot patterns.
Snowden, R J; Treue, S; Andersen, R A
1992-01-01
We studied the response of single units to moving random dot patterns in areas V1 and MT of the alert macaque monkey. Most cells could be driven by such patterns; however, many cells in V1 did not give a consistent response but fired at a particular point during stimulus presentation. Thus different dot patterns can produce a markedly different response at any particular time, though the time averaged response is similar. A comparison of the directionality of cells in both V1 and MT using random dot patterns shows the cells of MT to be far more directional. In addition our estimates of the percentage of directional cells in both areas are consistent with previous reports using other stimuli. However, we failed to find a bimodality of directionality in V1 which has been reported in some other studies. The variance associated with response was determined for individual cells. In both areas the variance was found to be approximately equal to the mean response, indicating little difference between extrastriate and striate cortex. These estimates are in broad agreement (though the variance appears a little lower) with those of V1 cells of the anesthetized cat. The response of MT cells was simulated on a computer from the estimates derived from the single unit recordings. While the direction tuning of MT cells is quite wide (mean half-width at half-height approximately 50 degrees) it is shown that the cells can reliably discriminate much smaller changes in direction, and the performance of the cells with the smallest discriminanda were comparable to thresholds measured with human subjects using the same stimuli (approximately 1.1 degrees). Minimum discriminanda for individual cells occurred not at the preferred direction, that is, the peak of their tuning curves, but rather on the steep flanks of their tuning curves. This result suggests that the cells which may mediate the discrimination of motion direction may not be the cells most sensitive to that direction.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Mechanical properties of triaxially braided composites: Experimental and analytical results
NASA Technical Reports Server (NTRS)
Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.
1992-01-01
The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.
Respiratory herpesvirus infection in two Indian Ringneck parakeets.
Lazic, Tatjana; Ackermann, Mark R; Drahos, Jo M; Stasko, Judith; Haynes, Joseph S
2008-03-01
A flock of Indian Ringneck parakeets (Psittacula krameri manillensis) was imported to the United States from Australia. Soon after, 1 parakeet suddenly died, and a second parakeet died after a 2-day course of illness, which consisted of anorexia, lethargy, emaciation, and dyspnea. At necropsy, the affected birds had diffuse consolidation and red discoloration of the lungs, as well as thickened, congested air sacs. The microscopic examination revealed multifocal, necrotizing bronchitis, parabronchitis, and interstitial pneumonia. The lumen of the affected airways contained numerous, large syncytial cells with up to 15 nuclei. The nuclei of these syncytial cells often contained large, eosinophilic inclusion bodies, consistent with herpesvirus. The epithelium of the trachea and air sacs was hypertrophied and contained syncytial cells with intranuclear inclusion bodies similar to the bronchi. In addition, a few intranuclear inclusion bodies were also present in the epithelial cells that line the air capillaries. On ultrastructural examination, the nuclei of degenerating epithelial cells contained clusters of viral nucleocapsid proteins and unenveloped, icosahedral, viral particles that were approximately 90 nm in diameter. In addition, some epithelial cells contained clusters of enveloped viral particles approximately 105 nm in diameter, within the cytocavitary network. These lesions are characteristic of those caused by respiratory herpesvirus of parakeets.
Mica dust and pneumoconiosis: example of a pure occupational exposure in a muscovite milling unit.
Hulo, Sébastien; Cherot-kornobis, Nathalie; Edme, Jean-Louis; de Broucker, Virginie; Falgayrac, Guillaume; Penel, Guillaume; Legrand-Cattan, Karinne; Remy, Jacques; Sobaszek, Annie
2013-12-01
We present pulmonary disorders of four employees who were exposed to high concentration of pure mica dust in a muscovite milling unit. All cases underwent traditional examinations with a dual-energy chest computed tomographic scan. An analysis of exhaled breath condensate by Raman microspectrometry and of mineralogical content of a lung biopsy was performed for one case. All cases showed bilateral micronodular ground glass opacities and mediastinal and hilar hyperdense lymph nodes consistent with the nodal sequestration of mineral particles. Histological analysis showed giant cell granulomas without typical silicotic nodule with high concentration of birefringent particles consistent with mica. Mica particles found in the exhaled breath condensate were identical to particles in ambient air at the company. Occupational exposure to mica dust is responsible for diffuse infiltrative lung disease by overload processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2007-02-20
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less
Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito
2018-05-04
Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong
2017-07-01
Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit
NASA Technical Reports Server (NTRS)
Jeevarajan, J. A.; Darcy, E. C.
2004-01-01
The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.
Epidemiologic characteristics and risk factors for renal cell cancer
Lipworth, Loren; Tarone, Robert E; Lund, Lars; McLaughlin, Joseph K
2009-01-01
Incidence rates of renal cell cancer, which accounts for 85% of kidney cancers, have been rising in the United States and in most European countries for several decades. Family history is associated with a two- to four-fold increase in risk, but the major forms of inherited predisposition together account for less than 4% of renal cell cancers. Cigarette smoking, obesity, and hypertension are the most consistently established risk factors. Analgesics have not been convincingly linked with renal cell cancer risk. A reduced risk of renal cell cancer among statin users has been hypothesized but has not been adequately studied. A possible protective effect of fruit and vegetable consumption is the only moderately consistently reported dietary finding, and, with the exception of a positive association with parity, evidence for a role of hormonal or reproductive factors in the etiology of renal cell cancer in humans is limited. A recent hypothesis that moderate levels of alcohol consumption may be protective for renal cell cancer is not strongly supported by epidemiologic results, which are inconsistent with respect to the categories of alcohol consumption and the amount of alcohol intake reportedly associated with decreased risk. For occupational factors, the weight of the evidence does not provide consistent support for the hypotheses that renal cell cancer may be caused by asbestos, gasoline, or trichloroethylene exposure. The established determinants of renal cell cancer, cigarette smoking, obesity, and hypertension, account for less than half of these cancers. Novel epidemiologic approaches, including evaluation of gene–environment interactions and epigenetic mechanisms of inherited and acquired increased risk, are needed to explain the increasing incidence of renal cell cancer. PMID:20865085
Hashikawa, Naoya; Yamamoto, Noritaka; Sakurai, Hiroshi
2007-04-06
The hydrophobic repeat is a conserved structural motif of eukaryotic heat shock transcription factor (HSF) that enables HSF to form a homotrimer. Homotrimeric HSF binds to heat shock elements (HSEs) consisting of three inverted repeats of the sequence nGAAn. Sequences consisting of four or more nGAAn units are bound cooperatively by two HSF trimers. We show that in Saccharomyces cerevisiae cells oligomerization-defective Hsf1 is not able to bind HSEs with three units and is not extensively phosphorylated in response to stress; it is therefore unable to activate genes containing this type of HSE. Several lines of evidence indicate that oligomerization is a prerequisite for stress-induced hyperphosphorylation of Hsf1. In contrast, oligomerization and hyperphosphorylation are not necessary for gene activation via HSEs with four units. Intragenic suppressor screening of oligomerization-defective hsf1 showed that an interface between adjacent DNA-binding domains is important for the binding of Hsf1 to the HSE. We suggest that Saccharomyces cerevisiae HSEs with different structures are regulated differently; HSEs with three units require Hsf1 to be both oligomerized and hyperphosphorylated, whereas HSEs with four or more units do not require either.
Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J
2018-04-01
Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.
Autotransporter-based cell surface display in Gram-negative bacteria.
Nicolay, Toon; Vanderleyden, Jos; Spaepen, Stijn
2015-02-01
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Sharma, Pradeep; Yamini, Shavait; Dube, Divya; Singh, Amar; Sinha, Mau; Dey, Sharmistha; Mitra, Dipendra K; Kaur, Punit; Sharma, Sujata; Singh, Tej P
2012-06-22
Peptidoglycan (PGN) consists of repeating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), which are cross-linked by short peptides. It is well known that PGN forms a major cell wall component of bacteria making it an important ligand for the recognition by peptidoglycan recognition proteins (PGRPs) of the host. The binding studies showed that PGN, GlcNAc, and MurNAc bind to camel PGRP-S (CPGRP-S) with affinities corresponding to dissociation constants of 1.3 × 10(-9), 2.6 × 10(-7), and 1.8 × 10(-7) M, respectively. The crystal structure determinations of the complexes of CPGRP-S with GlcNAc and MurNAc showed that the structures consist of four crystallographically independent molecules, A, B, C, and D, in the asymmetric unit that exists as A-B and C-D units of two neighboring linear polymers. The structure determinations showed that compounds GlcNAc and MurNAc bound to CPGRP-S at the same subsite in molecule C. Both GlcNAc and MurNAc form several hydrogen bonds and extensive hydrophobic interactions with protein atoms, indicating the specific nature of their bindings. Flow cytometric studies showed that PGN enhanced the secretions of TNF-α and IL-6 from human peripheral blood mononuclear cells. The introduction of CPGRP-S to the PGN-challenged cultured peripheral blood mononuclear cells reduced the expressions of proinflammatory cytokines, TNF-α and IL-6. This showed that CPGRP-S inhibited PGN-induced production of proinflammatory cytokines and down-regulated macrophage-mediated inflammation, indicating its potential applications as an antibacterial agent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olchowy, Jaroslaw; Jedrzejczak, Robert; Milewski, Slawomir
2005-11-01
The isomerase domain of glucosamine-6-phosphate synthase from C. albicans has been crystallized and X-ray diffraction data have been collected. Preliminary analysis of the data reveals the oligomeric structure of the eukaryotic synthase to be a ‘dimer’ of prokaryotic-like dimers. Glucosamine-6-phosphate synthase (EC 2.6.1.16) catalyses the first and practically irreversible step in the hexosamine metabolism pathway, the end product of which, uridine 5′-diphospho-N-acetyl d-glucosamine, is an essential substrate for assembly of the cell wall. The isomerase domain, consisting of residues 346–712 (42 kDa), of glucosamine-6-phosphate synthase from Candida albicans has been crystallized. X-ray analysis revealed that the crystals belonged to spacemore » group I4, with unit-cell parameters a = b = 149, c = 103 Å. Diffraction data were collected to 3.8 Å. Preliminary results from molecular replacement using the homologous bacterial monomer reveal that the asymmetric unit contains two monomers that resemble a bacterial dimer. The crystal lattice consists of pairs of such symmetry-related dimers forming elongated tetramers.« less
NASA Technical Reports Server (NTRS)
Vezzoli, G. C.; Chen, M. F.; Craver, F.
1991-01-01
It is observed that for the known high-T(sub c) Cu-, Tl-, and Bi-based superconductors, T(sub c) scales consistently with the number of bound holes per unit cell which arise from charge transfer excitations of frequency approximately = 3 x 10(exp 13) that neutralized the multivalence cations into diamagnetic states. The resulting holes are established on the oxygens. Extrapolation of this empirical fit in the up-temperature direction suggests a T(sub c) of about 220-230 K at a value of 25 holes/unit cell (approximately the maximum that can be materials-engineered into a high-T(sub c) K2MnF4 or triple Perovskite structure). In the down-temperature direction, the extrapolation gives a T(sub c) in the vicinity of 235 K for the Y-Ba-Cu-O system as well as the known maximum temperature of 23 K for low-T(sub c) materials shown by Nb3Ge. The approach is also consistent with the experimental findings that only multivalence ions which are diamagnetic in their atomic state (Cu, Tl, Bi, Pb, and Sb) associate with high-T(sub c) compounds.
Functional morphology of femoral glands in the Tegu lizard, Tupinambis merianae.
Chamut, Silvia; Valdez, Valeria García; Manes, Mario E
2009-04-01
Several lizards have femoral glands, which have an influence in various reproductive behaviors. In this paper we describe the morphological organization of the femoral glands in the Tegu, Tupinambis merianae, by means of light and electron microscopy. Even though these glands are present in both genders, secretions during the reproductive period can only be found in males. The glandular parenchyma, which is organized in numerous secretory units, consists of keratinocyte-like cells and granular cells. The holocrine secretion is constituted from both cells, which lose their integrity and become a semi-amorphous material, reinforced by keratin sheets. The discharges of each unit merge together into a solid cylinder of secretion, surrounded by epithelial cells, that is extruded to the exterior. The keratin sheets and epithelial layers that surround both the complete and partial secretions form a sort of structural support suitable for the type of territorial demarcation characteristic of the species. The granular cells, supposedly the producers of pheromones, are characterized by the presence of electron-dense granules and multilaminar membranous bodies that show ultrastructural changes of unknown function. The free granules in the secretion cylinder may act as pheromone deposits.
Umbilical cord blood expansion with nicotinamide provides long-term multilineage engraftment.
Horwitz, Mitchell E; Chao, Nelson J; Rizzieri, David A; Long, Gwynn D; Sullivan, Keith M; Gasparetto, Cristina; Chute, John P; Morris, Ashley; McDonald, Carolyn; Waters-Pick, Barbara; Stiff, Patrick; Wease, Steven; Peled, Amnon; Snyder, David; Cohen, Einat Galamidi; Shoham, Hadas; Landau, Efrat; Friend, Etty; Peleg, Iddo; Aschengrau, Dorit; Yackoubov, Dima; Kurtzberg, Joanne; Peled, Tony
2014-07-01
Delayed hematopoietic recovery is a major drawback of umbilical cord blood (UCB) transplantation. Transplantation of ex vivo-expanded UCB shortens time to hematopoietic recovery, but long-term, robust engraftment by the expanded unit has yet to be demonstrated. We tested the hypothesis that a UCB-derived cell product consisting of stem cells expanded for 21 days in the presence of nicotinamide and a noncultured T cell fraction (NiCord) can accelerate hematopoietic recovery and provide long-term engraftment. In a phase I trial, 11 adults with hematologic malignancies received myeloablative bone marrow conditioning followed by transplantation with NiCord and a second unmanipulated UCB unit. Safety, hematopoietic recovery, and donor engraftment were assessed and compared with historical controls. No adverse events were attributable to the infusion of NiCord. Complete or partial neutrophil and T cell engraftment derived from NiCord was observed in 8 patients, and NiCord engraftment remained stable in all patients, with a median follow-up of 21 months. Two patients achieved long-term engraftment with the unmanipulated unit. Patients transplanted with NiCord achieved earlier median neutrophil recovery (13 vs. 25 days, P < 0.001) compared with that seen in historical controls. The 1-year overall and progression-free survival rates were 82% and 73%, respectively. UCB-derived hematopoietic stem and progenitor cells expanded in the presence of nicotinamide and transplanted with a T cell-containing fraction contain both short-term and long-term repopulating cells. The results justify further study of NiCord transplantation as a single UCB graft. If long-term safety is confirmed, NiCord has the potential to broaden accessibility and reduce the toxicity of UCB transplantation. Clinicaltrials.gov NCT01221857. Gamida Cell Ltd.
Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus.
Pressnitzer, D; Meddis, R; Delahaye, R; Winter, I M
2001-08-15
Comodulation masking release (CMR) enhances the detection of signals embedded in wideband, amplitude-modulated maskers. At least part of the CMR is attributable to across-frequency processing, however, the relative contribution of different stages in the auditory system to across-frequency processing is unknown. We have measured the responses of single units from one of the earliest stages in the ascending auditory pathway, the ventral cochlear nucleus, where across frequency processing may take place. A sinusoidally amplitude-modulated tone at the best frequency of each unit was used as a masker. A pure tone signal was added in the dips of the masker modulation (reference condition). Flanking components (FCs) were then added at frequencies remote from the unit best frequency. The FCs were pure tones amplitude modulated either in phase (comodulated) or out of phase (codeviant) with the on-frequency component. Psychophysically, this CMR paradigm reduces within-channel cues while producing an advantage of approximately 10 dB for the comodulated condition in comparison with the reference condition. Some of the recorded units showed responses consistent with perceptual CMR. The addition of the comodulated FCs produced a strong reduction in the response to the masker modulation, making the signal more salient in the poststimulus time histograms. A decision statistic based on d' showed that threshold was reached at lower signal levels for the comodulated condition than for reference or codeviant conditions. The neurons that exhibited such a behavior were mainly transient chopper or primary-like units. The results obtained from a subpopulation of transient chopper units are consistent with a possible circuit in the cochlear nucleus consisting of a wideband inhibitor contacting a narrowband cell. A computational model was used to confirm the feasibility of such a circuit.
cellPACK: A Virtual Mesoscope to Model and Visualize Structural Systems Biology
Johnson, Graham T.; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S.; Sanner, Michel F.; Olson, Arthur J.
2014-01-01
cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10−7–10−8m) between molecular and cellular biology. cellPACK’s modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive 3D models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is currently available as open source code, with tools for validation of models and with recipes and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators, and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org. PMID:25437435
Cord blood clinical processing, cryopreservation, and storage.
Elmoazzen, Heidi; Holovati, Jelena L
2015-01-01
Allogeneic umbilical cord blood (UCB) hematopoietic stem cell transplantation has become a crucial advancement in the treatment for a variety of diseases including hematopoietic and non-hematopoietic malignancies, BM failure syndromes, hemoglobinopathies, and metabolic and immunodeficiency disorders. It has been well documented that the success of UCB engraftment is tied to UCB banking processes, and now there are established guidelines for standardization of collection, banking, processing, and cryopreservation for unrelated UCB units with purpose of achieving consistent production of high quality placental and UCB units for administration. In 2011, Canada's Ministry of Health has announced Canada's first national, publicly funded umbilical cord blood bank, which aims to provide altruistic donations for unrelated allogeneic hematopoietic stem cell transplant. In this chapter, we describe specific protocols for clinical processing, cryopreservation, and storage of UCB used by the Canadian Blood Services National Public Umbilical Cord Blood Bank.
Interference-induced angle-independent acoustical transparency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Lehua; Yu, Gaokun, E-mail: gkyu@ouc.edu.cn; Wang, Ning
2014-12-21
It is revealed that the Fano-like interference leads to the extraordinary acoustic transmission through a slab metamaterial of thickness much smaller than the wavelength, with each unit cell consisting of a Helmholtz resonator and a narrow subwavelength slit. More importantly, both the theoretical analysis and experimental measurement show that the angle-independent acoustical transparency can be realized by grafting a Helmholtz resonator and a quarter-wave resonator to the wall of a narrow subwavelength slit in each unit cell of a slit array. The observed phenomenon results from the interferences between the waves propagating in the slit, those re-radiated by the Helmholtzmore » resonator, and those re-radiated by the quarter-wave resonator. The proposed design may find its applications in designing angle-independent acoustical filters and controlling the phase of the transmitted waves.« less
Ozawa, Keiya
2014-03-01
Adoptive T-cell therapy using chimeric antigen receptor (CAR) technology is a novel approach to cancer immuno-gene therapy. CARs are hybrid proteins consisting of target-antigen-specific single-chain antibody fragment fused to intracellular T-cell activation domains (CD28 or CD137/CD3 zeta receptor). CAR-expressing engineered T lymphocytes can directly recognize and kill tumor cells in an HLA independent manner. In the United States, promising results have been obtained in the clinical trials of adoptive immuno-gene therapy using CD19-CAR-T lymphocytes for the treatment of refractory B-cell malignancies, including chronic lymphocytic leukemia (CLL) and acute lymphoblastic leukemia (ALL). In this review article, CD19-CAR-T gene therapy for refractory B-cell non-Hodgkin lymphoma is discussed.
Self-Powered Wireless Carbohydrate/Oxygen Sensitive Biodevice Based on Radio Signal Transmission
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N.; De Lacey, Antonio L.; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M.; Conghaile, Peter Ó.; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D.; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply. PMID:25310190
Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.
Falk, Magnus; Alcalde, Miguel; Bartlett, Philip N; De Lacey, Antonio L; Gorton, Lo; Gutierrez-Sanchez, Cristina; Haddad, Raoudha; Kilburn, Jeremy; Leech, Dónal; Ludwig, Roland; Magner, Edmond; Mate, Diana M; Conghaile, Peter Ó; Ortiz, Roberto; Pita, Marcos; Pöller, Sascha; Ruzgas, Tautgirdas; Salaj-Kosla, Urszula; Schuhmann, Wolfgang; Sebelius, Fredrik; Shao, Minling; Stoica, Leonard; Sygmund, Cristoph; Tilly, Jonas; Toscano, Miguel D; Vivekananthan, Jeevanthi; Wright, Emma; Shleev, Sergey
2014-01-01
Here for the first time, we detail self-contained (wireless and self-powered) biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration) and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor), and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.
Mobile based Appliances switching using Bluetooth
NASA Astrophysics Data System (ADS)
Gupta, Sureshchandra J., Dr; Desai, Kalp; Gaikawad, Deepak; Pawar, Vijay N.; Gangal, Devendranath R.
2008-04-01
How many times do you have to get up from your desk to switch on your Air conditioner or fan when you are completely into your table work? How many times do you feel lazy to get off your comfort to switch on/off your home appliances in different rooms? How much energy do you lose in a day for operating your appliances? The solution is either a large amount of manual work—or the idea that is presented over here: APP-CON (APP-CON stands for appliances control). Here the ordinary cell phone with bluetooth capability acts as remote designed in such a manner that it acts as a helping hand to human by reducing its manual work and therefore saving human energy. The cell phone control of APP-CON units lets you access many of your home appliances situated in different rooms by using just a single remote from distance. Electronics hobbyists would love to make such a remote control themselves. But they find it difficult due to complex circuitry rather than the high cost because of using a number of frequency counting techniques and decade counters. The APP-CON system given here overcomes the aforesaid problems by using a single microcontroller and moreover a simple program or software for bluetooth enabled cell phone and employing simple coding and decoding of remote signals. Here the mobile based remote control is used to operate a number of home appliances basically consists of Bluetooth technology. The unit consists of a transmitter and a receiver consisting of a microcontroller. The importance of bluetooth technology is that the signal to be transmitted from transmitter to the receiver is done without requiring line of sight.
Segments from red blood cell units should not be used for quality testing.
Kurach, Jayme D R; Hansen, Adele L; Turner, Tracey R; Jenkins, Craig; Acker, Jason P
2014-02-01
Nondestructive testing of blood components could permit in-process quality control and reduce discards. Tubing segments, generated during red blood cell (RBC) component production, were tested to determine their suitability as a sample source for quality testing. Leukoreduced RBC components were produced from whole blood (WB) by two different methods: WB filtration and buffy coat (BC). Components and their corresponding segments were tested on Days 5 and 42 of hypothermic storage (HS) for spun hematocrit (Hct), hemoglobin (Hb) content, percentage hemolysis, hematologic indices, and adenosine triphosphate concentration to determine whether segment quality represents unit quality. Segment samples overestimated hemolysis on Days 5 and 42 of HS in both BC- and WB filtration-produced RBCs (p < 0.001 for all). Hct and Hb levels in the segments were also significantly different from the units at both time points for both production methods (p < 0.001 for all). Indeed, for all variables tested different results were obtained from segment and unit samples, and these differences were not consistent across production methods. The quality of samples from tubing segments is not representative of the quality of the corresponding RBC unit. Segments are not suitable surrogates with which to assess RBC quality. © 2013 American Association of Blood Banks.
Handschel, Jörg; Naujoks, Christian; Depprich, Rita; Lammers, Lydia; Kübler, Norbert; Meyer, Ulrich; Wiesmann, Hans-Peter
2011-07-14
Extracorporeal formation of mineralized bone-like tissue is still an unsolved challenge in tissue engineering. Embryonic stem cells may open up new therapeutic options for the future and should be an interesting model for the analysis of fetal organogenesis. Here we describe a technique for culturing embryonic stem cells (ESCs) in the absence of artificial scaffolds which generated mineralized miromasses. Embryonic stem cells were harvested and osteogenic differentiation was stimulated by the addition of dexamethasone, ascorbic acid, and ß-glycerolphosphate (DAG). After three days of cultivation microspheres were formed. These spherical three-dimensional cell units showed a peripheral zone consisting of densely packed cell layers surrounded by minerals that were embedded in the extracellular matrix. Alizarine red staining confirmed evidence of mineralization after 10 days of DAG stimulation in the stimulated but not in the control group. Transmission electron microscopy demonstrated scorching crystallites and collagenous fibrils as early indication of bone formation. These extracellular structures resembled hydroxyl apatite-like crystals as demonstrated by distinct diffraction patterns using electron diffraction analysis. The micromass culture technique is an appropriate model to form three-dimensional bone-like micro-units without the need for an underlying scaffold. Further studies will have to show whether the technique is applicable also to pluripotent stem cells of different origin. © 2011 Handschel et al; licensee BioMed Central Ltd.
Analysis of Fc(epsilon)RI-mediated mast cell stimulation by surface-carried antigens.
Schweitzer-Stenner, R; Tamir, I; Pecht, I
1997-01-01
Clustering of the type I receptor for IgE (Fc[epsilon]RI) on mast cells initiates a cascade of biochemical processes that result in secretion of inflammatory mediators. To determine the Fc(epsilon)RI proximity, cluster size, and mobility requirements for initiating the Fc(epsilon)RI cascade, a novel experimental protocol has been developed in which mast cells are reacted with glass surfaces carrying different densities of both antigen and bound IgE, and the cell's secretory response to these stimuli is measured. The results have been analyzed in terms of a model based on the following assumptions: 1) the glass surface antigen distribution and consequently that of the bound IgE are random; 2) Fc(epsilon)RI binding to these surface-bound IgEs immobilizes the former and saturates the latter; 3) the cell surface is formally divided into small elements, which function as a secretory stimulus unit when occupied by two or more immobilized IgE-Fc(epsilon)RI complexes; 4) alternatively, similar stimulatory units can be formed by binding of surface-carried IgE dimers to two Fc(epsilon)RI. This model yielded a satisfactory and self-consistent fitting of all of the different experimental data sets. Hence the present results establish the essential role of Fc(epsilon)RI immobilization for initiating its signaling cascade. Moreover, it provides independent support for the notion that as few as two Fc(epsilon)RIs immobilized at van der Waals contact constitute an "elementary stimulatory unit" leading to mast cell (RBL-2H3 line) secretory response. PMID:9168023
Starr, Philip A; Kang, Gail A; Heath, Susan; Shimamoto, Shoichi; Turner, Robert S
2008-05-01
Chorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD). We present single-unit discharge characteristics (33 neurons) observed in an awake patient with HD (41 CAG repeats) undergoing microelectrode guided surgery for pallidal deep brain stimulation. Pallidal single-unit activity at "rest" and during voluntary movement was discriminated off line by principal component analysis and evaluated with respect to discharge rate, bursting, and oscillatory activity in the 0-200 Hz range. 24 GPi and 9 GPe units were studied, and compared with 132 GPi and 50 GPe units from 14 patients with PD. The mean (+/-SEM) spontaneous discharge rate for HD was 58+/-4 for GPi and 73+/-5 for GPe. This contrasted with discharge rates in PD of 95+/-2 for GPi and 57+/-3 for GPe. HD GPi units showed more bursting than PD GPi units but much less oscillatory activity in the 2-35 Hz frequency range at rest. These findings are consistent with selective early loss of striatal cells originating the indirect pathway.
Synthetic Capillaries to Control Microscopic Blood Flow
NASA Astrophysics Data System (ADS)
Sarveswaran, K.; Kurz, V.; Dong, Z.; Tanaka, T.; Penny, S.; Timp, G.
2016-02-01
Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using “live cell lithography”(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision—no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.
Synthetic Capillaries to Control Microscopic Blood Flow.
Sarveswaran, K; Kurz, V; Dong, Z; Tanaka, T; Penny, S; Timp, G
2016-02-24
Capillaries pervade human physiology. The mean intercapillary distance is only about 100 μm in human tissue, which indicates the extent of nutrient diffusion. In engineered tissue the lack of capillaries, along with the associated perfusion, is problematic because it leads to hypoxic stress and necrosis. However, a capillary is not easy to engineer due to its complex cytoarchitecture. Here, it is shown that it is possible to create in vitro, in about 30 min, a tubular microenvironment with an elastic modulus and porosity consistent with human tissue that functionally mimicks a bona fide capillary using "live cell lithography"(LCL) to control the type and position of cells on a composite hydrogel scaffold. Furthermore, it is established that these constructs support the forces associated with blood flow, and produce nutrient gradients similar to those measured in vivo. With LCL, capillaries can be constructed with single cell precision-no other method for tissue engineering offers such precision. Since the time required for assembly scales with the number of cells, this method is likely to be adapted first to create minimal functional units of human tissue that constitute organs, consisting of a heterogeneous population of 100-1000 cells, organized hierarchically to express a predictable function.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.; Waas, Anthony M.
2013-01-01
A mesh objective crack band model was implemented within the generalized method of cells micromechanics theory. This model was linked to a macroscale finite element model to predict post-peak strain softening in composite materials. Although a mesh objective theory was implemented at the microscale, it does not preclude pathological mesh dependence at the macroscale. To ensure mesh objectivity at both scales, the energy density and the energy release rate must be preserved identically across the two scales. This requires a consistent characteristic length or localization limiter. The effects of scaling (or not scaling) the dimensions of the microscale repeating unit cell (RUC), according to the macroscale element size, in a multiscale analysis was investigated using two examples. Additionally, the ramifications of the macroscale element shape, compared to the RUC, was studied.
Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor
NASA Astrophysics Data System (ADS)
Cockell, C. S.; Coolen, M.; Schaefer, B.; Grice, K.; Gulick, S. P. S.; Morgan, J. V.; Kring, D. A.; Osinski, G.
2017-12-01
Fresh core material was obtained by drilling of the Chicxulub impact crater during IODP-ICDP Expedition 364 to assess the present-day biosphere in the crater structure. Cell enumerations through the core show that beneath the post-impact sedimentary rock there is a region of enhanced cell abundance that corresponds to the upper impact suevite layer (Units 1G/2A). We also observed a peak in cell numbers in samples at the bottom of suevite Unit 2C and between the suevitic and grainitoid interface (Unit 3/4). These patterns may reflect preferential movement of fluid and/or availability of nutrients and energy at interfaces. 16S rDNA analysis allows us to rule out contamination of the suevite material since no taxa associated with the drilling mud were observed. Two hundred and fifty microbial enrichments were established using diverse culture media for heterotrophs, autotrophs and chemolithotrophs at temperatures consistent with measured core temperatures. Six yielded growth in the breccia, lower breccia and upper granitoid layer and they affiliated with Acidiphilium, Thermoanaerobacteracea and Desulfohalbiaceae. The latter exhibited visible microbial sulfate-reduction. By contrast, the granitoid material exhibited low cell abundances, most samples were below direct cell detection. DNA extraction revealed pervasive low level contamination by drilling mud taxa, consistent with the highly fractured, high porosity of the impact-shocked granitoids. Few taxa can be attributed to an indigenous biota and no enrichments (at 60 and 70°C) yielded growth. These data show that even with a porosity approximately an order of magnitude greater than most unshocked granites, the uplifted granites have not experienced sufficient fluid flow to establish a significant deep biosphere. Paleosterilisation of the material during impact may have re-set colonisation and the material may have originally been below the depth at which temperatures exceeded the upper temperature limit for life. These data show that the deep biosphere can preserve the imprint of catastrophe long after these events. In this case, the distribution of deep subsurface microbial communities reflects the lithological sequence established during the substantial impact-induced geological rearrangements that occurred in the first hours of the Cenozoic.
Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)
Bland, Charles E.
1970-01-01
The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal dises and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils. Images PMID:4098725
1972-02-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. In this image, the set of four large solar cell arrays, which could produce up to as much as 1.1 kilowatts of electric power, are being installed on an ATM prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallerman, G.; Gray, R.J.
An instrument for crushing-strength determinations of uncoated and pyrolytic-carbon-coated fuel particles (50 to 500 mu in diameter) was developed to relate the crushing strength of the particles to their fabricability. The instrument consists of a loading mechanism, load cell, and a power supply-readout unit. The information that can be obtained by statistical methods of the data analysis is illustrated by results on two batches of fuel particles. (auth)
Neuhaus, Birger; Kristensen, Reinhardt Møbjerg
2007-04-01
The protonephridial system of several Loricifera was studied by transmission electron microscopy. A larval specimen of Rugiloricus cf. cauliculus possesses two protonephridia, which are "capped" frontally by a compact mass of still undifferentiated gonadal cells. Each protonephridium consists of four monociliary terminal cells and four canal cells with a diplosome but no cilia. Because of incomplete series of sections and unsatisfactory fixation, the outleading cell(s) could not be detected. In a male specimen of Armorloricus elegans, each gonad contains two protonephridia that open into the gonadal lumen. Each protonephridium consists of two monociliary terminal cells, each forming a filter, two nonciliated canal cells, and two nephroporus cells. The protonephridial lumina of the latter cells fuse to one common lumen, which unites with the gonadal lumen. Preliminary observations on the protonephridia of a female Nanaloricus mysticus reveal a more complicated arrangement of interdigitating terminal and canal cells. One or two terminal cells form their own individual filter or four cells form a common compound filter. The cilium of the terminal cells of all species investigated are surrounded by a palisade of nine microvilli that support the filter barrier made of an extracellular matrix. An additional filter diaphragm could be traced between the pores in the cell wall of each terminal cell of A. elegans. The urogenital system of the Loricifera differs from that of the Priapulida in that the protonephridia of the former are completely integrated into the gonad, whereas the excretory organs of the latter open into the urogenital duct caudally of the gonads. Copyright (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parlinski, K.; Hashi, Y.; Tsunekawa, S.
A model of lanthanum orthoniobate which possesses a ferroelastic tetragonal-monoclinic phase transition is proposed. It contains only one particle per unit cell, but it is constructed consistently with symmetry changes at the phase transition. The model parameters are chosen to reproduce the bare soft mode, degree of deformation of the tetragonal unit cell to monoclinic one, and the phase transition temperature. The ferroelastic system with free boundary conditions was simulated by the molecular dynamics technique, and the second order phase transition was reproduced. The studied annealing process shows formation of the stripe lenticular domain pattern, which has been interrupted bymore » appearance of a temporary band of perpendicularly oriented lenticular domains. The maps contain W{sup {prime}}-type domain walls whose orientations are fixed only by interplay of potential parameters and not by symmetry elements. The simulated domain pattern has the same features as those observed by transmission electron microscopy. {copyright} {ital 1997 Materials Research Society.}« less
Ichikawa, Muneyoshi; Liu, Dinan; Kastritis, Panagiotis L.; Basu, Kaustuv; Hsu, Tzu Chin; Yang, Shunkai; Bui, Khanh Huy
2017-01-01
Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule. PMID:28462916
Salicylate-induced abnormal activity in the inferior colliculus of rats.
Chen, G D; Jastreboff, P J
1995-02-01
The evaluation of the spontaneous activity of 471 units from the external nucleus of the IC revealed that salicylate induces an increase of the spontaneous activity and the emergence of a bursting type of activity longer than 4 spikes. For sharply tuned units, the affected cells were from the frequency range of 10-16 kHz, which corresponds to the behaviorally measured pitch of salicylate-induced tinnitus in rats. An exogenous calcium supplement, provided under the conditions shown to attenuate the behavioral manifestation of salicylate-induced tinnitus, abolished the modification of the spontaneous activity induced by salicylate. Finally, profound changes of activity were observed for cells not responding to contralateral sound. We propose that the observed long bursts of discharges represent tinnitus-related neuronal activity. The results are consistent with the hypothesis that GABA-mediated disinhibition is involved in the processing of tinnitus-related neuronal activity.
Designing perturbative metamaterials from discrete models.
Matlack, Kathryn H; Serra-Garcia, Marc; Palermo, Antonio; Huber, Sebastian D; Daraio, Chiara
2018-04-01
Identifying material geometries that lead to metamaterials with desired functionalities presents a challenge for the field. Discrete, or reduced-order, models provide a concise description of complex phenomena, such as negative refraction, or topological surface states; therefore, the combination of geometric building blocks to replicate discrete models presenting the desired features represents a promising approach. However, there is no reliable way to solve such an inverse problem. Here, we introduce 'perturbative metamaterials', a class of metamaterials consisting of weakly interacting unit cells. The weak interaction allows us to associate each element of the discrete model with individual geometric features of the metamaterial, thereby enabling a systematic design process. We demonstrate our approach by designing two-dimensional elastic metamaterials that realize Veselago lenses, zero-dispersion bands and topological surface phonons. While our selected examples are within the mechanical domain, the same design principle can be applied to acoustic, thermal and photonic metamaterials composed of weakly interacting unit cells.
Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)
NASA Technical Reports Server (NTRS)
Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.
1991-01-01
The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.
Luo, Jingyuan; Flynn, Jesse M; Solnick, Rachel E; Ecklund, Elaine Howard; Matthews, Kirstin R W
2011-03-08
As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations.
Solnick, Rachel E.; Ecklund, Elaine Howard; Matthews, Kirstin R. W.
2011-01-01
As the scientific community globalizes, it is increasingly important to understand the effects of international collaboration on the quality and quantity of research produced. While it is generally assumed that international collaboration enhances the quality of research, this phenomenon is not well examined. Stem cell research is unique in that it is both politically charged and a research area that often generates international collaborations, making it an ideal case through which to examine international collaborations. Furthermore, with promising medical applications, the research area is dynamic and responsive to a globalizing science environment. Thus, studying international collaborations in stem cell research elucidates the role of existing international networks in promoting quality research, as well as the effects that disparate national policies might have on research. This study examined the impact of collaboration on publication significance in the United States and the United Kingdom, world leaders in stem cell research with disparate policies. We reviewed publications by US and UK authors from 2008, along with their citation rates and the political factors that may have contributed to the number of international collaborations. The data demonstrated that international collaborations significantly increased an article's impact for UK and US investigators. While this applied to UK authors whether they were corresponding or secondary, this effect was most significant for US authors who were corresponding authors. While the UK exhibited a higher proportion of international publications than the US, this difference was consistent with overall trends in international scientific collaboration. The findings suggested that national stem cell policy differences and regulatory mechanisms driving international stem cell research in the US and UK did not affect the frequency of international collaborations, or even the countries with which the US and UK most often collaborated. Geographical and traditional collaborative relationships were the predominate considerations in establishing international collaborations. PMID:21408134
REDOX electrochemical energy storage
NASA Technical Reports Server (NTRS)
Thaller, L. H.
1980-01-01
Reservoirs of chemical solutions can store electrical energy with high efficiency. Reactant solutions are stored outside conversion section where charging and discharging reactions take place. Conversion unit consists of stacks of cells connected together in parallel hydraulically, and in series electrically. Stacks resemble fuel cell batteries. System is 99% ampere-hour efficient, 75% watt hour efficient, and has long projected lifetime. Applications include storage buffering for remote solar or wind power systems, and industrial load leveling. Cost estimates are $325/kW of power requirement plus $51/kWh storage capacity. Mass production would reduce cost by about factor of two.
NASA Astrophysics Data System (ADS)
Nguyen, Gia Luong Huu
Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.
A Novel Counter Sheet-flow Sandwich Cell Culture Device for Mammalian Cell Growth in Space
NASA Astrophysics Data System (ADS)
Sun, Shujin; Gao, Yuxin; Shu, Nanjiang; Tang, Zemei; Tao, Zulai; Long, Mian
2008-08-01
Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.
The ethics of patenting human embryonic stem cells.
Chapman, Audrey R
2009-09-01
Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.
Calcium signal communication in the central nervous system.
Braet, Katleen; Cabooter, Liesbet; Paemeleire, Koen; Leybaert, Luc
2004-02-01
The communication of calcium signals between cells is known to be operative between neurons where these signals integrate intimately with electrical and chemical signal communication at synapses. Recently, it has become clear that glial cells also exchange calcium signals between each other in cultures and in brain slices. This communication pathway has received utmost attention since it is known that astrocytic calcium signals can be induced by neuronal stimulation and can be communicated back to the neurons to modulate synaptic transmission. In addition to this, cells that are generally not considered as brain cells become progressively incorporated in the picture, as astrocytic calcium signals are reported to be communicated to endothelial cells of the vessel wall and can affect smooth muscle cell tone to influence the vessel diameter and thus blood flow. We review the available evidence for calcium signal communication in the central nervous system, taking into account a basic functional unit -the brain cell tripartite- consisting of neurons, glial cells and vascular cells and with emphasis on glial-vascular calcium signaling aspects.
Developments in Acoustic Metamaterials for Acoustic Ground Cloaks
NASA Astrophysics Data System (ADS)
Kerrian, Peter Adam
The objective of acoustic cloaking is to eliminate both the back scattered and forward scattered acoustic fields by redirecting the incident wave around an object. Acoustic ground cloaks, which conceal an object on a rigid reflecting surface, utilize a linear coordinate transformation to map the flat surface to a void by compressing space into two cloaking regions consisting of a homogeneous anisotropic acoustic metafluid. Transformation acoustics allows for the realization of a coordinate transformation through a reinterpretation of the scale factors as a new material in the original coordinate system. Previous work has demonstrated at least three types of unit cells exhibit homogeneous anisotropic mass density and homogeneous isotropic bulk modulus: alternating layers of homogeneous isotropic fluids, perforated plates and solid inclusions. The primary focus of this dissertation is to demonstrate underwater anisotropic mass density with a solid inclusion unit cell and realize an underwater perforated plate acoustic ground cloak. An in depth analysis into the methods used to characterize the effective material parameters of solid inclusion unit cells with water as the background fluid was performed for both single inclusion unit cells as well as multi-inclusion unit cells. The degree of density anisotropy obtainable for a rigid single inclusion unit cell is limited by the size of the inclusion. However, a greater degree of anisotropy can be achieved by introducing additional inclusions into the unit cell design. For example, including a foam material that is less dense than the background fluid, results in an anisotropic density tensor with one component greater than and one component less than the value of the background fluid. The results of a parametric study determined that for a multi-inclusion unit cell, the effective material parameters can be controlled by the dimensions of the rigid inclusion as well as the material parameters and dimensions of the foam inclusions. Non-destructive acoustic excitation techniques were used to extract the material parameters of different grades of foam to identify the ideal grade for use in a multi-inclusion unit cell. Single inclusion and multi-inclusion bulk metamaterial samples were constructed and tested to characterize the effective material properties to determine if they exhibited the desired homogeneous anisotropic behavior. The single steel inclusion metamaterial behaved as expected, demonstrating anisotropic mass density and isotropic bulk modulus. Almost no sound energy was transmitted through the multi-inclusion metamaterial, contrary to expectation, because of the presence of air bubbles, both on the surface of the foam as well as potentially in between the inclusions. Finally, an underwater acoustic ground cloak was constructed from perforated steel plates and experimentally tested to conceal an object on a pressure release surface. The perforated plate acoustic ground cloak successfully cloaked the scattered object over a broad frequency range of 7 [kHz] to 12 [kHz]. There was excellent agreement between the phase of the surface reflection and the cloak reflection with a small amplitude difference attributed to the difference between a water - air and a water - mylar - air boundary. Above 15 [kHz], the cloaking performance decreased as the effective material parameters of the perforated plate metamaterial deviated from the required material parameters.
Rümbeli, R; Schirmer, T; Bode, W; Sidler, W; Zuber, H
1985-11-05
The light-harvesting protein phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus Cohn has been crystallized in two different crystal forms by vapour diffusion. In 5% (w/v) polyethylene glycol at pH 8.5, hexagonal crystals of space group P63 with cell constants a = b = 158 A, c = 40.6 A were obtained, which turned out to be almost isomorphous with the hexagonal crystals of C-phycocyanin from the same organism. Consequently, the conformation of both phycobiliproteins must be very similar. From 1.5 M-ammonium sulfate (pH 8.5), orthorhombic crystals of space group P2221 with cell constants a = 60.5 A, b = 105 A, c = 188 A could be grown. Density measurements of these crystals indicate that the unit cell contains 18 (alpha beta)-units. A detailed packing scheme is proposed that is consistent with the observed pseudo-hexagonal X-ray intensity pattern and with the known size and shape of (alpha beta)3-trimers of C-phycocyanin. Accordingly, disc-like (alpha beta)3-trimers are associated face-to-face and stacked one upon another in rods with a period of 60.5 A, corresponding to the cell dimension a.
Small angle x-ray scattering of chromatin. Radius and mass per unit length depend on linker length.
Williams, S P; Langmore, J P
1991-01-01
Analyses of low angle x-ray scattering from chromatin, isolated by identical procedures but from different species, indicate that fiber diameter and number of nucleosomes per unit length increase with the amount of nucleosome linker DNA. Experiments were conducted at physiological ionic strength to obtain parameters reflecting the structure most likely present in living cells. Guinier analyses were performed on scattering from solutions of soluble chromatin from Necturus maculosus erythrocytes (linker length 48 bp), chicken erythrocytes (linker length 64 bp), and Thyone briareus sperm (linker length 87 bp). The results were extrapolated to infinite dilution to eliminate interparticle contributions to the scattering. Cross-sectional radii of gyration were found to be 10.9 +/- 0.5, 12.1 +/- 0.4, and 15.9 +/- 0.5 nm for Necturus, chicken, and Thyone chromatin, respectively, which are consistent with fiber diameters of 30.8, 34.2, and 45.0 nm. Mass per unit lengths were found to be 6.9 +/- 0.5, 8.3 +/- 0.6, and 11.8 +/- 1.4 nucleosomes per 10 nm for Necturus, chicken, and Thyone chromatin, respectively. The geometrical consequences of the experimental mass per unit lengths and radii of gyration are consistent with a conserved interaction among nucleosomes. Cross-linking agents were found to have little effect on fiber external geometry, but significant effect on internal structure. The absolute values of fiber diameter and mass per unit length, and their dependencies upon linker length agree with the predictions of the double-helical crossed-linker model. A compilation of all published x-ray scattering data from the last decade indicates that the relationship between chromatin structure and linker length is consistent with data obtained by other investigators. Images FIGURE 1 PMID:2049522
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
Compressional behavior of omphacite to 47 GPa
Zhang, Dongzhou; Hu, Yi; Dera, Przemyslaw K.
2016-07-08
Omphacite is an important mineral component of eclogite. Single crystal synchrotron X-ray diffraction data on natural (Ca,Na)(Mg,Fe,Al)Si 2O 6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The 3rd order Birch-Murnaghan equation of state (BM3) fit of all data gives V o = 423.9(3) Å3, K To = 116(2) GPa and K To’ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside-jadeite join.more » The eight-coordinated polyhedra (M2 and M21) are the most compressible, and contribute to majority of the unit cell compression, while the SiO 4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM 3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. Here, the axial compressibility of the α-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest compression axis toward the a-axis with the increase of pressure.« less
Low cost balancing unit design
NASA Astrophysics Data System (ADS)
Golembiovsky, Matej; Dedek, Jan; Slanina, Zdenek
2017-06-01
This article deals with the design of a low-cost balancing system which consist of battery balancing units, accumulator pack units and coordinator unit with interface for higher level of battery management system. This solution allows decentralized mode of operation and the aim of this work is implementation of controlling and diagnostic mechanism into an electric scooter project realized at Technical university of Ostrava. In todays world which now fully enjoys the prime of electromobility, off-grid battery systems and other, it is important to seek the optimal balance between functionality and the economy side of BMS that being electronics which deals with secondary cells of batery packs. There were numerous sophisticated, but not too practical BMS models in the past, such as centralized system or standalone balance modules of individual cells. This article aims at development of standalone balance modules which are able to communicate with the coordinator, adjust their parameters and ensure their cells safety in case of a communication failure. With the current worldwide cutting cost trend in mind, the emphasis was put on the lowest price possible for individual component. The article is divided into two major categories, the first one being desing of power electronics with emphasis on quality, safety (cooling) and also cost. The second part describes development of a communication interface with reliability and cost in mind. The article contains numerous graphs from practical measurements. The outcome of the work and its possible future is defined in the conclusion.
Analysis of particle in liquid using excitation-fluorescence spectral flow cytometer
NASA Astrophysics Data System (ADS)
Takenaka, Kei; Togashi, Shigenori
2018-01-01
We have developed a new flow cytometer that can measure the excitation-fluorescence spectra of a single particle. This system consists of a solution-transmitting unit and an optical unit. The solution-transmitting unit allows a sample containing particles to flow through the center of a flow cell by hydrodynamic focusing. The optical unit irradiates particles with dispersed white light (wavelength band: 400-650 nm) along the flow direction and measures their fluorescence spectra (wavelength band: 400-700 nm) using a spectroscopic photodetector array. The fluorescence spectrum of a particle changes with the shift of the wavelength of the excitation light. Using this system, the excitation-fluorescence spectra of a fluorescent particle were measured. Additionally, a homogenized tomato suspension and a homogenized spinach suspension were measured using the system. Measurement results show that it is possible to determine the components of vegetables by comparing measured fluorescence spectra of particles in a vegetable suspension.
Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats.
Badie, B; Drazan, K E; Kramar, M H; Shaked, A; Black, K L
1995-06-01
Adenoviral vectors have recently been shown to effectively deliver genes into a variety of tissues. Since these vectors have some advantages over the more extensively investigated retroviruses, we studied the effect of two replication-defective adenovectors bearing human wild type tumor suppressor gene p53 (Adp53) and Escherichia coli beta-galactosidase gene (AdLacZ) on 9L glioma cells. Successful in vitro gene transfer was shown by DNA polymerase chain reaction (PCR), and expression was confirmed by reverse transcriptase RNA PCR and Western blot analyses. Transduction of 9L cells with the Adp53 inhibited cell growth and induced phenotypic changes consistent with cell death at low titers, while AdLacZ caused cytopathic changes only at high titers. Stereotactic injection of AdLacZ (10(7) plaque forming units) into tumor bed stained 25 to 30% of tumor cells at the site of vector delivery. Injection of Adp53 (10(7) plaque forming units), but not AdLacZ (controls), into established 4-day old 9L glioma brain tumors decreased tumor volume by 40% after 14 days. As a step toward gene therapy of brain tumors using replication-defective adenoviruses, these data support the use of tumor suppressor gene transfer for in vivo treatment of whole animal brain tumor models.
Do rational numbers play a role in selection for stochasticity?
Sinclair, Robert
2014-01-01
When a given tissue must, to be able to perform its various functions, consist of different cell types, each fairly evenly distributed and with specific probabilities, then there are at least two quite different developmental mechanisms which might achieve the desired result. Let us begin with the case of two cell types, and first imagine that the proportion of numbers of cells of these types should be 1:3. Clearly, a regular structure composed of repeating units of four cells, three of which are of the dominant type, will easily satisfy the requirements, and a deterministic mechanism may lend itself to the task. What if, however, the proportion should be 10:33? The same simple, deterministic approach would now require a structure of repeating units of 43 cells, and this certainly seems to require a far more complex and potentially prohibitive deterministic developmental program. Stochastic development, replacing regular units with random distributions of given densities, might not be evolutionarily competitive in comparison with the deterministic program when the proportions should be 1:3, but it has the property that, whatever developmental mechanism underlies it, its complexity does not need to depend very much upon target cell densities at all. We are immediately led to speculate that proportions which correspond to fractions with large denominators (such as the 33 of 10/33) may be more easily achieved by stochastic developmental programs than by deterministic ones, and this is the core of our thesis: that stochastic development may tend to occur more often in cases involving rational numbers with large denominators. To be imprecise: that simple rationality and determinism belong together, as do irrationality and randomness.
Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda)
von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert
2012-01-01
Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. PMID:22221553
Market Analysis and Material Evaluation of Coagulants for Reverse Osmosis Water Purification Units
1990-09-28
three identified primary coagulants. Electrocoagulation , an emerging technology, was also discovered as being a relatively new area of research with great...there is yet another avenue the Army needs to explore -- electrocoagulation . 4.3.2 Electrocoagulation | * Electrocoagulation processes utilize an...7). A typical electrocoagulator consists of a combination of a treating chamber, which operates as an electrolytic cell, with a water-inlet and a
Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J
2017-07-14
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Mass-stiffness substructuring of an elastic metasurface for full transmission beam steering
NASA Astrophysics Data System (ADS)
Lee, Hyuk; Lee, Jun Kyu; Seung, Hong Min; Kim, Yoon Young
2018-03-01
The metasurface concept has a significant potential due to its novel wavefront-shaping functionalities that can be critically useful for ultrasonic and solid wave-based applications. To achieve the desired functionalities, elastic metasurfaces should cover full 2π phase shift and also acquire full transmission within subwavelength scale. However, they have not been explored much with respect to the elastic regime, because the intrinsic proportionality of mass-stiffness within the continuum elastic media causes an inevitable trade-off between abrupt phase shift and sufficient transmission. Our goal is to engineer an elastic metasurface that can realize an inverse relation between (amplified) effective mass and (weakened) stiffness in order to satisfy full 2π phase shift as well as full transmission. To achieve this goal, we propose a continuum elastic metasurface unit cell that is decomposed into two substructures, namely a mass-tuning substructure with a local dipolar resonator and a stiffness-tuning substructure composed of non-resonant multiply-perforated slits. We demonstrate analytically, numerically, and experimentally that this unique substructured unit cell can satisfy the required phase shift with high transmission. The substructuring enables independent tuning of the elastic properties over a wide range of values. We use a mass-spring model of the proposed continuum unit cell to investigate the working mechanism of the proposed metasurface. With the designed metasurface consisting of substructured unit cells embedded in an aluminum plate, we demonstrate that our metasurface can successfully realize anomalous steering and focusing of in-plane longitudinal ultrasonic beams. The proposed substructuring concept is expected to provide a new principle for the design of general elastic metasurfaces that can be used to efficiently engineer arbitrary wave profiles.
Payne, Kyle K; Bear, Harry D; Manjili, Masoud H
2014-08-01
The mammalian immune system has evolved to produce multi-tiered responses consisting of both innate and adaptive immune cells collaborating to elicit a functional response to a pathogen or neoplasm. Immune cells possess a shared ancestry, suggestive of a degree of coevolution that has resulted in optimal functionality as an orchestrated and highly collaborative unit. Therefore, the development of therapeutic modalities that harness the immune system should consider the crosstalk between cells of the innate and adaptive immune systems in order to elicit the most effective response. In this review, the authors will discuss the success achieved using adoptive cellular therapy in the treatment of cancer, recent trends that focus on purified T cells, T cells with genetically modified T-cell receptors and T cells modified to express chimeric antigen receptors, as well as the use of unfractionated immune cell reprogramming to achieve optimal cellular crosstalk upon infusion for adoptive cellular therapy.
Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi
1988-01-01
One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.
Zhang, Yu; Xue, Ying-bo; Li, Hang; Qiu, Dong; Wang, Zhi-wei; Tan, Shi-sheng
2017-01-01
Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients. PMID:28165402
Zhang, Yu; Xue, Ying-Bo; Li, Hang; Qiu, Dong; Wang, Zhi-Wei; Tan, Shi-Sheng
2017-02-04
Pancreatic cancer is one of the most aggressive human tumors in the United States. Curcumin, a polyphenol derived from the Curcuma longa plant, has been reported to exert its antitumor activity in pancreatic cancer. However, the molecular mechanisms of curcumin-mediated tumor suppressive function have not been fully elucidated. In the current study, we explore whether curcumin exhibits its anti-cancer function through inhibition of oncoprotein cell division cycle 20 (Cdc20) in pancreatic cancer cells. We found that curcumin inhibited cell growth, enhanced apoptosis, induced cell cycle arrest and retarded cell invasion in pancreatic cancer cells. Moreover, we observed that curcumin significantly inhibited the expression of Cdc20 in pancreatic cancer cells. Furthermore, our results demonstrated that overexpression of Cdc20 enhanced cell proliferation and invasion, and abrogated the cytotoxic effects induced by curcumin in pancreatic cancer cells. Consistently, downregulation of Cdc20 promoted curcumin-mediated anti-tumor activity. Therefore, our findings indicated that inhibition of Cdc20 by curcumin could be useful for the treatment of pancreatic cancer patients.
Estrada-Arriaga, Edson Baltazar; Guillen-Alonso, Yvonne; Morales-Morales, Cornelio; García-Sánchez, Liliana; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Loyola-Morales, Félix
2017-07-01
Two different air-cathode stacked microbial fuel cell (MFC) configurations were evaluated under continuous flow during the treatment of municipal wastewater and electricity production at a hydraulic retention time (HRT) of 3, 1, and 0.5 d. Stacked MFC 1 was formed by 20 individual air-cathode MFC units. The second stacked MFC (stacked MFC 2) consisted of 40 air-cathode MFC units placed in a shared reactor. The maximum voltages produced at closed circuit (1,000 Ω) were 170 mV for stacked MFC 1 and 94 mV for stacked MFC 2. Different power densities in each MFC unit were obtained due to a potential drop phenomenon and to a change in chemical oxygen demand (COD) concentrations inside reactors. The maximum power densities from individual MFC units were up to 1,107 mW/m 2 for stacked MFC 1 and up to 472 mW/m 2 for stacked MFC 2. The maximum power densities in stacked MFC 1 and MFC 2 connected in series were 79 mW/m 2 and 4 mW/m 2 , respectively. Electricity generation and COD removal efficiencies were reduced when the HRT was decreased. High removal efficiencies of 84% of COD, 47% of total nitrogen, and 30% of total phosphorus were obtained during municipal wastewater treatment.
The CaGeO3 Ca3Fe2Ge3O12 garnet join: an experimental study
NASA Astrophysics Data System (ADS)
Iezzi, Gianluca; Boffa-Ballaran, Tiziana; McCammon, Catherine; Langenhorst, Falko
2005-06-01
Germanate garnets are often used as isostructural analogues of silicate garnets to provide insight into the crystal chemistry and symmetry of the less accessible natural garnet solid solutions. We synthesised two series of germanate garnets at 3 GPa along the joinVIIICa
Rand, Gabriel M; Kwon, Ji Won; Gore, Patrick K; McCartney, Mitchell D; Chuck, Roy S
2017-10-01
To quantify consistency of endothelial cell density (ECD) measurements among technicians in a single US eye bank operating under typical operating conditions. In this retrospective analysis of 51 microscopy technicians using a semiautomated counting method on 35,067 eyes from July 2007 to May 2015, technician- and date-related marginal ECD effects were calculated using linear regression models. ECD variance was correlated with the number of specular microscopy technicians. Technician mean ECDs ranged from 2386 ± 431 to 3005 ± 560 cells/mm. Nine technicians had statistically and clinically significant marginal effects. Annual mean ECDs adjusted for changes in technicians ranged from 2422 ± 433 to 2644 ± 430 cells/mm. The period of 2007 to 2009 had statistically and clinically significant marginal effects. There was a nonstatistically significant association between the number of technicians and ECD standard deviation. There was significant ECD variability associated with specular microscopy technicians and with the date of measurement. We recommend that eye banks collect data related to laboratory factors that have been shown to influence ECD variability.
How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography
Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng
2016-01-01
Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365
Designed cell consortia as fragrance-programmable analog-to-digital converters.
Müller, Marius; Ausländer, Simon; Spinnler, Andrea; Ausländer, David; Sikorski, Julian; Folcher, Marc; Fussenegger, Martin
2017-03-01
Synthetic biology advances the rational engineering of mammalian cells to achieve cell-based therapy goals. Synthetic gene networks have nearly reached the complexity of digital electronic circuits and enable single cells to perform programmable arithmetic calculations or to provide dynamic remote control of transgenes through electromagnetic waves. We designed a synthetic multilayered gaseous-fragrance-programmable analog-to-digital converter (ADC) allowing for remote control of digital gene expression with 2-bit AND-, OR- and NOR-gate logic in synchronized cell consortia. The ADC consists of multiple sampling-and-quantization modules sensing analog gaseous fragrance inputs; a gas-to-liquid transducer converting fragrance intensity into diffusible cell-to-cell signaling compounds; a digitization unit with a genetic amplifier circuit to improve the signal-to-noise ratio; and recombinase-based digital expression switches enabling 2-bit processing of logic gates. Synthetic ADCs that can remotely control cellular activities with digital precision may enable the development of novel biosensors and may provide bioelectronic interfaces synchronizing analog metabolic pathways with digital electronics.
Munteanu, Raluca-Elena; Stǎnicǎ, Luciana; Gheorghiu, Mihaela; Gáspár, Szilveszter
2018-05-15
There are only a few tools suitable for measuring the extracellular pH of adherently growing mammalian cells with high spatial resolution, and none of them is widely used in laboratories around the world. Cell biologists very often limit themselves to measuring the intracellular pH with commercially available fluorescent probes. Therefore, we built a voltammetric pH microsensor and investigated its suitability for monitoring the extracellular pH of adherently growing mammalian cells. The voltammetric pH microsensor consisted of a 37 μm diameter carbon fiber microelectrode modified with reduced graphene oxide and syringaldazine. While graphene oxide was used to increase the electrochemically active surface area of our sensor, syringaldazine facilitated pH sensing through its pH-dependent electrochemical oxidation and reduction. The good sensitivity (60 ± 2.5 mV/pH unit), reproducibility (coefficient of variation ≤3% for the same pH measured with 5 different microsensors), and stability (pH drift around 0.05 units in 3 h) of the built voltammetric pH sensors were successfully used to investigate the acidification of the extracellular space of both cancer cells and normal cells. The results indicate that the developed pH microsensor and the perfected experimental protocol based on scanning electrochemical microscopy can reveal details of the pH regulation of cells not attainable with pH sensors lacking spatial resolution or which cannot be reproducibly positioned in the extracellular space.
Packaging of a large capacity magnetic bubble domain spacecraft recorder
NASA Technical Reports Server (NTRS)
Becker, F. J.; Stermer, R. L.
1977-01-01
A Solid State Spacecraft Data Recorder (SSDR), based on bubble domain technology, having a storage capacity of 10 to the 8th power bits, was designed and is being tested. The recorder consists of two memory modules each having 32 cells, each cell containing sixteen 100 kilobit serial bubble memory chips. The memory modules are interconnected to a Drive and Control Unit (DCU) module containing four microprocessors, 500 integrated circuits, a RAM core memory and two PROM's. The two memory modules and DCU are housed in individual machined aluminum frames, are stacked in brick fashion and through bolted to a base plate assembly which also houses the power supply.
Fermi surface properties of paramagnetic NpCd11 with a large unit cell
NASA Astrophysics Data System (ADS)
Homma, Yoshiya; Aoki, Dai; Haga, Yoshinori; Settai, Rikio; Sakai, Hironori; Ikeda, Shugo; Yamamoto, Etsuji; Nakamura, Akio; Shiokawa, Yoshinobu; Takeuchi, Tetsuya; Yamagami, Hiroshi; Ōnuki, Yoshichika
2010-03-01
We succeeded in growing a high-quality single crystal of NpCd11 with the cubic BaHg11-type structure by the Cd-self flux method. The lattice parameter of a = 9.2968(2) Å and crystallographic positions of the atoms were determined by x-ray single-crystal structure analysis. From the results of the magnetic susceptibility and specific heat experiments, this compound is found to be a 5f-localized paramagnet with the singlet ground state in the crystalline electric field (CEF) scheme. Fermi surface properties were measured using the de Haas-van Alphen (dHvA) technique. Long-period oscillations were observed in the dHvA frequency range of 9.1 x 105 to 1.9 x 107 Oe, indicating small cross-sectional areas of Fermi surfaces, which is consistent with a small Brillouin zone based on a large unit cell. From the results of dHvA and magnetoresistance experiments, the Fermi surface of NpCd11 is found to consist of many kinds of closed Fermi surfaces and a multiply-connected-like Fermi surface, although the result of energy band calculations based on the 5f-localized Np3+(5f4) configuration reveals the existence of only closed Fermi surfaces. The corresponding cyclotron effective mass is small, ranging from 0.1 to 0.7 m0, which is consistent with a small electronic specific heat coefficient γ ≅ 10mJ/K2·mol, revealing no hybridization between the 5f electrons and conduction electrons.
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering.
Wall, Michael E
2018-03-01
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structure to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.
Thermodynamic stability of boron: the role of defects and zero point motion.
van Setten, Michiel J; Uijttewaal, Matthé A; de Wijs, Gilles A; de Groot, Robert A
2007-03-07
Its low weight, high melting point, and large degree of hardness make elemental boron a technologically interesting material. The large number of allotropes, mostly containing over a hundred atoms in the unit cell, and their difficult characterization challenge both experimentalists and theoreticians. Even the ground state of this element is still under discussion. For over 30 years, scientists have attempted to determine the relative stability of alpha- and beta-rhombohedral boron. We use density functional calculations in the generalized gradient approximation to study a broad range of possible beta-rhombohedral structures containing interstitial atoms and partially occupied sites within a 105 atoms framework. The two most stable structures are practically degenerate in energy and semiconducting. One contains the experimental 320 atoms in the hexagonal unit cell, and the other contains 106 atoms in the triclinic unit cell. When populated with the experimental 320 electrons, the 106 atom structure exhibits a band gap of 1.4 eV and an in-gap hole trap at 0.35 eV above the valence band, consistent with known experiments. The total energy of these two structures is 23 meV/B lower than the original 105 atom framework, but it is still 1 meV/B above the alpha phase. Adding zero point energies finally makes the beta phase the ground state of elemental boron by 3 meV/B. At finite temperatures, the difference becomes even larger.
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Michael E.
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less
Internal protein motions in molecular-dynamics simulations of Bragg and diffuse X-ray scattering
Wall, Michael E.
2018-01-25
Molecular-dynamics (MD) simulations of Bragg and diffuse X-ray scattering provide a means of obtaining experimentally validated models of protein conformational ensembles. This paper shows that compared with a single periodic unit-cell model, the accuracy of simulating diffuse scattering is increased when the crystal is modeled as a periodic supercell consisting of a 2 × 2 × 2 layout of eight unit cells. The MD simulations capture the general dependence of correlations on the separation of atoms. There is substantial agreement between the simulated Bragg reflections and the crystal structure; there are local deviations, however, indicating both the limitation of using a single structuremore » to model disordered regions of the protein and local deviations of the average structure away from the crystal structure. Although it was anticipated that a simulation of longer duration might be required to achieve maximal agreement of the diffuse scattering calculation with the data using the supercell model, only a microsecond is required, the same as for the unit cell. Rigid protein motions only account for a minority fraction of the variation in atom positions from the simulation. The results indicate that protein crystal dynamics may be dominated by internal motions rather than packing interactions, and that MD simulations can be combined with Bragg and diffuse X-ray scattering to model the protein conformational ensemble.« less
Leukemia mortality by cell type in petroleum workers with potential exposure to benzene.
Raabe, G K; Wong, O
1996-01-01
Workers in the petroleum industry are potentially exposed to a variety of petrochemicals, including benzene or benzene-containing liquids. Although a large number of studies of petroleum workers have been conducted to examine leukemia and other cancer risks, few existing studies have investigated cell-type-specific leukemias. One of the major reasons for the lack of cell-type-specific analysis was the small number of deaths by cell type in individual studies. In the present investigation, all cohort studies of petroleum workers in the United States and the United Kingdom were combined into a single database for cell-type-specific leukemia analysis. The majority of these workers were petroleum refinery employees, but production, pipeline, and distribution workers in the petroleum industry were also included. The combined cohort consisted of more than 208,000 petroleum workers, who contributed more than 4.6 million person-years of observation. Based on a meta-analysis of the combined data, cell-type-specific leukemia risks were expressed in terms of standardized mortality ratios (meta-SMRs). The meta-SMR for acute myeloid leukemia was 0.96. The lack of an increase of acute myeloid leukemia was attributed to the low levels of benzene exposure in the petroleum industry, particularly in comparison to benzene exposure levels in some previous studies of workers in other industries, who had been found to experience an increased risk of acute myeloid leukemia. Similarly, no increase in chronic myeloid, acute lymphocytic, or chronic lymphocytic leukemias was found in petroleum workers (meta-SMRs of 0.89, 1.16, and 0.84, respectively). Stratified meta-analyses restricted to refinery studies or to studies with at least 15 years of follow-up yielded similar results. The findings of the present investigation are consistent with those from several recent case-control studies of cell-type-specific leukemia. Patterns and levels of benzene exposure in the petroleum industry are reviewed. The results of the present epidemiologic investigation are discussed in conjunction with recent advances in leukemogenesis from other scientific disciplines. PMID:9118924
Optomechanical design and testing of the VLT tertiary mirrors
NASA Astrophysics Data System (ADS)
Bollinger, Wolfgang; Juranek, Hans J.; Schulte, Stefan; May, K.; Michel, Alain
2000-07-01
The Tertiary Mirrors for the ESO Very Large Telescope project consist of four optical flats (elliptical, 890 X 1260 mm2). The achieved opto-mechanical design is challenging since it provides high optical overall quality combined with high stiffness (70 Hz Eigenfrequency) and low mass (total mass of 180 kg for the complete unit). Schott (Mainz, Germany) produces the lightweight Zerodur blanks. Carl Zeiss has designed and manufactured the mirror and its support cell. Last not least it became necessary to install the biggest testing equipment for flats in Europe to guarantee for a scientifically correct verification of the quality of the complete unit. All four mirrors have been delivered to ESO.
EOS-AM1 Nickel Hydrogen Cell Interim Life Test Report
NASA Technical Reports Server (NTRS)
Bennett, C. W.; Keys, D. J.; Rao, G. M.; Wannemacher, H. E.; Vaidyanathan, H.
1997-01-01
This paper reports the interim results of the Earth Observing System AM-1 project (EOS-AM-1) nickel hydrogen cell life test being conducted under contract to National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) at the Lockheed Martin Missiles and Space (LMMS) facility in East Windsor, NJ; and at COMSAT Labs., Clarksburg, MD. The purpose of the tests is to verify that the EOS-AM-l cell design can meet five years of real-time Low Earth Orbit (LEO) cycling. The tests include both real-time LEO and accelerated stress tests. At LMMS, the first real-time LEO simulated 99 minute orbital cycle started on February 7, 1994 and the test has been running continuously since that time, with 13000 LEO cycles completed as of September 2, 1996. Each cycle consists of a 64 minute charge (VT at 1.507 volts per cell, 1.06 C/D ratio, followed by 0.6 ampere trickle charge) and a 35 minute constant power discharge at 177 watts (22.5% DOD). At COMSAT, the accelerated stress test consists of 90 minute orbital cycles at 60% DOD with a 30 minute discharge at 60 amperes and a 60 minute charge at 40 ampercs (VT at 1.54 volts per cell to 1.09 C/D ratio, followed by 0.6 ampere trickle charge). The real-time LEO life test battery consists of seven, 50AH (nameplate rating) Eagle-Picher, Inc. (EPI) Mantech cells manufactured into three, 3-cell pack assemblies (there are two place holder cells that are not part of the life test electrical circuit). The test pack is configured to simulate the conductive thermal design of the spacecraft battely, including: conductive aluminum sleeves, 3-cell pack aluminum baseplate, and honeycomb panel all mounted to a liquid (-5 C) cold plate. The entire assembly is located in a thermal chamber operating at +3 C. The accelerated stress test unit consists of five cells mounted in machined aluminum test sleeves and is operating at +10 C. The real-time LEO life test battery has met all performance requirements through the first 13,000 cycles, including: end of charge and discharge cell voltages and voltage gradients; end of chalge and discharge cell pressures; within cell and between cell temperature gradients; discharge capacity; current and power levels; and all chalge parameters. The accelerated stress test battely has completed over 5900 cycles as of 9/11/96. This paper reports both battery performances as a function of cycle life, with individual cell performance comparisons repolted for selected cycles in both tests.
Electronic Asymmetry by Compositionally Braking Inversion Symmetry
NASA Astrophysics Data System (ADS)
Warusawithana, Maitri
2005-03-01
By stacking molecular layers of 3 different perovskite titanate phases, BaTiO3, SrTiO3 and CaTiO3 with atomic layer control, we construct nanostructures where global inversion symmetry is broken. With the structures clamped to the substrate, the stacking order gives rise to asymmetric strain fields. The dielectric response show asymmetric field tuning consistent with the symmetry of the stacking order. By analyzing the temperature and frequency dependence of the complex dielectric constant, we show that the response comes from activated switching of dipoles between two asymmetric states separated by an energy barrier. We find the size of average dipole units from the temperature dependence of the linewidth of field tuning curves to be around 10 unit cells in all the different nanostructures we investigate. At low temperatures we observe a deviation from the kinetic response suggesting a further growth in correlations. Pyrocurrent measurements confirm this observation indicating a phase transition to a ferro-like state. We explain the high temperature dipoles as single unit cell cross sectional columns correlated via the strain fields in the stacking direction, with the height somewhat short of the film thickness possibly due to some form of weak disorder.
Accelerating sino-atrium computer simulations with graphic processing units.
Zhang, Hong; Xiao, Zheng; Lin, Shien-fong
2015-01-01
Sino-atrial node cells (SANCs) play a significant role in rhythmic firing. To investigate their role in arrhythmia and interactions with the atrium, computer simulations based on cellular dynamic mathematical models are generally used. However, the large-scale computation usually makes research difficult, given the limited computational power of Central Processing Units (CPUs). In this paper, an accelerating approach with Graphic Processing Units (GPUs) is proposed in a simulation consisting of the SAN tissue and the adjoining atrium. By using the operator splitting method, the computational task was made parallel. Three parallelization strategies were then put forward. The strategy with the shortest running time was further optimized by considering block size, data transfer and partition. The results showed that for a simulation with 500 SANCs and 30 atrial cells, the execution time taken by the non-optimized program decreased 62% with respect to a serial program running on CPU. The execution time decreased by 80% after the program was optimized. The larger the tissue was, the more significant the acceleration became. The results demonstrated the effectiveness of the proposed GPU-accelerating methods and their promising applications in more complicated biological simulations.
Device for monitoring cell voltage
Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE
2012-08-21
A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendry, J.H.; Roberts, S.A.
1990-05-01
The analysis of 68 published sets of dose-incidence data for marrow failure in different species, using a double-log mortality function, indicates: (a) There is more heterogeneity, i.e. greater sums-of-squares per degree of freedom, within the data sets for mouse than for larger species (monkey, dog, sheep, goat, pig). (b) For mice the curves for acute doses are characterized by a D0 of about 100 cGy for tissue-rescuing units (or target cells), which are depleted at most to about 3 x 10(-4) at LD50. (c) Larger species are much less tolerant to target-cell depletion, the corresponding level being consistently in themore » range of 10(-2)-10(-3) at LD50. Also, the D0 is often lower (approximately 55 cGy), which is compatible in the dog with such a value for hemopoietic progenitor cells. (d) With larger species there is an unexpected reduction in heterogeneity when the dose rate is lower, which gives a D0 lower than expected and a higher extrapolate. It is concluded that the position and slope of the dose-incidence curves are compatible with interpretations based primarily on target-cell number and survival characteristics, modified by additional heterogeneity factors.« less
Structural convergence properties of amorphous InGaZnO4 from simulated liquid-quench methods.
Buchanan, Jacob C; Fast, Dylan B; Hanken, Benjamin E; Mustard, Thomas J L; Laurita, Geneva; Chiang, Tsung-Han; Keszler, Douglas A; Subramanian, Mas A; Wager, John F; Dolgos, Michelle R; Rustad, James R; Cheong, Paul Ha-Yeon
2017-11-14
The study of structural properties of amorphous structures is complicated by the lack of long-range order and necessitates the use of both cutting-edge computer modeling and experimental techniques. With regards to the computer modeling, many questions on convergence arise when trying to assess the accuracy of a simulated system. What cell size maximizes the accuracy while remaining computationally efficient? More importantly, does averaging multiple smaller cells adequately describe features found in bulk amorphous materials? How small is too small? The aims of this work are: (1) to report a newly developed set of pair potentials for InGaZnO 4 and (2) to explore the effects of structural parameters such as simulation cell size and numbers on the structural convergence of amorphous InGaZnO 4 . The total number of formula units considered over all runs is found to be the critical factor in convergence as long as the cell considered contains a minimum of circa fifteen formula units. There is qualitative agreement between these simulations and X-ray total scattering data - peak trends and locations are consistently reproduced while intensities are weaker. These new IGZO pair potentials are a valuable starting point for future structural refinement efforts.
Pan, Deng; Hu, Zhe; Qiu, Fengwu; Huang, Zhen-Li; Ma, Yilong; Wang, Yina; Qin, Lingsong; Zhang, Zhihong; Zeng, Shaoqun; Zhang, Yu-Hui
2014-11-20
Single-molecule localization microscopy (SMLM) achieves super-resolution imaging beyond the diffraction limit but critically relies on the use of photo-modulatable fluorescent probes. Here we report a general strategy for constructing cell-permeable photo-modulatable organic fluorescent probes for live-cell SMLM by exploiting the remarkable cytosolic delivery ability of a cell-penetrating peptide (rR)3R2. We develop photo-modulatable organic fluorescent probes consisting of a (rR)3R2 peptide coupled to a cell-impermeable organic fluorophore and a recognition unit. Our results indicate that these organic probes are not only cell permeable but can also specifically and directly label endogenous targeted proteins. Using the probes, we obtain super-resolution images of lysosomes and endogenous F-actin under physiological conditions. We resolve the dynamics of F-actin with 10 s temporal resolution in live cells and discern fine F-actin structures with diameters of ~80 nm. These results open up new avenues in the design of fluorescent probes for live-cell super-resolution imaging.
NASA Technical Reports Server (NTRS)
Myers, W. L.
1981-01-01
The LANDSAT-geographic information system (GIS) interface must summarize the results of the LANDSAT classification over the same cells that serve as geographic referencing units for the GIS, and output these summaries on a cell-by-cell basis in a form that is readable by the input routines of the GIS. The ZONAL interface for cell-oriented systems consists of two primary programs. The PIXCEL program scans the grid of cells and outputs a channel of pixels. Each pixel contains not the reflectance values but the identifier of the cell in which the center of the pixel is located. This file of pixelized cells along with the results of a pixel-by-pixel classification of the scene produced by the LANDSAT analysis system are input to the CELSUM program which then outputs a cell-by-cell summary formatted according to the requirements of the host GIS. Cross-correlation of the LANDSAT layer with the other layers in the data base is accomplished with the analysis and display facilities of the GIS.
Sigle, Steffen; Steblau, Nadja; Wohlleben, Wolfgang; Muth, Günther
2016-09-01
Cell wall glycopolymers (CWG) represent an important component of the Gram-positive cell envelope with many biological functions. The mycelial soil bacterium Streptomyces coelicolor A3(2) incorporates two distinct CWGs, polydiglycosylphosphate (PDP) and teichulosonic acid, into the cell wall of its vegetative mycelium but only little is known about their role in the complex life cycle of this microorganism. In this study we established assays to measure the total amount of CWGs in mycelial cell walls and spore walls, to quantify the individual CWGs and to determine the length of PDP. By applying these assays, we discovered that the relative amount of CWGs, especially of PDP, is reduced in spores compared to vegetative mycelium. Furthermore we found that PDP extracted from mycelial cell walls consisted of at least 19 repeating units, whereas spore walls contained substantially longer PDP polymers. Copyright © 2016 Elsevier B.V. All rights reserved.
Fuel processing for PEM fuel cells: transport and kinetic issues of system design
NASA Astrophysics Data System (ADS)
Zalc, J. M.; Löffler, D. G.
In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.
Static Holes in Geometrically Frustrated Bow Tie Ladder
NASA Astrophysics Data System (ADS)
Martins, George; Brenig, Wolfram
2007-03-01
Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).
Automatic fixation facility for plant seedlings in the TEXUS Sounding Rocket Programme.
Tewinkel, M; Burfeindt, J; Rank, P; Volkmann, D
1991-10-01
Automatic chemical fixation of plant seedlings within a 6 min period of reduced gravity (10(-4)g) was performed on three ballistic rocket flights provided by the German Sounding Rocket Programme TEXUS (Technologische Experimente unter Schwerelosigkeit = Technological Experiments in Microgravity). The described TEXUS experiment module consists of a standard experiment housing with batteries, cooling and heating systems, timer, and a data recording unit. Typically, 60 min before launch an experiment plug-in unit containing chambers with the plant material, the fixation system, and the temperature sensors is installed into the module which is already integrated in the payload section of the sounding rocket (late access). During the ballistic flight plant chambers are rapidly filled at pre-selected instants to preserve the cell structure of gravity sensing cells. After landing the plant material is processed for transmission electron microscopy. Up to now three experiments were successfully performed with cress roots (Lepidium sativum L.). Detailed improvements resulted in an automatic fixation facility which in principle can be used in unmanned missions.
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
Crystal structure and crystal chemistry of melanovanadite, a natural vanadium bronze.
Konnert, J.A.; Evans, H.T.
1987-01-01
The crystal structure of melanovanadite from Minas Ragra, Peru, has been determined in space group P1. The triclinic unit cell (non-standard) has a 6.360(2), b 18.090(9), c 6.276(2) A, alpha 110.18(4)o, beta 101.62(3)o, gamma 82.86(4)o. A subcell with b' = b/2 was found by crystal-structure analysis to contain CaV4O10.5H2O. The subcell has a layer structure in which the vanadate sheet consists of corner-shared tetrahedral VO4 and double square-pyramidal V2O8 groups, similar to that previously found in synthetic CsV2O5. Refinement of the full structure (R = 0.056) showed that the Ca atom, which half-occupies a general position in the subcell, is 90% ordered at one of these sites in the whole unit cell. Bond length-bond strength estimates indicate that the tetrahedra contain V5+, and the square pyramids, V4+.-J.A.Z.
Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao
2018-01-01
We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.
Softening non-metallic crystals by inhomogeneous elasticity.
Howie, P R; Thompson, R P; Korte-Kerzel, S; Clegg, W J
2017-09-14
High temperature structural materials must be resistant to cracking and oxidation. However, most oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they are to be resistant to cracking. It is shown, using density functional theory, that if a crystal's unit cell elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with observations in layered compounds, such as Ti 3 SiC 2 , Nb 2 Co 7 , W 2 B 5 , Ta 2 C and Ta 4 C 3 . The mechanism by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in a complex metallic alloy, even though the electronegativity differences within the unit cell are less than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a greater oxidation resistance and hence a higher temperature capability to be used.
NASA Technical Reports Server (NTRS)
Vlasse, Marcus; Paley, Mark S.
1993-01-01
The crystal and molecular structure of an asymmetric diacetylene monomer has been determined from x-ray diffraction data. The crystals, obtained from an acetone/pentane solution, are orthorhombic, Fdd2 with Z = 16 in a unit cell having dimensions of a = 42.815(6) A, b = 22.224(5) A, c = 4.996(l) A. The structure was solved by direct methods and refined by least- squares techniques to an R(sub F) of 6.4% for 988 reflections and 171 variables. The diacetylene chains are disposed in the unit cell in a complex manner in order to satisfy the hydrogen- bonding, crystal packing, and symmetry requirements of the system. The solid state polymerization mechanism is discussed with respect to the geometric disposition of the diacetylene chains. These chains are far apart and incorrectly oriented with respect to each other to permit polymerization in the crystal by means of 1,4-addition, consistent with the Baughman mechanistic model.
Pluggable microbial fuel cell stacks for septic wastewater treatment and electricity production.
Yazdi, Hadi; Alzate-Gaviria, Liliana; Ren, Zhiyong Jason
2015-03-01
Septic tanks and other decentralized wastewater treatment systems play an important role in protecting public health and water resource for remote or developing communities. Current septic systems do not have energy production capability, yet such feature can be very valuable for areas lack access to electricity. Here we present an easy-to-operate microbial fuel cell (MFC) stack that consists a common base and multiple pluggable units, which can be connected in either series or parallel for electricity generation during waste treatment in septic tanks. Lab studies showed such easy configuration obtained a power density of 142±6.71mWm(-2) when 3 units are connected in parallel, and preliminary calculation indicates that a system that costs approximately US $25 can power a 6-watt LED light for 4h per day with great improvement potential. Detailed electrochemical characterizations provide insights on system internal loss and technology advancement needed. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Luealamai, Sutha; Panijpan, Bhinyo
2012-01-01
The authors have developed a computer-based learning module on the unit cell of various types of crystal. The module has two components: the virtual unit cell (VUC) part and the subsequent unit cell hunter part. The VUC is a virtual reality simulation for students to actively arrive at the unit cell from exploring, from a broad view, the crystal…
Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham
2016-01-01
Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.
Cell type discovery using single-cell transcriptomics: implications for ontological representation.
Aevermann, Brian D; Novotny, Mark; Bakken, Trygve; Miller, Jeremy A; Diehl, Alexander D; Osumi-Sutherland, David; Lasken, Roger S; Lein, Ed S; Scheuermann, Richard H
2018-05-01
Cells are fundamental function units of multicellular organisms, with different cell types playing distinct physiological roles in the body. The recent advent of single-cell transcriptional profiling using RNA sequencing is producing 'big data', enabling the identification of novel human cell types at an unprecedented rate. In this review, we summarize recent work characterizing cell types in the human central nervous and immune systems using single-cell and single-nuclei RNA sequencing, and discuss the implications that these discoveries are having on the representation of cell types in the reference Cell Ontology (CL). We propose a method, based on random forest machine learning, for identifying sets of necessary and sufficient marker genes, which can be used to assemble consistent and reproducible cell type definitions for incorporation into the CL. The representation of defined cell type classes and their relationships in the CL using this strategy will make the cell type classes being identified by high-throughput/high-content technologies findable, accessible, interoperable and reusable (FAIR), allowing the CL to serve as a reference knowledgebase of information about the role that distinct cellular phenotypes play in human health and disease.
Cassettes for solid-oxide fuel cell stacks and methods of making the same
Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L
2012-10-23
Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.
X-ray Diffraction from Membrane Protein Nanocrystals
Hunter, M.S.; DePonte, D.P.; Shapiro, D.A.; Kirian, R.A.; Wang, X.; Starodub, D.; Marchesini, S.; Weierstall, U.; Doak, R.B.; Spence, J.C.H.; Fromme, P.
2011-01-01
Membrane proteins constitute >30% of the proteins in an average cell, and yet the number of currently known structures of unique membrane proteins is <300. To develop new concepts for membrane protein structure determination, we have explored the serial nanocrystallography method, in which fully hydrated protein nanocrystals are delivered to an x-ray beam within a liquid jet at room temperature. As a model system, we have collected x-ray powder diffraction data from the integral membrane protein Photosystem I, which consists of 36 subunits and 381 cofactors. Data were collected from crystals ranging in size from 100 nm to 2 μm. The results demonstrate that there are membrane protein crystals that contain <100 unit cells (200 total molecules) and that 3D crystals of membrane proteins, which contain <200 molecules, may be suitable for structural investigation. Serial nanocrystallography overcomes the problem of x-ray damage, which is currently one of the major limitations for x-ray structure determination of small crystals. By combining serial nanocrystallography with x-ray free-electron laser sources in the future, it may be possible to produce molecular-resolution electron-density maps using membrane protein crystals that contain only a few hundred or thousand unit cells. PMID:21190672
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.
2005-08-01
The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtainedmore » in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.« less
Role of the membrane cortex in neutrophil deformation in small pipets.
Zhelev, D V; Needham, D; Hochmuth, R M
1994-01-01
The simplest model for a neutrophil in its "passive" state views the cell as consisting of a liquid-like cytoplasmic region surrounded by a membrane. The cell surface is in a state of isotropic contraction, which causes the cell to assume a spherical shape. This contraction is characterized by the cortical tension. The cortical tension shows a weak area dilation dependence, and it determines the elastic properties of the cell for small curvature deformations. At high curvature deformations in small pipets (with internal radii less than 1 micron), the measured critical suction pressure for cell flow into the pipet is larger than its estimate from the law of Laplace. A model is proposed where the region consisting of the cytoplasm membrane and the underlying cortex (having a finite thickness) is introduced at the cell surface. The mechanical properties of this region are characterized by the apparent cortical tension (defined as a free contraction energy per unit area) and the apparent bending modulus (introduced as a bending free energy per unit area) of its middle plane. The model predicts that for small curvature deformations (in pipets having radii larger than 1.2 microns) the role of the cortical thickness and the resistance for bending of the membrane-cortex complex is negligible. For high curvature deformations, they lead to elevated suction pressures above the values predicted from the law of Laplace. The existence of elevated suction pressures for pipets with radii from 1 micron down to 0.24 micron is found experimentally. The measured excess suction pressures cannot be explained only by the modified law of Laplace (for a cortex with finite thickness and negligible bending resistance), because it predicts unacceptable high cortical thicknesses (from 0.3 to 0.7 micron). It is concluded that the membrane-cortex complex has an apparent bending modulus from 1 x 10(-18) to 2 x 10(-18) J for a cortex with a thickness from 0.1 micron down to values much smaller than the radius of the smallest pipet (0.24 micron) used in this study. Images FIGURE 1 PMID:7948682
Hirata, Y; Highstein, S M
2001-05-01
The gain of the vertical vestibuloocular reflex (VVOR), defined as eye velocity/head velocity was adapted in squirrel monkeys by employing visual-vestibular mismatch stimuli. VVOR gain, measured in the dark, could be trained to values between 0.4 and 1.5. Single-unit activity of vertical zone Purkinje cells was recorded from the flocculus and ventral paraflocculus in alert squirrel monkeys before and during the gain change training. Our goal was to evaluate the site(s) of learning of the gain change. To aid in the evaluation, a model of the vertical optokinetic reflex (VOKR) and VVOR was constructed consisting of floccular and nonfloccular systems divided into subsystems based on the known anatomy and input and output parameters. Three kinds of input to floccular Purkinje cells via mossy fibers were explicitly described, namely vestibular, visual (retinal slip), and efference copy of eye movement. The characteristics of each subsystem (gain and phase) were identified at different VOR gains by reconstructing single-unit activity of Purkinje cells during VOKR and VVOR with multiple linear regression models consisting of sensory input and motor output signals. Model adequacy was checked by evaluating the residual following the regressions and by predicting Purkinje cells' activity during visual-vestibular mismatch paradigms. As a result, parallel changes in identified characteristics with VVOR adaptation were found in the prefloccular/floccular subsystem that conveys vestibular signals and in the nonfloccular subsystem that conveys vestibular signals, while no change was found in other subsystems, namely prefloccular/floccular subsystems conveying efference copy or visual signals, nonfloccular subsystem conveying visual signals, and postfloccular subsystem transforming Purkinje cell activity to eye movements. The result suggests multiple sites for VVOR motor learning including both flocculus and nonflocculus pathways. The gain change in the nonfloccular vestibular subsystem was in the correct direction to cause VOR gain adaptation while the change in the prefloccular/floccular vestibular subsystem was incorrect (anti-compensatory). This apparent incorrect directional change might serve to prevent instability of the VOR caused by positive feedback via the efference copy pathway.
Canfield, Scott G; Stebbins, Matthew J; Morales, Bethsymarie Soto; Asai, Shusaku W; Vatine, Gad D; Svendsen, Clive N; Palecek, Sean P; Shusta, Eric V
2017-03-01
The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843. © 2016 International Society for Neurochemistry.
Smith, Bryan A.; Akers, Walter J.; Leevy, W. Matthew; Lampkins, Andrew J.; Xiao, Shuzhang; Wolter, William; Suckow, Mark A.; Achilefu, Samuel; Smith, Bradley D.
2009-01-01
In vivo optical imaging shows that a fluorescent imaging probe, comprised of a near-infrared fluorophore attached to an affinity group containing two zinc(II)-dipicolylamine (Zn-DPA) units, targets prostate and mammary tumors in two different xenograft animal models. The tumor selectivity is absent with control fluorophores whose structures do not have appended Zn-DPA targeting ligands. Ex vivo biodistribution and histological analyses indicate that the probe is targeting the necrotic regions of the tumors, which is consistent with in vitro microscopy showing selective targeting of the anionic membrane surfaces of dead and dying cells. PMID:20014845
Strong Cosserat Elasticity in a Transversely Isotropic Polymer Lattice
NASA Astrophysics Data System (ADS)
Rueger, Z.; Lakes, R. S.
2018-02-01
Large size effects are experimentally measured in lattices of triangular unit cells: about a factor of 36 in torsion rigidity and 29 in bending rigidity. This nonclassical phenomenon is consistent with Cosserat elasticity, which allows for the rotation of points and distributed moments in addition to the translation of points and force stress of classical elasticity. The Cosserat characteristic length for torsion is ℓt=9.4 mm ; for bending, it is ℓb=8.8 mm ; these values are comparable to the cell size. Nonclassical effects are much stronger than in stretch-dominated lattices with uniform straight ribs. The lattice structure provides a path to the attainment of arbitrarily large effects.
Development of a large area space solar cell assembly
NASA Technical Reports Server (NTRS)
Spitzer, M. B.
1982-01-01
The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.
Stritesky, Gretta; Wadsworth, Kimberly; Duffy, Merry; Buck, Kelly; Dehn, Jason
2018-02-01
Umbilical cord blood units provide an important stem cell source for transplantation, particularly for patients of ethnic diversity who may not have suitably matched available, adult-unrelated donors. However, with the cost of cord blood unit acquisition from public banks significantly higher than that for adult-unrelated donors, attention is focused on decreasing cost yet still providing cord blood units to patients in need. Historical practices of banking units with low total nucleated cell counts, including units with approximately 90 × 10 7 total nucleated cells, indicates that most banked cord blood units have much lower total nucleated cell counts than are required for transplant. The objective of this study was to determine the impact on the ability to identify suitable cord blood units for transplantation if the minimum total nucleated cell count for banking were increased from 90 × 10 7 to 124 or 149 × 10 7 . We analyzed ethnically diverse patients (median age, 3 years) who underwent transplantation of a single cord blood unit in 2005 to 2016. A cord blood unit search was evaluated to identify units with equal or greater human leukocyte antigen matching and a greater total nucleated cell count than that of the transplanted cord blood unit (the replacement cord blood unit). If the minimum total nucleated cell count for banking increased to 124 or 149 × 10 7 , then from 75 to 80% of patients would still have at least 1 replacement cord blood unit in the current (2016) cord blood unit inventory. The best replacement cord blood units were often found among cords with the same ethnic background as the patient. The current data suggest that, if the minimum total nucleated cell count were increased for banking, then it would likely lead to an inventory of more desirable cord blood units while having minimal impact on the identification of suitable cord blood units for transplantation. © 2017 AABB.
Coherent Timescales and Mechanical Structure of Multicellular Aggregates.
Yu, Miao; Mahtabfar, Aria; Beelen, Paul; Demiryurek, Yasir; Shreiber, David I; Zahn, Jeffrey D; Foty, Ramsey A; Liu, Liping; Lin, Hao
2018-06-05
Multicellular aggregates are an excellent model system to explore the role of tissue biomechanics in specifying multicellular reorganization during embryonic developments and malignant invasion. Tissue-like spheroids, when subjected to a compressive force, are known to exhibit liquid-like behaviors at long timescales (hours), largely because of cell rearrangements that serve to effectively dissipate the applied stress. At short timescales (seconds to minutes), before cell rearrangement, the mechanical behavior is strikingly different. The current work uses shape relaxation to investigate the structural characteristics of aggregates and discovers two coherent timescales: one on the order of seconds, the other tens of seconds. These timescales are universal, conserved across a variety of tested species, and persist despite great differences in other properties such as tissue surface tension and adhesion. A precise mathematical theory is used to correlate the timescales with mechanical properties and reveals that aggregates have a relatively strong envelope and an unusually "soft" interior (weak bulk elastic modulus). This characteristic is peculiar, considering that both layers consist of identical units (cells), but is consistent with the fact that this structure can engender both structural integrity and the flexibility required for remodeling. In addition, tissue surface tension, elastic modulus, and viscosity are proportional to each other. Considering that these tissue-level properties intrinsically derive from cellular-level properties, the proportionalities imply precise coregulation of the latter and in particular of the tension on the cell-medium and cell-cell interfaces. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Jia, Min Ze; Ohtsuka, Jun; Lee, Woo Cheol; Nagata, Koji; Tanokura, Masaru
2006-01-01
A putative ribosomal RNA-processing factor consisting of two KH domains from Pyrococcus horikoshii OT3 (PH1566; 25 kDa) was crystallized by the sitting-drop vapour-diffusion method using PEG 3000 as the precipitant. The crystals diffracted X-rays to beyond 2.0 Å resolution using a synchrotron-radiation source. The space group of the crystals was determined as primitive orthorhombic P212121, with unit-cell parameters a = 45.9, b = 47.4, c = 95.7 Å. The crystals contain one molecule in the asymmetric unit (V M = 2.5 Å3 Da−1) and have a solvent content of 50%. PMID:16511260
Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
Li, Xia; Rao, Shaoqi; Jiang, Wei; Li, Chuanxing; Xiao, Yun; Guo, Zheng; Zhang, Qingpu; Wang, Lihong; Du, Lei; Li, Jing; Li, Li; Zhang, Tianwen; Wang, Qing K
2006-01-01
Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network) to address the underlying regulations of genes that can span any unit(s) of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex gene regulations related to the development, aging and progressive pathogenesis of a complex disease where potential dependences between different experiment units might occurs. PMID:16420705
Acute lymphoblastic leukemia: a comprehensive review and 2017 update
Terwilliger, T; Abdul-Hay, M
2017-01-01
Acute lymphoblastic leukemia (ALL) is the second most common acute leukemia in adults, with an incidence of over 6500 cases per year in the United States alone. The hallmark of ALL is chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells. In adults, 75% of cases develop from precursors of the B-cell lineage, with the remainder of cases consisting of malignant T-cell precursors. Traditionally, risk stratification has been based on clinical factors such age, white blood cell count and response to chemotherapy; however, the identification of recurrent genetic alterations has helped refine individual prognosis and guide management. Despite advances in management, the backbone of therapy remains multi-agent chemotherapy with vincristine, corticosteroids and an anthracycline with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of ALL. PMID:28665419
Bligny, R; Douce, R
1983-01-01
A laccase-type polyphenol oxidase is excreted by sycamore cells (Acer pseudoplatanus L.) cells. The enzyme has been purified by classical purification techniques. It is a blue copper protein of Mr 97 000, containing 45% carbohydrate and 0.24% copper. This protein consists of one single unit and the copper content corresponds to four copper atoms per protein molecule. The specific activity of the purified extracellular sycamore-cell laccase measured at pH 6.6 (optimum pH) and in the presence of 20mM-4-methhylcatechol (optimum substrate conditions) corresponded to an oxygen uptake of 32 000 nmol of O2/min per mg of protein. Under these conditions, the catalytic-centre activity of the enzyme reached 100 s-1. The excretion of laccase by sycamore cells is significant, being about 2% of the total protein synthesized by the cells during the exponential phase of growth, and is independent of cell growth. The physiological significance and the problems raised by the passage of this protein across the cytoplasmic membrane are discussed. PMID:6847630
The Structure of Plant Cell Walls
Wilder, Barry M.; Albersheim, Peter
1973-01-01
The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434
Experiments and Cycling at the LHC Prototype Half-Cell
NASA Astrophysics Data System (ADS)
Saban, R.; Casas-Cubillos, J.; Coull, L.; Cruikshank, P.; Dahlerup-Petersen, K.; Hilbert, B.; Krainz, G.; Kos, N.; Lebrun, P.; Momal, F.; Misiaen, D.; Parma, V.; Poncet, A.; Riddone, G.; Rijllart, A.; Rodriguez-Mateos, F.; Schmidt, R.; Serio, L.; Wallen, E.; van Weelderen, R.; Williams, L. R.
1997-05-01
The first version of the LHC prototype half-cell has been in operation since February 1995. It consists of one quadrupole and three 10-m twin aperture dipole magnets which operate at 1.8 K. This experimental set-up has been used to observe and study phenomena which appear when the systems are assembled in one unit and influence one another. The 18-month long experimental program has validated the cryogenic system and yielded a number of results on cryogenic instrumentation, magnet protection and vacuum in particular under non-standard operating conditions. The program was recently complemented by the cycling experiment: it consisted in powering the magnets following the ramp rates which will be experienced by the magnets during an LHC injection. In order to simulate 10 years of routine operation of LHC, more than 2000 1-hour cycles were performed interleaved with provoked quenches. The objective of this experiment was to reveal eventual flaws in the design of components. The prototype half-cell performed to expectations showing no sign of failure of fatigue of components for more than 2000 cycles until one of the dipoles started exhibiting an erratic quench behavior.
2013-09-29
recent works on optical metasurfaces consisting of an array of plasmonic rods with spatially varying orientations, where the local phase profile is...the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of helicity dependent SPP...realization of three dimensional (3D) holography by using metasurfaces . As the phase can be controlled locally at each subwavelength unit cell by the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, T.S.; Ikalainen, P.K.
1995-12-31
The authors report a two-temperature RF bias stress test on nominal 1.2 W 7.5 GHz GaAs/AlGaAs HBT unit cell amplifiers. MTTF`s of 2020 and 1340 hours were obtained at Tj = 218{degrees}C and 245{degrees}C, respectively, under nominal input bias. An activation energy of 0.42 eV is estimated, consistent with published results for similar devices under DC bias stress.
A general multiscale framework for the emergent effective elastodynamics of metamaterials
NASA Astrophysics Data System (ADS)
Sridhar, A.; Kouznetsova, V. G.; Geers, M. G. D.
2018-02-01
This paper presents a general multiscale framework towards the computation of the emergent effective elastodynamics of heterogeneous materials, to be applied for the analysis of acoustic metamaterials and phononic crystals. The generality of the framework is exemplified by two key characteristics. First, the underlying formalism relies on the Floquet-Bloch theorem to derive a robust definition of scales and scale separation. Second, unlike most homogenization approaches that rely on a classical volume average, a generalized homogenization operator is defined with respect to a family of particular projection functions. This yields a generalized macro-scale continuum, instead of the classical Cauchy continuum. This enables (in a micromorphic sense) to homogenize the rich dispersive behavior resulting from both Bragg scattering and local resonance. For an arbitrary unit cell, the homogenization projection functions are constructed using the Floquet-Bloch eigenvectors obtained in the desired frequency regime at select high symmetry points, which effectively resolves the emergent phenomena dominating that regime. Furthermore, a generalized Hill-Mandel condition is proposed that ensures power consistency between the homogenized and full-scale model. A high-order spatio-temporal gradient expansion is used to localize the multiscale problem leading to a series of recursive unit cell problems giving the appropriate micro-mechanical corrections. The developed multiscale method is validated against standard numerical Bloch analysis of the dispersion spectra of example unit cells encompassing multiple high-order branches generated by local resonance and/or Bragg scattering.
Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken Gap Heterojunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Peng; Droubay, Timothy C.; Jeong, Jong S.
2016-01-21
Two-dimensional (2D) ultra-high carrier densities at complex oxide interfaces are of considerable current research interest for novel plasmonic and high charge-gain devices. However, the highest 2D electron density obtained in oxide heterostructures is thus far limited to 3×1014 cm-2 (½ electron/unit cell/interface) at GdTiO3/SrTiO3 interfaces, and is typically an order of magnitude lower at LaAlO3/SrTiO3 interfaces. Here we show that carrier densities much higher than 3×1014 cm-2 can be achieved via band engineering. Transport measurements for 3 nm SrTiO3/t u.c. NdTiO3/3 nm SrTiO3/LSAT (001) show that charge transfer significantly in excess of the value expected from the polar discontinuity modelmore » occurs for higher t values. The carrier density remains unchanged, and equivalent to ½ electron/unit cell/interface for t < 6 unit cells. However, above a critical NdTiO3 thickness of 6 u.c., electrons from the valence band of NdTiO3 spill over into the SrTiO3 conduction band as a natural consequence of the band alignment. An atomistic model consistent with first-principle calculations and experimental results is proposed for the charge transfer mechanisms. These results may provide an exceptional route to the realization of the room-temperature oxide electronics.« less
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2018-06-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell
NASA Astrophysics Data System (ADS)
Vakhnenko, Oleksiy O.
2018-05-01
Developing the idea of increasing the number of structural elements in the unit cell of a quasi-one-dimensional lattice as applied to the semi-discrete integrable systems of nonlinear Schrödinger type, we construct the zero-curvature representation for the general integrable nonlinear system on a lattice with three structural elements in the unit cell. The integrability of the obtained general system permits to find explicitly a number of local conservation laws responsible for the main features of system dynamics and in particular for the so-called natural constraints separating the field variables into the basic and the concomitant ones. Thus, considering the reduction to the semi-discrete integrable system of nonlinear Schrödinger type, we revealed the essentially nontrivial impact of concomitant fields on the Poisson structure and on the whole Hamiltonian formulation of system dynamics caused by the nonzero background values of these fields. On the other hand, the zero-curvature representation of a general nonlinear system serves as an indispensable key to the dressing procedure of system integration based upon the Darboux transformation of the auxiliary linear problem and the implicit Bäcklund transformation of field variables. Due to the symmetries inherent to the six-component semi-discrete integrable nonlinear Schrödinger system with attractive-type nonlinearities, the Darboux-Bäcklund dressing scheme is shown to be simplified considerably, giving rise to the appropriately parameterized multi-component soliton solution consisting of six basic and four concomitant components.
On the origin of biological construction, with a focus on multicellularity.
van Gestel, Jordi; Tarnita, Corina E
2017-10-17
Biology is marked by a hierarchical organization: all life consists of cells; in some cases, these cells assemble into groups, such as endosymbionts or multicellular organisms; in turn, multicellular organisms sometimes assemble into yet other groups, such as primate societies or ant colonies. The construction of new organizational layers results from hierarchical evolutionary transitions, in which biological units (e.g., cells) form groups that evolve into new units of biological organization (e.g., multicellular organisms). Despite considerable advances, there is no bottom-up, dynamical account of how, starting from the solitary ancestor, the first groups originate and subsequently evolve the organizing principles that qualify them as new units. Guided by six central questions, we propose an integrative bottom-up approach for studying the dynamics underlying hierarchical evolutionary transitions, which builds on and synthesizes existing knowledge. This approach highlights the crucial role of the ecology and development of the solitary ancestor in the emergence and subsequent evolution of groups, and it stresses the paramount importance of the life cycle: only by evaluating groups in the context of their life cycle can we unravel the evolutionary trajectory of hierarchical transitions. These insights also provide a starting point for understanding the types of subsequent organizational complexity. The central research questions outlined here naturally link existing research programs on biological construction (e.g., on cooperation, multilevel selection, self-organization, and development) and thereby help integrate knowledge stemming from diverse fields of biology.
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2017-08-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
Unusually large unit cell of lipid bicontinuous cubic phase: towards nature's length scales
NASA Astrophysics Data System (ADS)
Kim, Hojun; Leal, Cecilia
Lipid bicontinuous cubic phases are of great interest for drug delivery, protein crystallization, biosensing, and templates for directing hard material assembly. Structural modulations of lipid mesophases regarding phase identity and unit cell size are often necessary to augment loading and gain pore size control. One important example is the need for unit cells large enough to guide the crystallization of bigger proteins without distortion of the templating phase. In nature, bicontinuous cubic constructs achieve unit cell dimensions as high as 300 nm. However, the largest unit cell of lipid mesophases synthesized in the lab is an order of magnitude lower. In fact, it has been predicted theoretically that lipid bicontinuous cubic phases of unit cell dimensions exceeding 30 nm could not exist, as high membrane fluctuations would damp liquid crystalline order. Here we report non-equilibrium assembly methods of synthesizing metastable bicontinuous cubic phases with unit cell dimensions as high as 70 nm. The phases are stable for very long periods and become increasingly ordered as time goes by without changes to unit cell dimensions. We acknowledge the funding source as a NIH.
NASA Astrophysics Data System (ADS)
Chen, Chulung; Yin, Shizhuo; Li, Jiang; Yu, Francis T. S.; Cheung, Joseph Y.; Zhang, Xueqian; Lei, Xiaoxiao; Wu, Zhongkong
1998-05-01
Cell is the basic structural and fundamental unit of all organisms; the smallest structure capable of performing all the activities vital to life. One goal of current research interest is to learn how the muscle varies the strength of its contraction in response to electric stimuli. A wide variety of techniques have been developed to monitor the mechanical response of isolated cardiac myocytes. Some success has been reported either with the use of intact rat myocytes supported by suction micropipettes or in guinea pig myocytes adhering to glass beams. However, the usual measuring techniques exhibit destructive contact performance on live cells. They could not solve the problem, since the cell may die during or after the time-consuming attachment process at the beginning of each experiment. In contrast, a novel optical system, which consists of a microglass tube with an inner diameter the same size of a real cardiac cell, is proposed to simulate real cell's twitch process. the physical parameters of synthetic cell are well known. By comparing the dynamics of the real cell with that of the simulated cell, the twitch characteristics of the real cell can be measured.
Boccaccio, Antonio; Fiorentino, Michele; Uva, Antonio E; Laghetti, Luca N; Monno, Giuseppe
2018-02-01
In a context more and more oriented towards customized medical solutions, we propose a mechanobiology-driven algorithm to determine the optimal geometry of scaffolds for bone regeneration that is the most suited to specific boundary and loading conditions. In spite of the huge number of articles investigating different unit cells for porous biomaterials, no studies are reported in the literature that optimize the geometric parameters of such unit cells based on mechanobiological criteria. Parametric finite element models of scaffolds with rhombicuboctahedron unit cell were developed and incorporated into an optimization algorithm that combines them with a computational mechanobiological model. The algorithm perturbs iteratively the geometry of the unit cell until the best scaffold geometry is identified, i.e. the geometry that allows to maximize the formation of bone. Performances of scaffolds with rhombicuboctahedron unit cell were compared with those of other scaffolds with hexahedron unit cells. We found that scaffolds with rhombicuboctahedron unit cell are particularly suited for supporting medium-low loads, while, for higher loads, scaffolds with hexahedron unit cells are preferable. The proposed algorithm can guide the orthopaedic/surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2017 Elsevier B.V. All rights reserved.
Transient analysis of a thermal storage unit involving a phase change material
NASA Technical Reports Server (NTRS)
Griggs, E. I.; Pitts, D. R.; Humphries, W. R.
1974-01-01
The transient response of a single cell of a typical phase change material type thermal capacitor has been modeled using numerical conductive heat transfer techniques. The cell consists of a base plate, an insulated top, and two vertical walls (fins) forming a two-dimensional cavity filled with a phase change material. Both explicit and implicit numerical formulations are outlined. A mixed explicit-implicit scheme which treats the fin implicity while treating the phase change material explicitly is discussed. A band algorithmic scheme is used to reduce computer storage requirements for the implicit approach while retaining a relatively fine grid. All formulations are presented in dimensionless form thereby enabling application to geometrically similar problems. Typical parametric results are graphically presented for the case of melting with constant heat input to the base of the cell.
Aquatic Activities for Middle School Children. A Focus on the Effects of Acid Precipitation.
ERIC Educational Resources Information Center
Minnesota Univ., Minneapolis. Minnesota Sea Grant Program.
Basic water-related concepts and underlying principles of acid rain are described in this curriculum in a manner that young children can understand. The curriculum consists of activities presented in four units: Background Unit, Earth Science Unit, Life Science Unit, and Extension Unit. The first three units consist of several modules, each module…
Adeghate, Ernest; Parvez, Hasan
2004-01-01
Monoamine oxidase (MAO) is an ubiquitous, non-soluble, membrane-bound enzyme, located in the outer membrane of mitochondria. MAO consists of two subtypes, MAO-A and MAO-B, depending on their substrates and sensitivity to inhibitors. MAO consists of two units joined together by a disulphide bond. The two units of MAO and flavin adenine dinucleotide (FAD) form a polymer in the outer membrane of mitochondria. The function of MAO-A is highly dependent on the lipid constituent of mitochondrial membrane, whereas the function of MAO-B does not depend on the lipid status of mitochondrial membrane. Hydrogen peroxide and ammonia are generated during MAO-induced metabolism of its substrates. MAO and its substrates are present in both the exocrine as well as the endocrine parts of the pancreas. In the islet of Langerhans, MAO-A is observed in about 50% of the cells, whereas MAO-B is less abundant and located mainly in the periphery of pancreatic islets. MAO-B is also demonstrated in centroacinar cells and in pancreatic ducts. Electron microscopy studies suggest that MAO is co-localised with insulin in secretory granules of pancreatic beta cells. Pharmacologically, beta-2-adrenoreceptors agonists such as terbutaline can stimulate MAO activity. In contrast, cholinergic muscarinic stimulation does not affect islet MAO activity. MAO activity in pancreatic tissue is significantly reduced in diabetes. This decrease in MAO activity is associated with an increase in pancreatic tissue levels of adrenaline (ADR) and noradrenaline (NA). Studies on the level of 5-hydroxyindoleacetic acid of pancreatic tissues suggest that serotonin level is also increased in diabetics. Many studies show that MAO inhibits insulin secretion. However, some of its substrates including, serotonin, adrenaline and noradrenaline have been shown to stimulate insulin secretion. In conclusion, the activity and subcellular localisation of MAO suggests that MAO may play an important role in pancreatic beta cell function and hence in the pathogenesis of diabetes mellitus.
Neural network and letter recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hue Yeon.
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C-layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken themore » on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the Gabor transform. Pattern dependent choice of center and wavelengths of Gabor filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets.« less
Metabolomics evaluation of early-storage red blood cell rejuvenation at 4°C and 37°C.
Gehrke, Sarah; Srinivasan, Amudan J; Culp-Hill, Rachel; Reisz, Julie A; Ansari, Andrea; Gray, Alan; Landrigan, Matthew; Welsby, Ian; D'Alessandro, Angelo
2018-04-24
Refrigerated red blood cell (RBC) storage results in the progressive accumulation of biochemical and morphological alterations collectively referred to as the storage lesion. Storage-induced metabolic alterations can be in part reversed by rejuvenation practices. However, rejuvenation requires an incubation step of RBCs for 1 hour at 37°C, limiting the practicality of providing "on-demand," rejuvenated RBCs. We tested the hypothesis that the addition of rejuvenation solution early in storage as an adjunct additive solution would prevent-in a time window consistent with the average age of units transfused to sickle cell recipients at Duke (15 days)-many of the adverse biochemical changes that can be reversed via standard rejuvenation, while obviating the incubation step. Metabolomics analyses were performed on cells and supernatants from AS-1 RBC units (n = 4), stored for 15 days. Units were split into pediatric bag aliquots and stored at 4°C. These were untreated controls, washed with or without rejuvenation, performed under either standard (37°C) or cold (4°C) conditions. All three treatments removed most metabolic storage by-products from RBC supernatants. However, only standard and cold rejuvenation provided significant metabolic benefits as judged by the reactivation of glycolysis and regeneration of adenosine triphosphate and 2,3-diphosphoglycerate. Improvements in energy metabolism also translated into increased capacity to restore the total glutathione pool and regenerate oxidized vitamin C in its reduced (ascorbate) form. Cold and standard rejuvenation of 15-day-old RBCs primes energy and redox metabolism of stored RBCs, while providing a logistic advantage for routine blood bank processing workflows. © 2018 AABB.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudka, A. P., E-mail: dudka@ns.crys.ras.ru
2017-03-15
Accurate X-ray diffraction study of langasite (La{sub 3}Ga{sub 5}SiO{sub 14}) single crystal has been performed using the data obtained on a diffractometer equipped with a CCD area detector at 295 and 90.5 K. Within the known La{sub 3}Ga{sub 5}SiO{sub 14} model, Ga and Si cations jointly occupy the 2d site. A new model of a “multicell” consisting of two different unit cells is proposed. Gallium atoms occupy the 2d site in one of these cells, and silicon atoms occupy this site in the other cell; all other atoms correspondingly coordinate these cations. This structure implements various physical properties exhibited bymore » langasite family crystals. The conclusions are based on processing four data sets obtained with a high resolution (sin θ/λ ≤ 1.35 Å{sup –1}), the results reproduced in repeated experiments, and the high relative precision of the study (sp. gr. P321, Z = 1; at 295 K, a = 8.1652(6) Å, c = 5.0958(5) Å, R/wR = 0.68/0.68%, 3927 independent reflections; at 90.5 K, a = 8.1559(4) Å, c = 5.0913(6) Å, R/wR = 0.92/0.93%, 3928 reflections).« less
Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus.
Doronin, Konstantin; Toth, Karoly; Kuppuswamy, Mohan; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M
2003-01-20
Adenoviruses replicate in the nucleus and induce lytic cell death. We have shown previously that efficient cell lysis and release of adenovirus from infected cells requires an 11.6-kDa protein named Adenovirus Death Protein (ADP). The adp gene is located in the early E3 transcription unit, but the gene is expressed primarily at very late stages of infection. The putative function of ADP was discerned previously from the use of virus mutants that lack functional ADP. Here we describe two adenovirus mutants, named VRX-006 and VRX-007, that overexpress ADP. VRX-006 lacks all other genes in the E3 region, and VRX-007 lacks all other E3 genes except 12.5K. VRX-006 and VRX-007 display the phenotype predicted by the proposed function for ADP: they produce early cytopathic effect, early cell lysis, large plaques, and increased cell-to-cell spread. They grow as well in cultured cells as does adenovirus type 5. These results are consistent with the conclusion that ADP functions in adenovirus infections to promote virus release from cells at the culmination of infection.
Li, Chunyi; McMahon, Chris
2013-01-01
We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056
Comparison of Three Whole-Cell Pertussis Vaccines in the Baboon Model of Pertussis
Warfel, Jason M.; Zimmerman, Lindsey I.
2015-01-01
Pertussis is a highly contagious respiratory illness caused by the bacterial pathogen Bordetella pertussis. Pertussis rates in the United States have escalated since the 1990s and reached a 50-year high of 48,000 cases in 2012. While this pertussis resurgence is not completely understood, we previously showed that the current acellular pertussis vaccines do not prevent colonization or transmission following challenge. In contrast, a whole-cell pertussis vaccine accelerated the rate of clearance compared to rates in unvaccinated animals and animals treated with the acellular vaccine. In order to understand if these results are generalizable, we used our baboon model to compare immunity from whole-cell vaccines from three different manufacturers that are approved outside the United States. We found that, compared to clearance rates with no vaccine and with an acellular pertussis vaccine, immunization with any of the three whole-cell vaccines significantly accelerated the clearance of B. pertussis following challenge. Whole-cell vaccination also significantly reduced the total nasopharyngeal B. pertussis burden, suggesting that these vaccines reduce the opportunity for pertussis transmission. Meanwhile, there was no difference in either the duration or in B. pertussis burden between unvaccinated and acellular-pertussis-vaccinated animals, while previously infected animals were not colonized following reinfection. We also determined that transcription of the gene encoding interleukin-17 (IL-17) was increased in whole-cell-vaccinated and previously infected animals but not in acellular-pertussis-vaccinated animals following challenge. Together with our previous findings, these data are consistent with a role for Th17 responses in the clearance of B. pertussis infection. PMID:26561389
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.
1996-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.
1999-01-01
A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.
Three dimensional metafilms with dual channel unit cells
Burckel, D. Bruce; Campione, Salvatore; Davids, Paul S.; ...
2017-04-04
Three-dimensional (3D) metafilms composed of periodic arrays of silicon unit cells containing single and multiple micrometer-scale vertical split ring resonators (SRRs) per unit cell were fabricated. In contrast to planar and stacked planar structures, these 3D metafilms have a thickness t ~λ d/4, allowing for classical thin film effects in the long wavelength limit. The infrared specular far-field scattering response was measured for metafilms containing one and two resonators per unit cell and compared to numerical simulations. Excellent agreement in the frequency region below the onset of diffractive scattering was obtained. For dense arrays of unit cells containing single SRRs,more » normally incident linearly polarized plane waves which do not excite a resonant response result in thin film interference fringes in the reflected spectra and are virtually indistinguishable from the scattering response of an undecorated array of unit cells. For the resonant linear polarization, the specular reflection for arrays is highly dependent on the SRR orientation on the vertical face for gap-up, gap-down, and gap-right orientations. For dense arrays of unit cells containing two SRRs per unit cell positioned on adjacent faces, the specular reflection spectra are slightly modified due to near-field coupling between the orthogonally oriented SRRs but otherwise exhibit reflection spectra largely representative of the corresponding single-SRR unit cell structures. Lastly, the ability to pack the unit cell with multiple inclusions which can be independently excited by choice of incident polarization suggests the construction of dual-channel films where the scattering response is selected by altering the incident polarization.« less
Lithium-Ion Cell Charge-Control Unit Developed
NASA Technical Reports Server (NTRS)
Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel
2005-01-01
A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.
NASA Technical Reports Server (NTRS)
Smith, Russell W.; Langford, William M.
2012-01-01
In support of NASA s Habitat Demonstration Unit - Deep Space Habitat Prototype, a number of evolved structural sections were designed, fabricated, analyzed and installed in the 5 meter diameter prototype. The hardware consisted of three principal structural sections, and included the development of novel fastener insert concepts. The articles developed consisted of: 1) 1/8th of the primary flooring section, 2) an inner radius floor beam support which interfaced with, and supported (1), 3) two upper hatch section prototypes, and 4) novel insert designs for mechanical fastener attachments. Advanced manufacturing approaches were utilized in the fabrication of the components. The structural components were developed using current commercial aircraft constructions as a baseline (for both the flooring components and their associated mechanical fastener inserts). The structural sections utilized honeycomb sandwich panels. The core section consisted of 1/8th inch cell size Nomex, at 9 lbs/cu ft, and which was 0.66 inches thick. The facesheets had 3 plys each, with a thickness of 0.010 inches per ply, made from woven E-glass with epoxy reinforcement. Analysis activities consisted of both analytical models, as well as initial closed form calculations. Testing was conducted to help verify analysis model inputs, as well as to facilitate correlation between testing and analysis. Test activities consisted of both 4 point bending tests as well as compressive core crush sequences. This paper presents an overview of this activity, and discusses issues encountered during the various phases of the applied research effort, and its relevance to future space based habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang,X.; Hew, C.
2007-01-01
White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapor-diffusion method. Crystals of SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 Mmore » sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 {angstrom} resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 {angstrom}. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 {angstrom}, and diffracts to 2.0 {angstrom} resolution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattlin, E.; Charboneau, S.; Johnston, G.
2007-07-01
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)« less
Doolittle, Nancy D; Abrey, Lauren E; Bleyer, W Archie; Brem, Steven; Davis, Thomas P; Dore-Duffy, Paula; Drewes, Lester R; Hall, Walter A; Hoffman, John M; Korfel, Agnieszka; Martuza, Robert; Muldoon, Leslie L; Peereboom, David; Peterson, Darryl R; Rabkin, Samuel D; Smith, Quentin; Stevens, Glen H J; Neuwelt, Edward A
2005-01-15
The blood-brain barrier (BBB) presents a major obstacle to the treatment of malignant brain tumors and other central nervous system (CNS) diseases. For this reason, a meeting partially funded by an NIH R13 grant was convened to discuss recent advances and future directions in translational research in neuro-oncology and the BBB. Cell biology and transport across the BBB, delivery of agents to the CNS, neuroimaging, angiogenesis, immunotherapy, and gene therapy, as well as glioma, primary CNS lymphoma, and metastases to the CNS were discussed. Transport across the BBB relates to the neurovascular unit, which consists not only of endothelial cells but also of pericyte, glia, and neuronal elements.
Update on Development of 360V, 28kWh Lithium-Ion Battery
NASA Technical Reports Server (NTRS)
Davies, Francis; Darcy, Eric; Cowles, Phil; Irlbeck, Brad; Weintritt, John
2005-01-01
Engineering unit submodule batteries (EUSB) the 360V, 28kWh EAPU battery were designed and assembled by COM DEV. These submodules consist of Sony Li-Ion 18650HC cells in a 5P-41S array yielding 180V, 1.4 kWh. Tests of these and of substrings and single cells at COM DEV and at JSC under various performance and abuse conditions demonstrated that performance requirements can be met. The thermal vacuum tests demonstrated that the worst case hot condition is the design driver. Deficiencies in the initial diode protection scheme of the battery were identified as a result of test failures. Potential solutions to the scheme are under development and will be presented.
An evaluation of the ELT-8 hematology analyzer.
Raik, E; McPherson, J; Barton, L; Hewitt, B S; Powell, E G; Gordon, S
1982-04-01
The TMELT-8 Hematology Analyzer is a fully automated cell counter which utilizes laser light scattering and hydrodynamic focusing to provide an 8 parameter whole blood count. The instrument consists of a sample handler with ticket printer, and a data handler with visual display unit, It accepts 100 microliter samples of venous or capillary blood and prints the values for WCC, RCC, Hb, Hct, MCV, MCH, MCHC and platelet count on to a standard result card. All operational and quality control functions, including graphic display of relative cell size distribution, can be obtained from the visual display unit and can also be printed as a permanent record if required. In a limited evaluation of the ELT-8, precision, linearity, accuracy, lack of sample carry-over and user acceptance were excellent. Reproducible values were obtained for all parameters after overnight storage of samples. Reagent usage and running costs were lower than for the Coulter S and the Coulter S Plus. The ease of processing capillary samples was considered to be a major advantage. The histograms served to alert the operator to a number of abnormalities, some of which were clinically significant.
Microwave experiments with left-handed materials
NASA Astrophysics Data System (ADS)
Shelby, Richard Allen
It has previously been predicted that materials that have a simultaneous negative permittivity and negative permeability, called left-handed materials (LHM), will possess very unusual properties, such as negative refraction, inverse Doppler effect, and reversed Cherenkov radiation. In this dissertation I present results from microwave experiments designed to confirm that LHMs will exhibit negative refraction. I also present a discussion about the LHM design, and numerical, electromagnetic simulations. The experiments presented here include transmission experiments, refraction experiments, and surface plasmon experiments. The refraction experiments in Chapter 4 directly observe negative refraction for the first time. The results from the other experiments are consistent with theoretical models and support the claim that negative refraction has been observed. The materials used in the experiments presented here are fabricated, structured materials that contain fiberglass and copper with unit cell parameters on the order of millimeters. Metamaterials have been defined as being composite materials whose bulk properties are different than those of the constituent materials. By this definition, the LHMs used here are metamaterials, so long as the wavelength of the electromagnetic waves being used to probe the LHM are longer than the unit cell parameter.
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
McKee, Rodney A.; Walker, Frederick J.
2003-11-25
A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.
NASA Astrophysics Data System (ADS)
Liu, Xuanjun; Zeng, Xinwu; Gao, Dongbao; Shen, Weidong; Wang, Jianli; Wang, Shengchun
2017-03-01
The reflection characteristics of the unit cell, consisting of a subwavelength circular hole and a rigid wall, was discussed theoretically, and it was found that the phase shift of the reflected waves could cover almost 2π span by adjusting the hole radius when the acoustic waves normally impinge on it. Based on the analytical formulas, an acoustic metasurface (AMS) sample constructed by an array of unit cells with different radii was designed and fabricated. The sound pressure fields induced by the sample were then measured through the experimental setup and the reflected field pattern was derived after data processing. Experimental results and COMSOL simulations both demonstrated the fact that the designed AMS has the ability to reflect acoustic waves into an unusual yet controllable direction, verifying the correctness of the theory and design about the AMS in this paper. Simulations also show that the designed AMS has a narrow working bandwidth of 50 Hz around 800 Hz and its total thickness is about 1/8 of the incident wavelength, giving it the potential for the miniaturization and integration of acoustic devices.
Effect of delignification upon in vitro digestion of forage cellulose.
Darcy, B K; Belyea, R L
1980-10-01
Orchardgrass forages harvested at two maturities (early and late) were ground through two screens (1 and 8 mm) and digested in vitro as intact forage and forage delignified by permanganate oxidation. Initial and residual cell wall, initial and residual cellulose and potentially digestible cellulose were greater in late intact forage than in the early. In the delignified forage, late cut forage had less residual cellulose than did the early, but initial and potentially digestible cellulose were similar. Particle size had less consistent and smaller effects upon cell wall and cellulose than did maturity. Cellulose of intact orchardgrass was 64% digested at 72 h vs 94% for cellulose of delignified orchardgrass. Digestion rate of cellulose was .0197 and .0220 logn units/hr for early and late cut intact forage and .0554 and .0719 logn units/hr for early and late cut delignified forage. Removal of the inhibitory effects of lignin increased the amount of digestible cellulose, increased the rate at which cellulose degraded and decreased the indigestible cellulose residue. Reduction in lignin could greatly improve forage intake and utilization at moderate levels of animal production.
Watanabe, Masahiro; Ishikawa, Kazuhiko
2014-01-01
Feruloyl esterase (FAE; EC 3.1.1.73) catalyzes the cleavage of the ester bond between ferulic acid and polysaccharides in plant cell walls, and thus holds significant potential for the industrial utilization of biomass saccharification. A feruloyl esterase was identified from the genome database of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus). The gene consists of the catalytic domain and a carbohydrate-binding module connected through a serine/threonine-rich linker region. The recombinant enzyme was prepared, purified and crystallized at 293 K using 0.1 M imidazole pH 8.0, 0.2 M calcium acetate, 14% PEG 8000 as the precipitant. The crystal diffracted to 2.6 Å resolution and the crystal system is primitive orthorhombic, with unit-cell parameters a = 90.9, b = 123.4, c = 135.4 Å. Four molecules are assumed to be present per asymmetric unit, corresponding to a Matthews coefficient of 2.50 Å3 Da−1 and a solvent content of 50.88%(v/v). PMID:25484222
Watanabe, Masahiro; Ishikawa, Kazuhiko
2014-12-01
Feruloyl esterase (FAE; EC 3.1.1.73) catalyzes the cleavage of the ester bond between ferulic acid and polysaccharides in plant cell walls, and thus holds significant potential for the industrial utilization of biomass saccharification. A feruloyl esterase was identified from the genome database of Talaromyces cellulolyticus (formerly known as Acremonium cellulolyticus). The gene consists of the catalytic domain and a carbohydrate-binding module connected through a serine/threonine-rich linker region. The recombinant enzyme was prepared, purified and crystallized at 293 K using 0.1 M imidazole pH 8.0, 0.2 M calcium acetate, 14% PEG 8000 as the precipitant. The crystal diffracted to 2.6 Å resolution and the crystal system is primitive orthorhombic, with unit-cell parameters a = 90.9, b = 123.4, c = 135.4 Å. Four molecules are assumed to be present per asymmetric unit, corresponding to a Matthews coefficient of 2.50 Å(3) Da(-1) and a solvent content of 50.88%(v/v).
Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices
NASA Astrophysics Data System (ADS)
He, C.; Grutter, A. J.; Gu, M.; Browning, N. D.; Takamura, Y.; Kirby, B. J.; Borchers, J. A.; Kim, J. W.; Fitzsimmons, M. R.; Zhai, X.; Mehta, V. V.; Wong, F. J.; Suzuki, Y.
2012-11-01
We have found ferromagnetism in epitaxially grown superlattices of CaRuO3/CaMnO3 that arises in one unit cell at the interface. Scanning transmission electron microscopy and electron energy loss spectroscopy indicate that the difference in magnitude of the Mn valence states between the center of the CaMnO3 layer and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial ferromagnetism is only limited to one unit cell of CaMnO3 at each interface. The interfacial moment alternates between the 1μB/interface Mn ion for even CaMnO3 layers and the 0.5μB/interface Mn ion for odd CaMnO3 layers. This modulation, combined with the exchange bias, suggests the presence of a modulating interlayer coupling between neighboring ferromagnetic interfaces via the antiferromagnetic CaMnO3 layers.
Kim, Ji-Hoon; Song, Chang Eun; Shin, Nara; Kang, Hyunbum; Wood, Sebastian; Kang, In-Nam; Kim, Bumjoon J; Kim, Bongsoo; Kim, Ji-Seon; Shin, Won Suk; Hwang, Do-Hoon
2013-12-26
Two semiconducting conjugated polymers were synthesized via Stille polymerization. The structures combined unsubstituted or (triisopropylsilyl)ethynyl (TIPS)-substituted 2,6-bis(trimethylstannyl)benzo[1,2-b:4.5-b']dithiophene (BDT) as a donor unit and benzotriazole with a symmetrically branched alkyl side chain (DTBTz) as an acceptor unit. We investigated the effects of the different BDT moieties on the optical, electrochemical, and photovoltaic properties of the polymers and the film crystallinities and carrier mobilities. The optical-band-gap energies were measured to be 1.97 and 1.95 eV for PBDT-DTBTz and PTIPSBDT-DTBTz, respectively. Bulk heterojunction photovoltaic devices were fabricated and power conversion efficiencies of 5.5% and 2.9% were found for the PTIPSBDT-DTBTz- and PBDT-DTBTz-based devices, respectively. This difference was explained by the more optimal morphology and higher carrier mobility in the PTIPSBDT-DTBTz-based devices. This work demonstrates that, under the appropriate processing conditions, TIPS groups can change the molecular ordering and lower the highest occupied molecular orbital level, providing the potential for improved solar cell performance.
Space Tug Avionics Definition Study. Volume 5: Cost and Programmatics
NASA Technical Reports Server (NTRS)
1975-01-01
The baseline avionics system features a central digital computer that integrates the functions of all the space tug subsystems by means of a redundant digital data bus. The central computer consists of dual central processor units, dual input/output processors, and a fault tolerant memory, utilizing internal redundancy and error checking. Three electronically steerable phased arrays provide downlink transmission from any tug attitude directly to ground or via TDRS. Six laser gyros and six accelerometers in a dodecahedron configuration make up the inertial measurement unit. Both a scanning laser radar and a TV system, employing strobe lamps, are required as acquisition and docking sensors. Primary dc power at a nominal 28 volts is supplied from dual lightweight, thermally integrated fuel cells which operate from propellant grade reactants out of the main tanks.
Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Koshiba, Takumi; Matsukura, Yasuko; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota
2005-01-01
The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P41212 (or its enantiomorph P43212), with unit-cell parameters a = b = 110.1, c = 331.8 Å. Unfortunately, this crystal form did not diffract beyond 5 Å resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF–fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 Å resolution and belonged to space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 134.8, c = 105.7 Å. PMID:16511159
Klett, T.R.; Schmoker, James W.
2007-01-01
Geologic, production, and exploration/discovery-history data are used by the U.S. Geological Survey to aid in the assessment of petroleum resources. These data, as well as the broad knowledge and experience of the assessing geologists, are synthesized to provide, for each assessment unit, geologic and exploration models upon which estimates are made of the number and sizes of undiscovered accumulations for conventional assessment units or number and total recoverable volumes of untested cells for continuous assessment units (input data for resource calculations). Quantified geologic information and trends in production and exploration/discovery-history data with respect to time and exploration effort provide guides for the estimating parameters of variables recorded on the input-data forms (input data) used to calculate petroleum resources. An Assessment Review Team reviews proposed geologic and exploration models and input data for each assessment unit in formal assessment meetings. The Assessment Review Team maintains the accuracy and consistency of the assessment procedure during the formal assessment meetings.
The role of the lacrimal functional unit in the pathophysiology of dry eye.
Stern, Michael E; Gao, Jianping; Siemasko, Karyn F; Beuerman, Roger W; Pflugfelder, Stephen C
2004-03-01
The majority of dry eye symptoms are due to a chronic inflammation of the lacrimal functional unit resulting in a loss of tear film integrity and normal function. This leads to a reduction in the ability of the ocular surface to respond to environmental challenges. The underlying cause of tear film dysfunction is the alteration of tear aqueous, mucin, and lipid components. This may result from a systemic autoimmune disease or a local autoimmune event. A lack of systemic androgen support to the lacrimal gland has been shown to be a facilitative factor in the initiation of this type of pathophysiology. Tear secretion is controlled by the lacrimal functional unit consisting of the ocular surface (cornea, conjunctiva, accessory lacrimal glands, and meibomian glands), the main lacrimal gland and the interconnecting innervation. If any portion of this functional unit is compromised, lacrimal gland support to the ocular surface is impeded. Factors such as neurogenic inflammation and T cell involvement in the disease pathogenesis as well as newly developed animal models of ocular surface inflammation are discussed.
Annular feed air breathing fuel cell stack
Wilson, Mahlon S.; Neutzler, Jay K.
1997-01-01
A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.
Solid oxide fuel cell with multi-unit construction and prismatic design
McPheeters, C.C.; Dees, D.W.; Myles, K.M.
1999-03-16
A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.
Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre
2008-03-01
Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.
Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork's bill awn.
Abraham, Yael; Tamburu, Carmen; Klein, Eugenia; Dunlop, John W C; Fratzl, Peter; Raviv, Uri; Elbaum, Rivka
2012-04-07
The sessile nature of plants demands the development of seed-dispersal mechanisms to establish new growing loci. Dispersal strategies of many species involve drying of the dispersal unit, which induces directed contraction and movement based on changing environmental humidity. The majority of researched hygroscopic dispersal mechanisms are based on a bilayered structure. Here, we investigate the motility of the stork's bill (Erodium) seeds that relies on the tightening and loosening of a helical awn to propel itself across the surface into a safe germination place. We show that this movement is based on a specialized single layer consisting of a mechanically uniform tissue. A cell wall structure with cellulose microfibrils arranged in an unusually tilted helix causes each cell to spiral. These cells generate a macroscopic coil by spiralling collectively. A simple model made from a thread embedded in an isotropic foam matrix shows that this cellulose arrangement is indeed sufficient to induce the spiralling of the cells.
Feasibility analysis of a hydrogen backup power system for Russian telecom market
NASA Astrophysics Data System (ADS)
Borzenko, V. I.; Dunikov, D. O.
2017-11-01
We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.
Fresenius AS.TEC204 blood cell separator.
Sugai, Mikiya
2003-02-01
Fresenius AS.TEC204 is a third-generation blood cell separator that incorporates the continuous centrifugal separation method and automatic control of the cell separation process. Continuous centrifugation separates cell components according to their specific gravity, and different cell components are either harvested or eliminated as needed. The interface between the red blood cell and plasma is optically detected, and the Interface Control (IFC) cooperates with different pumps, monitors and detectors to harvest required components automatically. The system is composed of three major sections; the Front Panel Unit; the Pump Unit, and the Centrifuge Unit. This unit can be used for a wide variety of clinical applications including collection of platelets, peripheral blood stem cells, bone marrow stem cells, granulocytes, mononuclear cells, and exchange of plasma or red cells, and for plasma treatment.
Buckling behavior of origami unit cell facets under compressive loads
NASA Astrophysics Data System (ADS)
Kshad, Mohamed Ali Emhmed; Naguib, Hani E.
2018-03-01
Origami structures as cores for sandwich structures are designed to withstand the compressive loads and to dissipate compressive energy. The deformation of the origami panels and the unit cell facets are the primary factors behind the compressive energy dissipation in origami structures. During the loading stage, the origami structures deform through the folding and unfolding process of the unit cell facets, and also through the plastic deformation of the facets. This work presents a numerical study of the buckling behavior of different origami unit cell elements under compressive loading. The studied origami configurations were Miura and Ron-Resch-like origami structures. Finite element package was used to model the origami structures. The study investigated the buckling behavior of the unit cell facets of two types of origami structures Miura origami and Ron-Resch-Like origami structures. The simulation was conducted using ANSYS finite element software, in which the model of the unit cell represented by shell elements, and the eigenvalues buckling solver was used to predict the theoretical buckling of the unit cell elements.
Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.
Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye
2011-06-01
A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.
NASA Technical Reports Server (NTRS)
Foye, R. L.
1993-01-01
This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.
Free-Space Measurements of Dielectrics and Three-Dimensional Periodic Metamaterials
NASA Astrophysics Data System (ADS)
Kintner, Clifford E.
This thesis presents the free-space measurements of a periodic metamaterial structure. The metamaterial unit cell consists of two dielectric sheets intersecting at 90 degrees. The dielectric is a polyetherimide-based material 0.001" thick. Each sheet has a copper capacitively-loaded loop (CLL) structure on the front and a cut-wire structure on the back. Foam material is used to support the unit cells. The unit cell repeats 40 times in the x-direction, 58 times in the y-direction and 5 times in the z-direction. The sample measures 12" x 12" x 1" in total. We use a free-space broadband system comprised of a pair of dielectric-lens horn antennas with bandwidth from 5.8 GHz to 110 GHz, which are connected to a HP PNA series network analyzer. The dielectric lenses focus the incident beam to a footprint measuring 1 wavelength by 1 wavelength. The sample holder is positioned at the focal point between the two antennas. In this work, the coefficients of transmission and reflection (the S-parameters S21 and S11) are measured at frequencies from 12.4 GHz up to 30 GHz. Simulations are used to validate the measurements, using the Ansys HFSS commercial software package on the Arkansas High Performance Computing Center cluster. The simulation results successfully validate the S-parameters measurements, in particular the amplitudes. An algorithm based on the Nicolson-Ross-Weir (NRW) method is implemented to extract the permittivity and permeability values of the metamaterial under test. The results show epsilon-negative, mu-negative and double-negative parameters within the measured frequency range.
Opportunistic screening for skin cancer using a mobile unit in Brazil.
Mauad, Edmundo C; Silva, Thiago B; Latorre, Maria R D O; Vieira, René A C; Haikel, Raphael L; Vazquez, Vinicius L; Longatto-Filho, Adhemar
2011-06-06
Skin cancer is the most common malignancy in the white population worldwide. In Brazil, the National Cancer Institute (INCA) estimates that in 2010 there will be 119,780 and 5,930 new cases of non-melanoma skin cancer and melanoma, respectively. The aim of this study was to evaluate the use of a mobile unit in the diagnosis and treatment of skin cancer in several poor regions of Brazil. The diagnosis of skin cancer was accomplished through active medical screening in the prevention Mobile Unit (MU) of Barretos Cancer Hospital (BCH). The study population consisted of patients examined in the MU between 2004 and 2007, and their suspicious lesions were subjected to histopathological evaluation. Data were collected prospectively from standardized forms and analyzed. During the screening, 17,857 consultations were carried out. A total of 2012 (11.2%) cases of skin cancer were diagnosed. The predominant histological type reported was basal cell carcinoma (n = 1,642 or 81.6%), followed by squamous cell carcinoma (n = 303 or 15.1%), Bowen's disease (n = 25 or 1.2%), malignant melanoma (n = 23 or 1.1%), basosquamous cell carcinoma (n = 3 or 0.1%), miscellaneous lesions (12 or 0.6%), and metatypical carcinoma (n = 4 or 0.2%). Only 0.6% of lesions were stage III. There were no stage IV non-melanoma skin lesions, as well as no melanomas stages III and IV, found. It was observed that the MU can be a useful tool for early skin cancer diagnosis and treatment. This program probably is important, especially in developing countries with inadequate public health systems and social inequality.
Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes
NASA Technical Reports Server (NTRS)
Rogers, Howard H.
2000-01-01
Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.
Subunit stoichiometry of human muscle chloride channels.
Fahlke, C; Knittle, T; Gurnett, C A; Campbell, K P; George, A L
1997-01-01
Voltage-gated Cl- channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl- channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their native configurations exhibit similar sedimentation properties consistent with a multimeric complex having a molecular mass of a dimer. Expression of the heterodimeric channel in a mammalian cell line results in a homogenous population of Cl- channels exhibiting novel gating properties that are best explained by the formation of heteromultimeric channels with an even number of subunits. Heteromultimeric channels were not evident in cells cotransfected with homodimeric WT-WT and D136G-D136G constructs excluding the possibility that functional hClC-1 channels are assembled from more than two subunits. These results demonstrate that the functional hClC-1 unit consists of two subunits.
NASA Astrophysics Data System (ADS)
Zhang, Qin; Wu, Guo-cheng; Wang, Guang-ming; Liang, Jian-gang; Gao, Xiang-jun
2017-01-01
In this paper, a novel multilayered substrate integrated waveguide (SIW) composite right/left-handed (CRLH) structure is proposed to design beam scanning antenna for wideband broadside radiation. The unit cell of the SIW-CRLH structure is formed by spiral interdigital fingers etched on the upper ground of SIW, and a parasitic patch beneath the slot, has a continuous change of phase constant from negative to positive value within its passband. The proposed beam scanning antenna, which consists of consists of 15 identical elementary cells of the SIW-CRLH, is simulated, fabricated and measured. According to the measured results, the proposed antenna not only realizes a continuous main beam scanning from backward -78° to forward +80° within the operating frequency range from 8.25 to 12.2 GHz, but also obtains the measured broadside gain of 11.5 dB with variation of 1.0 dB over the frequency range of 8.8-9.25 GHz (4.99 %). Besides, compared with the same works in the references, this one has the most wonderful performance.
Analysis of long-time operation of micro-cogeneration unit with fuel cell
NASA Astrophysics Data System (ADS)
Patsch, Marek; Čaja, Alexander
2015-05-01
Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.
Dendritic Cells Limit Fibro-Inflammatory Injury in NASH
Henning, Justin R.; Graffeo, Christopher S.; Rehman, Adeel; Fallon, Nina C.; Zambirinis, Constantinos P.; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Saeed, Usama Bin; Rao, Raghavendra S.; Badar, Sana; Quesada, Juan P.; Acehan, Devrim; Miller, George
2013-01-01
Non-alcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DC) are antigen presenting cells with an emerging role in hepatic inflammation. We postulated that DC are important in the progression of NASH. We found that intrahepatic DC expand and mature in NASH liver and assume an activated immune-phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibro-inflammation. Our mechanistic studies support a regulatory role for DC in NASH by limiting sterile inflammation via their role in clearance of apoptotic cells and necrotic debris. We found that DC limit CD8+ T cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Conclusion Our findings support a role for DC in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. PMID:23322710
Hatefi, Arash; Karjoo, Zahra; Nomani, Alireza
2017-09-11
The objective of this study was to genetically engineer a fully functional single chain fusion peptide composed of motifs from diverse biological and synthetic origins that can perform multiple tasks including DNA condensation, cell targeting, cell transfection, particle shielding from immune system and effective gene transfer to prostate tumors. To achieve the objective, a single chain biomacromolecule (vector) consisted of four repeatative units of histone H2A peptide, fusogenic peptide GALA, short elastin-like peptide, and PC-3 cell targeting peptide was designed. To examine the functionality of each motif in the vector sequence, it was characterized in terms of size and zeta potential by Zetasizer, PC-3 cell targeting and transfection by flowcytometry, IgG induction by immunogenicity assay, and PC-3 tumor transfection by quantitative live animal imaging. Overall, the results of this study showed the possibility of using genetic engineering techniques to program various functionalities into one single chain vector and create a multifunctional nonimmunogenic biomacromolecule for targeted gene transfer to prostate cancer cells. This proof-of-concept study is a significant step forward toward creating a library of vectors for targeted gene transfer to any cancer cell type at both in vitro and in vivo levels.
Recycled Cell Phones - A Treasure Trove of Valuable Metals
Sullivan, Daniel E.
2006-01-01
This U.S. Geological Survey (USGS) Fact Sheet examines the potential value of recycling the metals found in obsolete cell phones. Cell phones seem ubiquitous in the United States and commonplace throughout most of the world. There were approximately 1 billion cell phones in use worldwide in 2002. In the United States, the number of cell phone subscribers increased from 340,000 in 1985 to 180 million in 2004. Worldwide, cell phone sales have increased from slightly more than 100 million units per year in 1997 to an estimated 779 million units per year in 2005. Cell phone sales are projected to exceed 1 billion units per year in 2009, with an estimated 2.6 billion cell phones in use by the end of that year. The U.S. Environmental Protection Agency estimated that, by 2005, as many as 130 million cell phones would be retired annually in the United States. The nonprofit organization INFORM, Inc., anticipated that, by 2005, a total of 500 million obsolete cell phones would have accumulated in consumers' desk drawers, store rooms, or other storage, awaiting disposal. Typically, cell phones are used for only 1 1/2 years before being replaced. Less than 1 percent of the millions of cell phones retired and discarded annually are recycled. When large numbers of cell phones become obsolete, large quantities of valuable metals end up either in storage or in landfills. The amount of metals potentially recoverable would make a significant addition to total metals recovered from recycling in the United States and would supplement virgin metals derived from mining.
Bridge Failure Due to Inadequate Design of Bed Protection
NASA Astrophysics Data System (ADS)
Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin
2017-12-01
The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.
NASA Astrophysics Data System (ADS)
Strom, C. S.; Bennema, P.
1997-03-01
This work (Part II) explores the relation between units and morphology. It shows the equivalence in behaviour between the attachment energies and the results of Monte Carlo growth kinetics simulations. The energetically optimal combination of the F slices in 1 1 0, 0 1 1 and 1 1 1 in a monomolecular interpretation leads to unsatisfactory agreement with experimentally observed morphology. In a tetrameric (or octameric) interpretation, the unit cell must be subdivided self-consistently in terms of stable molecular clusters. Thus, the presence or absence of the 1 1 1 form functions as a direct experimental criterion for distinguishing between monomolecular growth layers, and tetrameric (or octameric) growth layers of the same composition, but subjected to the condition of combinatorial compatibility, as the F slices combine to produce the growth habit. When that condition is taken into account, the tetrameric (or octameric) theoretical morphology in the broken bond model is in good agreement with experiment over a wide range. Subjectmatter for future study is summarized.
NASA Technical Reports Server (NTRS)
1982-01-01
An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.
The crystal and magnetic structures of Sr 2LaFe 3O 8
NASA Astrophysics Data System (ADS)
Battle, P. D.; Gibb, T. C.; Lightfoot, P.
1990-02-01
The crystal and magnetic structures of the anion-deficient perovskite Sr 2LaFe 3O 8 (space group Pmma, a = 5.5095(1), b = 11.8845(5), c = 5.6028(1)AÅ) have been refined from X-ray and neutron powder diffraction data collected at room temperature. The crystal structure consists of layers of octahedral (O) and tetrahedral (T) iron-oxygen polyhedra arranged in the stacking sequence … OOTOOT … perpendicular to theyˆaxis of the unit cell. The magnetic structure is that of a G-type antiferromagnet with ordered magnetic moments of 3.77(5) and 3.15(11) μ B at the octahedral and tetrahedral sites, respectively. The low moment at the tetrahedral site is consistent with the observed disorder and magnetic anisotropy.
Stefanescu, Roxana A; Shore, Susan E
2017-03-01
Cholinergic modulation contributes to adaptive sensory processing by controlling spontaneous and stimulus-evoked neural activity and long-term synaptic plasticity. In the dorsal cochlear nucleus (DCN), in vitro activation of muscarinic acetylcholine receptors (mAChRs) alters the spontaneous activity of DCN neurons and interacts with N -methyl-d-aspartate (NMDA) and endocannabinoid receptors to modulate the plasticity of parallel fiber synapses onto fusiform cells by converting Hebbian long-term potentiation to anti-Hebbian long-term depression. Because noise exposure and tinnitus are known to increase spontaneous activity in fusiform cells as well as alter stimulus timing-dependent plasticity (StTDP), it is important to understand the contribution of mAChRs to in vivo spontaneous activity and plasticity in fusiform cells. In the present study, we blocked mAChRs actions by infusing atropine, a mAChR antagonist, into the DCN fusiform cell layer in normal hearing guinea pigs. Atropine delivery leads to decreased spontaneous firing rates and increased synchronization of fusiform cell spiking activity. Consistent with StTDP alterations observed in tinnitus animals, atropine infusion induced a dominant pattern of inversion of StTDP mean population learning rule from a Hebbian to an anti-Hebbian profile. Units preserving their initial Hebbian learning rules shifted toward more excitatory changes in StTDP, whereas units with initial suppressive learning rules transitioned toward a Hebbian profile. Together, these results implicate muscarinic cholinergic modulation as a factor in controlling in vivo fusiform cell baseline activity and plasticity, suggesting a central role in the maladaptive plasticity associated with tinnitus pathology. NEW & NOTEWORTHY This study is the first to use a novel method of atropine infusion directly into the fusiform cell layer of the dorsal cochlear nucleus coupled with simultaneous recordings of neural activity to clarify the contribution of muscarinic acetylcholine receptors (mAChRs) to in vivo fusiform cell baseline activity and auditory-somatosensory plasticity. We have determined that blocking the mAChRs increases the synchronization of spiking activity across the fusiform cell population and induces a dominant pattern of inversion in their stimulus timing-dependent plasticity. These modifications are consistent with similar changes established in previous tinnitus studies, suggesting that mAChRs might have a critical contribution in mediating the maladaptive alterations associated with tinnitus pathology. Blocking mAChRs also resulted in decreased fusiform cell spontaneous firing rates, which is in contrast with their tinnitus hyperactivity, suggesting that changes in the interactions between the cholinergic and GABAergic systems might also be an underlying factor in tinnitus pathology. Copyright © 2017 the American Physiological Society.
1995-01-01
It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides. PMID:7642696
McElroy, Anita K; Akondy, Rama S; Harmon, Jessica R; Ellebedy, Ali H; Cannon, Deborah; Klena, John D; Sidney, John; Sette, Alessandro; Mehta, Aneesh K; Kraft, Colleen S; Lyon, Marshall G; Varkey, Jay B; Ribner, Bruce S; Nichol, Stuart T; Spiropoulou, Christina F
2017-06-15
A nurse who acquired Lassa virus infection in Togo in the spring of 2016 was repatriated to the United States for care at Emory University Hospital. Serial sampling from this patient permitted the characterization of several aspects of the innate and cellular immune responses to Lassa virus. Although most of the immune responses correlated with the kinetics of viremia resolution, the CD8 T-cell response was of surprisingly high magnitude and prolonged duration, implying prolonged presentation of viral antigens. Indeed, long after viremia resolution, there was persistent viral RNA detected in the semen of the patient, accompanied by epididymitis, suggesting the male reproductive tract as 1 site of antigen persistence. Consistent with the magnitude of acute T-cell responses, the patient ultimately developed long-term, polyfunctional memory T-cell responses to Lassa virus. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Determinants of Practice Patterns and Quality Gaps in Lung Cancer Staging and Diagnosis
Niu, Jiangong; Elting, Linda S.; Buchholz, Thomas A.; Giordano, Sharon H.
2014-01-01
Background: Guidelines recommend mediastinal lymph node sampling as the first invasive diagnostic procedure in patients with suspected lung cancer with mediastinal lymphadenopathy without distant metastases. Methods: Patients were a retrospective cohort of 15,316 patients with lung cancer with regional spread without metastatic disease in the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) or Texas Cancer Registry Medicare-linked databases. Patients were categorized based on the sequencing of invasive diagnostic tests performed: (1) evaluation consistent with guidelines, mediastinal sampling done first; (2) evaluation inconsistent with guidelines, non-small cell lung cancer (NSCLC) present, mediastinal sampling performed but not as part of the first invasive test; (3) evaluation inconsistent with guidelines, NSCLC present, mediastinal sampling never done; and (4) evaluation inconsistent with guidelines, small cell lung cancer. The primary outcome was whether guideline-consistent care was delivered. Secondary outcomes included whether patients with NSCLC ever had mediastinal sampling and use of transbronchial needle aspiration (TBNA) among pulmonologists. Results: Only 21% of patients had a diagnostic evaluation consistent with guidelines. Only 56% of patients with NSCLC had mediastinal sampling prior to treatment. There was significant regional variability in guideline-consistent care (range, 12%-29%). Guideline-consistent care was associated with lower patient age, metropolitan areas, and if the physician ordering or performing the test was male, trained in the United States, had seen more patients with lung cancer, and was a pulmonologist or thoracic surgeon who had graduated more recently. More recent pulmonary graduates were also more likely to perform TBNA (P < .001). Conclusions: Guideline-consistent care varied regionally and was associated with physician-level factors, suggesting that a lack of effective physician training may be contributing to the quality gaps observed. PMID:24202651
Guo, M; Miller, W M; Papoutsakis, E T; Patel, S; James, C; Goolsby, C; Winter, J N
1999-01-01
Previous ex-vivo expansion studies in our laboratory, comparing unselected and CD34(+)-selected PBMC, have shown no advantage for CD34(+) cell selection, in terms of the expansion achieved. Our goal was to develop procedures for consistent generation of large numbers of hematopoietic progenitor and post-progenitor cells from unselected PBMC. Unselected PBMC, collected from cancer patients undergoing apheresis prior to high-dose chemotherapy and autologous stem cell rescue, were expanded ex vivo in static cultures, without a stromal layer, in the presence of Flt3 ligand (Flt3L), a recombinant GM-CSF/IL-3 fusion protein (PIXY321), G-CSF and GM-CSF for 10 days. The addition of 2% autologous plasma to this cytokine combination enhanced expansion of total cell numbers (3.2 fold versus 1.9 fold; p < 0.01), colony-forming units granulocyte-macrophage (CFU-GM) (22.0 fold versus 8.1 fold, p < 0.01) and burst-forming units erythroid (BFU-E) (17.6 fold versus 7.0 fold, 0.01 < p < 0.02). The optimal seeding density for a given specimen was inversely related to the frequency of CD34(+) cells in the sample. CFU-GM expansion with the Flt3L-containing cytokine cocktail was equivalent to that obtained with IL-3, IL-6, G-CSF and SCF, whether or not the cultures were supplemented with autologous plasma. In plasma-free cultures, BFU-E expansion was significantly higher with IL-3, IL-6, G-CSF and SCF than with Flt3L, PIXY321, G-CSF and GM-CSF. In the presence of autologous plasma, however BFU-E expansion was higher in the Flt3L-containing media. In comparison studies, autologous plasma suppressed BFU-E expansion in SCF-containing cultures. Consistent with our colony assay results, dual-parameter flow cytometric analysis of the expanded cell population revealed that supplementation with autologous plasma yielded a significant increase in the numbers of myeloid progenitors in Flt3L-containing cultures. Unselected PBMC from cancer patients can be effectively expanded ex vivo in Flt3L, PIXY321, G-CSF and GM-CSF, supplemented with autologous plasma, yielding high numbers of myeloid and erythroid progenitors.
NASA Astrophysics Data System (ADS)
Fortes, A. Dominic; Browning, Frank; Wood, Ian G.
2012-05-01
Meridianiite, MgSO4·11H2O, is the most highly hydrated phase in the binary MgSO4-H2O system. Lower hydrates in the MgSO4-H2O system have end-member analogues containing alternative divalent metal cations (Ni2+, Zn2+, Mn2+, Cu2+, Fe2+, and Co2+) and exhibit extensive solid solution with MgSO4 and with one another, but no other undecahydrate is known. We have prepared aqueous MgSO4 solutions doped with these other cations in proportions up to and including the pure end-members. These liquids have been solidified into fine-grained polycrystalline blocks of metal sulfate hydrate + ice by rapid quenching in liquid nitrogen. The solid products have been characterised by X-ray powder diffraction, and the onset of partial melting has been quantified using a thermal probe. We have established that of the seven end-member metal sulfates studied, only MgSO4 forms an undecahydrate; ZnSO4 forms an orthorhombic heptahydrate (synthetic goslarite), MnSO4, FeSO4, and CoSO4 form monoclinic heptahydrates (syn. mallardite, melanterite, bieberite, respectively), and CuSO4 crystallises as the well-known triclinic pentahydrate (syn. chalcanthite). NiSO4 forms a new hydrate which has been indexed with a triclinic unit cell of dimensions a = 6.1275(1) Å, b = 6.8628(1) Å, c = 12.6318(2) Å, α = 92.904(2)°, β = 97.678(2)°, and γ = 96.618(2)°. The unit-cell volume of this crystal, V = 521.74(1) Å3, is consistent with it being an octahydrate, NiSO4·8H2O. Further analysis of doped specimens has shown that synthetic meridianiite is able to accommodate significant quantities of foreign cations in its structure; of the order 50 mol. % Co2+ or Mn2+, 20-30 mol. % Ni2+ or Zn2+, but less than 10 mol. % of Cu2+ or Fe2+. In three of the systems we examined, an `intermediate' phase occurred that differed in hydration state both from the Mg-bearing meridianiite end-member and the pure dopant end-member hydrate. In the case of CuSO4, we observed a melanterite-structured heptahydrate at Cu/(Cu + Mg) = 0.5, which we identify as synthetic alpersite [(Mg0.5Cu0.5)SO4·7H2O)]. In the NiSO4- and ZnSO4-doped systems we characterised an entirely new hydrate which could also be identified to a lesser degree in the CuSO4- and the FeSO4-doped systems. The Ni-doped substance has been indexed with a monoclinic unit-cell of dimensions a = 6.7488(2) Å, b = 11.9613(4) Å, c = 14.6321(5) Å, and β = 95.047(3)°, systematic absences being indicative of space-group P21/ c with Z = 4. The unit-cell volume, V = 1,176.59(5) Å3, is consistent with it being an enneahydrate [i.e. (Mg0.5Ni0.5)SO4·9H2O)]. Similarly, the new Zn-bearing enneahydrate has refined unit cell dimensions of a = 6.7555(3) Å, b = 11.9834(5) Å, c = 14.6666(8) Å, β = 95.020(4)°, V = 1,182.77(7) Å3, and the new Fe-bearing enneahydrate has refined unit cell dimensions of a = 6.7726(3) Å, b = 12.0077(3) Å, c = 14.6920(5) Å, β = 95.037(3)°, and V = 1,190.20(6) Å3. The observation that synthetic meridianiite can form in the presence of, and accommodate significant quantities of other ions increases the likelihood that this mineral will occur naturally on Mars—and elsewhere in the outer solar system—in metalliferous brines.
Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H
2002-10-15
Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.
Schmahl, G; Obiekezie, A; Raether, W
1993-01-01
The ultrastructure of sporogenesis was studied in Henneguya laterocapsulata parasitizing the skin of hybrid catfish (Clarias gariepinus x Heterobranchus bidorsalis) in Nigeria. Sporogenesis started when a generative cell was surrounded by a second nondividing cell (i.e., envelope cell). By subsequent divisions of the generative cell, ten cells were produced, which finally became arranged into two spore-producing units. Each unit consisted of a binucleate sporoplasm, two capsulogenic cells, and two valvogenic cells. Apparently capsulogenesis, valvogenesis, and sporoplasm differentiation occurred concomitantly. In research for chemotherapy of fish parasitized by myxosporeans a new triazine derivative, 2-[3,5-alpha-dichloro-4-(4-methyl-sulfonylphenoxy)-phenyl]-1-me thy l- hexahydro-1,2,4-triazine-3,5-dion (HOE 092 V), was tested in vivo against the uni- and multicellular developmental stages of H. laterocapsulata. Naturally infected catfish were incubated in water containing 0, 2.5, 5, and 10 micrograms HOE 092 V/ml or the pure solvent for 3 h. After the fish had been returned into fresh water, they were killed 1 day after the treatment and the plasmodia were studied by means of light and transmission electron microscopy. Starting with a dose of 2.5 micrograms HOE 092 V/ml, the pericyte's outer membrane was broken in the bi- and multicellular stages. The number of ribosomes in the bi- and multicellular stages decreased. In the multicellular stages the rough endoplasmic reticula of the capsulogenic cells were enlarged. Treatment with 5 micrograms HOE 092 V/ml led to breaks in the limiting outer membranes of the capsulogenic cells and to vacuolization of their peripheral cytoplasm. In early prespore stages a decrease in the number of spherical inclusions was recognized.(ABSTRACT TRUNCATED AT 250 WORDS)
ERIC Educational Resources Information Center
Olsen, Robert C.; Tobiason, Fred L.
1975-01-01
Describes the construction of unit cells using clear plastic cubes which can be disassembled, and one inch cork balls of various colors, which can be cut in halves, quarters, or eighths, and glued on the inside face of the cube, thus simulating a unit cell. (MLH)
Monopolar fuel cell stack coupled together without use of top or bottom cover plates or tie rods
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R. (Inventor); Valdez, Thomas I. (Inventor)
2009-01-01
A monopolar fuel cell stack comprises a plurality of sealed unit cells coupled together. Each unit cell comprises two outer cathodes adjacent to corresponding membrane electrode assemblies and a center anode plate. An inlet and outlet manifold are coupled to the anode plate and communicate with a channel therein. Fuel flows from the inlet manifold through the channel in contact with the anode plate and flows out through the outlet manifold. The inlet and outlet manifolds are arranged to couple to the inlet and outlet manifolds respectively of an adjacent one of the plurality of unit cells to permit fuel flow in common into all of the inlet manifolds of the plurality of the unit cells when coupled together in a stack and out of all of the outlet manifolds of the plurality of unit cells when coupled together in a stack.
Arimilli, Subhashini; Damratoski, Brad E; Prasad, G L
2013-09-01
Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gorshkova, Natalya V; Lobanova, Juliya S; Tokmakova, Irina L; Smirnov, Sergey V; Akhverdyan, Valerii Z; Krylov, Alexander A; Mashko, Sergey V
2018-03-01
A dual-component Mu-transposition system was modified for the integration/amplification of genes in Corynebacterium. The system consists of two types of plasmids: (i) a non-replicative integrative plasmid that contains the transposing mini-Mu(LR) unit bracketed by the L/R Mu ends or the mini-Mu(LER) unit, which additionally contains the enhancer element, E, and (ii) an integration helper plasmid that expresses the transposition factor genes for MuA and MuB. Efficient transposition in the C. glutamicum chromosome (≈ 2 × 10 -4 per cell) occurred mainly through the replicative pathway via cointegrate formation followed by possible resolution. Optimizing the E location in the mini-Mu unit significantly increased the efficiency of Mu-driven intramolecular transposition-amplification in C. glutamicum as well as in gram-negative bacteria. The new C. glutamicum genome modification strategy that was developed allows the consequent independent integration/amplification/fixation of target genes at high copy numbers. After integration/amplification of the first mini-Mu(LER) unit in the C. glutamicum chromosome, the E-element, which is bracketed by lox-like sites, is excised by Cre-mediated fashion, thereby fixing the truncated mini-Mu(LR) unit in its position for the subsequent integration/amplification of new mini-Mu(LER) units. This strategy was demonstrated using the genes for the citrine and green fluorescent proteins, yECitrine and yEGFP, respectively.
McCue, Andrea D; Cresti, Mauro; Feijó, José A; Slotkin, R Keith
2011-03-01
The male germ cells of angiosperm plants are neither free-living nor flagellated and therefore are dependent on the unique structure of the pollen grain for fertilization. During angiosperm male gametogenesis, an asymmetric mitotic division produces the generative cell, which is completely enclosed within the cytoplasm of the larger pollen grain vegetative cell. Mitotic division of the generative cell generates two sperm cells that remain connected by a common extracellular matrix with potential intercellular connections. In addition, one sperm cell has a cytoplasmic projection in contact with the vegetative cell nucleus. The shared extracellular matrix of the two sperm cells and the physical association of one sperm cell to the vegetative cell nucleus forms a linkage of all the genetic material in the pollen grain, termed the male germ unit. Found in species representing both the monocot and eudicot lineages, the cytoplasmic projection is formed by vesicle formation and microtubule elongation shortly after the formation of the generative cell and tethers the male germ unit until just prior to fertilization. The cytoplasmic projection plays a structural role in linking the male germ unit, but potentially plays other important roles. Recently, it has been speculated that the cytoplasmic projection and the male germ unit may facilitate communication between the somatic vegetative cell nucleus and the germinal sperm cells, via RNA and/or protein transport. This review focuses on the nature of the sperm cell cytoplasmic projection and the potential communicative function of the male germ unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troia, Matthew J.; McManamay, Ryan A.
Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less
Troia, Matthew J.; McManamay, Ryan A.
2016-06-12
Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less
Hodgkin's disease, work, and the environment. A review.
McCunney, R J
1999-01-01
Hodgkin's disease (HD), a lymphoma with an annual incidence in the United States of approximately 7500 cases, primarily affects the lymph nodes, spleen, and liver. The point of this article is to critically review the literature regarding the purported relationships between HD, certain occupations, and exposure to chemical agents. Attention will also be focused on recent advances in molecular genetics in the etiology of this ailment. A MEDLINE search was conducted to assess case-control and mortality evaluations that investigated links between HD and certain occupations and exposure to designated hazards. A review of citations in the Silver Platter Occupational and Environmental Medicine CD-ROM database was also conducted to ensure that all pertinent reports were obtained. Of the industries evaluated, woodworking showed the most consistent link between an increased risk of HD (relative risk, 1.8 to 7.2), but not all studies conducted showed positive associations. Although certain chemicals (ie, chlorophenols, pesticides) were reported as risks, no chemical was consistently and unambiguously linked with HD. Recent investigative work, however, points to a major etiological role for the Epstein-Barr virus (EBV), genetic fragments of which have been noted in Reed-Sternberg cells, the classic malignant cells of HD. The occupation most consistently associated with HD appears to be woodworking, although no specific chemical has been consistently linked with this lymphoma. The most persuasive evidence regarding the cause of HD arises from recent studies, including epidemiological, clinical, and genetic studies, that point to a major role by the EBV.
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E.; Birket, Susan; Picking, William D.; Blocker, Ariel; Picking, Wendy L.; Lea, Susan M.
2006-01-01
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P212121, with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 Å, and data were collected to 2.9 Å resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 Å resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 Å, β = 107.9°. An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit. PMID:16946465
Johnson, Steven; Roversi, Pietro; Espina, Marianela; Deane, Janet E; Birket, Susan; Picking, William D; Blocker, Ariel; Picking, Wendy L; Lea, Susan M
2006-09-01
IpaD, the putative needle-tip protein of the Shigella flexneri type III secretion system, has been overexpressed and purified. Crystals were grown of the native protein in space group P2(1)2(1)2(1), with unit-cell parameters a = 55.9, b = 100.7, c = 112.0 A, and data were collected to 2.9 A resolution. Analysis of the native Patterson map revealed a peak at 50% of the origin on the Harker section v = 0.5, suggesting twofold non-crystallographic symmetry parallel to the b crystallographic axis. As attempts to derivatize or grow selenomethionine-labelled protein crystals failed, in-drop proteolysis was used to produce new crystal forms. A trace amount of subtilisin Carlsberg was added to IpaD before sparse-matrix screening, resulting in the production of several new crystal forms. This approach produced SeMet-labelled crystals and diffraction data were collected to 3.2 A resolution. The SeMet crystals belong to space group C2, with unit-cell parameters a = 139.4, b = 45.0, c = 99.5 A, beta = 107.9 degrees . An anomalous difference Patterson map revealed peaks on the Harker section v = 0, while the self-rotation function indicates the presence of a twofold noncrystallographic symmetry axis, which is consistent with two molecules per asymmetric unit.
Estrada-Arriaga, Edson Baltazar; Hernández-Romano, Jesús; García-Sánchez, Liliana; Guillén Garcés, Rosa Angélica; Bahena-Bahena, Erick Obed; Guadarrama-Pérez, Oscar; Moeller Chavez, Gabriela Eleonora
2018-05-15
In this study, a continuous flow stack consisting of 40 individual air-cathode MFC units was used to determine the performance of stacked MFC during domestic wastewater treatment operated with unconnected individual MFC and in series and parallel configuration. The voltages obtained from individual MFC units were of 0.08-1.1 V at open circuit voltage, while in series connection, the maximum power and current density were 2500 mW/m 2 and 500 mA/m 2 (4.9 V), respectively. In parallel connection, the maximum power and current density was 5.8 mW/m 2 and 24 mA/m 2 , respectively. When the cells were not connected to each other MFC unit, the main bacterial species found in the anode biofilms were Bacillus and Lysinibacillus. After switching from unconnected to series and parallel connections, the most abundant species in the stacked MFC were Pseudomonas aeruginosa, followed by different Bacilli classes. This study demonstrated that when the stacked MFC was switched from unconnected to series and parallel connections, the pollutants removal, performance electricity and microbial community changed significantly. Voltages drops were observed in the stacked MFC, which was mainly limited by the cathodes. These voltages loss indicated high resistances within the stacked MFC, generating a parasitic cross current. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parro, Víctor; de Diego-Castilla, Graciela; Rodríguez-Manfredi, José A; Rivas, Luis A; Blanco-López, Yolanda; Sebastián, Eduardo; Romeral, Julio; Compostizo, Carlos; Herrero, Pedro L; García-Marín, Adolfo; Moreno-Paz, Mercedes; García-Villadangos, Miriam; Cruz-Gil, Patricia; Peinado, Verónica; Martín-Soler, Javier; Pérez-Mercader, Juan; Gómez-Elvira, Javier
2011-01-01
The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2 ppb (ng mL⁻¹) for biomolecules and 10⁴ to 10³ spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50 mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.
NASA Technical Reports Server (NTRS)
Berry, R. L.; Tegart, J. R.; Demchak, L. J.
1979-01-01
Thirty sets of test data selected from the 89 low-g aircraft tests flown by NASA KC-135 zero-g aircraft are listed in tables with their accompanying test conditions. The data for each test consists of the time history plots of digitalized data (in engineering units) and the time history plots of the load cell data transformed to the tank axis system. The transformed load cell data was developed for future analytical comparisons; therefore, these data were transformed and plotted from the time at which the aircraft Z axis acceleration passed through l-g. There are 14 time history plots per test condition. The contents of each plot is shown in a table.
Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam
2015-03-01
Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuelmore » cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.« less
Knowledge Insufficient: The Management of Haemoglobin SC Disease
Pecker, Lydia H.; Schaefer, Beverly A.; Luchtman-Jones, Lori
2016-01-01
Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. PMID:27982424
Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta
2012-05-01
In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.
Importance of Unit Cells in Accurate Evaluation of the Characteristics of Graphene
NASA Astrophysics Data System (ADS)
Sabzyan, Hassan; Sadeghpour, Narges
2016-04-01
Effects of the size of the unit cell on energy, atomic charges, and phonon frequencies of graphene at the Γ point of the Brillouin zone are studied in the absence and presence of an electric field using density functional theory (DFT) methods (LDA and DFT-PBE functionals with Goedecker-Teter-Hutter (GTH) and Troullier-Martins (TM) norm-conserving pseudopotentials). Two types of unit cells containing nC=4-28 carbon atoms are considered. Results show that stability of graphene increases with increasing size of the unit cell. Energy, atomic charges, and phonon frequencies all converge above nC=24 for all functional-pseudopotentials used. Except for the LDA-GTH calculations, application of an electric field of 0.4 and 0.9 V/nm strengths does not change the trends with the size of the unit cell but instead slightly decreases the binding energy of graphene. Results of this study show that the choice of unit cell size and type is critical for calculation of reliable characteristics of graphene.
Shelton, Jennifer L.; Fram, Miranda S.; Munday, Cathy M.; Belitz, Kenneth
2010-01-01
Groundwater quality in the approximately 25,500-square-mile Sierra Nevada study unit was investigated in June through October 2008, as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Sierra Nevada study was designed to provide statistically robust assessments of untreated groundwater quality within the primary aquifer systems in the study unit, and to facilitate statistically consistent comparisons of groundwater quality throughout California. The primary aquifer systems (hereinafter, primary aquifers) are defined by the depth of the screened or open intervals of the wells listed in the California Department of Public Health (CDPH) database of wells used for public and community drinking-water supplies. The quality of groundwater in shallower or deeper water-bearing zones may differ from that in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. In the Sierra Nevada study unit, groundwater samples were collected from 84 wells (and springs) in Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine, Calaveras, Tuolumne, Madera, Mariposa, Fresno, Inyo, Tulare, and Kern Counties. The wells were selected on two overlapping networks by using a spatially-distributed, randomized, grid-based approach. The primary grid-well network consisted of 30 wells, one well per grid cell in the study unit, and was designed to provide statistical representation of groundwater quality throughout the entire study unit. The lithologic grid-well network is a secondary grid that consisted of the wells in the primary grid-well network plus 53 additional wells and was designed to provide statistical representation of groundwater quality in each of the four major lithologic units in the Sierra Nevada study unit: granitic, metamorphic, sedimentary, and volcanic rocks. One natural spring that is not used for drinking water was sampled for comparison with a nearby primary grid well in the same cell. Groundwater samples were analyzed for organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (N-nitrosodimethylamine [NDMA] and perchlorate), naturally occurring inorganic constituents (nutrients, major ions, total dissolved solids, and trace elements), and radioactive constituents (radium isotopes, radon-222, gross alpha and gross beta particle activities, and uranium isotopes). Naturally occurring isotopes and geochemical tracers (stable isotopes of hydrogen and oxygen in water, stable isotopes of carbon, carbon-14, strontium isotopes, and tritium), and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. Three types of quality-control samples (blanks, replicates, and samples for matrix spikes) each were collected at approximately 10 percent of the wells sampled for each analysis, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection, handling, and analytical procedures was not a significant source of bias in the data for the groundwater samples. Differences between replicate samples were within acceptable ranges, with few exceptions. Matrix-spike recoveries were within acceptable ranges for most compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, groundwater typically is treated, disinfected, or blended with other waters to maintain water quality. Regulatory benchmarks apply to finished drinking water that is served to the consumer, not to untre
Associative list processing unit
Hemmert, Karl Scott; Underwood, Keith D.
2013-01-29
An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.
2016-12-05
consist of at least five company -level units: headquarters , two rifle, and two armored units. Reconnaissance squadrons generally consist of at...least four company - level units: headquarters and three reconnaissance units...Brief (U) Army National Guard Companies Have Not Developed Effective Training Programs to Attain or Sustain Mission Essential Task Proficiency
Selective inhibition of yeast regulons by daunorubicin: A transcriptome-wide analysis
Rojas, Marta; Casado, Marta; Portugal, José; Piña, Benjamin
2008-01-01
Background The antitumor drug daunorubicin exerts some of its cytotoxic effects by binding to DNA and inhibiting the transcription of different genes. We analysed this effect in vivo at the transcriptome level using the budding yeast Saccharomyces cerevisiae as a model and sublethal (IC40) concentrations of the drug to minimise general toxic effects. Results Daunorubicin affected a minor proportion (14%) of the yeast transcriptome, increasing the expression of 195 genes and reducing expression of 280 genes. Daunorubicin down-regulated genes included essentially all genes involved in the glycolytic pathway, the tricarboxylic acid cycle and alcohol metabolism, whereas transcription of ribosomal protein genes was not affected or even slightly increased. This pattern is consistent with a specific inhibition of glucose usage in treated cells, with only minor effects on proliferation or other basic cell functions. Analysis of promoters of down-regulated genes showed that they belong to a limited number of transcriptional regulatory units (regulons). Consistently, data mining showed that daunorubicin-induced changes in expression patterns were similar to those observed in yeast strains deleted for some transcription factors functionally related to the glycolysis and/or the cAMP regulatory pathway, which appeared to be particularly sensitive to daunorubicin. Conclusion The effects of daunorubicin treatment on the yeast transcriptome are consistent with a model in which this drug impairs binding of different transcription factors by competing for their DNA binding sequences, therefore limiting their effectiveness and affecting the corresponding regulatory networks. This proposed mechanism might have broad therapeutic implications against cancer cells growing under hypoxic conditions. PMID:18667070
[Expression, crystallization and crystallographic study of the 1st IgV domain of human CD96].
Jiang, Wenjing; Zhang, Shuijun; Yan, Jinghua; Guo, Ning
2013-05-01
CD96 (Tactile) is an adhesion receptor expressed mainly on activated T cells, NK cells. As a family member of the immunoglobulin-like cell receptor, CD96 consists of three immunoglobulin-like domains (V1, V2/C and C) in the extracellular region. Recent studies have shown that the 1st IgV domain of CD96 (CD96V1) plays an essential role in cell adhesion and NK cell-mediated killing. In this study, the 1st IgV domain of human CD96 (hCD96V1) was cloned and expressed in Escherichia coli (BL21). The soluble protein was obtained by refolding of the hCD96V1 inclusion bodies. From analytical ultracentrifugation, we could predict that CD96 V1 maily exists as dimer with approximate molecular weight of 26.9 kDa. The protein was then successfully crystallized using the sitting-drop vapour-diffusion method. The crystals diffracted to 1.9 angstrom resolution and belonged to space group P21, with unit-cell parameters a = 35.1, b = 69.5, c = 49.6A, alpha=gamma=90 degrees, beta=105.4 degrees.
Hirano, Tetsuo; Ike, Fumio; Murata, Takehide; Obata, Yuichi; Utiyama, Hiroyasu; Yokoyama, Kazunari K
2008-04-02
Human acute myeloblastic leukemia HL-60 cells become resistant to differentiation during long-term cultivation. After 150 passages, double minute chromosomes (dmins) found in early-passaged cells are replaced by large extrachromosomal elements (LEEs). In a DNA library derived from a purified fraction of LEEs, 12.6% (23/183) of clones were assigned to 8q24 and 9.2% (17/183) were assigned to 14q11 in the human genome. Fluorescence in situ hybridization (FISH) revealed a small aberrant chromosome, which had not been found in early-passaged cells, in addition to the purified LEEs. We determined that each LEE consisted of six discontinuous segments in a region that extended for 4.4Mb over the 8q24 locus. Five genes, namely, Myc (a proto-oncogene), NSMCE2 (for a SUMO ligase), CCDC26 (for a retinoic acid-dependent modulator of myeloid differentiation), TRIB1 (for a regulator of MAPK kinase) and LOC389637 (for a protein of unknown function), were encoded by the amplicon. Breaks in the chromosomal DNA within the amplicon were found in the NSMCE2 and CCDC26 genes. The discontinuous structure of the amplicon unit of the LEEs was identical with that of dmins in HL-60 early-passaged cells. The difference between them seemed, predominantly, to be the number (10-15 copies per LEE versus 2 or 3 copies per dmin) of constituent units. Expression of the Myc, NSMCE2, CCDC26 and LOC389637 and TRIB1 genes was constitutive in all lines of HL-60 cells and that of the first four genes was repressed during the terminal differentiation of early-passaged HL-60 cells. We also detected abnormal transcripts of CCDC26. Our results suggest that these genes were selected during the development of amplicons. They might be amplified and, sometimes, truncated to contribute to the maintenance of HL-60 cells in an undifferentiated state.
High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs)
NASA Astrophysics Data System (ADS)
Henne, R. H.; Franco, T.; Ruckdäschel, R.
2006-12-01
High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity.
Robert, Mark E; Linthicum, Fred H
2016-01-01
Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements
ERIC Educational Resources Information Center
Collins, David C.
2011-01-01
An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…
NMR study of methane + ethane structure I hydrate decomposition.
Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy
2007-05-24
The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Units With Group 1 or Cell Burner Boilers A Appendix A to Part 76 Protection of Environment... 1 or Cell Burner Boilers Table 1—Phase I Tangentially Fired Units State Plant Unit Operator ALABAMA... TOWER 9 CEN ILLINOIS PUB SER. INDIANA CULLEY 2 STHERN IND GAS & EL. INDIANA CULLEY 3 STHERN IND GAS & EL...
NASA Astrophysics Data System (ADS)
Katayama, Noboru; Kamiyama, Hideyuki; Kogoshi, Sumio; Kudo, Yusuke; Fukada, Takafumi; Ogawa, Makoto
The use of fuel-cell auxiliary power units (FC-APU) in refrigerator cars employed delivery to for convenience store delivery has been studied. The delivery pattern is assumed to be a typical pattern that includes driving between convenience stores or between a delivery center and a convenience store, unloading, driver's lunch break. The M15 driving mode, which simulates the driving condition in urban areas, is used as the driving mode in the delivery pattern. The FC-APU system includes a proton-exchange membrane fuel cell (PEFC) module, an inverter, and DC/DC converter. Bench tests of the FC-APU are performed to determine the hydrogen fuel consumption rate and the energy efficiency; these values depend on the output power of the PEFC module. The calculated relationship between the output power and fuel consumption rate of a current used system, which consists of an alternator and a secondary battery, are used to estimate the energy efficiency of the current used system. On the basis of the measurement data in this study and the results for the model proposed by Brodric et al. [C. J. Brodrick et al., Trans. Res. D, vol 7, pp. 303 (2002)], the payback period is calculated. The results indicate that the payback period would be 2.1 years when the FC-APU operates at a load of 70%.
Multi-stability and variable stiffness of cellular solids designed based on origami patterns
NASA Astrophysics Data System (ADS)
Sengupta, Sattam; Li, Suyi
2017-04-01
The application of origami-inspired designs to engineered structures and materials has been a subject of much research efforts. These structures and materials, whose mechanical properties are directly related to the geometry of folding, are capable of achieving a host of unique adaptive functions. In this study, we investigate a three-dimensional multistability and variable stiffness function of a cellular solid based on the Miura-Ori folding pattern. The unit cell of such a solid, consisting of two stacked Miura-Ori sheets, can be elastically bistable due to the nonlinear relationship between rigid-folding deformation and crease material bending. Such a bistability possesses an unorthodox property: the critical, unstable configuration lies on the same side of two stable ones, so that two different force-deformation curves co-exist within the same range of deformation. By exploiting such unique stability properties, we can achieve a programmable stiffness change between the two elastically stable states, and the stiffness differences can be prescribed by tailoring the crease patterns of the cell. This paper presents a comprehensive parametric study revealing the correlations between such variable stiffness and various design parameters. The unique properties stemming from the bistability and design of such a unit cell can be advanced further by assembling them into a solid which can be capable of shape morphing and programmable mechanical properties.
Lintz, José Alves; Dalio, Marcelo Bellini; Tirapelli, Luiz Fernando; Ribeiro, Maurício Serra; Joviliano, Edwaldo Edner; Piccinato, Carlos Eli
2017-04-01
Analyze the effects of ischemic postconditioning on skeletal muscle injury and apoptosis produced by partial ischemia and reperfusion in rats. An experimental study was designed using 70 Wistar rats divided in 3 groups: Sham; Control-submitted to ischemia and reperfusion; and Postconditioning-submitted to ischemia and reperfusion with ischemic postconditioning. Subgroups (n = 10) were divided by duration of ischemia (4, 5, or 6 hr). A partial ischemia model using aortic clamping was used. The postconditioning protocol consisted of 3 cycles of clamping the aorta for 1 min and releasing for another minute. Skeletal muscle injury was evaluated by measuring serum levels of releasing cytoplasmic enzymes: aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and total creatine phosphokinase (CPK). Lipid peroxidation was evaluated by muscular levels of malondialdehyde (MDA). Energetic cell storage was evaluated by muscular glycogen levels. Apoptosis was evaluated analyzing the expression of caspase 3 and protein B-cell lymphoma 2 (Bcl-2) by immunohistochemistry. AST levels in Sham group were 109.80 units/L, in Control subgroups were 4h 200.60 units/L/5h 392.30 units/L/6h 118.82 units/L, whereas in Postconditioning subgroups were: 4h 316.10 units/L/5h 268.40 units/L/6h 267.00 units/L. There was a 2-3-fold increase in Control and Postconditioning groups compared with Sham group (P = 0.003) There was no difference between groups with the same ischemic injury time. LDH, CPK, and MDA levels were similar in Sham, Control, and Postconditioning groups. Subgroups with the same ischemic injury time were also similar. Glycogen levels in Sham group were 0.629 mg%, in Control subgroups were 4h 0.323 mg%/5h 0.348 mg%/6h 0.183 mg%, whereas in Postconditioning subgroups were: 4h 0.443 mg%/5h 0.270 mg%/6h 0.324 mg%. Control and Postconditioning groups were decreased by half in relation with the Sham group (P = 0.002), with no difference between groups with the same ischemic injury time. For both caspase 3 and Bcl-2, the percentage of positive cells increased more than 2-fold in Control and Postconditioning groups when compared with Sham group (P < 0.001). The greater the ischemic injury time, the greater was the percent of positive cells (P < 0.0005), with no difference between subgroups with the same ischemic injury time. Ischemic postconditioning had neither protective effect on skeletal muscle injury nor avoided apoptosis induction in rats submitted to partial ischemia and reperfusion. Copyright © 2017 Elsevier Inc. All rights reserved.
Arbaeen, Ahmad F; Schubert, Peter; Serrano, Katherine; Carter, Cedric J; Culibrk, Brankica; Devine, Dana V
2017-05-01
Trauma transfusion packages for hemorrhage control consist of red blood cells, plasma, and platelets at a set ratio. Although pathogen reduction improves the transfusion safety of platelet and plasma units, there is an associated reduction in quality. This study aimed to investigate the impact of riboflavin/ultraviolet light-treated plasma or platelets in transfusion trauma packages composed of red blood cell, plasma, and platelet units in a ratio of 1:1:1 in vitro by modeling transfusion scenarios for trauma patients and assessing function by rotational thromboelastometry. Pathogen-reduced or untreated plasma and buffy coat platelet concentrate units produced in plasma were used in different combinations with red blood cells in trauma transfusion packages. After reconstitution of these packages with hemodiluted blood, the hemostatic functionality was analyzed by rotational thromboelastometry. Hemostatic profiles of pathogen-inactivated buffy coat platelet concentrate and plasma indicated decreased activity compared with their respective controls. Reconstitution of hemodiluted blood (hematocrit = 20%) with packages that contained treated or nontreated components resulted in increased alpha and maximum clot firmness and enhanced clot-formation time. Simulating transfusion scenarios based on 30% blood replacement with a transfusion trauma package resulted in a nonsignificant difference in rotational thromboelastometry parameters between packages containing treated and nontreated blood components (p ≥ 0.05). Effects of pathogen inactivation treatment were evident when the trauma package percentage was 50% or greater and contained both pathogen inactivation-treated plasma and buffy coat platelet concentrate. Rotational thromboelastometry investigations suggest that there is relatively little impact of pathogen inactivation treatment on whole blood clot formation unless large amounts of treated components are used. © 2017 AABB.
NASA Astrophysics Data System (ADS)
Bagci, Fulya; Akaoglu, Baris
2017-08-01
We present a metamaterial configuration exhibiting single and multi-band electromagnetic induced transparency (EIT)-like properties. The unit cell of the single band EIT-like metamaterial consists of a multi-split ring resonator surrounded by a split ring resonator. The multi-split ring resonator acts as a quasi-dark or dark resonator, depending on the polarization of the incident wave, and the split ring resonator serves as the bright resonator. Combination of these two resonators results in a single band EIT-like transmission inside the stop band. EIT-like transmission phenomenon is also clearly observed in the measured transmission spectrum at almost the same frequencies for vertical and horizontal polarized waves, and the numerical results are verified for normal incidence. Moreover, multi-band transmission windows are created within a wide band by combining the two slightly different single band EIT-like metamaterial unit cells that exhibit two different coupling strengths inside a supercell configuration. Group indices as high as 123 for single band and 488 for tri-band transmission, accompanying with high transmission rates (over 80%), are achieved, rendering the metamaterial very suitable for multi-band slow light applications. It is shown that the group delay of the propagating wave can be increased and dynamically controlled by changing the polarization angle. Multi-band EIT-like transmission is also verified experimentally, and a good agreement with simulations is obtained. The proposed novel methodology for obtaining multi-band EIT, which takes advantage of a supercell configuration by hosting slightly different configured unit cells, can be utilized for easily formation and manipulation of multi-band transmission windows inside a stop band.
Concept for a lunar array for very low frequency radio astronomy
NASA Technical Reports Server (NTRS)
Marsh, Kenneth A.; Mahoney, Michael J.; Kuiper, Thomas B. H.; Jones, Dayton L.
1992-01-01
We discuss the design considerations relevant to a very low frequency array, to be deployed on the lunar near side during an early expedition. Such an array would operate in the frequency range 1-10 MHz, and would consist nominally of 20 antennas distributed over a region approximately 40 km in extent. Each antenna station would consist of a crossed-dipole antenna, together with a receiver, digitizer, solar cells, and batteries. In addition, the station will contain a UHF transmitter for relaying the digitized signal to a central station where it will be transmitted to Earth for subsequent processing, including cross-correlation with signals from other antennas. Each antenna station (including the central station) would be deployed as a self-contained unit, mounted on a miniature robotic vehicle. No fixed structures are required for the array.
Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A
2015-03-01
Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials as well as for corroboration of relevant analytical and computational models. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, Armin; Dastafkan, Kamran; Obeydavi, Ali; Rahimi, Mohammad
2017-12-01
Nanocrystalline solid solutions consisting of un-doped and gadolinium doped zinc oxide nanorods were fabricated by a modified sol-gel process utilizing combined ultrasonic-microwave irradiations. Polyvinylpyrrolidone, diethylene glycol, and triethylenetetramine respectively as capping, structure directing, and complexing agents were used under ultrasound dynamic aging and microwave heating to obtain crystalline nanorods. Crystalline phase monitoring, lattice parameters and variation, morphology and shape, elemental analysis, functional groups, reducibility, and the oxidation state of emerged species were examined by PXRD, FESEM, TEM, EDX, FTIR, micro Raman, H2-TPR, and EPR techniques. Results have verified that irradiation mechanism of gelation and crystallization reduces the reaction time, augments the crystal quality, and formation of hexagonal close pack structure of Wurtzite morphology. Besides, dissolution of gadolinium within host lattice involves lattice deformation, unit cell distortion, and angular position variation. Structure related shape and growth along with compositional purity were observed through microscopic and spectroscopic surveys. Furthermore, TPR and EPR studies elucidated more detailed behavior upon exposure to the exerted irradiations and subsequent air-annealing including the formed oxidation states and electron trapping centers, presence of gadolinium, zinc, and oxygen disarrays and defects, as well as alteration in the host unit cell via gadolinium addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yong-Zhi; Sheng, Yu; Li, Lan-Fen
2007-09-01
A potential target for antibiotic drug design, d-alanine-d-alanine ligase from S. mutans, was expressed in E. coli, purified and crystallized. Diffraction data were collected to 2.4 Å resolution. d-Alanine-d-alanine ligase is encoded by the gene ddl (SMU-599) in Streptococcus mutans. This ligase plays a very important role in cell-wall biosynthesis and may be a potential target for drug design. To study the structure and function of this ligase, the gene ddl was amplified from S. mutans genomic DNA and cloned into the expression vector pET28a. The protein was expressed in soluble form in Escherichia coli strain BL21 (DE3). Homogeneous proteinmore » was obtained using a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Purified protein was crystallized and the cube-shaped crystal diffracted to 2.4 Å. The crystal belongs to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 79.50, c = 108.97 Å. There is one molecule per asymmetric unit.« less
Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact
Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526
[Intranasal epitalon infusion modulates neuronal activity in the rat neocortex].
Sibarov, D A; Vol'nova, A B; Frolov, D S; Nosdrachev, A D
2006-08-01
Properties of tetrapeptide epitalon (Ala-Glu-Asp-Gly) constructed on the basis of pineal peptide extract, have been studied. The intranasal infusions: a noninvasive way to deliver this peptide to CNS hypassing the blood-brain barrier, was used. The aim of the study is to estimate epitalon action on rat motor cortex spontaneous activity. Wistar male rats were anesthetized with urethane (1 g/kg). Extracellular unit recording was made using glass microelectrodes (1-2 MOhm). After recording of spontaneous activity (10-15 min), epitalon intranasal infusion (2 ng) was followed by 30-minute recording. Within a few minutes after the infusion, significant activation of neural activity was observed (2-2.5-fold higher frequency of neuronal spikes). Complex response consisting of several phases was identified in some recordings. The spikes frequency growth during 5 to 7 min (first phase) after the infusion was followed by the second (11-12 min) and the third (17-18 min) phases. An increase of neuronal spontaneous activity was conditioned by the higher frequency of already active units and by the involvement of previously silent cells. At least the first phase of epitalon action can be explained by direct action of the peptide on the cells of the motor cortex.
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
Microelectromechanically tunable multiband metamaterial with preserved isotropy
NASA Astrophysics Data System (ADS)
Pitchappa, Prakash; Ho, Chong Pei; Qian, You; Dhakar, Lokesh; Singh, Navab; Lee, Chengkuo
2015-06-01
We experimentally demonstrate a micromachined reconfigurable metamaterial with polarization independent characteristics for multiple resonances in terahertz spectral region. The metamaterial unit cell consists of eight out-of-plane deformable microcantilevers placed at each corner of an octagon ring. The octagon shaped unit cell geometry provides the desired rotational symmetry, while the out-of-plane movable cantilevers preserves the symmetry at different configurations of the metamaterial. The metamaterial is shown to provide polarization independent response for both electrical inductive-capacitive (eLC) resonance and dipolar resonance at all states of actuation. The proposed metamaterial has a switching range of 0.16 THz and 0.37 THz and a transmission intensity change of more than 0.2 and 0.7 for the eLC and dipolar resonances, respectively for both TE and TM modes. Further optimization of the metal layer thickness, provides an improvement of up to 80% modulation at 0.57 THz. The simultaneously tunable dual band isotropic metamaterial will enable the realization of high performance electro-optic devices that would facilitate numerous terahertz applications such as compressive terahertz imaging, miniaturized terahertz spectroscopy and next generation high speed wireless communication possible in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashikawa, Yuji; Uchimura, Hiromasa; Fujimoto, Zui
2007-06-01
The NAD(P)H:ferredoxin oxidoreductase in carbazole 1,9a-dioxygenase from Janthinobacterium sp. J3 was crystallized and diffraction data were collected to 2.60 Å resolution. Carbazole 1,9a-dioxygenase (CARDO), which consists of an oxygenase component (CARDO-O) and the electron-transport components ferredoxin (CARDO-F) and ferredoxin reductase (CARDO-R), catalyzes dihydroxylation at the C1 and C9a positions of carbazole. CARDO-R was crystallized at 277 K using the hanging-drop vapour-diffusion method with the precipitant PEG 8000. Two crystal types (types I and II) were obtained. The type I crystal diffracted to a maximum resolution of 2.80 Å and belonged to space group P4{sub 2}2{sub 1}2, with unit-cell parameters amore » = b = 158.7, c = 81.4 Å. The type II crystal was obtained in drops from which type I crystals had been removed; it diffracted to 2.60 Å resolution and belonged to the same space group, with unit-cell parameters a = b = 161.8, c = 79.5 Å.« less
Highly efficient multifunctional metasurface for high-gain lens antenna application
NASA Astrophysics Data System (ADS)
Hou, Haisheng; Wang, Guangming; Li, Haipeng; Guo, Wenlong; Li, Tangjing
2017-07-01
In this paper, a novel multifunctional metasurface combining linear-to-circular polarization conversion and electromagnetic waves focusing has been proposed and applied to design a high-gain lens antenna working at Ku band. The multifunctional metasurface consists of 15 × 15 unit cells. Each unit cell is composed of four identical metallic layers and three intermediate dielectric layers. Due to well optimization, the multifunctional metasurface can convert the linearly polarized waves generated by the source to circularly polarized waves and focus the waves. By placing a patch antenna operating at 15 GHz at the focal point of the metasurface and setting the focal distance to diameter ratio ( F/ D) to 0.34, we obtain a multifunctional lens antenna. Simulated and measured results coincide well, indicating that the metasurface can convert linearly polarized waves to right-handed circularly polarized waves at 15 GHz with excellent performances in terms of the 3 dB axial ratio bandwidth of 5.3%, realized gain of 16.9 dB and aperture efficiency of 41.2%. Because of the advantages of high gain, competitive efficiency and easy fabrication, the proposed lens antenna has a great potential application in wireless and satellite communication.
NASA Astrophysics Data System (ADS)
Dumitrica, Traian; Hourahine, Ben; Aradi, Balint; Frauenheim, Thomas
We discus the coupling of the objective boundary conditions into the SCC density functional-based tight binding code DFTB+. The implementation is enabled by a generalization to the helical case of the classical Ewald method, specifically by Ewald-like formulas that do not rely on a unit cell with translational symmetry. The robustness of the method in addressing complex hetero-nuclear nano- and bio-fibrous systems is demonstrated with illustrative simulations on a helical boron nitride nanotube, a screw dislocated zinc oxide nanowire, and an ideal double-strand DNA. Work supported by NSF CMMI 1332228.
Pendini, Nicole R; Polyak, Steve W; Booker, Grant W; Wallace, John C; Wilce, Matthew C J
2008-06-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 A resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 93.665, c = 131.95.
Solar photovoltaic powered refrigerators/freezers for medical use in remote geographic locations
NASA Technical Reports Server (NTRS)
Darkazalli, G.; Hein, G. F.
1983-01-01
One of the obstacles preventing widespread immunication against disease is the virtual absence of reliable, low maintenance refrigeration systems for storage of vaccines in remote geographic locations. A system which consists of a solar photovoltaic cell array and an integrated refrigerator/freezer-energy storage unit is discussed herein. The array converts solar radiation into direct current (DC) electricity with no moving parts and no intermediate steps. A detailed description of the refrigeration system, its design and an analysis thereof, performance test procedures, and test results are presented. A system schematic is also provided.
New adatom model for Si(11) 7X7 and Si(111)Ge 5X5 reconstructed surfaces
NASA Technical Reports Server (NTRS)
Chadi, D. J.
1985-01-01
A new adatom model differing from the conventional model by a reconstruction of the substrate is proposed. The new adatom structure provides an explanation for the 7x7 and 5x5 size of the unit cells seen on annealed Si(111) and Si(111)-Ge surfaces, respectively. The model is consistent with structural information from vacuum-tunneling microscopy. It also provides simple explanations for stacking-fault-type features expected from Rutherford backscattering experiments and for similarities in the LEED and photoemission spectra of 2x1 and 7x7 surfaces.
Synthesis of nanometre-thick MoO3 sheets
NASA Astrophysics Data System (ADS)
Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.
2010-03-01
The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.
Electromagnetically induced transparency in planar metamaterials based on guided mode resonance
NASA Astrophysics Data System (ADS)
Sun, Yaru; Chen, Hang; Li, Xiangjun; Hong, Zhi
2017-06-01
We present and numerically demonstrate a novel, electromagnetically induced transparency (EIT) in planar metamaterials (MMs) based on guided mode resonance (GMR). The unit cell of the MM consists of two metallic ring resonators. The GMR with high quality factor (Q) is achieved by changing the distance between the two rings of the MM. Narrow EIT-like spectral response is realized by coupling between a high Q GMR and a low Q dipolar resonance of the MM. Our work could provide another efficient way towards the realization of EIT with large group index using very simple structures.
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.
2013-04-01
We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.
Computational micromechanics of woven composites
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Saigal, Sunil; Zeng, Xiaogang
1991-01-01
The bounds on the equivalent elastic material properties of a composite are presently addressed by a unified energy approach which is valid for both unidirectional and 2D and 3D woven composites. The unit cell considered is assumed to consist, first, of the actual composite arrangement of the fibers and matrix material, and then, of an equivalent pseudohomogeneous material. Equating the strain energies due to the two arrangements yields an estimate of the upper bound for the material equivalent properties; successive increases in the order of displacement field that is assumed in the composite arrangement will successively produce improved upper bound estimates.
Hydrogen production from bio-fuels using precious metal catalysts
NASA Astrophysics Data System (ADS)
Pasel, Joachim; Wohlrab, Sebastian; Rotov, Mikhail; Löhken, Katrin; Peters, Ralf; Stolten, Detlef
2017-11-01
Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.
Centrifuge facility conceptual system study. Volume 2: Facility systems and study summary
NASA Technical Reports Server (NTRS)
Synnestvedt, Robert (Editor); Blair, Patricia; Cartledge, Alan; Garces-Porcile, Jorge; Garin, Vladimir; Guerrero, Mike; Haddeland, Peter; Horkachuck, Mike; Kuebler, Ulrich; Nguyen, Frank
1991-01-01
The Centrifuge Facility is a major element of the biological research facility for the implementation of NASA's Life Science Research Program on Space Station Freedom using nonhuman species (small primates, rodents, plants, insects, cell tissues, etc.). The Centrifuge Facility consists of a variable gravity Centrifuge to provide artificial gravity up to 2 earth G's' a Holding System to maintain specimens at microgravity levels, a Glovebox, and a Service Unit for servicing specimen chambers. The following subject areas are covered: (1) Holding System; (2) Centrifuge System; (3) Glovebox System; (4) Service System; and (5) system study summary.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam
2017-01-01
A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.
Ozbun, Michelle A; Patterson, Nicole A
2014-08-01
Papillomaviruses have a strict tropism for epithelial cells, and they are fully reliant on cellular differentiation for completion of their life cycles, resulting in the production of progeny virions. Thus, a permissive environment for full viral replication in vitro-wherein virion morphogenesis occurs under cooperative viral and cellular cues-requires the cultivation of epithelium. Presented in the first section of this unit is a protocol to grow differentiating epithelial tissues that mimic many important morphological and biochemical aspects of normal skin. The technique involves growing epidermal cells atop a dermal equivalent consisting of live fibroblasts and a collagen lattice. Epithelial stratification and differentiation ensues when the keratinocyte-dermal equivalent is placed at the air-liquid interface. The apparent floating nature of the cell-matrix in this method led to the nickname "raft" cultures. The general technique can be applied to normal low passage keratinocytes, to cells stably transfected with papillomavirus genes or genomes, or keratinocytes established from neoplastic lesions. However, infectious papillomavirus particles have only been isolated from organotypic epithelial cultures initiated with cells that maintain oncogenic human papillomavirus genomes in an extrachomosomal replicative form. The second section of this unit is dedicated to a virion isolation method that minimizes aerosol and skin exposure to these human carcinogens. Although the focus of the protocols is on the growth of tissues that yields infectious papillomavirus progeny, this culture system facilitates the investigation of these fastidious viruses during their complex replicative cycles, and raft tissues can be manipulated and harvested at any point during the process. Importantly, a single-step virus growth cycle is achieved in this process, as it is unlikely that progeny virions are released to initiate subsequent rounds of infection. Copyright © 2014 John Wiley & Sons, Inc.
Quality of red blood cells washed using a second wash sequence on an automated cell processor.
Hansen, Adele L; Turner, Tracey R; Kurach, Jayme D R; Acker, Jason P
2015-10-01
Washed red blood cells (RBCs) are indicated for immunoglobulin (Ig)A-deficient recipients when RBCs from IgA-deficient donors are not available. Canadian Blood Services recently began using the automated ACP 215 cell processor (Haemonetics Corporation) for RBC washing, and its suitability to produce IgA-deficient RBCs was investigated. RBCs produced from whole blood donations by the buffy coat (BC) and whole blood filtration (WBF) methods were washed using the ACP 215 or the COBE 2991 cell processors and IgA and total protein levels were assessed. A double-wash procedure using the ACP 215 was developed, tested, and validated by assessing hemolysis, hematocrit, recovery, and other in vitro quality variables in RBCs stored after washing, with and without irradiation. A single wash using the ACP 215 did not meet Canadian Standards Association recommendations for washing with more than 2 L of solution and could not consistently reduce IgA to levels suitable for IgA-deficient recipients (24/26 BC RBCs and 0/9 WBF RBCs had IgA levels < 0.05 mg/dL). Using a second wash sequence, all BC and WBF units were washed with more than 2 L and had levels of IgA of less than 0.05 mg/dL. During 7 days' postwash storage, with and without irradiation, double-washed RBCs met quality control criteria, except for the failure of one RBC unit for inadequate (69%) postwash recovery. Using the ACP 215, a double-wash procedure for the production of components for IgA-deficient recipients from either BC or WBF RBCs was developed and validated. © 2015 AABB.
Toyoda, Izumi; Fujita, Satoshi; Thamattoor, Ajoy K.
2015-01-01
Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset. PMID:25904809
Yoneyama, T; Akatsuka, T; Miyamura, T
1988-08-01
The large BglII fragment (2.8 kilobases) of hepatitis B virus DNA including the transcription unit for the hepatitis B surface antigen (HBsAg) was inserted into a bovine papillomavirus vector containing the neomycin resistance gene. The recombinant DNA was transfected into mouse C127 cells. A stable transformed cell line (MS128) secreting a large amount of 22 nm HBsAg particles containing pre-S2 protein was established. The secreted HBsAg particles had the receptor for polymerized human serum albumin. Immunoprecipitation and Western blot analyses showed that HBsAg particles consisted of two major proteins of 22K and 26K encoded by the S gene and a minor protein of 35K encoded by the pre-S2 and S genes. Southern blot analysis revealed that the transfected plasmid was integrated into the host chromosomal DNA and that most of the plasmid sequences were present. These results suggest that the stable expression of the HBsAg in MS128 cells is related to the integrated state of the recombinant DNA.
Regulations and guidelines governing stem cell based products: Clinical considerations
George, Bobby
2011-01-01
The use of stem cells as medicines is a promising and upcoming area of research as they may be able to help the body to regenerate damaged or lost tissue in a host of diseases like Parkinson′s, multiple sclerosis, heart disease, liver disease, spinal cord damage, cancer and many more. Translating basic stem cell research into routine therapies is a complex multi-step process which entails the challenge related to managing the expected therapeutic benefits with the potential risks while complying with the existing regulations and guidelines. While in the United States (US) and European Union (EU) regulations are in place, in India, we do not have a well-defined regulatory framework for “stem cell based products (SCBP)”. There are several areas that need to be addressed as it is quite different from that of pharmaceuticals. These range from establishing batch consistency, product stability to product safety and efficacy through pre-clinical, clinical studies and marketing authorization. This review summarizes the existing regulations/guidelines in US, EU, India, and the associated challenges in developing SCBP with emphasis on clinical aspects. PMID:21897884
NASA Astrophysics Data System (ADS)
Sakaki, Yukiya; Yamada, Tomoaki; Matsui, Chihiro; Yamaga, Yusuke; Takeuchi, Ken
2018-04-01
In order to improve performance of solid-state drives (SSDs), hybrid SSDs have been proposed. Hybrid SSDs consist of more than two types of NAND flash memories or NAND flash memories and storage-class memories (SCMs). However, the cost of hybrid SSDs adopting SCMs is more expensive than that of NAND flash only SSDs because of the high bit cost of SCMs. This paper proposes unique hybrid SSDs with two-dimensional (2D) horizontal multi-level cell (MLC)/three-dimensional (3D) vertical triple-level cell (TLC) NAND flash memories to achieve higher cost-performance. The 2D-MLC/3D-TLC hybrid SSD achieves up to 31% higher performance than the conventional 2D-MLC/2D-TLC hybrid SSD. The factors of different performance between the proposed hybrid SSD and the conventional hybrid SSD are analyzed by changing its block size, read/write/erase latencies, and write unit of 3D-TLC NAND flash memory, by means of a transaction-level modeling simulator.
Follicular hybrid cyst: a combination of bullous pilomatricoma and epidermoid cyst.
Sanusi, Tutyana; Qu, Xiaoying; Li, Yanqiu; Zhang, Jing; Wang, Ming; Zhao, Yun; Yang, Zhen; An, Xiangjie; Qian, Yue; Wang, Chunsen; Chen, Hongxiang; Chen, Siyuan; Huang, Changzheng
2013-01-01
The follicular hybrid is composed of more than two components of pilosebaceous unit. There are several studies of hybrid cyst, combination of trichilemmal and epidermoid cyst was the most frequently reported. In this paper, we reported one case of hybrid cyst composed of bullous pilomatricoma and epidermoid cyst. A 14-year-old girl was complaint of a solitary flesh-colored to erythematous nodule with flaccid appearance sized 3.2 × 1.8 cm in diameter on her right upper back for one year. The histologic findings showed there were edema and proliferation of capillaries in the superficial dermis, a cyst in the middle to deep dermis. There were laminated keratins in the cystic space. The cyst wall was composed of two different components, one was composed of epithelial cells containing of granular layer, and another consisted of basophilic cells, transient cells and shadow cells. The cyst not related with Gardner's syndrome. Hybrid cyst such as trichilemmal cyst, epidermoid and pilomatricoma cysts maybe have same clinical features or mimicking each others, but we can distinguish them from histopathology evaluation.
Follicular hybrid cyst: a combination of bullous pilomatricoma and epidermoid cyst
Sanusi, Tutyana; Qu, Xiaoying; Li, Yanqiu; Zhang, Jing; Wang, Ming; Zhao, Yun; Yang, Zhen; An, Xiangjie; Qian, Yue; Wang, Chunsen; Chen, Hongxiang; Chen, Siyuan; Huang, Changzheng
2013-01-01
The follicular hybrid is composed of more than two components of pilosebaceous unit. There are several studies of hybrid cyst, combination of trichilemmal and epidermoid cyst was the most frequently reported. In this paper, we reported one case of hybrid cyst composed of bullous pilomatricoma and epidermoid cyst. A 14-year-old girl was complaint of a solitary flesh-colored to erythematous nodule with flaccid appearance sized 3.2×1.8 cm in diameter on her right upper back for one year. The histologic findings showed there were edema and proliferation of capillaries in the superficial dermis, a cyst in the middle to deep dermis. There were laminated keratins in the cystic space. The cyst wall was composed of two different components, one was composed of epithelial cells containing of granular layer, and another consisted of basophilic cells, transient cells and shadow cells. The cyst not related with Gardner’s syndrome. Hybrid cyst such as trichilemmal cyst, epidermoid and pilomatricoma cysts maybe have same clinical features or mimicking each others, but we can distinguish them from histopathology evaluation. PMID:24294394
Aptamer-Based Dual-Functional Probe for Rapid and Specific Counting and Imaging of MCF-7 Cells.
Yang, Bin; Chen, Beibei; He, Man; Yin, Xiao; Xu, Chi; Hu, Bin
2018-02-06
Development of multimodal detection technologies for accurate diagnosis of cancer at early stages is in great demand. In this work, we report a novel approach using an aptamer-based dual-functional probe for rapid, sensitive, and specific counting and visualization of MCF-7 cells by inductively coupled plasma-mass spectrometry (ICP-MS) and fluorescence imaging. The probe consists of a recognition unit of aptamer to catch cancer cells specifically, a fluorescent dye (FAM) moiety for fluorescence resonance energy transfer (FRET)-based "off-on" fluorescence imaging as well as gold nanoparticles (Au NPs) tag for both ICP-MS quantification and fluorescence quenching. Due to the signal amplification effect and low spectral interference of Au NPs in ICP-MS, an excellent linearity and sensitivity were achieved. Accordingly, a limit of detection of 81 MCF-7 cells and a relative standard deviation of 5.6% (800 cells, n = 7) were obtained. The dynamic linear range was 2 × 10 2 to 1.2 × 10 4 cells, and the recoveries in human whole blood were in the range of 98-110%. Overall, the established method provides quantitative and visualized information on MCF-7 cells with a simple and rapid process and paves the way for a promising strategy for biomedical research and clinical diagnostics.
Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice.
Henning, Justin R; Graffeo, Christopher S; Rehman, Adeel; Fallon, Nina C; Zambirinis, Constantinos P; Ochi, Atsuo; Barilla, Rocky; Jamal, Mohsin; Deutsch, Michael; Greco, Stephanie; Ego-Osuala, Melvin; Bin-Saeed, Usama; Rao, Raghavendra S; Badar, Sana; Quesada, Juan P; Acehan, Devrim; Miller, George
2013-08-01
Nonalcoholic steatohepatitis (NASH) is the most common etiology of chronic liver dysfunction in the United States and can progress to cirrhosis and liver failure. Inflammatory insult resulting from fatty infiltration of the liver is central to disease pathogenesis. Dendritic cells (DCs) are antigen-presenting cells with an emerging role in hepatic inflammation. We postulated that DCs are important in the progression of NASH. We found that intrahepatic DCs expand and mature in NASH liver and assume an activated immune phenotype. However, rather than mitigating the severity of NASH, DC depletion markedly exacerbated intrahepatic fibroinflammation. Our mechanistic studies support a regulatory role for DCs in NASH by limiting sterile inflammation through their role in the clearance of apoptotic cells and necrotic debris. We found that DCs limit CD8(+) T-cell expansion and restrict Toll-like receptor expression and cytokine production in innate immune effector cells in NASH, including Kupffer cells, neutrophils, and inflammatory monocytes. Consistent with their regulatory role in NASH, during the recovery phase of disease, ablation of DC populations results in delayed resolution of intrahepatic inflammation and fibroplasia. Our findings support a role for DCs in modulating NASH. Targeting DC functional properties may hold promise for therapeutic intervention in NASH. Copyright © 2013 American Association for the Study of Liver Diseases.
Temporal dynamics of contrast gain in single cells of the cat striate cortex.
Bonds, A B
1991-03-01
The response amplitude of cat striate cortical cells is usually reduced after exposure to high-contrast stimuli. The temporal characteristics and contrast sensitivity of this phenomenon were explored by stimulating cortical cells with drifting gratings in which contrast sequentially incremented and decremented in stepwise fashion over time. All responses showed a clear hysteresis, in which contrast gain dropped on average 0.36 log unit and then returned to baseline values within 60 s. Noticeable gain adjustments were seen in as little as 3 s and with peak contrasts as low as 3%. Contrast adaptation was absent in responses from LGN cells. Adaptation was found to depend on temporal frequency of stimulation, with greater and more rapid adaptation at higher temporal frequencies. Two different tests showed that the mechanism controlling response reduction was influenced primarily by stimulus contrast rather than response amplitude. These results support the existence of a rapid and sensitive cortically based system that normalizes the output of cortical cells as a function of local mean contrast. Control of the adaptation appears to arise at least in part across a population of cells, which is consistent with the idea that the gain control serves to limit the information converging from many cells onto subsequent processing areas.
Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications
NASA Technical Reports Server (NTRS)
McKissock, Barbara I.
2005-01-01
The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full current flow to the remaining cells in the pack. The goal of this evaluation is to identify conditions and cell designs for Li-ion technology that can achieve more than 30,000 low-Earth-orbit cycles. Testing is being performed at the Naval Surface Warfare Center, Crane Division, in Crane, Indiana.
Yang, Mo; Li, Karen; Ng, Pak Cheung; Chuen, Carmen Ka Yee; Lau, Tze Kin; Cheng, Yuan Shan; Liu, Yuan Sheng; Li, Chi Kong; Yuen, Patrick Man Pan; James, Anthony Edward; Lee, Shuk Man; Fok, Tai Fai
2007-07-01
Serotonin is a monoamine neurotransmitter that has multiple extraneuronal functions. We previously reported that serotonin exerted mitogenic stimulation on megakaryocytopoiesis mediated by 5-hydroxytryptamine (5-HT)2 receptors. In this study, we investigated effects of serotonin on ex vivo expansion of human cord blood CD34+ cells, bone marrow (BM) stromal cell colony-forming unit-fibroblast (CFU-F) formation, and antiapoptosis of megakaryoblastic M-07e cells. Our results showed that serotonin at 200 nM significantly enhanced the expansion of CD34+ cells to early stem/progenitors (CD34+ cells, colony-forming unit-mixed [CFU-GEMM]) and multilineage committed progenitors (burst-forming unit/colony-forming unit-erythroid [BFU/CFU-E], colony-forming unit-granulocyte macrophage, colony-forming unit-megakaryocyte, CD61+ CD41+ cells). Serotonin also increased nonobese diabetic/severe combined immunodeficient repopulating cells in the expansion culture in terms of human CD45+, CD33+, CD14+ cells, BFU/CFU-E, and CFU-GEMM engraftment in BM of animals 6 weeks post-transplantation. Serotonin alone or in addition to fibroblast growth factor, platelet-derived growth factor, or vascular endothelial growth factor stimulated BM CFU-F formation. In M-07e cells, serotonin exerted antiapoptotic effects (annexin V, caspase-3, and propidium iodide staining) and reduced mitochondria membrane potential damage. The addition of ketanserin, a competitive antagonist of 5-HT2 receptor, nullified the antiapoptotic effects of serotonin. Our data suggest the involvement of serotonin in promoting hematopoietic stem cells and the BM microenvironment. Serotonin could be developed for clinical ex vivo expansion of hematopoietic stem cells for transplantation. Disclosure of potential conflicts of interest is found at the end of this article.
Kokoulin, Maxim S; Kuzmich, Alexandra S; Kalinovsky, Anatoly I; Rubtsov, Eugene S; Romanenko, Lyudmila A; Mikhailov, Valery V; Komandrova, Nadezhda A
2017-12-15
We presented the structure of the sulfated polysaccharide moiety and anticancer activity in vitro of the О-deacylated lipopolysaccharide (DPS) isolated from the marine bacterium Poseidonocella pacifica KMM 9010 T . The structure of O-polysaccharide was investigated by chemical methods along with 1 H and 13 C NMR spectroscopy. The O-polysaccharide was built up of sulfated disaccharide repeating units consisted of d-rhamnose (d-Rhaр) and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdop): →7)-β-Kdoр4Ac5S-(2→3)-β-d-Rhaр2S-(1→. We demonstrated that the DPS from P. pacifica KMM 9010 T non-toxic for normal mouse epidermal cells (JB6 Cl41 cell line) and inhibited colony formation of human colorectal carcinoma HT-29, breast adenocarcinoma MCF-7 and melanoma SK-MEL-5 cells in a dose-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.
Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe
2018-05-22
Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui
2013-01-01
(2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P212121, with unit-cell parameters a = 88.35, b = 128.73, c = 131.03 Å. PMID:24100567
Miao, Xiangzhi; Huang, Xianhui; Zhang, Guofang; Zhao, Xiufang; Zhu, Xianming; Dong, Hui
2013-10-01
(2R,3R)-2,3-Butanediol dehydrogenase (R,R-BDH) from Bacillus coagulans 2-6 is a zinc-dependent medium-chain alcohol dehydrogenase. Recombinant R,R-BDH with a His6 tag at the C-terminus was expressed in Escherichia coli BL21 (DE3) cells and purified by Ni2+-chelating affinity and size-exclusion chromatography. Crystals were grown by the hanging-drop vapour-diffusion method at 289 K. The crystallization condition consisted of 8%(v/v) Tacsimate pH 4.6, 18%(w/v) polyethylene glycol 3350. The crystal diffracted to 2.8 Å resolution in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=88.35, b=128.73, c=131.03 Å.
Ge, Xia; d’Avignon, D. André; Ackerman, Joseph J.H.; Sammons, R. Douglas
2014-01-01
Horseweed (Conyza canadensis) is considered a significant glyphosate-resistant (GR) weed in agriculture, spreading to 21 states in the United States and now found globally on five continents. This laboratory previously reported rapid vacuolar sequestration of glyphosate as the mechanism of resistance in GR horseweed. The observation of vacuole sequestration is consistent with the existence of a tonoplast-bound transporter. 31P-Nuclear magnetic resonance experiments performed in vivo with GR horseweed leaf tissue show that glyphosate entry into the plant cell (cytosolic compartment) is (1) first order in extracellular glyphosate concentration, independent of pH and dependent upon ATP; (2) competitively inhibited by alternative substrates (aminomethyl phosphonate [AMPA] and N-methyl glyphosate [NMG]), which themselves enter the plant cell; and (3) blocked by vanadate, a known inhibitor/blocker of ATP-dependent transporters. Vacuole sequestration of glyphosate is (1) first order in cytosolic glyphosate concentration and dependent upon ATP; (2) competitively inhibited by alternative substrates (AMPA and NMG), which themselves enter the plant vacuole; and (3) saturable. 31P-Nuclear magnetic resonance findings with GR horseweed are consistent with the active transport of glyphosate and alternative substrates (AMPA and NMG) across the plasma membrane and tonoplast in a manner characteristic of ATP-binding cassette transporters, similar to those that have been identified in mammalian cells. PMID:25185124
Unit: Cells, Inspection Set, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
This trial version of a unit is the series being produced by the Australian Science Education Project provides instructions for students to prepare a variety of cell types and examine them with microscopes. It also gives some information about the variety and function of cells. The core of the unit, which all students are expected to complete,…
Synthesizing Biomolecule-based Boolean Logic Gates
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2012-01-01
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588
Synthesizing biomolecule-based Boolean logic gates.
Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari
2013-02-15
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson.
Anderson, Jan M
2007-05-01
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli-Davson-Robertson "unit membrane" model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.
Knowledge insufficient: the management of haemoglobin SC disease.
Pecker, Lydia H; Schaefer, Beverly A; Luchtman-Jones, Lori
2017-02-01
Although haemoglobin SC (HbSC) accounts for 30% of sickle cell disease (SCD) in the United States and United Kingdom, evidence-based guidelines for genotype specific management are lacking. The unique pathology of HbSC disease is complex, characterized by erythrocyte dehydration, intracellular sickling and increased blood viscosity. The evaluation and treatment of patients with HbSC is largely inferred from studies of SCD consisting mostly of haemoglobin SS (HbSS) patients. These studies are underpowered to allow definitive conclusions about HbSC. We review the pathophysiology of HbSC disease, including known and potential differences between HbSS and HbSC, and highlight knowledge gaps in HbSC disease management. Clinical and translational research is needed to develop targeted treatments and to validate management recommendations for efficacy, safety and impact on quality of life for people with HbSC. © 2016 John Wiley & Sons Ltd.
Hydration of sulfonated polyimide membranes. I. Na + and NH +(C 2H 5) 3 homopolymers
NASA Astrophysics Data System (ADS)
Jamróz, Dorota; Maréchal, Yves
2004-05-01
Hydration of Na + and HN +(C 2H 5) 3 sulfonated polyimide membranes is probed by infrared spectrometry using a recently described method. These membranes consist of identical sulfonated repeat unit (homopolymers) and form a good starting point to study more elaborated membranes, composed of these units plus similar ones with no sulfonic groups (block copolymers). These latter membranes may be used in fuel cells and will be described in a forthcoming article. We first identify the bands of hydrophilic groups, which will be anchor points for hydration. We then define three 'elementary hydration spectra' onto which all hydration spectra can be decomposed. Their analysis allows us to measure the water uptake of these membranes as a function of the hygrometry of the ambient atmosphere and to determine the structures of the dried membranes and their hydration mechanisms in terms of chemical reactions.
NASA Technical Reports Server (NTRS)
Cremin, J. W.; Leslie, F. W.
1990-01-01
This paper describes Spacelab J (SL-J), its mission characteristics, features, parameters and configuration, the unique nature of the shared reimbursable cooperative effort with the National Space Development Agency (NASDA) of Japan and the evolution, content and objectives of the mission scientific experiment complement. The mission is planned for launch in 1991. This long module mission has 35 experiments from Japan as well as 9 investigations from the United States. The SL-J payload consists of two broad scientific disciplines which require the extended microgravity or cosmic ray environment: (1) materials science such as crystal growth, solidification processes, drop dynamics, free surface flows, gas dynamics, metallurgy and semiconductor technology; and (2) life science including cell development, human physiology, radiation-induced mutations, vestibular studies, embryo development, and medical technology. Through an international agreement with NASDA, NASA is preparing to fly the first Japanese manned, scientific, cooperative endeavor with the United States.
Finite-size correction scheme for supercell calculations in Dirac-point two-dimensional materials.
Rocha, C G; Rocha, A R; Venezuela, P; Garcia, J H; Ferreira, M S
2018-06-19
Modern electronic structure calculations are predominantly implemented within the super cell representation in which unit cells are periodically arranged in space. Even in the case of non-crystalline materials, defect-embedded unit cells are commonly used to describe doped structures. However, this type of computation becomes prohibitively demanding when convergence rates are sufficiently slow and may require calculations with very large unit cells. Here we show that a hitherto unexplored feature displayed by several 2D materials may be used to achieve convergence in formation- and adsorption-energy calculations with relatively small unit-cell sizes. The generality of our method is illustrated with Density Functional Theory calculations for different 2D hosts doped with different impurities, all of which providing accuracy levels that would otherwise require enormously large unit cells. This approach provides an efficient route to calculating the physical properties of 2D systems in general but is particularly suitable for Dirac-point materials doped with impurities that break their sublattice symmetry.
V-band electronically reconfigurable metamaterial
NASA Astrophysics Data System (ADS)
Radisic, Vesna; Hester, Jimmy G.; Nguyen, Vinh N.; Caira, Nicholas W.; DiMarzio, Donald; Hilgeman, Theodore; Larouche, Stéphane; Kaneshiro, Eric; Gutierrez-Aitken, Augusto
2017-04-01
In this work, we report on a reconfigurable V-band metamaterial fabricated using an InP heterojunction bipolar transistor production process. As designed and fabricated, the implementation uses complementary split ring resonators (cSRRs) and Schottky diodes in both single unit cell and three unit cell monolithic microwave integrated circuits. Each unit cell has two diodes embedded within the gaps of the cSRRs. Reconfigurability is achieved by applying an external bias that turns the diodes on and off, which effectively controls the resonant property of the structure. In order to measure the metamaterial properties, the unit cells are fed and followed by transmission lines. Measured data show good agreement with simulations and demonstrate that the metamaterial structure exhibits resonance at around 65 GHz that can be switched on and off. The three-unit cell transmission line metamaterial shows a deeper resonance and a larger phase change than a single cell, as expected. These are the first reported reconfigurable metamaterials operating at the V-band using the InP high speed device fabrication process.
[The cell theory. Progress in studies on cell-cell communications].
Brodskiĭ, V Ia
2009-01-01
Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.
New Results on a Stochastic Duel Game with Each Force Consisting of Heterogeneous Units
2013-02-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA NEW RESULTS ON A STOCHASTIC DUEL GAME WITH EACH FORCE CONSISTING OF...on a Stochastic Duel Game With Each Force Consisting of Heterogeneous Units 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Two forces engage in a duel , with each force initially consisting of several
NASA Astrophysics Data System (ADS)
Li, Yaping; Lagowski, Jolanta B.
2011-08-01
Inorganic (mostly silicon based) solar cells are important devices that are used to solve the world energy and environmental needs. Now days, organic solar cells are attracting considerable attention in the field of photovoltaic cells because of their low cost and processing flexibility. Often conjugated polymers are used in the construction of the organic solar cells. We study the conjugated polymers' charge transport using computational approach that involves the use of the density functional theory (DFT), semiempirical (ZINDO), and Monte Carlo (MC) theoretical methods in order to determine their transfer integrals, reorganization energies, transfer rates (with the use of Marcus-Hush equation) and mobilities. We employ the experimentally determined three dimensional (3D) structure of poly(9,9'-di-n-octylfluorene-alt-benzothiadiazole) (F8BT) to estimate the electron mobility in a similar co-alternating polymer consisting of carbazole and benzothiadiazole units (C8BT). In agreement with our previous work, we found that including an orientational disorder in the crystal reduces the electron mobility in C8BT. We hope that the proposed computational approach can be used to predict charge mobility in organic materials that are used in solar cells.
Differentiation and Tropisms in Space-Grown Moss
NASA Technical Reports Server (NTRS)
Sack, Fred D.; Kern, Volker
1999-01-01
This grant supported a Space Shuttle experiment on the effects of microgravity on moss cells. Moss provides a rich system for gravitational and spaceflight research. The early phase of the moss life cycle consists of chains of cells that only grow only at their tips. In the moss Ceratodon purpureus these filaments (protonemata) grow away from gravity in the dark, in a process called gravitropism. The tipmost cells, the apical cells, contain heavy starch-filled bodies called amyloplasts that probably function in g-sensing and that sediment within the apical cell. The SPM-A (Space Moss aka SPAM) experiment flew in November - December, 1997 on STS-87 as part of the Collaborative US Ukrainian Experiment (CLTE). The experiment was accommodated in hardware purpose-built by NASA KSC and Bionetics and included Petri Dish Fixation Units (PDFU) and BRIC-LEDs. Together, this hardware allowed for the culture of the moss on agar in commercial petri dishes, for unilateral illumination with red light of varying intensity, and for chemical fixation in situ. The key findings of the spaceflight were quite unexpected. Neither the orientation of tip-growth nor the distribution of amyloplasts was random in microgravity.
Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu
2015-01-01
To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.
Seo, Soo Hyun; Shin, Sue; Roh, Eun Youn; Song, Eun Young; Oh, Sohee; Kim, Byoung Jae; Yoon, Jong Hyun
2017-03-01
Maintaining the quality of cryopreserved cord blood is crucial. In this pilot study, we describe the results of the internal quality control program for a cord blood bank thus far. Donated cord blood units unsuitable for transplantation were selected for internal quality control once a month. One unit of cord blood, aliquoted into 21 capillaries, was cryopreserved and thawed annually to analyze the total nucleated cell count, CD34⁺ cell count, cell viability test, and colony-forming units assay. No significant differences in the variables (total nucleated cell count, cell viability, CD34⁺ cell count) were observed between samples cryopreserved for one and two years. Upon comparing the variables before cryopreservation and post thawing with the capillaries of one year of storage, cell viability and CD34⁺ cell counts decreased significantly. The use of cord blood samples in capillaries, which can be easily stored for a long period, was similar to the methods used for testing segments attached to the cord blood unit. The results of this study may be useful for determining the period during which the quality of cryopreserved cord blood units used for transplantation is maintained.
Seo, Soo Hyun; Shin, Sue; Roh, Eun Youn; Song, Eun Young; Oh, Sohee; Kim, Byoung Jae
2017-01-01
Background Maintaining the quality of cryopreserved cord blood is crucial. In this pilot study, we describe the results of the internal quality control program for a cord blood bank thus far. Methods Donated cord blood units unsuitable for transplantation were selected for internal quality control once a month. One unit of cord blood, aliquoted into 21 capillaries, was cryopreserved and thawed annually to analyze the total nucleated cell count, CD34+ cell count, cell viability test, and colony-forming units assay. Results No significant differences in the variables (total nucleated cell count, cell viability, CD34+ cell count) were observed between samples cryopreserved for one and two years. Upon comparing the variables before cryopreservation and post thawing with the capillaries of one year of storage, cell viability and CD34+ cell counts decreased significantly. The use of cord blood samples in capillaries, which can be easily stored for a long period, was similar to the methods used for testing segments attached to the cord blood unit. Conclusions The results of this study may be useful for determining the period during which the quality of cryopreserved cord blood units used for transplantation is maintained. PMID:28028998
ERIC Educational Resources Information Center
Akin-Little, K. Angeleque; Little, Steven G.; Laniti, Mariana
2007-01-01
A survey was conducted of teachers' classroom management practices in the United States and Greece. The United States sample consisted of 149 teachers in Arizona, Illinois, Louisiana, Mississippi and Alabama. The Greek sample consisted of 97 teachers in Athens and the surrounding area. The survey asked questions regarding teachers' use of…
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
2012-05-30
Electrochemical Acidification Cell Part III: Scaled-up Mobile Unit Studies (Calendar Year 2011) May 30, 2012 Approved for public release; distribution is...Hydrogen from Seawater by an Electrochemical Acidification Cell Part III: Scaled-up Mobile Unit Studies (Calendar Year 2011) Heather D. Willauer, Dennis R...Unclassified Unlimited Unclassified Unlimited Unclassified Unlimited 41 Heather D. Willauer (202) 767-2673 Electrochemical acidification cell Carbon
Klein, Amanda H.; Joe, Christopher L.; Davoodi, Auva; Takechi, Kenichi; Carstens, Mirela Iodi; Carstens, E
2014-01-01
Eugenol and carvacrol from clove and oregano, respectively, are agonists of the warmth-sensitive transient receptor potential channel TRPV3 and the irritant-sensitive TRPA1. Eugenol and carvacrol induce oral irritation that rapidly desensitizes, accompanied by brief enhancement of innocuous warmth and heat pain in humans. We presently investigated if eugenol and carvacrol activate nociceptive primary afferent and higher-order trigeminal neurons and enhance their heat-evoked responses, using calcium imaging of cultured trigeminal ganglion (TG) and dorsal root ganglion (DRG) neurons, and in vivo single-unit recordings in trigeminal subnucleus caudalis (Vc) of rats. Eugenol and carvacrol activated 20-30% of TG and 7-20% of DRG cells, the majority of which additionally responded to menthol, mustard oil and/or capsaicin. TG cell responses to innocuous (39°) and noxious (42°C) heating were enhanced by eugenol and carvacrol. We identified dorsomedial Vc neurons responsive to noxious heating of the tongue in pentobarbital-anesthetized rats. Eugenol and carvacrol dose-dependently elicited desensitizing responses in 55% and 73% of heat-sensitive units, respectively. Responses to noxious heat were briefly enhanced by eugenol and carvacrol. Many eugenol- and carvacrol-responsive units also responded to menthol, cinnamaldehyde and capsaicin. These data support a peripheral site for eugenol and carvacrol to enhance warmth- and noxious heat-evoked responses of trigeminal neurons, and are consistent with the observation that these agonists briefly enhance warmth and heat pain on the human tongue. PMID:24759772
Hatae, Noriyuki; Nakamura, Jun; Okujima, Tetsuo; Ishikura, Minoru; Abe, Takumi; Hibino, Satoshi; Choshi, Tominari; Okada, Chiaki; Yamada, Hiroko; Uno, Hidemitsu; Toyota, Eiko
2013-08-15
9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
John, Dominic M.; White, Graham F.
1998-01-01
A strain of Pseudomonas putida isolated from activated sewage grew aerobically on the xenoestrogen precursor, nonylphenol polyethoxylate (NPEOx, where x is the number of ethoxylate units) as sole carbon source. Comparative growth yields on NPEOav6, NPEOav9, and NPEOav20 (mixtures with average ethoxylate numbers as indicated) were consistent with utilization of all but two ethoxylate units, and the final accumulating metabolite was identified by gas chromatography-mass spectroscopy as nonylphenol diethoxylate (NPEO2). There was no growth on nonylphenol or polyethylene glycols, and there was no evidence for production of carboxylic acid analogs of NPEOx. Biodegradation kinetics measured by high-pressure liquid chromatography (HPLC) for each component in NPEOx mixtures showed that biodegradation proceeded via successive exoscission of the ethoxylate chain and not by direct scission between the second and third ethoxylate residues. The NPEOx-degrading activity was inducible by substrate, and cell extracts of NPEOav9-induced cells were also active on the pure alcohol ethoxylate, dodecyl octaethoxylate (AEO8), producing sequentially, under either aerobic or anaerobic conditions, AEO7, AEO6, AEO5, etc., thus demonstrating that the pathway involved removal of single ethoxylate units. HPLC analysis of 2,4-dinitrophenylhydrazone derivatives revealed acetaldehyde (ethanal) as the sole aldehydic product from either NPEOav9 or AEO8 under either aerobic or anaerobic conditions. We propose a mechanism for biotransformation which involves an oxygen-independent hydroxyl shift from the terminal to the penultimate carbon of the terminal ethoxylate unit of NPEOx and dissociation of the resulting hemiacetal to release acetaldehyde and the next-lower homolog, NPEOx−1, which then undergoes further cycles of the same reaction until x = 2. PMID:9721266
Yasutake, Yoshiaki; Fujii, Yoshikazu; Cheon, Woo-Kwang; Arisawa, Akira; Tamura, Tomohiro
2009-01-01
Vitamin D3 hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D3 via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D3 (cholecalciferol or VD3) to 25-hydroxyvitamin D3 [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1α,25-dihydroxyvitamin D3 [calciferol or 1α,25(OH)2VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P31, with unit-cell parameters a = b = 61.7, c = 98.8 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P212121, with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 Å. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 Å for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal. PMID:19342783
Lattice-structures and constructs with designed thermal expansion coefficients
Spadaccini, Christopher; Hopkins, Jonathan
2014-10-28
A thermal expansion-managed lattice structure having a plurality of unit cells each having flexure bearing-mounted tabs supported on a base and actuated by thermal expansion of an actuator having a thermal expansion coefficient greater than the base and arranged so that the tab is inwardly displaced into a base cavity. The flexure bearing-mounted tabs are connected to other flexure-bearing-mounted tabs of adjacent unit cells so that the adjacent unit cells are spaced from each other to accommodate thermal expansion of individual unit cells while maintaining a desired bulk thermal expansion coefficient of the lattice structure as a whole.
NASA Astrophysics Data System (ADS)
Yasa, U. G.; Giden, I. H.; Turduev, M.; Kurt, H.
2017-09-01
We present an intrinsic polarization splitting characteristic of low-symmetric photonic crystals (PCs) formed by unit-cells with C 2 rotational symmetry. This behavior emerges from the polarization sensitive self-collimation effect for both transverse-magnetic (TM) and transverse-electric (TE) modes depending on the rotational orientations of the unit-cell elements. Numerical analyzes are performed in both frequency and time domains for different types of square lattice two-fold rotational symmetric PC structures. At incident wavelength of λ = 1550 nm, high polarization extinction ratios with ˜26 dB (for TE polarization) and ˜22 dB (for TM polarization) are obtained with an operating bandwidth of 59 nm. Moreover, fabrication feasibilities of the designed structure are analyzed to evaluate their robustness in terms of the unit-cell orientation: for the selected PC unit-cell composition, corresponding extinction ratios for both polarizations still remain to be over 18 dB for the unit-cell rotation interval of θ = [40°-55°]. Taking all these advantages, two-fold rotationally symmetric PCs could be considered as an essential component in photonic integrated circuits for polarization control of light.
Staszkiewicz, Jaroslaw; Frazier, Trivia P.; Rowan, Brian G.; Bunnell, Bruce A.; Chiu, Ernest S.; Gimble, Jeffrey M.
2010-01-01
Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 × 106 cells exhibiting a cell cycle length of ∼2–3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications. PMID:19400629
NASA Astrophysics Data System (ADS)
DeGroot, R. M.; Long, K.; Strauss, J. A.
2017-12-01
The United States Geological Survey (USGS) and its partners are developing the ShakeAlert Earthquake Early Warning System for the West Coast of the United States. To be an integral part of successful implementation, ShakeAlert engagement programs and materials must integrate with and leverage broader earthquake risk programs. New methods and products for dissemination must be multidisciplinary, cost effective, and consistent with existing hazards education and communication efforts. The ShakeAlert Joint Committee for Communication, Education, and Outreach (JCCEO), is identifying, developing, and cultivating partnerships with ShakeAlert stakeholders including Federal, State, academic partners, private companies, policy makers, and local organizations. Efforts include developing materials, methods for delivery, and reaching stakeholders with information on ShakeAlert, earthquake preparedness, and emergency protective actions. It is essential to develop standards to ensure information communicated via the alerts is consistent across the public and private sector and achieving a common understanding of what actions users take when they receive a ShakeAlert warning. In February 2017, the JCCEO convened the Warning Message Focus Group (WMFG) to provide findings and recommendations to the Alliance for Telecommunications Industry Solutions on the use of earthquake early warning message content standards for public alerts via cell phones. The WMFG represents communications, education, and outreach stakeholders from various sectors including ShakeAlert regional coordinators, industry, emergency managers, and subject matter experts from the social sciences. The group knowledge was combined with an in-depth literature review to ensure that all groups who could receive the message would be taken into account. The USGS and the participating states and agencies acknowledge that the implementation of ShakeAlert is a collective effort requiring the participation of hundreds of stakeholders committed to ensuring public accessibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Xuhua; Hew, Choy Leong, E-mail: dbshewcl@nus.edu.sg
2007-07-01
The crystallization of the N-terminal transmembrane region-truncated VP26 and VP28 of white spot syndrome virus is described. White spot syndrome virus (WSSV) is a major virulent pathogen known to infect penaeid shrimp and other crustaceans. VP26 and VP28, two major envelope proteins from WSSV, have been identified and overexpressed in Escherichia coli. In order to facilitate purification and crystallization, predicted N-terminal transmembrane regions of approximately 35 amino acids have been truncated from both VP26 and VP28. Truncated VP26 and VP28 and their corresponding SeMet-labelled proteins were purified and the SeMet proteins were crystallized by the hanging-drop vapour-diffusion method. Crystals ofmore » SeMet-labelled VP26 were obtained using a reservoir consisting of 0.1 M citric acid pH 3.5, 3.0 M sodium chloride and 1%(w/v) polyethylene glycol 3350, whereas SeMet VP28 was crystallized using a reservoir solution consisting of 25% polyethylene glycol 8000, 0.2 M calcium acetate, 0.1 M Na HEPES pH 7.5 and 1.5%(w/v) 1,2,3-heptanetriol. Crystals of SeMet-labelled VP26 diffract to 2.2 Å resolution and belong to space group R32, with unit-cell parameters a = b = 73.92, c = 199.31 Å. SeMet-labelled VP28 crystallizes in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 105.33, b = 106.71, c = 200.37 Å, and diffracts to 2.0 Å resolution.« less
NASA Astrophysics Data System (ADS)
Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.
1996-07-01
The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).
LeVasseur, Sandra A; Li, Dongmei
2013-01-01
Background The use of personal communication devices (such as basic cell phones, enhanced cell phones or smartphones, and tablet computers) in hospital units has risen dramatically in recent years. The use of these devices for personal and professional activities can be beneficial, but also has the potential to negatively affect patient care, as clinicians may become distracted by these devices. Objective No validated questionnaire examining the impact of the use of these devices on patient care exists; thus, we aim to develop and validate an online questionnaire for surveying the views of registered nurses with experience of working in hospitals regarding the impact of the use of personal communication devices on hospital units. Methods A 50-item, four-domain questionnaire on the views of registered nursing staff regarding the impact of personal communication devices on hospital units was developed based on a literature review and interviews with such nurses. A repeated measures pilot study was conducted to examine the psychometrics of a survey questionnaire and the feasibility of conducting a larger study. Psychometric testing of the questionnaire included examining internal consistency reliability and test-retest reliability in a sample of 50 registered nurses. Results The response rate for the repeated measures was 30%. Cronbach coefficient alpha was used to examine the internal consistency and reliability, and in three of the four question groups (utilization, impact, and opinions), the correlation was observed to be very high. This suggests that the questions were measuring a single underlying theme. The Cronbach alpha value for the questions in the performance group, describing the use of personal communication devices while working, was lower than those for the other question groups. These values may be an indication that the assumptions underlying the Cronbach alpha calculation may have been violated for this group of questions. A Spearman rho correlation was used to determine the test-retest reliability. There was a strong test-retest reliability between the two tests for the majority of the questions. The average test-retest percent of agreement for the Likert scale responses was 74% (range 43-100%). Accounting for responses within the 1 SD range on the Likert scale increased the agreement to 96% (range 87-100%). Missing data were in the range of 0 to 7%. Conclusions The psychometrics of the questionnaire showed good to fair levels of internal consistency and test-retest reliability. The pilot study demonstrated that our questionnaire may be useful in exploring registered nurses’ perceptions of the impact of personal electronic devices on hospital units in a larger study. PMID:24280660
Reproduction of the FC/DFC units in nucleoli.
Smirnov, Evgeny; Hornáček, Matúš; Kováčik, Lubomír; Mazel, Tomáš; Schröfel, Adam; Svidenská, Silvie; Skalníková, Magdalena; Bartová, Eva; Cmarko, Dušan; Raška, Ivan
2016-04-25
The essential structural components of the nucleoli, Fibrillar Centers (FC) and Dense Fibrillar Components (DFC), together compose FC/DFC units, loci of rDNA transcription and early RNA processing. In the present study we followed cell cycle related changes of these units in 2 human sarcoma derived cell lines with stable expression of RFP-PCNA (the sliding clamp protein) and GFP-RPA43 (a subunit of RNA polymerase I, pol I) or GFP-fibrillarin. Correlative light and electron microscopy analysis showed that the pol I and fibrillarin positive nucleolar beads correspond to individual FC/DFC units. In vivo observations showed that at early S phase, when transcriptionally active ribosomal genes were replicated, the number of the units in each cell increased by 60-80%. During that period the units transiently lost pol I, but not fibrillarin. Then, until the end of interphase, number of the units did not change, and their duplication was completed only after the cell division, by mid G1 phase. This peculiar mode of reproduction suggests that a considerable subset of ribosomal genes remain transcriptionally silent from mid S phase to mitosis, but become again active in the postmitotic daughter cells.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
A continuous perfusion microplate for cell culture.
Goral, Vasiliy N; Zhou, Chunfeng; Lai, Fang; Yuen, Po Ki
2013-03-21
We describe a 96-well microplate with fluidically connected wells that enables the continuous fluid perfusion between wells without the need for external pumping. A single unit in such a perfusion microplate consists of three wells: a source well, a sample (cell culture) well in the middle and a waste well. Fluid perfusion is achieved using a combination of the hydrostatic pressure generated by different liquid levels in the wells and the fluid wicking through narrow strips of a cellulose membrane connecting the wells. There is an excellent correspondence between the observed perfusion flow dynamics and the flow simulations based on Darcy's Law. Hepatocytes (C3A cells) cultured for 4 days in the perfusion microplate with no media exchange in the cell culture well had the same viability as hepatocytes exposed to a daily exchange of media. EOC 20 cells that require media conditioned by LADMAC cells were shown to be equally viable in the adjacent cell culture well of the perfusion microplate with LADMAC cells cultured in the source well. Tegafur, a prodrug, when added to primary human hepatocytes in the source well, was metabolized into a cytotoxic metabolite that kills colon cancer cells (HCT 116) cultured in the adjacent cell culture well; no toxicity was observed when only medium was in the source well. These results suggest that the perfusion microplate is a useful tool for a variety of cell culture applications with benefits ranging from labor savings to enabling in vivo-like toxicity studies.
Stem Cells and Healing: Impact on Inflammation
Ennis, William J.; Sui, Audrey; Bartholomew, Amelia
2013-01-01
Significance The number of patients with nonhealing wounds has rapidly accelerated over the past 10 years in both the United States and worldwide. Some causative factors at the macro level include an aging population, epidemic numbers of obese and diabetic patients, and an increasing number of surgical procedures. At the micro level, chronic inflammation is a consistent finding. Recent Advances A number of treatment modalities are currently used to accelerate wound healing, including energy-based modalities, scaffoldings, the use of mechano-transduction, cytokines/growth factors, and cell-based therapies. The use of stem cell therapy has been hypothesized as a potentially useful adjunct for nonhealing wounds. Specifically, mesenchymal stem cells (MSCs) have been shown to improve wound healing in several studies. Immune modulating properties of MSCs have made them attractive treatment options. Critical Issues Current limitations of stem cell therapy include the potentially large number of cells required for an effect, complex preparation and delivery methods, and poor cell retention in targeted tissues. Comparisons of published in-vitro and clinical trials are difficult due to cell preparation techniques, passage number, and the impact of the micro-environment on cell behavior. Future Directions MSCs may be more useful if they are preactivated with inflammatory cytokines such as tumor necrosis factor alpha or interferon gamma. This article will review the current literature with regard to the use of stem cells for wound healing. In addition the anti-inflammatory effects of MSCs will be discussed along with the potential benefits of stem cell preactivation. PMID:24587974
2003-10-13
04ANNUAL-524 Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit Joseph Conover, Harry...used or the main engines are restarted. Integration of a solid oxide fuel cell (SOFC) auxiliary power unit into a military vehicle has the...presented which show the fuel usage and capability impacts of incorporating a fuel cell APU into the electrical system of a Bradley M2A3 Diesel
Effects of cortisone on regenerating rat liver.
EINHORN, S L; HIRSCHBERG, E; GELLHORN, A
1954-03-01
The effects of continuous administration of cortisone on the metabolism of regenerating rat liver have been studied. Whereas the restoration of the weight of the liver after partial hepatectomy was not markedly affected by cortisone, the multiplication of cells was reduced to a significant degree after the first 2 days of regeneration. Liver restoration in terms of nucleic acids was similarly inhibited by cortisone. The results are consistent with the interpretation that the inhibition of cell multiplication in this system is dependent on and keeps pace with the inhibition of nucleic acid synthesis by this drug. At almost any time after hepatectomy, the nucleic acid content of the liver cells was the same in treated and in untreated animals. In ancillary studies, it was shown that cortisone caused the cells of regenerating liver to be increased in size and weight through the increased infiltration of lipids. Changes in water, protein, and carbohydrate content of the liver cells did not contribute to this increase in the weight of the cells. Since all animals were treated with cortisone for 5 days before hepatectomy, data were also obtained on the effect of this agent on the resting liver. This course of treatment brought about a significant decrease in the number of cells per unit wet weight and in the water content of the livers. The nucleic acid content of the cells at hepatectomy, on the other hand, was unchanged.
Simplified DFT methods for consistent structures and energies of large systems
NASA Astrophysics Data System (ADS)
Caldeweyher, Eike; Gerit Brandenburg, Jan
2018-05-01
Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.
Laser fabrication of perfect absorbers
NASA Astrophysics Data System (ADS)
Mizeikis, V.; Faniayeu, I.
2018-01-01
We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.
Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5
NASA Astrophysics Data System (ADS)
Koley, Biplab; Chatterjee, S.; Jana, Partha P.
2017-02-01
A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.
Kassakian, Steven Z; Yackel, Thomas R; Deloughery, Thomas; Dorr, David A
2016-06-01
Red blood cell transfusion is the most common procedure in hospitalized patients in the US. Growing evidence suggests that a sizeable percentage of these transfusions are inappropriate, putting patients at significant risk and increasing costs to the health care system. We performed a retrospective quasi-experimental study from November 2008 until November 2014 in a 576-bed tertiary care hospital. The intervention consisted of an interruptive clinical decision support alert shown to a provider when a red blood cell transfusion was ordered in a patient whose most recent hematocrit was ≥21%. We used interrupted time series analysis to determine whether our primary outcome of interest, rate of red blood cell transfusion in patients with hematocrit ≥21% per 100 patient (pt) days, was reduced by the implementation of the clinical decision support tool. The rate of platelet transfusions was used as a nonequivalent dependent control variable. A total of 143,000 hospital admissions were included in our analysis. Red blood cell transfusions decreased from 9.4 to 7.8 per 100 pt days after the clinical decision support intervention was implemented. Interrupted time series analysis showed that significant decline of 0.05 (95% confidence interval [CI], 0.03-0.07; P < .001) units of red blood cells transfused per 100 pt days per month was already underway in the preintervention period. This trend accelerated to 0.1 (95% CI, 0.09-0.12; P < .001) units of red blood cells transfused per 100 pt days per month following the implementation of the clinical decision support tool. There was no statistical change in the rate of platelet transfusion resulting from the intervention. The implementation of an evidence-based clinical decision support tool was associated with a significant decline in the overuse of red blood cell transfusion. We believe this intervention could be easily replicated in other hospitals using commercial electronic health records and a similar reduction in overuse of red blood cell transfusions achieved. Copyright © 2016 Elsevier Inc. All rights reserved.
The source of high signal cooperativity in bacterial chemosensory arrays
Piñas, Germán E.; Frank, Vered; Vaknin, Ady; Parkinson, John S.
2016-01-01
The Escherichia coli chemosensory system consists of large arrays of transmembrane chemoreceptors associated with a dedicated histidine kinase, CheA, and a linker protein, CheW, that couples CheA activity to receptor control. The kinase activity responses to receptor ligand occupancy changes can be highly cooperative, reflecting allosteric coupling of multiple CheA and receptor molecules. Recent structural and functional studies have led to a working model in which receptor core complexes, the minimal units of signaling, are linked into hexagonal arrays through a unique interface 2 interaction between CheW and the P5 domain of CheA. To test this array model, we constructed and characterized CheA and CheW mutants with amino acid replacements at key interface 2 residues. The mutant proteins proved defective in interface 2-specific in vivo cross-linking assays, and formed signaling complexes that were dispersed around the cell membrane rather than clustered at the cell poles as in wild type chemosensory arrays. Interface 2 mutants down-regulated CheA activity in response to attractant stimuli in vivo, but with much less cooperativity than the wild type. Moreover, mutant cells containing fluorophore-tagged receptors exhibited greater basal anisotropy that changed rapidly in response to attractant stimuli, consistent with facile changes in loosely packed receptors. We conclude that interface 2 lesions disrupt important network connections between core complexes, preventing receptors from operating in large, allosteric teams. This work confirms the critical role of interface 2 in organizing the chemosensory array, in directing the clustered array to the cell poles, and in producing its highly cooperative signaling properties. PMID:26951681
Åkerfelt, Malin; Bayramoglu, Neslihan; Robinson, Sean; Toriseva, Mervi; Schukov, Hannu-Pekka; Härmä, Ville; Virtanen, Johannes; Sormunen, Raija; Kaakinen, Mika; Kannala, Juho; Eklund, Lauri; Heikkilä, Janne; Nees, Matthias
2015-01-01
Cancer-associated fibroblasts (CAFs) constitute an important part of the tumor microenvironment and promote invasion via paracrine functions and physical impact on the tumor. Although the importance of including CAFs into three-dimensional (3D) cell cultures has been acknowledged, computational support for quantitative live-cell measurements of complex cell cultures has been lacking. Here, we have developed a novel automated pipeline to model tumor-stroma interplay, track motility and quantify morphological changes of 3D co-cultures, in real-time live-cell settings. The platform consists of microtissues from prostate cancer cells, combined with CAFs in extracellular matrix that allows biochemical perturbation. Tracking of fibroblast dynamics revealed that CAFs guided the way for tumor cells to invade and increased the growth and invasiveness of tumor organoids. We utilized the platform to determine the efficacy of inhibitors in prostate cancer and the associated tumor microenvironment as a functional unit. Interestingly, certain inhibitors selectively disrupted tumor-CAF interactions, e.g. focal adhesion kinase (FAK) inhibitors specifically blocked tumor growth and invasion concurrently with fibroblast spreading and motility. This complex phenotype was not detected in other standard in vitro models. These results highlight the advantage of our approach, which recapitulates tumor histology and can significantly improve cancer target validation in vitro. PMID:26375443
NASA Astrophysics Data System (ADS)
Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho
2013-07-01
We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.
Teaching About Genetics and Sickle Cell Disease In Fifth Grade.
Day, Lucille Lang; Murray, Eileen; Treadwell, Marsha J; Lubin, Bertram H
2015-02-01
We are grateful to Laura McVittie Gray for her work on the development of the student activities described in this article. This work was made possible by a Science Education Partnership Award (SEPA), Grant Number R25RR020449, from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). Additional support for this SEPA-funded project was provided by Grant Number UL1RR024131-01 from NCRR. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. A 5-lesson, 5th-grade instructional unit, "Genetics and Sickle Cell Disease," was developed and tested as part of a 40-lesson curriculum entitled SEEK (Science Exploration, Excitement, and Knowledge): A Curriculum in Health and Biomedical Science for Diverse 4th and 5th Grade Students. The genetics lessons include hands-on activities (e.g., DNA extraction from cheek cells), a simulated plant genetics experiment, and a classroom visit by a person with sickle cell disease, as well as by a health care practitioner who works with sickle cell patients or a scientist specializing in genetics. The unit was tested with 82 5th-grade students at public elementary schools in Oakland, CA; 96% were racial and ethnic minorities. The comparison group consisted of 84 5th-grade Oakland students racially/ ethnically, academically, and socio-economically matched to those in the experimental group. Both groups completed a 20-question, multiple-choice pre/posttest covering science concepts, scientific process, lifestyle choices, and careers. The experimental group showed significant improvement on 13 of 20 questions (P<.05, t-tests) and on the test as a whole, whereas the comparison group did not show significant improvement either on any of the questions or on the test as a whole. The experimental group improved on 10 concept questions, 2 scientific process questions, and 1 lifestyle question. Teachers rated the educational value of the unit as 9.5 on a scale from 1 (low) to 10 (high). These results show that genetics and sickle cell disease can be taught successfully in 5th grade, although they are not typically covered at this level. © 2015 National Medical Association. Published by Elsevier Inc. All rights reserved.
Cord Blood Banking and Transplantation in China: A Ten Years Experience of a Single Public Bank.
Liu, Jinhui; He, Ji; Chen, Shu; Qin, Fei; Wang, Fang; Xu, Gang; Zhu, Faming; Lv, Hangjun; Yan, Lixing
2012-02-01
BACKGROUND: Umbilical cord blood (UCB) has successfully used for transplantation to treat hematologic malignancies and genetic diseases. Herein, we describe the experience generated in a single public UCB bank at Zhejiang Province in China. METHODS: Good manufacturing practice and standard operating procedures were used to address donor selection as well as UCB collection, processing, and cryopreservation. Total nucleated cells (TNCs), cellular viability, CD34+ cells, and colony-forming units were determined, and infectious diseases screening test, sterility test, and HLA typing for UCB units were done. RESULTS: Only 18.51% of all collected UCB units met storage criteria, and 7,056 UCB units were cryopreserved in 10 years. The volume of UCB units was 95.0 ± 22.0 ml. The number of TNCs before and after processing was 13.32 ± 3.63 × 10(8) and 10.63 ± 2.80 × 10(8), respectively, and the recovery rate was 80.71 ± 11.26%. 0.4344 ± 0.1874% of the TNCs were CD34+ cells. The CFU-GM was 32.1 ± 28.0 colonies per 1 × 10(5) nucleated cells. Based mainly on HLA and nucleated cell content, 26 UCB units were released for transplantation. CONCLUSIONS: A public UCB bank was successfully established in China; collection and processing of UCB units should be optimized in order to gain maximum volume and cell count.
The TMI Regenerative Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael
1996-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.
Integration of red cell genotyping into the blood supply chain: a population-based study.
Flegel, Willy A; Gottschall, Jerome L; Denomme, Gregory A
2015-07-01
When problems with compatibility arise, transfusion services often use time-consuming serological tests to identify antigen-negative red cell units for safe transfusion. New methods have made red cell genotyping possible for all clinically relevant blood group antigens. We did mass-scale genotyping of donor blood and provided hospitals with access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh blood typing. We established a red cell genotype database at the BloodCenter of Wisconsin on July 17, 2010. All self-declared African American, Asian, Hispanic, and Native American blood donors were eligible irrespective of their ABO and Rh type or history of donation. Additionally, blood donors who were groups O, A, and B, irrespective of their Rh phenotype, were eligible for inclusion only if they had a history of at least three donations in the previous 3 years, with one donation in the previous 12 months at the BloodCenter of Wisconsin. We did red cell genotyping with a nanofluidic microarray system, using 32 single nucleotide polymorphisms to predict 42 blood group antigens. An additional 14 antigens were identified via serological phenotype. We monitored the ability of the red cell genotype database to meet demand for compatible blood during 3 years. In addition to the central database at the BloodCenter of Wisconsin, we gave seven hospitals online access to a web-based antigen query portal on May 1, 2013, to help them to locate antigen-negative red cell units in their own inventories. We analysed genotype data for 43,066 blood donors. Requests were filled for 5661 (99.8%) of 5672 patient encounters in which antigen-negative red cell units were needed. Red cell genotyping met the demand for antigen-negative blood in 5339 (94.1%) of 5672 patient encounters, and the remaining 333 (5.9%) requests were filled by use of serological data. Using the 42 antigens represented in our red cell genotype database, we were able to fill 14,357 (94.8%) of 15,140 requests for antigen-negative red cell units from hospitals served by the BloodCenter of Wisconsin. In the pilot phase, the seven hospitals identified 71 units from 52 antigen-negative red cell unit requests. Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal could reduce the need for transportation of blood and serological screening. If this wealth of genotype data can be made easily accessible online, it will help with the supply of affordable antigen-negative red cell units to ensure patient safety. BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katano, Takahito; Ootani, Akifumi; Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501
2013-03-22
Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system withinmore » the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.« less
Action of an endo-β-1,3(4)-glucanase on cellobiosyl unit structure in barley β-1,3:1,4-glucan
Kuge, Takao; Nagoya, Hiroki; Tryfona, Theodora; Kurokawa, Tsunemi; Yoshimi, Yoshihisa; Dohmae, Naoshi; Tsubaki, Kazufumi; Dupree, Paul; Tsumuraya, Yoichi; Kotake, Toshihisa
2015-01-01
β-1,3:1,4-Glucan is a major cell wall component accumulating in endosperm and young tissues in grasses. The mixed linkage glucan is a linear polysaccharide mainly consisting of cellotriosyl and cellotetraosyl units linked through single β-1,3-glucosidic linkages, but it also contains minor structures such as cellobiosyl units. In this study, we examined the action of an endo-β-1,3(4)-glucanase from Trichoderma sp. on a minor structure in barley β-1,3:1,4-glucan. To find the minor structure on which the endo-β-1,3(4)-glucanase acts, we prepared oligosaccharides from barley β-1,3:1,4-glucan by endo-β-1,4-glucanase digestion followed by purification by gel permeation and paper chromatography. The endo-β-1,3(4)-glucanase appeared to hydrolyze an oligosaccharide with degree of polymerization 5, designated C5-b. Based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (ToF)/ToF-mass spectrometry (MS)/MS analysis, C5-b was identified as β-Glc-1,3-β-Glc-1,4-β-Glc-1,3-β-Glc-1,4-Glc including a cellobiosyl unit. The results indicate that a type of endo-β-1,3(4)-glucanase acts on the cellobiosyl units of barley β-1,3:1,4-glucan in an endo-manner. PMID:26027730
Photovoltaic Powering And Control System For Electrochromic Windows
Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.
2000-04-25
A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.
Gönci, Balázs; Németh, Valéria; Balogh, Emeric; Szabó, Bálint; Dénes, Ádám; Környei, Zsuzsanna; Vicsek, Tamás
2010-12-20
Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation.
Gönci, Balázs; Németh, Valéria; Balogh, Emeric; Szabó, Bálint; Dénes, Ádám; Környei, Zsuzsanna; Vicsek, Tamás
2010-01-01
Because of its relevance to everyday life, the spreading of viral infections has been of central interest in a variety of scientific communities involved in fighting, preventing and theoretically interpreting epidemic processes. Recent large scale observations have resulted in major discoveries concerning the overall features of the spreading process in systems with highly mobile susceptible units, but virtually no data are available about observations of infection spreading for a very large number of immobile units. Here we present the first detailed quantitative documentation of percolation-type viral epidemics in a highly reproducible in vitro system consisting of tens of thousands of virtually motionless cells. We use a confluent astroglial monolayer in a Petri dish and induce productive infection in a limited number of cells with a genetically modified herpesvirus strain. This approach allows extreme high resolution tracking of the spatio-temporal development of the epidemic. We show that a simple model is capable of reproducing the basic features of our observations, i.e., the observed behaviour is likely to be applicable to many different kinds of systems. Statistical physics inspired approaches to our data, such as fractal dimension of the infected clusters as well as their size distribution, seem to fit into a percolation theory based interpretation. We suggest that our observations may be used to model epidemics in more complex systems, which are difficult to study in isolation. PMID:21187920
Compact propane fuel processor for auxiliary power unit application
NASA Astrophysics Data System (ADS)
Dokupil, M.; Spitta, C.; Mathiak, J.; Beckhaus, P.; Heinzel, A.
With focus on mobile applications a fuel cell auxiliary power unit (APU) using liquefied petroleum gas (LPG) is currently being developed at the Centre for Fuel Cell Technology (Zentrum für BrennstoffzellenTechnik, ZBT gGmbH). The system is consisting of an integrated compact and lightweight fuel processor and a low temperature PEM fuel cell for an electric power output of 300 W. This article is presenting the current status of development of the fuel processor which is designed for a nominal hydrogen output of 1 k Wth,H2 within a load range from 50 to 120%. A modular setup was chosen defining a reformer/burner module and a CO-purification module. Based on the performance specifications, thermodynamic simulations, benchmarking and selection of catalysts the modules have been developed and characterised simultaneously and then assembled to the complete fuel processor. Automated operation results in a cold startup time of about 25 min for nominal load and carbon monoxide output concentrations below 50 ppm for steady state and dynamic operation. Also fast transient response of the fuel processor at load changes with low fluctuations of the reformate gas composition have been achieved. Beside the development of the main reactors the transfer of the fuel processor to an autonomous system is of major concern. Hence, concepts for packaging have been developed resulting in a volume of 7 l and a weight of 3 kg. Further a selection of peripheral components has been tested and evaluated regarding to the substitution of the laboratory equipment.
Honey bee (Apis mellifera) workers live longer in small than in large colonies
Rueppell, Olav; Kaftanouglu, Osman; Page, Robert E.
2009-01-01
Social insect colonies are highly integrated units that can be regarded in some respects as superorganisms, with colony size and individuals analogous to body size and cells in unitary organisms. In both, unitary organisms and superorganisms, the relation between body/colony size and lifespan of the constituent units (cells/individuals) is important for understanding systemic aging but remains to be explored. Therefore, this study compared the life-history and longevity of individual honey bee workers between a large and a small colony social environment. We found that individuals in large colonies were consistently shorter lived than individuals in small colonies. This experimental effect occurred in both principal life history phases of honey bee workers, the in-hive and the foraging stage, independently of the age of the workers at their transition between the two. Nevertheless, this age of first foraging was a key determinant of worker longevity, in accordance with previous studies. The large colonies raised more brood, built more comb, and foraged at higher rates. Our results do not comply with the idea that social group size has a positive effect on individual longevity. Instead, our findings suggest that large and small colonies follow different demographic growth trajectories, trading off longevity of individuals for overall colony growth. Similarly, multi-cellular organisms might sacrifice maintenance and repair of their individual constituent cells for enhanced metabolic activity and organismal growth, leading to the widely-observed negative correlation between longevity and body size within species. PMID:19389467
Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithianantham, Stanley; Xu, Minghua; Wu, Nan
2006-12-01
The FadA adhesin from F. nucleatum, which is involved in bacterial attachment and invasion of human oral epithelial cells, has been crystallized in space group P6{sub 1} or P6{sub 5}, and X-ray data have been collected to 1.9 Å resolution. Fusobacterium nucleatum is a Gram-negative anaerobe prevalent in the oral cavity that is associated with periodontal disease, preterm birth and infections in other parts of the human body. The bacteria attach to and invade epithelial and endothelial cells in the gum tissue and elsewhere via a 13.7 kDa adhesin protein FadA (Fusobacterium adhesin A). FadA exists in two forms: themore » intact form (pre-FadA), consisting of 129 amino acids, and the mature form (mFadA), which lacks an 18-residue signal sequence. Both forms have been expressed in Escherichia coli and purified. mFadA has been crystallized. The crystals belong to the hexagonal space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 59.3, c = 125.7 Å and one molecule per asymmetric unit. The crystals exhibit an unusually high solvent content of 74%. Synchrotron X-ray data have been collected to 1.9 Å. The crystals are suitable for X-ray structure determination. The crystal structure of FadA may provide a basis for the development of therapeutic agents to combat periodontal disease and other infections associated with F. nucleatum.« less
Doutres, O; Ouisse, M; Atalla, N; Ichchou, M
2014-10-01
This paper deals with the prediction of the macroscopic sound absorption behavior of highly porous polyurethane foams using two unit-cell microstructure-based models recently developed by Doutres, Atalla, and Dong [J. Appl. Phys. 110, 064901 (2011); J. Appl. Phys. 113, 054901 (2013)]. In these models, the porous material is idealized as a packing of a tetrakaidecahedra unit-cell representative of the disordered network that constitutes the porous frame. The non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity, airflow resistivity, tortuosity, etc.) are derived from characteristic properties of the unit-cell and semi-empirical relationships. A global sensitivity analysis is performed on these two models in order to investigate how the variability associated with the measured unit-cell characteristics affects the models outputs. This allows identification of the possible limitations of a unit-cell micro-macro approach due to microstructure irregularity. The sensitivity analysis mainly shows that for moderately and highly reticulated polyurethane foams, the strut length parameter is the key parameter since it greatly impacts three important non-acoustic parameters and causes large uncertainty on the sound absorption coefficient even if its measurement variability is moderate. For foams with a slight inhomogeneity and anisotropy, a micro-macro model associated to cell size measurements should be preferred.
Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.
2015-01-01
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037
Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A
2015-04-21
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
NASA Technical Reports Server (NTRS)
1973-01-01
A fuel cell technology program was established to advance the state-of-the-art of hydrogen-oxygen fuel cells using low temperature, potassium hydroxide electrolyte technology as the base. Program tasks are described consisting of baseline cell design and stack testing, hydrogen pump design and testing, and DM-2 powerplant testing and technology extension efforts. A baseline cell configuration capable of a minimum of 2000 hours of life was defined. A 6-cell prototype stack, incorporating most of the scheme cell features, was tested for a total of 10,497 hours. A 6-cell stack incorporating all of the design features was tested. The DM-2 powerplant with a 34 cell stack, an accessory section packaged in the basic configuration anticipated for the space shuttle powerplant and a powerplant control unit, was defined, assembled, and tested. Cells were used in the stack and a drag-type hydrogen pump was installed in the accessory section. A test program was established, in conjunction with NASA/JSC, based on space shuttle orbiter mission. A 2000-hour minimum endurance test and a 5000-hour goal were set and the test started on August 8, 1972. The 2000-hour milestone was completed on November 3, 1972. On 13 March 1973, at the end of the thirty-first simulated seven-day mission and 5072 load hours, the test was concluded, all goals having been met. At this time, the DM-2 was in excellent condition and capable of additional endurance.
Development of laminated fiber-reinforced nanocomposites for bone regeneration
NASA Astrophysics Data System (ADS)
Xu, Weijie
There have been numerous efforts to develop synthetic and/or natural tissue engineering scaffolds that are suitable for bone regeneration applications to replace autograft and allograft bones. Current biomaterials as a scaffold for bone regeneration are limited by the extent of degradation concurrent with bone formation, mechanical strength, and the extent of osteogenic differentiation of marrow stromal cells migrating from the surrounding tissues. In this project, a novel laminated nanocomposite scaffold is fabricated, consisting of poly (L-lactide ethylene oxide fumarate) (PLEOF) hydrogel reinforced with poly (L-lactic acid) (PLLA) electrospun nanofibers and hydroxyapatite (HA) nanoparticles. PLEOF is a novel in situ crosslinkable macromer synthesized from biocompatible building units which can be functionalized with bioactive peptides like the cell-adhesive Arg--Gly--Asp (RGD) amino acid sequence. The hydrophilicity and degradation rate of the macromer can be tailored to a particular application by controlling the ratio of PEG to PLA blocks in the macromer and the unsaturated fumarate units can be used for in-situ crosslinking. The PLLA nanofibers were electrospun from high molecular weight PLLA. The laminated nanocomposites were fabricated by dry-hand lay up technique followed by compression molding and thermal crosslinking. The laminated nanocomposites were evaluated with respect to degradation, water uptake, mechanical strength, and the extent of osteogenic differentiation of bone marrow stromal (BMS) cells. Laminates with or without HA nanoparticles showed modulus values much higher than that of trabecular bone (50-100 MPa). The effect of laminated nanocomposites on osteogenic differentiation of BMS cells was determined in terms of cell number, ALPase activity and calcium content. Our results demonstrate that grafting RGD peptide and HA nanoparticles to a PLEOF hydrogel reinforced with PLLA nanofibers synergistically enhance osteogenic differentiation of BMS cells. In conclusion, the laminated nanocomposite with controllable degradation characteristics and robust mechanical properties is attractive as a synthetic bone-mimetic matrix for skeletal tissue regeneration.
The functional organization of the crayfish lamina ganglionaris. I. Nonspiking monopolar cells.
Wang-Bennett, L T; Glantz, R M
1987-06-01
The light responses of the second order lamina monopolar neurons were examined in the crayfish compound eye. Single cartridge monopolar neurons (M1-M4) exhibited nonspiking hyperpolarizing light responses; for M1, M3 and M4 the transient 'on' response operated over the same intensity range as the receptor, 3.5 log units. M2 operated in a much narrower intensity range (1.5 log unit). The 'on' responses were associated with a 19% increase in conductance. The hyperpolarizing 'on' response can be reversed at 18 mV below the resting membrane potential. The half-angular sensitivity width of monopolar cells (in partially dark-adapted eyes) is 15 degrees X 8 degrees (horizontal by vertical). Off axis stimuli elicit attenuated hyperpolarizing responses associated with a diminished conductance increase or depolarizing responses associated with a net decrease in conductance. The latter result is consistent with the presynaptic inhibition of a 'back-ground' transmitter release which normally persists in the dark. Lateral inhibition is elicited from the area immediately surrounding the excitatory field, and it is associated with diminished transient responses and an accelerated decay of the response. Inhibitory stimuli decrease the conductance change associated with the hyperpolarizing response. The surround stimuli can also elicit depolarizing 'off' responses with reversal potentials positive to the membrane resting potential. It is concluded that the rapidly repolarizing monopolar cell response is modulated by both pre- and postsynaptic inhibitory mechanisms. A compartment model indicates that signal attenuation along a 500 microns length of monopolar cell axon is 22-34%. Simulation of steady-state signal transmission suggests that passive (decremental) conduction is sufficient to convey 66 to 78% of the monopolar cell signal from lamina to medulla. The current-voltage relation in current clamp is linear over the physiological operating range, and there is no evidence for rectification. Hyperpolarization of single monopolar cells (M1-M4) provides a polysynaptic excitatory signal to the medullary sustaining fibers.
Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.
Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A
2014-06-01
Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
Anisotropy-based crystalline oxide-on-semiconductor material
McKee, Rodney Allen; Walker, Frederick Joseph
2000-01-01
A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.
2013-09-03
Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell Modified and Tested in Scaled-Up Mobile Unit September 3, 2013 Approved for public...OF ABSTRACT Extraction of Carbon Dioxide and Hydrogen from Seawater by an Electrochemical Acidification Cell Part IV: Electrode Compartments of Cell...Electrochemical acidification cell Carbon dioxide Hydrogen Polarity reversal An electrochemical acidification cell was scaled-up and integrated into a
Light controlled 3D micromotors powered by bacteria
NASA Astrophysics Data System (ADS)
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto
2017-06-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.
Steering and filtering white light with resonant waveguide gratings
NASA Astrophysics Data System (ADS)
Quaranta, Giorgio; Basset, Guillaume; Martin, Olivier J. F.; Gallinet, Benjamin
2017-08-01
A novel thin-film single-layer structure based on resonant waveguide gratings (RWGs) allows to engineer selective color filtering and steering of white light. The unit cell of the structure consists of two adjacent finite-length and cross-talking RWGs, where the former acts as in-coupler and the latter acts as out-coupler. The structure is made by only one nano-imprint lithography replication and one thin film layer deposition, making it fully compatible with up-scalable fabrication processes. We characterize a fabricated optical security element designed to work with the flash and the camera of a smartphone in off-axis light steering configuration, where the pattern is revealed only by placing the smartphone in the proper position. Widespread applications are foreseen in a variety of fields, such as multifocal or monochromatic lenses, solar cells, biosensors, security devices and seethrough optical combiners for near-eye displays.
NASA Technical Reports Server (NTRS)
Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.
1974-01-01
Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.
Light controlled 3D micromotors powered by bacteria
Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto
2017-01-01
Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975
Rationally designed peptide nanosponges for cell-based cancer therapy.
Wang, Hongwang; Yapa, Asanka S; Kariyawasam, Nilusha L; Shrestha, Tej B; Kalubowilage, Madumali; Wendel, Sebastian O; Yu, Jing; Pyle, Marla; Basel, Matthew T; Malalasekera, Aruni P; Toledo, Yubisela; Ortega, Raquel; Thapa, Prem S; Huang, Hongzhou; Sun, Susan X; Smith, Paul E; Troyer, Deryl L; Bossmann, Stefan H
2017-11-01
A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D) n DEVDGC) 3 -trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K) n DEVDGC) 3 -trimaleimides and a 1:1 mixture of cholesterol-(K/D) n DEVDGC) 3 -trimaleimides form stable nanosponges, whereas cholesterol-(D) n DEVDGC) 3 -trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Stafford, Helen A.; Lester, Hope H.
1980-01-01
The procyanidins (the most common type of proanthocyanidin or condensed tannin) from cell suspension cultures derived from cotyledons of Douglas Fir have been compared with those isolated from leaves of strawberry and avocado. Seventy per cent methanol (v/v) extracts from 100 milligrams fresh weight samples were analyzed by a combination of C18-reversed-phase columns with high-performance liquid chromatography, and normal phase paper chromatography. (−)-Epicatechin and its oligomers were generally retarded longer on C18 columns than the corresponding units made of (+)-catechin when eluted with solvents made up of 5% acetic acid alone or mixed with methanol up to 15% (v/v). Douglas fir preparations contained the most complex set of procyanidins and consisted of oligomers of catechin and epicatechin, whereas strawberry and avocado contained mainly (+)-catechin and (−)-epicatechin derivatives, respectively. PMID:16661581
Gamarra, Lionel F; daCosta-Filho, Antonio J; Mamani, Javier B; de Cassia Ruiz, Rita; Pavon, Lorena F; Sibov, Tatiana T; Vieira, Ernanni D; Silva, André C; Pontuschka, Walter M; Amaro, Edson
2010-01-01
The aim of the present work is the presentation of a quantification methodology for the control of the amount of superparamagnetic iron oxide nanoparticles (SPIONs) administered in biological materials by means of the ferromagnetic resonance technique (FMR) applied to studies both in vivo and in vitro. The in vivo study consisted in the analysis of the elimination and biodistribution kinetics of SPIONs after intravenous administration in Wistar rats. The results were corroborated by X-ray fluorescence. For the in vitro study, a quantitative analysis of the concentration of SPIONs bound to the specific AC133 monoclonal antibodies was carried out in order to detect the expression of the antigenic epitopes (CD133) in stem cells from human umbilical cord blood. In both studies FMR has proven to be an efficient technique for the SPIONs quantification per volume unit (in vivo) or per labeled cell (in vitro). PMID:20463936
21 CFR 640.15 - Segments for testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...
21 CFR 640.15 - Segments for testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...
21 CFR 640.15 - Segments for testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...
21 CFR 640.15 - Segments for testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are...
21 CFR 640.15 - Segments for testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.15 Segments for testing... provided with each unit of Whole Blood or Red Blood Cells when issued or reissued. (b) Before they are... cells. (c) All segments accompanying a unit of Red Blood Cells shall be filled at the time the blood is...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arzate-Hernandez, L.; Tellezduarte, M.
1988-03-01
The Sepultura Formation in its type locality consists of two major lithostratigraphic units. The basal A unit overlies the Cretaceous Rosario Formation. It consists predominantly of fine-grained, poorly consolidated sandstones; some conglomerates; and thin beds of well-consolidated lenticular fossiliferous sandstones, which show some cyclic sedimentation. The poorly consolidated sandstones contain glauconitic layers; abundant shark teeth, benthic forams, and ostracods; and sparse mollusks, brachiopods, and Ophiomorpha-like trace fossils. These faunas indicate deposition in nearshore shallow waters. The interbedded consolidated lenticular sandstones probably indicate storm-induced deposition below wave base. This mechanism is assumed to be responsible for the high concentration of fossilsmore » consisting predominantly of unworn molluscan shells, scaphopods, echinoid spines, corals, and forams. In places, the elongated shells of Turritella pachecoensis show a preferential orientation to the southwest. At the top of the unit, a poorly fossiliferous red conglomerate indicates deltaic conditions. Overlying the conglomerate is unit B which shows a change in the sedimentary environment. It consists of a calcareous shallowing upward sequence of nodular to massive algal limestone with caliche at top. The microfossils of this unit show glauconitization in places, and consist, in addition to algal fragments, of forams, microscopic mollusks, and some ostracods and calcispherules from shallow waters (less than 30 m deep).« less
NASA Astrophysics Data System (ADS)
An, Yong-li; Tan, Yi-li; Zhang, Hong-bo; Wu, Guo-cheng
2017-12-01
In this paper, a novel double-layered microstrip metamaterial beam scanning leaky wave antenna (LWA) is proposed and investigated to achieve consistent gain and low cross-polarization. Thanks to the continuous phase constant changing from negative to positive values over the passband of the double-layered microstrip metamaterial, the proposed LWA, which consists of 20 identical microstrip metamaterial unit cells, can obtain a continuous beam scanning property from backward to forward directions. The proposed LWA is fabricated and measured. The measured results show that the fabricated antenna obtains a continuous beam scanning angle of 140° over the operating frequency band of 3.80-5.25 GHz (32%), the measured 3 dB gain bandwidth is 30.17% with maximum gain of 11.7 dB. Besides, the measured cross-polarization of the fabricated antenna keeps at a level of at least 30 dB below the co-polarization across the entire radiation region. Moreover, the measured and simulated results are in good agreement with each other, indicating the significance and effectiveness of this method.
Rodríguez-Montaño, Óscar L; Cortés-Rodríguez, Carlos Julio; Uva, Antonio E; Fiorentino, Michele; Gattullo, Michele; Monno, Giuseppe; Boccaccio, Antonio
2018-07-01
Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Meroterpenoids and Chalcone-Lignoids from the Roots of Mimosa diplotricha.
Chiou, Chun-Tang; Shen, Chien-Chang; Tsai, Tung-Hu; Chen, Yu-Jen; Lin, Lie-Chwen
2016-10-28
Six new meroterpenoids, diplomeroterpenoids A-F (1-6), two new chalcone-lignoids, diplochalcolins A and B (7, 8), and 13 known compounds were isolated from the root extract of Mimosa diplotricha. Diplomeroterpenoids A-F consist of a 4H-chromen-4-one and a diterpenoid unit, and their absolute configurations were determined by X-ray crystallographic analysis. Compounds 1-3 and 5 showed potent inhibitory activity on protein farnesyl transferase, with IC 50 values from 5.0 to 8.5 μM. Compound 1 showed antiproliferative activity against human hepatoblastoma HepG2 cells with a GI 50 value of approximately 8.6 μM.
Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang
We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.
Pendini, Nicole R.; Polyak, Steve W.; Booker, Grant W.; Wallace, John C.; Wilce, Matthew C. J.
2008-01-01
Biotin protein ligase from Staphylococcus aureus catalyses the biotinylation of acetyl-CoA carboxylase and pyruvate carboxylase. Recombinant biotin protein ligase from S. aureus has been cloned, expressed and purified. Crystals were grown using the hanging-drop vapour-diffusion method using PEG 8000 as the precipitant at 295 K. X-ray diffraction data were collected to 2.3 Å resolution from crystals using synchrotron X-ray radiation at 100 K. The diffraction was consistent with the tetragonal space group P42212, with unit-cell parameters a = b = 93.665, c = 131.95. PMID:18540065
Metasurface Broadband Solar Absorber.
Azad, Abul K; Kort-Kamp, Wilton J M; Sykora, Milan; Weisse-Bernstein, Nina R; Luk, Ting S; Taylor, Antoinette J; Dalvit, Diego A R; Chen, Hou-Tong
2016-02-01
We demonstrate a broadband, polarization independent, wide-angle absorber based on a metallic metasurface architecture, which accomplishes greater than 90% absorptance in the visible and near-infrared range of the solar spectrum, and exhibits low absorptivity (emissivity) at mid- and far-infrared wavelengths. The complex unit cell of the metasurface solar absorber consists of eight pairs of gold nano-resonators that are separated from a gold ground plane by a thin silicon dioxide spacer. Our experimental measurements reveal high-performance absorption over a wide range of incidence angles for both s- and p-polarizations. We also investigate numerically the frequency-dependent field and current distributions to elucidate how the absorption occurs within the metasurface structure.
Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel
2013-07-01
We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.
Gain enhancement with near-zero-index metamaterial superstrate
NASA Astrophysics Data System (ADS)
Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.
2015-11-01
The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.
Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures.
Yannopapas, Vassilios
2015-03-19
We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.
NASA Astrophysics Data System (ADS)
Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John
2012-11-01
Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Zhang, Shanshan; Niu, Qingfen; Sun, Tao; Li, Yang; Li, Tianduo; Liu, Haixia
2017-08-05
A novel linear A-π-D-π-A-type organic small molecule Ph2(PDPP) 2 consisting diketopyrrolopyrrole (DPP) as acceptor unit, biphenylene as donor unit and acetylene unit as π-linkage has been successfully designed and synthesized. Its corresponding thermal, photophysical and electrochemical properties as well as the photoinduced charge-separation process were investigated. Ph2(PDPP) 2 exhibits high thermal stability and it can be soluble in common organic solvents such as chloroform and tetrahydrofuran. The photophysical properties show that DPP 2 Ph 2 harvests sunlight over the entire visible spectrum range in the thin-film state (300-800nm). DPP 2 Ph 2 has lower band gaps and appropriate energy levels to satisfy the requirement of solution-processable organic solar cells. The efficient photoinduced charge separation process was clearly observed between DPP 2 Ph 2 with PC 61 BM and the K sv value was found to be as high as 2.13×10 4 M -1 . Therefore, these excellent properties demonstrate that the designed A-π-D-π-A-type small molecule Ph2(PDPP) 2 is the prospective candidate as donor material for organic photovoltaic material. Copyright © 2017 Elsevier B.V. All rights reserved.
Battery management system with distributed wireless sensors
Farmer, Joseph C.; Bandhauer, Todd M.
2016-02-23
A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.
Pisciolaro, Ricardo Luiz; Duailibi, Monica Talarico; Novo, Neil Ferreira; Juliano, Yara; Pallos, Debora; Yelick, Pamela Crotty; Vacanti, Joseph Phillip; Ferreira, Lydia Masako; Duailibi, Silvio Eduardo
2015-11-01
One of the goals in using cells for tissue engineering (TE) and cell therapy consists of optimizing the medium for cell culture. The present study compares three different blood product supplements for improved cell proliferation and protection against DNA damage in cultured human dental pulp stem cells for tooth TE applications. Human cells from dental pulp were first characterized as adult stem cells (ectomesenchymal mixed origin) by flow cytometry. Next, four different cell culture conditions were tested: I, supplement-free; II, supplemented with fetal bovine serum; III, allogeneic human serum; and IV, autologous human serum. Cultured cells were then characterized for cell proliferation, mineralized nodule formation, and colony-forming units (CFU) capability. After 28 days in culture, the comet assay was performed to assess possible damage in cellular DNA. Our results revealed that Protocol IV achieved higher cell proliferation than Protocol I (p = 0.0112). Protocols II and III resulted in higher cell proliferation than Protocol I, but no statistical differences were found relative to Protocol IV. The comet assay revealed less cell damage in cells cultured using Protocol IV as compared to Protocols II and III. The damage percentage observed on Protocol II was significantly higher than all other protocols. CFUs capability was highest using Protocol IV (p = 0.0018) and III, respectively, and the highest degree of mineralization was observed using Protocol IV as compared to Protocols II and III. Protocol IV resulted in significantly improved cell proliferation, and no cell damage was observed. These results demonstrate that human blood product supplements can be used as feasible supplements for culturing adult human dental stem cells.
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin
2017-01-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits “0” and “1” to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency‐spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments. PMID:28932671
A multifunctional probe for ICP-MS determination and multimodal imaging of cancer cells.
Yang, Bin; Zhang, Yuan; Chen, Beibei; He, Man; Yin, Xiao; Wang, Han; Li, Xiaoting; Hu, Bin
2017-10-15
Inductively coupled plasma-mass spectrometry (ICP-MS) based bioassay and multimodal imaging have attracted increasing attention in the current development of cancer research and theranostics. Herein, a sensitive, simple, timesaving, and reliable immunoassay for cancer cells counting and dual-modal imaging was proposed by using ICP-MS detection and down-conversion fluorescence (FL)/upconversion luminescence (UCL) with the aid of a multifunctional probe for the first time. The probe consisted of a recognition unit of goat anti-mouse IgG to label the anti-EpCAM antibody attached cells, a fluorescent dye (Cy3) moiety for FL imaging as well as upconversion nanoparticles (UCNPs) tag for both ICP-MS quantification and UCL imaging of cancer cells. Under the optimized conditions, an excellent linearity and sensitivity were achieved owing to the signal amplification effect of nanoparticles and low spectral interference. Accordingly, a limit of detection (3σ) of 1×10 2 HepG2 cells and a relative standard deviation of 7.1% for seven replicate determinations of 1×10 3 HepG2 cells were obtained. This work proposed a method to employ UCNPs with highly integrated functionalities enabling us not only to count but also to see the cancer cells, opening a promising avenue for biological research and clinical theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Theta phase precession of grid and place cell firing in open environments
Jeewajee, A.; Barry, C.; Douchamps, V.; Manson, D.; Lever, C.; Burgess, N.
2014-01-01
Place and grid cells in the rodent hippocampal formation tend to fire spikes at successively earlier phases relative to the local field potential theta rhythm as the animal runs through the cell's firing field on a linear track. However, this ‘phase precession’ effect is less well characterized during foraging in two-dimensional open field environments. Here, we mapped runs through the firing fields onto a unit circle to pool data from multiple runs. We asked which of seven behavioural and physiological variables show the best circular–linear correlation with the theta phase of spikes from place cells in hippocampal area CA1 and from grid cells from superficial layers of medial entorhinal cortex. The best correlate was the distance to the firing field peak projected onto the animal's current running direction. This was significantly stronger than other correlates, such as instantaneous firing rate and time-in-field, but similar in strength to correlates with other measures of distance travelled through the firing field. Phase precession was stronger in place cells than grid cells overall, and robust phase precession was seen in traversals through firing field peripheries (although somewhat less than in traversals through the centre), consistent with phase coding of displacement along the current direction. This type of phase coding, of place field distance ahead of or behind the animal, may be useful for allowing calculation of goal directions during navigation. PMID:24366140
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamasaki, Masayuki; Ogura, Kohei; Moriwaki, Satoko
The crystallization and preliminary characterization of the family PL-7 alginate lyases A1-II and A1-II′ from Sphingomonas sp. A1 are presented. Alginate lyases depolymerize alginate, a heteropolysaccharide consisting of α-l-guluronate and β-d-mannuronate, through a β-elimination reaction. The alginate lyases A1-II (25 kDa) and A1-II′ (25 kDa) from Sphingomonas sp. A1, which belong to polysaccharide lyase family PL-7, exhibit 68% homology in primary structure but have different substrate specificities. To determine clearly the structural basis for substrate recognition in the depolymerization mechanism by alginate lyases, both proteins were crystallized at 293 K using the vapour-diffusion method. A crystal of A1-II belonged tomore » space group P2{sub 1} and diffracted to 2.2 Å resolution, with unit-cell parameters a = 51.3, b = 30.1, c = 101.6 Å, β = 100.2°, while a crystal of A1-II′ belonged to space group P2{sub 1}2{sub 1}2{sub 1} and diffracted to 1.0 Å resolution, with unit-cell parameters a = 34.6, b = 68.5, c = 80.3 Å.« less
Pilot study of oxygen transport rate of banked red blood cells.
Buchwald, H; Menchaca, H J; Michalek, V N; Rudser, K D; Rohde, T D; O'Dea, T; Connett, J E; Gorlin, J
2009-01-01
Dynamic oximetry provides a new way to assess the effect of blood storage on the oxygen transport rate (OTR). In dynamic oximetry, the rate at which oxyhemoglobin becomes deoxyhemoglobin is measured optically, thereby, indirectly measuring the rate at which oxygen leaves the red blood cell (RBC) making it available for transfer to tissues. Extending the physiologic diffusion time in an in vitro apparatus, consisting of a diffusion system and gas exchanger capable of controlling the surface area and the time of exposure for oxygenation and deoxygenation, makes OTR measurement feasible. Eight normal blood donor units, collected in adenine, dextrose, sorbitol, sodium chloride and mannitol , were stored for 8 weeks under standard conditions and serially sampled for OTR. We report that the OTR at the time of blood bank donation appears to be singular for each donor, that the interdonor differences are maintained over time, and that the individual OTR increased 1.72-fold (95% CI 1.51, 1.95) over 8 weeks, adjusting for sex, age and plasma cholesterol level. Oxygen transport rate increases during storage; blood units with similar haemoglobin content may have significant differences in OTR. Studies examining blood parameters at the time of donation and blood storage on patient outcomes should consider measuring OTR, as it may contribute to differences in observed efficacy of tissue oxygenation.
Heidelmann, Markus; Barthel, Juri; Cox, Gerhard; Weirich, Thomas E
2014-10-01
The atomic structure of Cs0.44[Nb2.54W2.46O14] closely resembles the structure of the most active catalyst for the synthesis of acrylic acid, the M1 phase of Mo10V2(4+)Nb2TeO42-x. Consistently with observations made for the latter compound, the high-angle electron scattering signal recorded by scanning transmission electron microscopy shows a significant intensity variation, which repeats periodically with the projected crystallographic unit cell. The occupation factors for the individual mixed Nb/W atomic columns are extracted from the observed intensity variations. For this purpose, experimental images and simulated images are compared on an identical intensity scale, which enables a quantification of the cation distribution. According to our analysis specific sites possess low tungsten concentrations of 25%, whereas other sites have tungsten concentrations above 70%. These findings allow us to refine the existing structure model of the target compound, which has until now described a uniform distribution of the niobium and tungsten atoms in the unit cell, showing that the similarity between Cs0.44[Nb2.54W2.46O14] and the related catalytic compounds also extends to the level of the cation segregation.
NASA Astrophysics Data System (ADS)
Scalia, Alberto; Bella, Federico; Lamberti, Andrea; Bianco, Stefano; Gerbaldi, Claudio; Tresso, Elena; Pirri, Candido Fabrizio
2017-08-01
The recent need to benefit from electricity in every moment of daily life, particularly when the access to the electric grid is limited, is forcing the scientific and industrial community to an intensive effort towards the production of integrated energy harvesting and storage devices able to drive low power electronics. In this framework, flexibility represents a mandatory requirement to cover non-planar or bendable surfaces, more and more common in nowadays-electronic devices. To this purpose, here we present an innovative device consisting of a TiO2 nanotube-based dye sensitized solar cell and a graphene-based electrical double layer capacitor integrated in a flexible architecture. Both the units are obtained by easily scalable fabrication processes exploiting photopolymer membranes as electrolytes and metal grids as current collectors. The performance of the two units and of the integrated system are thoroughly investigated by electrochemical measurements also under different irradiation conditions. To the best of our knowledge, this work shows the highest energy conversion and storage efficiency (1.02%) ever attained under 1 Sun irradiation condition for a flexible dye-sensitized-based non-wired photocapacitor. Noteworthy, this value dramatically increases while lowering the illumination condition to 0.3 Sun, achieving a remarkable value of 1.46%, thus showing optimal performances in real operation conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakotte, Heinz; Shrestha, Manjita; Adak, Sourav
Here, magnetic data are reported for Prussian Blue Analogs (PBAs) of composition M3[M'(C,N)6]2·xH2O, where M = Mn, Co, Ni or Cu and M' = Cr, Fe or Co and x is the number of water molecules per unit cell. PBAs crystallize in cubic framework structures, which consist of alternating MIIIN6 and MIIC6 octahedra. Occupancies of the octrahedra are not perfect: they may be empty and the charges are balanced by the oxygen atoms originating from guest water molecules at the lattice site ( C or N site) or the interstitial site (between the octahedrals) of the unit cell. Large crystal-fieldmore » splittings due to the octrahedral environment results in a combination of low- or high-spin configurations of localized magnetic bivalent and trivalent 3d moments. The magnetic susceptibility of studied PBAs follows the Curie–Weiss behavior in the paramagnetic region up to room temperature. Moreover, the data provide evidence for a long-range magnetic ground state for most metal hexacyanochromates and all metal hexacyanoferrates, while hexacyanocobaltates remain paramagnetic down to the lowest temperature measured (2 K). For all compounds, the effective magnetic moments determined from experiments were found to be in reasonable agreement with predicted combinations of high- and low-spin moments.« less
Single-layer ZnS supported on Au(111): A combined XPS, LEED, STM and DFT study
Deng, Xingyi; Sorescu, Dan C.; Lee, Junseok
2016-12-31
Single-layer of ZnS, consisting of one atomic layer of ZnS(111) plane, has been grown on Au(111) and characterized using X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). While the LEED measurement indicates a coincidence structure of ZnS-(3×3)/Au(111)-(4×4), high resolution STM images reveal hexagonal unit cells of 6.7×6.7 Å 2 and 11.6×11.6 Å 2, corresponding to √3 and 3 times the unit cell of the ideal zincblende ZnS-(1×1), respectively, depending on the tunneling conditions. Calculations based on density functional theory (DFT) indicate a significantly reconstructed non-planar structure of ZnS single-layer on Au(111) with 2/3 ofmore » the S anions being located nearly in the plane of the Zn cations and the rest 1/3 of the S anions protruding above the Zn plane. In conclusion, the calculated STM image shows similar characteristics to those of the experimental STM image. Additionally, the DFT calculations reveal the different bonding nature of the S anions in ZnS single-layer supported on Au(111).« less
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
Optimization Review: Lockwood Operable Unit 1 - Beall Source Area, Billings, Montana
The Lockwood Solvent Groundwater Plume Site (LSGPS) consists of two operable units (OUs) and is located on the outskirts of Billings, Montana in EPA Region 8. OU1 consists of contaminated soils and a chlorinated solvent groundwater plume associated with...
2002-03-01
sections consists of four units, the Domestic Terrorism Operations Unit, the WMD Operations Unit, the WMD Countermeasures Unit, and Special Events Management Unit...Countermeasures Unit Chief Special Events Management Unit Chief Domestic Terrorism/ Counterterrorism Section Chief International Terrorism Section Asstistant
Cancado, Rodolfo; Watman, Nora P; Lobo, Clarisse; Chona, Zulay; Manzur, Fernando; Traina, Fabiola; Park, Miriam; Drelichman, Guillermo; Zarate, Juan Pablo; Marfil, Luis
2018-04-17
A multicenter, noninterventional, observational study was conducted in the Latin American countries including Argentina, Brazil, Colombia, Mexico, and Venezuela to assess the prevalence of liver and cardiac iron overload using magnetic resonance imaging (MRI) in patients with chronic anemias except thalassemia. Patients aged >10 years with transfusion-dependent anemias, except thalassemia, either with <20 units of red blood cell (RBC) transfusions with serum ferritin (SF) levels >2000 ng/mL or with ≥20 units of RBC transfusions regardless of SF level in their lifetime, were enrolled. Iron overload was assessed using MRI. Among 175 patients included, the majority had sickle cell disease (SCD; 52%), followed by aplastic anemia (AA; 17.7%), myelodysplastic syndrome (MDS; 8.6%), Diamond-Blackfan anemia (DBA; 4%), pure red cell aplasia (1.1%), and others (16.6%). Liver iron overload was observed in 76.4% of patients, while cardiac iron overload was seen in 19.2% when assessed by MRI. The prevalence of iron overload was 80.2% in patients with SCD, 73.3% in MDS, 77.4% in AA, 100% in pure red cell aplasia, 71.4% in DBA, and 68.9% in other transfusion-related disorders. A moderate correlation between liver iron concentration (LIC) and SF was observed in patients with SCD and MDS (r = 0.47 and r = 0.61, respectively). All adverse events reported were consistent with the published data for deferasirox or underlying disease. A high prevalence of iron overload in this patient population in Latin American countries indicates that a better diagnosis and management of iron overload is required in these countries.
Using stochastic cell division and death to probe minimal units of cellular replication
NASA Astrophysics Data System (ADS)
Chib, Savita; Das, Suman; Venkatesan, Soumya; Sai Narain Seshasayee, Aswin; Thattai, Mukund
2018-03-01
The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that the growth exponent from macroscopic cell growth or decay measurements can be represented as the difference of microscopic first-order cell division and death rates. The boundary between cell growth and decay, at which the number of live cells remains constant over time, occurs at the minimal inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high, reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal replicating units we term ‘widgets’ reproduces both steady-state and transient features of our experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties. High division and death rates at MIC arise due to low mean and high relative fluctuations of widget number. Isolating cells at the threshold of irreversible death might allow molecular characterization of this minimal replication unit.
Bussard, Karen M.; Smith, Gilbert H.
2012-01-01
Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display ‘normal’ behavior when placed into ‘normal’ ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for ‘normal’ gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo. PMID:23155468
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2013 CFR
2013-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2012 CFR
2012-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2014 CFR
2014-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
42 CFR 410.161 - Part B blood deductible.
Code of Federal Regulations, 2011 CFR
2011-10-01
... deductible. (a) General rules. (1) As used in this section, packed red cells means the red blood cells that remain after plasma is separated from whole blood. (2) A unit of packed red cells is treated as the... beneficiary is responsible for the first three units of whole blood or packed red cells received during a...
Silveira, Luiz Carlos L; Saito, Cézar A; da Silva Filho, Manoel; Kremers, Jan; Bowmaker, James K; Lee, Barry B
2014-01-01
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.
1970-03-01
The Apollo Telescope Mount (ATM) was designed and developed by the Marshall Space Flight Center (MSFC) and served as the primary scientific instrument unit aboard Skylab (1973-1979). The ATM consisted of eight scientific instruments as well as a number of smaller experiments. This image is of the ATM thermal unit being tested in MSFC's building 4619. The thermal unit consisted of an active fluid-cooling system of water and methanol that was circulated to radiators on the outside of the canister. The thermal unit provided temperature stability to the ultrahigh resolution optical instruments that were part of the ATM.
Mizumoto, Shuji; Watanabe, Moto; Yamada, Shuhei; Sugahara, Kazuyuki
2013-01-01
Chondroitin sulfate (CS) containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate), at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC) cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.
NASA Astrophysics Data System (ADS)
Zhang, Shubin; Zhang, Yufeng; Chen, Junyu; Yin, Congwen; Liu, Xiaowei
2018-06-01
In this paper, an integrated reformed methanol fuel cell (RMFC) as a portable power source is designed, fabricated and tested. The RMFC consists of a methanol steam reformer (MSR), a high temperature proton exchange membrane fuel cell (HT-PEMFC) stack, a microcontroller unit (MCU) and other auxiliaries. First, a system model based on Matlab/Simulink is established to investigate the mass and energy transport characteristics within the whole system. The simulation results suggest a hydrogen flow rate of at least 670 sccm is needed for the system to output 30 W and simultaneously maintain thermal equilibrium. Second, a metallic MSR and an HT-PEMFC stack with 12 cells are fabricated and tested. The tests show that the RMFC system is able to function normally when the performances of all the components meet the minimum requirements. At last, in the experiment of successfully powering a laptop, the RMFC system exhibits a stable performance during the complete work flow of all the phases, namely start-up, output and shutdown. Moreover, with a conservative design of 20 W power rating, maximum energy conversion efficiency of the RMFC system can be achieved (36%), and good stability in long-term operation is shown.
Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems
Li, William K.W; Glen Harrison, W; Head, Erica J.H
2006-01-01
The annual cycle of phytoplankton cell abundance is coherent across diverse ecosystems in the temperate North Atlantic Ocean. In Bedford Basin, on the Scotian Shelf and in the Labrador Sea, the numerical abundance of phytoplankton is low in spring and high in autumn, thus in phase with the temperature cycle. Temperature aligns abundance on a common basis, effectively adjusting apparent cell discrepancies in waters that are colder or warmer than the regional norm. As an example of holistic simplicity arising from underlying complexity, the variance in a community variable (total abundance) is explained by a single predictor (temperature) to the extent of 75% in the marginal seas. In the estuarine basin, weekly averages of phytoplankton and temperature computed from a 13 year time-series yield a predictive relationship with 91% explained variance. Temperature-directed assembly of individual phytoplankton cells to form communities is statistically robust, consistent with observed biomass changes, amenable to theoretical analysis, and a sentinel for long-term change. Since cell abundance is a community property in the same units for all marine microbes at any trophic level and at any phylogenetic position, it promises to integrate biological oceanography into general ecology and evolution. PMID:16822757
Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region
Birkholz, Oliver; Vef, Olaf; Rogulja-Ortmann, Ana; Berger, Christian; Technau, Gerhard M.
2013-01-01
The central nervous system of Drosophila melanogaster consists of fused segmental units (neuromeres), each generated by a characteristic number of neural stem cells (neuroblasts). In the embryo, thoracic and anterior abdominal neuromeres are almost equally sized and formed by repetitive sets of neuroblasts, whereas the terminal abdominal neuromeres are generated by significantly smaller populations of progenitor cells. Here we investigated the role of the Hox gene Abdominal-B in shaping the terminal neuromeres. We show that the regulatory isoform of Abdominal-B (Abd-B.r) not only confers abdominal fate to specific neuroblasts (e.g. NB6-4) and regulates programmed cell death of several progeny cells within certain neuroblast lineages (e.g. NB3-3) in parasegment 14, but also inhibits the formation of a specific set of neuroblasts in parasegment 15 (including NB7-3). We further show that Abd-B.r requires cooperation of the ParaHox gene caudal to unfold its full competence concerning neuroblast inhibition and specification. Thus, our findings demonstrate that combined action of Abdominal-B and caudal contributes to the size and composition of the terminal neuromeres by regulating both the number and lineages of specific neuroblasts. PMID:23903193
Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Wu, Jiu Hui
2017-01-01
The experimental realization and theoretical understanding of a two-dimensional multiple cells lumped ultrathin lightweight plate-type acoustic metamaterials structures have been presented, wherein broadband excellent sound attenuation ability at low frequencies is realized by employing a lumped element coupling resonant effect. The basic unit cell of the metamaterials consists of an ultrathin stiff nylon plate clamped by two elastic ethylene-vinyl acetate copolymer or acrylonitrile butadiene styrene frames. The strong sound attenuation (up to nearly 99%) at low frequencies is experimentally revealed by the precisely designed metamaterials, for which the physical mechanism of the sound attenuation could be explicitly understood using the finite element simulations. As to the designed samples, the lumped effect from the frame compliance leads to a coupling flexural resonance at designable low frequencies. As a result, the whole composite structure become strongly anti-resonant with the incident sound waves, followed by a higher sound attenuation, i.e., the lumped resonant effect has been effectively reversed to be positive from negative for sound attenuation, and the acoustic metamaterial design could be extended to the lumped element containing multiple cells, rather than confined to a single cell.
Conical structures for highly efficient solar cell applications
NASA Astrophysics Data System (ADS)
Korany, Fatma M. H.; Hameed, Mohamed Farhat O.; Hussein, Mohamed; Mubarak, Roaa; Eladawy, Mohamed I.; Obayya, Salah Sabry A.
2018-01-01
Improving solar cell efficiency is a critical research topic. Nowadays, light trapping techniques are a promising way to enhance solar cell performance. A modified nanocone nanowire (NW) is proposed and analyzed for solar cell applications. The suggested NW consists of conical and truncated conical units. The geometrical parameters are studied using a three-dimensional (3-D) finite difference time-domain (FDTD) method to achieve broadband absorption through the reported design and maximize its ultimate efficiency. The analyzed parameters are absorption spectra, ultimate efficiency, and short circuit current density. The numerical results prove that the proposed structure is superior compared with cone, truncated cone, and cylindrical NWs. The reported design achieves an ultimate efficiency of 44.21% with substrate and back reflector. Further, short circuit current density of 36.17 mA / cm2 is achieved by the suggested NW. The electrical performance analysis of the proposed structure including doping concentration, junction thickness, and Shockley-Read-Hall recombination is also investigated. The electrical simulations show that a power conversion efficiency of 17.21% can be achieved using the proposed NW. The modified nanocone has advantages of broadband absorption enhancement, low cost, and fabrication feasibility.
Rizvi, Masood Ahmad; Zaki, Mehvash; Afzal, Mohd; Mane, Manoj; Kumar, Manjeet; Shah, Bhahwal Ali; Srivastav, Saurabh; Srikrishna, Saripella; Peerzada, Ghulam Mustafa; Tabassum, Sartaj
2015-01-27
New pharmacophore organoselenium compound (1) was designed, synthesized and characterized by various spectroscopic methods (IR, ESI-MS, (1)H, (13)C and (77)Se NMR) and further confirmed by X-ray crystallography. Compound 1 consists of two 3,5-bis(trifluoromethyl)phenyl units which are connected to the selenium atom via the organometallic C-Se bond. In vitro DNA binding studies of 1 was investigated by absorption and emission titration methods which revealed that 1 recognizes the minor groove of DNA in accordance with molecular docking studies with the DNA duplex. Gel electrophoretic assay demonstrates the ability of 1 to cleave pBR322 DNA through hydrolytic process which was further validated by T4 religation assay. To understand the drug-protein interaction of which ultimate molecular target was DNA, the affinity of 1 towards HSA was also investigated by the spectroscopic and molecular modeling techniques which showed hydrophobic interaction in the subdomain IIA of HSA. Furthermore, the intracellular localization of 1 was evidenced by cell imaging studies using HeLa cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Neural Network and Letter Recognition.
NASA Astrophysics Data System (ADS)
Lee, Hue Yeon
Neural net architectures and learning algorithms that recognize hand written 36 alphanumeric characters are studied. The thin line input patterns written in 32 x 32 binary array are used. The system is comprised of two major components, viz. a preprocessing unit and a Recognition unit. The preprocessing unit in turn consists of three layers of neurons; the U-layer, the V-layer, and the C -layer. The functions of the U-layer is to extract local features by template matching. The correlation between the detected local features are considered. Through correlating neurons in a plane with their neighboring neurons, the V-layer would thicken the on-cells or lines that are groups of on-cells of the previous layer. These two correlations would yield some deformation tolerance and some of the rotational tolerance of the system. The C-layer then compresses data through the 'Gabor' transform. Pattern dependent choice of center and wavelengths of 'Gabor' filters is the cause of shift and scale tolerance of the system. Three different learning schemes had been investigated in the recognition unit, namely; the error back propagation learning with hidden units, a simple perceptron learning, and a competitive learning. Their performances were analyzed and compared. Since sometimes the network fails to distinguish between two letters that are inherently similar, additional ambiguity resolving neural nets are introduced on top of the above main neural net. The two dimensional Fourier transform is used as the preprocessing and the perceptron is used as the recognition unit of the ambiguity resolver. One hundred different person's handwriting sets are collected. Some of these are used as the training sets and the remainders are used as the test sets. The correct recognition rate of the system increases with the number of training sets and eventually saturates at a certain value. Similar recognition rates are obtained for the above three different learning algorithms. The minimum error rate, 4.9% is achieved for alphanumeric sets when 50 sets are trained. With the ambiguity resolver, it is reduced to 2.5%. In case that only numeral sets are trained and tested, 2.0% error rate is achieved. When only alphabet sets are considered, the error rate is reduced to 1.1%.
Reprogramming primordial germ cells (PGC) to embryonic germ (EG) cells.
Durcova-Hills, Gabriela; Surani, Azim
2008-04-01
In this unit we describe the derivation of pluripotent embryonic germ (EG) cells from mouse primordial germ cells (PGCs) isolated from both 8.5- and 11.5-days post-coitum (dpc) embryos. Once EG cells are derived we explain how to propagate and characterize the cell lines. We introduce readers to PGCs and explain differences between PGCs and their in vitro derivatives EG cells. Finally, we also compare mouse EG cells with ES cells. This unit will be of great interest to anyone interested in PGCs or studying the behavior of cultured PGCs or the derivation of new EG cell lines.
All-solution-processed PbS quantum dot solar modules
NASA Astrophysics Data System (ADS)
Jang, Jihoon; Shim, Hyung Cheoul; Ju, Yeonkyeong; Song, Jung Hoon; An, Hyejin; Yu, Jong-Su; Kwak, Sun-Woo; Lee, Taik-Min; Kim, Inyoung; Jeong, Sohee
2015-05-01
A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas.A rapid increase in power conversion efficiencies in colloidal quantum dot (QD) solar cells has been achieved recently with lead sulphide (PbS) QDs by adapting a heterojunction architecture, which consists of small-area devices associated with a vacuum-deposited buffer layer with metal electrodes. The preparation of QD solar modules by low-cost solution processes is required to further increase the power-to-cost ratio. Herein we demonstrate all-solution-processed flexible PbS QD solar modules with a layer-by-layer architecture comprising polyethylene terephthalate (PET) substrate/indium tin oxide (ITO)/titanium oxide (TiO2)/PbS QD/poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/Ag, with an active area of up to 30 cm2, exhibiting a power conversion efficiency (PCE) of 1.3% under AM 1.5 conditions (PCE of 2.2% for a 1 cm2 unit cell). Our approach affords trade-offs between power and the active area of the photovoltaic devices, which results in a low-cost power source, and which is scalable to larger areas. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01508a
Traction sheave elevator, hoisting unit and machine space
Hakala, Harri; Mustalahti, Jorma; Aulanko, Esko
2000-01-01
Traction sheave elevator consisting of an elevator car moving along elevator guide rails, a counterweight moving along counterweight guide rails, a set of hoisting ropes (3) on which the elevator car and counterweight are suspended, and a drive machine unit (6) driving a traction sheave (7) acting on the hoisting ropes (3) and placed in the elevator shaft. The drive machine unit (6) is of a flat construction. A wall of the elevator shaft is provided with a machine space with its open side facing towards the shaft, the essential parts of the drive machine unit (6) being placed in the space. The hoisting unit (9) of the traction sheave elevator consists of a substantially discoidal drive machine unit (6) and an instrument panel (8) mounted on the frame (20) of the hoisting unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hladek, K.L.
1997-10-07
The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less
NASA Astrophysics Data System (ADS)
Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture
2017-10-01
Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.
Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T.; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane
2017-01-01
Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23–230) and 8.6×108 (range 0.7–75×108), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. PMID:28302713
Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane
2017-06-01
Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23-230) and 8.6×10 8 (range 0.7-75×10 8 ), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. Copyright© Ferrata Storti Foundation.
Ultrastructure of the labrum and foregut of Derocheilocaris remanei (Crustacea, Mystacocarida).
Herrera-Alvarez, Letizia; Fernández, Isabel; Benito, Jesús; Pardos, Fernando
1996-11-01
The cuticle-lined foregut of Derocheilocaris remanei consists of the mouth with its associated labrum, and an undifferentiated esophagus. It is separated from the midgut by an esophageal valve. The labrum is a conspicuous structure moved by five pairs of muscles (four dorsoventral and one longitudinal). Four pairs of subcuticular glands open to its inner face forming two longitudinal, lateral rows of cuticular pores. Each secretory unit is composed of a glandular component (with one or two secretory cells), a neck cell, and a duct cell. In addition, a single gland cell opens mesially into the buccal cavity. The ventrally located mouth is a complex structure characterized by a filter-like system, a sensory organ, and epithelial cells with highly developed microvilli. The esophagus is a simple tube with a characteristic curvature following the mouth. It has a rounded cross section and a triradiate lumen. A layer of circular musculature surrounds this region. The end of the esophagus protrudes into the midgut lumen forming the so-called esophageal valve. The ultrastructural features of the foregut, with the presence of a mucus-trapping mechanism, a relatively well-developed filter system and associated structures and an esophagus lacking glands confirm the microphagic feeding habits of mystacocarids. © 1996 Wiley-Liss, Inc. Copyright © 1996 Wiley-Liss, Inc.
Steffen, Björn; Knop, Markus; Bergholz, Ulla; Vakhrusheva, Olesya; Rode, Miriam; Köhler, Gabriele; Henrichs, Marcel-Philipp; Bulk, Etmar; Hehn, Sina; Stehling, Martin; Dugas, Martin; Bäumer, Nicole; Tschanter, Petra; Brandts, Christian; Koschmieder, Steffen; Berdel, Wolfgang E; Serve, Hubert; Stocking, Carol; Müller-Tidow, Carsten
2011-04-21
The most frequent translocation t(8;21) in acute myeloid leukemia (AML) generates the chimeric AML1/ETO protein, which blocks differentiation and induces self-renewal in hematopoietic progenitor cells. The underlying mechanisms mediating AML1/ETO-induced self-renewal are largely unknown. Using expression microarray analysis, we identified the Groucho-related amino-terminal enhancer of split (AES) as a consistently up-regulated AML1/ETO target. Elevated levels of AES mRNA and protein were confirmed in AML1/ETO-expressing leukemia cells, as well as in other AML specimens. High expression of AES mRNA or protein was associated with improved survival of AML patients, even in the absence of t(8;21). On a functional level, knockdown of AES by RNAi in AML1/ETO-expressing cell lines inhibited colony formation. Similarly, self-renewal induced by AML1/ETO in primary murine progenitors was inhibited when AES was decreased or absent. High levels of AES expression enhanced formation of immature colonies, serial replating capacity of primary cells, and colony formation in colony-forming unit-spleen assays. These findings establish AES as a novel AML1/ETO-induced target gene that plays an important role in the self-renewal phenotype of t(8;21)-positive AML.
Zamedyanskaya, A S; Titova, K A; Sergeev, Al A; Kabanov, A S; Bulychev, L E; Sergeev, Ar A; Galakhova, D O; Nesterov, A E; Nosareva, O V; Shishkina, L N; Taranov, O S; Omigov, V V; Agafonov, A P; Sergeev, A N
2016-01-01
Studies of the primary cultures of granulocytes, mononuclear, and monocyte-macrophage cells derived from human blood were performed using variola virus (VARV) in the doses of 0.001-0.021 PFU/cell (plaques-forming units per cell). Positive dynamics of the virus accumulation was observed only in the monocyte-macrophages with maximum values of virus concentration (5.0-5.5 Ig PFU/ml) mainly within six days after the infection. The fact of VARV replication in the monocyte-macrophages was confirmed by the data of electron microscopy. At the same time, virus vaccines when tested in doses 3.3 and 4.2 Ig PFU/ml did not show the ability to reproduce in these human cells. The people sensitivity to VARV as assessed from the data obtained on human monocyte-macrophages corresponded to -1 PFU (taking into account the smooth interaction of the virus in the body to the cells of this type), which is consistent to previously found theoretical data on the virus sensitivity. The human susceptibility to VARV assessed experimentally can be used to predict the adequacy of developed smallpox models (in vivo) based on susceptible animals. This is necessary for reliable assessment of the efficiency of development of drugs for treatment and prophylaxis of the smallpox.
TMEM2: A missing link in hyaluronan catabolism identified?
Yamaguchi, Yu; Yamamoto, Hayato; Tobisawa, Yuki; Irie, Fumitoshi
2018-03-27
Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 10 6 Da and sometimes reaches 10 7 Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily. The current model of HA catabolism postulates that high-molecular weight HA in the extracellular space is first cleaved into smaller fragments by a hyaluronidase(s) that resides at the cell surface, followed by internalization of fragments and their degradation into monosaccharides in lysosomes. Over the last decade, considerable research has shown that the HYAL family of hyaluronidases plays significant roles in HA catabolism. Nonetheless, the identity of a hyaluronidase responsible for the initial step of HA cleavage on the cell surface remains elusive, as biochemical and enzymological properties of HYAL proteins are not entirely consistent with those expected of cell surface hyaluronidases. Recent identification of transmembrane 2 (TMEM2) as a cell surface protein that possesses potent hyaluronidase activity suggests that it may be the "missing" cell surface hyaluronidase, and that novel models of HA catabolism should include this protein. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Sepsis-induced alteration in T-cell Ca(2+) signaling in neonatal rats.
Alattar, M H; Ravindranath, T M; Choudhry, M A; Muraskas, J K; Namak, S Y; Dallal, O; Sayeed, M M
2001-01-01
Sepsis-induced suppression in T-cell proliferation follows deranged Ca(2+) signaling in adult rats. In preliminary studies, we observed suppression in T-cell proliferation in septic neonatal rats as well. In this study, we assessed splenic T-cell cytosolic Ca(2+) concentration, [Ca(2+)](i), as its elevation plays an important role in T-cell proliferation. Also, we investigated the role of PGE(2) in sepsis-related changes in T-cell [Ca(2+)](i) in animals pretreated with cyclooxygenase-1 (COX-1) inhibitor (resveratrol) and cyclooxygenase-2 (COX-2) inhibitor (NS-398). Sepsis was induced in 15-day-old rat pups by intraperitoneal implantation of fecal pellets containing Escherichia coli and Bacteroides fragilis. The sham group consisted of pups implanted with sterile fecal pellets. Septic and sham pups were sacrificed 24 h after implantation and their spleens were removed. The spleens from sham and septic pups, along with spleens from unoperated control pups, were processed for single cell suspensions, and T cells were isolated using nylon wool columns. Fura-2 fluorophotometry was employed for the measurement of [Ca(2+)](i) (in nM units) in T cells stimulated with concanavalin A (ConA). Our results show that ConA-mediated T-cell [Ca(2+)](i) response is significantly suppressed in septic neonatal rats. Pretreatment of pups with COX-2, but not COX-1 inhibitor, prevented the decrease in the [Ca(2+)](i) response. These findings suggest that PGE(2) might induce the attenuation in T-cell Ca(2+) signaling during sepsis in neonatal rats. Copyright 2001 S. Karger AG, Basel
Regulatory Serotype Mutations in TETRAHYMENA PYRIFORMIS, Syngen 1
Doerder, F. P.
1973-01-01
A method utilizing allelic exclusion has been developed to isolate mutants of Tetrahymena pyriformis, syngen 1, in which the normal pattern of expression of mutally exclusive surface antigens is altered. Cells homozygous for the recessive mutant allele R-1r do not express the L, H and T serotypes when grown under conditions appropriate for their expression. Rather, a new immobilization antigen, r, is expressed. Cells homozygous for the recessive mutant allele R-3r also express the r antigen instead of H serotypes, but are normal in their expression of T antigens. Genetic analyses show that R-1 and R-3 are not closely linked, that R-1 is linked to T by 9.3 units, and that R-3 may be loosely linked to the mt locus. Different linkage values were obtained, however, when different inbred laboratory strains were used, suggesting the possible existence of crossover modifying genes. The rates of assortment of R-1R/R-1r and R-3R/R-3r heterozygotes into pure sublines expressing either H or r serotypes are close to the values observed for the differentiation of heterozygotes at other loci. The data confirm the previous observation that genetic coupling relationships are not maintained in macronuclear phenotypes and are consistent with the hypothesis that the macronucleus contains 45 assorting subunits. The assortment of the double heterozygote R-1R/R-1r, R-3R/R-3r at Rf=0.0112 suggests that the units of assortment are not individual genetic loci or chromosome fragments, but that the units may be complete genomes. PMID:17248612
Amorphization of Ta2O5 under swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.
2017-09-01
Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.